summaryrefslogtreecommitdiffstats
path: root/kernel/kcsan
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /kernel/kcsan
parentInitial commit. (diff)
downloadlinux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz
linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip
Adding upstream version 5.10.209.upstream/5.10.209
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'kernel/kcsan')
-rw-r--r--kernel/kcsan/Makefile18
-rw-r--r--kernel/kcsan/atomic.h18
-rw-r--r--kernel/kcsan/core.c1099
-rw-r--r--kernel/kcsan/debugfs.c270
-rw-r--r--kernel/kcsan/encoding.h95
-rw-r--r--kernel/kcsan/kcsan-test.c1212
-rw-r--r--kernel/kcsan/kcsan.h144
-rw-r--r--kernel/kcsan/report.c642
-rw-r--r--kernel/kcsan/selftest.c133
9 files changed, 3631 insertions, 0 deletions
diff --git a/kernel/kcsan/Makefile b/kernel/kcsan/Makefile
new file mode 100644
index 000000000..a9b0ee63b
--- /dev/null
+++ b/kernel/kcsan/Makefile
@@ -0,0 +1,18 @@
+# SPDX-License-Identifier: GPL-2.0
+KCSAN_SANITIZE := n
+KCOV_INSTRUMENT := n
+UBSAN_SANITIZE := n
+
+CFLAGS_REMOVE_core.o = $(CC_FLAGS_FTRACE)
+CFLAGS_REMOVE_debugfs.o = $(CC_FLAGS_FTRACE)
+CFLAGS_REMOVE_report.o = $(CC_FLAGS_FTRACE)
+
+CFLAGS_core.o := $(call cc-option,-fno-conserve-stack) \
+ -fno-stack-protector -DDISABLE_BRANCH_PROFILING
+
+obj-y := core.o debugfs.o report.o
+obj-$(CONFIG_KCSAN_SELFTEST) += selftest.o
+
+CFLAGS_kcsan-test.o := $(CFLAGS_KCSAN) -fno-omit-frame-pointer
+CFLAGS_kcsan_test.o += $(DISABLE_STRUCTLEAK_PLUGIN)
+obj-$(CONFIG_KCSAN_TEST) += kcsan-test.o
diff --git a/kernel/kcsan/atomic.h b/kernel/kcsan/atomic.h
new file mode 100644
index 000000000..75fe701f4
--- /dev/null
+++ b/kernel/kcsan/atomic.h
@@ -0,0 +1,18 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+#ifndef _KERNEL_KCSAN_ATOMIC_H
+#define _KERNEL_KCSAN_ATOMIC_H
+
+#include <linux/types.h>
+
+/*
+ * Special rules for certain memory where concurrent conflicting accesses are
+ * common, however, the current convention is to not mark them; returns true if
+ * access to @ptr should be considered atomic. Called from slow-path.
+ */
+static bool kcsan_is_atomic_special(const volatile void *ptr)
+{
+ return false;
+}
+
+#endif /* _KERNEL_KCSAN_ATOMIC_H */
diff --git a/kernel/kcsan/core.c b/kernel/kcsan/core.c
new file mode 100644
index 000000000..473dc0459
--- /dev/null
+++ b/kernel/kcsan/core.c
@@ -0,0 +1,1099 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#define pr_fmt(fmt) "kcsan: " fmt
+
+#include <linux/atomic.h>
+#include <linux/bug.h>
+#include <linux/delay.h>
+#include <linux/export.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/minmax.h>
+#include <linux/moduleparam.h>
+#include <linux/percpu.h>
+#include <linux/preempt.h>
+#include <linux/sched.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+
+#include "atomic.h"
+#include "encoding.h"
+#include "kcsan.h"
+
+static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
+unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
+unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
+static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
+static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
+
+#ifdef MODULE_PARAM_PREFIX
+#undef MODULE_PARAM_PREFIX
+#endif
+#define MODULE_PARAM_PREFIX "kcsan."
+module_param_named(early_enable, kcsan_early_enable, bool, 0);
+module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
+module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
+module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
+module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
+
+bool kcsan_enabled;
+
+/* Per-CPU kcsan_ctx for interrupts */
+static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
+ .disable_count = 0,
+ .atomic_next = 0,
+ .atomic_nest_count = 0,
+ .in_flat_atomic = false,
+ .access_mask = 0,
+ .scoped_accesses = {LIST_POISON1, NULL},
+};
+
+/*
+ * Helper macros to index into adjacent slots, starting from address slot
+ * itself, followed by the right and left slots.
+ *
+ * The purpose is 2-fold:
+ *
+ * 1. if during insertion the address slot is already occupied, check if
+ * any adjacent slots are free;
+ * 2. accesses that straddle a slot boundary due to size that exceeds a
+ * slot's range may check adjacent slots if any watchpoint matches.
+ *
+ * Note that accesses with very large size may still miss a watchpoint; however,
+ * given this should be rare, this is a reasonable trade-off to make, since this
+ * will avoid:
+ *
+ * 1. excessive contention between watchpoint checks and setup;
+ * 2. larger number of simultaneous watchpoints without sacrificing
+ * performance.
+ *
+ * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
+ *
+ * slot=0: [ 1, 2, 0]
+ * slot=9: [10, 11, 9]
+ * slot=63: [64, 65, 63]
+ */
+#define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
+
+/*
+ * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
+ * slot (middle) is fine if we assume that races occur rarely. The set of
+ * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
+ * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
+ */
+#define SLOT_IDX_FAST(slot, i) (slot + i)
+
+/*
+ * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
+ * able to safely update and access a watchpoint without introducing locking
+ * overhead, we encode each watchpoint as a single atomic long. The initial
+ * zero-initialized state matches INVALID_WATCHPOINT.
+ *
+ * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
+ * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
+ */
+static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
+
+/*
+ * Instructions to skip watching counter, used in should_watch(). We use a
+ * per-CPU counter to avoid excessive contention.
+ */
+static DEFINE_PER_CPU(long, kcsan_skip);
+
+/* For kcsan_prandom_u32_max(). */
+static DEFINE_PER_CPU(u32, kcsan_rand_state);
+
+static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
+ size_t size,
+ bool expect_write,
+ long *encoded_watchpoint)
+{
+ const int slot = watchpoint_slot(addr);
+ const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
+ atomic_long_t *watchpoint;
+ unsigned long wp_addr_masked;
+ size_t wp_size;
+ bool is_write;
+ int i;
+
+ BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
+
+ for (i = 0; i < NUM_SLOTS; ++i) {
+ watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
+ *encoded_watchpoint = atomic_long_read(watchpoint);
+ if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
+ &wp_size, &is_write))
+ continue;
+
+ if (expect_write && !is_write)
+ continue;
+
+ /* Check if the watchpoint matches the access. */
+ if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
+ return watchpoint;
+ }
+
+ return NULL;
+}
+
+static inline atomic_long_t *
+insert_watchpoint(unsigned long addr, size_t size, bool is_write)
+{
+ const int slot = watchpoint_slot(addr);
+ const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
+ atomic_long_t *watchpoint;
+ int i;
+
+ /* Check slot index logic, ensuring we stay within array bounds. */
+ BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
+ BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
+ BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
+ BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
+
+ for (i = 0; i < NUM_SLOTS; ++i) {
+ long expect_val = INVALID_WATCHPOINT;
+
+ /* Try to acquire this slot. */
+ watchpoint = &watchpoints[SLOT_IDX(slot, i)];
+ if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
+ return watchpoint;
+ }
+
+ return NULL;
+}
+
+/*
+ * Return true if watchpoint was successfully consumed, false otherwise.
+ *
+ * This may return false if:
+ *
+ * 1. another thread already consumed the watchpoint;
+ * 2. the thread that set up the watchpoint already removed it;
+ * 3. the watchpoint was removed and then re-used.
+ */
+static __always_inline bool
+try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
+{
+ return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
+}
+
+/* Return true if watchpoint was not touched, false if already consumed. */
+static inline bool consume_watchpoint(atomic_long_t *watchpoint)
+{
+ return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
+}
+
+/* Remove the watchpoint -- its slot may be reused after. */
+static inline void remove_watchpoint(atomic_long_t *watchpoint)
+{
+ atomic_long_set(watchpoint, INVALID_WATCHPOINT);
+}
+
+static __always_inline struct kcsan_ctx *get_ctx(void)
+{
+ /*
+ * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
+ * also result in calls that generate warnings in uaccess regions.
+ */
+ return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
+}
+
+/* Check scoped accesses; never inline because this is a slow-path! */
+static noinline void kcsan_check_scoped_accesses(void)
+{
+ struct kcsan_ctx *ctx = get_ctx();
+ struct list_head *prev_save = ctx->scoped_accesses.prev;
+ struct kcsan_scoped_access *scoped_access;
+
+ ctx->scoped_accesses.prev = NULL; /* Avoid recursion. */
+ list_for_each_entry(scoped_access, &ctx->scoped_accesses, list)
+ __kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type);
+ ctx->scoped_accesses.prev = prev_save;
+}
+
+/* Rules for generic atomic accesses. Called from fast-path. */
+static __always_inline bool
+is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
+{
+ if (type & KCSAN_ACCESS_ATOMIC)
+ return true;
+
+ /*
+ * Unless explicitly declared atomic, never consider an assertion access
+ * as atomic. This allows using them also in atomic regions, such as
+ * seqlocks, without implicitly changing their semantics.
+ */
+ if (type & KCSAN_ACCESS_ASSERT)
+ return false;
+
+ if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
+ (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
+ !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
+ return true; /* Assume aligned writes up to word size are atomic. */
+
+ if (ctx->atomic_next > 0) {
+ /*
+ * Because we do not have separate contexts for nested
+ * interrupts, in case atomic_next is set, we simply assume that
+ * the outer interrupt set atomic_next. In the worst case, we
+ * will conservatively consider operations as atomic. This is a
+ * reasonable trade-off to make, since this case should be
+ * extremely rare; however, even if extremely rare, it could
+ * lead to false positives otherwise.
+ */
+ if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
+ --ctx->atomic_next; /* in task, or outer interrupt */
+ return true;
+ }
+
+ return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
+}
+
+static __always_inline bool
+should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
+{
+ /*
+ * Never set up watchpoints when memory operations are atomic.
+ *
+ * Need to check this first, before kcsan_skip check below: (1) atomics
+ * should not count towards skipped instructions, and (2) to actually
+ * decrement kcsan_atomic_next for consecutive instruction stream.
+ */
+ if (is_atomic(ptr, size, type, ctx))
+ return false;
+
+ if (this_cpu_dec_return(kcsan_skip) >= 0)
+ return false;
+
+ /*
+ * NOTE: If we get here, kcsan_skip must always be reset in slow path
+ * via reset_kcsan_skip() to avoid underflow.
+ */
+
+ /* this operation should be watched */
+ return true;
+}
+
+/*
+ * Returns a pseudo-random number in interval [0, ep_ro). Simple linear
+ * congruential generator, using constants from "Numerical Recipes".
+ */
+static u32 kcsan_prandom_u32_max(u32 ep_ro)
+{
+ u32 state = this_cpu_read(kcsan_rand_state);
+
+ state = 1664525 * state + 1013904223;
+ this_cpu_write(kcsan_rand_state, state);
+
+ return state % ep_ro;
+}
+
+static inline void reset_kcsan_skip(void)
+{
+ long skip_count = kcsan_skip_watch -
+ (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
+ kcsan_prandom_u32_max(kcsan_skip_watch) :
+ 0);
+ this_cpu_write(kcsan_skip, skip_count);
+}
+
+static __always_inline bool kcsan_is_enabled(void)
+{
+ return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0;
+}
+
+/* Introduce delay depending on context and configuration. */
+static void delay_access(int type)
+{
+ unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
+ /* For certain access types, skew the random delay to be longer. */
+ unsigned int skew_delay_order =
+ (type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
+
+ delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
+ kcsan_prandom_u32_max(delay >> skew_delay_order) :
+ 0;
+ udelay(delay);
+}
+
+void kcsan_save_irqtrace(struct task_struct *task)
+{
+#ifdef CONFIG_TRACE_IRQFLAGS
+ task->kcsan_save_irqtrace = task->irqtrace;
+#endif
+}
+
+void kcsan_restore_irqtrace(struct task_struct *task)
+{
+#ifdef CONFIG_TRACE_IRQFLAGS
+ task->irqtrace = task->kcsan_save_irqtrace;
+#endif
+}
+
+/*
+ * Pull everything together: check_access() below contains the performance
+ * critical operations; the fast-path (including check_access) functions should
+ * all be inlinable by the instrumentation functions.
+ *
+ * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
+ * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
+ * be filtered from the stacktrace, as well as give them unique names for the
+ * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
+ * since they do not access any user memory, but instrumentation is still
+ * emitted in UACCESS regions.
+ */
+
+static noinline void kcsan_found_watchpoint(const volatile void *ptr,
+ size_t size,
+ int type,
+ atomic_long_t *watchpoint,
+ long encoded_watchpoint)
+{
+ unsigned long flags;
+ bool consumed;
+
+ if (!kcsan_is_enabled())
+ return;
+
+ /*
+ * The access_mask check relies on value-change comparison. To avoid
+ * reporting a race where e.g. the writer set up the watchpoint, but the
+ * reader has access_mask!=0, we have to ignore the found watchpoint.
+ */
+ if (get_ctx()->access_mask != 0)
+ return;
+
+ /*
+ * Consume the watchpoint as soon as possible, to minimize the chances
+ * of !consumed. Consuming the watchpoint must always be guarded by
+ * kcsan_is_enabled() check, as otherwise we might erroneously
+ * triggering reports when disabled.
+ */
+ consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
+
+ /* keep this after try_consume_watchpoint */
+ flags = user_access_save();
+
+ if (consumed) {
+ kcsan_save_irqtrace(current);
+ kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_MAYBE,
+ KCSAN_REPORT_CONSUMED_WATCHPOINT,
+ watchpoint - watchpoints);
+ kcsan_restore_irqtrace(current);
+ } else {
+ /*
+ * The other thread may not print any diagnostics, as it has
+ * already removed the watchpoint, or another thread consumed
+ * the watchpoint before this thread.
+ */
+ atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
+ }
+
+ if ((type & KCSAN_ACCESS_ASSERT) != 0)
+ atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
+ else
+ atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
+
+ user_access_restore(flags);
+}
+
+static noinline void
+kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type)
+{
+ const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
+ const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
+ atomic_long_t *watchpoint;
+ union {
+ u8 _1;
+ u16 _2;
+ u32 _4;
+ u64 _8;
+ } expect_value;
+ unsigned long access_mask;
+ enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
+ unsigned long ua_flags = user_access_save();
+ unsigned long irq_flags = 0;
+
+ /*
+ * Always reset kcsan_skip counter in slow-path to avoid underflow; see
+ * should_watch().
+ */
+ reset_kcsan_skip();
+
+ if (!kcsan_is_enabled())
+ goto out;
+
+ /*
+ * Special atomic rules: unlikely to be true, so we check them here in
+ * the slow-path, and not in the fast-path in is_atomic(). Call after
+ * kcsan_is_enabled(), as we may access memory that is not yet
+ * initialized during early boot.
+ */
+ if (!is_assert && kcsan_is_atomic_special(ptr))
+ goto out;
+
+ if (!check_encodable((unsigned long)ptr, size)) {
+ atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
+ goto out;
+ }
+
+ /*
+ * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
+ * runtime is entered for every memory access, and potentially useful
+ * information is lost if dirtied by KCSAN.
+ */
+ kcsan_save_irqtrace(current);
+ if (!kcsan_interrupt_watcher)
+ local_irq_save(irq_flags);
+
+ watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
+ if (watchpoint == NULL) {
+ /*
+ * Out of capacity: the size of 'watchpoints', and the frequency
+ * with which should_watch() returns true should be tweaked so
+ * that this case happens very rarely.
+ */
+ atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
+ goto out_unlock;
+ }
+
+ atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
+ atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
+
+ /*
+ * Read the current value, to later check and infer a race if the data
+ * was modified via a non-instrumented access, e.g. from a device.
+ */
+ expect_value._8 = 0;
+ switch (size) {
+ case 1:
+ expect_value._1 = READ_ONCE(*(const u8 *)ptr);
+ break;
+ case 2:
+ expect_value._2 = READ_ONCE(*(const u16 *)ptr);
+ break;
+ case 4:
+ expect_value._4 = READ_ONCE(*(const u32 *)ptr);
+ break;
+ case 8:
+ expect_value._8 = READ_ONCE(*(const u64 *)ptr);
+ break;
+ default:
+ break; /* ignore; we do not diff the values */
+ }
+
+ if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) {
+ kcsan_disable_current();
+ pr_err("watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n",
+ is_write ? "write" : "read", size, ptr,
+ watchpoint_slot((unsigned long)ptr),
+ encode_watchpoint((unsigned long)ptr, size, is_write));
+ kcsan_enable_current();
+ }
+
+ /*
+ * Delay this thread, to increase probability of observing a racy
+ * conflicting access.
+ */
+ delay_access(type);
+
+ /*
+ * Re-read value, and check if it is as expected; if not, we infer a
+ * racy access.
+ */
+ access_mask = get_ctx()->access_mask;
+ switch (size) {
+ case 1:
+ expect_value._1 ^= READ_ONCE(*(const u8 *)ptr);
+ if (access_mask)
+ expect_value._1 &= (u8)access_mask;
+ break;
+ case 2:
+ expect_value._2 ^= READ_ONCE(*(const u16 *)ptr);
+ if (access_mask)
+ expect_value._2 &= (u16)access_mask;
+ break;
+ case 4:
+ expect_value._4 ^= READ_ONCE(*(const u32 *)ptr);
+ if (access_mask)
+ expect_value._4 &= (u32)access_mask;
+ break;
+ case 8:
+ expect_value._8 ^= READ_ONCE(*(const u64 *)ptr);
+ if (access_mask)
+ expect_value._8 &= (u64)access_mask;
+ break;
+ default:
+ break; /* ignore; we do not diff the values */
+ }
+
+ /* Were we able to observe a value-change? */
+ if (expect_value._8 != 0)
+ value_change = KCSAN_VALUE_CHANGE_TRUE;
+
+ /* Check if this access raced with another. */
+ if (!consume_watchpoint(watchpoint)) {
+ /*
+ * Depending on the access type, map a value_change of MAYBE to
+ * TRUE (always report) or FALSE (never report).
+ */
+ if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
+ if (access_mask != 0) {
+ /*
+ * For access with access_mask, we require a
+ * value-change, as it is likely that races on
+ * ~access_mask bits are expected.
+ */
+ value_change = KCSAN_VALUE_CHANGE_FALSE;
+ } else if (size > 8 || is_assert) {
+ /* Always assume a value-change. */
+ value_change = KCSAN_VALUE_CHANGE_TRUE;
+ }
+ }
+
+ /*
+ * No need to increment 'data_races' counter, as the racing
+ * thread already did.
+ *
+ * Count 'assert_failures' for each failed ASSERT access,
+ * therefore both this thread and the racing thread may
+ * increment this counter.
+ */
+ if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
+ atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
+
+ kcsan_report(ptr, size, type, value_change, KCSAN_REPORT_RACE_SIGNAL,
+ watchpoint - watchpoints);
+ } else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
+ /* Inferring a race, since the value should not have changed. */
+
+ atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
+ if (is_assert)
+ atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
+
+ if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert)
+ kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_TRUE,
+ KCSAN_REPORT_RACE_UNKNOWN_ORIGIN,
+ watchpoint - watchpoints);
+ }
+
+ /*
+ * Remove watchpoint; must be after reporting, since the slot may be
+ * reused after this point.
+ */
+ remove_watchpoint(watchpoint);
+ atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
+out_unlock:
+ if (!kcsan_interrupt_watcher)
+ local_irq_restore(irq_flags);
+ kcsan_restore_irqtrace(current);
+out:
+ user_access_restore(ua_flags);
+}
+
+static __always_inline void check_access(const volatile void *ptr, size_t size,
+ int type)
+{
+ const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
+ atomic_long_t *watchpoint;
+ long encoded_watchpoint;
+
+ /*
+ * Do nothing for 0 sized check; this comparison will be optimized out
+ * for constant sized instrumentation (__tsan_{read,write}N).
+ */
+ if (unlikely(size == 0))
+ return;
+
+ /*
+ * Avoid user_access_save in fast-path: find_watchpoint is safe without
+ * user_access_save, as the address that ptr points to is only used to
+ * check if a watchpoint exists; ptr is never dereferenced.
+ */
+ watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
+ &encoded_watchpoint);
+ /*
+ * It is safe to check kcsan_is_enabled() after find_watchpoint in the
+ * slow-path, as long as no state changes that cause a race to be
+ * detected and reported have occurred until kcsan_is_enabled() is
+ * checked.
+ */
+
+ if (unlikely(watchpoint != NULL))
+ kcsan_found_watchpoint(ptr, size, type, watchpoint,
+ encoded_watchpoint);
+ else {
+ struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
+
+ if (unlikely(should_watch(ptr, size, type, ctx)))
+ kcsan_setup_watchpoint(ptr, size, type);
+ else if (unlikely(ctx->scoped_accesses.prev))
+ kcsan_check_scoped_accesses();
+ }
+}
+
+/* === Public interface ===================================================== */
+
+void __init kcsan_init(void)
+{
+ int cpu;
+
+ BUG_ON(!in_task());
+
+ for_each_possible_cpu(cpu)
+ per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles();
+
+ /*
+ * We are in the init task, and no other tasks should be running;
+ * WRITE_ONCE without memory barrier is sufficient.
+ */
+ if (kcsan_early_enable) {
+ pr_info("enabled early\n");
+ WRITE_ONCE(kcsan_enabled, true);
+ }
+}
+
+/* === Exported interface =================================================== */
+
+void kcsan_disable_current(void)
+{
+ ++get_ctx()->disable_count;
+}
+EXPORT_SYMBOL(kcsan_disable_current);
+
+void kcsan_enable_current(void)
+{
+ if (get_ctx()->disable_count-- == 0) {
+ /*
+ * Warn if kcsan_enable_current() calls are unbalanced with
+ * kcsan_disable_current() calls, which causes disable_count to
+ * become negative and should not happen.
+ */
+ kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
+ kcsan_disable_current(); /* disable to generate warning */
+ WARN(1, "Unbalanced %s()", __func__);
+ kcsan_enable_current();
+ }
+}
+EXPORT_SYMBOL(kcsan_enable_current);
+
+void kcsan_enable_current_nowarn(void)
+{
+ if (get_ctx()->disable_count-- == 0)
+ kcsan_disable_current();
+}
+EXPORT_SYMBOL(kcsan_enable_current_nowarn);
+
+void kcsan_nestable_atomic_begin(void)
+{
+ /*
+ * Do *not* check and warn if we are in a flat atomic region: nestable
+ * and flat atomic regions are independent from each other.
+ * See include/linux/kcsan.h: struct kcsan_ctx comments for more
+ * comments.
+ */
+
+ ++get_ctx()->atomic_nest_count;
+}
+EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
+
+void kcsan_nestable_atomic_end(void)
+{
+ if (get_ctx()->atomic_nest_count-- == 0) {
+ /*
+ * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
+ * kcsan_nestable_atomic_begin() calls, which causes
+ * atomic_nest_count to become negative and should not happen.
+ */
+ kcsan_nestable_atomic_begin(); /* restore to 0 */
+ kcsan_disable_current(); /* disable to generate warning */
+ WARN(1, "Unbalanced %s()", __func__);
+ kcsan_enable_current();
+ }
+}
+EXPORT_SYMBOL(kcsan_nestable_atomic_end);
+
+void kcsan_flat_atomic_begin(void)
+{
+ get_ctx()->in_flat_atomic = true;
+}
+EXPORT_SYMBOL(kcsan_flat_atomic_begin);
+
+void kcsan_flat_atomic_end(void)
+{
+ get_ctx()->in_flat_atomic = false;
+}
+EXPORT_SYMBOL(kcsan_flat_atomic_end);
+
+void kcsan_atomic_next(int n)
+{
+ get_ctx()->atomic_next = n;
+}
+EXPORT_SYMBOL(kcsan_atomic_next);
+
+void kcsan_set_access_mask(unsigned long mask)
+{
+ get_ctx()->access_mask = mask;
+}
+EXPORT_SYMBOL(kcsan_set_access_mask);
+
+struct kcsan_scoped_access *
+kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
+ struct kcsan_scoped_access *sa)
+{
+ struct kcsan_ctx *ctx = get_ctx();
+
+ __kcsan_check_access(ptr, size, type);
+
+ ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
+
+ INIT_LIST_HEAD(&sa->list);
+ sa->ptr = ptr;
+ sa->size = size;
+ sa->type = type;
+
+ if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
+ INIT_LIST_HEAD(&ctx->scoped_accesses);
+ list_add(&sa->list, &ctx->scoped_accesses);
+
+ ctx->disable_count--;
+ return sa;
+}
+EXPORT_SYMBOL(kcsan_begin_scoped_access);
+
+void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
+{
+ struct kcsan_ctx *ctx = get_ctx();
+
+ if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
+ return;
+
+ ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
+
+ list_del(&sa->list);
+ if (list_empty(&ctx->scoped_accesses))
+ /*
+ * Ensure we do not enter kcsan_check_scoped_accesses()
+ * slow-path if unnecessary, and avoids requiring list_empty()
+ * in the fast-path (to avoid a READ_ONCE() and potential
+ * uaccess warning).
+ */
+ ctx->scoped_accesses.prev = NULL;
+
+ ctx->disable_count--;
+
+ __kcsan_check_access(sa->ptr, sa->size, sa->type);
+}
+EXPORT_SYMBOL(kcsan_end_scoped_access);
+
+void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
+{
+ check_access(ptr, size, type);
+}
+EXPORT_SYMBOL(__kcsan_check_access);
+
+/*
+ * KCSAN uses the same instrumentation that is emitted by supported compilers
+ * for ThreadSanitizer (TSAN).
+ *
+ * When enabled, the compiler emits instrumentation calls (the functions
+ * prefixed with "__tsan" below) for all loads and stores that it generated;
+ * inline asm is not instrumented.
+ *
+ * Note that, not all supported compiler versions distinguish aligned/unaligned
+ * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
+ * version to the generic version, which can handle both.
+ */
+
+#define DEFINE_TSAN_READ_WRITE(size) \
+ void __tsan_read##size(void *ptr); \
+ void __tsan_read##size(void *ptr) \
+ { \
+ check_access(ptr, size, 0); \
+ } \
+ EXPORT_SYMBOL(__tsan_read##size); \
+ void __tsan_unaligned_read##size(void *ptr) \
+ __alias(__tsan_read##size); \
+ EXPORT_SYMBOL(__tsan_unaligned_read##size); \
+ void __tsan_write##size(void *ptr); \
+ void __tsan_write##size(void *ptr) \
+ { \
+ check_access(ptr, size, KCSAN_ACCESS_WRITE); \
+ } \
+ EXPORT_SYMBOL(__tsan_write##size); \
+ void __tsan_unaligned_write##size(void *ptr) \
+ __alias(__tsan_write##size); \
+ EXPORT_SYMBOL(__tsan_unaligned_write##size); \
+ void __tsan_read_write##size(void *ptr); \
+ void __tsan_read_write##size(void *ptr) \
+ { \
+ check_access(ptr, size, \
+ KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE); \
+ } \
+ EXPORT_SYMBOL(__tsan_read_write##size); \
+ void __tsan_unaligned_read_write##size(void *ptr) \
+ __alias(__tsan_read_write##size); \
+ EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
+
+DEFINE_TSAN_READ_WRITE(1);
+DEFINE_TSAN_READ_WRITE(2);
+DEFINE_TSAN_READ_WRITE(4);
+DEFINE_TSAN_READ_WRITE(8);
+DEFINE_TSAN_READ_WRITE(16);
+
+void __tsan_read_range(void *ptr, size_t size);
+void __tsan_read_range(void *ptr, size_t size)
+{
+ check_access(ptr, size, 0);
+}
+EXPORT_SYMBOL(__tsan_read_range);
+
+void __tsan_write_range(void *ptr, size_t size);
+void __tsan_write_range(void *ptr, size_t size)
+{
+ check_access(ptr, size, KCSAN_ACCESS_WRITE);
+}
+EXPORT_SYMBOL(__tsan_write_range);
+
+/*
+ * Use of explicit volatile is generally disallowed [1], however, volatile is
+ * still used in various concurrent context, whether in low-level
+ * synchronization primitives or for legacy reasons.
+ * [1] https://lwn.net/Articles/233479/
+ *
+ * We only consider volatile accesses atomic if they are aligned and would pass
+ * the size-check of compiletime_assert_rwonce_type().
+ */
+#define DEFINE_TSAN_VOLATILE_READ_WRITE(size) \
+ void __tsan_volatile_read##size(void *ptr); \
+ void __tsan_volatile_read##size(void *ptr) \
+ { \
+ const bool is_atomic = size <= sizeof(long long) && \
+ IS_ALIGNED((unsigned long)ptr, size); \
+ if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic) \
+ return; \
+ check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0); \
+ } \
+ EXPORT_SYMBOL(__tsan_volatile_read##size); \
+ void __tsan_unaligned_volatile_read##size(void *ptr) \
+ __alias(__tsan_volatile_read##size); \
+ EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size); \
+ void __tsan_volatile_write##size(void *ptr); \
+ void __tsan_volatile_write##size(void *ptr) \
+ { \
+ const bool is_atomic = size <= sizeof(long long) && \
+ IS_ALIGNED((unsigned long)ptr, size); \
+ if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic) \
+ return; \
+ check_access(ptr, size, \
+ KCSAN_ACCESS_WRITE | \
+ (is_atomic ? KCSAN_ACCESS_ATOMIC : 0)); \
+ } \
+ EXPORT_SYMBOL(__tsan_volatile_write##size); \
+ void __tsan_unaligned_volatile_write##size(void *ptr) \
+ __alias(__tsan_volatile_write##size); \
+ EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
+
+DEFINE_TSAN_VOLATILE_READ_WRITE(1);
+DEFINE_TSAN_VOLATILE_READ_WRITE(2);
+DEFINE_TSAN_VOLATILE_READ_WRITE(4);
+DEFINE_TSAN_VOLATILE_READ_WRITE(8);
+DEFINE_TSAN_VOLATILE_READ_WRITE(16);
+
+/*
+ * The below are not required by KCSAN, but can still be emitted by the
+ * compiler.
+ */
+void __tsan_func_entry(void *call_pc);
+void __tsan_func_entry(void *call_pc)
+{
+}
+EXPORT_SYMBOL(__tsan_func_entry);
+void __tsan_func_exit(void);
+void __tsan_func_exit(void)
+{
+}
+EXPORT_SYMBOL(__tsan_func_exit);
+void __tsan_init(void);
+void __tsan_init(void)
+{
+}
+EXPORT_SYMBOL(__tsan_init);
+
+/*
+ * Instrumentation for atomic builtins (__atomic_*, __sync_*).
+ *
+ * Normal kernel code _should not_ be using them directly, but some
+ * architectures may implement some or all atomics using the compilers'
+ * builtins.
+ *
+ * Note: If an architecture decides to fully implement atomics using the
+ * builtins, because they are implicitly instrumented by KCSAN (and KASAN,
+ * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
+ * atomic-instrumented) is no longer necessary.
+ *
+ * TSAN instrumentation replaces atomic accesses with calls to any of the below
+ * functions, whose job is to also execute the operation itself.
+ */
+
+#define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits) \
+ u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder); \
+ u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder) \
+ { \
+ if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \
+ check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC); \
+ } \
+ return __atomic_load_n(ptr, memorder); \
+ } \
+ EXPORT_SYMBOL(__tsan_atomic##bits##_load); \
+ void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder); \
+ void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder) \
+ { \
+ if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \
+ check_access(ptr, bits / BITS_PER_BYTE, \
+ KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC); \
+ } \
+ __atomic_store_n(ptr, v, memorder); \
+ } \
+ EXPORT_SYMBOL(__tsan_atomic##bits##_store)
+
+#define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix) \
+ u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder); \
+ u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder) \
+ { \
+ if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \
+ check_access(ptr, bits / BITS_PER_BYTE, \
+ KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | \
+ KCSAN_ACCESS_ATOMIC); \
+ } \
+ return __atomic_##op##suffix(ptr, v, memorder); \
+ } \
+ EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
+
+/*
+ * Note: CAS operations are always classified as write, even in case they
+ * fail. We cannot perform check_access() after a write, as it might lead to
+ * false positives, in cases such as:
+ *
+ * T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
+ *
+ * T1: if (__atomic_load_n(&p->flag, ...)) {
+ * modify *p;
+ * p->flag = 0;
+ * }
+ *
+ * The only downside is that, if there are 3 threads, with one CAS that
+ * succeeds, another CAS that fails, and an unmarked racing operation, we may
+ * point at the wrong CAS as the source of the race. However, if we assume that
+ * all CAS can succeed in some other execution, the data race is still valid.
+ */
+#define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak) \
+ int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp, \
+ u##bits val, int mo, int fail_mo); \
+ int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp, \
+ u##bits val, int mo, int fail_mo) \
+ { \
+ if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \
+ check_access(ptr, bits / BITS_PER_BYTE, \
+ KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | \
+ KCSAN_ACCESS_ATOMIC); \
+ } \
+ return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo); \
+ } \
+ EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
+
+#define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits) \
+ u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
+ int mo, int fail_mo); \
+ u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
+ int mo, int fail_mo) \
+ { \
+ if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \
+ check_access(ptr, bits / BITS_PER_BYTE, \
+ KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | \
+ KCSAN_ACCESS_ATOMIC); \
+ } \
+ __atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo); \
+ return exp; \
+ } \
+ EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
+
+#define DEFINE_TSAN_ATOMIC_OPS(bits) \
+ DEFINE_TSAN_ATOMIC_LOAD_STORE(bits); \
+ DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n); \
+ DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, ); \
+ DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, ); \
+ DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, ); \
+ DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, ); \
+ DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, ); \
+ DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, ); \
+ DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0); \
+ DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1); \
+ DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
+
+DEFINE_TSAN_ATOMIC_OPS(8);
+DEFINE_TSAN_ATOMIC_OPS(16);
+DEFINE_TSAN_ATOMIC_OPS(32);
+#ifdef CONFIG_64BIT
+DEFINE_TSAN_ATOMIC_OPS(64);
+#endif
+
+void __tsan_atomic_thread_fence(int memorder);
+void __tsan_atomic_thread_fence(int memorder)
+{
+ __atomic_thread_fence(memorder);
+}
+EXPORT_SYMBOL(__tsan_atomic_thread_fence);
+
+void __tsan_atomic_signal_fence(int memorder);
+void __tsan_atomic_signal_fence(int memorder) { }
+EXPORT_SYMBOL(__tsan_atomic_signal_fence);
+
+#ifdef __HAVE_ARCH_MEMSET
+void *__tsan_memset(void *s, int c, size_t count);
+noinline void *__tsan_memset(void *s, int c, size_t count)
+{
+ /*
+ * Instead of not setting up watchpoints where accessed size is greater
+ * than MAX_ENCODABLE_SIZE, truncate checked size to MAX_ENCODABLE_SIZE.
+ */
+ size_t check_len = min_t(size_t, count, MAX_ENCODABLE_SIZE);
+
+ check_access(s, check_len, KCSAN_ACCESS_WRITE);
+ return memset(s, c, count);
+}
+#else
+void *__tsan_memset(void *s, int c, size_t count) __alias(memset);
+#endif
+EXPORT_SYMBOL(__tsan_memset);
+
+#ifdef __HAVE_ARCH_MEMMOVE
+void *__tsan_memmove(void *dst, const void *src, size_t len);
+noinline void *__tsan_memmove(void *dst, const void *src, size_t len)
+{
+ size_t check_len = min_t(size_t, len, MAX_ENCODABLE_SIZE);
+
+ check_access(dst, check_len, KCSAN_ACCESS_WRITE);
+ check_access(src, check_len, 0);
+ return memmove(dst, src, len);
+}
+#else
+void *__tsan_memmove(void *dst, const void *src, size_t len) __alias(memmove);
+#endif
+EXPORT_SYMBOL(__tsan_memmove);
+
+#ifdef __HAVE_ARCH_MEMCPY
+void *__tsan_memcpy(void *dst, const void *src, size_t len);
+noinline void *__tsan_memcpy(void *dst, const void *src, size_t len)
+{
+ size_t check_len = min_t(size_t, len, MAX_ENCODABLE_SIZE);
+
+ check_access(dst, check_len, KCSAN_ACCESS_WRITE);
+ check_access(src, check_len, 0);
+ return memcpy(dst, src, len);
+}
+#else
+void *__tsan_memcpy(void *dst, const void *src, size_t len) __alias(memcpy);
+#endif
+EXPORT_SYMBOL(__tsan_memcpy);
diff --git a/kernel/kcsan/debugfs.c b/kernel/kcsan/debugfs.c
new file mode 100644
index 000000000..62a52be8f
--- /dev/null
+++ b/kernel/kcsan/debugfs.c
@@ -0,0 +1,270 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#define pr_fmt(fmt) "kcsan: " fmt
+
+#include <linux/atomic.h>
+#include <linux/bsearch.h>
+#include <linux/bug.h>
+#include <linux/debugfs.h>
+#include <linux/init.h>
+#include <linux/kallsyms.h>
+#include <linux/sched.h>
+#include <linux/seq_file.h>
+#include <linux/slab.h>
+#include <linux/sort.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+
+#include "kcsan.h"
+
+atomic_long_t kcsan_counters[KCSAN_COUNTER_COUNT];
+static const char *const counter_names[] = {
+ [KCSAN_COUNTER_USED_WATCHPOINTS] = "used_watchpoints",
+ [KCSAN_COUNTER_SETUP_WATCHPOINTS] = "setup_watchpoints",
+ [KCSAN_COUNTER_DATA_RACES] = "data_races",
+ [KCSAN_COUNTER_ASSERT_FAILURES] = "assert_failures",
+ [KCSAN_COUNTER_NO_CAPACITY] = "no_capacity",
+ [KCSAN_COUNTER_REPORT_RACES] = "report_races",
+ [KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN] = "races_unknown_origin",
+ [KCSAN_COUNTER_UNENCODABLE_ACCESSES] = "unencodable_accesses",
+ [KCSAN_COUNTER_ENCODING_FALSE_POSITIVES] = "encoding_false_positives",
+};
+static_assert(ARRAY_SIZE(counter_names) == KCSAN_COUNTER_COUNT);
+
+/*
+ * Addresses for filtering functions from reporting. This list can be used as a
+ * whitelist or blacklist.
+ */
+static struct {
+ unsigned long *addrs; /* array of addresses */
+ size_t size; /* current size */
+ int used; /* number of elements used */
+ bool sorted; /* if elements are sorted */
+ bool whitelist; /* if list is a blacklist or whitelist */
+} report_filterlist = {
+ .addrs = NULL,
+ .size = 8, /* small initial size */
+ .used = 0,
+ .sorted = false,
+ .whitelist = false, /* default is blacklist */
+};
+static DEFINE_SPINLOCK(report_filterlist_lock);
+
+/*
+ * The microbenchmark allows benchmarking KCSAN core runtime only. To run
+ * multiple threads, pipe 'microbench=<iters>' from multiple tasks into the
+ * debugfs file. This will not generate any conflicts, and tests fast-path only.
+ */
+static noinline void microbenchmark(unsigned long iters)
+{
+ const struct kcsan_ctx ctx_save = current->kcsan_ctx;
+ const bool was_enabled = READ_ONCE(kcsan_enabled);
+ cycles_t cycles;
+
+ /* We may have been called from an atomic region; reset context. */
+ memset(&current->kcsan_ctx, 0, sizeof(current->kcsan_ctx));
+ /*
+ * Disable to benchmark fast-path for all accesses, and (expected
+ * negligible) call into slow-path, but never set up watchpoints.
+ */
+ WRITE_ONCE(kcsan_enabled, false);
+
+ pr_info("%s begin | iters: %lu\n", __func__, iters);
+
+ cycles = get_cycles();
+ while (iters--) {
+ unsigned long addr = iters & ((PAGE_SIZE << 8) - 1);
+ int type = !(iters & 0x7f) ? KCSAN_ACCESS_ATOMIC :
+ (!(iters & 0xf) ? KCSAN_ACCESS_WRITE : 0);
+ __kcsan_check_access((void *)addr, sizeof(long), type);
+ }
+ cycles = get_cycles() - cycles;
+
+ pr_info("%s end | cycles: %llu\n", __func__, cycles);
+
+ WRITE_ONCE(kcsan_enabled, was_enabled);
+ /* restore context */
+ current->kcsan_ctx = ctx_save;
+}
+
+static int cmp_filterlist_addrs(const void *rhs, const void *lhs)
+{
+ const unsigned long a = *(const unsigned long *)rhs;
+ const unsigned long b = *(const unsigned long *)lhs;
+
+ return a < b ? -1 : a == b ? 0 : 1;
+}
+
+bool kcsan_skip_report_debugfs(unsigned long func_addr)
+{
+ unsigned long symbolsize, offset;
+ unsigned long flags;
+ bool ret = false;
+
+ if (!kallsyms_lookup_size_offset(func_addr, &symbolsize, &offset))
+ return false;
+ func_addr -= offset; /* Get function start */
+
+ spin_lock_irqsave(&report_filterlist_lock, flags);
+ if (report_filterlist.used == 0)
+ goto out;
+
+ /* Sort array if it is unsorted, and then do a binary search. */
+ if (!report_filterlist.sorted) {
+ sort(report_filterlist.addrs, report_filterlist.used,
+ sizeof(unsigned long), cmp_filterlist_addrs, NULL);
+ report_filterlist.sorted = true;
+ }
+ ret = !!bsearch(&func_addr, report_filterlist.addrs,
+ report_filterlist.used, sizeof(unsigned long),
+ cmp_filterlist_addrs);
+ if (report_filterlist.whitelist)
+ ret = !ret;
+
+out:
+ spin_unlock_irqrestore(&report_filterlist_lock, flags);
+ return ret;
+}
+
+static void set_report_filterlist_whitelist(bool whitelist)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&report_filterlist_lock, flags);
+ report_filterlist.whitelist = whitelist;
+ spin_unlock_irqrestore(&report_filterlist_lock, flags);
+}
+
+/* Returns 0 on success, error-code otherwise. */
+static ssize_t insert_report_filterlist(const char *func)
+{
+ unsigned long flags;
+ unsigned long addr = kallsyms_lookup_name(func);
+ ssize_t ret = 0;
+
+ if (!addr) {
+ pr_err("could not find function: '%s'\n", func);
+ return -ENOENT;
+ }
+
+ spin_lock_irqsave(&report_filterlist_lock, flags);
+
+ if (report_filterlist.addrs == NULL) {
+ /* initial allocation */
+ report_filterlist.addrs =
+ kmalloc_array(report_filterlist.size,
+ sizeof(unsigned long), GFP_ATOMIC);
+ if (report_filterlist.addrs == NULL) {
+ ret = -ENOMEM;
+ goto out;
+ }
+ } else if (report_filterlist.used == report_filterlist.size) {
+ /* resize filterlist */
+ size_t new_size = report_filterlist.size * 2;
+ unsigned long *new_addrs =
+ krealloc(report_filterlist.addrs,
+ new_size * sizeof(unsigned long), GFP_ATOMIC);
+
+ if (new_addrs == NULL) {
+ /* leave filterlist itself untouched */
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ report_filterlist.size = new_size;
+ report_filterlist.addrs = new_addrs;
+ }
+
+ /* Note: deduplicating should be done in userspace. */
+ report_filterlist.addrs[report_filterlist.used++] =
+ kallsyms_lookup_name(func);
+ report_filterlist.sorted = false;
+
+out:
+ spin_unlock_irqrestore(&report_filterlist_lock, flags);
+
+ return ret;
+}
+
+static int show_info(struct seq_file *file, void *v)
+{
+ int i;
+ unsigned long flags;
+
+ /* show stats */
+ seq_printf(file, "enabled: %i\n", READ_ONCE(kcsan_enabled));
+ for (i = 0; i < KCSAN_COUNTER_COUNT; ++i) {
+ seq_printf(file, "%s: %ld\n", counter_names[i],
+ atomic_long_read(&kcsan_counters[i]));
+ }
+
+ /* show filter functions, and filter type */
+ spin_lock_irqsave(&report_filterlist_lock, flags);
+ seq_printf(file, "\n%s functions: %s\n",
+ report_filterlist.whitelist ? "whitelisted" : "blacklisted",
+ report_filterlist.used == 0 ? "none" : "");
+ for (i = 0; i < report_filterlist.used; ++i)
+ seq_printf(file, " %ps\n", (void *)report_filterlist.addrs[i]);
+ spin_unlock_irqrestore(&report_filterlist_lock, flags);
+
+ return 0;
+}
+
+static int debugfs_open(struct inode *inode, struct file *file)
+{
+ return single_open(file, show_info, NULL);
+}
+
+static ssize_t
+debugfs_write(struct file *file, const char __user *buf, size_t count, loff_t *off)
+{
+ char kbuf[KSYM_NAME_LEN];
+ char *arg;
+ int read_len = count < (sizeof(kbuf) - 1) ? count : (sizeof(kbuf) - 1);
+
+ if (copy_from_user(kbuf, buf, read_len))
+ return -EFAULT;
+ kbuf[read_len] = '\0';
+ arg = strstrip(kbuf);
+
+ if (!strcmp(arg, "on")) {
+ WRITE_ONCE(kcsan_enabled, true);
+ } else if (!strcmp(arg, "off")) {
+ WRITE_ONCE(kcsan_enabled, false);
+ } else if (str_has_prefix(arg, "microbench=")) {
+ unsigned long iters;
+
+ if (kstrtoul(&arg[strlen("microbench=")], 0, &iters))
+ return -EINVAL;
+ microbenchmark(iters);
+ } else if (!strcmp(arg, "whitelist")) {
+ set_report_filterlist_whitelist(true);
+ } else if (!strcmp(arg, "blacklist")) {
+ set_report_filterlist_whitelist(false);
+ } else if (arg[0] == '!') {
+ ssize_t ret = insert_report_filterlist(&arg[1]);
+
+ if (ret < 0)
+ return ret;
+ } else {
+ return -EINVAL;
+ }
+
+ return count;
+}
+
+static const struct file_operations debugfs_ops =
+{
+ .read = seq_read,
+ .open = debugfs_open,
+ .write = debugfs_write,
+ .release = single_release
+};
+
+static int __init kcsan_debugfs_init(void)
+{
+ debugfs_create_file("kcsan", 0644, NULL, NULL, &debugfs_ops);
+ return 0;
+}
+
+late_initcall(kcsan_debugfs_init);
diff --git a/kernel/kcsan/encoding.h b/kernel/kcsan/encoding.h
new file mode 100644
index 000000000..1a6db2f79
--- /dev/null
+++ b/kernel/kcsan/encoding.h
@@ -0,0 +1,95 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+#ifndef _KERNEL_KCSAN_ENCODING_H
+#define _KERNEL_KCSAN_ENCODING_H
+
+#include <linux/bits.h>
+#include <linux/log2.h>
+#include <linux/mm.h>
+
+#include "kcsan.h"
+
+#define SLOT_RANGE PAGE_SIZE
+
+#define INVALID_WATCHPOINT 0
+#define CONSUMED_WATCHPOINT 1
+
+/*
+ * The maximum useful size of accesses for which we set up watchpoints is the
+ * max range of slots we check on an access.
+ */
+#define MAX_ENCODABLE_SIZE (SLOT_RANGE * (1 + KCSAN_CHECK_ADJACENT))
+
+/*
+ * Number of bits we use to store size info.
+ */
+#define WATCHPOINT_SIZE_BITS bits_per(MAX_ENCODABLE_SIZE)
+/*
+ * This encoding for addresses discards the upper (1 for is-write + SIZE_BITS);
+ * however, most 64-bit architectures do not use the full 64-bit address space.
+ * Also, in order for a false positive to be observable 2 things need to happen:
+ *
+ * 1. different addresses but with the same encoded address race;
+ * 2. and both map onto the same watchpoint slots;
+ *
+ * Both these are assumed to be very unlikely. However, in case it still
+ * happens, the report logic will filter out the false positive (see report.c).
+ */
+#define WATCHPOINT_ADDR_BITS (BITS_PER_LONG-1 - WATCHPOINT_SIZE_BITS)
+
+/*
+ * Masks to set/retrieve the encoded data.
+ */
+#define WATCHPOINT_WRITE_MASK BIT(BITS_PER_LONG-1)
+#define WATCHPOINT_SIZE_MASK \
+ GENMASK(BITS_PER_LONG-2, BITS_PER_LONG-2 - WATCHPOINT_SIZE_BITS)
+#define WATCHPOINT_ADDR_MASK \
+ GENMASK(BITS_PER_LONG-3 - WATCHPOINT_SIZE_BITS, 0)
+
+static inline bool check_encodable(unsigned long addr, size_t size)
+{
+ return size <= MAX_ENCODABLE_SIZE;
+}
+
+static inline long
+encode_watchpoint(unsigned long addr, size_t size, bool is_write)
+{
+ return (long)((is_write ? WATCHPOINT_WRITE_MASK : 0) |
+ (size << WATCHPOINT_ADDR_BITS) |
+ (addr & WATCHPOINT_ADDR_MASK));
+}
+
+static __always_inline bool decode_watchpoint(long watchpoint,
+ unsigned long *addr_masked,
+ size_t *size,
+ bool *is_write)
+{
+ if (watchpoint == INVALID_WATCHPOINT ||
+ watchpoint == CONSUMED_WATCHPOINT)
+ return false;
+
+ *addr_masked = (unsigned long)watchpoint & WATCHPOINT_ADDR_MASK;
+ *size = ((unsigned long)watchpoint & WATCHPOINT_SIZE_MASK) >> WATCHPOINT_ADDR_BITS;
+ *is_write = !!((unsigned long)watchpoint & WATCHPOINT_WRITE_MASK);
+
+ return true;
+}
+
+/*
+ * Return watchpoint slot for an address.
+ */
+static __always_inline int watchpoint_slot(unsigned long addr)
+{
+ return (addr / PAGE_SIZE) % CONFIG_KCSAN_NUM_WATCHPOINTS;
+}
+
+static __always_inline bool matching_access(unsigned long addr1, size_t size1,
+ unsigned long addr2, size_t size2)
+{
+ unsigned long end_range1 = addr1 + size1 - 1;
+ unsigned long end_range2 = addr2 + size2 - 1;
+
+ return addr1 <= end_range2 && addr2 <= end_range1;
+}
+
+#endif /* _KERNEL_KCSAN_ENCODING_H */
diff --git a/kernel/kcsan/kcsan-test.c b/kernel/kcsan/kcsan-test.c
new file mode 100644
index 000000000..8a8ccaf4f
--- /dev/null
+++ b/kernel/kcsan/kcsan-test.c
@@ -0,0 +1,1212 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * KCSAN test with various race scenarious to test runtime behaviour. Since the
+ * interface with which KCSAN's reports are obtained is via the console, this is
+ * the output we should verify. For each test case checks the presence (or
+ * absence) of generated reports. Relies on 'console' tracepoint to capture
+ * reports as they appear in the kernel log.
+ *
+ * Makes use of KUnit for test organization, and the Torture framework for test
+ * thread control.
+ *
+ * Copyright (C) 2020, Google LLC.
+ * Author: Marco Elver <elver@google.com>
+ */
+
+#include <kunit/test.h>
+#include <linux/jiffies.h>
+#include <linux/kcsan-checks.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/seqlock.h>
+#include <linux/spinlock.h>
+#include <linux/string.h>
+#include <linux/timer.h>
+#include <linux/torture.h>
+#include <linux/tracepoint.h>
+#include <linux/types.h>
+#include <trace/events/printk.h>
+
+#ifdef CONFIG_CC_HAS_TSAN_COMPOUND_READ_BEFORE_WRITE
+#define __KCSAN_ACCESS_RW(alt) (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
+#else
+#define __KCSAN_ACCESS_RW(alt) (alt)
+#endif
+
+/* Points to current test-case memory access "kernels". */
+static void (*access_kernels[2])(void);
+
+static struct task_struct **threads; /* Lists of threads. */
+static unsigned long end_time; /* End time of test. */
+
+/* Report as observed from console. */
+static struct {
+ spinlock_t lock;
+ int nlines;
+ char lines[3][512];
+} observed = {
+ .lock = __SPIN_LOCK_UNLOCKED(observed.lock),
+};
+
+/* Setup test checking loop. */
+static __no_kcsan inline void
+begin_test_checks(void (*func1)(void), void (*func2)(void))
+{
+ kcsan_disable_current();
+
+ /*
+ * Require at least as long as KCSAN_REPORT_ONCE_IN_MS, to ensure at
+ * least one race is reported.
+ */
+ end_time = jiffies + msecs_to_jiffies(CONFIG_KCSAN_REPORT_ONCE_IN_MS + 500);
+
+ /* Signal start; release potential initialization of shared data. */
+ smp_store_release(&access_kernels[0], func1);
+ smp_store_release(&access_kernels[1], func2);
+}
+
+/* End test checking loop. */
+static __no_kcsan inline bool
+end_test_checks(bool stop)
+{
+ if (!stop && time_before(jiffies, end_time)) {
+ /* Continue checking */
+ might_sleep();
+ return false;
+ }
+
+ kcsan_enable_current();
+ return true;
+}
+
+/*
+ * Probe for console output: checks if a race was reported, and obtains observed
+ * lines of interest.
+ */
+__no_kcsan
+static void probe_console(void *ignore, const char *buf, size_t len)
+{
+ unsigned long flags;
+ int nlines;
+
+ /*
+ * Note that KCSAN reports under a global lock, so we do not risk the
+ * possibility of having multiple reports interleaved. If that were the
+ * case, we'd expect tests to fail.
+ */
+
+ spin_lock_irqsave(&observed.lock, flags);
+ nlines = observed.nlines;
+
+ if (strnstr(buf, "BUG: KCSAN: ", len) && strnstr(buf, "test_", len)) {
+ /*
+ * KCSAN report and related to the test.
+ *
+ * The provided @buf is not NUL-terminated; copy no more than
+ * @len bytes and let strscpy() add the missing NUL-terminator.
+ */
+ strscpy(observed.lines[0], buf, min(len + 1, sizeof(observed.lines[0])));
+ nlines = 1;
+ } else if ((nlines == 1 || nlines == 2) && strnstr(buf, "bytes by", len)) {
+ strscpy(observed.lines[nlines++], buf, min(len + 1, sizeof(observed.lines[0])));
+
+ if (strnstr(buf, "race at unknown origin", len)) {
+ if (WARN_ON(nlines != 2))
+ goto out;
+
+ /* No second line of interest. */
+ strcpy(observed.lines[nlines++], "<none>");
+ }
+ }
+
+out:
+ WRITE_ONCE(observed.nlines, nlines); /* Publish new nlines. */
+ spin_unlock_irqrestore(&observed.lock, flags);
+}
+
+/* Check if a report related to the test exists. */
+__no_kcsan
+static bool report_available(void)
+{
+ return READ_ONCE(observed.nlines) == ARRAY_SIZE(observed.lines);
+}
+
+/* Report information we expect in a report. */
+struct expect_report {
+ /* Access information of both accesses. */
+ struct {
+ void *fn; /* Function pointer to expected function of top frame. */
+ void *addr; /* Address of access; unchecked if NULL. */
+ size_t size; /* Size of access; unchecked if @addr is NULL. */
+ int type; /* Access type, see KCSAN_ACCESS definitions. */
+ } access[2];
+};
+
+/* Check observed report matches information in @r. */
+__no_kcsan
+static bool report_matches(const struct expect_report *r)
+{
+ const bool is_assert = (r->access[0].type | r->access[1].type) & KCSAN_ACCESS_ASSERT;
+ bool ret = false;
+ unsigned long flags;
+ typeof(*observed.lines) *expect;
+ const char *end;
+ char *cur;
+ int i;
+
+ /* Doubled-checked locking. */
+ if (!report_available())
+ return false;
+
+ expect = kmalloc(sizeof(observed.lines), GFP_KERNEL);
+ if (WARN_ON(!expect))
+ return false;
+
+ /* Generate expected report contents. */
+
+ /* Title */
+ cur = expect[0];
+ end = &expect[0][sizeof(expect[0]) - 1];
+ cur += scnprintf(cur, end - cur, "BUG: KCSAN: %s in ",
+ is_assert ? "assert: race" : "data-race");
+ if (r->access[1].fn) {
+ char tmp[2][64];
+ int cmp;
+
+ /* Expect lexographically sorted function names in title. */
+ scnprintf(tmp[0], sizeof(tmp[0]), "%pS", r->access[0].fn);
+ scnprintf(tmp[1], sizeof(tmp[1]), "%pS", r->access[1].fn);
+ cmp = strcmp(tmp[0], tmp[1]);
+ cur += scnprintf(cur, end - cur, "%ps / %ps",
+ cmp < 0 ? r->access[0].fn : r->access[1].fn,
+ cmp < 0 ? r->access[1].fn : r->access[0].fn);
+ } else {
+ scnprintf(cur, end - cur, "%pS", r->access[0].fn);
+ /* The exact offset won't match, remove it. */
+ cur = strchr(expect[0], '+');
+ if (cur)
+ *cur = '\0';
+ }
+
+ /* Access 1 */
+ cur = expect[1];
+ end = &expect[1][sizeof(expect[1]) - 1];
+ if (!r->access[1].fn)
+ cur += scnprintf(cur, end - cur, "race at unknown origin, with ");
+
+ /* Access 1 & 2 */
+ for (i = 0; i < 2; ++i) {
+ const int ty = r->access[i].type;
+ const char *const access_type =
+ (ty & KCSAN_ACCESS_ASSERT) ?
+ ((ty & KCSAN_ACCESS_WRITE) ?
+ "assert no accesses" :
+ "assert no writes") :
+ ((ty & KCSAN_ACCESS_WRITE) ?
+ ((ty & KCSAN_ACCESS_COMPOUND) ?
+ "read-write" :
+ "write") :
+ "read");
+ const char *const access_type_aux =
+ (ty & KCSAN_ACCESS_ATOMIC) ?
+ " (marked)" :
+ ((ty & KCSAN_ACCESS_SCOPED) ? " (scoped)" : "");
+
+ if (i == 1) {
+ /* Access 2 */
+ cur = expect[2];
+ end = &expect[2][sizeof(expect[2]) - 1];
+
+ if (!r->access[1].fn) {
+ /* Dummy string if no second access is available. */
+ strcpy(cur, "<none>");
+ break;
+ }
+ }
+
+ cur += scnprintf(cur, end - cur, "%s%s to ", access_type,
+ access_type_aux);
+
+ if (r->access[i].addr) /* Address is optional. */
+ cur += scnprintf(cur, end - cur, "0x%px of %zu bytes",
+ r->access[i].addr, r->access[i].size);
+ }
+
+ spin_lock_irqsave(&observed.lock, flags);
+ if (!report_available())
+ goto out; /* A new report is being captured. */
+
+ /* Finally match expected output to what we actually observed. */
+ ret = strstr(observed.lines[0], expect[0]) &&
+ /* Access info may appear in any order. */
+ ((strstr(observed.lines[1], expect[1]) &&
+ strstr(observed.lines[2], expect[2])) ||
+ (strstr(observed.lines[1], expect[2]) &&
+ strstr(observed.lines[2], expect[1])));
+out:
+ spin_unlock_irqrestore(&observed.lock, flags);
+ kfree(expect);
+ return ret;
+}
+
+/* ===== Test kernels ===== */
+
+static long test_sink;
+static long test_var;
+/* @test_array should be large enough to fall into multiple watchpoint slots. */
+static long test_array[3 * PAGE_SIZE / sizeof(long)];
+static struct {
+ long val[8];
+} test_struct;
+static DEFINE_SEQLOCK(test_seqlock);
+
+/*
+ * Helper to avoid compiler optimizing out reads, and to generate source values
+ * for writes.
+ */
+__no_kcsan
+static noinline void sink_value(long v) { WRITE_ONCE(test_sink, v); }
+
+static noinline void test_kernel_read(void) { sink_value(test_var); }
+
+static noinline void test_kernel_write(void)
+{
+ test_var = READ_ONCE_NOCHECK(test_sink) + 1;
+}
+
+static noinline void test_kernel_write_nochange(void) { test_var = 42; }
+
+/* Suffixed by value-change exception filter. */
+static noinline void test_kernel_write_nochange_rcu(void) { test_var = 42; }
+
+static noinline void test_kernel_read_atomic(void)
+{
+ sink_value(READ_ONCE(test_var));
+}
+
+static noinline void test_kernel_write_atomic(void)
+{
+ WRITE_ONCE(test_var, READ_ONCE_NOCHECK(test_sink) + 1);
+}
+
+static noinline void test_kernel_atomic_rmw(void)
+{
+ /* Use builtin, so we can set up the "bad" atomic/non-atomic scenario. */
+ __atomic_fetch_add(&test_var, 1, __ATOMIC_RELAXED);
+}
+
+__no_kcsan
+static noinline void test_kernel_write_uninstrumented(void) { test_var++; }
+
+static noinline void test_kernel_data_race(void) { data_race(test_var++); }
+
+static noinline void test_kernel_assert_writer(void)
+{
+ ASSERT_EXCLUSIVE_WRITER(test_var);
+}
+
+static noinline void test_kernel_assert_access(void)
+{
+ ASSERT_EXCLUSIVE_ACCESS(test_var);
+}
+
+#define TEST_CHANGE_BITS 0xff00ff00
+
+static noinline void test_kernel_change_bits(void)
+{
+ if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {
+ /*
+ * Avoid race of unknown origin for this test, just pretend they
+ * are atomic.
+ */
+ kcsan_nestable_atomic_begin();
+ test_var ^= TEST_CHANGE_BITS;
+ kcsan_nestable_atomic_end();
+ } else
+ WRITE_ONCE(test_var, READ_ONCE(test_var) ^ TEST_CHANGE_BITS);
+}
+
+static noinline void test_kernel_assert_bits_change(void)
+{
+ ASSERT_EXCLUSIVE_BITS(test_var, TEST_CHANGE_BITS);
+}
+
+static noinline void test_kernel_assert_bits_nochange(void)
+{
+ ASSERT_EXCLUSIVE_BITS(test_var, ~TEST_CHANGE_BITS);
+}
+
+/* To check that scoped assertions do trigger anywhere in scope. */
+static noinline void test_enter_scope(void)
+{
+ int x = 0;
+
+ /* Unrelated accesses to scoped assert. */
+ READ_ONCE(test_sink);
+ kcsan_check_read(&x, sizeof(x));
+}
+
+static noinline void test_kernel_assert_writer_scoped(void)
+{
+ ASSERT_EXCLUSIVE_WRITER_SCOPED(test_var);
+ test_enter_scope();
+}
+
+static noinline void test_kernel_assert_access_scoped(void)
+{
+ ASSERT_EXCLUSIVE_ACCESS_SCOPED(test_var);
+ test_enter_scope();
+}
+
+static noinline void test_kernel_rmw_array(void)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(test_array); ++i)
+ test_array[i]++;
+}
+
+static noinline void test_kernel_write_struct(void)
+{
+ kcsan_check_write(&test_struct, sizeof(test_struct));
+ kcsan_disable_current();
+ test_struct.val[3]++; /* induce value change */
+ kcsan_enable_current();
+}
+
+static noinline void test_kernel_write_struct_part(void)
+{
+ test_struct.val[3] = 42;
+}
+
+static noinline void test_kernel_read_struct_zero_size(void)
+{
+ kcsan_check_read(&test_struct.val[3], 0);
+}
+
+static noinline void test_kernel_jiffies_reader(void)
+{
+ sink_value((long)jiffies);
+}
+
+static noinline void test_kernel_seqlock_reader(void)
+{
+ unsigned int seq;
+
+ do {
+ seq = read_seqbegin(&test_seqlock);
+ sink_value(test_var);
+ } while (read_seqretry(&test_seqlock, seq));
+}
+
+static noinline void test_kernel_seqlock_writer(void)
+{
+ unsigned long flags;
+
+ write_seqlock_irqsave(&test_seqlock, flags);
+ test_var++;
+ write_sequnlock_irqrestore(&test_seqlock, flags);
+}
+
+static noinline void test_kernel_atomic_builtins(void)
+{
+ /*
+ * Generate concurrent accesses, expecting no reports, ensuring KCSAN
+ * treats builtin atomics as actually atomic.
+ */
+ __atomic_load_n(&test_var, __ATOMIC_RELAXED);
+}
+
+/* ===== Test cases ===== */
+
+/* Simple test with normal data race. */
+__no_kcsan
+static void test_basic(struct kunit *test)
+{
+ const struct expect_report expect = {
+ .access = {
+ { test_kernel_write, &test_var, sizeof(test_var), KCSAN_ACCESS_WRITE },
+ { test_kernel_read, &test_var, sizeof(test_var), 0 },
+ },
+ };
+ static const struct expect_report never = {
+ .access = {
+ { test_kernel_read, &test_var, sizeof(test_var), 0 },
+ { test_kernel_read, &test_var, sizeof(test_var), 0 },
+ },
+ };
+ bool match_expect = false;
+ bool match_never = false;
+
+ begin_test_checks(test_kernel_write, test_kernel_read);
+ do {
+ match_expect |= report_matches(&expect);
+ match_never = report_matches(&never);
+ } while (!end_test_checks(match_never));
+ KUNIT_EXPECT_TRUE(test, match_expect);
+ KUNIT_EXPECT_FALSE(test, match_never);
+}
+
+/*
+ * Stress KCSAN with lots of concurrent races on different addresses until
+ * timeout.
+ */
+__no_kcsan
+static void test_concurrent_races(struct kunit *test)
+{
+ const struct expect_report expect = {
+ .access = {
+ /* NULL will match any address. */
+ { test_kernel_rmw_array, NULL, 0, __KCSAN_ACCESS_RW(KCSAN_ACCESS_WRITE) },
+ { test_kernel_rmw_array, NULL, 0, __KCSAN_ACCESS_RW(0) },
+ },
+ };
+ static const struct expect_report never = {
+ .access = {
+ { test_kernel_rmw_array, NULL, 0, 0 },
+ { test_kernel_rmw_array, NULL, 0, 0 },
+ },
+ };
+ bool match_expect = false;
+ bool match_never = false;
+
+ begin_test_checks(test_kernel_rmw_array, test_kernel_rmw_array);
+ do {
+ match_expect |= report_matches(&expect);
+ match_never |= report_matches(&never);
+ } while (!end_test_checks(false));
+ KUNIT_EXPECT_TRUE(test, match_expect); /* Sanity check matches exist. */
+ KUNIT_EXPECT_FALSE(test, match_never);
+}
+
+/* Test the KCSAN_REPORT_VALUE_CHANGE_ONLY option. */
+__no_kcsan
+static void test_novalue_change(struct kunit *test)
+{
+ const struct expect_report expect = {
+ .access = {
+ { test_kernel_write_nochange, &test_var, sizeof(test_var), KCSAN_ACCESS_WRITE },
+ { test_kernel_read, &test_var, sizeof(test_var), 0 },
+ },
+ };
+ bool match_expect = false;
+
+ begin_test_checks(test_kernel_write_nochange, test_kernel_read);
+ do {
+ match_expect = report_matches(&expect);
+ } while (!end_test_checks(match_expect));
+ if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY))
+ KUNIT_EXPECT_FALSE(test, match_expect);
+ else
+ KUNIT_EXPECT_TRUE(test, match_expect);
+}
+
+/*
+ * Test that the rules where the KCSAN_REPORT_VALUE_CHANGE_ONLY option should
+ * never apply work.
+ */
+__no_kcsan
+static void test_novalue_change_exception(struct kunit *test)
+{
+ const struct expect_report expect = {
+ .access = {
+ { test_kernel_write_nochange_rcu, &test_var, sizeof(test_var), KCSAN_ACCESS_WRITE },
+ { test_kernel_read, &test_var, sizeof(test_var), 0 },
+ },
+ };
+ bool match_expect = false;
+
+ begin_test_checks(test_kernel_write_nochange_rcu, test_kernel_read);
+ do {
+ match_expect = report_matches(&expect);
+ } while (!end_test_checks(match_expect));
+ KUNIT_EXPECT_TRUE(test, match_expect);
+}
+
+/* Test that data races of unknown origin are reported. */
+__no_kcsan
+static void test_unknown_origin(struct kunit *test)
+{
+ const struct expect_report expect = {
+ .access = {
+ { test_kernel_read, &test_var, sizeof(test_var), 0 },
+ { NULL },
+ },
+ };
+ bool match_expect = false;
+
+ begin_test_checks(test_kernel_write_uninstrumented, test_kernel_read);
+ do {
+ match_expect = report_matches(&expect);
+ } while (!end_test_checks(match_expect));
+ if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN))
+ KUNIT_EXPECT_TRUE(test, match_expect);
+ else
+ KUNIT_EXPECT_FALSE(test, match_expect);
+}
+
+/* Test KCSAN_ASSUME_PLAIN_WRITES_ATOMIC if it is selected. */
+__no_kcsan
+static void test_write_write_assume_atomic(struct kunit *test)
+{
+ const struct expect_report expect = {
+ .access = {
+ { test_kernel_write, &test_var, sizeof(test_var), KCSAN_ACCESS_WRITE },
+ { test_kernel_write, &test_var, sizeof(test_var), KCSAN_ACCESS_WRITE },
+ },
+ };
+ bool match_expect = false;
+
+ begin_test_checks(test_kernel_write, test_kernel_write);
+ do {
+ sink_value(READ_ONCE(test_var)); /* induce value-change */
+ match_expect = report_matches(&expect);
+ } while (!end_test_checks(match_expect));
+ if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC))
+ KUNIT_EXPECT_FALSE(test, match_expect);
+ else
+ KUNIT_EXPECT_TRUE(test, match_expect);
+}
+
+/*
+ * Test that data races with writes larger than word-size are always reported,
+ * even if KCSAN_ASSUME_PLAIN_WRITES_ATOMIC is selected.
+ */
+__no_kcsan
+static void test_write_write_struct(struct kunit *test)
+{
+ const struct expect_report expect = {
+ .access = {
+ { test_kernel_write_struct, &test_struct, sizeof(test_struct), KCSAN_ACCESS_WRITE },
+ { test_kernel_write_struct, &test_struct, sizeof(test_struct), KCSAN_ACCESS_WRITE },
+ },
+ };
+ bool match_expect = false;
+
+ begin_test_checks(test_kernel_write_struct, test_kernel_write_struct);
+ do {
+ match_expect = report_matches(&expect);
+ } while (!end_test_checks(match_expect));
+ KUNIT_EXPECT_TRUE(test, match_expect);
+}
+
+/*
+ * Test that data races where only one write is larger than word-size are always
+ * reported, even if KCSAN_ASSUME_PLAIN_WRITES_ATOMIC is selected.
+ */
+__no_kcsan
+static void test_write_write_struct_part(struct kunit *test)
+{
+ const struct expect_report expect = {
+ .access = {
+ { test_kernel_write_struct, &test_struct, sizeof(test_struct), KCSAN_ACCESS_WRITE },
+ { test_kernel_write_struct_part, &test_struct.val[3], sizeof(test_struct.val[3]), KCSAN_ACCESS_WRITE },
+ },
+ };
+ bool match_expect = false;
+
+ begin_test_checks(test_kernel_write_struct, test_kernel_write_struct_part);
+ do {
+ match_expect = report_matches(&expect);
+ } while (!end_test_checks(match_expect));
+ KUNIT_EXPECT_TRUE(test, match_expect);
+}
+
+/* Test that races with atomic accesses never result in reports. */
+__no_kcsan
+static void test_read_atomic_write_atomic(struct kunit *test)
+{
+ bool match_never = false;
+
+ begin_test_checks(test_kernel_read_atomic, test_kernel_write_atomic);
+ do {
+ match_never = report_available();
+ } while (!end_test_checks(match_never));
+ KUNIT_EXPECT_FALSE(test, match_never);
+}
+
+/* Test that a race with an atomic and plain access result in reports. */
+__no_kcsan
+static void test_read_plain_atomic_write(struct kunit *test)
+{
+ const struct expect_report expect = {
+ .access = {
+ { test_kernel_read, &test_var, sizeof(test_var), 0 },
+ { test_kernel_write_atomic, &test_var, sizeof(test_var), KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC },
+ },
+ };
+ bool match_expect = false;
+
+ if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS))
+ return;
+
+ begin_test_checks(test_kernel_read, test_kernel_write_atomic);
+ do {
+ match_expect = report_matches(&expect);
+ } while (!end_test_checks(match_expect));
+ KUNIT_EXPECT_TRUE(test, match_expect);
+}
+
+/* Test that atomic RMWs generate correct report. */
+__no_kcsan
+static void test_read_plain_atomic_rmw(struct kunit *test)
+{
+ const struct expect_report expect = {
+ .access = {
+ { test_kernel_read, &test_var, sizeof(test_var), 0 },
+ { test_kernel_atomic_rmw, &test_var, sizeof(test_var),
+ KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC },
+ },
+ };
+ bool match_expect = false;
+
+ if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS))
+ return;
+
+ begin_test_checks(test_kernel_read, test_kernel_atomic_rmw);
+ do {
+ match_expect = report_matches(&expect);
+ } while (!end_test_checks(match_expect));
+ KUNIT_EXPECT_TRUE(test, match_expect);
+}
+
+/* Zero-sized accesses should never cause data race reports. */
+__no_kcsan
+static void test_zero_size_access(struct kunit *test)
+{
+ const struct expect_report expect = {
+ .access = {
+ { test_kernel_write_struct, &test_struct, sizeof(test_struct), KCSAN_ACCESS_WRITE },
+ { test_kernel_write_struct, &test_struct, sizeof(test_struct), KCSAN_ACCESS_WRITE },
+ },
+ };
+ const struct expect_report never = {
+ .access = {
+ { test_kernel_write_struct, &test_struct, sizeof(test_struct), KCSAN_ACCESS_WRITE },
+ { test_kernel_read_struct_zero_size, &test_struct.val[3], 0, 0 },
+ },
+ };
+ bool match_expect = false;
+ bool match_never = false;
+
+ begin_test_checks(test_kernel_write_struct, test_kernel_read_struct_zero_size);
+ do {
+ match_expect |= report_matches(&expect);
+ match_never = report_matches(&never);
+ } while (!end_test_checks(match_never));
+ KUNIT_EXPECT_TRUE(test, match_expect); /* Sanity check. */
+ KUNIT_EXPECT_FALSE(test, match_never);
+}
+
+/* Test the data_race() macro. */
+__no_kcsan
+static void test_data_race(struct kunit *test)
+{
+ bool match_never = false;
+
+ begin_test_checks(test_kernel_data_race, test_kernel_data_race);
+ do {
+ match_never = report_available();
+ } while (!end_test_checks(match_never));
+ KUNIT_EXPECT_FALSE(test, match_never);
+}
+
+__no_kcsan
+static void test_assert_exclusive_writer(struct kunit *test)
+{
+ const struct expect_report expect = {
+ .access = {
+ { test_kernel_assert_writer, &test_var, sizeof(test_var), KCSAN_ACCESS_ASSERT },
+ { test_kernel_write_nochange, &test_var, sizeof(test_var), KCSAN_ACCESS_WRITE },
+ },
+ };
+ bool match_expect = false;
+
+ begin_test_checks(test_kernel_assert_writer, test_kernel_write_nochange);
+ do {
+ match_expect = report_matches(&expect);
+ } while (!end_test_checks(match_expect));
+ KUNIT_EXPECT_TRUE(test, match_expect);
+}
+
+__no_kcsan
+static void test_assert_exclusive_access(struct kunit *test)
+{
+ const struct expect_report expect = {
+ .access = {
+ { test_kernel_assert_access, &test_var, sizeof(test_var), KCSAN_ACCESS_ASSERT | KCSAN_ACCESS_WRITE },
+ { test_kernel_read, &test_var, sizeof(test_var), 0 },
+ },
+ };
+ bool match_expect = false;
+
+ begin_test_checks(test_kernel_assert_access, test_kernel_read);
+ do {
+ match_expect = report_matches(&expect);
+ } while (!end_test_checks(match_expect));
+ KUNIT_EXPECT_TRUE(test, match_expect);
+}
+
+__no_kcsan
+static void test_assert_exclusive_access_writer(struct kunit *test)
+{
+ const struct expect_report expect_access_writer = {
+ .access = {
+ { test_kernel_assert_access, &test_var, sizeof(test_var), KCSAN_ACCESS_ASSERT | KCSAN_ACCESS_WRITE },
+ { test_kernel_assert_writer, &test_var, sizeof(test_var), KCSAN_ACCESS_ASSERT },
+ },
+ };
+ const struct expect_report expect_access_access = {
+ .access = {
+ { test_kernel_assert_access, &test_var, sizeof(test_var), KCSAN_ACCESS_ASSERT | KCSAN_ACCESS_WRITE },
+ { test_kernel_assert_access, &test_var, sizeof(test_var), KCSAN_ACCESS_ASSERT | KCSAN_ACCESS_WRITE },
+ },
+ };
+ const struct expect_report never = {
+ .access = {
+ { test_kernel_assert_writer, &test_var, sizeof(test_var), KCSAN_ACCESS_ASSERT },
+ { test_kernel_assert_writer, &test_var, sizeof(test_var), KCSAN_ACCESS_ASSERT },
+ },
+ };
+ bool match_expect_access_writer = false;
+ bool match_expect_access_access = false;
+ bool match_never = false;
+
+ begin_test_checks(test_kernel_assert_access, test_kernel_assert_writer);
+ do {
+ match_expect_access_writer |= report_matches(&expect_access_writer);
+ match_expect_access_access |= report_matches(&expect_access_access);
+ match_never |= report_matches(&never);
+ } while (!end_test_checks(match_never));
+ KUNIT_EXPECT_TRUE(test, match_expect_access_writer);
+ KUNIT_EXPECT_TRUE(test, match_expect_access_access);
+ KUNIT_EXPECT_FALSE(test, match_never);
+}
+
+__no_kcsan
+static void test_assert_exclusive_bits_change(struct kunit *test)
+{
+ const struct expect_report expect = {
+ .access = {
+ { test_kernel_assert_bits_change, &test_var, sizeof(test_var), KCSAN_ACCESS_ASSERT },
+ { test_kernel_change_bits, &test_var, sizeof(test_var),
+ KCSAN_ACCESS_WRITE | (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) ? 0 : KCSAN_ACCESS_ATOMIC) },
+ },
+ };
+ bool match_expect = false;
+
+ begin_test_checks(test_kernel_assert_bits_change, test_kernel_change_bits);
+ do {
+ match_expect = report_matches(&expect);
+ } while (!end_test_checks(match_expect));
+ KUNIT_EXPECT_TRUE(test, match_expect);
+}
+
+__no_kcsan
+static void test_assert_exclusive_bits_nochange(struct kunit *test)
+{
+ bool match_never = false;
+
+ begin_test_checks(test_kernel_assert_bits_nochange, test_kernel_change_bits);
+ do {
+ match_never = report_available();
+ } while (!end_test_checks(match_never));
+ KUNIT_EXPECT_FALSE(test, match_never);
+}
+
+__no_kcsan
+static void test_assert_exclusive_writer_scoped(struct kunit *test)
+{
+ const struct expect_report expect_start = {
+ .access = {
+ { test_kernel_assert_writer_scoped, &test_var, sizeof(test_var), KCSAN_ACCESS_ASSERT | KCSAN_ACCESS_SCOPED },
+ { test_kernel_write_nochange, &test_var, sizeof(test_var), KCSAN_ACCESS_WRITE },
+ },
+ };
+ const struct expect_report expect_anywhere = {
+ .access = {
+ { test_enter_scope, &test_var, sizeof(test_var), KCSAN_ACCESS_ASSERT | KCSAN_ACCESS_SCOPED },
+ { test_kernel_write_nochange, &test_var, sizeof(test_var), KCSAN_ACCESS_WRITE },
+ },
+ };
+ bool match_expect_start = false;
+ bool match_expect_anywhere = false;
+
+ begin_test_checks(test_kernel_assert_writer_scoped, test_kernel_write_nochange);
+ do {
+ match_expect_start |= report_matches(&expect_start);
+ match_expect_anywhere |= report_matches(&expect_anywhere);
+ } while (!end_test_checks(match_expect_start && match_expect_anywhere));
+ KUNIT_EXPECT_TRUE(test, match_expect_start);
+ KUNIT_EXPECT_TRUE(test, match_expect_anywhere);
+}
+
+__no_kcsan
+static void test_assert_exclusive_access_scoped(struct kunit *test)
+{
+ const struct expect_report expect_start1 = {
+ .access = {
+ { test_kernel_assert_access_scoped, &test_var, sizeof(test_var), KCSAN_ACCESS_ASSERT | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_SCOPED },
+ { test_kernel_read, &test_var, sizeof(test_var), 0 },
+ },
+ };
+ const struct expect_report expect_start2 = {
+ .access = { expect_start1.access[0], expect_start1.access[0] },
+ };
+ const struct expect_report expect_inscope = {
+ .access = {
+ { test_enter_scope, &test_var, sizeof(test_var), KCSAN_ACCESS_ASSERT | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_SCOPED },
+ { test_kernel_read, &test_var, sizeof(test_var), 0 },
+ },
+ };
+ bool match_expect_start = false;
+ bool match_expect_inscope = false;
+
+ begin_test_checks(test_kernel_assert_access_scoped, test_kernel_read);
+ end_time += msecs_to_jiffies(1000); /* This test requires a bit more time. */
+ do {
+ match_expect_start |= report_matches(&expect_start1) || report_matches(&expect_start2);
+ match_expect_inscope |= report_matches(&expect_inscope);
+ } while (!end_test_checks(match_expect_start && match_expect_inscope));
+ KUNIT_EXPECT_TRUE(test, match_expect_start);
+ KUNIT_EXPECT_TRUE(test, match_expect_inscope);
+}
+
+/*
+ * jiffies is special (declared to be volatile) and its accesses are typically
+ * not marked; this test ensures that the compiler nor KCSAN gets confused about
+ * jiffies's declaration on different architectures.
+ */
+__no_kcsan
+static void test_jiffies_noreport(struct kunit *test)
+{
+ bool match_never = false;
+
+ begin_test_checks(test_kernel_jiffies_reader, test_kernel_jiffies_reader);
+ do {
+ match_never = report_available();
+ } while (!end_test_checks(match_never));
+ KUNIT_EXPECT_FALSE(test, match_never);
+}
+
+/* Test that racing accesses in seqlock critical sections are not reported. */
+__no_kcsan
+static void test_seqlock_noreport(struct kunit *test)
+{
+ bool match_never = false;
+
+ begin_test_checks(test_kernel_seqlock_reader, test_kernel_seqlock_writer);
+ do {
+ match_never = report_available();
+ } while (!end_test_checks(match_never));
+ KUNIT_EXPECT_FALSE(test, match_never);
+}
+
+/*
+ * Test atomic builtins work and required instrumentation functions exist. We
+ * also test that KCSAN understands they're atomic by racing with them via
+ * test_kernel_atomic_builtins(), and expect no reports.
+ *
+ * The atomic builtins _SHOULD NOT_ be used in normal kernel code!
+ */
+static void test_atomic_builtins(struct kunit *test)
+{
+ bool match_never = false;
+
+ begin_test_checks(test_kernel_atomic_builtins, test_kernel_atomic_builtins);
+ do {
+ long tmp;
+
+ kcsan_enable_current();
+
+ __atomic_store_n(&test_var, 42L, __ATOMIC_RELAXED);
+ KUNIT_EXPECT_EQ(test, 42L, __atomic_load_n(&test_var, __ATOMIC_RELAXED));
+
+ KUNIT_EXPECT_EQ(test, 42L, __atomic_exchange_n(&test_var, 20, __ATOMIC_RELAXED));
+ KUNIT_EXPECT_EQ(test, 20L, test_var);
+
+ tmp = 20L;
+ KUNIT_EXPECT_TRUE(test, __atomic_compare_exchange_n(&test_var, &tmp, 30L,
+ 0, __ATOMIC_RELAXED,
+ __ATOMIC_RELAXED));
+ KUNIT_EXPECT_EQ(test, tmp, 20L);
+ KUNIT_EXPECT_EQ(test, test_var, 30L);
+ KUNIT_EXPECT_FALSE(test, __atomic_compare_exchange_n(&test_var, &tmp, 40L,
+ 1, __ATOMIC_RELAXED,
+ __ATOMIC_RELAXED));
+ KUNIT_EXPECT_EQ(test, tmp, 30L);
+ KUNIT_EXPECT_EQ(test, test_var, 30L);
+
+ KUNIT_EXPECT_EQ(test, 30L, __atomic_fetch_add(&test_var, 1, __ATOMIC_RELAXED));
+ KUNIT_EXPECT_EQ(test, 31L, __atomic_fetch_sub(&test_var, 1, __ATOMIC_RELAXED));
+ KUNIT_EXPECT_EQ(test, 30L, __atomic_fetch_and(&test_var, 0xf, __ATOMIC_RELAXED));
+ KUNIT_EXPECT_EQ(test, 14L, __atomic_fetch_xor(&test_var, 0xf, __ATOMIC_RELAXED));
+ KUNIT_EXPECT_EQ(test, 1L, __atomic_fetch_or(&test_var, 0xf0, __ATOMIC_RELAXED));
+ KUNIT_EXPECT_EQ(test, 241L, __atomic_fetch_nand(&test_var, 0xf, __ATOMIC_RELAXED));
+ KUNIT_EXPECT_EQ(test, -2L, test_var);
+
+ __atomic_thread_fence(__ATOMIC_SEQ_CST);
+ __atomic_signal_fence(__ATOMIC_SEQ_CST);
+
+ kcsan_disable_current();
+
+ match_never = report_available();
+ } while (!end_test_checks(match_never));
+ KUNIT_EXPECT_FALSE(test, match_never);
+}
+
+/*
+ * Each test case is run with different numbers of threads. Until KUnit supports
+ * passing arguments for each test case, we encode #threads in the test case
+ * name (read by get_num_threads()). [The '-' was chosen as a stylistic
+ * preference to separate test name and #threads.]
+ *
+ * The thread counts are chosen to cover potentially interesting boundaries and
+ * corner cases (range 2-5), and then stress the system with larger counts.
+ */
+#define KCSAN_KUNIT_CASE(test_name) \
+ { .run_case = test_name, .name = #test_name "-02" }, \
+ { .run_case = test_name, .name = #test_name "-03" }, \
+ { .run_case = test_name, .name = #test_name "-04" }, \
+ { .run_case = test_name, .name = #test_name "-05" }, \
+ { .run_case = test_name, .name = #test_name "-08" }, \
+ { .run_case = test_name, .name = #test_name "-16" }
+
+static struct kunit_case kcsan_test_cases[] = {
+ KCSAN_KUNIT_CASE(test_basic),
+ KCSAN_KUNIT_CASE(test_concurrent_races),
+ KCSAN_KUNIT_CASE(test_novalue_change),
+ KCSAN_KUNIT_CASE(test_novalue_change_exception),
+ KCSAN_KUNIT_CASE(test_unknown_origin),
+ KCSAN_KUNIT_CASE(test_write_write_assume_atomic),
+ KCSAN_KUNIT_CASE(test_write_write_struct),
+ KCSAN_KUNIT_CASE(test_write_write_struct_part),
+ KCSAN_KUNIT_CASE(test_read_atomic_write_atomic),
+ KCSAN_KUNIT_CASE(test_read_plain_atomic_write),
+ KCSAN_KUNIT_CASE(test_read_plain_atomic_rmw),
+ KCSAN_KUNIT_CASE(test_zero_size_access),
+ KCSAN_KUNIT_CASE(test_data_race),
+ KCSAN_KUNIT_CASE(test_assert_exclusive_writer),
+ KCSAN_KUNIT_CASE(test_assert_exclusive_access),
+ KCSAN_KUNIT_CASE(test_assert_exclusive_access_writer),
+ KCSAN_KUNIT_CASE(test_assert_exclusive_bits_change),
+ KCSAN_KUNIT_CASE(test_assert_exclusive_bits_nochange),
+ KCSAN_KUNIT_CASE(test_assert_exclusive_writer_scoped),
+ KCSAN_KUNIT_CASE(test_assert_exclusive_access_scoped),
+ KCSAN_KUNIT_CASE(test_jiffies_noreport),
+ KCSAN_KUNIT_CASE(test_seqlock_noreport),
+ KCSAN_KUNIT_CASE(test_atomic_builtins),
+ {},
+};
+
+/* ===== End test cases ===== */
+
+/* Get number of threads encoded in test name. */
+static bool __no_kcsan
+get_num_threads(const char *test, int *nthreads)
+{
+ int len = strlen(test);
+
+ if (WARN_ON(len < 3))
+ return false;
+
+ *nthreads = test[len - 1] - '0';
+ *nthreads += (test[len - 2] - '0') * 10;
+
+ if (WARN_ON(*nthreads < 0))
+ return false;
+
+ return true;
+}
+
+/* Concurrent accesses from interrupts. */
+__no_kcsan
+static void access_thread_timer(struct timer_list *timer)
+{
+ static atomic_t cnt = ATOMIC_INIT(0);
+ unsigned int idx;
+ void (*func)(void);
+
+ idx = (unsigned int)atomic_inc_return(&cnt) % ARRAY_SIZE(access_kernels);
+ /* Acquire potential initialization. */
+ func = smp_load_acquire(&access_kernels[idx]);
+ if (func)
+ func();
+}
+
+/* The main loop for each thread. */
+__no_kcsan
+static int access_thread(void *arg)
+{
+ struct timer_list timer;
+ unsigned int cnt = 0;
+ unsigned int idx;
+ void (*func)(void);
+
+ timer_setup_on_stack(&timer, access_thread_timer, 0);
+ do {
+ might_sleep();
+
+ if (!timer_pending(&timer))
+ mod_timer(&timer, jiffies + 1);
+ else {
+ /* Iterate through all kernels. */
+ idx = cnt++ % ARRAY_SIZE(access_kernels);
+ /* Acquire potential initialization. */
+ func = smp_load_acquire(&access_kernels[idx]);
+ if (func)
+ func();
+ }
+ } while (!torture_must_stop());
+ del_timer_sync(&timer);
+ destroy_timer_on_stack(&timer);
+
+ torture_kthread_stopping("access_thread");
+ return 0;
+}
+
+__no_kcsan
+static int test_init(struct kunit *test)
+{
+ unsigned long flags;
+ int nthreads;
+ int i;
+
+ spin_lock_irqsave(&observed.lock, flags);
+ for (i = 0; i < ARRAY_SIZE(observed.lines); ++i)
+ observed.lines[i][0] = '\0';
+ observed.nlines = 0;
+ spin_unlock_irqrestore(&observed.lock, flags);
+
+ if (!torture_init_begin((char *)test->name, 1))
+ return -EBUSY;
+
+ if (!get_num_threads(test->name, &nthreads))
+ goto err;
+
+ if (WARN_ON(threads))
+ goto err;
+
+ for (i = 0; i < ARRAY_SIZE(access_kernels); ++i) {
+ if (WARN_ON(access_kernels[i]))
+ goto err;
+ }
+
+ if (!IS_ENABLED(CONFIG_PREEMPT) || !IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER)) {
+ /*
+ * Without any preemption, keep 2 CPUs free for other tasks, one
+ * of which is the main test case function checking for
+ * completion or failure.
+ */
+ const int min_unused_cpus = IS_ENABLED(CONFIG_PREEMPT_NONE) ? 2 : 0;
+ const int min_required_cpus = 2 + min_unused_cpus;
+
+ if (num_online_cpus() < min_required_cpus) {
+ pr_err("%s: too few online CPUs (%u < %d) for test",
+ test->name, num_online_cpus(), min_required_cpus);
+ goto err;
+ } else if (nthreads > num_online_cpus() - min_unused_cpus) {
+ nthreads = num_online_cpus() - min_unused_cpus;
+ pr_warn("%s: limiting number of threads to %d\n",
+ test->name, nthreads);
+ }
+ }
+
+ if (nthreads) {
+ threads = kcalloc(nthreads + 1, sizeof(struct task_struct *),
+ GFP_KERNEL);
+ if (WARN_ON(!threads))
+ goto err;
+
+ threads[nthreads] = NULL;
+ for (i = 0; i < nthreads; ++i) {
+ if (torture_create_kthread(access_thread, NULL,
+ threads[i]))
+ goto err;
+ }
+ }
+
+ torture_init_end();
+
+ return 0;
+
+err:
+ kfree(threads);
+ threads = NULL;
+ torture_init_end();
+ return -EINVAL;
+}
+
+__no_kcsan
+static void test_exit(struct kunit *test)
+{
+ struct task_struct **stop_thread;
+ int i;
+
+ if (torture_cleanup_begin())
+ return;
+
+ for (i = 0; i < ARRAY_SIZE(access_kernels); ++i)
+ WRITE_ONCE(access_kernels[i], NULL);
+
+ if (threads) {
+ for (stop_thread = threads; *stop_thread; stop_thread++)
+ torture_stop_kthread(reader_thread, *stop_thread);
+
+ kfree(threads);
+ threads = NULL;
+ }
+
+ torture_cleanup_end();
+}
+
+static struct kunit_suite kcsan_test_suite = {
+ .name = "kcsan-test",
+ .test_cases = kcsan_test_cases,
+ .init = test_init,
+ .exit = test_exit,
+};
+static struct kunit_suite *kcsan_test_suites[] = { &kcsan_test_suite, NULL };
+
+__no_kcsan
+static void register_tracepoints(struct tracepoint *tp, void *ignore)
+{
+ check_trace_callback_type_console(probe_console);
+ if (!strcmp(tp->name, "console"))
+ WARN_ON(tracepoint_probe_register(tp, probe_console, NULL));
+}
+
+__no_kcsan
+static void unregister_tracepoints(struct tracepoint *tp, void *ignore)
+{
+ if (!strcmp(tp->name, "console"))
+ tracepoint_probe_unregister(tp, probe_console, NULL);
+}
+
+/*
+ * We only want to do tracepoints setup and teardown once, therefore we have to
+ * customize the init and exit functions and cannot rely on kunit_test_suite().
+ */
+static int __init kcsan_test_init(void)
+{
+ /*
+ * Because we want to be able to build the test as a module, we need to
+ * iterate through all known tracepoints, since the static registration
+ * won't work here.
+ */
+ for_each_kernel_tracepoint(register_tracepoints, NULL);
+ return __kunit_test_suites_init(kcsan_test_suites);
+}
+
+static void kcsan_test_exit(void)
+{
+ __kunit_test_suites_exit(kcsan_test_suites);
+ for_each_kernel_tracepoint(unregister_tracepoints, NULL);
+ tracepoint_synchronize_unregister();
+}
+
+late_initcall(kcsan_test_init);
+module_exit(kcsan_test_exit);
+
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Marco Elver <elver@google.com>");
diff --git a/kernel/kcsan/kcsan.h b/kernel/kcsan/kcsan.h
new file mode 100644
index 000000000..87ccdb3b0
--- /dev/null
+++ b/kernel/kcsan/kcsan.h
@@ -0,0 +1,144 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+/*
+ * The Kernel Concurrency Sanitizer (KCSAN) infrastructure. For more info please
+ * see Documentation/dev-tools/kcsan.rst.
+ */
+
+#ifndef _KERNEL_KCSAN_KCSAN_H
+#define _KERNEL_KCSAN_KCSAN_H
+
+#include <linux/atomic.h>
+#include <linux/kcsan.h>
+#include <linux/sched.h>
+
+/* The number of adjacent watchpoints to check. */
+#define KCSAN_CHECK_ADJACENT 1
+#define NUM_SLOTS (1 + 2*KCSAN_CHECK_ADJACENT)
+
+extern unsigned int kcsan_udelay_task;
+extern unsigned int kcsan_udelay_interrupt;
+
+/*
+ * Globally enable and disable KCSAN.
+ */
+extern bool kcsan_enabled;
+
+/*
+ * Save/restore IRQ flags state trace dirtied by KCSAN.
+ */
+void kcsan_save_irqtrace(struct task_struct *task);
+void kcsan_restore_irqtrace(struct task_struct *task);
+
+/*
+ * Statistics counters displayed via debugfs; should only be modified in
+ * slow-paths.
+ */
+enum kcsan_counter_id {
+ /*
+ * Number of watchpoints currently in use.
+ */
+ KCSAN_COUNTER_USED_WATCHPOINTS,
+
+ /*
+ * Total number of watchpoints set up.
+ */
+ KCSAN_COUNTER_SETUP_WATCHPOINTS,
+
+ /*
+ * Total number of data races.
+ */
+ KCSAN_COUNTER_DATA_RACES,
+
+ /*
+ * Total number of ASSERT failures due to races. If the observed race is
+ * due to two conflicting ASSERT type accesses, then both will be
+ * counted.
+ */
+ KCSAN_COUNTER_ASSERT_FAILURES,
+
+ /*
+ * Number of times no watchpoints were available.
+ */
+ KCSAN_COUNTER_NO_CAPACITY,
+
+ /*
+ * A thread checking a watchpoint raced with another checking thread;
+ * only one will be reported.
+ */
+ KCSAN_COUNTER_REPORT_RACES,
+
+ /*
+ * Observed data value change, but writer thread unknown.
+ */
+ KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN,
+
+ /*
+ * The access cannot be encoded to a valid watchpoint.
+ */
+ KCSAN_COUNTER_UNENCODABLE_ACCESSES,
+
+ /*
+ * Watchpoint encoding caused a watchpoint to fire on mismatching
+ * accesses.
+ */
+ KCSAN_COUNTER_ENCODING_FALSE_POSITIVES,
+
+ KCSAN_COUNTER_COUNT, /* number of counters */
+};
+extern atomic_long_t kcsan_counters[KCSAN_COUNTER_COUNT];
+
+/*
+ * Returns true if data races in the function symbol that maps to func_addr
+ * (offsets are ignored) should *not* be reported.
+ */
+extern bool kcsan_skip_report_debugfs(unsigned long func_addr);
+
+/*
+ * Value-change states.
+ */
+enum kcsan_value_change {
+ /*
+ * Did not observe a value-change, however, it is valid to report the
+ * race, depending on preferences.
+ */
+ KCSAN_VALUE_CHANGE_MAYBE,
+
+ /*
+ * Did not observe a value-change, and it is invalid to report the race.
+ */
+ KCSAN_VALUE_CHANGE_FALSE,
+
+ /*
+ * The value was observed to change, and the race should be reported.
+ */
+ KCSAN_VALUE_CHANGE_TRUE,
+};
+
+enum kcsan_report_type {
+ /*
+ * The thread that set up the watchpoint and briefly stalled was
+ * signalled that another thread triggered the watchpoint.
+ */
+ KCSAN_REPORT_RACE_SIGNAL,
+
+ /*
+ * A thread found and consumed a matching watchpoint.
+ */
+ KCSAN_REPORT_CONSUMED_WATCHPOINT,
+
+ /*
+ * No other thread was observed to race with the access, but the data
+ * value before and after the stall differs.
+ */
+ KCSAN_REPORT_RACE_UNKNOWN_ORIGIN,
+};
+
+/*
+ * Print a race report from thread that encountered the race.
+ */
+extern void kcsan_report(const volatile void *ptr, size_t size, int access_type,
+ enum kcsan_value_change value_change,
+ enum kcsan_report_type type, int watchpoint_idx);
+
+#endif /* _KERNEL_KCSAN_KCSAN_H */
diff --git a/kernel/kcsan/report.c b/kernel/kcsan/report.c
new file mode 100644
index 000000000..069830f5a
--- /dev/null
+++ b/kernel/kcsan/report.c
@@ -0,0 +1,642 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include <linux/debug_locks.h>
+#include <linux/delay.h>
+#include <linux/jiffies.h>
+#include <linux/kernel.h>
+#include <linux/lockdep.h>
+#include <linux/preempt.h>
+#include <linux/printk.h>
+#include <linux/sched.h>
+#include <linux/spinlock.h>
+#include <linux/stacktrace.h>
+
+#include "kcsan.h"
+#include "encoding.h"
+
+/*
+ * Max. number of stack entries to show in the report.
+ */
+#define NUM_STACK_ENTRIES 64
+
+/* Common access info. */
+struct access_info {
+ const volatile void *ptr;
+ size_t size;
+ int access_type;
+ int task_pid;
+ int cpu_id;
+};
+
+/*
+ * Other thread info: communicated from other racing thread to thread that set
+ * up the watchpoint, which then prints the complete report atomically.
+ */
+struct other_info {
+ struct access_info ai;
+ unsigned long stack_entries[NUM_STACK_ENTRIES];
+ int num_stack_entries;
+
+ /*
+ * Optionally pass @current. Typically we do not need to pass @current
+ * via @other_info since just @task_pid is sufficient. Passing @current
+ * has additional overhead.
+ *
+ * To safely pass @current, we must either use get_task_struct/
+ * put_task_struct, or stall the thread that populated @other_info.
+ *
+ * We cannot rely on get_task_struct/put_task_struct in case
+ * release_report() races with a task being released, and would have to
+ * free it in release_report(). This may result in deadlock if we want
+ * to use KCSAN on the allocators.
+ *
+ * Since we also want to reliably print held locks for
+ * CONFIG_KCSAN_VERBOSE, the current implementation stalls the thread
+ * that populated @other_info until it has been consumed.
+ */
+ struct task_struct *task;
+};
+
+/*
+ * To never block any producers of struct other_info, we need as many elements
+ * as we have watchpoints (upper bound on concurrent races to report).
+ */
+static struct other_info other_infos[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
+
+/*
+ * Information about reported races; used to rate limit reporting.
+ */
+struct report_time {
+ /*
+ * The last time the race was reported.
+ */
+ unsigned long time;
+
+ /*
+ * The frames of the 2 threads; if only 1 thread is known, one frame
+ * will be 0.
+ */
+ unsigned long frame1;
+ unsigned long frame2;
+};
+
+/*
+ * Since we also want to be able to debug allocators with KCSAN, to avoid
+ * deadlock, report_times cannot be dynamically resized with krealloc in
+ * rate_limit_report.
+ *
+ * Therefore, we use a fixed-size array, which at most will occupy a page. This
+ * still adequately rate limits reports, assuming that a) number of unique data
+ * races is not excessive, and b) occurrence of unique races within the
+ * same time window is limited.
+ */
+#define REPORT_TIMES_MAX (PAGE_SIZE / sizeof(struct report_time))
+#define REPORT_TIMES_SIZE \
+ (CONFIG_KCSAN_REPORT_ONCE_IN_MS > REPORT_TIMES_MAX ? \
+ REPORT_TIMES_MAX : \
+ CONFIG_KCSAN_REPORT_ONCE_IN_MS)
+static struct report_time report_times[REPORT_TIMES_SIZE];
+
+/*
+ * Spinlock serializing report generation, and access to @other_infos. Although
+ * it could make sense to have a finer-grained locking story for @other_infos,
+ * report generation needs to be serialized either way, so not much is gained.
+ */
+static DEFINE_RAW_SPINLOCK(report_lock);
+
+/*
+ * Checks if the race identified by thread frames frame1 and frame2 has
+ * been reported since (now - KCSAN_REPORT_ONCE_IN_MS).
+ */
+static bool rate_limit_report(unsigned long frame1, unsigned long frame2)
+{
+ struct report_time *use_entry = &report_times[0];
+ unsigned long invalid_before;
+ int i;
+
+ BUILD_BUG_ON(CONFIG_KCSAN_REPORT_ONCE_IN_MS != 0 && REPORT_TIMES_SIZE == 0);
+
+ if (CONFIG_KCSAN_REPORT_ONCE_IN_MS == 0)
+ return false;
+
+ invalid_before = jiffies - msecs_to_jiffies(CONFIG_KCSAN_REPORT_ONCE_IN_MS);
+
+ /* Check if a matching race report exists. */
+ for (i = 0; i < REPORT_TIMES_SIZE; ++i) {
+ struct report_time *rt = &report_times[i];
+
+ /*
+ * Must always select an entry for use to store info as we
+ * cannot resize report_times; at the end of the scan, use_entry
+ * will be the oldest entry, which ideally also happened before
+ * KCSAN_REPORT_ONCE_IN_MS ago.
+ */
+ if (time_before(rt->time, use_entry->time))
+ use_entry = rt;
+
+ /*
+ * Initially, no need to check any further as this entry as well
+ * as following entries have never been used.
+ */
+ if (rt->time == 0)
+ break;
+
+ /* Check if entry expired. */
+ if (time_before(rt->time, invalid_before))
+ continue; /* before KCSAN_REPORT_ONCE_IN_MS ago */
+
+ /* Reported recently, check if race matches. */
+ if ((rt->frame1 == frame1 && rt->frame2 == frame2) ||
+ (rt->frame1 == frame2 && rt->frame2 == frame1))
+ return true;
+ }
+
+ use_entry->time = jiffies;
+ use_entry->frame1 = frame1;
+ use_entry->frame2 = frame2;
+ return false;
+}
+
+/*
+ * Special rules to skip reporting.
+ */
+static bool
+skip_report(enum kcsan_value_change value_change, unsigned long top_frame)
+{
+ /* Should never get here if value_change==FALSE. */
+ WARN_ON_ONCE(value_change == KCSAN_VALUE_CHANGE_FALSE);
+
+ /*
+ * The first call to skip_report always has value_change==TRUE, since we
+ * cannot know the value written of an instrumented access. For the 2nd
+ * call there are 6 cases with CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY:
+ *
+ * 1. read watchpoint, conflicting write (value_change==TRUE): report;
+ * 2. read watchpoint, conflicting write (value_change==MAYBE): skip;
+ * 3. write watchpoint, conflicting write (value_change==TRUE): report;
+ * 4. write watchpoint, conflicting write (value_change==MAYBE): skip;
+ * 5. write watchpoint, conflicting read (value_change==MAYBE): skip;
+ * 6. write watchpoint, conflicting read (value_change==TRUE): report;
+ *
+ * Cases 1-4 are intuitive and expected; case 5 ensures we do not report
+ * data races where the write may have rewritten the same value; case 6
+ * is possible either if the size is larger than what we check value
+ * changes for or the access type is KCSAN_ACCESS_ASSERT.
+ */
+ if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) &&
+ value_change == KCSAN_VALUE_CHANGE_MAYBE) {
+ /*
+ * The access is a write, but the data value did not change.
+ *
+ * We opt-out of this filter for certain functions at request of
+ * maintainers.
+ */
+ char buf[64];
+ int len = scnprintf(buf, sizeof(buf), "%ps", (void *)top_frame);
+
+ if (!strnstr(buf, "rcu_", len) &&
+ !strnstr(buf, "_rcu", len) &&
+ !strnstr(buf, "_srcu", len))
+ return true;
+ }
+
+ return kcsan_skip_report_debugfs(top_frame);
+}
+
+static const char *get_access_type(int type)
+{
+ if (type & KCSAN_ACCESS_ASSERT) {
+ if (type & KCSAN_ACCESS_SCOPED) {
+ if (type & KCSAN_ACCESS_WRITE)
+ return "assert no accesses (scoped)";
+ else
+ return "assert no writes (scoped)";
+ } else {
+ if (type & KCSAN_ACCESS_WRITE)
+ return "assert no accesses";
+ else
+ return "assert no writes";
+ }
+ }
+
+ switch (type) {
+ case 0:
+ return "read";
+ case KCSAN_ACCESS_ATOMIC:
+ return "read (marked)";
+ case KCSAN_ACCESS_WRITE:
+ return "write";
+ case KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
+ return "write (marked)";
+ case KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE:
+ return "read-write";
+ case KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
+ return "read-write (marked)";
+ case KCSAN_ACCESS_SCOPED:
+ return "read (scoped)";
+ case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_ATOMIC:
+ return "read (marked, scoped)";
+ case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE:
+ return "write (scoped)";
+ case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
+ return "write (marked, scoped)";
+ default:
+ BUG();
+ }
+}
+
+static const char *get_bug_type(int type)
+{
+ return (type & KCSAN_ACCESS_ASSERT) != 0 ? "assert: race" : "data-race";
+}
+
+/* Return thread description: in task or interrupt. */
+static const char *get_thread_desc(int task_id)
+{
+ if (task_id != -1) {
+ static char buf[32]; /* safe: protected by report_lock */
+
+ snprintf(buf, sizeof(buf), "task %i", task_id);
+ return buf;
+ }
+ return "interrupt";
+}
+
+/* Helper to skip KCSAN-related functions in stack-trace. */
+static int get_stack_skipnr(const unsigned long stack_entries[], int num_entries)
+{
+ char buf[64];
+ char *cur;
+ int len, skip;
+
+ for (skip = 0; skip < num_entries; ++skip) {
+ len = scnprintf(buf, sizeof(buf), "%ps", (void *)stack_entries[skip]);
+
+ /* Never show tsan_* or {read,write}_once_size. */
+ if (strnstr(buf, "tsan_", len) ||
+ strnstr(buf, "_once_size", len))
+ continue;
+
+ cur = strnstr(buf, "kcsan_", len);
+ if (cur) {
+ cur += strlen("kcsan_");
+ if (!str_has_prefix(cur, "test"))
+ continue; /* KCSAN runtime function. */
+ /* KCSAN related test. */
+ }
+
+ /*
+ * No match for runtime functions -- @skip entries to skip to
+ * get to first frame of interest.
+ */
+ break;
+ }
+
+ return skip;
+}
+
+/* Compares symbolized strings of addr1 and addr2. */
+static int sym_strcmp(void *addr1, void *addr2)
+{
+ char buf1[64];
+ char buf2[64];
+
+ snprintf(buf1, sizeof(buf1), "%pS", addr1);
+ snprintf(buf2, sizeof(buf2), "%pS", addr2);
+
+ return strncmp(buf1, buf2, sizeof(buf1));
+}
+
+static void print_verbose_info(struct task_struct *task)
+{
+ if (!task)
+ return;
+
+ /* Restore IRQ state trace for printing. */
+ kcsan_restore_irqtrace(task);
+
+ pr_err("\n");
+ debug_show_held_locks(task);
+ print_irqtrace_events(task);
+}
+
+/*
+ * Returns true if a report was generated, false otherwise.
+ */
+static bool print_report(enum kcsan_value_change value_change,
+ enum kcsan_report_type type,
+ const struct access_info *ai,
+ const struct other_info *other_info)
+{
+ unsigned long stack_entries[NUM_STACK_ENTRIES] = { 0 };
+ int num_stack_entries = stack_trace_save(stack_entries, NUM_STACK_ENTRIES, 1);
+ int skipnr = get_stack_skipnr(stack_entries, num_stack_entries);
+ unsigned long this_frame = stack_entries[skipnr];
+ unsigned long other_frame = 0;
+ int other_skipnr = 0; /* silence uninit warnings */
+
+ /*
+ * Must check report filter rules before starting to print.
+ */
+ if (skip_report(KCSAN_VALUE_CHANGE_TRUE, stack_entries[skipnr]))
+ return false;
+
+ if (type == KCSAN_REPORT_RACE_SIGNAL) {
+ other_skipnr = get_stack_skipnr(other_info->stack_entries,
+ other_info->num_stack_entries);
+ other_frame = other_info->stack_entries[other_skipnr];
+
+ /* @value_change is only known for the other thread */
+ if (skip_report(value_change, other_frame))
+ return false;
+ }
+
+ if (rate_limit_report(this_frame, other_frame))
+ return false;
+
+ /* Print report header. */
+ pr_err("==================================================================\n");
+ switch (type) {
+ case KCSAN_REPORT_RACE_SIGNAL: {
+ int cmp;
+
+ /*
+ * Order functions lexographically for consistent bug titles.
+ * Do not print offset of functions to keep title short.
+ */
+ cmp = sym_strcmp((void *)other_frame, (void *)this_frame);
+ pr_err("BUG: KCSAN: %s in %ps / %ps\n",
+ get_bug_type(ai->access_type | other_info->ai.access_type),
+ (void *)(cmp < 0 ? other_frame : this_frame),
+ (void *)(cmp < 0 ? this_frame : other_frame));
+ } break;
+
+ case KCSAN_REPORT_RACE_UNKNOWN_ORIGIN:
+ pr_err("BUG: KCSAN: %s in %pS\n", get_bug_type(ai->access_type),
+ (void *)this_frame);
+ break;
+
+ default:
+ BUG();
+ }
+
+ pr_err("\n");
+
+ /* Print information about the racing accesses. */
+ switch (type) {
+ case KCSAN_REPORT_RACE_SIGNAL:
+ pr_err("%s to 0x%px of %zu bytes by %s on cpu %i:\n",
+ get_access_type(other_info->ai.access_type), other_info->ai.ptr,
+ other_info->ai.size, get_thread_desc(other_info->ai.task_pid),
+ other_info->ai.cpu_id);
+
+ /* Print the other thread's stack trace. */
+ stack_trace_print(other_info->stack_entries + other_skipnr,
+ other_info->num_stack_entries - other_skipnr,
+ 0);
+
+ if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
+ print_verbose_info(other_info->task);
+
+ pr_err("\n");
+ pr_err("%s to 0x%px of %zu bytes by %s on cpu %i:\n",
+ get_access_type(ai->access_type), ai->ptr, ai->size,
+ get_thread_desc(ai->task_pid), ai->cpu_id);
+ break;
+
+ case KCSAN_REPORT_RACE_UNKNOWN_ORIGIN:
+ pr_err("race at unknown origin, with %s to 0x%px of %zu bytes by %s on cpu %i:\n",
+ get_access_type(ai->access_type), ai->ptr, ai->size,
+ get_thread_desc(ai->task_pid), ai->cpu_id);
+ break;
+
+ default:
+ BUG();
+ }
+ /* Print stack trace of this thread. */
+ stack_trace_print(stack_entries + skipnr, num_stack_entries - skipnr,
+ 0);
+
+ if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
+ print_verbose_info(current);
+
+ /* Print report footer. */
+ pr_err("\n");
+ pr_err("Reported by Kernel Concurrency Sanitizer on:\n");
+ dump_stack_print_info(KERN_DEFAULT);
+ pr_err("==================================================================\n");
+
+ return true;
+}
+
+static void release_report(unsigned long *flags, struct other_info *other_info)
+{
+ if (other_info)
+ /*
+ * Use size to denote valid/invalid, since KCSAN entirely
+ * ignores 0-sized accesses.
+ */
+ other_info->ai.size = 0;
+
+ raw_spin_unlock_irqrestore(&report_lock, *flags);
+}
+
+/*
+ * Sets @other_info->task and awaits consumption of @other_info.
+ *
+ * Precondition: report_lock is held.
+ * Postcondition: report_lock is held.
+ */
+static void set_other_info_task_blocking(unsigned long *flags,
+ const struct access_info *ai,
+ struct other_info *other_info)
+{
+ /*
+ * We may be instrumenting a code-path where current->state is already
+ * something other than TASK_RUNNING.
+ */
+ const bool is_running = current->state == TASK_RUNNING;
+ /*
+ * To avoid deadlock in case we are in an interrupt here and this is a
+ * race with a task on the same CPU (KCSAN_INTERRUPT_WATCHER), provide a
+ * timeout to ensure this works in all contexts.
+ *
+ * Await approximately the worst case delay of the reporting thread (if
+ * we are not interrupted).
+ */
+ int timeout = max(kcsan_udelay_task, kcsan_udelay_interrupt);
+
+ other_info->task = current;
+ do {
+ if (is_running) {
+ /*
+ * Let lockdep know the real task is sleeping, to print
+ * the held locks (recall we turned lockdep off, so
+ * locking/unlocking @report_lock won't be recorded).
+ */
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ }
+ raw_spin_unlock_irqrestore(&report_lock, *flags);
+ /*
+ * We cannot call schedule() since we also cannot reliably
+ * determine if sleeping here is permitted -- see in_atomic().
+ */
+
+ udelay(1);
+ raw_spin_lock_irqsave(&report_lock, *flags);
+ if (timeout-- < 0) {
+ /*
+ * Abort. Reset @other_info->task to NULL, since it
+ * appears the other thread is still going to consume
+ * it. It will result in no verbose info printed for
+ * this task.
+ */
+ other_info->task = NULL;
+ break;
+ }
+ /*
+ * If invalid, or @ptr nor @current matches, then @other_info
+ * has been consumed and we may continue. If not, retry.
+ */
+ } while (other_info->ai.size && other_info->ai.ptr == ai->ptr &&
+ other_info->task == current);
+ if (is_running)
+ set_current_state(TASK_RUNNING);
+}
+
+/* Populate @other_info; requires that the provided @other_info not in use. */
+static void prepare_report_producer(unsigned long *flags,
+ const struct access_info *ai,
+ struct other_info *other_info)
+{
+ raw_spin_lock_irqsave(&report_lock, *flags);
+
+ /*
+ * The same @other_infos entry cannot be used concurrently, because
+ * there is a one-to-one mapping to watchpoint slots (@watchpoints in
+ * core.c), and a watchpoint is only released for reuse after reporting
+ * is done by the consumer of @other_info. Therefore, it is impossible
+ * for another concurrent prepare_report_producer() to set the same
+ * @other_info, and are guaranteed exclusivity for the @other_infos
+ * entry pointed to by @other_info.
+ *
+ * To check this property holds, size should never be non-zero here,
+ * because every consumer of struct other_info resets size to 0 in
+ * release_report().
+ */
+ WARN_ON(other_info->ai.size);
+
+ other_info->ai = *ai;
+ other_info->num_stack_entries = stack_trace_save(other_info->stack_entries, NUM_STACK_ENTRIES, 2);
+
+ if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
+ set_other_info_task_blocking(flags, ai, other_info);
+
+ raw_spin_unlock_irqrestore(&report_lock, *flags);
+}
+
+/* Awaits producer to fill @other_info and then returns. */
+static bool prepare_report_consumer(unsigned long *flags,
+ const struct access_info *ai,
+ struct other_info *other_info)
+{
+
+ raw_spin_lock_irqsave(&report_lock, *flags);
+ while (!other_info->ai.size) { /* Await valid @other_info. */
+ raw_spin_unlock_irqrestore(&report_lock, *flags);
+ cpu_relax();
+ raw_spin_lock_irqsave(&report_lock, *flags);
+ }
+
+ /* Should always have a matching access based on watchpoint encoding. */
+ if (WARN_ON(!matching_access((unsigned long)other_info->ai.ptr & WATCHPOINT_ADDR_MASK, other_info->ai.size,
+ (unsigned long)ai->ptr & WATCHPOINT_ADDR_MASK, ai->size)))
+ goto discard;
+
+ if (!matching_access((unsigned long)other_info->ai.ptr, other_info->ai.size,
+ (unsigned long)ai->ptr, ai->size)) {
+ /*
+ * If the actual accesses to not match, this was a false
+ * positive due to watchpoint encoding.
+ */
+ atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ENCODING_FALSE_POSITIVES]);
+ goto discard;
+ }
+
+ return true;
+
+discard:
+ release_report(flags, other_info);
+ return false;
+}
+
+/*
+ * Depending on the report type either sets @other_info and returns false, or
+ * awaits @other_info and returns true. If @other_info is not required for the
+ * report type, simply acquires @report_lock and returns true.
+ */
+static noinline bool prepare_report(unsigned long *flags,
+ enum kcsan_report_type type,
+ const struct access_info *ai,
+ struct other_info *other_info)
+{
+ switch (type) {
+ case KCSAN_REPORT_CONSUMED_WATCHPOINT:
+ prepare_report_producer(flags, ai, other_info);
+ return false;
+ case KCSAN_REPORT_RACE_SIGNAL:
+ return prepare_report_consumer(flags, ai, other_info);
+ default:
+ /* @other_info not required; just acquire @report_lock. */
+ raw_spin_lock_irqsave(&report_lock, *flags);
+ return true;
+ }
+}
+
+void kcsan_report(const volatile void *ptr, size_t size, int access_type,
+ enum kcsan_value_change value_change,
+ enum kcsan_report_type type, int watchpoint_idx)
+{
+ unsigned long flags = 0;
+ const struct access_info ai = {
+ .ptr = ptr,
+ .size = size,
+ .access_type = access_type,
+ .task_pid = in_task() ? task_pid_nr(current) : -1,
+ .cpu_id = raw_smp_processor_id()
+ };
+ struct other_info *other_info = type == KCSAN_REPORT_RACE_UNKNOWN_ORIGIN
+ ? NULL : &other_infos[watchpoint_idx];
+
+ kcsan_disable_current();
+ if (WARN_ON(watchpoint_idx < 0 || watchpoint_idx >= ARRAY_SIZE(other_infos)))
+ goto out;
+
+ /*
+ * Because we may generate reports when we're in scheduler code, the use
+ * of printk() could deadlock. Until such time that all printing code
+ * called in print_report() is scheduler-safe, accept the risk, and just
+ * get our message out. As such, also disable lockdep to hide the
+ * warning, and avoid disabling lockdep for the rest of the kernel.
+ */
+ lockdep_off();
+
+ if (prepare_report(&flags, type, &ai, other_info)) {
+ /*
+ * Never report if value_change is FALSE, only if we it is
+ * either TRUE or MAYBE. In case of MAYBE, further filtering may
+ * be done once we know the full stack trace in print_report().
+ */
+ bool reported = value_change != KCSAN_VALUE_CHANGE_FALSE &&
+ print_report(value_change, type, &ai, other_info);
+
+ if (reported)
+ check_panic_on_warn("KCSAN");
+
+ release_report(&flags, other_info);
+ }
+
+ lockdep_on();
+out:
+ kcsan_enable_current();
+}
diff --git a/kernel/kcsan/selftest.c b/kernel/kcsan/selftest.c
new file mode 100644
index 000000000..d98bc208d
--- /dev/null
+++ b/kernel/kcsan/selftest.c
@@ -0,0 +1,133 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#define pr_fmt(fmt) "kcsan: " fmt
+
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/printk.h>
+#include <linux/random.h>
+#include <linux/types.h>
+
+#include "encoding.h"
+
+#define ITERS_PER_TEST 2000
+
+/* Test requirements. */
+static bool test_requires(void)
+{
+ /* random should be initialized for the below tests */
+ return prandom_u32() + prandom_u32() != 0;
+}
+
+/*
+ * Test watchpoint encode and decode: check that encoding some access's info,
+ * and then subsequent decode preserves the access's info.
+ */
+static bool test_encode_decode(void)
+{
+ int i;
+
+ for (i = 0; i < ITERS_PER_TEST; ++i) {
+ size_t size = prandom_u32_max(MAX_ENCODABLE_SIZE) + 1;
+ bool is_write = !!prandom_u32_max(2);
+ unsigned long addr;
+
+ prandom_bytes(&addr, sizeof(addr));
+ if (WARN_ON(!check_encodable(addr, size)))
+ return false;
+
+ /* Encode and decode */
+ {
+ const long encoded_watchpoint =
+ encode_watchpoint(addr, size, is_write);
+ unsigned long verif_masked_addr;
+ size_t verif_size;
+ bool verif_is_write;
+
+ /* Check special watchpoints */
+ if (WARN_ON(decode_watchpoint(
+ INVALID_WATCHPOINT, &verif_masked_addr,
+ &verif_size, &verif_is_write)))
+ return false;
+ if (WARN_ON(decode_watchpoint(
+ CONSUMED_WATCHPOINT, &verif_masked_addr,
+ &verif_size, &verif_is_write)))
+ return false;
+
+ /* Check decoding watchpoint returns same data */
+ if (WARN_ON(!decode_watchpoint(
+ encoded_watchpoint, &verif_masked_addr,
+ &verif_size, &verif_is_write)))
+ return false;
+ if (WARN_ON(verif_masked_addr !=
+ (addr & WATCHPOINT_ADDR_MASK)))
+ goto fail;
+ if (WARN_ON(verif_size != size))
+ goto fail;
+ if (WARN_ON(is_write != verif_is_write))
+ goto fail;
+
+ continue;
+fail:
+ pr_err("%s fail: %s %zu bytes @ %lx -> encoded: %lx -> %s %zu bytes @ %lx\n",
+ __func__, is_write ? "write" : "read", size,
+ addr, encoded_watchpoint,
+ verif_is_write ? "write" : "read", verif_size,
+ verif_masked_addr);
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/* Test access matching function. */
+static bool test_matching_access(void)
+{
+ if (WARN_ON(!matching_access(10, 1, 10, 1)))
+ return false;
+ if (WARN_ON(!matching_access(10, 2, 11, 1)))
+ return false;
+ if (WARN_ON(!matching_access(10, 1, 9, 2)))
+ return false;
+ if (WARN_ON(matching_access(10, 1, 11, 1)))
+ return false;
+ if (WARN_ON(matching_access(9, 1, 10, 1)))
+ return false;
+
+ /*
+ * An access of size 0 could match another access, as demonstrated here.
+ * Rather than add more comparisons to 'matching_access()', which would
+ * end up in the fast-path for *all* checks, check_access() simply
+ * returns for all accesses of size 0.
+ */
+ if (WARN_ON(!matching_access(8, 8, 12, 0)))
+ return false;
+
+ return true;
+}
+
+static int __init kcsan_selftest(void)
+{
+ int passed = 0;
+ int total = 0;
+
+#define RUN_TEST(do_test) \
+ do { \
+ ++total; \
+ if (do_test()) \
+ ++passed; \
+ else \
+ pr_err("selftest: " #do_test " failed"); \
+ } while (0)
+
+ RUN_TEST(test_requires);
+ RUN_TEST(test_encode_decode);
+ RUN_TEST(test_matching_access);
+
+ pr_info("selftest: %d/%d tests passed\n", passed, total);
+ if (passed != total)
+ panic("selftests failed");
+ return 0;
+}
+postcore_initcall(kcsan_selftest);