diff options
Diffstat (limited to '')
-rw-r--r-- | Documentation/admin-guide/media/fimc.rst | 153 |
1 files changed, 153 insertions, 0 deletions
diff --git a/Documentation/admin-guide/media/fimc.rst b/Documentation/admin-guide/media/fimc.rst new file mode 100644 index 000000000..56b149d9a --- /dev/null +++ b/Documentation/admin-guide/media/fimc.rst @@ -0,0 +1,153 @@ +.. SPDX-License-Identifier: GPL-2.0 + +.. include:: <isonum.txt> + +The Samsung S5P/Exynos4 FIMC driver +=================================== + +Copyright |copy| 2012 - 2013 Samsung Electronics Co., Ltd. + +The FIMC (Fully Interactive Mobile Camera) device available in Samsung +SoC Application Processors is an integrated camera host interface, color +space converter, image resizer and rotator. It's also capable of capturing +data from LCD controller (FIMD) through the SoC internal writeback data +path. There are multiple FIMC instances in the SoCs (up to 4), having +slightly different capabilities, like pixel alignment constraints, rotator +availability, LCD writeback support, etc. The driver is located at +drivers/media/platform/exynos4-is directory. + +Supported SoCs +-------------- + +S5PC100 (mem-to-mem only), S5PV210, Exynos4210 + +Supported features +------------------ + +- camera parallel interface capture (ITU-R.BT601/565); +- camera serial interface capture (MIPI-CSI2); +- memory-to-memory processing (color space conversion, scaling, mirror + and rotation); +- dynamic pipeline re-configuration at runtime (re-attachment of any FIMC + instance to any parallel video input or any MIPI-CSI front-end); +- runtime PM and system wide suspend/resume + +Not currently supported +----------------------- + +- LCD writeback input +- per frame clock gating (mem-to-mem) + +User space interfaces +--------------------- + +Media device interface +~~~~~~~~~~~~~~~~~~~~~~ + +The driver supports Media Controller API as defined at :ref:`media_controller`. +The media device driver name is "Samsung S5P FIMC". + +The purpose of this interface is to allow changing assignment of FIMC instances +to the SoC peripheral camera input at runtime and optionally to control internal +connections of the MIPI-CSIS device(s) to the FIMC entities. + +The media device interface allows to configure the SoC for capturing image +data from the sensor through more than one FIMC instance (e.g. for simultaneous +viewfinder and still capture setup). + +Reconfiguration is done by enabling/disabling media links created by the driver +during initialization. The internal device topology can be easily discovered +through media entity and links enumeration. + +Memory-to-memory video node +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +V4L2 memory-to-memory interface at /dev/video? device node. This is standalone +video device, it has no media pads. However please note the mem-to-mem and +capture video node operation on same FIMC instance is not allowed. The driver +detects such cases but the applications should prevent them to avoid an +undefined behaviour. + +Capture video node +~~~~~~~~~~~~~~~~~~ + +The driver supports V4L2 Video Capture Interface as defined at +:ref:`devices`. + +At the capture and mem-to-mem video nodes only the multi-planar API is +supported. For more details see: :ref:`planar-apis`. + +Camera capture subdevs +~~~~~~~~~~~~~~~~~~~~~~ + +Each FIMC instance exports a sub-device node (/dev/v4l-subdev?), a sub-device +node is also created per each available and enabled at the platform level +MIPI-CSI receiver device (currently up to two). + +sysfs +~~~~~ + +In order to enable more precise camera pipeline control through the sub-device +API the driver creates a sysfs entry associated with "s5p-fimc-md" platform +device. The entry path is: /sys/platform/devices/s5p-fimc-md/subdev_conf_mode. + +In typical use case there could be a following capture pipeline configuration: +sensor subdev -> mipi-csi subdev -> fimc subdev -> video node + +When we configure these devices through sub-device API at user space, the +configuration flow must be from left to right, and the video node is +configured as last one. + +When we don't use sub-device user space API the whole configuration of all +devices belonging to the pipeline is done at the video node driver. +The sysfs entry allows to instruct the capture node driver not to configure +the sub-devices (format, crop), to avoid resetting the subdevs' configuration +when the last configuration steps at the video node is performed. + +For full sub-device control support (subdevs configured at user space before +starting streaming): + +.. code-block:: none + + # echo "sub-dev" > /sys/platform/devices/s5p-fimc-md/subdev_conf_mode + +For V4L2 video node control only (subdevs configured internally by the host +driver): + +.. code-block:: none + + # echo "vid-dev" > /sys/platform/devices/s5p-fimc-md/subdev_conf_mode + +This is a default option. + +5. Device mapping to video and subdev device nodes +-------------------------------------------------- + +There are associated two video device nodes with each device instance in +hardware - video capture and mem-to-mem and additionally a subdev node for +more precise FIMC capture subsystem control. In addition a separate v4l2 +sub-device node is created per each MIPI-CSIS device. + +How to find out which /dev/video? or /dev/v4l-subdev? is assigned to which +device? + +You can either grep through the kernel log to find relevant information, i.e. + +.. code-block:: none + + # dmesg | grep -i fimc + +(note that udev, if present, might still have rearranged the video nodes), + +or retrieve the information from /dev/media? with help of the media-ctl tool: + +.. code-block:: none + + # media-ctl -p + +7. Build +-------- + +If the driver is built as a loadable kernel module (CONFIG_VIDEO_SAMSUNG_S5P_FIMC=m) +two modules are created (in addition to the core v4l2 modules): s5p-fimc.ko and +optional s5p-csis.ko (MIPI-CSI receiver subdev). |