summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/platforms/cell/spufs/switch.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/platforms/cell/spufs/switch.c')
-rw-r--r--arch/powerpc/platforms/cell/spufs/switch.c2208
1 files changed, 2208 insertions, 0 deletions
diff --git a/arch/powerpc/platforms/cell/spufs/switch.c b/arch/powerpc/platforms/cell/spufs/switch.c
new file mode 100644
index 000000000..d56b4e324
--- /dev/null
+++ b/arch/powerpc/platforms/cell/spufs/switch.c
@@ -0,0 +1,2208 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * spu_switch.c
+ *
+ * (C) Copyright IBM Corp. 2005
+ *
+ * Author: Mark Nutter <mnutter@us.ibm.com>
+ *
+ * Host-side part of SPU context switch sequence outlined in
+ * Synergistic Processor Element, Book IV.
+ *
+ * A fully premptive switch of an SPE is very expensive in terms
+ * of time and system resources. SPE Book IV indicates that SPE
+ * allocation should follow a "serially reusable device" model,
+ * in which the SPE is assigned a task until it completes. When
+ * this is not possible, this sequence may be used to premptively
+ * save, and then later (optionally) restore the context of a
+ * program executing on an SPE.
+ */
+
+#include <linux/export.h>
+#include <linux/errno.h>
+#include <linux/hardirq.h>
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/vmalloc.h>
+#include <linux/smp.h>
+#include <linux/stddef.h>
+#include <linux/unistd.h>
+
+#include <asm/io.h>
+#include <asm/spu.h>
+#include <asm/spu_priv1.h>
+#include <asm/spu_csa.h>
+#include <asm/mmu_context.h>
+
+#include "spufs.h"
+
+#include "spu_save_dump.h"
+#include "spu_restore_dump.h"
+
+#if 0
+#define POLL_WHILE_TRUE(_c) { \
+ do { \
+ } while (_c); \
+ }
+#else
+#define RELAX_SPIN_COUNT 1000
+#define POLL_WHILE_TRUE(_c) { \
+ do { \
+ int _i; \
+ for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
+ cpu_relax(); \
+ } \
+ if (unlikely(_c)) yield(); \
+ else break; \
+ } while (_c); \
+ }
+#endif /* debug */
+
+#define POLL_WHILE_FALSE(_c) POLL_WHILE_TRUE(!(_c))
+
+static inline void acquire_spu_lock(struct spu *spu)
+{
+ /* Save, Step 1:
+ * Restore, Step 1:
+ * Acquire SPU-specific mutual exclusion lock.
+ * TBD.
+ */
+}
+
+static inline void release_spu_lock(struct spu *spu)
+{
+ /* Restore, Step 76:
+ * Release SPU-specific mutual exclusion lock.
+ * TBD.
+ */
+}
+
+static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+ u32 isolate_state;
+
+ /* Save, Step 2:
+ * Save, Step 6:
+ * If SPU_Status[E,L,IS] any field is '1', this
+ * SPU is in isolate state and cannot be context
+ * saved at this time.
+ */
+ isolate_state = SPU_STATUS_ISOLATED_STATE |
+ SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
+ return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
+}
+
+static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
+{
+ /* Save, Step 3:
+ * Restore, Step 2:
+ * Save INT_Mask_class0 in CSA.
+ * Write INT_MASK_class0 with value of 0.
+ * Save INT_Mask_class1 in CSA.
+ * Write INT_MASK_class1 with value of 0.
+ * Save INT_Mask_class2 in CSA.
+ * Write INT_MASK_class2 with value of 0.
+ * Synchronize all three interrupts to be sure
+ * we no longer execute a handler on another CPU.
+ */
+ spin_lock_irq(&spu->register_lock);
+ if (csa) {
+ csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
+ csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
+ csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
+ }
+ spu_int_mask_set(spu, 0, 0ul);
+ spu_int_mask_set(spu, 1, 0ul);
+ spu_int_mask_set(spu, 2, 0ul);
+ eieio();
+ spin_unlock_irq(&spu->register_lock);
+
+ /*
+ * This flag needs to be set before calling synchronize_irq so
+ * that the update will be visible to the relevant handlers
+ * via a simple load.
+ */
+ set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
+ clear_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
+ synchronize_irq(spu->irqs[0]);
+ synchronize_irq(spu->irqs[1]);
+ synchronize_irq(spu->irqs[2]);
+}
+
+static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
+{
+ /* Save, Step 4:
+ * Restore, Step 25.
+ * Set a software watchdog timer, which specifies the
+ * maximum allowable time for a context save sequence.
+ *
+ * For present, this implementation will not set a global
+ * watchdog timer, as virtualization & variable system load
+ * may cause unpredictable execution times.
+ */
+}
+
+static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
+{
+ /* Save, Step 5:
+ * Restore, Step 3:
+ * Inhibit user-space access (if provided) to this
+ * SPU by unmapping the virtual pages assigned to
+ * the SPU memory-mapped I/O (MMIO) for problem
+ * state. TBD.
+ */
+}
+
+static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
+{
+ /* Save, Step 7:
+ * Restore, Step 5:
+ * Set a software context switch pending flag.
+ * Done above in Step 3 - disable_interrupts().
+ */
+}
+
+static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Save, Step 8:
+ * Suspend DMA and save MFC_CNTL.
+ */
+ switch (in_be64(&priv2->mfc_control_RW) &
+ MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
+ case MFC_CNTL_SUSPEND_IN_PROGRESS:
+ POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
+ MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
+ MFC_CNTL_SUSPEND_COMPLETE);
+ fallthrough;
+ case MFC_CNTL_SUSPEND_COMPLETE:
+ if (csa)
+ csa->priv2.mfc_control_RW =
+ in_be64(&priv2->mfc_control_RW) |
+ MFC_CNTL_SUSPEND_DMA_QUEUE;
+ break;
+ case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
+ out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
+ POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
+ MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
+ MFC_CNTL_SUSPEND_COMPLETE);
+ if (csa)
+ csa->priv2.mfc_control_RW =
+ in_be64(&priv2->mfc_control_RW) &
+ ~MFC_CNTL_SUSPEND_DMA_QUEUE &
+ ~MFC_CNTL_SUSPEND_MASK;
+ break;
+ }
+}
+
+static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+
+ /* Save, Step 9:
+ * Save SPU_Runcntl in the CSA. This value contains
+ * the "Application Desired State".
+ */
+ csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
+}
+
+static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
+{
+ /* Save, Step 10:
+ * Save MFC_SR1 in the CSA.
+ */
+ csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
+}
+
+static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+
+ /* Save, Step 11:
+ * Read SPU_Status[R], and save to CSA.
+ */
+ if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
+ csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
+ } else {
+ u32 stopped;
+
+ out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
+ eieio();
+ POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
+ SPU_STATUS_RUNNING);
+ stopped =
+ SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
+ SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
+ if ((in_be32(&prob->spu_status_R) & stopped) == 0)
+ csa->prob.spu_status_R = SPU_STATUS_RUNNING;
+ else
+ csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
+ }
+}
+
+static inline void save_mfc_stopped_status(struct spu_state *csa,
+ struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+ const u64 mask = MFC_CNTL_DECREMENTER_RUNNING |
+ MFC_CNTL_DMA_QUEUES_EMPTY;
+
+ /* Save, Step 12:
+ * Read MFC_CNTL[Ds]. Update saved copy of
+ * CSA.MFC_CNTL[Ds].
+ *
+ * update: do the same with MFC_CNTL[Q].
+ */
+ csa->priv2.mfc_control_RW &= ~mask;
+ csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask;
+}
+
+static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Save, Step 13:
+ * Write MFC_CNTL[Dh] set to a '1' to halt
+ * the decrementer.
+ */
+ out_be64(&priv2->mfc_control_RW,
+ MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
+ eieio();
+}
+
+static inline void save_timebase(struct spu_state *csa, struct spu *spu)
+{
+ /* Save, Step 14:
+ * Read PPE Timebase High and Timebase low registers
+ * and save in CSA. TBD.
+ */
+ csa->suspend_time = get_cycles();
+}
+
+static inline void remove_other_spu_access(struct spu_state *csa,
+ struct spu *spu)
+{
+ /* Save, Step 15:
+ * Remove other SPU access to this SPU by unmapping
+ * this SPU's pages from their address space. TBD.
+ */
+}
+
+static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+
+ /* Save, Step 16:
+ * Restore, Step 11.
+ * Write SPU_MSSync register. Poll SPU_MSSync[P]
+ * for a value of 0.
+ */
+ out_be64(&prob->spc_mssync_RW, 1UL);
+ POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
+}
+
+static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
+{
+ /* Save, Step 17:
+ * Restore, Step 12.
+ * Restore, Step 48.
+ * Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
+ * Then issue a PPE sync instruction.
+ */
+ spu_tlb_invalidate(spu);
+ mb();
+}
+
+static inline void handle_pending_interrupts(struct spu_state *csa,
+ struct spu *spu)
+{
+ /* Save, Step 18:
+ * Handle any pending interrupts from this SPU
+ * here. This is OS or hypervisor specific. One
+ * option is to re-enable interrupts to handle any
+ * pending interrupts, with the interrupt handlers
+ * recognizing the software Context Switch Pending
+ * flag, to ensure the SPU execution or MFC command
+ * queue is not restarted. TBD.
+ */
+}
+
+static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+ int i;
+
+ /* Save, Step 19:
+ * If MFC_Cntl[Se]=0 then save
+ * MFC command queues.
+ */
+ if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
+ for (i = 0; i < 8; i++) {
+ csa->priv2.puq[i].mfc_cq_data0_RW =
+ in_be64(&priv2->puq[i].mfc_cq_data0_RW);
+ csa->priv2.puq[i].mfc_cq_data1_RW =
+ in_be64(&priv2->puq[i].mfc_cq_data1_RW);
+ csa->priv2.puq[i].mfc_cq_data2_RW =
+ in_be64(&priv2->puq[i].mfc_cq_data2_RW);
+ csa->priv2.puq[i].mfc_cq_data3_RW =
+ in_be64(&priv2->puq[i].mfc_cq_data3_RW);
+ }
+ for (i = 0; i < 16; i++) {
+ csa->priv2.spuq[i].mfc_cq_data0_RW =
+ in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
+ csa->priv2.spuq[i].mfc_cq_data1_RW =
+ in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
+ csa->priv2.spuq[i].mfc_cq_data2_RW =
+ in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
+ csa->priv2.spuq[i].mfc_cq_data3_RW =
+ in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
+ }
+ }
+}
+
+static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+
+ /* Save, Step 20:
+ * Save the PPU_QueryMask register
+ * in the CSA.
+ */
+ csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
+}
+
+static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+
+ /* Save, Step 21:
+ * Save the PPU_QueryType register
+ * in the CSA.
+ */
+ csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
+}
+
+static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+
+ /* Save the Prxy_TagStatus register in the CSA.
+ *
+ * It is unnecessary to restore dma_tagstatus_R, however,
+ * dma_tagstatus_R in the CSA is accessed via backing_ops, so
+ * we must save it.
+ */
+ csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
+}
+
+static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Save, Step 22:
+ * Save the MFC_CSR_TSQ register
+ * in the LSCSA.
+ */
+ csa->priv2.spu_tag_status_query_RW =
+ in_be64(&priv2->spu_tag_status_query_RW);
+}
+
+static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Save, Step 23:
+ * Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
+ * registers in the CSA.
+ */
+ csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
+ csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
+}
+
+static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Save, Step 24:
+ * Save the MFC_CSR_ATO register in
+ * the CSA.
+ */
+ csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
+}
+
+static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
+{
+ /* Save, Step 25:
+ * Save the MFC_TCLASS_ID register in
+ * the CSA.
+ */
+ csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
+}
+
+static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
+{
+ /* Save, Step 26:
+ * Restore, Step 23.
+ * Write the MFC_TCLASS_ID register with
+ * the value 0x10000000.
+ */
+ spu_mfc_tclass_id_set(spu, 0x10000000);
+ eieio();
+}
+
+static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Save, Step 27:
+ * Restore, Step 14.
+ * Write MFC_CNTL[Pc]=1 (purge queue).
+ */
+ out_be64(&priv2->mfc_control_RW,
+ MFC_CNTL_PURGE_DMA_REQUEST |
+ MFC_CNTL_SUSPEND_MASK);
+ eieio();
+}
+
+static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Save, Step 28:
+ * Poll MFC_CNTL[Ps] until value '11' is read
+ * (purge complete).
+ */
+ POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
+ MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
+ MFC_CNTL_PURGE_DMA_COMPLETE);
+}
+
+static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
+{
+ /* Save, Step 30:
+ * Restore, Step 18:
+ * Write MFC_SR1 with MFC_SR1[D=0,S=1] and
+ * MFC_SR1[TL,R,Pr,T] set correctly for the
+ * OS specific environment.
+ *
+ * Implementation note: The SPU-side code
+ * for save/restore is privileged, so the
+ * MFC_SR1[Pr] bit is not set.
+ *
+ */
+ spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
+ MFC_STATE1_RELOCATE_MASK |
+ MFC_STATE1_BUS_TLBIE_MASK));
+}
+
+static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+
+ /* Save, Step 31:
+ * Save SPU_NPC in the CSA.
+ */
+ csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
+}
+
+static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Save, Step 32:
+ * Save SPU_PrivCntl in the CSA.
+ */
+ csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
+}
+
+static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Save, Step 33:
+ * Restore, Step 16:
+ * Write SPU_PrivCntl[S,Le,A] fields reset to 0.
+ */
+ out_be64(&priv2->spu_privcntl_RW, 0UL);
+ eieio();
+}
+
+static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Save, Step 34:
+ * Save SPU_LSLR in the CSA.
+ */
+ csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
+}
+
+static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Save, Step 35:
+ * Restore, Step 17.
+ * Reset SPU_LSLR.
+ */
+ out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
+ eieio();
+}
+
+static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Save, Step 36:
+ * Save SPU_Cfg in the CSA.
+ */
+ csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
+}
+
+static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
+{
+ /* Save, Step 37:
+ * Save PM_Trace_Tag_Wait_Mask in the CSA.
+ * Not performed by this implementation.
+ */
+}
+
+static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
+{
+ /* Save, Step 38:
+ * Save RA_GROUP_ID register and the
+ * RA_ENABLE reigster in the CSA.
+ */
+ csa->priv1.resource_allocation_groupID_RW =
+ spu_resource_allocation_groupID_get(spu);
+ csa->priv1.resource_allocation_enable_RW =
+ spu_resource_allocation_enable_get(spu);
+}
+
+static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+
+ /* Save, Step 39:
+ * Save MB_Stat register in the CSA.
+ */
+ csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
+}
+
+static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+
+ /* Save, Step 40:
+ * Save the PPU_MB register in the CSA.
+ */
+ csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
+}
+
+static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Save, Step 41:
+ * Save the PPUINT_MB register in the CSA.
+ */
+ csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
+}
+
+static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+ u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
+ int i;
+
+ /* Save, Step 42:
+ */
+
+ /* Save CH 1, without channel count */
+ out_be64(&priv2->spu_chnlcntptr_RW, 1);
+ csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
+
+ /* Save the following CH: [0,3,4,24,25,27] */
+ for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
+ idx = ch_indices[i];
+ out_be64(&priv2->spu_chnlcntptr_RW, idx);
+ eieio();
+ csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
+ csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
+ out_be64(&priv2->spu_chnldata_RW, 0UL);
+ out_be64(&priv2->spu_chnlcnt_RW, 0UL);
+ eieio();
+ }
+}
+
+static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+ int i;
+
+ /* Save, Step 43:
+ * Save SPU Read Mailbox Channel.
+ */
+ out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
+ eieio();
+ csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
+ for (i = 0; i < 4; i++) {
+ csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
+ }
+ out_be64(&priv2->spu_chnlcnt_RW, 0UL);
+ eieio();
+}
+
+static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Save, Step 44:
+ * Save MFC_CMD Channel.
+ */
+ out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
+ eieio();
+ csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
+ eieio();
+}
+
+static inline void reset_ch(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+ u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
+ u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
+ u64 idx;
+ int i;
+
+ /* Save, Step 45:
+ * Reset the following CH: [21, 23, 28, 30]
+ */
+ for (i = 0; i < 4; i++) {
+ idx = ch_indices[i];
+ out_be64(&priv2->spu_chnlcntptr_RW, idx);
+ eieio();
+ out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
+ eieio();
+ }
+}
+
+static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Save, Step 46:
+ * Restore, Step 25.
+ * Write MFC_CNTL[Sc]=0 (resume queue processing).
+ */
+ out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
+}
+
+static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
+ unsigned int *code, int code_size)
+{
+ /* Save, Step 47:
+ * Restore, Step 30.
+ * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
+ * register, then initialize SLB_VSID and SLB_ESID
+ * to provide access to SPU context save code and
+ * LSCSA.
+ *
+ * This implementation places both the context
+ * switch code and LSCSA in kernel address space.
+ *
+ * Further this implementation assumes that the
+ * MFC_SR1[R]=1 (in other words, assume that
+ * translation is desired by OS environment).
+ */
+ spu_invalidate_slbs(spu);
+ spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
+}
+
+static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
+{
+ /* Save, Step 48:
+ * Restore, Step 23.
+ * Change the software context switch pending flag
+ * to context switch active. This implementation does
+ * not uses a switch active flag.
+ *
+ * Now that we have saved the mfc in the csa, we can add in the
+ * restart command if an exception occurred.
+ */
+ if (test_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags))
+ csa->priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND;
+ clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
+ mb();
+}
+
+static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
+{
+ unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
+ CLASS1_ENABLE_STORAGE_FAULT_INTR;
+
+ /* Save, Step 49:
+ * Restore, Step 22:
+ * Reset and then enable interrupts, as
+ * needed by OS.
+ *
+ * This implementation enables only class1
+ * (translation) interrupts.
+ */
+ spin_lock_irq(&spu->register_lock);
+ spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
+ spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
+ spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
+ spu_int_mask_set(spu, 0, 0ul);
+ spu_int_mask_set(spu, 1, class1_mask);
+ spu_int_mask_set(spu, 2, 0ul);
+ spin_unlock_irq(&spu->register_lock);
+}
+
+static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
+ unsigned int ls_offset, unsigned int size,
+ unsigned int tag, unsigned int rclass,
+ unsigned int cmd)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+ union mfc_tag_size_class_cmd command;
+ unsigned int transfer_size;
+ volatile unsigned int status = 0x0;
+
+ while (size > 0) {
+ transfer_size =
+ (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
+ command.u.mfc_size = transfer_size;
+ command.u.mfc_tag = tag;
+ command.u.mfc_rclassid = rclass;
+ command.u.mfc_cmd = cmd;
+ do {
+ out_be32(&prob->mfc_lsa_W, ls_offset);
+ out_be64(&prob->mfc_ea_W, ea);
+ out_be64(&prob->mfc_union_W.all64, command.all64);
+ status =
+ in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
+ if (unlikely(status & 0x2)) {
+ cpu_relax();
+ }
+ } while (status & 0x3);
+ size -= transfer_size;
+ ea += transfer_size;
+ ls_offset += transfer_size;
+ }
+ return 0;
+}
+
+static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
+{
+ unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
+ unsigned int ls_offset = 0x0;
+ unsigned int size = 16384;
+ unsigned int tag = 0;
+ unsigned int rclass = 0;
+ unsigned int cmd = MFC_PUT_CMD;
+
+ /* Save, Step 50:
+ * Issue a DMA command to copy the first 16K bytes
+ * of local storage to the CSA.
+ */
+ send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
+}
+
+static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+
+ /* Save, Step 51:
+ * Restore, Step 31.
+ * Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
+ * point address of context save code in local
+ * storage.
+ *
+ * This implementation uses SPU-side save/restore
+ * programs with entry points at LSA of 0.
+ */
+ out_be32(&prob->spu_npc_RW, 0);
+ eieio();
+}
+
+static inline void set_signot1(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+ union {
+ u64 ull;
+ u32 ui[2];
+ } addr64;
+
+ /* Save, Step 52:
+ * Restore, Step 32:
+ * Write SPU_Sig_Notify_1 register with upper 32-bits
+ * of the CSA.LSCSA effective address.
+ */
+ addr64.ull = (u64) csa->lscsa;
+ out_be32(&prob->signal_notify1, addr64.ui[0]);
+ eieio();
+}
+
+static inline void set_signot2(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+ union {
+ u64 ull;
+ u32 ui[2];
+ } addr64;
+
+ /* Save, Step 53:
+ * Restore, Step 33:
+ * Write SPU_Sig_Notify_2 register with lower 32-bits
+ * of the CSA.LSCSA effective address.
+ */
+ addr64.ull = (u64) csa->lscsa;
+ out_be32(&prob->signal_notify2, addr64.ui[1]);
+ eieio();
+}
+
+static inline void send_save_code(struct spu_state *csa, struct spu *spu)
+{
+ unsigned long addr = (unsigned long)&spu_save_code[0];
+ unsigned int ls_offset = 0x0;
+ unsigned int size = sizeof(spu_save_code);
+ unsigned int tag = 0;
+ unsigned int rclass = 0;
+ unsigned int cmd = MFC_GETFS_CMD;
+
+ /* Save, Step 54:
+ * Issue a DMA command to copy context save code
+ * to local storage and start SPU.
+ */
+ send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
+}
+
+static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+
+ /* Save, Step 55:
+ * Restore, Step 38.
+ * Write PPU_QueryMask=1 (enable Tag Group 0)
+ * and issue eieio instruction.
+ */
+ out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
+ eieio();
+}
+
+static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+ u32 mask = MFC_TAGID_TO_TAGMASK(0);
+ unsigned long flags;
+
+ /* Save, Step 56:
+ * Restore, Step 39.
+ * Restore, Step 39.
+ * Restore, Step 46.
+ * Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
+ * or write PPU_QueryType[TS]=01 and wait for Tag Group
+ * Complete Interrupt. Write INT_Stat_Class0 or
+ * INT_Stat_Class2 with value of 'handled'.
+ */
+ POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
+
+ local_irq_save(flags);
+ spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
+ spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
+ local_irq_restore(flags);
+}
+
+static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+ unsigned long flags;
+
+ /* Save, Step 57:
+ * Restore, Step 40.
+ * Poll until SPU_Status[R]=0 or wait for SPU Class 0
+ * or SPU Class 2 interrupt. Write INT_Stat_class0
+ * or INT_Stat_class2 with value of handled.
+ */
+ POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
+
+ local_irq_save(flags);
+ spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
+ spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
+ local_irq_restore(flags);
+}
+
+static inline int check_save_status(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+ u32 complete;
+
+ /* Save, Step 54:
+ * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
+ * context save succeeded, otherwise context save
+ * failed.
+ */
+ complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
+ SPU_STATUS_STOPPED_BY_STOP);
+ return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
+}
+
+static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
+{
+ /* Restore, Step 4:
+ * If required, notify the "using application" that
+ * the SPU task has been terminated. TBD.
+ */
+}
+
+static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
+ struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Restore, Step 7:
+ * Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
+ * the queue and halt the decrementer.
+ */
+ out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
+ MFC_CNTL_DECREMENTER_HALTED);
+ eieio();
+}
+
+static inline void wait_suspend_mfc_complete(struct spu_state *csa,
+ struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Restore, Step 8:
+ * Restore, Step 47.
+ * Poll MFC_CNTL[Ss] until 11 is returned.
+ */
+ POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
+ MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
+ MFC_CNTL_SUSPEND_COMPLETE);
+}
+
+static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+
+ /* Restore, Step 9:
+ * If SPU_Status[R]=1, stop SPU execution
+ * and wait for stop to complete.
+ *
+ * Returns 1 if SPU_Status[R]=1 on entry.
+ * 0 otherwise
+ */
+ if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
+ if (in_be32(&prob->spu_status_R) &
+ SPU_STATUS_ISOLATED_EXIT_STATUS) {
+ POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
+ SPU_STATUS_RUNNING);
+ }
+ if ((in_be32(&prob->spu_status_R) &
+ SPU_STATUS_ISOLATED_LOAD_STATUS)
+ || (in_be32(&prob->spu_status_R) &
+ SPU_STATUS_ISOLATED_STATE)) {
+ out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
+ eieio();
+ POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
+ SPU_STATUS_RUNNING);
+ out_be32(&prob->spu_runcntl_RW, 0x2);
+ eieio();
+ POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
+ SPU_STATUS_RUNNING);
+ }
+ if (in_be32(&prob->spu_status_R) &
+ SPU_STATUS_WAITING_FOR_CHANNEL) {
+ out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
+ eieio();
+ POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
+ SPU_STATUS_RUNNING);
+ }
+ return 1;
+ }
+ return 0;
+}
+
+static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+
+ /* Restore, Step 10:
+ * If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
+ * release SPU from isolate state.
+ */
+ if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
+ if (in_be32(&prob->spu_status_R) &
+ SPU_STATUS_ISOLATED_EXIT_STATUS) {
+ spu_mfc_sr1_set(spu,
+ MFC_STATE1_MASTER_RUN_CONTROL_MASK);
+ eieio();
+ out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
+ eieio();
+ POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
+ SPU_STATUS_RUNNING);
+ }
+ if ((in_be32(&prob->spu_status_R) &
+ SPU_STATUS_ISOLATED_LOAD_STATUS)
+ || (in_be32(&prob->spu_status_R) &
+ SPU_STATUS_ISOLATED_STATE)) {
+ spu_mfc_sr1_set(spu,
+ MFC_STATE1_MASTER_RUN_CONTROL_MASK);
+ eieio();
+ out_be32(&prob->spu_runcntl_RW, 0x2);
+ eieio();
+ POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
+ SPU_STATUS_RUNNING);
+ }
+ }
+}
+
+static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+ u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
+ u64 idx;
+ int i;
+
+ /* Restore, Step 20:
+ */
+
+ /* Reset CH 1 */
+ out_be64(&priv2->spu_chnlcntptr_RW, 1);
+ out_be64(&priv2->spu_chnldata_RW, 0UL);
+
+ /* Reset the following CH: [0,3,4,24,25,27] */
+ for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
+ idx = ch_indices[i];
+ out_be64(&priv2->spu_chnlcntptr_RW, idx);
+ eieio();
+ out_be64(&priv2->spu_chnldata_RW, 0UL);
+ out_be64(&priv2->spu_chnlcnt_RW, 0UL);
+ eieio();
+ }
+}
+
+static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+ u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
+ u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
+ u64 idx;
+ int i;
+
+ /* Restore, Step 21:
+ * Reset the following CH: [21, 23, 28, 29, 30]
+ */
+ for (i = 0; i < 5; i++) {
+ idx = ch_indices[i];
+ out_be64(&priv2->spu_chnlcntptr_RW, idx);
+ eieio();
+ out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
+ eieio();
+ }
+}
+
+static inline void setup_spu_status_part1(struct spu_state *csa,
+ struct spu *spu)
+{
+ u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
+ u32 status_I = SPU_STATUS_INVALID_INSTR;
+ u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
+ u32 status_S = SPU_STATUS_SINGLE_STEP;
+ u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
+ u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
+ u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
+ u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
+ u32 status_code;
+
+ /* Restore, Step 27:
+ * If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
+ * instruction sequence to the end of the SPU based restore
+ * code (after the "context restored" stop and signal) to
+ * restore the correct SPU status.
+ *
+ * NOTE: Rather than modifying the SPU executable, we
+ * instead add a new 'stopped_status' field to the
+ * LSCSA. The SPU-side restore reads this field and
+ * takes the appropriate action when exiting.
+ */
+
+ status_code =
+ (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
+ if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
+
+ /* SPU_Status[P,I]=1 - Illegal Instruction followed
+ * by Stop and Signal instruction, followed by 'br -4'.
+ *
+ */
+ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
+ csa->lscsa->stopped_status.slot[1] = status_code;
+
+ } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
+
+ /* SPU_Status[P,H]=1 - Halt Conditional, followed
+ * by Stop and Signal instruction, followed by
+ * 'br -4'.
+ */
+ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
+ csa->lscsa->stopped_status.slot[1] = status_code;
+
+ } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
+
+ /* SPU_Status[S,P]=1 - Stop and Signal instruction
+ * followed by 'br -4'.
+ */
+ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
+ csa->lscsa->stopped_status.slot[1] = status_code;
+
+ } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
+
+ /* SPU_Status[S,I]=1 - Illegal instruction followed
+ * by 'br -4'.
+ */
+ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
+ csa->lscsa->stopped_status.slot[1] = status_code;
+
+ } else if ((csa->prob.spu_status_R & status_P) == status_P) {
+
+ /* SPU_Status[P]=1 - Stop and Signal instruction
+ * followed by 'br -4'.
+ */
+ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
+ csa->lscsa->stopped_status.slot[1] = status_code;
+
+ } else if ((csa->prob.spu_status_R & status_H) == status_H) {
+
+ /* SPU_Status[H]=1 - Halt Conditional, followed
+ * by 'br -4'.
+ */
+ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
+
+ } else if ((csa->prob.spu_status_R & status_S) == status_S) {
+
+ /* SPU_Status[S]=1 - Two nop instructions.
+ */
+ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
+
+ } else if ((csa->prob.spu_status_R & status_I) == status_I) {
+
+ /* SPU_Status[I]=1 - Illegal instruction followed
+ * by 'br -4'.
+ */
+ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
+
+ }
+}
+
+static inline void setup_spu_status_part2(struct spu_state *csa,
+ struct spu *spu)
+{
+ u32 mask;
+
+ /* Restore, Step 28:
+ * If the CSA.SPU_Status[I,S,H,P,R]=0 then
+ * add a 'br *' instruction to the end of
+ * the SPU based restore code.
+ *
+ * NOTE: Rather than modifying the SPU executable, we
+ * instead add a new 'stopped_status' field to the
+ * LSCSA. The SPU-side restore reads this field and
+ * takes the appropriate action when exiting.
+ */
+ mask = SPU_STATUS_INVALID_INSTR |
+ SPU_STATUS_SINGLE_STEP |
+ SPU_STATUS_STOPPED_BY_HALT |
+ SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
+ if (!(csa->prob.spu_status_R & mask)) {
+ csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
+ }
+}
+
+static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
+{
+ /* Restore, Step 29:
+ * Restore RA_GROUP_ID register and the
+ * RA_ENABLE reigster from the CSA.
+ */
+ spu_resource_allocation_groupID_set(spu,
+ csa->priv1.resource_allocation_groupID_RW);
+ spu_resource_allocation_enable_set(spu,
+ csa->priv1.resource_allocation_enable_RW);
+}
+
+static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
+{
+ unsigned long addr = (unsigned long)&spu_restore_code[0];
+ unsigned int ls_offset = 0x0;
+ unsigned int size = sizeof(spu_restore_code);
+ unsigned int tag = 0;
+ unsigned int rclass = 0;
+ unsigned int cmd = MFC_GETFS_CMD;
+
+ /* Restore, Step 37:
+ * Issue MFC DMA command to copy context
+ * restore code to local storage.
+ */
+ send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
+}
+
+static inline void setup_decr(struct spu_state *csa, struct spu *spu)
+{
+ /* Restore, Step 34:
+ * If CSA.MFC_CNTL[Ds]=1 (decrementer was
+ * running) then adjust decrementer, set
+ * decrementer running status in LSCSA,
+ * and set decrementer "wrapped" status
+ * in LSCSA.
+ */
+ if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
+ cycles_t resume_time = get_cycles();
+ cycles_t delta_time = resume_time - csa->suspend_time;
+
+ csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
+ if (csa->lscsa->decr.slot[0] < delta_time) {
+ csa->lscsa->decr_status.slot[0] |=
+ SPU_DECR_STATUS_WRAPPED;
+ }
+
+ csa->lscsa->decr.slot[0] -= delta_time;
+ } else {
+ csa->lscsa->decr_status.slot[0] = 0;
+ }
+}
+
+static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
+{
+ /* Restore, Step 35:
+ * Copy the CSA.PU_MB data into the LSCSA.
+ */
+ csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
+}
+
+static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
+{
+ /* Restore, Step 36:
+ * Copy the CSA.PUINT_MB data into the LSCSA.
+ */
+ csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
+}
+
+static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+ u32 complete;
+
+ /* Restore, Step 40:
+ * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
+ * context restore succeeded, otherwise context restore
+ * failed.
+ */
+ complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
+ SPU_STATUS_STOPPED_BY_STOP);
+ return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
+}
+
+static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Restore, Step 41:
+ * Restore SPU_PrivCntl from the CSA.
+ */
+ out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
+ eieio();
+}
+
+static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+ u32 mask;
+
+ /* Restore, Step 42:
+ * If any CSA.SPU_Status[I,S,H,P]=1, then
+ * restore the error or single step state.
+ */
+ mask = SPU_STATUS_INVALID_INSTR |
+ SPU_STATUS_SINGLE_STEP |
+ SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
+ if (csa->prob.spu_status_R & mask) {
+ out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
+ eieio();
+ POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
+ SPU_STATUS_RUNNING);
+ }
+}
+
+static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+ u32 mask;
+
+ /* Restore, Step 43:
+ * If all CSA.SPU_Status[I,S,H,P,R]=0 then write
+ * SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
+ * then write '00' to SPU_RunCntl[R0R1] and wait
+ * for SPU_Status[R]=0.
+ */
+ mask = SPU_STATUS_INVALID_INSTR |
+ SPU_STATUS_SINGLE_STEP |
+ SPU_STATUS_STOPPED_BY_HALT |
+ SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
+ if (!(csa->prob.spu_status_R & mask)) {
+ out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
+ eieio();
+ POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
+ SPU_STATUS_RUNNING);
+ out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
+ eieio();
+ POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
+ SPU_STATUS_RUNNING);
+ }
+}
+
+static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
+{
+ unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
+ unsigned int ls_offset = 0x0;
+ unsigned int size = 16384;
+ unsigned int tag = 0;
+ unsigned int rclass = 0;
+ unsigned int cmd = MFC_GET_CMD;
+
+ /* Restore, Step 44:
+ * Issue a DMA command to restore the first
+ * 16kb of local storage from CSA.
+ */
+ send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
+}
+
+static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Restore, Step 47.
+ * Write MFC_Cntl[Sc,Sm]='1','0' to suspend
+ * the queue.
+ */
+ out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
+ eieio();
+}
+
+static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
+{
+ /* Restore, Step 49:
+ * Write INT_MASK_class0 with value of 0.
+ * Write INT_MASK_class1 with value of 0.
+ * Write INT_MASK_class2 with value of 0.
+ * Write INT_STAT_class0 with value of -1.
+ * Write INT_STAT_class1 with value of -1.
+ * Write INT_STAT_class2 with value of -1.
+ */
+ spin_lock_irq(&spu->register_lock);
+ spu_int_mask_set(spu, 0, 0ul);
+ spu_int_mask_set(spu, 1, 0ul);
+ spu_int_mask_set(spu, 2, 0ul);
+ spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
+ spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
+ spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
+ spin_unlock_irq(&spu->register_lock);
+}
+
+static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+ int i;
+
+ /* Restore, Step 50:
+ * If MFC_Cntl[Se]!=0 then restore
+ * MFC command queues.
+ */
+ if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
+ for (i = 0; i < 8; i++) {
+ out_be64(&priv2->puq[i].mfc_cq_data0_RW,
+ csa->priv2.puq[i].mfc_cq_data0_RW);
+ out_be64(&priv2->puq[i].mfc_cq_data1_RW,
+ csa->priv2.puq[i].mfc_cq_data1_RW);
+ out_be64(&priv2->puq[i].mfc_cq_data2_RW,
+ csa->priv2.puq[i].mfc_cq_data2_RW);
+ out_be64(&priv2->puq[i].mfc_cq_data3_RW,
+ csa->priv2.puq[i].mfc_cq_data3_RW);
+ }
+ for (i = 0; i < 16; i++) {
+ out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
+ csa->priv2.spuq[i].mfc_cq_data0_RW);
+ out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
+ csa->priv2.spuq[i].mfc_cq_data1_RW);
+ out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
+ csa->priv2.spuq[i].mfc_cq_data2_RW);
+ out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
+ csa->priv2.spuq[i].mfc_cq_data3_RW);
+ }
+ }
+ eieio();
+}
+
+static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+
+ /* Restore, Step 51:
+ * Restore the PPU_QueryMask register from CSA.
+ */
+ out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
+ eieio();
+}
+
+static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+
+ /* Restore, Step 52:
+ * Restore the PPU_QueryType register from CSA.
+ */
+ out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
+ eieio();
+}
+
+static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Restore, Step 53:
+ * Restore the MFC_CSR_TSQ register from CSA.
+ */
+ out_be64(&priv2->spu_tag_status_query_RW,
+ csa->priv2.spu_tag_status_query_RW);
+ eieio();
+}
+
+static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Restore, Step 54:
+ * Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
+ * registers from CSA.
+ */
+ out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
+ out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
+ eieio();
+}
+
+static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Restore, Step 55:
+ * Restore the MFC_CSR_ATO register from CSA.
+ */
+ out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
+}
+
+static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
+{
+ /* Restore, Step 56:
+ * Restore the MFC_TCLASS_ID register from CSA.
+ */
+ spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
+ eieio();
+}
+
+static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
+{
+ u64 ch0_cnt, ch0_data;
+ u64 ch1_data;
+
+ /* Restore, Step 57:
+ * Set the Lock Line Reservation Lost Event by:
+ * 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
+ * 2. If CSA.SPU_Channel_0_Count=0 and
+ * CSA.SPU_Wr_Event_Mask[Lr]=1 and
+ * CSA.SPU_Event_Status[Lr]=0 then set
+ * CSA.SPU_Event_Status_Count=1.
+ */
+ ch0_cnt = csa->spu_chnlcnt_RW[0];
+ ch0_data = csa->spu_chnldata_RW[0];
+ ch1_data = csa->spu_chnldata_RW[1];
+ csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
+ if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
+ (ch1_data & MFC_LLR_LOST_EVENT)) {
+ csa->spu_chnlcnt_RW[0] = 1;
+ }
+}
+
+static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
+{
+ /* Restore, Step 58:
+ * If the status of the CSA software decrementer
+ * "wrapped" flag is set, OR in a '1' to
+ * CSA.SPU_Event_Status[Tm].
+ */
+ if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
+ return;
+
+ if ((csa->spu_chnlcnt_RW[0] == 0) &&
+ (csa->spu_chnldata_RW[1] & 0x20) &&
+ !(csa->spu_chnldata_RW[0] & 0x20))
+ csa->spu_chnlcnt_RW[0] = 1;
+
+ csa->spu_chnldata_RW[0] |= 0x20;
+}
+
+static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+ u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
+ int i;
+
+ /* Restore, Step 59:
+ * Restore the following CH: [0,3,4,24,25,27]
+ */
+ for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
+ idx = ch_indices[i];
+ out_be64(&priv2->spu_chnlcntptr_RW, idx);
+ eieio();
+ out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
+ out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
+ eieio();
+ }
+}
+
+static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+ u64 ch_indices[3] = { 9UL, 21UL, 23UL };
+ u64 ch_counts[3] = { 1UL, 16UL, 1UL };
+ u64 idx;
+ int i;
+
+ /* Restore, Step 60:
+ * Restore the following CH: [9,21,23].
+ */
+ ch_counts[0] = 1UL;
+ ch_counts[1] = csa->spu_chnlcnt_RW[21];
+ ch_counts[2] = 1UL;
+ for (i = 0; i < 3; i++) {
+ idx = ch_indices[i];
+ out_be64(&priv2->spu_chnlcntptr_RW, idx);
+ eieio();
+ out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
+ eieio();
+ }
+}
+
+static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Restore, Step 61:
+ * Restore the SPU_LSLR register from CSA.
+ */
+ out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
+ eieio();
+}
+
+static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Restore, Step 62:
+ * Restore the SPU_Cfg register from CSA.
+ */
+ out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
+ eieio();
+}
+
+static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
+{
+ /* Restore, Step 63:
+ * Restore PM_Trace_Tag_Wait_Mask from CSA.
+ * Not performed by this implementation.
+ */
+}
+
+static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+
+ /* Restore, Step 64:
+ * Restore SPU_NPC from CSA.
+ */
+ out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
+ eieio();
+}
+
+static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+ int i;
+
+ /* Restore, Step 65:
+ * Restore MFC_RdSPU_MB from CSA.
+ */
+ out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
+ eieio();
+ out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
+ for (i = 0; i < 4; i++) {
+ out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
+ }
+ eieio();
+}
+
+static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+ u32 dummy = 0;
+
+ /* Restore, Step 66:
+ * If CSA.MB_Stat[P]=0 (mailbox empty) then
+ * read from the PPU_MB register.
+ */
+ if ((csa->prob.mb_stat_R & 0xFF) == 0) {
+ dummy = in_be32(&prob->pu_mb_R);
+ eieio();
+ }
+}
+
+static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+ u64 dummy = 0UL;
+
+ /* Restore, Step 66:
+ * If CSA.MB_Stat[I]=0 (mailbox empty) then
+ * read from the PPUINT_MB register.
+ */
+ if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
+ dummy = in_be64(&priv2->puint_mb_R);
+ eieio();
+ spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
+ eieio();
+ }
+}
+
+static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
+{
+ /* Restore, Step 69:
+ * Restore the MFC_SR1 register from CSA.
+ */
+ spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
+ eieio();
+}
+
+static inline void set_int_route(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_context *ctx = spu->ctx;
+
+ spu_cpu_affinity_set(spu, ctx->last_ran);
+}
+
+static inline void restore_other_spu_access(struct spu_state *csa,
+ struct spu *spu)
+{
+ /* Restore, Step 70:
+ * Restore other SPU mappings to this SPU. TBD.
+ */
+}
+
+static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+
+ /* Restore, Step 71:
+ * If CSA.SPU_Status[R]=1 then write
+ * SPU_RunCntl[R0R1]='01'.
+ */
+ if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
+ out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
+ eieio();
+ }
+}
+
+static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
+{
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Restore, Step 72:
+ * Restore the MFC_CNTL register for the CSA.
+ */
+ out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
+ eieio();
+
+ /*
+ * The queue is put back into the same state that was evident prior to
+ * the context switch. The suspend flag is added to the saved state in
+ * the csa, if the operational state was suspending or suspended. In
+ * this case, the code that suspended the mfc is responsible for
+ * continuing it. Note that SPE faults do not change the operational
+ * state of the spu.
+ */
+}
+
+static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
+{
+ /* Restore, Step 73:
+ * Enable user-space access (if provided) to this
+ * SPU by mapping the virtual pages assigned to
+ * the SPU memory-mapped I/O (MMIO) for problem
+ * state. TBD.
+ */
+}
+
+static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
+{
+ /* Restore, Step 74:
+ * Reset the "context switch active" flag.
+ * Not performed by this implementation.
+ */
+}
+
+static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
+{
+ /* Restore, Step 75:
+ * Re-enable SPU interrupts.
+ */
+ spin_lock_irq(&spu->register_lock);
+ spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
+ spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
+ spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
+ spin_unlock_irq(&spu->register_lock);
+}
+
+static int quiece_spu(struct spu_state *prev, struct spu *spu)
+{
+ /*
+ * Combined steps 2-18 of SPU context save sequence, which
+ * quiesce the SPU state (disable SPU execution, MFC command
+ * queues, decrementer, SPU interrupts, etc.).
+ *
+ * Returns 0 on success.
+ * 2 if failed step 2.
+ * 6 if failed step 6.
+ */
+
+ if (check_spu_isolate(prev, spu)) { /* Step 2. */
+ return 2;
+ }
+ disable_interrupts(prev, spu); /* Step 3. */
+ set_watchdog_timer(prev, spu); /* Step 4. */
+ inhibit_user_access(prev, spu); /* Step 5. */
+ if (check_spu_isolate(prev, spu)) { /* Step 6. */
+ return 6;
+ }
+ set_switch_pending(prev, spu); /* Step 7. */
+ save_mfc_cntl(prev, spu); /* Step 8. */
+ save_spu_runcntl(prev, spu); /* Step 9. */
+ save_mfc_sr1(prev, spu); /* Step 10. */
+ save_spu_status(prev, spu); /* Step 11. */
+ save_mfc_stopped_status(prev, spu); /* Step 12. */
+ halt_mfc_decr(prev, spu); /* Step 13. */
+ save_timebase(prev, spu); /* Step 14. */
+ remove_other_spu_access(prev, spu); /* Step 15. */
+ do_mfc_mssync(prev, spu); /* Step 16. */
+ issue_mfc_tlbie(prev, spu); /* Step 17. */
+ handle_pending_interrupts(prev, spu); /* Step 18. */
+
+ return 0;
+}
+
+static void save_csa(struct spu_state *prev, struct spu *spu)
+{
+ /*
+ * Combine steps 19-44 of SPU context save sequence, which
+ * save regions of the privileged & problem state areas.
+ */
+
+ save_mfc_queues(prev, spu); /* Step 19. */
+ save_ppu_querymask(prev, spu); /* Step 20. */
+ save_ppu_querytype(prev, spu); /* Step 21. */
+ save_ppu_tagstatus(prev, spu); /* NEW. */
+ save_mfc_csr_tsq(prev, spu); /* Step 22. */
+ save_mfc_csr_cmd(prev, spu); /* Step 23. */
+ save_mfc_csr_ato(prev, spu); /* Step 24. */
+ save_mfc_tclass_id(prev, spu); /* Step 25. */
+ set_mfc_tclass_id(prev, spu); /* Step 26. */
+ save_mfc_cmd(prev, spu); /* Step 26a - moved from 44. */
+ purge_mfc_queue(prev, spu); /* Step 27. */
+ wait_purge_complete(prev, spu); /* Step 28. */
+ setup_mfc_sr1(prev, spu); /* Step 30. */
+ save_spu_npc(prev, spu); /* Step 31. */
+ save_spu_privcntl(prev, spu); /* Step 32. */
+ reset_spu_privcntl(prev, spu); /* Step 33. */
+ save_spu_lslr(prev, spu); /* Step 34. */
+ reset_spu_lslr(prev, spu); /* Step 35. */
+ save_spu_cfg(prev, spu); /* Step 36. */
+ save_pm_trace(prev, spu); /* Step 37. */
+ save_mfc_rag(prev, spu); /* Step 38. */
+ save_ppu_mb_stat(prev, spu); /* Step 39. */
+ save_ppu_mb(prev, spu); /* Step 40. */
+ save_ppuint_mb(prev, spu); /* Step 41. */
+ save_ch_part1(prev, spu); /* Step 42. */
+ save_spu_mb(prev, spu); /* Step 43. */
+ reset_ch(prev, spu); /* Step 45. */
+}
+
+static void save_lscsa(struct spu_state *prev, struct spu *spu)
+{
+ /*
+ * Perform steps 46-57 of SPU context save sequence,
+ * which save regions of the local store and register
+ * file.
+ */
+
+ resume_mfc_queue(prev, spu); /* Step 46. */
+ /* Step 47. */
+ setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
+ set_switch_active(prev, spu); /* Step 48. */
+ enable_interrupts(prev, spu); /* Step 49. */
+ save_ls_16kb(prev, spu); /* Step 50. */
+ set_spu_npc(prev, spu); /* Step 51. */
+ set_signot1(prev, spu); /* Step 52. */
+ set_signot2(prev, spu); /* Step 53. */
+ send_save_code(prev, spu); /* Step 54. */
+ set_ppu_querymask(prev, spu); /* Step 55. */
+ wait_tag_complete(prev, spu); /* Step 56. */
+ wait_spu_stopped(prev, spu); /* Step 57. */
+}
+
+static void force_spu_isolate_exit(struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+ struct spu_priv2 __iomem *priv2 = spu->priv2;
+
+ /* Stop SPE execution and wait for completion. */
+ out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
+ iobarrier_rw();
+ POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
+
+ /* Restart SPE master runcntl. */
+ spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
+ iobarrier_w();
+
+ /* Initiate isolate exit request and wait for completion. */
+ out_be64(&priv2->spu_privcntl_RW, 4LL);
+ iobarrier_w();
+ out_be32(&prob->spu_runcntl_RW, 2);
+ iobarrier_rw();
+ POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
+ & SPU_STATUS_STOPPED_BY_STOP));
+
+ /* Reset load request to normal. */
+ out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
+ iobarrier_w();
+}
+
+/**
+ * stop_spu_isolate
+ * Check SPU run-control state and force isolated
+ * exit function as necessary.
+ */
+static void stop_spu_isolate(struct spu *spu)
+{
+ struct spu_problem __iomem *prob = spu->problem;
+
+ if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
+ /* The SPU is in isolated state; the only way
+ * to get it out is to perform an isolated
+ * exit (clean) operation.
+ */
+ force_spu_isolate_exit(spu);
+ }
+}
+
+static void harvest(struct spu_state *prev, struct spu *spu)
+{
+ /*
+ * Perform steps 2-25 of SPU context restore sequence,
+ * which resets an SPU either after a failed save, or
+ * when using SPU for first time.
+ */
+
+ disable_interrupts(prev, spu); /* Step 2. */
+ inhibit_user_access(prev, spu); /* Step 3. */
+ terminate_spu_app(prev, spu); /* Step 4. */
+ set_switch_pending(prev, spu); /* Step 5. */
+ stop_spu_isolate(spu); /* NEW. */
+ remove_other_spu_access(prev, spu); /* Step 6. */
+ suspend_mfc_and_halt_decr(prev, spu); /* Step 7. */
+ wait_suspend_mfc_complete(prev, spu); /* Step 8. */
+ if (!suspend_spe(prev, spu)) /* Step 9. */
+ clear_spu_status(prev, spu); /* Step 10. */
+ do_mfc_mssync(prev, spu); /* Step 11. */
+ issue_mfc_tlbie(prev, spu); /* Step 12. */
+ handle_pending_interrupts(prev, spu); /* Step 13. */
+ purge_mfc_queue(prev, spu); /* Step 14. */
+ wait_purge_complete(prev, spu); /* Step 15. */
+ reset_spu_privcntl(prev, spu); /* Step 16. */
+ reset_spu_lslr(prev, spu); /* Step 17. */
+ setup_mfc_sr1(prev, spu); /* Step 18. */
+ spu_invalidate_slbs(spu); /* Step 19. */
+ reset_ch_part1(prev, spu); /* Step 20. */
+ reset_ch_part2(prev, spu); /* Step 21. */
+ enable_interrupts(prev, spu); /* Step 22. */
+ set_switch_active(prev, spu); /* Step 23. */
+ set_mfc_tclass_id(prev, spu); /* Step 24. */
+ resume_mfc_queue(prev, spu); /* Step 25. */
+}
+
+static void restore_lscsa(struct spu_state *next, struct spu *spu)
+{
+ /*
+ * Perform steps 26-40 of SPU context restore sequence,
+ * which restores regions of the local store and register
+ * file.
+ */
+
+ set_watchdog_timer(next, spu); /* Step 26. */
+ setup_spu_status_part1(next, spu); /* Step 27. */
+ setup_spu_status_part2(next, spu); /* Step 28. */
+ restore_mfc_rag(next, spu); /* Step 29. */
+ /* Step 30. */
+ setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
+ set_spu_npc(next, spu); /* Step 31. */
+ set_signot1(next, spu); /* Step 32. */
+ set_signot2(next, spu); /* Step 33. */
+ setup_decr(next, spu); /* Step 34. */
+ setup_ppu_mb(next, spu); /* Step 35. */
+ setup_ppuint_mb(next, spu); /* Step 36. */
+ send_restore_code(next, spu); /* Step 37. */
+ set_ppu_querymask(next, spu); /* Step 38. */
+ wait_tag_complete(next, spu); /* Step 39. */
+ wait_spu_stopped(next, spu); /* Step 40. */
+}
+
+static void restore_csa(struct spu_state *next, struct spu *spu)
+{
+ /*
+ * Combine steps 41-76 of SPU context restore sequence, which
+ * restore regions of the privileged & problem state areas.
+ */
+
+ restore_spu_privcntl(next, spu); /* Step 41. */
+ restore_status_part1(next, spu); /* Step 42. */
+ restore_status_part2(next, spu); /* Step 43. */
+ restore_ls_16kb(next, spu); /* Step 44. */
+ wait_tag_complete(next, spu); /* Step 45. */
+ suspend_mfc(next, spu); /* Step 46. */
+ wait_suspend_mfc_complete(next, spu); /* Step 47. */
+ issue_mfc_tlbie(next, spu); /* Step 48. */
+ clear_interrupts(next, spu); /* Step 49. */
+ restore_mfc_queues(next, spu); /* Step 50. */
+ restore_ppu_querymask(next, spu); /* Step 51. */
+ restore_ppu_querytype(next, spu); /* Step 52. */
+ restore_mfc_csr_tsq(next, spu); /* Step 53. */
+ restore_mfc_csr_cmd(next, spu); /* Step 54. */
+ restore_mfc_csr_ato(next, spu); /* Step 55. */
+ restore_mfc_tclass_id(next, spu); /* Step 56. */
+ set_llr_event(next, spu); /* Step 57. */
+ restore_decr_wrapped(next, spu); /* Step 58. */
+ restore_ch_part1(next, spu); /* Step 59. */
+ restore_ch_part2(next, spu); /* Step 60. */
+ restore_spu_lslr(next, spu); /* Step 61. */
+ restore_spu_cfg(next, spu); /* Step 62. */
+ restore_pm_trace(next, spu); /* Step 63. */
+ restore_spu_npc(next, spu); /* Step 64. */
+ restore_spu_mb(next, spu); /* Step 65. */
+ check_ppu_mb_stat(next, spu); /* Step 66. */
+ check_ppuint_mb_stat(next, spu); /* Step 67. */
+ spu_invalidate_slbs(spu); /* Modified Step 68. */
+ restore_mfc_sr1(next, spu); /* Step 69. */
+ set_int_route(next, spu); /* NEW */
+ restore_other_spu_access(next, spu); /* Step 70. */
+ restore_spu_runcntl(next, spu); /* Step 71. */
+ restore_mfc_cntl(next, spu); /* Step 72. */
+ enable_user_access(next, spu); /* Step 73. */
+ reset_switch_active(next, spu); /* Step 74. */
+ reenable_interrupts(next, spu); /* Step 75. */
+}
+
+static int __do_spu_save(struct spu_state *prev, struct spu *spu)
+{
+ int rc;
+
+ /*
+ * SPU context save can be broken into three phases:
+ *
+ * (a) quiesce [steps 2-16].
+ * (b) save of CSA, performed by PPE [steps 17-42]
+ * (c) save of LSCSA, mostly performed by SPU [steps 43-52].
+ *
+ * Returns 0 on success.
+ * 2,6 if failed to quiece SPU
+ * 53 if SPU-side of save failed.
+ */
+
+ rc = quiece_spu(prev, spu); /* Steps 2-16. */
+ switch (rc) {
+ default:
+ case 2:
+ case 6:
+ harvest(prev, spu);
+ return rc;
+ break;
+ case 0:
+ break;
+ }
+ save_csa(prev, spu); /* Steps 17-43. */
+ save_lscsa(prev, spu); /* Steps 44-53. */
+ return check_save_status(prev, spu); /* Step 54. */
+}
+
+static int __do_spu_restore(struct spu_state *next, struct spu *spu)
+{
+ int rc;
+
+ /*
+ * SPU context restore can be broken into three phases:
+ *
+ * (a) harvest (or reset) SPU [steps 2-24].
+ * (b) restore LSCSA [steps 25-40], mostly performed by SPU.
+ * (c) restore CSA [steps 41-76], performed by PPE.
+ *
+ * The 'harvest' step is not performed here, but rather
+ * as needed below.
+ */
+
+ restore_lscsa(next, spu); /* Steps 24-39. */
+ rc = check_restore_status(next, spu); /* Step 40. */
+ switch (rc) {
+ default:
+ /* Failed. Return now. */
+ return rc;
+ break;
+ case 0:
+ /* Fall through to next step. */
+ break;
+ }
+ restore_csa(next, spu);
+
+ return 0;
+}
+
+/**
+ * spu_save - SPU context save, with locking.
+ * @prev: pointer to SPU context save area, to be saved.
+ * @spu: pointer to SPU iomem structure.
+ *
+ * Acquire locks, perform the save operation then return.
+ */
+int spu_save(struct spu_state *prev, struct spu *spu)
+{
+ int rc;
+
+ acquire_spu_lock(spu); /* Step 1. */
+ rc = __do_spu_save(prev, spu); /* Steps 2-53. */
+ release_spu_lock(spu);
+ if (rc != 0 && rc != 2 && rc != 6) {
+ panic("%s failed on SPU[%d], rc=%d.\n",
+ __func__, spu->number, rc);
+ }
+ return 0;
+}
+EXPORT_SYMBOL_GPL(spu_save);
+
+/**
+ * spu_restore - SPU context restore, with harvest and locking.
+ * @new: pointer to SPU context save area, to be restored.
+ * @spu: pointer to SPU iomem structure.
+ *
+ * Perform harvest + restore, as we may not be coming
+ * from a previous successful save operation, and the
+ * hardware state is unknown.
+ */
+int spu_restore(struct spu_state *new, struct spu *spu)
+{
+ int rc;
+
+ acquire_spu_lock(spu);
+ harvest(NULL, spu);
+ spu->slb_replace = 0;
+ rc = __do_spu_restore(new, spu);
+ release_spu_lock(spu);
+ if (rc) {
+ panic("%s failed on SPU[%d] rc=%d.\n",
+ __func__, spu->number, rc);
+ }
+ return rc;
+}
+EXPORT_SYMBOL_GPL(spu_restore);
+
+static void init_prob(struct spu_state *csa)
+{
+ csa->spu_chnlcnt_RW[9] = 1;
+ csa->spu_chnlcnt_RW[21] = 16;
+ csa->spu_chnlcnt_RW[23] = 1;
+ csa->spu_chnlcnt_RW[28] = 1;
+ csa->spu_chnlcnt_RW[30] = 1;
+ csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
+ csa->prob.mb_stat_R = 0x000400;
+}
+
+static void init_priv1(struct spu_state *csa)
+{
+ /* Enable decode, relocate, tlbie response, master runcntl. */
+ csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
+ MFC_STATE1_MASTER_RUN_CONTROL_MASK |
+ MFC_STATE1_PROBLEM_STATE_MASK |
+ MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
+
+ /* Enable OS-specific set of interrupts. */
+ csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
+ CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
+ CLASS0_ENABLE_SPU_ERROR_INTR;
+ csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
+ CLASS1_ENABLE_STORAGE_FAULT_INTR;
+ csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
+ CLASS2_ENABLE_SPU_HALT_INTR |
+ CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
+}
+
+static void init_priv2(struct spu_state *csa)
+{
+ csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
+ csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
+ MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
+ MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
+}
+
+/**
+ * spu_alloc_csa - allocate and initialize an SPU context save area.
+ *
+ * Allocate and initialize the contents of an SPU context save area.
+ * This includes enabling address translation, interrupt masks, etc.,
+ * as appropriate for the given OS environment.
+ *
+ * Note that storage for the 'lscsa' is allocated separately,
+ * as it is by far the largest of the context save regions,
+ * and may need to be pinned or otherwise specially aligned.
+ */
+int spu_init_csa(struct spu_state *csa)
+{
+ int rc;
+
+ if (!csa)
+ return -EINVAL;
+ memset(csa, 0, sizeof(struct spu_state));
+
+ rc = spu_alloc_lscsa(csa);
+ if (rc)
+ return rc;
+
+ spin_lock_init(&csa->register_lock);
+
+ init_prob(csa);
+ init_priv1(csa);
+ init_priv2(csa);
+
+ return 0;
+}
+
+void spu_fini_csa(struct spu_state *csa)
+{
+ spu_free_lscsa(csa);
+}