summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/alternative.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--arch/x86/kernel/alternative.c1732
1 files changed, 1732 insertions, 0 deletions
diff --git a/arch/x86/kernel/alternative.c b/arch/x86/kernel/alternative.c
new file mode 100644
index 000000000..9e0a3daa8
--- /dev/null
+++ b/arch/x86/kernel/alternative.c
@@ -0,0 +1,1732 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#define pr_fmt(fmt) "SMP alternatives: " fmt
+
+#include <linux/module.h>
+#include <linux/sched.h>
+#include <linux/perf_event.h>
+#include <linux/mutex.h>
+#include <linux/list.h>
+#include <linux/stringify.h>
+#include <linux/highmem.h>
+#include <linux/mm.h>
+#include <linux/vmalloc.h>
+#include <linux/memory.h>
+#include <linux/stop_machine.h>
+#include <linux/slab.h>
+#include <linux/kdebug.h>
+#include <linux/kprobes.h>
+#include <linux/mmu_context.h>
+#include <linux/bsearch.h>
+#include <linux/sync_core.h>
+#include <asm/text-patching.h>
+#include <asm/alternative.h>
+#include <asm/sections.h>
+#include <asm/mce.h>
+#include <asm/nmi.h>
+#include <asm/cacheflush.h>
+#include <asm/tlbflush.h>
+#include <asm/insn.h>
+#include <asm/io.h>
+#include <asm/fixmap.h>
+#include <asm/asm-prototypes.h>
+
+int __read_mostly alternatives_patched;
+
+EXPORT_SYMBOL_GPL(alternatives_patched);
+
+#define MAX_PATCH_LEN (255-1)
+
+static int __initdata_or_module debug_alternative;
+
+static int __init debug_alt(char *str)
+{
+ debug_alternative = 1;
+ return 1;
+}
+__setup("debug-alternative", debug_alt);
+
+static int noreplace_smp;
+
+static int __init setup_noreplace_smp(char *str)
+{
+ noreplace_smp = 1;
+ return 1;
+}
+__setup("noreplace-smp", setup_noreplace_smp);
+
+#define DPRINTK(fmt, args...) \
+do { \
+ if (debug_alternative) \
+ printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \
+} while (0)
+
+#define DUMP_BYTES(buf, len, fmt, args...) \
+do { \
+ if (unlikely(debug_alternative)) { \
+ int j; \
+ \
+ if (!(len)) \
+ break; \
+ \
+ printk(KERN_DEBUG pr_fmt(fmt), ##args); \
+ for (j = 0; j < (len) - 1; j++) \
+ printk(KERN_CONT "%02hhx ", buf[j]); \
+ printk(KERN_CONT "%02hhx\n", buf[j]); \
+ } \
+} while (0)
+
+/*
+ * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
+ * that correspond to that nop. Getting from one nop to the next, we
+ * add to the array the offset that is equal to the sum of all sizes of
+ * nops preceding the one we are after.
+ *
+ * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
+ * nice symmetry of sizes of the previous nops.
+ */
+#if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
+static const unsigned char intelnops[] =
+{
+ GENERIC_NOP1,
+ GENERIC_NOP2,
+ GENERIC_NOP3,
+ GENERIC_NOP4,
+ GENERIC_NOP5,
+ GENERIC_NOP6,
+ GENERIC_NOP7,
+ GENERIC_NOP8,
+ GENERIC_NOP5_ATOMIC
+};
+static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
+{
+ NULL,
+ intelnops,
+ intelnops + 1,
+ intelnops + 1 + 2,
+ intelnops + 1 + 2 + 3,
+ intelnops + 1 + 2 + 3 + 4,
+ intelnops + 1 + 2 + 3 + 4 + 5,
+ intelnops + 1 + 2 + 3 + 4 + 5 + 6,
+ intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
+ intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
+};
+#endif
+
+#ifdef K8_NOP1
+static const unsigned char k8nops[] =
+{
+ K8_NOP1,
+ K8_NOP2,
+ K8_NOP3,
+ K8_NOP4,
+ K8_NOP5,
+ K8_NOP6,
+ K8_NOP7,
+ K8_NOP8,
+ K8_NOP5_ATOMIC
+};
+static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
+{
+ NULL,
+ k8nops,
+ k8nops + 1,
+ k8nops + 1 + 2,
+ k8nops + 1 + 2 + 3,
+ k8nops + 1 + 2 + 3 + 4,
+ k8nops + 1 + 2 + 3 + 4 + 5,
+ k8nops + 1 + 2 + 3 + 4 + 5 + 6,
+ k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
+ k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
+};
+#endif
+
+#if defined(K7_NOP1) && !defined(CONFIG_X86_64)
+static const unsigned char k7nops[] =
+{
+ K7_NOP1,
+ K7_NOP2,
+ K7_NOP3,
+ K7_NOP4,
+ K7_NOP5,
+ K7_NOP6,
+ K7_NOP7,
+ K7_NOP8,
+ K7_NOP5_ATOMIC
+};
+static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
+{
+ NULL,
+ k7nops,
+ k7nops + 1,
+ k7nops + 1 + 2,
+ k7nops + 1 + 2 + 3,
+ k7nops + 1 + 2 + 3 + 4,
+ k7nops + 1 + 2 + 3 + 4 + 5,
+ k7nops + 1 + 2 + 3 + 4 + 5 + 6,
+ k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
+ k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
+};
+#endif
+
+#ifdef P6_NOP1
+static const unsigned char p6nops[] =
+{
+ P6_NOP1,
+ P6_NOP2,
+ P6_NOP3,
+ P6_NOP4,
+ P6_NOP5,
+ P6_NOP6,
+ P6_NOP7,
+ P6_NOP8,
+ P6_NOP5_ATOMIC
+};
+static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
+{
+ NULL,
+ p6nops,
+ p6nops + 1,
+ p6nops + 1 + 2,
+ p6nops + 1 + 2 + 3,
+ p6nops + 1 + 2 + 3 + 4,
+ p6nops + 1 + 2 + 3 + 4 + 5,
+ p6nops + 1 + 2 + 3 + 4 + 5 + 6,
+ p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
+ p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
+};
+#endif
+
+/* Initialize these to a safe default */
+#ifdef CONFIG_X86_64
+const unsigned char * const *ideal_nops = p6_nops;
+#else
+const unsigned char * const *ideal_nops = intel_nops;
+#endif
+
+void __init arch_init_ideal_nops(void)
+{
+ switch (boot_cpu_data.x86_vendor) {
+ case X86_VENDOR_INTEL:
+ /*
+ * Due to a decoder implementation quirk, some
+ * specific Intel CPUs actually perform better with
+ * the "k8_nops" than with the SDM-recommended NOPs.
+ */
+ if (boot_cpu_data.x86 == 6 &&
+ boot_cpu_data.x86_model >= 0x0f &&
+ boot_cpu_data.x86_model != 0x1c &&
+ boot_cpu_data.x86_model != 0x26 &&
+ boot_cpu_data.x86_model != 0x27 &&
+ boot_cpu_data.x86_model < 0x30) {
+ ideal_nops = k8_nops;
+ } else if (boot_cpu_has(X86_FEATURE_NOPL)) {
+ ideal_nops = p6_nops;
+ } else {
+#ifdef CONFIG_X86_64
+ ideal_nops = k8_nops;
+#else
+ ideal_nops = intel_nops;
+#endif
+ }
+ break;
+
+ case X86_VENDOR_HYGON:
+ ideal_nops = p6_nops;
+ return;
+
+ case X86_VENDOR_AMD:
+ if (boot_cpu_data.x86 > 0xf) {
+ ideal_nops = p6_nops;
+ return;
+ }
+
+ fallthrough;
+
+ default:
+#ifdef CONFIG_X86_64
+ ideal_nops = k8_nops;
+#else
+ if (boot_cpu_has(X86_FEATURE_K8))
+ ideal_nops = k8_nops;
+ else if (boot_cpu_has(X86_FEATURE_K7))
+ ideal_nops = k7_nops;
+ else
+ ideal_nops = intel_nops;
+#endif
+ }
+}
+
+/* Use this to add nops to a buffer, then text_poke the whole buffer. */
+static void __init_or_module add_nops(void *insns, unsigned int len)
+{
+ while (len > 0) {
+ unsigned int noplen = len;
+ if (noplen > ASM_NOP_MAX)
+ noplen = ASM_NOP_MAX;
+ memcpy(insns, ideal_nops[noplen], noplen);
+ insns += noplen;
+ len -= noplen;
+ }
+}
+
+extern s32 __retpoline_sites[], __retpoline_sites_end[];
+extern s32 __return_sites[], __return_sites_end[];
+extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
+extern s32 __smp_locks[], __smp_locks_end[];
+void text_poke_early(void *addr, const void *opcode, size_t len);
+
+/*
+ * Are we looking at a near JMP with a 1 or 4-byte displacement.
+ */
+static inline bool is_jmp(const u8 opcode)
+{
+ return opcode == 0xeb || opcode == 0xe9;
+}
+
+static void __init_or_module
+recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
+{
+ u8 *next_rip, *tgt_rip;
+ s32 n_dspl, o_dspl;
+ int repl_len;
+
+ if (a->replacementlen != 5)
+ return;
+
+ o_dspl = *(s32 *)(insn_buff + 1);
+
+ /* next_rip of the replacement JMP */
+ next_rip = repl_insn + a->replacementlen;
+ /* target rip of the replacement JMP */
+ tgt_rip = next_rip + o_dspl;
+ n_dspl = tgt_rip - orig_insn;
+
+ DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
+
+ if (tgt_rip - orig_insn >= 0) {
+ if (n_dspl - 2 <= 127)
+ goto two_byte_jmp;
+ else
+ goto five_byte_jmp;
+ /* negative offset */
+ } else {
+ if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
+ goto two_byte_jmp;
+ else
+ goto five_byte_jmp;
+ }
+
+two_byte_jmp:
+ n_dspl -= 2;
+
+ insn_buff[0] = 0xeb;
+ insn_buff[1] = (s8)n_dspl;
+ add_nops(insn_buff + 2, 3);
+
+ repl_len = 2;
+ goto done;
+
+five_byte_jmp:
+ n_dspl -= 5;
+
+ insn_buff[0] = 0xe9;
+ *(s32 *)&insn_buff[1] = n_dspl;
+
+ repl_len = 5;
+
+done:
+
+ DPRINTK("final displ: 0x%08x, JMP 0x%lx",
+ n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
+}
+
+/*
+ * optimize_nops_range() - Optimize a sequence of single byte NOPs (0x90)
+ *
+ * @instr: instruction byte stream
+ * @instrlen: length of the above
+ * @off: offset within @instr where the first NOP has been detected
+ *
+ * Return: number of NOPs found (and replaced).
+ */
+static __always_inline int optimize_nops_range(u8 *instr, u8 instrlen, int off)
+{
+ unsigned long flags;
+ int i = off, nnops;
+
+ while (i < instrlen) {
+ if (instr[i] != 0x90)
+ break;
+
+ i++;
+ }
+
+ nnops = i - off;
+
+ if (nnops <= 1)
+ return nnops;
+
+ local_irq_save(flags);
+ add_nops(instr + off, nnops);
+ local_irq_restore(flags);
+
+ DUMP_BYTES(instr, instrlen, "%px: [%d:%d) optimized NOPs: ", instr, off, i);
+
+ return nnops;
+}
+
+/*
+ * "noinline" to cause control flow change and thus invalidate I$ and
+ * cause refetch after modification.
+ */
+static void __init_or_module noinline optimize_nops(u8 *instr, size_t len)
+{
+ struct insn insn;
+ int i = 0;
+
+ /*
+ * Jump over the non-NOP insns and optimize single-byte NOPs into bigger
+ * ones.
+ */
+ for (;;) {
+ if (insn_decode_kernel(&insn, &instr[i]))
+ return;
+
+ /*
+ * See if this and any potentially following NOPs can be
+ * optimized.
+ */
+ if (insn.length == 1 && insn.opcode.bytes[0] == 0x90)
+ i += optimize_nops_range(instr, len, i);
+ else
+ i += insn.length;
+
+ if (i >= len)
+ return;
+ }
+}
+
+/*
+ * Replace instructions with better alternatives for this CPU type. This runs
+ * before SMP is initialized to avoid SMP problems with self modifying code.
+ * This implies that asymmetric systems where APs have less capabilities than
+ * the boot processor are not handled. Tough. Make sure you disable such
+ * features by hand.
+ *
+ * Marked "noinline" to cause control flow change and thus insn cache
+ * to refetch changed I$ lines.
+ */
+void __init_or_module noinline apply_alternatives(struct alt_instr *start,
+ struct alt_instr *end)
+{
+ struct alt_instr *a;
+ u8 *instr, *replacement;
+ u8 insn_buff[MAX_PATCH_LEN];
+
+ DPRINTK("alt table %px, -> %px", start, end);
+
+ /*
+ * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using
+ * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
+ * During the process, KASAN becomes confused seeing partial LA57
+ * conversion and triggers a false-positive out-of-bound report.
+ *
+ * Disable KASAN until the patching is complete.
+ */
+ kasan_disable_current();
+
+ /*
+ * The scan order should be from start to end. A later scanned
+ * alternative code can overwrite previously scanned alternative code.
+ * Some kernel functions (e.g. memcpy, memset, etc) use this order to
+ * patch code.
+ *
+ * So be careful if you want to change the scan order to any other
+ * order.
+ */
+ for (a = start; a < end; a++) {
+ int insn_buff_sz = 0;
+ /* Mask away "NOT" flag bit for feature to test. */
+ u16 feature = a->cpuid & ~ALTINSTR_FLAG_INV;
+
+ instr = (u8 *)&a->instr_offset + a->instr_offset;
+ replacement = (u8 *)&a->repl_offset + a->repl_offset;
+ BUG_ON(a->instrlen > sizeof(insn_buff));
+ BUG_ON(feature >= (NCAPINTS + NBUGINTS) * 32);
+
+ /*
+ * Patch if either:
+ * - feature is present
+ * - feature not present but ALTINSTR_FLAG_INV is set to mean,
+ * patch if feature is *NOT* present.
+ */
+ if (!boot_cpu_has(feature) == !(a->cpuid & ALTINSTR_FLAG_INV))
+ goto next;
+
+ DPRINTK("feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d)",
+ (a->cpuid & ALTINSTR_FLAG_INV) ? "!" : "",
+ feature >> 5,
+ feature & 0x1f,
+ instr, instr, a->instrlen,
+ replacement, a->replacementlen);
+
+ DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
+ DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
+
+ memcpy(insn_buff, replacement, a->replacementlen);
+ insn_buff_sz = a->replacementlen;
+
+ /*
+ * 0xe8 is a relative jump; fix the offset.
+ *
+ * Instruction length is checked before the opcode to avoid
+ * accessing uninitialized bytes for zero-length replacements.
+ */
+ if (a->replacementlen == 5 && *insn_buff == 0xe8) {
+ *(s32 *)(insn_buff + 1) += replacement - instr;
+ DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
+ *(s32 *)(insn_buff + 1),
+ (unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
+ }
+
+ if (a->replacementlen && is_jmp(replacement[0]))
+ recompute_jump(a, instr, replacement, insn_buff);
+
+ for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
+ insn_buff[insn_buff_sz] = 0x90;
+
+ DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
+
+ text_poke_early(instr, insn_buff, insn_buff_sz);
+
+next:
+ optimize_nops(instr, a->instrlen);
+ }
+
+ kasan_enable_current();
+}
+
+#if defined(CONFIG_RETPOLINE) && defined(CONFIG_STACK_VALIDATION)
+
+/*
+ * CALL/JMP *%\reg
+ */
+static int emit_indirect(int op, int reg, u8 *bytes)
+{
+ int i = 0;
+ u8 modrm;
+
+ switch (op) {
+ case CALL_INSN_OPCODE:
+ modrm = 0x10; /* Reg = 2; CALL r/m */
+ break;
+
+ case JMP32_INSN_OPCODE:
+ modrm = 0x20; /* Reg = 4; JMP r/m */
+ break;
+
+ default:
+ WARN_ON_ONCE(1);
+ return -1;
+ }
+
+ if (reg >= 8) {
+ bytes[i++] = 0x41; /* REX.B prefix */
+ reg -= 8;
+ }
+
+ modrm |= 0xc0; /* Mod = 3 */
+ modrm += reg;
+
+ bytes[i++] = 0xff; /* opcode */
+ bytes[i++] = modrm;
+
+ return i;
+}
+
+/*
+ * Rewrite the compiler generated retpoline thunk calls.
+ *
+ * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
+ * indirect instructions, avoiding the extra indirection.
+ *
+ * For example, convert:
+ *
+ * CALL __x86_indirect_thunk_\reg
+ *
+ * into:
+ *
+ * CALL *%\reg
+ *
+ * It also tries to inline spectre_v2=retpoline,amd when size permits.
+ */
+static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
+{
+ retpoline_thunk_t *target;
+ int reg, ret, i = 0;
+ u8 op, cc;
+
+ target = addr + insn->length + insn->immediate.value;
+ reg = target - __x86_indirect_thunk_array;
+
+ if (WARN_ON_ONCE(reg & ~0xf))
+ return -1;
+
+ /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
+ BUG_ON(reg == 4);
+
+ if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
+ !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE))
+ return -1;
+
+ op = insn->opcode.bytes[0];
+
+ /*
+ * Convert:
+ *
+ * Jcc.d32 __x86_indirect_thunk_\reg
+ *
+ * into:
+ *
+ * Jncc.d8 1f
+ * [ LFENCE ]
+ * JMP *%\reg
+ * [ NOP ]
+ * 1:
+ */
+ /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
+ if (op == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80) {
+ cc = insn->opcode.bytes[1] & 0xf;
+ cc ^= 1; /* invert condition */
+
+ bytes[i++] = 0x70 + cc; /* Jcc.d8 */
+ bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
+
+ /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
+ op = JMP32_INSN_OPCODE;
+ }
+
+ /*
+ * For RETPOLINE_AMD: prepend the indirect CALL/JMP with an LFENCE.
+ */
+ if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
+ bytes[i++] = 0x0f;
+ bytes[i++] = 0xae;
+ bytes[i++] = 0xe8; /* LFENCE */
+ }
+
+ ret = emit_indirect(op, reg, bytes + i);
+ if (ret < 0)
+ return ret;
+ i += ret;
+
+ for (; i < insn->length;)
+ bytes[i++] = 0x90;
+
+ return i;
+}
+
+/*
+ * Generated by 'objtool --retpoline'.
+ */
+void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
+{
+ s32 *s;
+
+ for (s = start; s < end; s++) {
+ void *addr = (void *)s + *s;
+ struct insn insn;
+ int len, ret;
+ u8 bytes[16];
+ u8 op1, op2;
+
+ ret = insn_decode_kernel(&insn, addr);
+ if (WARN_ON_ONCE(ret < 0))
+ continue;
+
+ op1 = insn.opcode.bytes[0];
+ op2 = insn.opcode.bytes[1];
+
+ switch (op1) {
+ case CALL_INSN_OPCODE:
+ case JMP32_INSN_OPCODE:
+ break;
+
+ case 0x0f: /* escape */
+ if (op2 >= 0x80 && op2 <= 0x8f)
+ break;
+ fallthrough;
+ default:
+ WARN_ON_ONCE(1);
+ continue;
+ }
+
+ DPRINTK("retpoline at: %pS (%px) len: %d to: %pS",
+ addr, addr, insn.length,
+ addr + insn.length + insn.immediate.value);
+
+ len = patch_retpoline(addr, &insn, bytes);
+ if (len == insn.length) {
+ optimize_nops(bytes, len);
+ DUMP_BYTES(((u8*)addr), len, "%px: orig: ", addr);
+ DUMP_BYTES(((u8*)bytes), len, "%px: repl: ", addr);
+ text_poke_early(addr, bytes, len);
+ }
+ }
+}
+
+#ifdef CONFIG_RETHUNK
+/*
+ * Rewrite the compiler generated return thunk tail-calls.
+ *
+ * For example, convert:
+ *
+ * JMP __x86_return_thunk
+ *
+ * into:
+ *
+ * RET
+ */
+static int patch_return(void *addr, struct insn *insn, u8 *bytes)
+{
+ int i = 0;
+
+ if (cpu_feature_enabled(X86_FEATURE_RETHUNK))
+ return -1;
+
+ bytes[i++] = RET_INSN_OPCODE;
+
+ for (; i < insn->length;)
+ bytes[i++] = INT3_INSN_OPCODE;
+
+ return i;
+}
+
+void __init_or_module noinline apply_returns(s32 *start, s32 *end)
+{
+ s32 *s;
+
+ for (s = start; s < end; s++) {
+ void *dest = NULL, *addr = (void *)s + *s;
+ struct insn insn;
+ int len, ret;
+ u8 bytes[16];
+ u8 op;
+
+ ret = insn_decode_kernel(&insn, addr);
+ if (WARN_ON_ONCE(ret < 0))
+ continue;
+
+ op = insn.opcode.bytes[0];
+ if (op == JMP32_INSN_OPCODE)
+ dest = addr + insn.length + insn.immediate.value;
+
+ if (__static_call_fixup(addr, op, dest) ||
+ WARN_ONCE(dest != &__x86_return_thunk,
+ "missing return thunk: %pS-%pS: %*ph",
+ addr, dest, 5, addr))
+ continue;
+
+ DPRINTK("return thunk at: %pS (%px) len: %d to: %pS",
+ addr, addr, insn.length,
+ addr + insn.length + insn.immediate.value);
+
+ len = patch_return(addr, &insn, bytes);
+ if (len == insn.length) {
+ DUMP_BYTES(((u8*)addr), len, "%px: orig: ", addr);
+ DUMP_BYTES(((u8*)bytes), len, "%px: repl: ", addr);
+ text_poke_early(addr, bytes, len);
+ }
+ }
+}
+#else
+void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
+#endif /* CONFIG_RETHUNK */
+
+#else /* !RETPOLINES || !CONFIG_STACK_VALIDATION */
+
+void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
+void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
+
+#endif /* CONFIG_RETPOLINE && CONFIG_STACK_VALIDATION */
+
+#ifdef CONFIG_SMP
+static void alternatives_smp_lock(const s32 *start, const s32 *end,
+ u8 *text, u8 *text_end)
+{
+ const s32 *poff;
+
+ for (poff = start; poff < end; poff++) {
+ u8 *ptr = (u8 *)poff + *poff;
+
+ if (!*poff || ptr < text || ptr >= text_end)
+ continue;
+ /* turn DS segment override prefix into lock prefix */
+ if (*ptr == 0x3e)
+ text_poke(ptr, ((unsigned char []){0xf0}), 1);
+ }
+}
+
+static void alternatives_smp_unlock(const s32 *start, const s32 *end,
+ u8 *text, u8 *text_end)
+{
+ const s32 *poff;
+
+ for (poff = start; poff < end; poff++) {
+ u8 *ptr = (u8 *)poff + *poff;
+
+ if (!*poff || ptr < text || ptr >= text_end)
+ continue;
+ /* turn lock prefix into DS segment override prefix */
+ if (*ptr == 0xf0)
+ text_poke(ptr, ((unsigned char []){0x3E}), 1);
+ }
+}
+
+struct smp_alt_module {
+ /* what is this ??? */
+ struct module *mod;
+ char *name;
+
+ /* ptrs to lock prefixes */
+ const s32 *locks;
+ const s32 *locks_end;
+
+ /* .text segment, needed to avoid patching init code ;) */
+ u8 *text;
+ u8 *text_end;
+
+ struct list_head next;
+};
+static LIST_HEAD(smp_alt_modules);
+static bool uniproc_patched = false; /* protected by text_mutex */
+
+void __init_or_module alternatives_smp_module_add(struct module *mod,
+ char *name,
+ void *locks, void *locks_end,
+ void *text, void *text_end)
+{
+ struct smp_alt_module *smp;
+
+ mutex_lock(&text_mutex);
+ if (!uniproc_patched)
+ goto unlock;
+
+ if (num_possible_cpus() == 1)
+ /* Don't bother remembering, we'll never have to undo it. */
+ goto smp_unlock;
+
+ smp = kzalloc(sizeof(*smp), GFP_KERNEL);
+ if (NULL == smp)
+ /* we'll run the (safe but slow) SMP code then ... */
+ goto unlock;
+
+ smp->mod = mod;
+ smp->name = name;
+ smp->locks = locks;
+ smp->locks_end = locks_end;
+ smp->text = text;
+ smp->text_end = text_end;
+ DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
+ smp->locks, smp->locks_end,
+ smp->text, smp->text_end, smp->name);
+
+ list_add_tail(&smp->next, &smp_alt_modules);
+smp_unlock:
+ alternatives_smp_unlock(locks, locks_end, text, text_end);
+unlock:
+ mutex_unlock(&text_mutex);
+}
+
+void __init_or_module alternatives_smp_module_del(struct module *mod)
+{
+ struct smp_alt_module *item;
+
+ mutex_lock(&text_mutex);
+ list_for_each_entry(item, &smp_alt_modules, next) {
+ if (mod != item->mod)
+ continue;
+ list_del(&item->next);
+ kfree(item);
+ break;
+ }
+ mutex_unlock(&text_mutex);
+}
+
+void alternatives_enable_smp(void)
+{
+ struct smp_alt_module *mod;
+
+ /* Why bother if there are no other CPUs? */
+ BUG_ON(num_possible_cpus() == 1);
+
+ mutex_lock(&text_mutex);
+
+ if (uniproc_patched) {
+ pr_info("switching to SMP code\n");
+ BUG_ON(num_online_cpus() != 1);
+ clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
+ clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
+ list_for_each_entry(mod, &smp_alt_modules, next)
+ alternatives_smp_lock(mod->locks, mod->locks_end,
+ mod->text, mod->text_end);
+ uniproc_patched = false;
+ }
+ mutex_unlock(&text_mutex);
+}
+
+/*
+ * Return 1 if the address range is reserved for SMP-alternatives.
+ * Must hold text_mutex.
+ */
+int alternatives_text_reserved(void *start, void *end)
+{
+ struct smp_alt_module *mod;
+ const s32 *poff;
+ u8 *text_start = start;
+ u8 *text_end = end;
+
+ lockdep_assert_held(&text_mutex);
+
+ list_for_each_entry(mod, &smp_alt_modules, next) {
+ if (mod->text > text_end || mod->text_end < text_start)
+ continue;
+ for (poff = mod->locks; poff < mod->locks_end; poff++) {
+ const u8 *ptr = (const u8 *)poff + *poff;
+
+ if (text_start <= ptr && text_end > ptr)
+ return 1;
+ }
+ }
+
+ return 0;
+}
+#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_PARAVIRT
+void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
+ struct paravirt_patch_site *end)
+{
+ struct paravirt_patch_site *p;
+ char insn_buff[MAX_PATCH_LEN];
+
+ for (p = start; p < end; p++) {
+ unsigned int used;
+
+ BUG_ON(p->len > MAX_PATCH_LEN);
+ /* prep the buffer with the original instructions */
+ memcpy(insn_buff, p->instr, p->len);
+ used = pv_ops.init.patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
+
+ BUG_ON(used > p->len);
+
+ /* Pad the rest with nops */
+ add_nops(insn_buff + used, p->len - used);
+ text_poke_early(p->instr, insn_buff, p->len);
+ }
+}
+extern struct paravirt_patch_site __start_parainstructions[],
+ __stop_parainstructions[];
+#endif /* CONFIG_PARAVIRT */
+
+/*
+ * Self-test for the INT3 based CALL emulation code.
+ *
+ * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
+ * properly and that there is a stack gap between the INT3 frame and the
+ * previous context. Without this gap doing a virtual PUSH on the interrupted
+ * stack would corrupt the INT3 IRET frame.
+ *
+ * See entry_{32,64}.S for more details.
+ */
+
+/*
+ * We define the int3_magic() function in assembly to control the calling
+ * convention such that we can 'call' it from assembly.
+ */
+
+extern void int3_magic(unsigned int *ptr); /* defined in asm */
+
+asm (
+" .pushsection .init.text, \"ax\", @progbits\n"
+" .type int3_magic, @function\n"
+"int3_magic:\n"
+" movl $1, (%" _ASM_ARG1 ")\n"
+ ASM_RET
+" .size int3_magic, .-int3_magic\n"
+" .popsection\n"
+);
+
+extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */
+
+static int __init
+int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
+{
+ struct die_args *args = data;
+ struct pt_regs *regs = args->regs;
+
+ if (!regs || user_mode(regs))
+ return NOTIFY_DONE;
+
+ if (val != DIE_INT3)
+ return NOTIFY_DONE;
+
+ if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip)
+ return NOTIFY_DONE;
+
+ int3_emulate_call(regs, (unsigned long)&int3_magic);
+ return NOTIFY_STOP;
+}
+
+static void __init int3_selftest(void)
+{
+ static __initdata struct notifier_block int3_exception_nb = {
+ .notifier_call = int3_exception_notify,
+ .priority = INT_MAX-1, /* last */
+ };
+ unsigned int val = 0;
+
+ BUG_ON(register_die_notifier(&int3_exception_nb));
+
+ /*
+ * Basically: int3_magic(&val); but really complicated :-)
+ *
+ * Stick the address of the INT3 instruction into int3_selftest_ip,
+ * then trigger the INT3, padded with NOPs to match a CALL instruction
+ * length.
+ */
+ asm volatile ("1: int3; nop; nop; nop; nop\n\t"
+ ".pushsection .init.data,\"aw\"\n\t"
+ ".align " __ASM_SEL(4, 8) "\n\t"
+ ".type int3_selftest_ip, @object\n\t"
+ ".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t"
+ "int3_selftest_ip:\n\t"
+ __ASM_SEL(.long, .quad) " 1b\n\t"
+ ".popsection\n\t"
+ : ASM_CALL_CONSTRAINT
+ : __ASM_SEL_RAW(a, D) (&val)
+ : "memory");
+
+ BUG_ON(val != 1);
+
+ unregister_die_notifier(&int3_exception_nb);
+}
+
+void __init alternative_instructions(void)
+{
+ int3_selftest();
+
+ /*
+ * The patching is not fully atomic, so try to avoid local
+ * interruptions that might execute the to be patched code.
+ * Other CPUs are not running.
+ */
+ stop_nmi();
+
+ /*
+ * Don't stop machine check exceptions while patching.
+ * MCEs only happen when something got corrupted and in this
+ * case we must do something about the corruption.
+ * Ignoring it is worse than an unlikely patching race.
+ * Also machine checks tend to be broadcast and if one CPU
+ * goes into machine check the others follow quickly, so we don't
+ * expect a machine check to cause undue problems during to code
+ * patching.
+ */
+
+ /*
+ * Rewrite the retpolines, must be done before alternatives since
+ * those can rewrite the retpoline thunks.
+ */
+ apply_retpolines(__retpoline_sites, __retpoline_sites_end);
+ apply_returns(__return_sites, __return_sites_end);
+
+ apply_alternatives(__alt_instructions, __alt_instructions_end);
+
+#ifdef CONFIG_SMP
+ /* Patch to UP if other cpus not imminent. */
+ if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
+ uniproc_patched = true;
+ alternatives_smp_module_add(NULL, "core kernel",
+ __smp_locks, __smp_locks_end,
+ _text, _etext);
+ }
+
+ if (!uniproc_patched || num_possible_cpus() == 1) {
+ free_init_pages("SMP alternatives",
+ (unsigned long)__smp_locks,
+ (unsigned long)__smp_locks_end);
+ }
+#endif
+
+ apply_paravirt(__parainstructions, __parainstructions_end);
+
+ restart_nmi();
+ alternatives_patched = 1;
+}
+
+/**
+ * text_poke_early - Update instructions on a live kernel at boot time
+ * @addr: address to modify
+ * @opcode: source of the copy
+ * @len: length to copy
+ *
+ * When you use this code to patch more than one byte of an instruction
+ * you need to make sure that other CPUs cannot execute this code in parallel.
+ * Also no thread must be currently preempted in the middle of these
+ * instructions. And on the local CPU you need to be protected against NMI or
+ * MCE handlers seeing an inconsistent instruction while you patch.
+ */
+void __init_or_module text_poke_early(void *addr, const void *opcode,
+ size_t len)
+{
+ unsigned long flags;
+
+ if (boot_cpu_has(X86_FEATURE_NX) &&
+ is_module_text_address((unsigned long)addr)) {
+ /*
+ * Modules text is marked initially as non-executable, so the
+ * code cannot be running and speculative code-fetches are
+ * prevented. Just change the code.
+ */
+ memcpy(addr, opcode, len);
+ } else {
+ local_irq_save(flags);
+ memcpy(addr, opcode, len);
+ sync_core();
+ local_irq_restore(flags);
+
+ /*
+ * Could also do a CLFLUSH here to speed up CPU recovery; but
+ * that causes hangs on some VIA CPUs.
+ */
+ }
+}
+
+typedef struct {
+ struct mm_struct *mm;
+} temp_mm_state_t;
+
+/*
+ * Using a temporary mm allows to set temporary mappings that are not accessible
+ * by other CPUs. Such mappings are needed to perform sensitive memory writes
+ * that override the kernel memory protections (e.g., W^X), without exposing the
+ * temporary page-table mappings that are required for these write operations to
+ * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
+ * mapping is torn down.
+ *
+ * Context: The temporary mm needs to be used exclusively by a single core. To
+ * harden security IRQs must be disabled while the temporary mm is
+ * loaded, thereby preventing interrupt handler bugs from overriding
+ * the kernel memory protection.
+ */
+static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
+{
+ temp_mm_state_t temp_state;
+
+ lockdep_assert_irqs_disabled();
+
+ /*
+ * Make sure not to be in TLB lazy mode, as otherwise we'll end up
+ * with a stale address space WITHOUT being in lazy mode after
+ * restoring the previous mm.
+ */
+ if (this_cpu_read(cpu_tlbstate.is_lazy))
+ leave_mm(smp_processor_id());
+
+ temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
+ switch_mm_irqs_off(NULL, mm, current);
+
+ /*
+ * If breakpoints are enabled, disable them while the temporary mm is
+ * used. Userspace might set up watchpoints on addresses that are used
+ * in the temporary mm, which would lead to wrong signals being sent or
+ * crashes.
+ *
+ * Note that breakpoints are not disabled selectively, which also causes
+ * kernel breakpoints (e.g., perf's) to be disabled. This might be
+ * undesirable, but still seems reasonable as the code that runs in the
+ * temporary mm should be short.
+ */
+ if (hw_breakpoint_active())
+ hw_breakpoint_disable();
+
+ return temp_state;
+}
+
+static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
+{
+ lockdep_assert_irqs_disabled();
+ switch_mm_irqs_off(NULL, prev_state.mm, current);
+
+ /*
+ * Restore the breakpoints if they were disabled before the temporary mm
+ * was loaded.
+ */
+ if (hw_breakpoint_active())
+ hw_breakpoint_restore();
+}
+
+__ro_after_init struct mm_struct *poking_mm;
+__ro_after_init unsigned long poking_addr;
+
+static void *__text_poke(void *addr, const void *opcode, size_t len)
+{
+ bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
+ struct page *pages[2] = {NULL};
+ temp_mm_state_t prev;
+ unsigned long flags;
+ pte_t pte, *ptep;
+ spinlock_t *ptl;
+ pgprot_t pgprot;
+
+ /*
+ * While boot memory allocator is running we cannot use struct pages as
+ * they are not yet initialized. There is no way to recover.
+ */
+ BUG_ON(!after_bootmem);
+
+ if (!core_kernel_text((unsigned long)addr)) {
+ pages[0] = vmalloc_to_page(addr);
+ if (cross_page_boundary)
+ pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
+ } else {
+ pages[0] = virt_to_page(addr);
+ WARN_ON(!PageReserved(pages[0]));
+ if (cross_page_boundary)
+ pages[1] = virt_to_page(addr + PAGE_SIZE);
+ }
+ /*
+ * If something went wrong, crash and burn since recovery paths are not
+ * implemented.
+ */
+ BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
+
+ /*
+ * Map the page without the global bit, as TLB flushing is done with
+ * flush_tlb_mm_range(), which is intended for non-global PTEs.
+ */
+ pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
+
+ /*
+ * The lock is not really needed, but this allows to avoid open-coding.
+ */
+ ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
+
+ /*
+ * This must not fail; preallocated in poking_init().
+ */
+ VM_BUG_ON(!ptep);
+
+ local_irq_save(flags);
+
+ pte = mk_pte(pages[0], pgprot);
+ set_pte_at(poking_mm, poking_addr, ptep, pte);
+
+ if (cross_page_boundary) {
+ pte = mk_pte(pages[1], pgprot);
+ set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
+ }
+
+ /*
+ * Loading the temporary mm behaves as a compiler barrier, which
+ * guarantees that the PTE will be set at the time memcpy() is done.
+ */
+ prev = use_temporary_mm(poking_mm);
+
+ kasan_disable_current();
+ memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
+ kasan_enable_current();
+
+ /*
+ * Ensure that the PTE is only cleared after the instructions of memcpy
+ * were issued by using a compiler barrier.
+ */
+ barrier();
+
+ pte_clear(poking_mm, poking_addr, ptep);
+ if (cross_page_boundary)
+ pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
+
+ /*
+ * Loading the previous page-table hierarchy requires a serializing
+ * instruction that already allows the core to see the updated version.
+ * Xen-PV is assumed to serialize execution in a similar manner.
+ */
+ unuse_temporary_mm(prev);
+
+ /*
+ * Flushing the TLB might involve IPIs, which would require enabled
+ * IRQs, but not if the mm is not used, as it is in this point.
+ */
+ flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
+ (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
+ PAGE_SHIFT, false);
+
+ /*
+ * If the text does not match what we just wrote then something is
+ * fundamentally screwy; there's nothing we can really do about that.
+ */
+ BUG_ON(memcmp(addr, opcode, len));
+
+ local_irq_restore(flags);
+ pte_unmap_unlock(ptep, ptl);
+ return addr;
+}
+
+/**
+ * text_poke - Update instructions on a live kernel
+ * @addr: address to modify
+ * @opcode: source of the copy
+ * @len: length to copy
+ *
+ * Only atomic text poke/set should be allowed when not doing early patching.
+ * It means the size must be writable atomically and the address must be aligned
+ * in a way that permits an atomic write. It also makes sure we fit on a single
+ * page.
+ *
+ * Note that the caller must ensure that if the modified code is part of a
+ * module, the module would not be removed during poking. This can be achieved
+ * by registering a module notifier, and ordering module removal and patching
+ * trough a mutex.
+ */
+void *text_poke(void *addr, const void *opcode, size_t len)
+{
+ lockdep_assert_held(&text_mutex);
+
+ return __text_poke(addr, opcode, len);
+}
+
+/**
+ * text_poke_kgdb - Update instructions on a live kernel by kgdb
+ * @addr: address to modify
+ * @opcode: source of the copy
+ * @len: length to copy
+ *
+ * Only atomic text poke/set should be allowed when not doing early patching.
+ * It means the size must be writable atomically and the address must be aligned
+ * in a way that permits an atomic write. It also makes sure we fit on a single
+ * page.
+ *
+ * Context: should only be used by kgdb, which ensures no other core is running,
+ * despite the fact it does not hold the text_mutex.
+ */
+void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
+{
+ return __text_poke(addr, opcode, len);
+}
+
+static void do_sync_core(void *info)
+{
+ sync_core();
+}
+
+void text_poke_sync(void)
+{
+ on_each_cpu(do_sync_core, NULL, 1);
+}
+
+struct text_poke_loc {
+ /* addr := _stext + rel_addr */
+ s32 rel_addr;
+ s32 disp;
+ u8 len;
+ u8 opcode;
+ const u8 text[POKE_MAX_OPCODE_SIZE];
+ /* see text_poke_bp_batch() */
+ u8 old;
+};
+
+struct bp_patching_desc {
+ struct text_poke_loc *vec;
+ int nr_entries;
+ atomic_t refs;
+};
+
+static struct bp_patching_desc bp_desc;
+
+static __always_inline
+struct bp_patching_desc *try_get_desc(void)
+{
+ struct bp_patching_desc *desc = &bp_desc;
+
+ if (!arch_atomic_inc_not_zero(&desc->refs))
+ return NULL;
+
+ return desc;
+}
+
+static __always_inline void put_desc(void)
+{
+ struct bp_patching_desc *desc = &bp_desc;
+
+ smp_mb__before_atomic();
+ arch_atomic_dec(&desc->refs);
+}
+
+static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
+{
+ return _stext + tp->rel_addr;
+}
+
+static __always_inline int patch_cmp(const void *key, const void *elt)
+{
+ struct text_poke_loc *tp = (struct text_poke_loc *) elt;
+
+ if (key < text_poke_addr(tp))
+ return -1;
+ if (key > text_poke_addr(tp))
+ return 1;
+ return 0;
+}
+
+noinstr int poke_int3_handler(struct pt_regs *regs)
+{
+ struct bp_patching_desc *desc;
+ struct text_poke_loc *tp;
+ int ret = 0;
+ void *ip;
+
+ if (user_mode(regs))
+ return 0;
+
+ /*
+ * Having observed our INT3 instruction, we now must observe
+ * bp_desc with non-zero refcount:
+ *
+ * bp_desc.refs = 1 INT3
+ * WMB RMB
+ * write INT3 if (bp_desc.refs != 0)
+ */
+ smp_rmb();
+
+ desc = try_get_desc();
+ if (!desc)
+ return 0;
+
+ /*
+ * Discount the INT3. See text_poke_bp_batch().
+ */
+ ip = (void *) regs->ip - INT3_INSN_SIZE;
+
+ /*
+ * Skip the binary search if there is a single member in the vector.
+ */
+ if (unlikely(desc->nr_entries > 1)) {
+ tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
+ sizeof(struct text_poke_loc),
+ patch_cmp);
+ if (!tp)
+ goto out_put;
+ } else {
+ tp = desc->vec;
+ if (text_poke_addr(tp) != ip)
+ goto out_put;
+ }
+
+ ip += tp->len;
+
+ switch (tp->opcode) {
+ case INT3_INSN_OPCODE:
+ /*
+ * Someone poked an explicit INT3, they'll want to handle it,
+ * do not consume.
+ */
+ goto out_put;
+
+ case RET_INSN_OPCODE:
+ int3_emulate_ret(regs);
+ break;
+
+ case CALL_INSN_OPCODE:
+ int3_emulate_call(regs, (long)ip + tp->disp);
+ break;
+
+ case JMP32_INSN_OPCODE:
+ case JMP8_INSN_OPCODE:
+ int3_emulate_jmp(regs, (long)ip + tp->disp);
+ break;
+
+ default:
+ BUG();
+ }
+
+ ret = 1;
+
+out_put:
+ put_desc();
+ return ret;
+}
+
+#define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
+static struct text_poke_loc tp_vec[TP_VEC_MAX];
+static int tp_vec_nr;
+
+/**
+ * text_poke_bp_batch() -- update instructions on live kernel on SMP
+ * @tp: vector of instructions to patch
+ * @nr_entries: number of entries in the vector
+ *
+ * Modify multi-byte instruction by using int3 breakpoint on SMP.
+ * We completely avoid stop_machine() here, and achieve the
+ * synchronization using int3 breakpoint.
+ *
+ * The way it is done:
+ * - For each entry in the vector:
+ * - add a int3 trap to the address that will be patched
+ * - sync cores
+ * - For each entry in the vector:
+ * - update all but the first byte of the patched range
+ * - sync cores
+ * - For each entry in the vector:
+ * - replace the first byte (int3) by the first byte of
+ * replacing opcode
+ * - sync cores
+ */
+static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
+{
+ unsigned char int3 = INT3_INSN_OPCODE;
+ unsigned int i;
+ int do_sync;
+
+ lockdep_assert_held(&text_mutex);
+
+ bp_desc.vec = tp;
+ bp_desc.nr_entries = nr_entries;
+
+ /*
+ * Corresponds to the implicit memory barrier in try_get_desc() to
+ * ensure reading a non-zero refcount provides up to date bp_desc data.
+ */
+ atomic_set_release(&bp_desc.refs, 1);
+
+ /*
+ * Corresponding read barrier in int3 notifier for making sure the
+ * nr_entries and handler are correctly ordered wrt. patching.
+ */
+ smp_wmb();
+
+ /*
+ * First step: add a int3 trap to the address that will be patched.
+ */
+ for (i = 0; i < nr_entries; i++) {
+ tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
+ text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
+ }
+
+ text_poke_sync();
+
+ /*
+ * Second step: update all but the first byte of the patched range.
+ */
+ for (do_sync = 0, i = 0; i < nr_entries; i++) {
+ u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, };
+ int len = tp[i].len;
+
+ if (len - INT3_INSN_SIZE > 0) {
+ memcpy(old + INT3_INSN_SIZE,
+ text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
+ len - INT3_INSN_SIZE);
+ text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
+ (const char *)tp[i].text + INT3_INSN_SIZE,
+ len - INT3_INSN_SIZE);
+ do_sync++;
+ }
+
+ /*
+ * Emit a perf event to record the text poke, primarily to
+ * support Intel PT decoding which must walk the executable code
+ * to reconstruct the trace. The flow up to here is:
+ * - write INT3 byte
+ * - IPI-SYNC
+ * - write instruction tail
+ * At this point the actual control flow will be through the
+ * INT3 and handler and not hit the old or new instruction.
+ * Intel PT outputs FUP/TIP packets for the INT3, so the flow
+ * can still be decoded. Subsequently:
+ * - emit RECORD_TEXT_POKE with the new instruction
+ * - IPI-SYNC
+ * - write first byte
+ * - IPI-SYNC
+ * So before the text poke event timestamp, the decoder will see
+ * either the old instruction flow or FUP/TIP of INT3. After the
+ * text poke event timestamp, the decoder will see either the
+ * new instruction flow or FUP/TIP of INT3. Thus decoders can
+ * use the timestamp as the point at which to modify the
+ * executable code.
+ * The old instruction is recorded so that the event can be
+ * processed forwards or backwards.
+ */
+ perf_event_text_poke(text_poke_addr(&tp[i]), old, len,
+ tp[i].text, len);
+ }
+
+ if (do_sync) {
+ /*
+ * According to Intel, this core syncing is very likely
+ * not necessary and we'd be safe even without it. But
+ * better safe than sorry (plus there's not only Intel).
+ */
+ text_poke_sync();
+ }
+
+ /*
+ * Third step: replace the first byte (int3) by the first byte of
+ * replacing opcode.
+ */
+ for (do_sync = 0, i = 0; i < nr_entries; i++) {
+ if (tp[i].text[0] == INT3_INSN_OPCODE)
+ continue;
+
+ text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
+ do_sync++;
+ }
+
+ if (do_sync)
+ text_poke_sync();
+
+ /*
+ * Remove and wait for refs to be zero.
+ */
+ if (!atomic_dec_and_test(&bp_desc.refs))
+ atomic_cond_read_acquire(&bp_desc.refs, !VAL);
+}
+
+static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
+ const void *opcode, size_t len, const void *emulate)
+{
+ struct insn insn;
+ int ret, i;
+
+ memcpy((void *)tp->text, opcode, len);
+ if (!emulate)
+ emulate = opcode;
+
+ ret = insn_decode_kernel(&insn, emulate);
+ BUG_ON(ret < 0);
+
+ tp->rel_addr = addr - (void *)_stext;
+ tp->len = len;
+ tp->opcode = insn.opcode.bytes[0];
+
+ switch (tp->opcode) {
+ case RET_INSN_OPCODE:
+ case JMP32_INSN_OPCODE:
+ case JMP8_INSN_OPCODE:
+ /*
+ * Control flow instructions without implied execution of the
+ * next instruction can be padded with INT3.
+ */
+ for (i = insn.length; i < len; i++)
+ BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
+ break;
+
+ default:
+ BUG_ON(len != insn.length);
+ };
+
+
+ switch (tp->opcode) {
+ case INT3_INSN_OPCODE:
+ case RET_INSN_OPCODE:
+ break;
+
+ case CALL_INSN_OPCODE:
+ case JMP32_INSN_OPCODE:
+ case JMP8_INSN_OPCODE:
+ tp->disp = insn.immediate.value;
+ break;
+
+ default: /* assume NOP */
+ switch (len) {
+ case 2: /* NOP2 -- emulate as JMP8+0 */
+ BUG_ON(memcmp(emulate, ideal_nops[len], len));
+ tp->opcode = JMP8_INSN_OPCODE;
+ tp->disp = 0;
+ break;
+
+ case 5: /* NOP5 -- emulate as JMP32+0 */
+ BUG_ON(memcmp(emulate, ideal_nops[NOP_ATOMIC5], len));
+ tp->opcode = JMP32_INSN_OPCODE;
+ tp->disp = 0;
+ break;
+
+ default: /* unknown instruction */
+ BUG();
+ }
+ break;
+ }
+}
+
+/*
+ * We hard rely on the tp_vec being ordered; ensure this is so by flushing
+ * early if needed.
+ */
+static bool tp_order_fail(void *addr)
+{
+ struct text_poke_loc *tp;
+
+ if (!tp_vec_nr)
+ return false;
+
+ if (!addr) /* force */
+ return true;
+
+ tp = &tp_vec[tp_vec_nr - 1];
+ if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
+ return true;
+
+ return false;
+}
+
+static void text_poke_flush(void *addr)
+{
+ if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
+ text_poke_bp_batch(tp_vec, tp_vec_nr);
+ tp_vec_nr = 0;
+ }
+}
+
+void text_poke_finish(void)
+{
+ text_poke_flush(NULL);
+}
+
+void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
+{
+ struct text_poke_loc *tp;
+
+ if (unlikely(system_state == SYSTEM_BOOTING)) {
+ text_poke_early(addr, opcode, len);
+ return;
+ }
+
+ text_poke_flush(addr);
+
+ tp = &tp_vec[tp_vec_nr++];
+ text_poke_loc_init(tp, addr, opcode, len, emulate);
+}
+
+/**
+ * text_poke_bp() -- update instructions on live kernel on SMP
+ * @addr: address to patch
+ * @opcode: opcode of new instruction
+ * @len: length to copy
+ * @handler: address to jump to when the temporary breakpoint is hit
+ *
+ * Update a single instruction with the vector in the stack, avoiding
+ * dynamically allocated memory. This function should be used when it is
+ * not possible to allocate memory.
+ */
+void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
+{
+ struct text_poke_loc tp;
+
+ if (unlikely(system_state == SYSTEM_BOOTING)) {
+ text_poke_early(addr, opcode, len);
+ return;
+ }
+
+ text_poke_loc_init(&tp, addr, opcode, len, emulate);
+ text_poke_bp_batch(&tp, 1);
+}