summaryrefslogtreecommitdiffstats
path: root/lib/math/rational.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:05:51 +0000
commit5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 (patch)
treea94efe259b9009378be6d90eb30d2b019d95c194 /lib/math/rational.c
parentInitial commit. (diff)
downloadlinux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.tar.xz
linux-5d1646d90e1f2cceb9f0828f4b28318cd0ec7744.zip
Adding upstream version 5.10.209.upstream/5.10.209
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--lib/math/rational.c108
1 files changed, 108 insertions, 0 deletions
diff --git a/lib/math/rational.c b/lib/math/rational.c
new file mode 100644
index 000000000..c0ab51d8f
--- /dev/null
+++ b/lib/math/rational.c
@@ -0,0 +1,108 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * rational fractions
+ *
+ * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
+ * Copyright (C) 2019 Trent Piepho <tpiepho@gmail.com>
+ *
+ * helper functions when coping with rational numbers
+ */
+
+#include <linux/rational.h>
+#include <linux/compiler.h>
+#include <linux/export.h>
+#include <linux/minmax.h>
+#include <linux/limits.h>
+
+/*
+ * calculate best rational approximation for a given fraction
+ * taking into account restricted register size, e.g. to find
+ * appropriate values for a pll with 5 bit denominator and
+ * 8 bit numerator register fields, trying to set up with a
+ * frequency ratio of 3.1415, one would say:
+ *
+ * rational_best_approximation(31415, 10000,
+ * (1 << 8) - 1, (1 << 5) - 1, &n, &d);
+ *
+ * you may look at given_numerator as a fixed point number,
+ * with the fractional part size described in given_denominator.
+ *
+ * for theoretical background, see:
+ * https://en.wikipedia.org/wiki/Continued_fraction
+ */
+
+void rational_best_approximation(
+ unsigned long given_numerator, unsigned long given_denominator,
+ unsigned long max_numerator, unsigned long max_denominator,
+ unsigned long *best_numerator, unsigned long *best_denominator)
+{
+ /* n/d is the starting rational, which is continually
+ * decreased each iteration using the Euclidean algorithm.
+ *
+ * dp is the value of d from the prior iteration.
+ *
+ * n2/d2, n1/d1, and n0/d0 are our successively more accurate
+ * approximations of the rational. They are, respectively,
+ * the current, previous, and two prior iterations of it.
+ *
+ * a is current term of the continued fraction.
+ */
+ unsigned long n, d, n0, d0, n1, d1, n2, d2;
+ n = given_numerator;
+ d = given_denominator;
+ n0 = d1 = 0;
+ n1 = d0 = 1;
+
+ for (;;) {
+ unsigned long dp, a;
+
+ if (d == 0)
+ break;
+ /* Find next term in continued fraction, 'a', via
+ * Euclidean algorithm.
+ */
+ dp = d;
+ a = n / d;
+ d = n % d;
+ n = dp;
+
+ /* Calculate the current rational approximation (aka
+ * convergent), n2/d2, using the term just found and
+ * the two prior approximations.
+ */
+ n2 = n0 + a * n1;
+ d2 = d0 + a * d1;
+
+ /* If the current convergent exceeds the maxes, then
+ * return either the previous convergent or the
+ * largest semi-convergent, the final term of which is
+ * found below as 't'.
+ */
+ if ((n2 > max_numerator) || (d2 > max_denominator)) {
+ unsigned long t = ULONG_MAX;
+
+ if (d1)
+ t = (max_denominator - d0) / d1;
+ if (n1)
+ t = min(t, (max_numerator - n0) / n1);
+
+ /* This tests if the semi-convergent is closer than the previous
+ * convergent. If d1 is zero there is no previous convergent as this
+ * is the 1st iteration, so always choose the semi-convergent.
+ */
+ if (!d1 || 2u * t > a || (2u * t == a && d0 * dp > d1 * d)) {
+ n1 = n0 + t * n1;
+ d1 = d0 + t * d1;
+ }
+ break;
+ }
+ n0 = n1;
+ n1 = n2;
+ d0 = d1;
+ d1 = d2;
+ }
+ *best_numerator = n1;
+ *best_denominator = d1;
+}
+
+EXPORT_SYMBOL(rational_best_approximation);