summaryrefslogtreecommitdiffstats
path: root/arch/mips/kvm/vz.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--arch/mips/kvm/vz.c3331
1 files changed, 3331 insertions, 0 deletions
diff --git a/arch/mips/kvm/vz.c b/arch/mips/kvm/vz.c
new file mode 100644
index 000000000..2ffbe9264
--- /dev/null
+++ b/arch/mips/kvm/vz.c
@@ -0,0 +1,3331 @@
+/*
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * KVM/MIPS: Support for hardware virtualization extensions
+ *
+ * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
+ * Authors: Yann Le Du <ledu@kymasys.com>
+ */
+
+#include <linux/errno.h>
+#include <linux/err.h>
+#include <linux/module.h>
+#include <linux/preempt.h>
+#include <linux/vmalloc.h>
+#include <asm/cacheflush.h>
+#include <asm/cacheops.h>
+#include <asm/cmpxchg.h>
+#include <asm/fpu.h>
+#include <asm/hazards.h>
+#include <asm/inst.h>
+#include <asm/mmu_context.h>
+#include <asm/r4kcache.h>
+#include <asm/time.h>
+#include <asm/tlb.h>
+#include <asm/tlbex.h>
+
+#include <linux/kvm_host.h>
+
+#include "interrupt.h"
+#ifdef CONFIG_CPU_LOONGSON64
+#include "loongson_regs.h"
+#endif
+
+#include "trace.h"
+
+/* Pointers to last VCPU loaded on each physical CPU */
+static struct kvm_vcpu *last_vcpu[NR_CPUS];
+/* Pointers to last VCPU executed on each physical CPU */
+static struct kvm_vcpu *last_exec_vcpu[NR_CPUS];
+
+/*
+ * Number of guest VTLB entries to use, so we can catch inconsistency between
+ * CPUs.
+ */
+static unsigned int kvm_vz_guest_vtlb_size;
+
+static inline long kvm_vz_read_gc0_ebase(void)
+{
+ if (sizeof(long) == 8 && cpu_has_ebase_wg)
+ return read_gc0_ebase_64();
+ else
+ return read_gc0_ebase();
+}
+
+static inline void kvm_vz_write_gc0_ebase(long v)
+{
+ /*
+ * First write with WG=1 to write upper bits, then write again in case
+ * WG should be left at 0.
+ * write_gc0_ebase_64() is no longer UNDEFINED since R6.
+ */
+ if (sizeof(long) == 8 &&
+ (cpu_has_mips64r6 || cpu_has_ebase_wg)) {
+ write_gc0_ebase_64(v | MIPS_EBASE_WG);
+ write_gc0_ebase_64(v);
+ } else {
+ write_gc0_ebase(v | MIPS_EBASE_WG);
+ write_gc0_ebase(v);
+ }
+}
+
+/*
+ * These Config bits may be writable by the guest:
+ * Config: [K23, KU] (!TLB), K0
+ * Config1: (none)
+ * Config2: [TU, SU] (impl)
+ * Config3: ISAOnExc
+ * Config4: FTLBPageSize
+ * Config5: K, CV, MSAEn, UFE, FRE, SBRI, UFR
+ */
+
+static inline unsigned int kvm_vz_config_guest_wrmask(struct kvm_vcpu *vcpu)
+{
+ return CONF_CM_CMASK;
+}
+
+static inline unsigned int kvm_vz_config1_guest_wrmask(struct kvm_vcpu *vcpu)
+{
+ return 0;
+}
+
+static inline unsigned int kvm_vz_config2_guest_wrmask(struct kvm_vcpu *vcpu)
+{
+ return 0;
+}
+
+static inline unsigned int kvm_vz_config3_guest_wrmask(struct kvm_vcpu *vcpu)
+{
+ return MIPS_CONF3_ISA_OE;
+}
+
+static inline unsigned int kvm_vz_config4_guest_wrmask(struct kvm_vcpu *vcpu)
+{
+ /* no need to be exact */
+ return MIPS_CONF4_VFTLBPAGESIZE;
+}
+
+static inline unsigned int kvm_vz_config5_guest_wrmask(struct kvm_vcpu *vcpu)
+{
+ unsigned int mask = MIPS_CONF5_K | MIPS_CONF5_CV | MIPS_CONF5_SBRI;
+
+ /* Permit MSAEn changes if MSA supported and enabled */
+ if (kvm_mips_guest_has_msa(&vcpu->arch))
+ mask |= MIPS_CONF5_MSAEN;
+
+ /*
+ * Permit guest FPU mode changes if FPU is enabled and the relevant
+ * feature exists according to FIR register.
+ */
+ if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
+ if (cpu_has_ufr)
+ mask |= MIPS_CONF5_UFR;
+ if (cpu_has_fre)
+ mask |= MIPS_CONF5_FRE | MIPS_CONF5_UFE;
+ }
+
+ return mask;
+}
+
+static inline unsigned int kvm_vz_config6_guest_wrmask(struct kvm_vcpu *vcpu)
+{
+ return LOONGSON_CONF6_INTIMER | LOONGSON_CONF6_EXTIMER;
+}
+
+/*
+ * VZ optionally allows these additional Config bits to be written by root:
+ * Config: M, [MT]
+ * Config1: M, [MMUSize-1, C2, MD, PC, WR, CA], FP
+ * Config2: M
+ * Config3: M, MSAP, [BPG], ULRI, [DSP2P, DSPP], CTXTC, [ITL, LPA, VEIC,
+ * VInt, SP, CDMM, MT, SM, TL]
+ * Config4: M, [VTLBSizeExt, MMUSizeExt]
+ * Config5: MRP
+ */
+
+static inline unsigned int kvm_vz_config_user_wrmask(struct kvm_vcpu *vcpu)
+{
+ return kvm_vz_config_guest_wrmask(vcpu) | MIPS_CONF_M;
+}
+
+static inline unsigned int kvm_vz_config1_user_wrmask(struct kvm_vcpu *vcpu)
+{
+ unsigned int mask = kvm_vz_config1_guest_wrmask(vcpu) | MIPS_CONF_M;
+
+ /* Permit FPU to be present if FPU is supported */
+ if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
+ mask |= MIPS_CONF1_FP;
+
+ return mask;
+}
+
+static inline unsigned int kvm_vz_config2_user_wrmask(struct kvm_vcpu *vcpu)
+{
+ return kvm_vz_config2_guest_wrmask(vcpu) | MIPS_CONF_M;
+}
+
+static inline unsigned int kvm_vz_config3_user_wrmask(struct kvm_vcpu *vcpu)
+{
+ unsigned int mask = kvm_vz_config3_guest_wrmask(vcpu) | MIPS_CONF_M |
+ MIPS_CONF3_ULRI | MIPS_CONF3_CTXTC;
+
+ /* Permit MSA to be present if MSA is supported */
+ if (kvm_mips_guest_can_have_msa(&vcpu->arch))
+ mask |= MIPS_CONF3_MSA;
+
+ return mask;
+}
+
+static inline unsigned int kvm_vz_config4_user_wrmask(struct kvm_vcpu *vcpu)
+{
+ return kvm_vz_config4_guest_wrmask(vcpu) | MIPS_CONF_M;
+}
+
+static inline unsigned int kvm_vz_config5_user_wrmask(struct kvm_vcpu *vcpu)
+{
+ return kvm_vz_config5_guest_wrmask(vcpu) | MIPS_CONF5_MRP;
+}
+
+static inline unsigned int kvm_vz_config6_user_wrmask(struct kvm_vcpu *vcpu)
+{
+ return kvm_vz_config6_guest_wrmask(vcpu) |
+ LOONGSON_CONF6_SFBEN | LOONGSON_CONF6_FTLBDIS;
+}
+
+static gpa_t kvm_vz_gva_to_gpa_cb(gva_t gva)
+{
+ /* VZ guest has already converted gva to gpa */
+ return gva;
+}
+
+static void kvm_vz_queue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
+{
+ set_bit(priority, &vcpu->arch.pending_exceptions);
+ clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
+}
+
+static void kvm_vz_dequeue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
+{
+ clear_bit(priority, &vcpu->arch.pending_exceptions);
+ set_bit(priority, &vcpu->arch.pending_exceptions_clr);
+}
+
+static void kvm_vz_queue_timer_int_cb(struct kvm_vcpu *vcpu)
+{
+ /*
+ * timer expiry is asynchronous to vcpu execution therefore defer guest
+ * cp0 accesses
+ */
+ kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
+}
+
+static void kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu *vcpu)
+{
+ /*
+ * timer expiry is asynchronous to vcpu execution therefore defer guest
+ * cp0 accesses
+ */
+ kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_TIMER);
+}
+
+static void kvm_vz_queue_io_int_cb(struct kvm_vcpu *vcpu,
+ struct kvm_mips_interrupt *irq)
+{
+ int intr = (int)irq->irq;
+
+ /*
+ * interrupts are asynchronous to vcpu execution therefore defer guest
+ * cp0 accesses
+ */
+ kvm_vz_queue_irq(vcpu, kvm_irq_to_priority(intr));
+}
+
+static void kvm_vz_dequeue_io_int_cb(struct kvm_vcpu *vcpu,
+ struct kvm_mips_interrupt *irq)
+{
+ int intr = (int)irq->irq;
+
+ /*
+ * interrupts are asynchronous to vcpu execution therefore defer guest
+ * cp0 accesses
+ */
+ kvm_vz_dequeue_irq(vcpu, kvm_irq_to_priority(-intr));
+}
+
+static int kvm_vz_irq_deliver_cb(struct kvm_vcpu *vcpu, unsigned int priority,
+ u32 cause)
+{
+ u32 irq = (priority < MIPS_EXC_MAX) ?
+ kvm_priority_to_irq[priority] : 0;
+
+ switch (priority) {
+ case MIPS_EXC_INT_TIMER:
+ set_gc0_cause(C_TI);
+ break;
+
+ case MIPS_EXC_INT_IO_1:
+ case MIPS_EXC_INT_IO_2:
+ case MIPS_EXC_INT_IPI_1:
+ case MIPS_EXC_INT_IPI_2:
+ if (cpu_has_guestctl2)
+ set_c0_guestctl2(irq);
+ else
+ set_gc0_cause(irq);
+ break;
+
+ default:
+ break;
+ }
+
+ clear_bit(priority, &vcpu->arch.pending_exceptions);
+ return 1;
+}
+
+static int kvm_vz_irq_clear_cb(struct kvm_vcpu *vcpu, unsigned int priority,
+ u32 cause)
+{
+ u32 irq = (priority < MIPS_EXC_MAX) ?
+ kvm_priority_to_irq[priority] : 0;
+
+ switch (priority) {
+ case MIPS_EXC_INT_TIMER:
+ /*
+ * Call to kvm_write_c0_guest_compare() clears Cause.TI in
+ * kvm_mips_emulate_CP0(). Explicitly clear irq associated with
+ * Cause.IP[IPTI] if GuestCtl2 virtual interrupt register not
+ * supported or if not using GuestCtl2 Hardware Clear.
+ */
+ if (cpu_has_guestctl2) {
+ if (!(read_c0_guestctl2() & (irq << 14)))
+ clear_c0_guestctl2(irq);
+ } else {
+ clear_gc0_cause(irq);
+ }
+ break;
+
+ case MIPS_EXC_INT_IO_1:
+ case MIPS_EXC_INT_IO_2:
+ case MIPS_EXC_INT_IPI_1:
+ case MIPS_EXC_INT_IPI_2:
+ /* Clear GuestCtl2.VIP irq if not using Hardware Clear */
+ if (cpu_has_guestctl2) {
+ if (!(read_c0_guestctl2() & (irq << 14)))
+ clear_c0_guestctl2(irq);
+ } else {
+ clear_gc0_cause(irq);
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
+ return 1;
+}
+
+/*
+ * VZ guest timer handling.
+ */
+
+/**
+ * kvm_vz_should_use_htimer() - Find whether to use the VZ hard guest timer.
+ * @vcpu: Virtual CPU.
+ *
+ * Returns: true if the VZ GTOffset & real guest CP0_Count should be used
+ * instead of software emulation of guest timer.
+ * false otherwise.
+ */
+static bool kvm_vz_should_use_htimer(struct kvm_vcpu *vcpu)
+{
+ if (kvm_mips_count_disabled(vcpu))
+ return false;
+
+ /* Chosen frequency must match real frequency */
+ if (mips_hpt_frequency != vcpu->arch.count_hz)
+ return false;
+
+ /* We don't support a CP0_GTOffset with fewer bits than CP0_Count */
+ if (current_cpu_data.gtoffset_mask != 0xffffffff)
+ return false;
+
+ return true;
+}
+
+/**
+ * _kvm_vz_restore_stimer() - Restore soft timer state.
+ * @vcpu: Virtual CPU.
+ * @compare: CP0_Compare register value, restored by caller.
+ * @cause: CP0_Cause register to restore.
+ *
+ * Restore VZ state relating to the soft timer. The hard timer can be enabled
+ * later.
+ */
+static void _kvm_vz_restore_stimer(struct kvm_vcpu *vcpu, u32 compare,
+ u32 cause)
+{
+ /*
+ * Avoid spurious counter interrupts by setting Guest CP0_Count to just
+ * after Guest CP0_Compare.
+ */
+ write_c0_gtoffset(compare - read_c0_count());
+
+ back_to_back_c0_hazard();
+ write_gc0_cause(cause);
+}
+
+/**
+ * _kvm_vz_restore_htimer() - Restore hard timer state.
+ * @vcpu: Virtual CPU.
+ * @compare: CP0_Compare register value, restored by caller.
+ * @cause: CP0_Cause register to restore.
+ *
+ * Restore hard timer Guest.Count & Guest.Cause taking care to preserve the
+ * value of Guest.CP0_Cause.TI while restoring Guest.CP0_Cause.
+ */
+static void _kvm_vz_restore_htimer(struct kvm_vcpu *vcpu,
+ u32 compare, u32 cause)
+{
+ u32 start_count, after_count;
+ ktime_t freeze_time;
+ unsigned long flags;
+
+ /*
+ * Freeze the soft-timer and sync the guest CP0_Count with it. We do
+ * this with interrupts disabled to avoid latency.
+ */
+ local_irq_save(flags);
+ freeze_time = kvm_mips_freeze_hrtimer(vcpu, &start_count);
+ write_c0_gtoffset(start_count - read_c0_count());
+ local_irq_restore(flags);
+
+ /* restore guest CP0_Cause, as TI may already be set */
+ back_to_back_c0_hazard();
+ write_gc0_cause(cause);
+
+ /*
+ * The above sequence isn't atomic and would result in lost timer
+ * interrupts if we're not careful. Detect if a timer interrupt is due
+ * and assert it.
+ */
+ back_to_back_c0_hazard();
+ after_count = read_gc0_count();
+ if (after_count - start_count > compare - start_count - 1)
+ kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
+}
+
+/**
+ * kvm_vz_restore_timer() - Restore timer state.
+ * @vcpu: Virtual CPU.
+ *
+ * Restore soft timer state from saved context.
+ */
+static void kvm_vz_restore_timer(struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ u32 cause, compare;
+
+ compare = kvm_read_sw_gc0_compare(cop0);
+ cause = kvm_read_sw_gc0_cause(cop0);
+
+ write_gc0_compare(compare);
+ _kvm_vz_restore_stimer(vcpu, compare, cause);
+}
+
+/**
+ * kvm_vz_acquire_htimer() - Switch to hard timer state.
+ * @vcpu: Virtual CPU.
+ *
+ * Restore hard timer state on top of existing soft timer state if possible.
+ *
+ * Since hard timer won't remain active over preemption, preemption should be
+ * disabled by the caller.
+ */
+void kvm_vz_acquire_htimer(struct kvm_vcpu *vcpu)
+{
+ u32 gctl0;
+
+ gctl0 = read_c0_guestctl0();
+ if (!(gctl0 & MIPS_GCTL0_GT) && kvm_vz_should_use_htimer(vcpu)) {
+ /* enable guest access to hard timer */
+ write_c0_guestctl0(gctl0 | MIPS_GCTL0_GT);
+
+ _kvm_vz_restore_htimer(vcpu, read_gc0_compare(),
+ read_gc0_cause());
+ }
+}
+
+/**
+ * _kvm_vz_save_htimer() - Switch to software emulation of guest timer.
+ * @vcpu: Virtual CPU.
+ * @compare: Pointer to write compare value to.
+ * @cause: Pointer to write cause value to.
+ *
+ * Save VZ guest timer state and switch to software emulation of guest CP0
+ * timer. The hard timer must already be in use, so preemption should be
+ * disabled.
+ */
+static void _kvm_vz_save_htimer(struct kvm_vcpu *vcpu,
+ u32 *out_compare, u32 *out_cause)
+{
+ u32 cause, compare, before_count, end_count;
+ ktime_t before_time;
+
+ compare = read_gc0_compare();
+ *out_compare = compare;
+
+ before_time = ktime_get();
+
+ /*
+ * Record the CP0_Count *prior* to saving CP0_Cause, so we have a time
+ * at which no pending timer interrupt is missing.
+ */
+ before_count = read_gc0_count();
+ back_to_back_c0_hazard();
+ cause = read_gc0_cause();
+ *out_cause = cause;
+
+ /*
+ * Record a final CP0_Count which we will transfer to the soft-timer.
+ * This is recorded *after* saving CP0_Cause, so we don't get any timer
+ * interrupts from just after the final CP0_Count point.
+ */
+ back_to_back_c0_hazard();
+ end_count = read_gc0_count();
+
+ /*
+ * The above sequence isn't atomic, so we could miss a timer interrupt
+ * between reading CP0_Cause and end_count. Detect and record any timer
+ * interrupt due between before_count and end_count.
+ */
+ if (end_count - before_count > compare - before_count - 1)
+ kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
+
+ /*
+ * Restore soft-timer, ignoring a small amount of negative drift due to
+ * delay between freeze_hrtimer and setting CP0_GTOffset.
+ */
+ kvm_mips_restore_hrtimer(vcpu, before_time, end_count, -0x10000);
+}
+
+/**
+ * kvm_vz_save_timer() - Save guest timer state.
+ * @vcpu: Virtual CPU.
+ *
+ * Save VZ guest timer state and switch to soft guest timer if hard timer was in
+ * use.
+ */
+static void kvm_vz_save_timer(struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ u32 gctl0, compare, cause;
+
+ gctl0 = read_c0_guestctl0();
+ if (gctl0 & MIPS_GCTL0_GT) {
+ /* disable guest use of hard timer */
+ write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
+
+ /* save hard timer state */
+ _kvm_vz_save_htimer(vcpu, &compare, &cause);
+ } else {
+ compare = read_gc0_compare();
+ cause = read_gc0_cause();
+ }
+
+ /* save timer-related state to VCPU context */
+ kvm_write_sw_gc0_cause(cop0, cause);
+ kvm_write_sw_gc0_compare(cop0, compare);
+}
+
+/**
+ * kvm_vz_lose_htimer() - Ensure hard guest timer is not in use.
+ * @vcpu: Virtual CPU.
+ *
+ * Transfers the state of the hard guest timer to the soft guest timer, leaving
+ * guest state intact so it can continue to be used with the soft timer.
+ */
+void kvm_vz_lose_htimer(struct kvm_vcpu *vcpu)
+{
+ u32 gctl0, compare, cause;
+
+ preempt_disable();
+ gctl0 = read_c0_guestctl0();
+ if (gctl0 & MIPS_GCTL0_GT) {
+ /* disable guest use of timer */
+ write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
+
+ /* switch to soft timer */
+ _kvm_vz_save_htimer(vcpu, &compare, &cause);
+
+ /* leave soft timer in usable state */
+ _kvm_vz_restore_stimer(vcpu, compare, cause);
+ }
+ preempt_enable();
+}
+
+/**
+ * is_eva_access() - Find whether an instruction is an EVA memory accessor.
+ * @inst: 32-bit instruction encoding.
+ *
+ * Finds whether @inst encodes an EVA memory access instruction, which would
+ * indicate that emulation of it should access the user mode address space
+ * instead of the kernel mode address space. This matters for MUSUK segments
+ * which are TLB mapped for user mode but unmapped for kernel mode.
+ *
+ * Returns: Whether @inst encodes an EVA accessor instruction.
+ */
+static bool is_eva_access(union mips_instruction inst)
+{
+ if (inst.spec3_format.opcode != spec3_op)
+ return false;
+
+ switch (inst.spec3_format.func) {
+ case lwle_op:
+ case lwre_op:
+ case cachee_op:
+ case sbe_op:
+ case she_op:
+ case sce_op:
+ case swe_op:
+ case swle_op:
+ case swre_op:
+ case prefe_op:
+ case lbue_op:
+ case lhue_op:
+ case lbe_op:
+ case lhe_op:
+ case lle_op:
+ case lwe_op:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/**
+ * is_eva_am_mapped() - Find whether an access mode is mapped.
+ * @vcpu: KVM VCPU state.
+ * @am: 3-bit encoded access mode.
+ * @eu: Segment becomes unmapped and uncached when Status.ERL=1.
+ *
+ * Decode @am to find whether it encodes a mapped segment for the current VCPU
+ * state. Where necessary @eu and the actual instruction causing the fault are
+ * taken into account to make the decision.
+ *
+ * Returns: Whether the VCPU faulted on a TLB mapped address.
+ */
+static bool is_eva_am_mapped(struct kvm_vcpu *vcpu, unsigned int am, bool eu)
+{
+ u32 am_lookup;
+ int err;
+
+ /*
+ * Interpret access control mode. We assume address errors will already
+ * have been caught by the guest, leaving us with:
+ * AM UM SM KM 31..24 23..16
+ * UK 0 000 Unm 0 0
+ * MK 1 001 TLB 1
+ * MSK 2 010 TLB TLB 1
+ * MUSK 3 011 TLB TLB TLB 1
+ * MUSUK 4 100 TLB TLB Unm 0 1
+ * USK 5 101 Unm Unm 0 0
+ * - 6 110 0 0
+ * UUSK 7 111 Unm Unm Unm 0 0
+ *
+ * We shift a magic value by AM across the sign bit to find if always
+ * TLB mapped, and if not shift by 8 again to find if it depends on KM.
+ */
+ am_lookup = 0x70080000 << am;
+ if ((s32)am_lookup < 0) {
+ /*
+ * MK, MSK, MUSK
+ * Always TLB mapped, unless SegCtl.EU && ERL
+ */
+ if (!eu || !(read_gc0_status() & ST0_ERL))
+ return true;
+ } else {
+ am_lookup <<= 8;
+ if ((s32)am_lookup < 0) {
+ union mips_instruction inst;
+ unsigned int status;
+ u32 *opc;
+
+ /*
+ * MUSUK
+ * TLB mapped if not in kernel mode
+ */
+ status = read_gc0_status();
+ if (!(status & (ST0_EXL | ST0_ERL)) &&
+ (status & ST0_KSU))
+ return true;
+ /*
+ * EVA access instructions in kernel
+ * mode access user address space.
+ */
+ opc = (u32 *)vcpu->arch.pc;
+ if (vcpu->arch.host_cp0_cause & CAUSEF_BD)
+ opc += 1;
+ err = kvm_get_badinstr(opc, vcpu, &inst.word);
+ if (!err && is_eva_access(inst))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/**
+ * kvm_vz_gva_to_gpa() - Convert valid GVA to GPA.
+ * @vcpu: KVM VCPU state.
+ * @gva: Guest virtual address to convert.
+ * @gpa: Output guest physical address.
+ *
+ * Convert a guest virtual address (GVA) which is valid according to the guest
+ * context, to a guest physical address (GPA).
+ *
+ * Returns: 0 on success.
+ * -errno on failure.
+ */
+static int kvm_vz_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
+ unsigned long *gpa)
+{
+ u32 gva32 = gva;
+ unsigned long segctl;
+
+ if ((long)gva == (s32)gva32) {
+ /* Handle canonical 32-bit virtual address */
+ if (cpu_guest_has_segments) {
+ unsigned long mask, pa;
+
+ switch (gva32 >> 29) {
+ case 0:
+ case 1: /* CFG5 (1GB) */
+ segctl = read_gc0_segctl2() >> 16;
+ mask = (unsigned long)0xfc0000000ull;
+ break;
+ case 2:
+ case 3: /* CFG4 (1GB) */
+ segctl = read_gc0_segctl2();
+ mask = (unsigned long)0xfc0000000ull;
+ break;
+ case 4: /* CFG3 (512MB) */
+ segctl = read_gc0_segctl1() >> 16;
+ mask = (unsigned long)0xfe0000000ull;
+ break;
+ case 5: /* CFG2 (512MB) */
+ segctl = read_gc0_segctl1();
+ mask = (unsigned long)0xfe0000000ull;
+ break;
+ case 6: /* CFG1 (512MB) */
+ segctl = read_gc0_segctl0() >> 16;
+ mask = (unsigned long)0xfe0000000ull;
+ break;
+ case 7: /* CFG0 (512MB) */
+ segctl = read_gc0_segctl0();
+ mask = (unsigned long)0xfe0000000ull;
+ break;
+ default:
+ /*
+ * GCC 4.9 isn't smart enough to figure out that
+ * segctl and mask are always initialised.
+ */
+ unreachable();
+ }
+
+ if (is_eva_am_mapped(vcpu, (segctl >> 4) & 0x7,
+ segctl & 0x0008))
+ goto tlb_mapped;
+
+ /* Unmapped, find guest physical address */
+ pa = (segctl << 20) & mask;
+ pa |= gva32 & ~mask;
+ *gpa = pa;
+ return 0;
+ } else if ((s32)gva32 < (s32)0xc0000000) {
+ /* legacy unmapped KSeg0 or KSeg1 */
+ *gpa = gva32 & 0x1fffffff;
+ return 0;
+ }
+#ifdef CONFIG_64BIT
+ } else if ((gva & 0xc000000000000000) == 0x8000000000000000) {
+ /* XKPHYS */
+ if (cpu_guest_has_segments) {
+ /*
+ * Each of the 8 regions can be overridden by SegCtl2.XR
+ * to use SegCtl1.XAM.
+ */
+ segctl = read_gc0_segctl2();
+ if (segctl & (1ull << (56 + ((gva >> 59) & 0x7)))) {
+ segctl = read_gc0_segctl1();
+ if (is_eva_am_mapped(vcpu, (segctl >> 59) & 0x7,
+ 0))
+ goto tlb_mapped;
+ }
+
+ }
+ /*
+ * Traditionally fully unmapped.
+ * Bits 61:59 specify the CCA, which we can just mask off here.
+ * Bits 58:PABITS should be zero, but we shouldn't have got here
+ * if it wasn't.
+ */
+ *gpa = gva & 0x07ffffffffffffff;
+ return 0;
+#endif
+ }
+
+tlb_mapped:
+ return kvm_vz_guest_tlb_lookup(vcpu, gva, gpa);
+}
+
+/**
+ * kvm_vz_badvaddr_to_gpa() - Convert GVA BadVAddr from root exception to GPA.
+ * @vcpu: KVM VCPU state.
+ * @badvaddr: Root BadVAddr.
+ * @gpa: Output guest physical address.
+ *
+ * VZ implementations are permitted to report guest virtual addresses (GVA) in
+ * BadVAddr on a root exception during guest execution, instead of the more
+ * convenient guest physical addresses (GPA). When we get a GVA, this function
+ * converts it to a GPA, taking into account guest segmentation and guest TLB
+ * state.
+ *
+ * Returns: 0 on success.
+ * -errno on failure.
+ */
+static int kvm_vz_badvaddr_to_gpa(struct kvm_vcpu *vcpu, unsigned long badvaddr,
+ unsigned long *gpa)
+{
+ unsigned int gexccode = (vcpu->arch.host_cp0_guestctl0 &
+ MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
+
+ /* If BadVAddr is GPA, then all is well in the world */
+ if (likely(gexccode == MIPS_GCTL0_GEXC_GPA)) {
+ *gpa = badvaddr;
+ return 0;
+ }
+
+ /* Otherwise we'd expect it to be GVA ... */
+ if (WARN(gexccode != MIPS_GCTL0_GEXC_GVA,
+ "Unexpected gexccode %#x\n", gexccode))
+ return -EINVAL;
+
+ /* ... and we need to perform the GVA->GPA translation in software */
+ return kvm_vz_gva_to_gpa(vcpu, badvaddr, gpa);
+}
+
+static int kvm_trap_vz_no_handler(struct kvm_vcpu *vcpu)
+{
+ u32 *opc = (u32 *) vcpu->arch.pc;
+ u32 cause = vcpu->arch.host_cp0_cause;
+ u32 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
+ unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
+ u32 inst = 0;
+
+ /*
+ * Fetch the instruction.
+ */
+ if (cause & CAUSEF_BD)
+ opc += 1;
+ kvm_get_badinstr(opc, vcpu, &inst);
+
+ kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
+ exccode, opc, inst, badvaddr,
+ read_gc0_status());
+ kvm_arch_vcpu_dump_regs(vcpu);
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ return RESUME_HOST;
+}
+
+static unsigned long mips_process_maar(unsigned int op, unsigned long val)
+{
+ /* Mask off unused bits */
+ unsigned long mask = 0xfffff000 | MIPS_MAAR_S | MIPS_MAAR_VL;
+
+ if (read_gc0_pagegrain() & PG_ELPA)
+ mask |= 0x00ffffff00000000ull;
+ if (cpu_guest_has_mvh)
+ mask |= MIPS_MAAR_VH;
+
+ /* Set or clear VH */
+ if (op == mtc_op) {
+ /* clear VH */
+ val &= ~MIPS_MAAR_VH;
+ } else if (op == dmtc_op) {
+ /* set VH to match VL */
+ val &= ~MIPS_MAAR_VH;
+ if (val & MIPS_MAAR_VL)
+ val |= MIPS_MAAR_VH;
+ }
+
+ return val & mask;
+}
+
+static void kvm_write_maari(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+
+ val &= MIPS_MAARI_INDEX;
+ if (val == MIPS_MAARI_INDEX)
+ kvm_write_sw_gc0_maari(cop0, ARRAY_SIZE(vcpu->arch.maar) - 1);
+ else if (val < ARRAY_SIZE(vcpu->arch.maar))
+ kvm_write_sw_gc0_maari(cop0, val);
+}
+
+static enum emulation_result kvm_vz_gpsi_cop0(union mips_instruction inst,
+ u32 *opc, u32 cause,
+ struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ enum emulation_result er = EMULATE_DONE;
+ u32 rt, rd, sel;
+ unsigned long curr_pc;
+ unsigned long val;
+
+ /*
+ * Update PC and hold onto current PC in case there is
+ * an error and we want to rollback the PC
+ */
+ curr_pc = vcpu->arch.pc;
+ er = update_pc(vcpu, cause);
+ if (er == EMULATE_FAIL)
+ return er;
+
+ if (inst.co_format.co) {
+ switch (inst.co_format.func) {
+ case wait_op:
+ er = kvm_mips_emul_wait(vcpu);
+ break;
+ default:
+ er = EMULATE_FAIL;
+ }
+ } else {
+ rt = inst.c0r_format.rt;
+ rd = inst.c0r_format.rd;
+ sel = inst.c0r_format.sel;
+
+ switch (inst.c0r_format.rs) {
+ case dmfc_op:
+ case mfc_op:
+#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
+ cop0->stat[rd][sel]++;
+#endif
+ if (rd == MIPS_CP0_COUNT &&
+ sel == 0) { /* Count */
+ val = kvm_mips_read_count(vcpu);
+ } else if (rd == MIPS_CP0_COMPARE &&
+ sel == 0) { /* Compare */
+ val = read_gc0_compare();
+ } else if (rd == MIPS_CP0_LLADDR &&
+ sel == 0) { /* LLAddr */
+ if (cpu_guest_has_rw_llb)
+ val = read_gc0_lladdr() &
+ MIPS_LLADDR_LLB;
+ else
+ val = 0;
+ } else if (rd == MIPS_CP0_LLADDR &&
+ sel == 1 && /* MAAR */
+ cpu_guest_has_maar &&
+ !cpu_guest_has_dyn_maar) {
+ /* MAARI must be in range */
+ BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
+ ARRAY_SIZE(vcpu->arch.maar));
+ val = vcpu->arch.maar[
+ kvm_read_sw_gc0_maari(cop0)];
+ } else if ((rd == MIPS_CP0_PRID &&
+ (sel == 0 || /* PRid */
+ sel == 2 || /* CDMMBase */
+ sel == 3)) || /* CMGCRBase */
+ (rd == MIPS_CP0_STATUS &&
+ (sel == 2 || /* SRSCtl */
+ sel == 3)) || /* SRSMap */
+ (rd == MIPS_CP0_CONFIG &&
+ (sel == 6 || /* Config6 */
+ sel == 7)) || /* Config7 */
+ (rd == MIPS_CP0_LLADDR &&
+ (sel == 2) && /* MAARI */
+ cpu_guest_has_maar &&
+ !cpu_guest_has_dyn_maar) ||
+ (rd == MIPS_CP0_ERRCTL &&
+ (sel == 0))) { /* ErrCtl */
+ val = cop0->reg[rd][sel];
+#ifdef CONFIG_CPU_LOONGSON64
+ } else if (rd == MIPS_CP0_DIAG &&
+ (sel == 0)) { /* Diag */
+ val = cop0->reg[rd][sel];
+#endif
+ } else {
+ val = 0;
+ er = EMULATE_FAIL;
+ }
+
+ if (er != EMULATE_FAIL) {
+ /* Sign extend */
+ if (inst.c0r_format.rs == mfc_op)
+ val = (int)val;
+ vcpu->arch.gprs[rt] = val;
+ }
+
+ trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mfc_op) ?
+ KVM_TRACE_MFC0 : KVM_TRACE_DMFC0,
+ KVM_TRACE_COP0(rd, sel), val);
+ break;
+
+ case dmtc_op:
+ case mtc_op:
+#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
+ cop0->stat[rd][sel]++;
+#endif
+ val = vcpu->arch.gprs[rt];
+ trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mtc_op) ?
+ KVM_TRACE_MTC0 : KVM_TRACE_DMTC0,
+ KVM_TRACE_COP0(rd, sel), val);
+
+ if (rd == MIPS_CP0_COUNT &&
+ sel == 0) { /* Count */
+ kvm_vz_lose_htimer(vcpu);
+ kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
+ } else if (rd == MIPS_CP0_COMPARE &&
+ sel == 0) { /* Compare */
+ kvm_mips_write_compare(vcpu,
+ vcpu->arch.gprs[rt],
+ true);
+ } else if (rd == MIPS_CP0_LLADDR &&
+ sel == 0) { /* LLAddr */
+ /*
+ * P5600 generates GPSI on guest MTC0 LLAddr.
+ * Only allow the guest to clear LLB.
+ */
+ if (cpu_guest_has_rw_llb &&
+ !(val & MIPS_LLADDR_LLB))
+ write_gc0_lladdr(0);
+ } else if (rd == MIPS_CP0_LLADDR &&
+ sel == 1 && /* MAAR */
+ cpu_guest_has_maar &&
+ !cpu_guest_has_dyn_maar) {
+ val = mips_process_maar(inst.c0r_format.rs,
+ val);
+
+ /* MAARI must be in range */
+ BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
+ ARRAY_SIZE(vcpu->arch.maar));
+ vcpu->arch.maar[kvm_read_sw_gc0_maari(cop0)] =
+ val;
+ } else if (rd == MIPS_CP0_LLADDR &&
+ (sel == 2) && /* MAARI */
+ cpu_guest_has_maar &&
+ !cpu_guest_has_dyn_maar) {
+ kvm_write_maari(vcpu, val);
+ } else if (rd == MIPS_CP0_CONFIG &&
+ (sel == 6)) {
+ cop0->reg[rd][sel] = (int)val;
+ } else if (rd == MIPS_CP0_ERRCTL &&
+ (sel == 0)) { /* ErrCtl */
+ /* ignore the written value */
+#ifdef CONFIG_CPU_LOONGSON64
+ } else if (rd == MIPS_CP0_DIAG &&
+ (sel == 0)) { /* Diag */
+ unsigned long flags;
+
+ local_irq_save(flags);
+ if (val & LOONGSON_DIAG_BTB) {
+ /* Flush BTB */
+ set_c0_diag(LOONGSON_DIAG_BTB);
+ }
+ if (val & LOONGSON_DIAG_ITLB) {
+ /* Flush ITLB */
+ set_c0_diag(LOONGSON_DIAG_ITLB);
+ }
+ if (val & LOONGSON_DIAG_DTLB) {
+ /* Flush DTLB */
+ set_c0_diag(LOONGSON_DIAG_DTLB);
+ }
+ if (val & LOONGSON_DIAG_VTLB) {
+ /* Flush VTLB */
+ kvm_loongson_clear_guest_vtlb();
+ }
+ if (val & LOONGSON_DIAG_FTLB) {
+ /* Flush FTLB */
+ kvm_loongson_clear_guest_ftlb();
+ }
+ local_irq_restore(flags);
+#endif
+ } else {
+ er = EMULATE_FAIL;
+ }
+ break;
+
+ default:
+ er = EMULATE_FAIL;
+ break;
+ }
+ }
+ /* Rollback PC only if emulation was unsuccessful */
+ if (er == EMULATE_FAIL) {
+ kvm_err("[%#lx]%s: unsupported cop0 instruction 0x%08x\n",
+ curr_pc, __func__, inst.word);
+
+ vcpu->arch.pc = curr_pc;
+ }
+
+ return er;
+}
+
+static enum emulation_result kvm_vz_gpsi_cache(union mips_instruction inst,
+ u32 *opc, u32 cause,
+ struct kvm_vcpu *vcpu)
+{
+ enum emulation_result er = EMULATE_DONE;
+ u32 cache, op_inst, op, base;
+ s16 offset;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+ unsigned long va, curr_pc;
+
+ /*
+ * Update PC and hold onto current PC in case there is
+ * an error and we want to rollback the PC
+ */
+ curr_pc = vcpu->arch.pc;
+ er = update_pc(vcpu, cause);
+ if (er == EMULATE_FAIL)
+ return er;
+
+ base = inst.i_format.rs;
+ op_inst = inst.i_format.rt;
+ if (cpu_has_mips_r6)
+ offset = inst.spec3_format.simmediate;
+ else
+ offset = inst.i_format.simmediate;
+ cache = op_inst & CacheOp_Cache;
+ op = op_inst & CacheOp_Op;
+
+ va = arch->gprs[base] + offset;
+
+ kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
+ cache, op, base, arch->gprs[base], offset);
+
+ /* Secondary or tirtiary cache ops ignored */
+ if (cache != Cache_I && cache != Cache_D)
+ return EMULATE_DONE;
+
+ switch (op_inst) {
+ case Index_Invalidate_I:
+ flush_icache_line_indexed(va);
+ return EMULATE_DONE;
+ case Index_Writeback_Inv_D:
+ flush_dcache_line_indexed(va);
+ return EMULATE_DONE;
+ case Hit_Invalidate_I:
+ case Hit_Invalidate_D:
+ case Hit_Writeback_Inv_D:
+ if (boot_cpu_type() == CPU_CAVIUM_OCTEON3) {
+ /* We can just flush entire icache */
+ local_flush_icache_range(0, 0);
+ return EMULATE_DONE;
+ }
+
+ /* So far, other platforms support guest hit cache ops */
+ break;
+ default:
+ break;
+ }
+
+ kvm_err("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
+ curr_pc, vcpu->arch.gprs[31], cache, op, base, arch->gprs[base],
+ offset);
+ /* Rollback PC */
+ vcpu->arch.pc = curr_pc;
+
+ return EMULATE_FAIL;
+}
+
+#ifdef CONFIG_CPU_LOONGSON64
+static enum emulation_result kvm_vz_gpsi_lwc2(union mips_instruction inst,
+ u32 *opc, u32 cause,
+ struct kvm_vcpu *vcpu)
+{
+ unsigned int rs, rd;
+ unsigned int hostcfg;
+ unsigned long curr_pc;
+ enum emulation_result er = EMULATE_DONE;
+
+ /*
+ * Update PC and hold onto current PC in case there is
+ * an error and we want to rollback the PC
+ */
+ curr_pc = vcpu->arch.pc;
+ er = update_pc(vcpu, cause);
+ if (er == EMULATE_FAIL)
+ return er;
+
+ rs = inst.loongson3_lscsr_format.rs;
+ rd = inst.loongson3_lscsr_format.rd;
+ switch (inst.loongson3_lscsr_format.fr) {
+ case 0x8: /* Read CPUCFG */
+ ++vcpu->stat.vz_cpucfg_exits;
+ hostcfg = read_cpucfg(vcpu->arch.gprs[rs]);
+
+ switch (vcpu->arch.gprs[rs]) {
+ case LOONGSON_CFG0:
+ vcpu->arch.gprs[rd] = 0x14c000;
+ break;
+ case LOONGSON_CFG1:
+ hostcfg &= (LOONGSON_CFG1_FP | LOONGSON_CFG1_MMI |
+ LOONGSON_CFG1_MSA1 | LOONGSON_CFG1_MSA2 |
+ LOONGSON_CFG1_SFBP);
+ vcpu->arch.gprs[rd] = hostcfg;
+ break;
+ case LOONGSON_CFG2:
+ hostcfg &= (LOONGSON_CFG2_LEXT1 | LOONGSON_CFG2_LEXT2 |
+ LOONGSON_CFG2_LEXT3 | LOONGSON_CFG2_LSPW);
+ vcpu->arch.gprs[rd] = hostcfg;
+ break;
+ case LOONGSON_CFG3:
+ vcpu->arch.gprs[rd] = hostcfg;
+ break;
+ default:
+ /* Don't export any other advanced features to guest */
+ vcpu->arch.gprs[rd] = 0;
+ break;
+ }
+ break;
+
+ default:
+ kvm_err("lwc2 emulate not impl %d rs %lx @%lx\n",
+ inst.loongson3_lscsr_format.fr, vcpu->arch.gprs[rs], curr_pc);
+ er = EMULATE_FAIL;
+ break;
+ }
+
+ /* Rollback PC only if emulation was unsuccessful */
+ if (er == EMULATE_FAIL) {
+ kvm_err("[%#lx]%s: unsupported lwc2 instruction 0x%08x 0x%08x\n",
+ curr_pc, __func__, inst.word, inst.loongson3_lscsr_format.fr);
+
+ vcpu->arch.pc = curr_pc;
+ }
+
+ return er;
+}
+#endif
+
+static enum emulation_result kvm_trap_vz_handle_gpsi(u32 cause, u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ enum emulation_result er = EMULATE_DONE;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+ union mips_instruction inst;
+ int rd, rt, sel;
+ int err;
+
+ /*
+ * Fetch the instruction.
+ */
+ if (cause & CAUSEF_BD)
+ opc += 1;
+ err = kvm_get_badinstr(opc, vcpu, &inst.word);
+ if (err)
+ return EMULATE_FAIL;
+
+ switch (inst.r_format.opcode) {
+ case cop0_op:
+ er = kvm_vz_gpsi_cop0(inst, opc, cause, vcpu);
+ break;
+#ifndef CONFIG_CPU_MIPSR6
+ case cache_op:
+ trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
+ er = kvm_vz_gpsi_cache(inst, opc, cause, vcpu);
+ break;
+#endif
+#ifdef CONFIG_CPU_LOONGSON64
+ case lwc2_op:
+ er = kvm_vz_gpsi_lwc2(inst, opc, cause, vcpu);
+ break;
+#endif
+ case spec3_op:
+ switch (inst.spec3_format.func) {
+#ifdef CONFIG_CPU_MIPSR6
+ case cache6_op:
+ trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
+ er = kvm_vz_gpsi_cache(inst, opc, cause, vcpu);
+ break;
+#endif
+ case rdhwr_op:
+ if (inst.r_format.rs || (inst.r_format.re >> 3))
+ goto unknown;
+
+ rd = inst.r_format.rd;
+ rt = inst.r_format.rt;
+ sel = inst.r_format.re & 0x7;
+
+ switch (rd) {
+ case MIPS_HWR_CC: /* Read count register */
+ arch->gprs[rt] =
+ (long)(int)kvm_mips_read_count(vcpu);
+ break;
+ default:
+ trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
+ KVM_TRACE_HWR(rd, sel), 0);
+ goto unknown;
+ }
+
+ trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
+ KVM_TRACE_HWR(rd, sel), arch->gprs[rt]);
+
+ er = update_pc(vcpu, cause);
+ break;
+ default:
+ goto unknown;
+ }
+ break;
+unknown:
+
+ default:
+ kvm_err("GPSI exception not supported (%p/%#x)\n",
+ opc, inst.word);
+ kvm_arch_vcpu_dump_regs(vcpu);
+ er = EMULATE_FAIL;
+ break;
+ }
+
+ return er;
+}
+
+static enum emulation_result kvm_trap_vz_handle_gsfc(u32 cause, u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ enum emulation_result er = EMULATE_DONE;
+ struct kvm_vcpu_arch *arch = &vcpu->arch;
+ union mips_instruction inst;
+ int err;
+
+ /*
+ * Fetch the instruction.
+ */
+ if (cause & CAUSEF_BD)
+ opc += 1;
+ err = kvm_get_badinstr(opc, vcpu, &inst.word);
+ if (err)
+ return EMULATE_FAIL;
+
+ /* complete MTC0 on behalf of guest and advance EPC */
+ if (inst.c0r_format.opcode == cop0_op &&
+ inst.c0r_format.rs == mtc_op &&
+ inst.c0r_format.z == 0) {
+ int rt = inst.c0r_format.rt;
+ int rd = inst.c0r_format.rd;
+ int sel = inst.c0r_format.sel;
+ unsigned int val = arch->gprs[rt];
+ unsigned int old_val, change;
+
+ trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, KVM_TRACE_COP0(rd, sel),
+ val);
+
+ if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
+ /* FR bit should read as zero if no FPU */
+ if (!kvm_mips_guest_has_fpu(&vcpu->arch))
+ val &= ~(ST0_CU1 | ST0_FR);
+
+ /*
+ * Also don't allow FR to be set if host doesn't support
+ * it.
+ */
+ if (!(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
+ val &= ~ST0_FR;
+
+ old_val = read_gc0_status();
+ change = val ^ old_val;
+
+ if (change & ST0_FR) {
+ /*
+ * FPU and Vector register state is made
+ * UNPREDICTABLE by a change of FR, so don't
+ * even bother saving it.
+ */
+ kvm_drop_fpu(vcpu);
+ }
+
+ /*
+ * If MSA state is already live, it is undefined how it
+ * interacts with FR=0 FPU state, and we don't want to
+ * hit reserved instruction exceptions trying to save
+ * the MSA state later when CU=1 && FR=1, so play it
+ * safe and save it first.
+ */
+ if (change & ST0_CU1 && !(val & ST0_FR) &&
+ vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
+ kvm_lose_fpu(vcpu);
+
+ write_gc0_status(val);
+ } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
+ u32 old_cause = read_gc0_cause();
+ u32 change = old_cause ^ val;
+
+ /* DC bit enabling/disabling timer? */
+ if (change & CAUSEF_DC) {
+ if (val & CAUSEF_DC) {
+ kvm_vz_lose_htimer(vcpu);
+ kvm_mips_count_disable_cause(vcpu);
+ } else {
+ kvm_mips_count_enable_cause(vcpu);
+ }
+ }
+
+ /* Only certain bits are RW to the guest */
+ change &= (CAUSEF_DC | CAUSEF_IV | CAUSEF_WP |
+ CAUSEF_IP0 | CAUSEF_IP1);
+
+ /* WP can only be cleared */
+ change &= ~CAUSEF_WP | old_cause;
+
+ write_gc0_cause(old_cause ^ change);
+ } else if ((rd == MIPS_CP0_STATUS) && (sel == 1)) { /* IntCtl */
+ write_gc0_intctl(val);
+ } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
+ old_val = read_gc0_config5();
+ change = val ^ old_val;
+ /* Handle changes in FPU/MSA modes */
+ preempt_disable();
+
+ /*
+ * Propagate FRE changes immediately if the FPU
+ * context is already loaded.
+ */
+ if (change & MIPS_CONF5_FRE &&
+ vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
+ change_c0_config5(MIPS_CONF5_FRE, val);
+
+ preempt_enable();
+
+ val = old_val ^
+ (change & kvm_vz_config5_guest_wrmask(vcpu));
+ write_gc0_config5(val);
+ } else {
+ kvm_err("Handle GSFC, unsupported field change @ %p: %#x\n",
+ opc, inst.word);
+ er = EMULATE_FAIL;
+ }
+
+ if (er != EMULATE_FAIL)
+ er = update_pc(vcpu, cause);
+ } else {
+ kvm_err("Handle GSFC, unrecognized instruction @ %p: %#x\n",
+ opc, inst.word);
+ er = EMULATE_FAIL;
+ }
+
+ return er;
+}
+
+static enum emulation_result kvm_trap_vz_handle_ghfc(u32 cause, u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ /*
+ * Presumably this is due to MC (guest mode change), so lets trace some
+ * relevant info.
+ */
+ trace_kvm_guest_mode_change(vcpu);
+
+ return EMULATE_DONE;
+}
+
+static enum emulation_result kvm_trap_vz_handle_hc(u32 cause, u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ enum emulation_result er;
+ union mips_instruction inst;
+ unsigned long curr_pc;
+ int err;
+
+ if (cause & CAUSEF_BD)
+ opc += 1;
+ err = kvm_get_badinstr(opc, vcpu, &inst.word);
+ if (err)
+ return EMULATE_FAIL;
+
+ /*
+ * Update PC and hold onto current PC in case there is
+ * an error and we want to rollback the PC
+ */
+ curr_pc = vcpu->arch.pc;
+ er = update_pc(vcpu, cause);
+ if (er == EMULATE_FAIL)
+ return er;
+
+ er = kvm_mips_emul_hypcall(vcpu, inst);
+ if (er == EMULATE_FAIL)
+ vcpu->arch.pc = curr_pc;
+
+ return er;
+}
+
+static enum emulation_result kvm_trap_vz_no_handler_guest_exit(u32 gexccode,
+ u32 cause,
+ u32 *opc,
+ struct kvm_vcpu *vcpu)
+{
+ u32 inst;
+
+ /*
+ * Fetch the instruction.
+ */
+ if (cause & CAUSEF_BD)
+ opc += 1;
+ kvm_get_badinstr(opc, vcpu, &inst);
+
+ kvm_err("Guest Exception Code: %d not yet handled @ PC: %p, inst: 0x%08x Status: %#x\n",
+ gexccode, opc, inst, read_gc0_status());
+
+ return EMULATE_FAIL;
+}
+
+static int kvm_trap_vz_handle_guest_exit(struct kvm_vcpu *vcpu)
+{
+ u32 *opc = (u32 *) vcpu->arch.pc;
+ u32 cause = vcpu->arch.host_cp0_cause;
+ enum emulation_result er = EMULATE_DONE;
+ u32 gexccode = (vcpu->arch.host_cp0_guestctl0 &
+ MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
+ int ret = RESUME_GUEST;
+
+ trace_kvm_exit(vcpu, KVM_TRACE_EXIT_GEXCCODE_BASE + gexccode);
+ switch (gexccode) {
+ case MIPS_GCTL0_GEXC_GPSI:
+ ++vcpu->stat.vz_gpsi_exits;
+ er = kvm_trap_vz_handle_gpsi(cause, opc, vcpu);
+ break;
+ case MIPS_GCTL0_GEXC_GSFC:
+ ++vcpu->stat.vz_gsfc_exits;
+ er = kvm_trap_vz_handle_gsfc(cause, opc, vcpu);
+ break;
+ case MIPS_GCTL0_GEXC_HC:
+ ++vcpu->stat.vz_hc_exits;
+ er = kvm_trap_vz_handle_hc(cause, opc, vcpu);
+ break;
+ case MIPS_GCTL0_GEXC_GRR:
+ ++vcpu->stat.vz_grr_exits;
+ er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
+ vcpu);
+ break;
+ case MIPS_GCTL0_GEXC_GVA:
+ ++vcpu->stat.vz_gva_exits;
+ er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
+ vcpu);
+ break;
+ case MIPS_GCTL0_GEXC_GHFC:
+ ++vcpu->stat.vz_ghfc_exits;
+ er = kvm_trap_vz_handle_ghfc(cause, opc, vcpu);
+ break;
+ case MIPS_GCTL0_GEXC_GPA:
+ ++vcpu->stat.vz_gpa_exits;
+ er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
+ vcpu);
+ break;
+ default:
+ ++vcpu->stat.vz_resvd_exits;
+ er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
+ vcpu);
+ break;
+
+ }
+
+ if (er == EMULATE_DONE) {
+ ret = RESUME_GUEST;
+ } else if (er == EMULATE_HYPERCALL) {
+ ret = kvm_mips_handle_hypcall(vcpu);
+ } else {
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ ret = RESUME_HOST;
+ }
+ return ret;
+}
+
+/**
+ * kvm_trap_vz_handle_cop_unusuable() - Guest used unusable coprocessor.
+ * @vcpu: Virtual CPU context.
+ *
+ * Handle when the guest attempts to use a coprocessor which hasn't been allowed
+ * by the root context.
+ */
+static int kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu *vcpu)
+{
+ u32 cause = vcpu->arch.host_cp0_cause;
+ enum emulation_result er = EMULATE_FAIL;
+ int ret = RESUME_GUEST;
+
+ if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) {
+ /*
+ * If guest FPU not present, the FPU operation should have been
+ * treated as a reserved instruction!
+ * If FPU already in use, we shouldn't get this at all.
+ */
+ if (WARN_ON(!kvm_mips_guest_has_fpu(&vcpu->arch) ||
+ vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
+ preempt_enable();
+ return EMULATE_FAIL;
+ }
+
+ kvm_own_fpu(vcpu);
+ er = EMULATE_DONE;
+ }
+ /* other coprocessors not handled */
+
+ switch (er) {
+ case EMULATE_DONE:
+ ret = RESUME_GUEST;
+ break;
+
+ case EMULATE_FAIL:
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ ret = RESUME_HOST;
+ break;
+
+ default:
+ BUG();
+ }
+ return ret;
+}
+
+/**
+ * kvm_trap_vz_handle_msa_disabled() - Guest used MSA while disabled in root.
+ * @vcpu: Virtual CPU context.
+ *
+ * Handle when the guest attempts to use MSA when it is disabled in the root
+ * context.
+ */
+static int kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu *vcpu)
+{
+ /*
+ * If MSA not present or not exposed to guest or FR=0, the MSA operation
+ * should have been treated as a reserved instruction!
+ * Same if CU1=1, FR=0.
+ * If MSA already in use, we shouldn't get this at all.
+ */
+ if (!kvm_mips_guest_has_msa(&vcpu->arch) ||
+ (read_gc0_status() & (ST0_CU1 | ST0_FR)) == ST0_CU1 ||
+ !(read_gc0_config5() & MIPS_CONF5_MSAEN) ||
+ vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ return RESUME_HOST;
+ }
+
+ kvm_own_msa(vcpu);
+
+ return RESUME_GUEST;
+}
+
+static int kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ u32 *opc = (u32 *) vcpu->arch.pc;
+ u32 cause = vcpu->arch.host_cp0_cause;
+ ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
+ union mips_instruction inst;
+ enum emulation_result er = EMULATE_DONE;
+ int err, ret = RESUME_GUEST;
+
+ if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, false)) {
+ /* A code fetch fault doesn't count as an MMIO */
+ if (kvm_is_ifetch_fault(&vcpu->arch)) {
+ run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ return RESUME_HOST;
+ }
+
+ /* Fetch the instruction */
+ if (cause & CAUSEF_BD)
+ opc += 1;
+ err = kvm_get_badinstr(opc, vcpu, &inst.word);
+ if (err) {
+ run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ return RESUME_HOST;
+ }
+
+ /* Treat as MMIO */
+ er = kvm_mips_emulate_load(inst, cause, vcpu);
+ if (er == EMULATE_FAIL) {
+ kvm_err("Guest Emulate Load from MMIO space failed: PC: %p, BadVaddr: %#lx\n",
+ opc, badvaddr);
+ run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ }
+ }
+
+ if (er == EMULATE_DONE) {
+ ret = RESUME_GUEST;
+ } else if (er == EMULATE_DO_MMIO) {
+ run->exit_reason = KVM_EXIT_MMIO;
+ ret = RESUME_HOST;
+ } else {
+ run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ ret = RESUME_HOST;
+ }
+ return ret;
+}
+
+static int kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu *vcpu)
+{
+ struct kvm_run *run = vcpu->run;
+ u32 *opc = (u32 *) vcpu->arch.pc;
+ u32 cause = vcpu->arch.host_cp0_cause;
+ ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
+ union mips_instruction inst;
+ enum emulation_result er = EMULATE_DONE;
+ int err;
+ int ret = RESUME_GUEST;
+
+ /* Just try the access again if we couldn't do the translation */
+ if (kvm_vz_badvaddr_to_gpa(vcpu, badvaddr, &badvaddr))
+ return RESUME_GUEST;
+ vcpu->arch.host_cp0_badvaddr = badvaddr;
+
+ if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, true)) {
+ /* Fetch the instruction */
+ if (cause & CAUSEF_BD)
+ opc += 1;
+ err = kvm_get_badinstr(opc, vcpu, &inst.word);
+ if (err) {
+ run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ return RESUME_HOST;
+ }
+
+ /* Treat as MMIO */
+ er = kvm_mips_emulate_store(inst, cause, vcpu);
+ if (er == EMULATE_FAIL) {
+ kvm_err("Guest Emulate Store to MMIO space failed: PC: %p, BadVaddr: %#lx\n",
+ opc, badvaddr);
+ run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ }
+ }
+
+ if (er == EMULATE_DONE) {
+ ret = RESUME_GUEST;
+ } else if (er == EMULATE_DO_MMIO) {
+ run->exit_reason = KVM_EXIT_MMIO;
+ ret = RESUME_HOST;
+ } else {
+ run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ ret = RESUME_HOST;
+ }
+ return ret;
+}
+
+static u64 kvm_vz_get_one_regs[] = {
+ KVM_REG_MIPS_CP0_INDEX,
+ KVM_REG_MIPS_CP0_ENTRYLO0,
+ KVM_REG_MIPS_CP0_ENTRYLO1,
+ KVM_REG_MIPS_CP0_CONTEXT,
+ KVM_REG_MIPS_CP0_PAGEMASK,
+ KVM_REG_MIPS_CP0_PAGEGRAIN,
+ KVM_REG_MIPS_CP0_WIRED,
+ KVM_REG_MIPS_CP0_HWRENA,
+ KVM_REG_MIPS_CP0_BADVADDR,
+ KVM_REG_MIPS_CP0_COUNT,
+ KVM_REG_MIPS_CP0_ENTRYHI,
+ KVM_REG_MIPS_CP0_COMPARE,
+ KVM_REG_MIPS_CP0_STATUS,
+ KVM_REG_MIPS_CP0_INTCTL,
+ KVM_REG_MIPS_CP0_CAUSE,
+ KVM_REG_MIPS_CP0_EPC,
+ KVM_REG_MIPS_CP0_PRID,
+ KVM_REG_MIPS_CP0_EBASE,
+ KVM_REG_MIPS_CP0_CONFIG,
+ KVM_REG_MIPS_CP0_CONFIG1,
+ KVM_REG_MIPS_CP0_CONFIG2,
+ KVM_REG_MIPS_CP0_CONFIG3,
+ KVM_REG_MIPS_CP0_CONFIG4,
+ KVM_REG_MIPS_CP0_CONFIG5,
+ KVM_REG_MIPS_CP0_CONFIG6,
+#ifdef CONFIG_64BIT
+ KVM_REG_MIPS_CP0_XCONTEXT,
+#endif
+ KVM_REG_MIPS_CP0_ERROREPC,
+
+ KVM_REG_MIPS_COUNT_CTL,
+ KVM_REG_MIPS_COUNT_RESUME,
+ KVM_REG_MIPS_COUNT_HZ,
+};
+
+static u64 kvm_vz_get_one_regs_contextconfig[] = {
+ KVM_REG_MIPS_CP0_CONTEXTCONFIG,
+#ifdef CONFIG_64BIT
+ KVM_REG_MIPS_CP0_XCONTEXTCONFIG,
+#endif
+};
+
+static u64 kvm_vz_get_one_regs_segments[] = {
+ KVM_REG_MIPS_CP0_SEGCTL0,
+ KVM_REG_MIPS_CP0_SEGCTL1,
+ KVM_REG_MIPS_CP0_SEGCTL2,
+};
+
+static u64 kvm_vz_get_one_regs_htw[] = {
+ KVM_REG_MIPS_CP0_PWBASE,
+ KVM_REG_MIPS_CP0_PWFIELD,
+ KVM_REG_MIPS_CP0_PWSIZE,
+ KVM_REG_MIPS_CP0_PWCTL,
+};
+
+static u64 kvm_vz_get_one_regs_kscratch[] = {
+ KVM_REG_MIPS_CP0_KSCRATCH1,
+ KVM_REG_MIPS_CP0_KSCRATCH2,
+ KVM_REG_MIPS_CP0_KSCRATCH3,
+ KVM_REG_MIPS_CP0_KSCRATCH4,
+ KVM_REG_MIPS_CP0_KSCRATCH5,
+ KVM_REG_MIPS_CP0_KSCRATCH6,
+};
+
+static unsigned long kvm_vz_num_regs(struct kvm_vcpu *vcpu)
+{
+ unsigned long ret;
+
+ ret = ARRAY_SIZE(kvm_vz_get_one_regs);
+ if (cpu_guest_has_userlocal)
+ ++ret;
+ if (cpu_guest_has_badinstr)
+ ++ret;
+ if (cpu_guest_has_badinstrp)
+ ++ret;
+ if (cpu_guest_has_contextconfig)
+ ret += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
+ if (cpu_guest_has_segments)
+ ret += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
+ if (cpu_guest_has_htw || cpu_guest_has_ldpte)
+ ret += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
+ if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar)
+ ret += 1 + ARRAY_SIZE(vcpu->arch.maar);
+ ret += __arch_hweight8(cpu_data[0].guest.kscratch_mask);
+
+ return ret;
+}
+
+static int kvm_vz_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
+{
+ u64 index;
+ unsigned int i;
+
+ if (copy_to_user(indices, kvm_vz_get_one_regs,
+ sizeof(kvm_vz_get_one_regs)))
+ return -EFAULT;
+ indices += ARRAY_SIZE(kvm_vz_get_one_regs);
+
+ if (cpu_guest_has_userlocal) {
+ index = KVM_REG_MIPS_CP0_USERLOCAL;
+ if (copy_to_user(indices, &index, sizeof(index)))
+ return -EFAULT;
+ ++indices;
+ }
+ if (cpu_guest_has_badinstr) {
+ index = KVM_REG_MIPS_CP0_BADINSTR;
+ if (copy_to_user(indices, &index, sizeof(index)))
+ return -EFAULT;
+ ++indices;
+ }
+ if (cpu_guest_has_badinstrp) {
+ index = KVM_REG_MIPS_CP0_BADINSTRP;
+ if (copy_to_user(indices, &index, sizeof(index)))
+ return -EFAULT;
+ ++indices;
+ }
+ if (cpu_guest_has_contextconfig) {
+ if (copy_to_user(indices, kvm_vz_get_one_regs_contextconfig,
+ sizeof(kvm_vz_get_one_regs_contextconfig)))
+ return -EFAULT;
+ indices += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
+ }
+ if (cpu_guest_has_segments) {
+ if (copy_to_user(indices, kvm_vz_get_one_regs_segments,
+ sizeof(kvm_vz_get_one_regs_segments)))
+ return -EFAULT;
+ indices += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
+ }
+ if (cpu_guest_has_htw || cpu_guest_has_ldpte) {
+ if (copy_to_user(indices, kvm_vz_get_one_regs_htw,
+ sizeof(kvm_vz_get_one_regs_htw)))
+ return -EFAULT;
+ indices += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
+ }
+ if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar) {
+ for (i = 0; i < ARRAY_SIZE(vcpu->arch.maar); ++i) {
+ index = KVM_REG_MIPS_CP0_MAAR(i);
+ if (copy_to_user(indices, &index, sizeof(index)))
+ return -EFAULT;
+ ++indices;
+ }
+
+ index = KVM_REG_MIPS_CP0_MAARI;
+ if (copy_to_user(indices, &index, sizeof(index)))
+ return -EFAULT;
+ ++indices;
+ }
+ for (i = 0; i < 6; ++i) {
+ if (!cpu_guest_has_kscr(i + 2))
+ continue;
+
+ if (copy_to_user(indices, &kvm_vz_get_one_regs_kscratch[i],
+ sizeof(kvm_vz_get_one_regs_kscratch[i])))
+ return -EFAULT;
+ ++indices;
+ }
+
+ return 0;
+}
+
+static inline s64 entrylo_kvm_to_user(unsigned long v)
+{
+ s64 mask, ret = v;
+
+ if (BITS_PER_LONG == 32) {
+ /*
+ * KVM API exposes 64-bit version of the register, so move the
+ * RI/XI bits up into place.
+ */
+ mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
+ ret &= ~mask;
+ ret |= ((s64)v & mask) << 32;
+ }
+ return ret;
+}
+
+static inline unsigned long entrylo_user_to_kvm(s64 v)
+{
+ unsigned long mask, ret = v;
+
+ if (BITS_PER_LONG == 32) {
+ /*
+ * KVM API exposes 64-bit versiono of the register, so move the
+ * RI/XI bits down into place.
+ */
+ mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
+ ret &= ~mask;
+ ret |= (v >> 32) & mask;
+ }
+ return ret;
+}
+
+static int kvm_vz_get_one_reg(struct kvm_vcpu *vcpu,
+ const struct kvm_one_reg *reg,
+ s64 *v)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ unsigned int idx;
+
+ switch (reg->id) {
+ case KVM_REG_MIPS_CP0_INDEX:
+ *v = (long)read_gc0_index();
+ break;
+ case KVM_REG_MIPS_CP0_ENTRYLO0:
+ *v = entrylo_kvm_to_user(read_gc0_entrylo0());
+ break;
+ case KVM_REG_MIPS_CP0_ENTRYLO1:
+ *v = entrylo_kvm_to_user(read_gc0_entrylo1());
+ break;
+ case KVM_REG_MIPS_CP0_CONTEXT:
+ *v = (long)read_gc0_context();
+ break;
+ case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
+ if (!cpu_guest_has_contextconfig)
+ return -EINVAL;
+ *v = read_gc0_contextconfig();
+ break;
+ case KVM_REG_MIPS_CP0_USERLOCAL:
+ if (!cpu_guest_has_userlocal)
+ return -EINVAL;
+ *v = read_gc0_userlocal();
+ break;
+#ifdef CONFIG_64BIT
+ case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
+ if (!cpu_guest_has_contextconfig)
+ return -EINVAL;
+ *v = read_gc0_xcontextconfig();
+ break;
+#endif
+ case KVM_REG_MIPS_CP0_PAGEMASK:
+ *v = (long)read_gc0_pagemask();
+ break;
+ case KVM_REG_MIPS_CP0_PAGEGRAIN:
+ *v = (long)read_gc0_pagegrain();
+ break;
+ case KVM_REG_MIPS_CP0_SEGCTL0:
+ if (!cpu_guest_has_segments)
+ return -EINVAL;
+ *v = read_gc0_segctl0();
+ break;
+ case KVM_REG_MIPS_CP0_SEGCTL1:
+ if (!cpu_guest_has_segments)
+ return -EINVAL;
+ *v = read_gc0_segctl1();
+ break;
+ case KVM_REG_MIPS_CP0_SEGCTL2:
+ if (!cpu_guest_has_segments)
+ return -EINVAL;
+ *v = read_gc0_segctl2();
+ break;
+ case KVM_REG_MIPS_CP0_PWBASE:
+ if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
+ return -EINVAL;
+ *v = read_gc0_pwbase();
+ break;
+ case KVM_REG_MIPS_CP0_PWFIELD:
+ if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
+ return -EINVAL;
+ *v = read_gc0_pwfield();
+ break;
+ case KVM_REG_MIPS_CP0_PWSIZE:
+ if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
+ return -EINVAL;
+ *v = read_gc0_pwsize();
+ break;
+ case KVM_REG_MIPS_CP0_WIRED:
+ *v = (long)read_gc0_wired();
+ break;
+ case KVM_REG_MIPS_CP0_PWCTL:
+ if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
+ return -EINVAL;
+ *v = read_gc0_pwctl();
+ break;
+ case KVM_REG_MIPS_CP0_HWRENA:
+ *v = (long)read_gc0_hwrena();
+ break;
+ case KVM_REG_MIPS_CP0_BADVADDR:
+ *v = (long)read_gc0_badvaddr();
+ break;
+ case KVM_REG_MIPS_CP0_BADINSTR:
+ if (!cpu_guest_has_badinstr)
+ return -EINVAL;
+ *v = read_gc0_badinstr();
+ break;
+ case KVM_REG_MIPS_CP0_BADINSTRP:
+ if (!cpu_guest_has_badinstrp)
+ return -EINVAL;
+ *v = read_gc0_badinstrp();
+ break;
+ case KVM_REG_MIPS_CP0_COUNT:
+ *v = kvm_mips_read_count(vcpu);
+ break;
+ case KVM_REG_MIPS_CP0_ENTRYHI:
+ *v = (long)read_gc0_entryhi();
+ break;
+ case KVM_REG_MIPS_CP0_COMPARE:
+ *v = (long)read_gc0_compare();
+ break;
+ case KVM_REG_MIPS_CP0_STATUS:
+ *v = (long)read_gc0_status();
+ break;
+ case KVM_REG_MIPS_CP0_INTCTL:
+ *v = read_gc0_intctl();
+ break;
+ case KVM_REG_MIPS_CP0_CAUSE:
+ *v = (long)read_gc0_cause();
+ break;
+ case KVM_REG_MIPS_CP0_EPC:
+ *v = (long)read_gc0_epc();
+ break;
+ case KVM_REG_MIPS_CP0_PRID:
+ switch (boot_cpu_type()) {
+ case CPU_CAVIUM_OCTEON3:
+ /* Octeon III has a read-only guest.PRid */
+ *v = read_gc0_prid();
+ break;
+ default:
+ *v = (long)kvm_read_c0_guest_prid(cop0);
+ break;
+ }
+ break;
+ case KVM_REG_MIPS_CP0_EBASE:
+ *v = kvm_vz_read_gc0_ebase();
+ break;
+ case KVM_REG_MIPS_CP0_CONFIG:
+ *v = read_gc0_config();
+ break;
+ case KVM_REG_MIPS_CP0_CONFIG1:
+ if (!cpu_guest_has_conf1)
+ return -EINVAL;
+ *v = read_gc0_config1();
+ break;
+ case KVM_REG_MIPS_CP0_CONFIG2:
+ if (!cpu_guest_has_conf2)
+ return -EINVAL;
+ *v = read_gc0_config2();
+ break;
+ case KVM_REG_MIPS_CP0_CONFIG3:
+ if (!cpu_guest_has_conf3)
+ return -EINVAL;
+ *v = read_gc0_config3();
+ break;
+ case KVM_REG_MIPS_CP0_CONFIG4:
+ if (!cpu_guest_has_conf4)
+ return -EINVAL;
+ *v = read_gc0_config4();
+ break;
+ case KVM_REG_MIPS_CP0_CONFIG5:
+ if (!cpu_guest_has_conf5)
+ return -EINVAL;
+ *v = read_gc0_config5();
+ break;
+ case KVM_REG_MIPS_CP0_CONFIG6:
+ *v = kvm_read_sw_gc0_config6(cop0);
+ break;
+ case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
+ if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
+ return -EINVAL;
+ idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
+ if (idx >= ARRAY_SIZE(vcpu->arch.maar))
+ return -EINVAL;
+ *v = vcpu->arch.maar[idx];
+ break;
+ case KVM_REG_MIPS_CP0_MAARI:
+ if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
+ return -EINVAL;
+ *v = kvm_read_sw_gc0_maari(vcpu->arch.cop0);
+ break;
+#ifdef CONFIG_64BIT
+ case KVM_REG_MIPS_CP0_XCONTEXT:
+ *v = read_gc0_xcontext();
+ break;
+#endif
+ case KVM_REG_MIPS_CP0_ERROREPC:
+ *v = (long)read_gc0_errorepc();
+ break;
+ case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
+ idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
+ if (!cpu_guest_has_kscr(idx))
+ return -EINVAL;
+ switch (idx) {
+ case 2:
+ *v = (long)read_gc0_kscratch1();
+ break;
+ case 3:
+ *v = (long)read_gc0_kscratch2();
+ break;
+ case 4:
+ *v = (long)read_gc0_kscratch3();
+ break;
+ case 5:
+ *v = (long)read_gc0_kscratch4();
+ break;
+ case 6:
+ *v = (long)read_gc0_kscratch5();
+ break;
+ case 7:
+ *v = (long)read_gc0_kscratch6();
+ break;
+ }
+ break;
+ case KVM_REG_MIPS_COUNT_CTL:
+ *v = vcpu->arch.count_ctl;
+ break;
+ case KVM_REG_MIPS_COUNT_RESUME:
+ *v = ktime_to_ns(vcpu->arch.count_resume);
+ break;
+ case KVM_REG_MIPS_COUNT_HZ:
+ *v = vcpu->arch.count_hz;
+ break;
+ default:
+ return -EINVAL;
+ }
+ return 0;
+}
+
+static int kvm_vz_set_one_reg(struct kvm_vcpu *vcpu,
+ const struct kvm_one_reg *reg,
+ s64 v)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ unsigned int idx;
+ int ret = 0;
+ unsigned int cur, change;
+
+ switch (reg->id) {
+ case KVM_REG_MIPS_CP0_INDEX:
+ write_gc0_index(v);
+ break;
+ case KVM_REG_MIPS_CP0_ENTRYLO0:
+ write_gc0_entrylo0(entrylo_user_to_kvm(v));
+ break;
+ case KVM_REG_MIPS_CP0_ENTRYLO1:
+ write_gc0_entrylo1(entrylo_user_to_kvm(v));
+ break;
+ case KVM_REG_MIPS_CP0_CONTEXT:
+ write_gc0_context(v);
+ break;
+ case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
+ if (!cpu_guest_has_contextconfig)
+ return -EINVAL;
+ write_gc0_contextconfig(v);
+ break;
+ case KVM_REG_MIPS_CP0_USERLOCAL:
+ if (!cpu_guest_has_userlocal)
+ return -EINVAL;
+ write_gc0_userlocal(v);
+ break;
+#ifdef CONFIG_64BIT
+ case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
+ if (!cpu_guest_has_contextconfig)
+ return -EINVAL;
+ write_gc0_xcontextconfig(v);
+ break;
+#endif
+ case KVM_REG_MIPS_CP0_PAGEMASK:
+ write_gc0_pagemask(v);
+ break;
+ case KVM_REG_MIPS_CP0_PAGEGRAIN:
+ write_gc0_pagegrain(v);
+ break;
+ case KVM_REG_MIPS_CP0_SEGCTL0:
+ if (!cpu_guest_has_segments)
+ return -EINVAL;
+ write_gc0_segctl0(v);
+ break;
+ case KVM_REG_MIPS_CP0_SEGCTL1:
+ if (!cpu_guest_has_segments)
+ return -EINVAL;
+ write_gc0_segctl1(v);
+ break;
+ case KVM_REG_MIPS_CP0_SEGCTL2:
+ if (!cpu_guest_has_segments)
+ return -EINVAL;
+ write_gc0_segctl2(v);
+ break;
+ case KVM_REG_MIPS_CP0_PWBASE:
+ if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
+ return -EINVAL;
+ write_gc0_pwbase(v);
+ break;
+ case KVM_REG_MIPS_CP0_PWFIELD:
+ if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
+ return -EINVAL;
+ write_gc0_pwfield(v);
+ break;
+ case KVM_REG_MIPS_CP0_PWSIZE:
+ if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
+ return -EINVAL;
+ write_gc0_pwsize(v);
+ break;
+ case KVM_REG_MIPS_CP0_WIRED:
+ change_gc0_wired(MIPSR6_WIRED_WIRED, v);
+ break;
+ case KVM_REG_MIPS_CP0_PWCTL:
+ if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
+ return -EINVAL;
+ write_gc0_pwctl(v);
+ break;
+ case KVM_REG_MIPS_CP0_HWRENA:
+ write_gc0_hwrena(v);
+ break;
+ case KVM_REG_MIPS_CP0_BADVADDR:
+ write_gc0_badvaddr(v);
+ break;
+ case KVM_REG_MIPS_CP0_BADINSTR:
+ if (!cpu_guest_has_badinstr)
+ return -EINVAL;
+ write_gc0_badinstr(v);
+ break;
+ case KVM_REG_MIPS_CP0_BADINSTRP:
+ if (!cpu_guest_has_badinstrp)
+ return -EINVAL;
+ write_gc0_badinstrp(v);
+ break;
+ case KVM_REG_MIPS_CP0_COUNT:
+ kvm_mips_write_count(vcpu, v);
+ break;
+ case KVM_REG_MIPS_CP0_ENTRYHI:
+ write_gc0_entryhi(v);
+ break;
+ case KVM_REG_MIPS_CP0_COMPARE:
+ kvm_mips_write_compare(vcpu, v, false);
+ break;
+ case KVM_REG_MIPS_CP0_STATUS:
+ write_gc0_status(v);
+ break;
+ case KVM_REG_MIPS_CP0_INTCTL:
+ write_gc0_intctl(v);
+ break;
+ case KVM_REG_MIPS_CP0_CAUSE:
+ /*
+ * If the timer is stopped or started (DC bit) it must look
+ * atomic with changes to the timer interrupt pending bit (TI).
+ * A timer interrupt should not happen in between.
+ */
+ if ((read_gc0_cause() ^ v) & CAUSEF_DC) {
+ if (v & CAUSEF_DC) {
+ /* disable timer first */
+ kvm_mips_count_disable_cause(vcpu);
+ change_gc0_cause((u32)~CAUSEF_DC, v);
+ } else {
+ /* enable timer last */
+ change_gc0_cause((u32)~CAUSEF_DC, v);
+ kvm_mips_count_enable_cause(vcpu);
+ }
+ } else {
+ write_gc0_cause(v);
+ }
+ break;
+ case KVM_REG_MIPS_CP0_EPC:
+ write_gc0_epc(v);
+ break;
+ case KVM_REG_MIPS_CP0_PRID:
+ switch (boot_cpu_type()) {
+ case CPU_CAVIUM_OCTEON3:
+ /* Octeon III has a guest.PRid, but its read-only */
+ break;
+ default:
+ kvm_write_c0_guest_prid(cop0, v);
+ break;
+ }
+ break;
+ case KVM_REG_MIPS_CP0_EBASE:
+ kvm_vz_write_gc0_ebase(v);
+ break;
+ case KVM_REG_MIPS_CP0_CONFIG:
+ cur = read_gc0_config();
+ change = (cur ^ v) & kvm_vz_config_user_wrmask(vcpu);
+ if (change) {
+ v = cur ^ change;
+ write_gc0_config(v);
+ }
+ break;
+ case KVM_REG_MIPS_CP0_CONFIG1:
+ if (!cpu_guest_has_conf1)
+ break;
+ cur = read_gc0_config1();
+ change = (cur ^ v) & kvm_vz_config1_user_wrmask(vcpu);
+ if (change) {
+ v = cur ^ change;
+ write_gc0_config1(v);
+ }
+ break;
+ case KVM_REG_MIPS_CP0_CONFIG2:
+ if (!cpu_guest_has_conf2)
+ break;
+ cur = read_gc0_config2();
+ change = (cur ^ v) & kvm_vz_config2_user_wrmask(vcpu);
+ if (change) {
+ v = cur ^ change;
+ write_gc0_config2(v);
+ }
+ break;
+ case KVM_REG_MIPS_CP0_CONFIG3:
+ if (!cpu_guest_has_conf3)
+ break;
+ cur = read_gc0_config3();
+ change = (cur ^ v) & kvm_vz_config3_user_wrmask(vcpu);
+ if (change) {
+ v = cur ^ change;
+ write_gc0_config3(v);
+ }
+ break;
+ case KVM_REG_MIPS_CP0_CONFIG4:
+ if (!cpu_guest_has_conf4)
+ break;
+ cur = read_gc0_config4();
+ change = (cur ^ v) & kvm_vz_config4_user_wrmask(vcpu);
+ if (change) {
+ v = cur ^ change;
+ write_gc0_config4(v);
+ }
+ break;
+ case KVM_REG_MIPS_CP0_CONFIG5:
+ if (!cpu_guest_has_conf5)
+ break;
+ cur = read_gc0_config5();
+ change = (cur ^ v) & kvm_vz_config5_user_wrmask(vcpu);
+ if (change) {
+ v = cur ^ change;
+ write_gc0_config5(v);
+ }
+ break;
+ case KVM_REG_MIPS_CP0_CONFIG6:
+ cur = kvm_read_sw_gc0_config6(cop0);
+ change = (cur ^ v) & kvm_vz_config6_user_wrmask(vcpu);
+ if (change) {
+ v = cur ^ change;
+ kvm_write_sw_gc0_config6(cop0, (int)v);
+ }
+ break;
+ case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
+ if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
+ return -EINVAL;
+ idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
+ if (idx >= ARRAY_SIZE(vcpu->arch.maar))
+ return -EINVAL;
+ vcpu->arch.maar[idx] = mips_process_maar(dmtc_op, v);
+ break;
+ case KVM_REG_MIPS_CP0_MAARI:
+ if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
+ return -EINVAL;
+ kvm_write_maari(vcpu, v);
+ break;
+#ifdef CONFIG_64BIT
+ case KVM_REG_MIPS_CP0_XCONTEXT:
+ write_gc0_xcontext(v);
+ break;
+#endif
+ case KVM_REG_MIPS_CP0_ERROREPC:
+ write_gc0_errorepc(v);
+ break;
+ case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
+ idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
+ if (!cpu_guest_has_kscr(idx))
+ return -EINVAL;
+ switch (idx) {
+ case 2:
+ write_gc0_kscratch1(v);
+ break;
+ case 3:
+ write_gc0_kscratch2(v);
+ break;
+ case 4:
+ write_gc0_kscratch3(v);
+ break;
+ case 5:
+ write_gc0_kscratch4(v);
+ break;
+ case 6:
+ write_gc0_kscratch5(v);
+ break;
+ case 7:
+ write_gc0_kscratch6(v);
+ break;
+ }
+ break;
+ case KVM_REG_MIPS_COUNT_CTL:
+ ret = kvm_mips_set_count_ctl(vcpu, v);
+ break;
+ case KVM_REG_MIPS_COUNT_RESUME:
+ ret = kvm_mips_set_count_resume(vcpu, v);
+ break;
+ case KVM_REG_MIPS_COUNT_HZ:
+ ret = kvm_mips_set_count_hz(vcpu, v);
+ break;
+ default:
+ return -EINVAL;
+ }
+ return ret;
+}
+
+#define guestid_cache(cpu) (cpu_data[cpu].guestid_cache)
+static void kvm_vz_get_new_guestid(unsigned long cpu, struct kvm_vcpu *vcpu)
+{
+ unsigned long guestid = guestid_cache(cpu);
+
+ if (!(++guestid & GUESTID_MASK)) {
+ if (cpu_has_vtag_icache)
+ flush_icache_all();
+
+ if (!guestid) /* fix version if needed */
+ guestid = GUESTID_FIRST_VERSION;
+
+ ++guestid; /* guestid 0 reserved for root */
+
+ /* start new guestid cycle */
+ kvm_vz_local_flush_roottlb_all_guests();
+ kvm_vz_local_flush_guesttlb_all();
+ }
+
+ guestid_cache(cpu) = guestid;
+}
+
+/* Returns 1 if the guest TLB may be clobbered */
+static int kvm_vz_check_requests(struct kvm_vcpu *vcpu, int cpu)
+{
+ int ret = 0;
+ int i;
+
+ if (!kvm_request_pending(vcpu))
+ return 0;
+
+ if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
+ if (cpu_has_guestid) {
+ /* Drop all GuestIDs for this VCPU */
+ for_each_possible_cpu(i)
+ vcpu->arch.vzguestid[i] = 0;
+ /* This will clobber guest TLB contents too */
+ ret = 1;
+ }
+ /*
+ * For Root ASID Dealias (RAD) we don't do anything here, but we
+ * still need the request to ensure we recheck asid_flush_mask.
+ * We can still return 0 as only the root TLB will be affected
+ * by a root ASID flush.
+ */
+ }
+
+ return ret;
+}
+
+static void kvm_vz_vcpu_save_wired(struct kvm_vcpu *vcpu)
+{
+ unsigned int wired = read_gc0_wired();
+ struct kvm_mips_tlb *tlbs;
+ int i;
+
+ /* Expand the wired TLB array if necessary */
+ wired &= MIPSR6_WIRED_WIRED;
+ if (wired > vcpu->arch.wired_tlb_limit) {
+ tlbs = krealloc(vcpu->arch.wired_tlb, wired *
+ sizeof(*vcpu->arch.wired_tlb), GFP_ATOMIC);
+ if (WARN_ON(!tlbs)) {
+ /* Save whatever we can */
+ wired = vcpu->arch.wired_tlb_limit;
+ } else {
+ vcpu->arch.wired_tlb = tlbs;
+ vcpu->arch.wired_tlb_limit = wired;
+ }
+ }
+
+ if (wired)
+ /* Save wired entries from the guest TLB */
+ kvm_vz_save_guesttlb(vcpu->arch.wired_tlb, 0, wired);
+ /* Invalidate any dropped entries since last time */
+ for (i = wired; i < vcpu->arch.wired_tlb_used; ++i) {
+ vcpu->arch.wired_tlb[i].tlb_hi = UNIQUE_GUEST_ENTRYHI(i);
+ vcpu->arch.wired_tlb[i].tlb_lo[0] = 0;
+ vcpu->arch.wired_tlb[i].tlb_lo[1] = 0;
+ vcpu->arch.wired_tlb[i].tlb_mask = 0;
+ }
+ vcpu->arch.wired_tlb_used = wired;
+}
+
+static void kvm_vz_vcpu_load_wired(struct kvm_vcpu *vcpu)
+{
+ /* Load wired entries into the guest TLB */
+ if (vcpu->arch.wired_tlb)
+ kvm_vz_load_guesttlb(vcpu->arch.wired_tlb, 0,
+ vcpu->arch.wired_tlb_used);
+}
+
+static void kvm_vz_vcpu_load_tlb(struct kvm_vcpu *vcpu, int cpu)
+{
+ struct kvm *kvm = vcpu->kvm;
+ struct mm_struct *gpa_mm = &kvm->arch.gpa_mm;
+ bool migrated;
+
+ /*
+ * Are we entering guest context on a different CPU to last time?
+ * If so, the VCPU's guest TLB state on this CPU may be stale.
+ */
+ migrated = (vcpu->arch.last_exec_cpu != cpu);
+ vcpu->arch.last_exec_cpu = cpu;
+
+ /*
+ * A vcpu's GuestID is set in GuestCtl1.ID when the vcpu is loaded and
+ * remains set until another vcpu is loaded in. As a rule GuestRID
+ * remains zeroed when in root context unless the kernel is busy
+ * manipulating guest tlb entries.
+ */
+ if (cpu_has_guestid) {
+ /*
+ * Check if our GuestID is of an older version and thus invalid.
+ *
+ * We also discard the stored GuestID if we've executed on
+ * another CPU, as the guest mappings may have changed without
+ * hypervisor knowledge.
+ */
+ if (migrated ||
+ (vcpu->arch.vzguestid[cpu] ^ guestid_cache(cpu)) &
+ GUESTID_VERSION_MASK) {
+ kvm_vz_get_new_guestid(cpu, vcpu);
+ vcpu->arch.vzguestid[cpu] = guestid_cache(cpu);
+ trace_kvm_guestid_change(vcpu,
+ vcpu->arch.vzguestid[cpu]);
+ }
+
+ /* Restore GuestID */
+ change_c0_guestctl1(GUESTID_MASK, vcpu->arch.vzguestid[cpu]);
+ } else {
+ /*
+ * The Guest TLB only stores a single guest's TLB state, so
+ * flush it if another VCPU has executed on this CPU.
+ *
+ * We also flush if we've executed on another CPU, as the guest
+ * mappings may have changed without hypervisor knowledge.
+ */
+ if (migrated || last_exec_vcpu[cpu] != vcpu)
+ kvm_vz_local_flush_guesttlb_all();
+ last_exec_vcpu[cpu] = vcpu;
+
+ /*
+ * Root ASID dealiases guest GPA mappings in the root TLB.
+ * Allocate new root ASID if needed.
+ */
+ if (cpumask_test_and_clear_cpu(cpu, &kvm->arch.asid_flush_mask))
+ get_new_mmu_context(gpa_mm);
+ else
+ check_mmu_context(gpa_mm);
+ }
+}
+
+static int kvm_vz_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ bool migrated, all;
+
+ /*
+ * Have we migrated to a different CPU?
+ * If so, any old guest TLB state may be stale.
+ */
+ migrated = (vcpu->arch.last_sched_cpu != cpu);
+
+ /*
+ * Was this the last VCPU to run on this CPU?
+ * If not, any old guest state from this VCPU will have been clobbered.
+ */
+ all = migrated || (last_vcpu[cpu] != vcpu);
+ last_vcpu[cpu] = vcpu;
+
+ /*
+ * Restore CP0_Wired unconditionally as we clear it after use, and
+ * restore wired guest TLB entries (while in guest context).
+ */
+ kvm_restore_gc0_wired(cop0);
+ if (current->flags & PF_VCPU) {
+ tlbw_use_hazard();
+ kvm_vz_vcpu_load_tlb(vcpu, cpu);
+ kvm_vz_vcpu_load_wired(vcpu);
+ }
+
+ /*
+ * Restore timer state regardless, as e.g. Cause.TI can change over time
+ * if left unmaintained.
+ */
+ kvm_vz_restore_timer(vcpu);
+
+ /* Set MC bit if we want to trace guest mode changes */
+ if (kvm_trace_guest_mode_change)
+ set_c0_guestctl0(MIPS_GCTL0_MC);
+ else
+ clear_c0_guestctl0(MIPS_GCTL0_MC);
+
+ /* Don't bother restoring registers multiple times unless necessary */
+ if (!all)
+ return 0;
+
+ /*
+ * Restore config registers first, as some implementations restrict
+ * writes to other registers when the corresponding feature bits aren't
+ * set. For example Status.CU1 cannot be set unless Config1.FP is set.
+ */
+ kvm_restore_gc0_config(cop0);
+ if (cpu_guest_has_conf1)
+ kvm_restore_gc0_config1(cop0);
+ if (cpu_guest_has_conf2)
+ kvm_restore_gc0_config2(cop0);
+ if (cpu_guest_has_conf3)
+ kvm_restore_gc0_config3(cop0);
+ if (cpu_guest_has_conf4)
+ kvm_restore_gc0_config4(cop0);
+ if (cpu_guest_has_conf5)
+ kvm_restore_gc0_config5(cop0);
+ if (cpu_guest_has_conf6)
+ kvm_restore_gc0_config6(cop0);
+ if (cpu_guest_has_conf7)
+ kvm_restore_gc0_config7(cop0);
+
+ kvm_restore_gc0_index(cop0);
+ kvm_restore_gc0_entrylo0(cop0);
+ kvm_restore_gc0_entrylo1(cop0);
+ kvm_restore_gc0_context(cop0);
+ if (cpu_guest_has_contextconfig)
+ kvm_restore_gc0_contextconfig(cop0);
+#ifdef CONFIG_64BIT
+ kvm_restore_gc0_xcontext(cop0);
+ if (cpu_guest_has_contextconfig)
+ kvm_restore_gc0_xcontextconfig(cop0);
+#endif
+ kvm_restore_gc0_pagemask(cop0);
+ kvm_restore_gc0_pagegrain(cop0);
+ kvm_restore_gc0_hwrena(cop0);
+ kvm_restore_gc0_badvaddr(cop0);
+ kvm_restore_gc0_entryhi(cop0);
+ kvm_restore_gc0_status(cop0);
+ kvm_restore_gc0_intctl(cop0);
+ kvm_restore_gc0_epc(cop0);
+ kvm_vz_write_gc0_ebase(kvm_read_sw_gc0_ebase(cop0));
+ if (cpu_guest_has_userlocal)
+ kvm_restore_gc0_userlocal(cop0);
+
+ kvm_restore_gc0_errorepc(cop0);
+
+ /* restore KScratch registers if enabled in guest */
+ if (cpu_guest_has_conf4) {
+ if (cpu_guest_has_kscr(2))
+ kvm_restore_gc0_kscratch1(cop0);
+ if (cpu_guest_has_kscr(3))
+ kvm_restore_gc0_kscratch2(cop0);
+ if (cpu_guest_has_kscr(4))
+ kvm_restore_gc0_kscratch3(cop0);
+ if (cpu_guest_has_kscr(5))
+ kvm_restore_gc0_kscratch4(cop0);
+ if (cpu_guest_has_kscr(6))
+ kvm_restore_gc0_kscratch5(cop0);
+ if (cpu_guest_has_kscr(7))
+ kvm_restore_gc0_kscratch6(cop0);
+ }
+
+ if (cpu_guest_has_badinstr)
+ kvm_restore_gc0_badinstr(cop0);
+ if (cpu_guest_has_badinstrp)
+ kvm_restore_gc0_badinstrp(cop0);
+
+ if (cpu_guest_has_segments) {
+ kvm_restore_gc0_segctl0(cop0);
+ kvm_restore_gc0_segctl1(cop0);
+ kvm_restore_gc0_segctl2(cop0);
+ }
+
+ /* restore HTW registers */
+ if (cpu_guest_has_htw || cpu_guest_has_ldpte) {
+ kvm_restore_gc0_pwbase(cop0);
+ kvm_restore_gc0_pwfield(cop0);
+ kvm_restore_gc0_pwsize(cop0);
+ kvm_restore_gc0_pwctl(cop0);
+ }
+
+ /* restore Root.GuestCtl2 from unused Guest guestctl2 register */
+ if (cpu_has_guestctl2)
+ write_c0_guestctl2(
+ cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL]);
+
+ /*
+ * We should clear linked load bit to break interrupted atomics. This
+ * prevents a SC on the next VCPU from succeeding by matching a LL on
+ * the previous VCPU.
+ */
+ if (vcpu->kvm->created_vcpus > 1)
+ write_gc0_lladdr(0);
+
+ return 0;
+}
+
+static int kvm_vz_vcpu_put(struct kvm_vcpu *vcpu, int cpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+
+ if (current->flags & PF_VCPU)
+ kvm_vz_vcpu_save_wired(vcpu);
+
+ kvm_lose_fpu(vcpu);
+
+ kvm_save_gc0_index(cop0);
+ kvm_save_gc0_entrylo0(cop0);
+ kvm_save_gc0_entrylo1(cop0);
+ kvm_save_gc0_context(cop0);
+ if (cpu_guest_has_contextconfig)
+ kvm_save_gc0_contextconfig(cop0);
+#ifdef CONFIG_64BIT
+ kvm_save_gc0_xcontext(cop0);
+ if (cpu_guest_has_contextconfig)
+ kvm_save_gc0_xcontextconfig(cop0);
+#endif
+ kvm_save_gc0_pagemask(cop0);
+ kvm_save_gc0_pagegrain(cop0);
+ kvm_save_gc0_wired(cop0);
+ /* allow wired TLB entries to be overwritten */
+ clear_gc0_wired(MIPSR6_WIRED_WIRED);
+ kvm_save_gc0_hwrena(cop0);
+ kvm_save_gc0_badvaddr(cop0);
+ kvm_save_gc0_entryhi(cop0);
+ kvm_save_gc0_status(cop0);
+ kvm_save_gc0_intctl(cop0);
+ kvm_save_gc0_epc(cop0);
+ kvm_write_sw_gc0_ebase(cop0, kvm_vz_read_gc0_ebase());
+ if (cpu_guest_has_userlocal)
+ kvm_save_gc0_userlocal(cop0);
+
+ /* only save implemented config registers */
+ kvm_save_gc0_config(cop0);
+ if (cpu_guest_has_conf1)
+ kvm_save_gc0_config1(cop0);
+ if (cpu_guest_has_conf2)
+ kvm_save_gc0_config2(cop0);
+ if (cpu_guest_has_conf3)
+ kvm_save_gc0_config3(cop0);
+ if (cpu_guest_has_conf4)
+ kvm_save_gc0_config4(cop0);
+ if (cpu_guest_has_conf5)
+ kvm_save_gc0_config5(cop0);
+ if (cpu_guest_has_conf6)
+ kvm_save_gc0_config6(cop0);
+ if (cpu_guest_has_conf7)
+ kvm_save_gc0_config7(cop0);
+
+ kvm_save_gc0_errorepc(cop0);
+
+ /* save KScratch registers if enabled in guest */
+ if (cpu_guest_has_conf4) {
+ if (cpu_guest_has_kscr(2))
+ kvm_save_gc0_kscratch1(cop0);
+ if (cpu_guest_has_kscr(3))
+ kvm_save_gc0_kscratch2(cop0);
+ if (cpu_guest_has_kscr(4))
+ kvm_save_gc0_kscratch3(cop0);
+ if (cpu_guest_has_kscr(5))
+ kvm_save_gc0_kscratch4(cop0);
+ if (cpu_guest_has_kscr(6))
+ kvm_save_gc0_kscratch5(cop0);
+ if (cpu_guest_has_kscr(7))
+ kvm_save_gc0_kscratch6(cop0);
+ }
+
+ if (cpu_guest_has_badinstr)
+ kvm_save_gc0_badinstr(cop0);
+ if (cpu_guest_has_badinstrp)
+ kvm_save_gc0_badinstrp(cop0);
+
+ if (cpu_guest_has_segments) {
+ kvm_save_gc0_segctl0(cop0);
+ kvm_save_gc0_segctl1(cop0);
+ kvm_save_gc0_segctl2(cop0);
+ }
+
+ /* save HTW registers if enabled in guest */
+ if (cpu_guest_has_ldpte || (cpu_guest_has_htw &&
+ kvm_read_sw_gc0_config3(cop0) & MIPS_CONF3_PW)) {
+ kvm_save_gc0_pwbase(cop0);
+ kvm_save_gc0_pwfield(cop0);
+ kvm_save_gc0_pwsize(cop0);
+ kvm_save_gc0_pwctl(cop0);
+ }
+
+ kvm_vz_save_timer(vcpu);
+
+ /* save Root.GuestCtl2 in unused Guest guestctl2 register */
+ if (cpu_has_guestctl2)
+ cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] =
+ read_c0_guestctl2();
+
+ return 0;
+}
+
+/**
+ * kvm_vz_resize_guest_vtlb() - Attempt to resize guest VTLB.
+ * @size: Number of guest VTLB entries (0 < @size <= root VTLB entries).
+ *
+ * Attempt to resize the guest VTLB by writing guest Config registers. This is
+ * necessary for cores with a shared root/guest TLB to avoid overlap with wired
+ * entries in the root VTLB.
+ *
+ * Returns: The resulting guest VTLB size.
+ */
+static unsigned int kvm_vz_resize_guest_vtlb(unsigned int size)
+{
+ unsigned int config4 = 0, ret = 0, limit;
+
+ /* Write MMUSize - 1 into guest Config registers */
+ if (cpu_guest_has_conf1)
+ change_gc0_config1(MIPS_CONF1_TLBS,
+ (size - 1) << MIPS_CONF1_TLBS_SHIFT);
+ if (cpu_guest_has_conf4) {
+ config4 = read_gc0_config4();
+ if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
+ MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) {
+ config4 &= ~MIPS_CONF4_VTLBSIZEEXT;
+ config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
+ MIPS_CONF4_VTLBSIZEEXT_SHIFT;
+ } else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
+ MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) {
+ config4 &= ~MIPS_CONF4_MMUSIZEEXT;
+ config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
+ MIPS_CONF4_MMUSIZEEXT_SHIFT;
+ }
+ write_gc0_config4(config4);
+ }
+
+ /*
+ * Set Guest.Wired.Limit = 0 (no limit up to Guest.MMUSize-1), unless it
+ * would exceed Root.Wired.Limit (clearing Guest.Wired.Wired so write
+ * not dropped)
+ */
+ if (cpu_has_mips_r6) {
+ limit = (read_c0_wired() & MIPSR6_WIRED_LIMIT) >>
+ MIPSR6_WIRED_LIMIT_SHIFT;
+ if (size - 1 <= limit)
+ limit = 0;
+ write_gc0_wired(limit << MIPSR6_WIRED_LIMIT_SHIFT);
+ }
+
+ /* Read back MMUSize - 1 */
+ back_to_back_c0_hazard();
+ if (cpu_guest_has_conf1)
+ ret = (read_gc0_config1() & MIPS_CONF1_TLBS) >>
+ MIPS_CONF1_TLBS_SHIFT;
+ if (config4) {
+ if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
+ MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT)
+ ret |= ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
+ MIPS_CONF4_VTLBSIZEEXT_SHIFT) <<
+ MIPS_CONF1_TLBS_SIZE;
+ else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
+ MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT)
+ ret |= ((config4 & MIPS_CONF4_MMUSIZEEXT) >>
+ MIPS_CONF4_MMUSIZEEXT_SHIFT) <<
+ MIPS_CONF1_TLBS_SIZE;
+ }
+ return ret + 1;
+}
+
+static int kvm_vz_hardware_enable(void)
+{
+ unsigned int mmu_size, guest_mmu_size, ftlb_size;
+ u64 guest_cvmctl, cvmvmconfig;
+
+ switch (current_cpu_type()) {
+ case CPU_CAVIUM_OCTEON3:
+ /* Set up guest timer/perfcount IRQ lines */
+ guest_cvmctl = read_gc0_cvmctl();
+ guest_cvmctl &= ~CVMCTL_IPTI;
+ guest_cvmctl |= 7ull << CVMCTL_IPTI_SHIFT;
+ guest_cvmctl &= ~CVMCTL_IPPCI;
+ guest_cvmctl |= 6ull << CVMCTL_IPPCI_SHIFT;
+ write_gc0_cvmctl(guest_cvmctl);
+
+ cvmvmconfig = read_c0_cvmvmconfig();
+ /* No I/O hole translation. */
+ cvmvmconfig |= CVMVMCONF_DGHT;
+ /* Halve the root MMU size */
+ mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
+ >> CVMVMCONF_MMUSIZEM1_S) + 1;
+ guest_mmu_size = mmu_size / 2;
+ mmu_size -= guest_mmu_size;
+ cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
+ cvmvmconfig |= mmu_size - 1;
+ write_c0_cvmvmconfig(cvmvmconfig);
+
+ /* Update our records */
+ current_cpu_data.tlbsize = mmu_size;
+ current_cpu_data.tlbsizevtlb = mmu_size;
+ current_cpu_data.guest.tlbsize = guest_mmu_size;
+
+ /* Flush moved entries in new (guest) context */
+ kvm_vz_local_flush_guesttlb_all();
+ break;
+ default:
+ /*
+ * ImgTec cores tend to use a shared root/guest TLB. To avoid
+ * overlap of root wired and guest entries, the guest TLB may
+ * need resizing.
+ */
+ mmu_size = current_cpu_data.tlbsizevtlb;
+ ftlb_size = current_cpu_data.tlbsize - mmu_size;
+
+ /* Try switching to maximum guest VTLB size for flush */
+ guest_mmu_size = kvm_vz_resize_guest_vtlb(mmu_size);
+ current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
+ kvm_vz_local_flush_guesttlb_all();
+
+ /*
+ * Reduce to make space for root wired entries and at least 2
+ * root non-wired entries. This does assume that long-term wired
+ * entries won't be added later.
+ */
+ guest_mmu_size = mmu_size - num_wired_entries() - 2;
+ guest_mmu_size = kvm_vz_resize_guest_vtlb(guest_mmu_size);
+ current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
+
+ /*
+ * Write the VTLB size, but if another CPU has already written,
+ * check it matches or we won't provide a consistent view to the
+ * guest. If this ever happens it suggests an asymmetric number
+ * of wired entries.
+ */
+ if (cmpxchg(&kvm_vz_guest_vtlb_size, 0, guest_mmu_size) &&
+ WARN(guest_mmu_size != kvm_vz_guest_vtlb_size,
+ "Available guest VTLB size mismatch"))
+ return -EINVAL;
+ break;
+ }
+
+ /*
+ * Enable virtualization features granting guest direct control of
+ * certain features:
+ * CP0=1: Guest coprocessor 0 context.
+ * AT=Guest: Guest MMU.
+ * CG=1: Hit (virtual address) CACHE operations (optional).
+ * CF=1: Guest Config registers.
+ * CGI=1: Indexed flush CACHE operations (optional).
+ */
+ write_c0_guestctl0(MIPS_GCTL0_CP0 |
+ (MIPS_GCTL0_AT_GUEST << MIPS_GCTL0_AT_SHIFT) |
+ MIPS_GCTL0_CG | MIPS_GCTL0_CF);
+ if (cpu_has_guestctl0ext) {
+ if (current_cpu_type() != CPU_LOONGSON64)
+ set_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
+ else
+ clear_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
+ }
+
+ if (cpu_has_guestid) {
+ write_c0_guestctl1(0);
+ kvm_vz_local_flush_roottlb_all_guests();
+
+ GUESTID_MASK = current_cpu_data.guestid_mask;
+ GUESTID_FIRST_VERSION = GUESTID_MASK + 1;
+ GUESTID_VERSION_MASK = ~GUESTID_MASK;
+
+ current_cpu_data.guestid_cache = GUESTID_FIRST_VERSION;
+ }
+
+ /* clear any pending injected virtual guest interrupts */
+ if (cpu_has_guestctl2)
+ clear_c0_guestctl2(0x3f << 10);
+
+#ifdef CONFIG_CPU_LOONGSON64
+ /* Control guest CCA attribute */
+ if (cpu_has_csr())
+ csr_writel(csr_readl(0xffffffec) | 0x1, 0xffffffec);
+#endif
+
+ return 0;
+}
+
+static void kvm_vz_hardware_disable(void)
+{
+ u64 cvmvmconfig;
+ unsigned int mmu_size;
+
+ /* Flush any remaining guest TLB entries */
+ kvm_vz_local_flush_guesttlb_all();
+
+ switch (current_cpu_type()) {
+ case CPU_CAVIUM_OCTEON3:
+ /*
+ * Allocate whole TLB for root. Existing guest TLB entries will
+ * change ownership to the root TLB. We should be safe though as
+ * they've already been flushed above while in guest TLB.
+ */
+ cvmvmconfig = read_c0_cvmvmconfig();
+ mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
+ >> CVMVMCONF_MMUSIZEM1_S) + 1;
+ cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
+ cvmvmconfig |= mmu_size - 1;
+ write_c0_cvmvmconfig(cvmvmconfig);
+
+ /* Update our records */
+ current_cpu_data.tlbsize = mmu_size;
+ current_cpu_data.tlbsizevtlb = mmu_size;
+ current_cpu_data.guest.tlbsize = 0;
+
+ /* Flush moved entries in new (root) context */
+ local_flush_tlb_all();
+ break;
+ }
+
+ if (cpu_has_guestid) {
+ write_c0_guestctl1(0);
+ kvm_vz_local_flush_roottlb_all_guests();
+ }
+}
+
+static int kvm_vz_check_extension(struct kvm *kvm, long ext)
+{
+ int r;
+
+ switch (ext) {
+ case KVM_CAP_MIPS_VZ:
+ /* we wouldn't be here unless cpu_has_vz */
+ r = 1;
+ break;
+#ifdef CONFIG_64BIT
+ case KVM_CAP_MIPS_64BIT:
+ /* We support 64-bit registers/operations and addresses */
+ r = 2;
+ break;
+#endif
+ case KVM_CAP_IOEVENTFD:
+ r = 1;
+ break;
+ default:
+ r = 0;
+ break;
+ }
+
+ return r;
+}
+
+static int kvm_vz_vcpu_init(struct kvm_vcpu *vcpu)
+{
+ int i;
+
+ for_each_possible_cpu(i)
+ vcpu->arch.vzguestid[i] = 0;
+
+ return 0;
+}
+
+static void kvm_vz_vcpu_uninit(struct kvm_vcpu *vcpu)
+{
+ int cpu;
+
+ /*
+ * If the VCPU is freed and reused as another VCPU, we don't want the
+ * matching pointer wrongly hanging around in last_vcpu[] or
+ * last_exec_vcpu[].
+ */
+ for_each_possible_cpu(cpu) {
+ if (last_vcpu[cpu] == vcpu)
+ last_vcpu[cpu] = NULL;
+ if (last_exec_vcpu[cpu] == vcpu)
+ last_exec_vcpu[cpu] = NULL;
+ }
+}
+
+static int kvm_vz_vcpu_setup(struct kvm_vcpu *vcpu)
+{
+ struct mips_coproc *cop0 = vcpu->arch.cop0;
+ unsigned long count_hz = 100*1000*1000; /* default to 100 MHz */
+
+ /*
+ * Start off the timer at the same frequency as the host timer, but the
+ * soft timer doesn't handle frequencies greater than 1GHz yet.
+ */
+ if (mips_hpt_frequency && mips_hpt_frequency <= NSEC_PER_SEC)
+ count_hz = mips_hpt_frequency;
+ kvm_mips_init_count(vcpu, count_hz);
+
+ /*
+ * Initialize guest register state to valid architectural reset state.
+ */
+
+ /* PageGrain */
+ if (cpu_has_mips_r5 || cpu_has_mips_r6)
+ kvm_write_sw_gc0_pagegrain(cop0, PG_RIE | PG_XIE | PG_IEC);
+ /* Wired */
+ if (cpu_has_mips_r6)
+ kvm_write_sw_gc0_wired(cop0,
+ read_gc0_wired() & MIPSR6_WIRED_LIMIT);
+ /* Status */
+ kvm_write_sw_gc0_status(cop0, ST0_BEV | ST0_ERL);
+ if (cpu_has_mips_r5 || cpu_has_mips_r6)
+ kvm_change_sw_gc0_status(cop0, ST0_FR, read_gc0_status());
+ /* IntCtl */
+ kvm_write_sw_gc0_intctl(cop0, read_gc0_intctl() &
+ (INTCTLF_IPFDC | INTCTLF_IPPCI | INTCTLF_IPTI));
+ /* PRId */
+ kvm_write_sw_gc0_prid(cop0, boot_cpu_data.processor_id);
+ /* EBase */
+ kvm_write_sw_gc0_ebase(cop0, (s32)0x80000000 | vcpu->vcpu_id);
+ /* Config */
+ kvm_save_gc0_config(cop0);
+ /* architecturally writable (e.g. from guest) */
+ kvm_change_sw_gc0_config(cop0, CONF_CM_CMASK,
+ _page_cachable_default >> _CACHE_SHIFT);
+ /* architecturally read only, but maybe writable from root */
+ kvm_change_sw_gc0_config(cop0, MIPS_CONF_MT, read_c0_config());
+ if (cpu_guest_has_conf1) {
+ kvm_set_sw_gc0_config(cop0, MIPS_CONF_M);
+ /* Config1 */
+ kvm_save_gc0_config1(cop0);
+ /* architecturally read only, but maybe writable from root */
+ kvm_clear_sw_gc0_config1(cop0, MIPS_CONF1_C2 |
+ MIPS_CONF1_MD |
+ MIPS_CONF1_PC |
+ MIPS_CONF1_WR |
+ MIPS_CONF1_CA |
+ MIPS_CONF1_FP);
+ }
+ if (cpu_guest_has_conf2) {
+ kvm_set_sw_gc0_config1(cop0, MIPS_CONF_M);
+ /* Config2 */
+ kvm_save_gc0_config2(cop0);
+ }
+ if (cpu_guest_has_conf3) {
+ kvm_set_sw_gc0_config2(cop0, MIPS_CONF_M);
+ /* Config3 */
+ kvm_save_gc0_config3(cop0);
+ /* architecturally writable (e.g. from guest) */
+ kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_ISA_OE);
+ /* architecturally read only, but maybe writable from root */
+ kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_MSA |
+ MIPS_CONF3_BPG |
+ MIPS_CONF3_ULRI |
+ MIPS_CONF3_DSP |
+ MIPS_CONF3_CTXTC |
+ MIPS_CONF3_ITL |
+ MIPS_CONF3_LPA |
+ MIPS_CONF3_VEIC |
+ MIPS_CONF3_VINT |
+ MIPS_CONF3_SP |
+ MIPS_CONF3_CDMM |
+ MIPS_CONF3_MT |
+ MIPS_CONF3_SM |
+ MIPS_CONF3_TL);
+ }
+ if (cpu_guest_has_conf4) {
+ kvm_set_sw_gc0_config3(cop0, MIPS_CONF_M);
+ /* Config4 */
+ kvm_save_gc0_config4(cop0);
+ }
+ if (cpu_guest_has_conf5) {
+ kvm_set_sw_gc0_config4(cop0, MIPS_CONF_M);
+ /* Config5 */
+ kvm_save_gc0_config5(cop0);
+ /* architecturally writable (e.g. from guest) */
+ kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_K |
+ MIPS_CONF5_CV |
+ MIPS_CONF5_MSAEN |
+ MIPS_CONF5_UFE |
+ MIPS_CONF5_FRE |
+ MIPS_CONF5_SBRI |
+ MIPS_CONF5_UFR);
+ /* architecturally read only, but maybe writable from root */
+ kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_MRP);
+ }
+
+ if (cpu_guest_has_contextconfig) {
+ /* ContextConfig */
+ kvm_write_sw_gc0_contextconfig(cop0, 0x007ffff0);
+#ifdef CONFIG_64BIT
+ /* XContextConfig */
+ /* bits SEGBITS-13+3:4 set */
+ kvm_write_sw_gc0_xcontextconfig(cop0,
+ ((1ull << (cpu_vmbits - 13)) - 1) << 4);
+#endif
+ }
+
+ /* Implementation dependent, use the legacy layout */
+ if (cpu_guest_has_segments) {
+ /* SegCtl0, SegCtl1, SegCtl2 */
+ kvm_write_sw_gc0_segctl0(cop0, 0x00200010);
+ kvm_write_sw_gc0_segctl1(cop0, 0x00000002 |
+ (_page_cachable_default >> _CACHE_SHIFT) <<
+ (16 + MIPS_SEGCFG_C_SHIFT));
+ kvm_write_sw_gc0_segctl2(cop0, 0x00380438);
+ }
+
+ /* reset HTW registers */
+ if (cpu_guest_has_htw && (cpu_has_mips_r5 || cpu_has_mips_r6)) {
+ /* PWField */
+ kvm_write_sw_gc0_pwfield(cop0, 0x0c30c302);
+ /* PWSize */
+ kvm_write_sw_gc0_pwsize(cop0, 1 << MIPS_PWSIZE_PTW_SHIFT);
+ }
+
+ /* start with no pending virtual guest interrupts */
+ if (cpu_has_guestctl2)
+ cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = 0;
+
+ /* Put PC at reset vector */
+ vcpu->arch.pc = CKSEG1ADDR(0x1fc00000);
+
+ return 0;
+}
+
+static void kvm_vz_flush_shadow_all(struct kvm *kvm)
+{
+ if (cpu_has_guestid) {
+ /* Flush GuestID for each VCPU individually */
+ kvm_flush_remote_tlbs(kvm);
+ } else {
+ /*
+ * For each CPU there is a single GPA ASID used by all VCPUs in
+ * the VM, so it doesn't make sense for the VCPUs to handle
+ * invalidation of these ASIDs individually.
+ *
+ * Instead mark all CPUs as needing ASID invalidation in
+ * asid_flush_mask, and just use kvm_flush_remote_tlbs(kvm) to
+ * kick any running VCPUs so they check asid_flush_mask.
+ */
+ cpumask_setall(&kvm->arch.asid_flush_mask);
+ kvm_flush_remote_tlbs(kvm);
+ }
+}
+
+static void kvm_vz_flush_shadow_memslot(struct kvm *kvm,
+ const struct kvm_memory_slot *slot)
+{
+ kvm_vz_flush_shadow_all(kvm);
+}
+
+static void kvm_vz_vcpu_reenter(struct kvm_vcpu *vcpu)
+{
+ int cpu = smp_processor_id();
+ int preserve_guest_tlb;
+
+ preserve_guest_tlb = kvm_vz_check_requests(vcpu, cpu);
+
+ if (preserve_guest_tlb)
+ kvm_vz_vcpu_save_wired(vcpu);
+
+ kvm_vz_vcpu_load_tlb(vcpu, cpu);
+
+ if (preserve_guest_tlb)
+ kvm_vz_vcpu_load_wired(vcpu);
+}
+
+static int kvm_vz_vcpu_run(struct kvm_vcpu *vcpu)
+{
+ int cpu = smp_processor_id();
+ int r;
+
+ kvm_vz_acquire_htimer(vcpu);
+ /* Check if we have any exceptions/interrupts pending */
+ kvm_mips_deliver_interrupts(vcpu, read_gc0_cause());
+
+ kvm_vz_check_requests(vcpu, cpu);
+ kvm_vz_vcpu_load_tlb(vcpu, cpu);
+ kvm_vz_vcpu_load_wired(vcpu);
+
+ r = vcpu->arch.vcpu_run(vcpu);
+
+ kvm_vz_vcpu_save_wired(vcpu);
+
+ return r;
+}
+
+static struct kvm_mips_callbacks kvm_vz_callbacks = {
+ .handle_cop_unusable = kvm_trap_vz_handle_cop_unusable,
+ .handle_tlb_mod = kvm_trap_vz_handle_tlb_st_miss,
+ .handle_tlb_ld_miss = kvm_trap_vz_handle_tlb_ld_miss,
+ .handle_tlb_st_miss = kvm_trap_vz_handle_tlb_st_miss,
+ .handle_addr_err_st = kvm_trap_vz_no_handler,
+ .handle_addr_err_ld = kvm_trap_vz_no_handler,
+ .handle_syscall = kvm_trap_vz_no_handler,
+ .handle_res_inst = kvm_trap_vz_no_handler,
+ .handle_break = kvm_trap_vz_no_handler,
+ .handle_msa_disabled = kvm_trap_vz_handle_msa_disabled,
+ .handle_guest_exit = kvm_trap_vz_handle_guest_exit,
+
+ .hardware_enable = kvm_vz_hardware_enable,
+ .hardware_disable = kvm_vz_hardware_disable,
+ .check_extension = kvm_vz_check_extension,
+ .vcpu_init = kvm_vz_vcpu_init,
+ .vcpu_uninit = kvm_vz_vcpu_uninit,
+ .vcpu_setup = kvm_vz_vcpu_setup,
+ .flush_shadow_all = kvm_vz_flush_shadow_all,
+ .flush_shadow_memslot = kvm_vz_flush_shadow_memslot,
+ .gva_to_gpa = kvm_vz_gva_to_gpa_cb,
+ .queue_timer_int = kvm_vz_queue_timer_int_cb,
+ .dequeue_timer_int = kvm_vz_dequeue_timer_int_cb,
+ .queue_io_int = kvm_vz_queue_io_int_cb,
+ .dequeue_io_int = kvm_vz_dequeue_io_int_cb,
+ .irq_deliver = kvm_vz_irq_deliver_cb,
+ .irq_clear = kvm_vz_irq_clear_cb,
+ .num_regs = kvm_vz_num_regs,
+ .copy_reg_indices = kvm_vz_copy_reg_indices,
+ .get_one_reg = kvm_vz_get_one_reg,
+ .set_one_reg = kvm_vz_set_one_reg,
+ .vcpu_load = kvm_vz_vcpu_load,
+ .vcpu_put = kvm_vz_vcpu_put,
+ .vcpu_run = kvm_vz_vcpu_run,
+ .vcpu_reenter = kvm_vz_vcpu_reenter,
+};
+
+int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks)
+{
+ if (!cpu_has_vz)
+ return -ENODEV;
+
+ /*
+ * VZ requires at least 2 KScratch registers, so it should have been
+ * possible to allocate pgd_reg.
+ */
+ if (WARN(pgd_reg == -1,
+ "pgd_reg not allocated even though cpu_has_vz\n"))
+ return -ENODEV;
+
+ pr_info("Starting KVM with MIPS VZ extensions\n");
+
+ *install_callbacks = &kvm_vz_callbacks;
+ return 0;
+}