summaryrefslogtreecommitdiffstats
path: root/Documentation/firmware-guide/acpi/namespace.rst
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--Documentation/firmware-guide/acpi/namespace.rst400
1 files changed, 400 insertions, 0 deletions
diff --git a/Documentation/firmware-guide/acpi/namespace.rst b/Documentation/firmware-guide/acpi/namespace.rst
new file mode 100644
index 000000000..6193582a2
--- /dev/null
+++ b/Documentation/firmware-guide/acpi/namespace.rst
@@ -0,0 +1,400 @@
+.. SPDX-License-Identifier: GPL-2.0
+.. include:: <isonum.txt>
+
+===================================================
+ACPI Device Tree - Representation of ACPI Namespace
+===================================================
+
+:Copyright: |copy| 2013, Intel Corporation
+
+:Author: Lv Zheng <lv.zheng@intel.com>
+
+:Credit: Thanks for the help from Zhang Rui <rui.zhang@intel.com> and
+ Rafael J.Wysocki <rafael.j.wysocki@intel.com>.
+
+Abstract
+========
+The Linux ACPI subsystem converts ACPI namespace objects into a Linux
+device tree under the /sys/devices/LNXSYSTEM:00 and updates it upon
+receiving ACPI hotplug notification events. For each device object
+in this hierarchy there is a corresponding symbolic link in the
+/sys/bus/acpi/devices.
+
+This document illustrates the structure of the ACPI device tree.
+
+ACPI Definition Blocks
+======================
+
+The ACPI firmware sets up RSDP (Root System Description Pointer) in the
+system memory address space pointing to the XSDT (Extended System
+Description Table). The XSDT always points to the FADT (Fixed ACPI
+Description Table) using its first entry, the data within the FADT
+includes various fixed-length entries that describe fixed ACPI features
+of the hardware. The FADT contains a pointer to the DSDT
+(Differentiated System Descripition Table). The XSDT also contains
+entries pointing to possibly multiple SSDTs (Secondary System
+Description Table).
+
+The DSDT and SSDT data is organized in data structures called definition
+blocks that contain definitions of various objects, including ACPI
+control methods, encoded in AML (ACPI Machine Language). The data block
+of the DSDT along with the contents of SSDTs represents a hierarchical
+data structure called the ACPI namespace whose topology reflects the
+structure of the underlying hardware platform.
+
+The relationships between ACPI System Definition Tables described above
+are illustrated in the following diagram::
+
+ +---------+ +-------+ +--------+ +------------------------+
+ | RSDP | +->| XSDT | +->| FADT | | +-------------------+ |
+ +---------+ | +-------+ | +--------+ +-|->| DSDT | |
+ | Pointer | | | Entry |-+ | ...... | | | +-------------------+ |
+ +---------+ | +-------+ | X_DSDT |--+ | | Definition Blocks | |
+ | Pointer |-+ | ..... | | ...... | | +-------------------+ |
+ +---------+ +-------+ +--------+ | +-------------------+ |
+ | Entry |------------------|->| SSDT | |
+ +- - - -+ | +-------------------| |
+ | Entry | - - - - - - - -+ | | Definition Blocks | |
+ +- - - -+ | | +-------------------+ |
+ | | +- - - - - - - - - -+ |
+ +-|->| SSDT | |
+ | +-------------------+ |
+ | | Definition Blocks | |
+ | +- - - - - - - - - -+ |
+ +------------------------+
+ |
+ OSPM Loading |
+ \|/
+ +----------------+
+ | ACPI Namespace |
+ +----------------+
+
+ Figure 1. ACPI Definition Blocks
+
+.. note:: RSDP can also contain a pointer to the RSDT (Root System
+ Description Table). Platforms provide RSDT to enable
+ compatibility with ACPI 1.0 operating systems. The OS is expected
+ to use XSDT, if present.
+
+
+Example ACPI Namespace
+======================
+
+All definition blocks are loaded into a single namespace. The namespace
+is a hierarchy of objects identified by names and paths.
+The following naming conventions apply to object names in the ACPI
+namespace:
+
+ 1. All names are 32 bits long.
+ 2. The first byte of a name must be one of 'A' - 'Z', '_'.
+ 3. Each of the remaining bytes of a name must be one of 'A' - 'Z', '0'
+ - '9', '_'.
+ 4. Names starting with '_' are reserved by the ACPI specification.
+ 5. The '\' symbol represents the root of the namespace (i.e. names
+ prepended with '\' are relative to the namespace root).
+ 6. The '^' symbol represents the parent of the current namespace node
+ (i.e. names prepended with '^' are relative to the parent of the
+ current namespace node).
+
+The figure below shows an example ACPI namespace::
+
+ +------+
+ | \ | Root
+ +------+
+ |
+ | +------+
+ +-| _PR | Scope(_PR): the processor namespace
+ | +------+
+ | |
+ | | +------+
+ | +-| CPU0 | Processor(CPU0): the first processor
+ | +------+
+ |
+ | +------+
+ +-| _SB | Scope(_SB): the system bus namespace
+ | +------+
+ | |
+ | | +------+
+ | +-| LID0 | Device(LID0); the lid device
+ | | +------+
+ | | |
+ | | | +------+
+ | | +-| _HID | Name(_HID, "PNP0C0D"): the hardware ID
+ | | | +------+
+ | | |
+ | | | +------+
+ | | +-| _STA | Method(_STA): the status control method
+ | | +------+
+ | |
+ | | +------+
+ | +-| PCI0 | Device(PCI0); the PCI root bridge
+ | +------+
+ | |
+ | | +------+
+ | +-| _HID | Name(_HID, "PNP0A08"): the hardware ID
+ | | +------+
+ | |
+ | | +------+
+ | +-| _CID | Name(_CID, "PNP0A03"): the compatible ID
+ | | +------+
+ | |
+ | | +------+
+ | +-| RP03 | Scope(RP03): the PCI0 power scope
+ | | +------+
+ | | |
+ | | | +------+
+ | | +-| PXP3 | PowerResource(PXP3): the PCI0 power resource
+ | | +------+
+ | |
+ | | +------+
+ | +-| GFX0 | Device(GFX0): the graphics adapter
+ | +------+
+ | |
+ | | +------+
+ | +-| _ADR | Name(_ADR, 0x00020000): the PCI bus address
+ | | +------+
+ | |
+ | | +------+
+ | +-| DD01 | Device(DD01): the LCD output device
+ | +------+
+ | |
+ | | +------+
+ | +-| _BCL | Method(_BCL): the backlight control method
+ | +------+
+ |
+ | +------+
+ +-| _TZ | Scope(_TZ): the thermal zone namespace
+ | +------+
+ | |
+ | | +------+
+ | +-| FN00 | PowerResource(FN00): the FAN0 power resource
+ | | +------+
+ | |
+ | | +------+
+ | +-| FAN0 | Device(FAN0): the FAN0 cooling device
+ | | +------+
+ | | |
+ | | | +------+
+ | | +-| _HID | Name(_HID, "PNP0A0B"): the hardware ID
+ | | +------+
+ | |
+ | | +------+
+ | +-| TZ00 | ThermalZone(TZ00); the FAN thermal zone
+ | +------+
+ |
+ | +------+
+ +-| _GPE | Scope(_GPE): the GPE namespace
+ +------+
+
+ Figure 2. Example ACPI Namespace
+
+
+Linux ACPI Device Objects
+=========================
+
+The Linux kernel's core ACPI subsystem creates struct acpi_device
+objects for ACPI namespace objects representing devices, power resources
+processors, thermal zones. Those objects are exported to user space via
+sysfs as directories in the subtree under /sys/devices/LNXSYSTM:00. The
+format of their names is <bus_id:instance>, where 'bus_id' refers to the
+ACPI namespace representation of the given object and 'instance' is used
+for distinguishing different object of the same 'bus_id' (it is
+two-digit decimal representation of an unsigned integer).
+
+The value of 'bus_id' depends on the type of the object whose name it is
+part of as listed in the table below::
+
+ +---+-----------------+-------+----------+
+ | | Object/Feature | Table | bus_id |
+ +---+-----------------+-------+----------+
+ | N | Root | xSDT | LNXSYSTM |
+ +---+-----------------+-------+----------+
+ | N | Device | xSDT | _HID |
+ +---+-----------------+-------+----------+
+ | N | Processor | xSDT | LNXCPU |
+ +---+-----------------+-------+----------+
+ | N | ThermalZone | xSDT | LNXTHERM |
+ +---+-----------------+-------+----------+
+ | N | PowerResource | xSDT | LNXPOWER |
+ +---+-----------------+-------+----------+
+ | N | Other Devices | xSDT | device |
+ +---+-----------------+-------+----------+
+ | F | PWR_BUTTON | FADT | LNXPWRBN |
+ +---+-----------------+-------+----------+
+ | F | SLP_BUTTON | FADT | LNXSLPBN |
+ +---+-----------------+-------+----------+
+ | M | Video Extension | xSDT | LNXVIDEO |
+ +---+-----------------+-------+----------+
+ | M | ATA Controller | xSDT | LNXIOBAY |
+ +---+-----------------+-------+----------+
+ | M | Docking Station | xSDT | LNXDOCK |
+ +---+-----------------+-------+----------+
+
+ Table 1. ACPI Namespace Objects Mapping
+
+The following rules apply when creating struct acpi_device objects on
+the basis of the contents of ACPI System Description Tables (as
+indicated by the letter in the first column and the notation in the
+second column of the table above):
+
+ N:
+ The object's source is an ACPI namespace node (as indicated by the
+ named object's type in the second column). In that case the object's
+ directory in sysfs will contain the 'path' attribute whose value is
+ the full path to the node from the namespace root.
+ F:
+ The struct acpi_device object is created for a fixed hardware
+ feature (as indicated by the fixed feature flag's name in the second
+ column), so its sysfs directory will not contain the 'path'
+ attribute.
+ M:
+ The struct acpi_device object is created for an ACPI namespace node
+ with specific control methods (as indicated by the ACPI defined
+ device's type in the second column). The 'path' attribute containing
+ its namespace path will be present in its sysfs directory. For
+ example, if the _BCL method is present for an ACPI namespace node, a
+ struct acpi_device object with LNXVIDEO 'bus_id' will be created for
+ it.
+
+The third column of the above table indicates which ACPI System
+Description Tables contain information used for the creation of the
+struct acpi_device objects represented by the given row (xSDT means DSDT
+or SSDT).
+
+The fourth column of the above table indicates the 'bus_id' generation
+rule of the struct acpi_device object:
+
+ _HID:
+ _HID in the last column of the table means that the object's bus_id
+ is derived from the _HID/_CID identification objects present under
+ the corresponding ACPI namespace node. The object's sysfs directory
+ will then contain the 'hid' and 'modalias' attributes that can be
+ used to retrieve the _HID and _CIDs of that object.
+ LNXxxxxx:
+ The 'modalias' attribute is also present for struct acpi_device
+ objects having bus_id of the "LNXxxxxx" form (pseudo devices), in
+ which cases it contains the bus_id string itself.
+ device:
+ 'device' in the last column of the table indicates that the object's
+ bus_id cannot be determined from _HID/_CID of the corresponding
+ ACPI namespace node, although that object represents a device (for
+ example, it may be a PCI device with _ADR defined and without _HID
+ or _CID). In that case the string 'device' will be used as the
+ object's bus_id.
+
+
+Linux ACPI Physical Device Glue
+===============================
+
+ACPI device (i.e. struct acpi_device) objects may be linked to other
+objects in the Linux' device hierarchy that represent "physical" devices
+(for example, devices on the PCI bus). If that happens, it means that
+the ACPI device object is a "companion" of a device otherwise
+represented in a different way and is used (1) to provide configuration
+information on that device which cannot be obtained by other means and
+(2) to do specific things to the device with the help of its ACPI
+control methods. One ACPI device object may be linked this way to
+multiple "physical" devices.
+
+If an ACPI device object is linked to a "physical" device, its sysfs
+directory contains the "physical_node" symbolic link to the sysfs
+directory of the target device object. In turn, the target device's
+sysfs directory will then contain the "firmware_node" symbolic link to
+the sysfs directory of the companion ACPI device object.
+The linking mechanism relies on device identification provided by the
+ACPI namespace. For example, if there's an ACPI namespace object
+representing a PCI device (i.e. a device object under an ACPI namespace
+object representing a PCI bridge) whose _ADR returns 0x00020000 and the
+bus number of the parent PCI bridge is 0, the sysfs directory
+representing the struct acpi_device object created for that ACPI
+namespace object will contain the 'physical_node' symbolic link to the
+/sys/devices/pci0000:00/0000:00:02:0/ sysfs directory of the
+corresponding PCI device.
+
+The linking mechanism is generally bus-specific. The core of its
+implementation is located in the drivers/acpi/glue.c file, but there are
+complementary parts depending on the bus types in question located
+elsewhere. For example, the PCI-specific part of it is located in
+drivers/pci/pci-acpi.c.
+
+
+Example Linux ACPI Device Tree
+=================================
+
+The sysfs hierarchy of struct acpi_device objects corresponding to the
+example ACPI namespace illustrated in Figure 2 with the addition of
+fixed PWR_BUTTON/SLP_BUTTON devices is shown below::
+
+ +--------------+---+-----------------+
+ | LNXSYSTEM:00 | \ | acpi:LNXSYSTEM: |
+ +--------------+---+-----------------+
+ |
+ | +-------------+-----+----------------+
+ +-| LNXPWRBN:00 | N/A | acpi:LNXPWRBN: |
+ | +-------------+-----+----------------+
+ |
+ | +-------------+-----+----------------+
+ +-| LNXSLPBN:00 | N/A | acpi:LNXSLPBN: |
+ | +-------------+-----+----------------+
+ |
+ | +-----------+------------+--------------+
+ +-| LNXCPU:00 | \_PR_.CPU0 | acpi:LNXCPU: |
+ | +-----------+------------+--------------+
+ |
+ | +-------------+-------+----------------+
+ +-| LNXSYBUS:00 | \_SB_ | acpi:LNXSYBUS: |
+ | +-------------+-------+----------------+
+ | |
+ | | +- - - - - - - +- - - - - - +- - - - - - - -+
+ | +-| PNP0C0D:00 | \_SB_.LID0 | acpi:PNP0C0D: |
+ | | +- - - - - - - +- - - - - - +- - - - - - - -+
+ | |
+ | | +------------+------------+-----------------------+
+ | +-| PNP0A08:00 | \_SB_.PCI0 | acpi:PNP0A08:PNP0A03: |
+ | +------------+------------+-----------------------+
+ | |
+ | | +-----------+-----------------+-----+
+ | +-| device:00 | \_SB_.PCI0.RP03 | N/A |
+ | | +-----------+-----------------+-----+
+ | | |
+ | | | +-------------+----------------------+----------------+
+ | | +-| LNXPOWER:00 | \_SB_.PCI0.RP03.PXP3 | acpi:LNXPOWER: |
+ | | +-------------+----------------------+----------------+
+ | |
+ | | +-------------+-----------------+----------------+
+ | +-| LNXVIDEO:00 | \_SB_.PCI0.GFX0 | acpi:LNXVIDEO: |
+ | +-------------+-----------------+----------------+
+ | |
+ | | +-----------+-----------------+-----+
+ | +-| device:01 | \_SB_.PCI0.DD01 | N/A |
+ | +-----------+-----------------+-----+
+ |
+ | +-------------+-------+----------------+
+ +-| LNXSYBUS:01 | \_TZ_ | acpi:LNXSYBUS: |
+ +-------------+-------+----------------+
+ |
+ | +-------------+------------+----------------+
+ +-| LNXPOWER:0a | \_TZ_.FN00 | acpi:LNXPOWER: |
+ | +-------------+------------+----------------+
+ |
+ | +------------+------------+---------------+
+ +-| PNP0C0B:00 | \_TZ_.FAN0 | acpi:PNP0C0B: |
+ | +------------+------------+---------------+
+ |
+ | +-------------+------------+----------------+
+ +-| LNXTHERM:00 | \_TZ_.TZ00 | acpi:LNXTHERM: |
+ +-------------+------------+----------------+
+
+ Figure 3. Example Linux ACPI Device Tree
+
+.. note:: Each node is represented as "object/path/modalias", where:
+
+ 1. 'object' is the name of the object's directory in sysfs.
+ 2. 'path' is the ACPI namespace path of the corresponding
+ ACPI namespace object, as returned by the object's 'path'
+ sysfs attribute.
+ 3. 'modalias' is the value of the object's 'modalias' sysfs
+ attribute (as described earlier in this document).
+
+.. note:: N/A indicates the device object does not have the 'path' or the
+ 'modalias' attribute.