diff options
Diffstat (limited to 'drivers/media/dvb-frontends/tda18271c2dd.c')
-rw-r--r-- | drivers/media/dvb-frontends/tda18271c2dd.c | 1235 |
1 files changed, 1235 insertions, 0 deletions
diff --git a/drivers/media/dvb-frontends/tda18271c2dd.c b/drivers/media/dvb-frontends/tda18271c2dd.c new file mode 100644 index 000000000..a34834487 --- /dev/null +++ b/drivers/media/dvb-frontends/tda18271c2dd.c @@ -0,0 +1,1235 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * tda18271c2dd: Driver for the TDA18271C2 tuner + * + * Copyright (C) 2010 Digital Devices GmbH + */ + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/init.h> +#include <linux/delay.h> +#include <linux/firmware.h> +#include <linux/i2c.h> +#include <asm/div64.h> + +#include <media/dvb_frontend.h> +#include "tda18271c2dd.h" + +/* Max transfer size done by I2C transfer functions */ +#define MAX_XFER_SIZE 64 + +struct SStandardParam { + s32 m_IFFrequency; + u32 m_BandWidth; + u8 m_EP3_4_0; + u8 m_EB22; +}; + +struct SMap { + u32 m_Frequency; + u8 m_Param; +}; + +struct SMapI { + u32 m_Frequency; + s32 m_Param; +}; + +struct SMap2 { + u32 m_Frequency; + u8 m_Param1; + u8 m_Param2; +}; + +struct SRFBandMap { + u32 m_RF_max; + u32 m_RF1_Default; + u32 m_RF2_Default; + u32 m_RF3_Default; +}; + +enum ERegister { + ID = 0, + TM, + PL, + EP1, EP2, EP3, EP4, EP5, + CPD, CD1, CD2, CD3, + MPD, MD1, MD2, MD3, + EB1, EB2, EB3, EB4, EB5, EB6, EB7, EB8, EB9, EB10, + EB11, EB12, EB13, EB14, EB15, EB16, EB17, EB18, EB19, EB20, + EB21, EB22, EB23, + NUM_REGS +}; + +struct tda_state { + struct i2c_adapter *i2c; + u8 adr; + + u32 m_Frequency; + u32 IF; + + u8 m_IFLevelAnalog; + u8 m_IFLevelDigital; + u8 m_IFLevelDVBC; + u8 m_IFLevelDVBT; + + u8 m_EP4; + u8 m_EP3_Standby; + + bool m_bMaster; + + s32 m_SettlingTime; + + u8 m_Regs[NUM_REGS]; + + /* Tracking filter settings for band 0..6 */ + u32 m_RF1[7]; + s32 m_RF_A1[7]; + s32 m_RF_B1[7]; + u32 m_RF2[7]; + s32 m_RF_A2[7]; + s32 m_RF_B2[7]; + u32 m_RF3[7]; + + u8 m_TMValue_RFCal; /* Calibration temperature */ + + bool m_bFMInput; /* true to use Pin 8 for FM Radio */ + +}; + +static int PowerScan(struct tda_state *state, + u8 RFBand, u32 RF_in, + u32 *pRF_Out, bool *pbcal); + +static int i2c_readn(struct i2c_adapter *adapter, u8 adr, u8 *data, int len) +{ + struct i2c_msg msgs[1] = {{.addr = adr, .flags = I2C_M_RD, + .buf = data, .len = len} }; + return (i2c_transfer(adapter, msgs, 1) == 1) ? 0 : -1; +} + +static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len) +{ + struct i2c_msg msg = {.addr = adr, .flags = 0, + .buf = data, .len = len}; + + if (i2c_transfer(adap, &msg, 1) != 1) { + printk(KERN_ERR "tda18271c2dd: i2c write error at addr %i\n", adr); + return -1; + } + return 0; +} + +static int WriteRegs(struct tda_state *state, + u8 SubAddr, u8 *Regs, u16 nRegs) +{ + u8 data[MAX_XFER_SIZE]; + + if (1 + nRegs > sizeof(data)) { + printk(KERN_WARNING + "%s: i2c wr: len=%d is too big!\n", + KBUILD_MODNAME, nRegs); + return -EINVAL; + } + + data[0] = SubAddr; + memcpy(data + 1, Regs, nRegs); + return i2c_write(state->i2c, state->adr, data, nRegs + 1); +} + +static int WriteReg(struct tda_state *state, u8 SubAddr, u8 Reg) +{ + u8 msg[2] = {SubAddr, Reg}; + + return i2c_write(state->i2c, state->adr, msg, 2); +} + +static int Read(struct tda_state *state, u8 * Regs) +{ + return i2c_readn(state->i2c, state->adr, Regs, 16); +} + +static int ReadExtented(struct tda_state *state, u8 * Regs) +{ + return i2c_readn(state->i2c, state->adr, Regs, NUM_REGS); +} + +static int UpdateRegs(struct tda_state *state, u8 RegFrom, u8 RegTo) +{ + return WriteRegs(state, RegFrom, + &state->m_Regs[RegFrom], RegTo-RegFrom+1); +} +static int UpdateReg(struct tda_state *state, u8 Reg) +{ + return WriteReg(state, Reg, state->m_Regs[Reg]); +} + +#include "tda18271c2dd_maps.h" + +static void reset(struct tda_state *state) +{ + u32 ulIFLevelAnalog = 0; + u32 ulIFLevelDigital = 2; + u32 ulIFLevelDVBC = 7; + u32 ulIFLevelDVBT = 6; + u32 ulXTOut = 0; + u32 ulStandbyMode = 0x06; /* Send in stdb, but leave osc on */ + u32 ulSlave = 0; + u32 ulFMInput = 0; + u32 ulSettlingTime = 100; + + state->m_Frequency = 0; + state->m_SettlingTime = 100; + state->m_IFLevelAnalog = (ulIFLevelAnalog & 0x07) << 2; + state->m_IFLevelDigital = (ulIFLevelDigital & 0x07) << 2; + state->m_IFLevelDVBC = (ulIFLevelDVBC & 0x07) << 2; + state->m_IFLevelDVBT = (ulIFLevelDVBT & 0x07) << 2; + + state->m_EP4 = 0x20; + if (ulXTOut != 0) + state->m_EP4 |= 0x40; + + state->m_EP3_Standby = ((ulStandbyMode & 0x07) << 5) | 0x0F; + state->m_bMaster = (ulSlave == 0); + + state->m_SettlingTime = ulSettlingTime; + + state->m_bFMInput = (ulFMInput == 2); +} + +static bool SearchMap1(const struct SMap map[], u32 frequency, u8 *param) +{ + int i = 0; + + while ((map[i].m_Frequency != 0) && (frequency > map[i].m_Frequency)) + i += 1; + if (map[i].m_Frequency == 0) + return false; + *param = map[i].m_Param; + return true; +} + +static bool SearchMap2(const struct SMapI map[], u32 frequency, s32 *param) +{ + int i = 0; + + while ((map[i].m_Frequency != 0) && + (frequency > map[i].m_Frequency)) + i += 1; + if (map[i].m_Frequency == 0) + return false; + *param = map[i].m_Param; + return true; +} + +static bool SearchMap3(const struct SMap2 map[], u32 frequency, u8 *param1, + u8 *param2) +{ + int i = 0; + + while ((map[i].m_Frequency != 0) && + (frequency > map[i].m_Frequency)) + i += 1; + if (map[i].m_Frequency == 0) + return false; + *param1 = map[i].m_Param1; + *param2 = map[i].m_Param2; + return true; +} + +static bool SearchMap4(const struct SRFBandMap map[], u32 frequency, u8 *rfband) +{ + int i = 0; + + while (i < 7 && (frequency > map[i].m_RF_max)) + i += 1; + if (i == 7) + return false; + *rfband = i; + return true; +} + +static int ThermometerRead(struct tda_state *state, u8 *pTM_Value) +{ + int status = 0; + + do { + u8 Regs[16]; + state->m_Regs[TM] |= 0x10; + status = UpdateReg(state, TM); + if (status < 0) + break; + status = Read(state, Regs); + if (status < 0) + break; + if (((Regs[TM] & 0x0F) == 0 && (Regs[TM] & 0x20) == 0x20) || + ((Regs[TM] & 0x0F) == 8 && (Regs[TM] & 0x20) == 0x00)) { + state->m_Regs[TM] ^= 0x20; + status = UpdateReg(state, TM); + if (status < 0) + break; + msleep(10); + status = Read(state, Regs); + if (status < 0) + break; + } + *pTM_Value = (Regs[TM] & 0x20) + ? m_Thermometer_Map_2[Regs[TM] & 0x0F] + : m_Thermometer_Map_1[Regs[TM] & 0x0F] ; + state->m_Regs[TM] &= ~0x10; /* Thermometer off */ + status = UpdateReg(state, TM); + if (status < 0) + break; + state->m_Regs[EP4] &= ~0x03; /* CAL_mode = 0 ????????? */ + status = UpdateReg(state, EP4); + if (status < 0) + break; + } while (0); + + return status; +} + +static int StandBy(struct tda_state *state) +{ + int status = 0; + do { + state->m_Regs[EB12] &= ~0x20; /* PD_AGC1_Det = 0 */ + status = UpdateReg(state, EB12); + if (status < 0) + break; + state->m_Regs[EB18] &= ~0x83; /* AGC1_loop_off = 0, AGC1_Gain = 6 dB */ + status = UpdateReg(state, EB18); + if (status < 0) + break; + state->m_Regs[EB21] |= 0x03; /* AGC2_Gain = -6 dB */ + state->m_Regs[EP3] = state->m_EP3_Standby; + status = UpdateReg(state, EP3); + if (status < 0) + break; + state->m_Regs[EB23] &= ~0x06; /* ForceLP_Fc2_En = 0, LP_Fc[2] = 0 */ + status = UpdateRegs(state, EB21, EB23); + if (status < 0) + break; + } while (0); + return status; +} + +static int CalcMainPLL(struct tda_state *state, u32 freq) +{ + + u8 PostDiv; + u8 Div; + u64 OscFreq; + u32 MainDiv; + + if (!SearchMap3(m_Main_PLL_Map, freq, &PostDiv, &Div)) + return -EINVAL; + + OscFreq = (u64) freq * (u64) Div; + OscFreq *= (u64) 16384; + do_div(OscFreq, (u64)16000000); + MainDiv = OscFreq; + + state->m_Regs[MPD] = PostDiv & 0x77; + state->m_Regs[MD1] = ((MainDiv >> 16) & 0x7F); + state->m_Regs[MD2] = ((MainDiv >> 8) & 0xFF); + state->m_Regs[MD3] = (MainDiv & 0xFF); + + return UpdateRegs(state, MPD, MD3); +} + +static int CalcCalPLL(struct tda_state *state, u32 freq) +{ + u8 PostDiv; + u8 Div; + u64 OscFreq; + u32 CalDiv; + + if (!SearchMap3(m_Cal_PLL_Map, freq, &PostDiv, &Div)) + return -EINVAL; + + OscFreq = (u64)freq * (u64)Div; + /* CalDiv = u32( OscFreq * 16384 / 16000000 ); */ + OscFreq *= (u64)16384; + do_div(OscFreq, (u64)16000000); + CalDiv = OscFreq; + + state->m_Regs[CPD] = PostDiv; + state->m_Regs[CD1] = ((CalDiv >> 16) & 0xFF); + state->m_Regs[CD2] = ((CalDiv >> 8) & 0xFF); + state->m_Regs[CD3] = (CalDiv & 0xFF); + + return UpdateRegs(state, CPD, CD3); +} + +static int CalibrateRF(struct tda_state *state, + u8 RFBand, u32 freq, s32 *pCprog) +{ + int status = 0; + u8 Regs[NUM_REGS]; + do { + u8 BP_Filter = 0; + u8 GainTaper = 0; + u8 RFC_K = 0; + u8 RFC_M = 0; + + state->m_Regs[EP4] &= ~0x03; /* CAL_mode = 0 */ + status = UpdateReg(state, EP4); + if (status < 0) + break; + state->m_Regs[EB18] |= 0x03; /* AGC1_Gain = 3 */ + status = UpdateReg(state, EB18); + if (status < 0) + break; + + /* Switching off LT (as datasheet says) causes calibration on C1 to fail */ + /* (Readout of Cprog is always 255) */ + if (state->m_Regs[ID] != 0x83) /* C1: ID == 83, C2: ID == 84 */ + state->m_Regs[EP3] |= 0x40; /* SM_LT = 1 */ + + if (!(SearchMap1(m_BP_Filter_Map, freq, &BP_Filter) && + SearchMap1(m_GainTaper_Map, freq, &GainTaper) && + SearchMap3(m_KM_Map, freq, &RFC_K, &RFC_M))) + return -EINVAL; + + state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | BP_Filter; + state->m_Regs[EP2] = (RFBand << 5) | GainTaper; + + state->m_Regs[EB13] = (state->m_Regs[EB13] & ~0x7C) | (RFC_K << 4) | (RFC_M << 2); + + status = UpdateRegs(state, EP1, EP3); + if (status < 0) + break; + status = UpdateReg(state, EB13); + if (status < 0) + break; + + state->m_Regs[EB4] |= 0x20; /* LO_ForceSrce = 1 */ + status = UpdateReg(state, EB4); + if (status < 0) + break; + + state->m_Regs[EB7] |= 0x20; /* CAL_ForceSrce = 1 */ + status = UpdateReg(state, EB7); + if (status < 0) + break; + + state->m_Regs[EB14] = 0; /* RFC_Cprog = 0 */ + status = UpdateReg(state, EB14); + if (status < 0) + break; + + state->m_Regs[EB20] &= ~0x20; /* ForceLock = 0; */ + status = UpdateReg(state, EB20); + if (status < 0) + break; + + state->m_Regs[EP4] |= 0x03; /* CAL_Mode = 3 */ + status = UpdateRegs(state, EP4, EP5); + if (status < 0) + break; + + status = CalcCalPLL(state, freq); + if (status < 0) + break; + status = CalcMainPLL(state, freq + 1000000); + if (status < 0) + break; + + msleep(5); + status = UpdateReg(state, EP2); + if (status < 0) + break; + status = UpdateReg(state, EP1); + if (status < 0) + break; + status = UpdateReg(state, EP2); + if (status < 0) + break; + status = UpdateReg(state, EP1); + if (status < 0) + break; + + state->m_Regs[EB4] &= ~0x20; /* LO_ForceSrce = 0 */ + status = UpdateReg(state, EB4); + if (status < 0) + break; + + state->m_Regs[EB7] &= ~0x20; /* CAL_ForceSrce = 0 */ + status = UpdateReg(state, EB7); + if (status < 0) + break; + msleep(10); + + state->m_Regs[EB20] |= 0x20; /* ForceLock = 1; */ + status = UpdateReg(state, EB20); + if (status < 0) + break; + msleep(60); + + state->m_Regs[EP4] &= ~0x03; /* CAL_Mode = 0 */ + state->m_Regs[EP3] &= ~0x40; /* SM_LT = 0 */ + state->m_Regs[EB18] &= ~0x03; /* AGC1_Gain = 0 */ + status = UpdateReg(state, EB18); + if (status < 0) + break; + status = UpdateRegs(state, EP3, EP4); + if (status < 0) + break; + status = UpdateReg(state, EP1); + if (status < 0) + break; + + status = ReadExtented(state, Regs); + if (status < 0) + break; + + *pCprog = Regs[EB14]; + + } while (0); + return status; +} + +static int RFTrackingFiltersInit(struct tda_state *state, + u8 RFBand) +{ + int status = 0; + + u32 RF1 = m_RF_Band_Map[RFBand].m_RF1_Default; + u32 RF2 = m_RF_Band_Map[RFBand].m_RF2_Default; + u32 RF3 = m_RF_Band_Map[RFBand].m_RF3_Default; + bool bcal = false; + + s32 Cprog_cal1 = 0; + s32 Cprog_table1 = 0; + s32 Cprog_cal2 = 0; + s32 Cprog_table2 = 0; + s32 Cprog_cal3 = 0; + s32 Cprog_table3 = 0; + + state->m_RF_A1[RFBand] = 0; + state->m_RF_B1[RFBand] = 0; + state->m_RF_A2[RFBand] = 0; + state->m_RF_B2[RFBand] = 0; + + do { + status = PowerScan(state, RFBand, RF1, &RF1, &bcal); + if (status < 0) + break; + if (bcal) { + status = CalibrateRF(state, RFBand, RF1, &Cprog_cal1); + if (status < 0) + break; + } + SearchMap2(m_RF_Cal_Map, RF1, &Cprog_table1); + if (!bcal) + Cprog_cal1 = Cprog_table1; + state->m_RF_B1[RFBand] = Cprog_cal1 - Cprog_table1; + /* state->m_RF_A1[RF_Band] = ???? */ + + if (RF2 == 0) + break; + + status = PowerScan(state, RFBand, RF2, &RF2, &bcal); + if (status < 0) + break; + if (bcal) { + status = CalibrateRF(state, RFBand, RF2, &Cprog_cal2); + if (status < 0) + break; + } + SearchMap2(m_RF_Cal_Map, RF2, &Cprog_table2); + if (!bcal) + Cprog_cal2 = Cprog_table2; + + state->m_RF_A1[RFBand] = + (Cprog_cal2 - Cprog_table2 - Cprog_cal1 + Cprog_table1) / + ((s32)(RF2) - (s32)(RF1)); + + if (RF3 == 0) + break; + + status = PowerScan(state, RFBand, RF3, &RF3, &bcal); + if (status < 0) + break; + if (bcal) { + status = CalibrateRF(state, RFBand, RF3, &Cprog_cal3); + if (status < 0) + break; + } + SearchMap2(m_RF_Cal_Map, RF3, &Cprog_table3); + if (!bcal) + Cprog_cal3 = Cprog_table3; + state->m_RF_A2[RFBand] = (Cprog_cal3 - Cprog_table3 - Cprog_cal2 + Cprog_table2) / ((s32)(RF3) - (s32)(RF2)); + state->m_RF_B2[RFBand] = Cprog_cal2 - Cprog_table2; + + } while (0); + + state->m_RF1[RFBand] = RF1; + state->m_RF2[RFBand] = RF2; + state->m_RF3[RFBand] = RF3; + +#if 0 + printk(KERN_ERR "tda18271c2dd: %s %d RF1 = %d A1 = %d B1 = %d RF2 = %d A2 = %d B2 = %d RF3 = %d\n", __func__, + RFBand, RF1, state->m_RF_A1[RFBand], state->m_RF_B1[RFBand], RF2, + state->m_RF_A2[RFBand], state->m_RF_B2[RFBand], RF3); +#endif + + return status; +} + +static int PowerScan(struct tda_state *state, + u8 RFBand, u32 RF_in, u32 *pRF_Out, bool *pbcal) +{ + int status = 0; + do { + u8 Gain_Taper = 0; + s32 RFC_Cprog = 0; + u8 CID_Target = 0; + u8 CountLimit = 0; + u32 freq_MainPLL; + u8 Regs[NUM_REGS]; + u8 CID_Gain; + s32 Count = 0; + int sign = 1; + bool wait = false; + + if (!(SearchMap2(m_RF_Cal_Map, RF_in, &RFC_Cprog) && + SearchMap1(m_GainTaper_Map, RF_in, &Gain_Taper) && + SearchMap3(m_CID_Target_Map, RF_in, &CID_Target, &CountLimit))) { + + printk(KERN_ERR "tda18271c2dd: %s Search map failed\n", __func__); + return -EINVAL; + } + + state->m_Regs[EP2] = (RFBand << 5) | Gain_Taper; + state->m_Regs[EB14] = (RFC_Cprog); + status = UpdateReg(state, EP2); + if (status < 0) + break; + status = UpdateReg(state, EB14); + if (status < 0) + break; + + freq_MainPLL = RF_in + 1000000; + status = CalcMainPLL(state, freq_MainPLL); + if (status < 0) + break; + msleep(5); + state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x03) | 1; /* CAL_mode = 1 */ + status = UpdateReg(state, EP4); + if (status < 0) + break; + status = UpdateReg(state, EP2); /* Launch power measurement */ + if (status < 0) + break; + status = ReadExtented(state, Regs); + if (status < 0) + break; + CID_Gain = Regs[EB10] & 0x3F; + state->m_Regs[ID] = Regs[ID]; /* Chip version, (needed for C1 workaround in CalibrateRF) */ + + *pRF_Out = RF_in; + + while (CID_Gain < CID_Target) { + freq_MainPLL = RF_in + sign * Count + 1000000; + status = CalcMainPLL(state, freq_MainPLL); + if (status < 0) + break; + msleep(wait ? 5 : 1); + wait = false; + status = UpdateReg(state, EP2); /* Launch power measurement */ + if (status < 0) + break; + status = ReadExtented(state, Regs); + if (status < 0) + break; + CID_Gain = Regs[EB10] & 0x3F; + Count += 200000; + + if (Count < CountLimit * 100000) + continue; + if (sign < 0) + break; + + sign = -sign; + Count = 200000; + wait = true; + } + if (status < 0) + break; + if (CID_Gain >= CID_Target) { + *pbcal = true; + *pRF_Out = freq_MainPLL - 1000000; + } else + *pbcal = false; + } while (0); + + return status; +} + +static int PowerScanInit(struct tda_state *state) +{ + int status = 0; + do { + state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | 0x12; + state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x1F); /* If level = 0, Cal mode = 0 */ + status = UpdateRegs(state, EP3, EP4); + if (status < 0) + break; + state->m_Regs[EB18] = (state->m_Regs[EB18] & ~0x03); /* AGC 1 Gain = 0 */ + status = UpdateReg(state, EB18); + if (status < 0) + break; + state->m_Regs[EB21] = (state->m_Regs[EB21] & ~0x03); /* AGC 2 Gain = 0 (Datasheet = 3) */ + state->m_Regs[EB23] = (state->m_Regs[EB23] | 0x06); /* ForceLP_Fc2_En = 1, LPFc[2] = 1 */ + status = UpdateRegs(state, EB21, EB23); + if (status < 0) + break; + } while (0); + return status; +} + +static int CalcRFFilterCurve(struct tda_state *state) +{ + int status = 0; + do { + msleep(200); /* Temperature stabilisation */ + status = PowerScanInit(state); + if (status < 0) + break; + status = RFTrackingFiltersInit(state, 0); + if (status < 0) + break; + status = RFTrackingFiltersInit(state, 1); + if (status < 0) + break; + status = RFTrackingFiltersInit(state, 2); + if (status < 0) + break; + status = RFTrackingFiltersInit(state, 3); + if (status < 0) + break; + status = RFTrackingFiltersInit(state, 4); + if (status < 0) + break; + status = RFTrackingFiltersInit(state, 5); + if (status < 0) + break; + status = RFTrackingFiltersInit(state, 6); + if (status < 0) + break; + status = ThermometerRead(state, &state->m_TMValue_RFCal); /* also switches off Cal mode !!! */ + if (status < 0) + break; + } while (0); + + return status; +} + +static int FixedContentsI2CUpdate(struct tda_state *state) +{ + static u8 InitRegs[] = { + 0x08, 0x80, 0xC6, + 0xDF, 0x16, 0x60, 0x80, + 0x80, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, + 0xFC, 0x01, 0x84, 0x41, + 0x01, 0x84, 0x40, 0x07, + 0x00, 0x00, 0x96, 0x3F, + 0xC1, 0x00, 0x8F, 0x00, + 0x00, 0x8C, 0x00, 0x20, + 0xB3, 0x48, 0xB0, + }; + int status = 0; + memcpy(&state->m_Regs[TM], InitRegs, EB23 - TM + 1); + do { + status = UpdateRegs(state, TM, EB23); + if (status < 0) + break; + + /* AGC1 gain setup */ + state->m_Regs[EB17] = 0x00; + status = UpdateReg(state, EB17); + if (status < 0) + break; + state->m_Regs[EB17] = 0x03; + status = UpdateReg(state, EB17); + if (status < 0) + break; + state->m_Regs[EB17] = 0x43; + status = UpdateReg(state, EB17); + if (status < 0) + break; + state->m_Regs[EB17] = 0x4C; + status = UpdateReg(state, EB17); + if (status < 0) + break; + + /* IRC Cal Low band */ + state->m_Regs[EP3] = 0x1F; + state->m_Regs[EP4] = 0x66; + state->m_Regs[EP5] = 0x81; + state->m_Regs[CPD] = 0xCC; + state->m_Regs[CD1] = 0x6C; + state->m_Regs[CD2] = 0x00; + state->m_Regs[CD3] = 0x00; + state->m_Regs[MPD] = 0xC5; + state->m_Regs[MD1] = 0x77; + state->m_Regs[MD2] = 0x08; + state->m_Regs[MD3] = 0x00; + status = UpdateRegs(state, EP2, MD3); /* diff between sw and datasheet (ep3-md3) */ + if (status < 0) + break; + +#if 0 + state->m_Regs[EB4] = 0x61; /* missing in sw */ + status = UpdateReg(state, EB4); + if (status < 0) + break; + msleep(1); + state->m_Regs[EB4] = 0x41; + status = UpdateReg(state, EB4); + if (status < 0) + break; +#endif + + msleep(5); + status = UpdateReg(state, EP1); + if (status < 0) + break; + msleep(5); + + state->m_Regs[EP5] = 0x85; + state->m_Regs[CPD] = 0xCB; + state->m_Regs[CD1] = 0x66; + state->m_Regs[CD2] = 0x70; + status = UpdateRegs(state, EP3, CD3); + if (status < 0) + break; + msleep(5); + status = UpdateReg(state, EP2); + if (status < 0) + break; + msleep(30); + + /* IRC Cal mid band */ + state->m_Regs[EP5] = 0x82; + state->m_Regs[CPD] = 0xA8; + state->m_Regs[CD2] = 0x00; + state->m_Regs[MPD] = 0xA1; /* Datasheet = 0xA9 */ + state->m_Regs[MD1] = 0x73; + state->m_Regs[MD2] = 0x1A; + status = UpdateRegs(state, EP3, MD3); + if (status < 0) + break; + + msleep(5); + status = UpdateReg(state, EP1); + if (status < 0) + break; + msleep(5); + + state->m_Regs[EP5] = 0x86; + state->m_Regs[CPD] = 0xA8; + state->m_Regs[CD1] = 0x66; + state->m_Regs[CD2] = 0xA0; + status = UpdateRegs(state, EP3, CD3); + if (status < 0) + break; + msleep(5); + status = UpdateReg(state, EP2); + if (status < 0) + break; + msleep(30); + + /* IRC Cal high band */ + state->m_Regs[EP5] = 0x83; + state->m_Regs[CPD] = 0x98; + state->m_Regs[CD1] = 0x65; + state->m_Regs[CD2] = 0x00; + state->m_Regs[MPD] = 0x91; /* Datasheet = 0x91 */ + state->m_Regs[MD1] = 0x71; + state->m_Regs[MD2] = 0xCD; + status = UpdateRegs(state, EP3, MD3); + if (status < 0) + break; + msleep(5); + status = UpdateReg(state, EP1); + if (status < 0) + break; + msleep(5); + state->m_Regs[EP5] = 0x87; + state->m_Regs[CD1] = 0x65; + state->m_Regs[CD2] = 0x50; + status = UpdateRegs(state, EP3, CD3); + if (status < 0) + break; + msleep(5); + status = UpdateReg(state, EP2); + if (status < 0) + break; + msleep(30); + + /* Back to normal */ + state->m_Regs[EP4] = 0x64; + status = UpdateReg(state, EP4); + if (status < 0) + break; + status = UpdateReg(state, EP1); + if (status < 0) + break; + + } while (0); + return status; +} + +static int InitCal(struct tda_state *state) +{ + int status = 0; + + do { + status = FixedContentsI2CUpdate(state); + if (status < 0) + break; + status = CalcRFFilterCurve(state); + if (status < 0) + break; + status = StandBy(state); + if (status < 0) + break; + /* m_bInitDone = true; */ + } while (0); + return status; +}; + +static int RFTrackingFiltersCorrection(struct tda_state *state, + u32 Frequency) +{ + int status = 0; + s32 Cprog_table; + u8 RFBand; + u8 dCoverdT; + + if (!SearchMap2(m_RF_Cal_Map, Frequency, &Cprog_table) || + !SearchMap4(m_RF_Band_Map, Frequency, &RFBand) || + !SearchMap1(m_RF_Cal_DC_Over_DT_Map, Frequency, &dCoverdT)) + + return -EINVAL; + + do { + u8 TMValue_Current; + u32 RF1 = state->m_RF1[RFBand]; + u32 RF2 = state->m_RF1[RFBand]; + u32 RF3 = state->m_RF1[RFBand]; + s32 RF_A1 = state->m_RF_A1[RFBand]; + s32 RF_B1 = state->m_RF_B1[RFBand]; + s32 RF_A2 = state->m_RF_A2[RFBand]; + s32 RF_B2 = state->m_RF_B2[RFBand]; + s32 Capprox = 0; + int TComp; + + state->m_Regs[EP3] &= ~0xE0; /* Power up */ + status = UpdateReg(state, EP3); + if (status < 0) + break; + + status = ThermometerRead(state, &TMValue_Current); + if (status < 0) + break; + + if (RF3 == 0 || Frequency < RF2) + Capprox = RF_A1 * ((s32)(Frequency) - (s32)(RF1)) + RF_B1 + Cprog_table; + else + Capprox = RF_A2 * ((s32)(Frequency) - (s32)(RF2)) + RF_B2 + Cprog_table; + + TComp = (int)(dCoverdT) * ((int)(TMValue_Current) - (int)(state->m_TMValue_RFCal))/1000; + + Capprox += TComp; + + if (Capprox < 0) + Capprox = 0; + else if (Capprox > 255) + Capprox = 255; + + + /* TODO Temperature compensation. There is defenitely a scale factor */ + /* missing in the datasheet, so leave it out for now. */ + state->m_Regs[EB14] = Capprox; + + status = UpdateReg(state, EB14); + if (status < 0) + break; + + } while (0); + return status; +} + +static int ChannelConfiguration(struct tda_state *state, + u32 Frequency, int Standard) +{ + + s32 IntermediateFrequency = m_StandardTable[Standard].m_IFFrequency; + int status = 0; + + u8 BP_Filter = 0; + u8 RF_Band = 0; + u8 GainTaper = 0; + u8 IR_Meas = 0; + + state->IF = IntermediateFrequency; + /* printk("tda18271c2dd: %s Freq = %d Standard = %d IF = %d\n", __func__, Frequency, Standard, IntermediateFrequency); */ + /* get values from tables */ + + if (!(SearchMap1(m_BP_Filter_Map, Frequency, &BP_Filter) && + SearchMap1(m_GainTaper_Map, Frequency, &GainTaper) && + SearchMap1(m_IR_Meas_Map, Frequency, &IR_Meas) && + SearchMap4(m_RF_Band_Map, Frequency, &RF_Band))) { + + printk(KERN_ERR "tda18271c2dd: %s SearchMap failed\n", __func__); + return -EINVAL; + } + + do { + state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | m_StandardTable[Standard].m_EP3_4_0; + state->m_Regs[EP3] &= ~0x04; /* switch RFAGC to high speed mode */ + + /* m_EP4 default for XToutOn, CAL_Mode (0) */ + state->m_Regs[EP4] = state->m_EP4 | ((Standard > HF_AnalogMax) ? state->m_IFLevelDigital : state->m_IFLevelAnalog); + /* state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital; */ + if (Standard <= HF_AnalogMax) + state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelAnalog; + else if (Standard <= HF_ATSC) + state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBT; + else if (Standard <= HF_DVBC) + state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBC; + else + state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital; + + if ((Standard == HF_FM_Radio) && state->m_bFMInput) + state->m_Regs[EP4] |= 0x80; + + state->m_Regs[MPD] &= ~0x80; + if (Standard > HF_AnalogMax) + state->m_Regs[MPD] |= 0x80; /* Add IF_notch for digital */ + + state->m_Regs[EB22] = m_StandardTable[Standard].m_EB22; + + /* Note: This is missing from flowchart in TDA18271 specification ( 1.5 MHz cutoff for FM ) */ + if (Standard == HF_FM_Radio) + state->m_Regs[EB23] |= 0x06; /* ForceLP_Fc2_En = 1, LPFc[2] = 1 */ + else + state->m_Regs[EB23] &= ~0x06; /* ForceLP_Fc2_En = 0, LPFc[2] = 0 */ + + status = UpdateRegs(state, EB22, EB23); + if (status < 0) + break; + + state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | 0x40 | BP_Filter; /* Dis_Power_level = 1, Filter */ + state->m_Regs[EP5] = (state->m_Regs[EP5] & ~0x07) | IR_Meas; + state->m_Regs[EP2] = (RF_Band << 5) | GainTaper; + + state->m_Regs[EB1] = (state->m_Regs[EB1] & ~0x07) | + (state->m_bMaster ? 0x04 : 0x00); /* CALVCO_FortLOn = MS */ + /* AGC1_always_master = 0 */ + /* AGC_firstn = 0 */ + status = UpdateReg(state, EB1); + if (status < 0) + break; + + if (state->m_bMaster) { + status = CalcMainPLL(state, Frequency + IntermediateFrequency); + if (status < 0) + break; + status = UpdateRegs(state, TM, EP5); + if (status < 0) + break; + state->m_Regs[EB4] |= 0x20; /* LO_forceSrce = 1 */ + status = UpdateReg(state, EB4); + if (status < 0) + break; + msleep(1); + state->m_Regs[EB4] &= ~0x20; /* LO_forceSrce = 0 */ + status = UpdateReg(state, EB4); + if (status < 0) + break; + } else { + u8 PostDiv = 0; + u8 Div; + status = CalcCalPLL(state, Frequency + IntermediateFrequency); + if (status < 0) + break; + + SearchMap3(m_Cal_PLL_Map, Frequency + IntermediateFrequency, &PostDiv, &Div); + state->m_Regs[MPD] = (state->m_Regs[MPD] & ~0x7F) | (PostDiv & 0x77); + status = UpdateReg(state, MPD); + if (status < 0) + break; + status = UpdateRegs(state, TM, EP5); + if (status < 0) + break; + + state->m_Regs[EB7] |= 0x20; /* CAL_forceSrce = 1 */ + status = UpdateReg(state, EB7); + if (status < 0) + break; + msleep(1); + state->m_Regs[EB7] &= ~0x20; /* CAL_forceSrce = 0 */ + status = UpdateReg(state, EB7); + if (status < 0) + break; + } + msleep(20); + if (Standard != HF_FM_Radio) + state->m_Regs[EP3] |= 0x04; /* RFAGC to normal mode */ + status = UpdateReg(state, EP3); + if (status < 0) + break; + + } while (0); + return status; +} + +static int sleep(struct dvb_frontend *fe) +{ + struct tda_state *state = fe->tuner_priv; + + StandBy(state); + return 0; +} + +static int init(struct dvb_frontend *fe) +{ + return 0; +} + +static void release(struct dvb_frontend *fe) +{ + kfree(fe->tuner_priv); + fe->tuner_priv = NULL; +} + + +static int set_params(struct dvb_frontend *fe) +{ + struct tda_state *state = fe->tuner_priv; + int status = 0; + int Standard; + u32 bw = fe->dtv_property_cache.bandwidth_hz; + u32 delsys = fe->dtv_property_cache.delivery_system; + + state->m_Frequency = fe->dtv_property_cache.frequency; + + switch (delsys) { + case SYS_DVBT: + case SYS_DVBT2: + switch (bw) { + case 6000000: + Standard = HF_DVBT_6MHZ; + break; + case 7000000: + Standard = HF_DVBT_7MHZ; + break; + case 8000000: + Standard = HF_DVBT_8MHZ; + break; + default: + return -EINVAL; + } + break; + case SYS_DVBC_ANNEX_A: + case SYS_DVBC_ANNEX_C: + if (bw <= 6000000) + Standard = HF_DVBC_6MHZ; + else if (bw <= 7000000) + Standard = HF_DVBC_7MHZ; + else + Standard = HF_DVBC_8MHZ; + break; + default: + return -EINVAL; + } + do { + status = RFTrackingFiltersCorrection(state, state->m_Frequency); + if (status < 0) + break; + status = ChannelConfiguration(state, state->m_Frequency, + Standard); + if (status < 0) + break; + + msleep(state->m_SettlingTime); /* Allow AGC's to settle down */ + } while (0); + return status; +} + +#if 0 +static int GetSignalStrength(s32 *pSignalStrength, u32 RFAgc, u32 IFAgc) +{ + if (IFAgc < 500) { + /* Scale this from 0 to 50000 */ + *pSignalStrength = IFAgc * 100; + } else { + /* Scale range 500-1500 to 50000-80000 */ + *pSignalStrength = 50000 + (IFAgc - 500) * 30; + } + + return 0; +} +#endif + +static int get_if_frequency(struct dvb_frontend *fe, u32 *frequency) +{ + struct tda_state *state = fe->tuner_priv; + + *frequency = state->IF; + return 0; +} + +static int get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) +{ + /* struct tda_state *state = fe->tuner_priv; */ + /* *bandwidth = priv->bandwidth; */ + return 0; +} + + +static const struct dvb_tuner_ops tuner_ops = { + .info = { + .name = "NXP TDA18271C2D", + .frequency_min_hz = 47125 * kHz, + .frequency_max_hz = 865 * MHz, + .frequency_step_hz = 62500 + }, + .init = init, + .sleep = sleep, + .set_params = set_params, + .release = release, + .get_if_frequency = get_if_frequency, + .get_bandwidth = get_bandwidth, +}; + +struct dvb_frontend *tda18271c2dd_attach(struct dvb_frontend *fe, + struct i2c_adapter *i2c, u8 adr) +{ + struct tda_state *state; + + state = kzalloc(sizeof(struct tda_state), GFP_KERNEL); + if (!state) + return NULL; + + fe->tuner_priv = state; + state->adr = adr; + state->i2c = i2c; + memcpy(&fe->ops.tuner_ops, &tuner_ops, sizeof(struct dvb_tuner_ops)); + reset(state); + InitCal(state); + + return fe; +} +EXPORT_SYMBOL_GPL(tda18271c2dd_attach); + +MODULE_DESCRIPTION("TDA18271C2 driver"); +MODULE_AUTHOR("DD"); +MODULE_LICENSE("GPL"); |