summaryrefslogtreecommitdiffstats
path: root/drivers/rtc
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/rtc')
-rw-r--r--drivers/rtc/Kconfig1958
-rw-r--r--drivers/rtc/Makefile185
-rw-r--r--drivers/rtc/class.c487
-rw-r--r--drivers/rtc/dev.c509
-rw-r--r--drivers/rtc/interface.c1089
-rw-r--r--drivers/rtc/lib.c146
-rw-r--r--drivers/rtc/nvmem.c107
-rw-r--r--drivers/rtc/proc.c92
-rw-r--r--drivers/rtc/rtc-88pm80x.c341
-rw-r--r--drivers/rtc/rtc-88pm860x.c383
-rw-r--r--drivers/rtc/rtc-ab-b5ze-s3.c955
-rw-r--r--drivers/rtc/rtc-ab-eoz9.c457
-rw-r--r--drivers/rtc/rtc-ab3100.c254
-rw-r--r--drivers/rtc/rtc-ab8500.c431
-rw-r--r--drivers/rtc/rtc-abx80x.c933
-rw-r--r--drivers/rtc/rtc-ac100.c643
-rw-r--r--drivers/rtc/rtc-armada38x.c604
-rw-r--r--drivers/rtc/rtc-as3722.c252
-rw-r--r--drivers/rtc/rtc-asm9260.c340
-rw-r--r--drivers/rtc/rtc-aspeed.c129
-rw-r--r--drivers/rtc/rtc-at91rm9200.c556
-rw-r--r--drivers/rtc/rtc-at91sam9.c547
-rw-r--r--drivers/rtc/rtc-au1xxx.c121
-rw-r--r--drivers/rtc/rtc-bd70528.c630
-rw-r--r--drivers/rtc/rtc-bq32k.c334
-rw-r--r--drivers/rtc/rtc-bq4802.c202
-rw-r--r--drivers/rtc/rtc-brcmstb-waketimer.c329
-rw-r--r--drivers/rtc/rtc-cadence.c414
-rw-r--r--drivers/rtc/rtc-cmos.c1578
-rw-r--r--drivers/rtc/rtc-coh901331.c290
-rw-r--r--drivers/rtc/rtc-core.h48
-rw-r--r--drivers/rtc/rtc-cpcap.c324
-rw-r--r--drivers/rtc/rtc-cros-ec.c400
-rw-r--r--drivers/rtc/rtc-da9052.c333
-rw-r--r--drivers/rtc/rtc-da9055.c399
-rw-r--r--drivers/rtc/rtc-da9063.c513
-rw-r--r--drivers/rtc/rtc-davinci.c512
-rw-r--r--drivers/rtc/rtc-digicolor.c224
-rw-r--r--drivers/rtc/rtc-dm355evm.c151
-rw-r--r--drivers/rtc/rtc-ds1216.c174
-rw-r--r--drivers/rtc/rtc-ds1286.c358
-rw-r--r--drivers/rtc/rtc-ds1302.c213
-rw-r--r--drivers/rtc/rtc-ds1305.c750
-rw-r--r--drivers/rtc/rtc-ds1307.c2085
-rw-r--r--drivers/rtc/rtc-ds1343.c486
-rw-r--r--drivers/rtc/rtc-ds1347.c183
-rw-r--r--drivers/rtc/rtc-ds1374.c590
-rw-r--r--drivers/rtc/rtc-ds1390.c235
-rw-r--r--drivers/rtc/rtc-ds1511.c508
-rw-r--r--drivers/rtc/rtc-ds1553.c333
-rw-r--r--drivers/rtc/rtc-ds1672.c161
-rw-r--r--drivers/rtc/rtc-ds1685.c1452
-rw-r--r--drivers/rtc/rtc-ds1742.c224
-rw-r--r--drivers/rtc/rtc-ds2404.c256
-rw-r--r--drivers/rtc/rtc-ds3232.c767
-rw-r--r--drivers/rtc/rtc-efi.c287
-rw-r--r--drivers/rtc/rtc-em3027.c159
-rw-r--r--drivers/rtc/rtc-ep93xx.c163
-rw-r--r--drivers/rtc/rtc-fm3130.c530
-rw-r--r--drivers/rtc/rtc-fsl-ftm-alarm.c339
-rw-r--r--drivers/rtc/rtc-ftrtc010.c210
-rw-r--r--drivers/rtc/rtc-generic.c39
-rw-r--r--drivers/rtc/rtc-goldfish.c216
-rw-r--r--drivers/rtc/rtc-hid-sensor-time.c328
-rw-r--r--drivers/rtc/rtc-hym8563.c599
-rw-r--r--drivers/rtc/rtc-imx-sc.c195
-rw-r--r--drivers/rtc/rtc-imxdi.c865
-rw-r--r--drivers/rtc/rtc-isl12022.c286
-rw-r--r--drivers/rtc/rtc-isl12026.c501
-rw-r--r--drivers/rtc/rtc-isl1208.c913
-rw-r--r--drivers/rtc/rtc-jz4740.c414
-rw-r--r--drivers/rtc/rtc-lp8788.c322
-rw-r--r--drivers/rtc/rtc-lpc24xx.c301
-rw-r--r--drivers/rtc/rtc-lpc32xx.c360
-rw-r--r--drivers/rtc/rtc-ls1x.c192
-rw-r--r--drivers/rtc/rtc-m41t80.c1016
-rw-r--r--drivers/rtc/rtc-m41t93.c206
-rw-r--r--drivers/rtc/rtc-m41t94.c145
-rw-r--r--drivers/rtc/rtc-m48t35.c193
-rw-r--r--drivers/rtc/rtc-m48t59.c495
-rw-r--r--drivers/rtc/rtc-m48t86.c285
-rw-r--r--drivers/rtc/rtc-max6900.c238
-rw-r--r--drivers/rtc/rtc-max6902.c154
-rw-r--r--drivers/rtc/rtc-max6916.c160
-rw-r--r--drivers/rtc/rtc-max77686.c873
-rw-r--r--drivers/rtc/rtc-max8907.c221
-rw-r--r--drivers/rtc/rtc-max8925.c322
-rw-r--r--drivers/rtc/rtc-max8997.c533
-rw-r--r--drivers/rtc/rtc-max8998.c321
-rw-r--r--drivers/rtc/rtc-mc13xxx.c365
-rw-r--r--drivers/rtc/rtc-mc146818-lib.c330
-rw-r--r--drivers/rtc/rtc-mcp795.c447
-rw-r--r--drivers/rtc/rtc-meson-vrtc.c150
-rw-r--r--drivers/rtc/rtc-meson.c405
-rw-r--r--drivers/rtc/rtc-moxart.c325
-rw-r--r--drivers/rtc/rtc-mpc5121.c424
-rw-r--r--drivers/rtc/rtc-mrst.c521
-rw-r--r--drivers/rtc/rtc-msm6242.c228
-rw-r--r--drivers/rtc/rtc-mt2712.c413
-rw-r--r--drivers/rtc/rtc-mt6397.c363
-rw-r--r--drivers/rtc/rtc-mt7622.c411
-rw-r--r--drivers/rtc/rtc-mv.c325
-rw-r--r--drivers/rtc/rtc-mxc.c450
-rw-r--r--drivers/rtc/rtc-mxc_v2.c393
-rw-r--r--drivers/rtc/rtc-omap.c1041
-rw-r--r--drivers/rtc/rtc-opal.c298
-rw-r--r--drivers/rtc/rtc-palmas.c376
-rw-r--r--drivers/rtc/rtc-pcap.c185
-rw-r--r--drivers/rtc/rtc-pcf2123.c467
-rw-r--r--drivers/rtc/rtc-pcf2127.c939
-rw-r--r--drivers/rtc/rtc-pcf50633.c286
-rw-r--r--drivers/rtc/rtc-pcf85063.c642
-rw-r--r--drivers/rtc/rtc-pcf8523.c394
-rw-r--r--drivers/rtc/rtc-pcf85363.c450
-rw-r--r--drivers/rtc/rtc-pcf8563.c627
-rw-r--r--drivers/rtc/rtc-pcf8583.c318
-rw-r--r--drivers/rtc/rtc-pic32.c386
-rw-r--r--drivers/rtc/rtc-pl030.c174
-rw-r--r--drivers/rtc/rtc-pl031.c474
-rw-r--r--drivers/rtc/rtc-pm8xxx.c550
-rw-r--r--drivers/rtc/rtc-ps3.c73
-rw-r--r--drivers/rtc/rtc-pxa.c423
-rw-r--r--drivers/rtc/rtc-r7301.c450
-rw-r--r--drivers/rtc/rtc-r9701.c145
-rw-r--r--drivers/rtc/rtc-rc5t583.c312
-rw-r--r--drivers/rtc/rtc-rc5t619.c442
-rw-r--r--drivers/rtc/rtc-rk808.c467
-rw-r--r--drivers/rtc/rtc-rp5c01.c277
-rw-r--r--drivers/rtc/rtc-rs5c313.c392
-rw-r--r--drivers/rtc/rtc-rs5c348.c215
-rw-r--r--drivers/rtc/rtc-rs5c372.c757
-rw-r--r--drivers/rtc/rtc-rtd119x.c240
-rw-r--r--drivers/rtc/rtc-rv3028.c923
-rw-r--r--drivers/rtc/rtc-rv3029c2.c919
-rw-r--r--drivers/rtc/rtc-rv3032.c925
-rw-r--r--drivers/rtc/rtc-rv8803.c639
-rw-r--r--drivers/rtc/rtc-rx4581.c292
-rw-r--r--drivers/rtc/rtc-rx6110.c390
-rw-r--r--drivers/rtc/rtc-rx8010.c438
-rw-r--r--drivers/rtc/rtc-rx8025.c574
-rw-r--r--drivers/rtc/rtc-rx8581.c337
-rw-r--r--drivers/rtc/rtc-s35390a.c516
-rw-r--r--drivers/rtc/rtc-s3c.c829
-rw-r--r--drivers/rtc/rtc-s3c.h67
-rw-r--r--drivers/rtc/rtc-s5m.c887
-rw-r--r--drivers/rtc/rtc-sa1100.c359
-rw-r--r--drivers/rtc/rtc-sa1100.h24
-rw-r--r--drivers/rtc/rtc-sc27xx.c681
-rw-r--r--drivers/rtc/rtc-sd3078.c229
-rw-r--r--drivers/rtc/rtc-sh.c687
-rw-r--r--drivers/rtc/rtc-sirfsoc.c446
-rw-r--r--drivers/rtc/rtc-snvs.c465
-rw-r--r--drivers/rtc/rtc-spear.c494
-rw-r--r--drivers/rtc/rtc-st-lpc.c321
-rw-r--r--drivers/rtc/rtc-starfire.c60
-rw-r--r--drivers/rtc/rtc-stk17ta8.c338
-rw-r--r--drivers/rtc/rtc-stm32.c933
-rw-r--r--drivers/rtc/rtc-stmp3xxx.c420
-rw-r--r--drivers/rtc/rtc-sun4v.c98
-rw-r--r--drivers/rtc/rtc-sun6i.c752
-rw-r--r--drivers/rtc/rtc-sunxi.c488
-rw-r--r--drivers/rtc/rtc-tegra.c416
-rw-r--r--drivers/rtc/rtc-test.c202
-rw-r--r--drivers/rtc/rtc-tps6586x.c340
-rw-r--r--drivers/rtc/rtc-tps65910.c474
-rw-r--r--drivers/rtc/rtc-tps80031.c337
-rw-r--r--drivers/rtc/rtc-twl.c657
-rw-r--r--drivers/rtc/rtc-tx4939.c304
-rw-r--r--drivers/rtc/rtc-v3020.c369
-rw-r--r--drivers/rtc/rtc-vr41xx.c363
-rw-r--r--drivers/rtc/rtc-vt8500.c268
-rw-r--r--drivers/rtc/rtc-wilco-ec.c194
-rw-r--r--drivers/rtc/rtc-wm831x.c475
-rw-r--r--drivers/rtc/rtc-wm8350.c481
-rw-r--r--drivers/rtc/rtc-x1205.c695
-rw-r--r--drivers/rtc/rtc-xgene.c281
-rw-r--r--drivers/rtc/rtc-zynqmp.c324
-rw-r--r--drivers/rtc/sysfs.c356
-rw-r--r--drivers/rtc/systohc.c61
179 files changed, 77834 insertions, 0 deletions
diff --git a/drivers/rtc/Kconfig b/drivers/rtc/Kconfig
new file mode 100644
index 000000000..54cf5ec8f
--- /dev/null
+++ b/drivers/rtc/Kconfig
@@ -0,0 +1,1958 @@
+# SPDX-License-Identifier: GPL-2.0-only
+#
+# RTC class/drivers configuration
+#
+
+config RTC_LIB
+ bool
+
+config RTC_MC146818_LIB
+ bool
+ select RTC_LIB
+
+menuconfig RTC_CLASS
+ bool "Real Time Clock"
+ default n
+ depends on !S390 && !UML
+ select RTC_LIB
+ help
+ Generic RTC class support. If you say yes here, you will
+ be allowed to plug one or more RTCs to your system. You will
+ probably want to enable one or more of the interfaces below.
+
+if RTC_CLASS
+
+config RTC_HCTOSYS
+ bool "Set system time from RTC on startup and resume"
+ default y
+ help
+ If you say yes here, the system time (wall clock) will be set using
+ the value read from a specified RTC device. This is useful to avoid
+ unnecessary fsck runs at boot time, and to network better.
+
+config RTC_HCTOSYS_DEVICE
+ string "RTC used to set the system time"
+ depends on RTC_HCTOSYS
+ default "rtc0"
+ help
+ The RTC device that will be used to (re)initialize the system
+ clock, usually rtc0. Initialization is done when the system
+ starts up, and when it resumes from a low power state. This
+ device should record time in UTC, since the kernel won't do
+ timezone correction.
+
+ This clock should be battery-backed, so that it reads the correct
+ time when the system boots from a power-off state. Otherwise, your
+ system will need an external clock source (like an NTP server).
+
+ If the clock you specify here is not battery backed, it may still
+ be useful to reinitialize system time when resuming from system
+ sleep states. Do not specify an RTC here unless it stays powered
+ during all this system's supported sleep states.
+
+config RTC_SYSTOHC
+ bool "Set the RTC time based on NTP synchronization"
+ default y
+ help
+ If you say yes here, the system time (wall clock) will be stored
+ in the RTC specified by RTC_HCTOSYS_DEVICE approximately every 11
+ minutes if userspace reports synchronized NTP status.
+
+config RTC_SYSTOHC_DEVICE
+ string "RTC used to synchronize NTP adjustment"
+ depends on RTC_SYSTOHC
+ default RTC_HCTOSYS_DEVICE if RTC_HCTOSYS
+ default "rtc0"
+ help
+ The RTC device used for NTP synchronization. The main difference
+ between RTC_HCTOSYS_DEVICE and RTC_SYSTOHC_DEVICE is that this
+ one can sleep when setting time, because it runs in the workqueue
+ context.
+
+config RTC_DEBUG
+ bool "RTC debug support"
+ help
+ Say yes here to enable debugging support in the RTC framework
+ and individual RTC drivers.
+
+config RTC_NVMEM
+ bool "RTC non volatile storage support"
+ select NVMEM
+ default RTC_CLASS
+ help
+ Say yes here to add support for the non volatile (often battery
+ backed) storage present on RTCs.
+
+comment "RTC interfaces"
+
+config RTC_INTF_SYSFS
+ bool "/sys/class/rtc/rtcN (sysfs)"
+ depends on SYSFS
+ default RTC_CLASS
+ help
+ Say yes here if you want to use your RTCs using sysfs interfaces,
+ /sys/class/rtc/rtc0 through /sys/.../rtcN.
+
+ If unsure, say Y.
+
+config RTC_INTF_PROC
+ bool "/proc/driver/rtc (procfs for rtcN)"
+ depends on PROC_FS
+ default RTC_CLASS
+ help
+ Say yes here if you want to use your system clock RTC through
+ the proc interface, /proc/driver/rtc.
+ Other RTCs will not be available through that API.
+ If there is no RTC for the system clock, then the first RTC(rtc0)
+ is used by default.
+
+ If unsure, say Y.
+
+config RTC_INTF_DEV
+ bool "/dev/rtcN (character devices)"
+ default RTC_CLASS
+ help
+ Say yes here if you want to use your RTCs using the /dev
+ interfaces, which "udev" sets up as /dev/rtc0 through
+ /dev/rtcN.
+
+ You may want to set up a symbolic link so one of these
+ can be accessed as /dev/rtc, which is a name
+ expected by "hwclock" and some other programs. Recent
+ versions of "udev" are known to set up the symlink for you.
+
+ If unsure, say Y.
+
+config RTC_INTF_DEV_UIE_EMUL
+ bool "RTC UIE emulation on dev interface"
+ depends on RTC_INTF_DEV
+ help
+ Provides an emulation for RTC_UIE if the underlying rtc chip
+ driver does not expose RTC_UIE ioctls. Those requests generate
+ once-per-second update interrupts, used for synchronization.
+
+ The emulation code will read the time from the hardware
+ clock several times per second, please enable this option
+ only if you know that you really need it.
+
+config RTC_DRV_TEST
+ tristate "Test driver/device"
+ help
+ If you say yes here you get support for the
+ RTC test driver. It's a software RTC which can be
+ used to test the RTC subsystem APIs. It gets
+ the time from the system clock.
+ You want this driver only if you are doing development
+ on the RTC subsystem. Please read the source code
+ for further details.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-test.
+
+comment "I2C RTC drivers"
+
+if I2C
+
+config RTC_DRV_88PM860X
+ tristate "Marvell 88PM860x"
+ depends on MFD_88PM860X
+ help
+ If you say yes here you get support for RTC function in Marvell
+ 88PM860x chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-88pm860x.
+
+config RTC_DRV_88PM80X
+ tristate "Marvell 88PM80x"
+ depends on MFD_88PM800
+ help
+ If you say yes here you get support for RTC function in Marvell
+ 88PM80x chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-88pm80x.
+
+config RTC_DRV_ABB5ZES3
+ select REGMAP_I2C
+ tristate "Abracon AB-RTCMC-32.768kHz-B5ZE-S3"
+ help
+ If you say yes here you get support for the Abracon
+ AB-RTCMC-32.768kHz-B5ZE-S3 I2C RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ab-b5ze-s3.
+
+config RTC_DRV_ABEOZ9
+ select REGMAP_I2C
+ tristate "Abracon AB-RTCMC-32.768kHz-EOZ9"
+ help
+ If you say yes here you get support for the Abracon
+ AB-RTCMC-32.768kHz-EOA9 I2C RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ab-e0z9.
+
+config RTC_DRV_ABX80X
+ tristate "Abracon ABx80x"
+ select WATCHDOG_CORE if WATCHDOG
+ help
+ If you say yes here you get support for Abracon AB080X and AB180X
+ families of ultra-low-power battery- and capacitor-backed real-time
+ clock chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-abx80x.
+
+config RTC_DRV_AC100
+ tristate "X-Powers AC100"
+ depends on MFD_AC100
+ help
+ If you say yes here you get support for the real-time clock found
+ in X-Powers AC100 family peripheral ICs.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ac100.
+
+config RTC_DRV_BRCMSTB
+ tristate "Broadcom STB wake-timer"
+ depends on ARCH_BRCMSTB || BMIPS_GENERIC || COMPILE_TEST
+ default ARCH_BRCMSTB || BMIPS_GENERIC
+ help
+ If you say yes here you get support for the wake-timer found on
+ Broadcom STB SoCs (BCM7xxx).
+
+ This driver can also be built as a module. If so, the module will
+ be called rtc-brcmstb-waketimer.
+
+config RTC_DRV_AS3722
+ tristate "ams AS3722 RTC driver"
+ depends on MFD_AS3722
+ help
+ If you say yes here you get support for the RTC of ams AS3722 PMIC
+ chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-as3722.
+
+config RTC_DRV_DS1307
+ tristate "Dallas/Maxim DS1307/37/38/39/40/41, ST M41T00, EPSON RX-8025, ISL12057"
+ select REGMAP_I2C
+ select WATCHDOG_CORE if WATCHDOG
+ help
+ If you say yes here you get support for various compatible RTC
+ chips (often with battery backup) connected with I2C. This driver
+ should handle DS1307, DS1337, DS1338, DS1339, DS1340, DS1341,
+ ST M41T00, EPSON RX-8025, Intersil ISL12057 and probably other chips.
+ In some cases the RTC must already have been initialized (by
+ manufacturing or a bootloader).
+
+ The first seven registers on these chips hold an RTC, and other
+ registers may add features such as NVRAM, a trickle charger for
+ the RTC/NVRAM backup power, and alarms. NVRAM is visible in
+ sysfs, but other chip features may not be available.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1307.
+
+config RTC_DRV_DS1307_CENTURY
+ bool "Century bit support for rtc-ds1307"
+ depends on RTC_DRV_DS1307
+ default n
+ help
+ The DS1307 driver suffered from a bug where it was enabling the
+ century bit inconditionnally but never used it when reading the time.
+ It made the driver unable to support dates beyond 2099.
+ Setting this option will add proper support for the century bit but if
+ the time was previously set using a kernel predating this option,
+ reading the date will return a date in the next century.
+ To solve that, you could boot a kernel without this option set, set
+ the RTC date and then boot a kernel with this option set.
+
+config RTC_DRV_DS1374
+ tristate "Dallas/Maxim DS1374"
+ help
+ If you say yes here you get support for Dallas Semiconductor
+ DS1374 real-time clock chips. If an interrupt is associated
+ with the device, the alarm functionality is supported.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1374.
+
+config RTC_DRV_DS1374_WDT
+ bool "Dallas/Maxim DS1374 watchdog timer"
+ depends on RTC_DRV_DS1374 && WATCHDOG
+ select WATCHDOG_CORE
+ help
+ If you say Y here you will get support for the
+ watchdog timer in the Dallas Semiconductor DS1374
+ real-time clock chips.
+
+config RTC_DRV_DS1672
+ tristate "Dallas/Maxim DS1672"
+ help
+ If you say yes here you get support for the
+ Dallas/Maxim DS1672 timekeeping chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1672.
+
+config RTC_DRV_HYM8563
+ tristate "Haoyu Microelectronics HYM8563"
+ depends on OF
+ help
+ Say Y to enable support for the HYM8563 I2C RTC chip. Apart
+ from the usual rtc functions it provides a clock output of
+ up to 32kHz.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-hym8563.
+
+config RTC_DRV_LP8788
+ tristate "TI LP8788 RTC driver"
+ depends on MFD_LP8788
+ help
+ Say Y to enable support for the LP8788 RTC/ALARM driver.
+
+config RTC_DRV_MAX6900
+ tristate "Maxim MAX6900"
+ help
+ If you say yes here you will get support for the
+ Maxim MAX6900 I2C RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-max6900.
+
+config RTC_DRV_MAX8907
+ tristate "Maxim MAX8907"
+ depends on MFD_MAX8907 || COMPILE_TEST
+ select REGMAP_IRQ
+ help
+ If you say yes here you will get support for the
+ RTC of Maxim MAX8907 PMIC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-max8907.
+
+config RTC_DRV_MAX8925
+ tristate "Maxim MAX8925"
+ depends on MFD_MAX8925
+ help
+ If you say yes here you will get support for the
+ RTC of Maxim MAX8925 PMIC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-max8925.
+
+config RTC_DRV_MAX8998
+ tristate "Maxim MAX8998"
+ depends on MFD_MAX8998
+ help
+ If you say yes here you will get support for the
+ RTC of Maxim MAX8998 PMIC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-max8998.
+
+config RTC_DRV_MAX8997
+ tristate "Maxim MAX8997"
+ depends on MFD_MAX8997
+ help
+ If you say yes here you will get support for the
+ RTC of Maxim MAX8997 PMIC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-max8997.
+
+config RTC_DRV_MAX77686
+ tristate "Maxim MAX77686"
+ depends on MFD_MAX77686 || MFD_MAX77620 || COMPILE_TEST
+ help
+ If you say yes here you will get support for the
+ RTC of Maxim MAX77686/MAX77620/MAX77802 PMIC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-max77686.
+
+config RTC_DRV_RK808
+ tristate "Rockchip RK805/RK808/RK809/RK817/RK818 RTC"
+ depends on MFD_RK808
+ help
+ If you say yes here you will get support for the
+ RTC of RK805, RK809 and RK817, RK808 and RK818 PMIC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rk808-rtc.
+
+config RTC_DRV_RS5C372
+ tristate "Ricoh R2025S/D, RS5C372A/B, RV5C386, RV5C387A"
+ help
+ If you say yes here you get support for the
+ Ricoh R2025S/D, RS5C372A, RS5C372B, RV5C386, and RV5C387A RTC chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rs5c372.
+
+config RTC_DRV_ISL1208
+ tristate "Intersil ISL1208"
+ help
+ If you say yes here you get support for the
+ Intersil ISL1208 RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-isl1208.
+
+config RTC_DRV_ISL12022
+ tristate "Intersil ISL12022"
+ help
+ If you say yes here you get support for the
+ Intersil ISL12022 RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-isl12022.
+
+config RTC_DRV_ISL12026
+ tristate "Intersil ISL12026"
+ depends on OF || COMPILE_TEST
+ help
+ If you say yes here you get support for the
+ Intersil ISL12026 RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-isl12026.
+
+config RTC_DRV_X1205
+ tristate "Xicor/Intersil X1205"
+ help
+ If you say yes here you get support for the
+ Xicor/Intersil X1205 RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-x1205.
+
+config RTC_DRV_PCF8523
+ tristate "NXP PCF8523"
+ help
+ If you say yes here you get support for the NXP PCF8523 RTC
+ chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-pcf8523.
+
+config RTC_DRV_PCF85063
+ tristate "NXP PCF85063"
+ select REGMAP_I2C
+ help
+ If you say yes here you get support for the PCF85063 RTC chip
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-pcf85063.
+
+config RTC_DRV_PCF85363
+ tristate "NXP PCF85363"
+ select REGMAP_I2C
+ help
+ If you say yes here you get support for the PCF85363 RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-pcf85363.
+
+ The nvmem interface will be named pcf85363-#, where # is the
+ zero-based instance number.
+
+config RTC_DRV_PCF8563
+ tristate "Philips PCF8563/Epson RTC8564"
+ help
+ If you say yes here you get support for the
+ Philips PCF8563 RTC chip. The Epson RTC8564
+ should work as well.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-pcf8563.
+
+config RTC_DRV_PCF8583
+ tristate "Philips PCF8583"
+ help
+ If you say yes here you get support for the Philips PCF8583
+ RTC chip found on Acorn RiscPCs. This driver supports the
+ platform specific method of retrieving the current year from
+ the RTC's SRAM. It will work on other platforms with the same
+ chip, but the year will probably have to be tweaked.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-pcf8583.
+
+config RTC_DRV_M41T80
+ tristate "ST M41T62/65/M41T80/81/82/83/84/85/87 and compatible"
+ help
+ If you say Y here you will get support for the ST M41T60
+ and M41T80 RTC chips series. Currently, the following chips are
+ supported: M41T62, M41T65, M41T80, M41T81, M41T82, M41T83, M41ST84,
+ M41ST85, M41ST87, and MicroCrystal RV4162.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-m41t80.
+
+config RTC_DRV_M41T80_WDT
+ bool "ST M41T65/M41T80 series RTC watchdog timer"
+ depends on RTC_DRV_M41T80
+ help
+ If you say Y here you will get support for the
+ watchdog timer in the ST M41T60 and M41T80 RTC chips series.
+
+config RTC_DRV_BD70528
+ tristate "ROHM BD70528 PMIC RTC"
+ depends on MFD_ROHM_BD70528 && (BD70528_WATCHDOG || !BD70528_WATCHDOG)
+ help
+ If you say Y here you will get support for the RTC
+ block on ROHM BD70528 and BD71828 Power Management IC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-bd70528.
+
+config RTC_DRV_BQ32K
+ tristate "TI BQ32000"
+ help
+ If you say Y here you will get support for the TI
+ BQ32000 I2C RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-bq32k.
+
+config RTC_DRV_DM355EVM
+ tristate "TI DaVinci DM355 EVM RTC"
+ depends on MFD_DM355EVM_MSP
+ help
+ Supports the RTC firmware in the MSP430 on the DM355 EVM.
+
+config RTC_DRV_TWL92330
+ bool "TI TWL92330/Menelaus"
+ depends on MENELAUS
+ help
+ If you say yes here you get support for the RTC on the
+ TWL92330 "Menelaus" power management chip, used with OMAP2
+ platforms. The support is integrated with the rest of
+ the Menelaus driver; it's not separate module.
+
+config RTC_DRV_TWL4030
+ tristate "TI TWL4030/TWL5030/TWL6030/TPS659x0"
+ depends on TWL4030_CORE
+ depends on OF
+ help
+ If you say yes here you get support for the RTC on the
+ TWL4030/TWL5030/TWL6030 family chips, used mostly with OMAP3 platforms.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-twl.
+
+config RTC_DRV_PALMAS
+ tristate "TI Palmas RTC driver"
+ depends on MFD_PALMAS
+ help
+ If you say yes here you get support for the RTC of TI PALMA series PMIC
+ chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-palma.
+
+config RTC_DRV_TPS6586X
+ tristate "TI TPS6586X RTC driver"
+ depends on MFD_TPS6586X
+ help
+ TI Power Management IC TPS6586X supports RTC functionality
+ along with alarm. This driver supports the RTC driver for
+ the TPS6586X RTC module.
+
+config RTC_DRV_TPS65910
+ tristate "TI TPS65910 RTC driver"
+ depends on MFD_TPS65910
+ help
+ If you say yes here you get support for the RTC on the
+ TPS65910 chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-tps65910.
+
+config RTC_DRV_TPS80031
+ tristate "TI TPS80031/TPS80032 RTC driver"
+ depends on MFD_TPS80031
+ help
+ TI Power Management IC TPS80031 supports RTC functionality
+ along with alarm. This driver supports the RTC driver for
+ the TPS80031 RTC module.
+
+config RTC_DRV_RC5T583
+ tristate "RICOH 5T583 RTC driver"
+ depends on MFD_RC5T583
+ help
+ If you say yes here you get support for the RTC on the
+ RICOH 5T583 chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rc5t583.
+
+config RTC_DRV_RC5T619
+ tristate "RICOH RC5T619 RTC driver"
+ depends on MFD_RN5T618
+ help
+ If you say yes here you get support for the RTC on the
+ RICOH RC5T619 chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rc5t619.
+
+config RTC_DRV_S35390A
+ tristate "Seiko Instruments S-35390A"
+ select BITREVERSE
+ help
+ If you say yes here you will get support for the Seiko
+ Instruments S-35390A.
+
+ This driver can also be built as a module. If so the module
+ will be called rtc-s35390a.
+
+config RTC_DRV_FM3130
+ tristate "Ramtron FM3130"
+ help
+ If you say Y here you will get support for the
+ Ramtron FM3130 RTC chips.
+ Ramtron FM3130 is a chip with two separate devices inside,
+ RTC clock and FRAM. This driver provides only RTC functionality.
+
+ This driver can also be built as a module. If so the module
+ will be called rtc-fm3130.
+
+config RTC_DRV_RX8010
+ tristate "Epson RX8010SJ"
+ select REGMAP_I2C
+ help
+ If you say yes here you get support for the Epson RX8010SJ RTC
+ chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rx8010.
+
+config RTC_DRV_RX8581
+ tristate "Epson RX-8571/RX-8581"
+ select REGMAP_I2C
+ help
+ If you say yes here you will get support for the Epson RX-8571/
+ RX-8581.
+
+ This driver can also be built as a module. If so the module
+ will be called rtc-rx8581.
+
+config RTC_DRV_RX8025
+ tristate "Epson RX-8025SA/NB"
+ help
+ If you say yes here you get support for the Epson
+ RX-8025SA/NB RTC chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rx8025.
+
+config RTC_DRV_EM3027
+ tristate "EM Microelectronic EM3027"
+ help
+ If you say yes here you get support for the EM
+ Microelectronic EM3027 RTC chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-em3027.
+
+config RTC_DRV_RV3028
+ tristate "Micro Crystal RV3028"
+ select REGMAP_I2C
+ help
+ If you say yes here you get support for the Micro Crystal
+ RV3028.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rv3028.
+
+config RTC_DRV_RV3032
+ tristate "Micro Crystal RV3032"
+ select REGMAP_I2C
+ help
+ If you say yes here you get support for the Micro Crystal
+ RV3032.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rv3032.
+
+config RTC_DRV_RV8803
+ tristate "Micro Crystal RV8803, Epson RX8900"
+ help
+ If you say yes here you get support for the Micro Crystal RV8803 and
+ Epson RX8900 RTC chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rv8803.
+
+config RTC_DRV_S5M
+ tristate "Samsung S2M/S5M series"
+ depends on MFD_SEC_CORE || COMPILE_TEST
+ select REGMAP_IRQ
+ select REGMAP_I2C
+ help
+ If you say yes here you will get support for the
+ RTC of Samsung S2MPS14 and S5M PMIC series.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-s5m.
+
+config RTC_DRV_SD3078
+ tristate "ZXW Shenzhen whwave SD3078"
+ select REGMAP_I2C
+ help
+ If you say yes here you get support for the ZXW Shenzhen whwave
+ SD3078 RTC chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-sd3078
+
+endif # I2C
+
+comment "SPI RTC drivers"
+
+if SPI_MASTER
+
+config RTC_DRV_M41T93
+ tristate "ST M41T93"
+ help
+ If you say yes here you will get support for the
+ ST M41T93 SPI RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-m41t93.
+
+config RTC_DRV_M41T94
+ tristate "ST M41T94"
+ help
+ If you say yes here you will get support for the
+ ST M41T94 SPI RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-m41t94.
+
+config RTC_DRV_DS1302
+ tristate "Dallas/Maxim DS1302"
+ depends on SPI
+ help
+ If you say yes here you get support for the Dallas DS1302 RTC chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1302.
+
+config RTC_DRV_DS1305
+ tristate "Dallas/Maxim DS1305/DS1306"
+ help
+ Select this driver to get support for the Dallas/Maxim DS1305
+ and DS1306 real time clock chips. These support a trickle
+ charger, alarms, and NVRAM in addition to the clock.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1305.
+
+config RTC_DRV_DS1343
+ select REGMAP_SPI
+ tristate "Dallas/Maxim DS1343/DS1344"
+ help
+ If you say yes here you get support for the
+ Dallas/Maxim DS1343 and DS1344 real time clock chips.
+ Support for trickle charger, alarm is provided.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1343.
+
+config RTC_DRV_DS1347
+ select REGMAP_SPI
+ tristate "Dallas/Maxim DS1347"
+ help
+ If you say yes here you get support for the
+ Dallas/Maxim DS1347 chips.
+
+ This driver only supports the RTC feature, and not other chip
+ features such as alarms.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1347.
+
+config RTC_DRV_DS1390
+ tristate "Dallas/Maxim DS1390/93/94"
+ help
+ If you say yes here you get support for the
+ Dallas/Maxim DS1390/93/94 chips.
+
+ This driver supports the RTC feature and trickle charging but not
+ other chip features such as alarms.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1390.
+
+config RTC_DRV_MAX6916
+ tristate "Maxim MAX6916"
+ help
+ If you say yes here you will get support for the
+ Maxim MAX6916 SPI RTC chip.
+
+ This driver only supports the RTC feature, and not other chip
+ features such as alarms.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-max6916.
+
+config RTC_DRV_R9701
+ tristate "Epson RTC-9701JE"
+ help
+ If you say yes here you will get support for the
+ Epson RTC-9701JE SPI RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-r9701.
+
+config RTC_DRV_RX4581
+ tristate "Epson RX-4581"
+ help
+ If you say yes here you will get support for the Epson RX-4581.
+
+ This driver can also be built as a module. If so the module
+ will be called rtc-rx4581.
+
+config RTC_DRV_RX6110
+ tristate "Epson RX-6110"
+ select REGMAP_SPI
+ help
+ If you say yes here you will get support for the Epson RX-6610.
+
+ This driver can also be built as a module. If so the module
+ will be called rtc-rx6110.
+
+config RTC_DRV_RS5C348
+ tristate "Ricoh RS5C348A/B"
+ help
+ If you say yes here you get support for the
+ Ricoh RS5C348A and RS5C348B RTC chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rs5c348.
+
+config RTC_DRV_MAX6902
+ tristate "Maxim MAX6902"
+ help
+ If you say yes here you will get support for the
+ Maxim MAX6902 SPI RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-max6902.
+
+config RTC_DRV_PCF2123
+ tristate "NXP PCF2123"
+ select REGMAP_SPI
+ help
+ If you say yes here you get support for the NXP PCF2123
+ RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-pcf2123.
+
+config RTC_DRV_MCP795
+ tristate "Microchip MCP795"
+ help
+ If you say yes here you will get support for the Microchip MCP795.
+
+ This driver can also be built as a module. If so the module
+ will be called rtc-mcp795.
+
+endif # SPI_MASTER
+
+#
+# Helper to resolve issues with configs that have SPI enabled but I2C
+# modular. See SND_SOC_I2C_AND_SPI for more information
+#
+config RTC_I2C_AND_SPI
+ tristate
+ default m if I2C=m
+ default y if I2C=y
+ default y if SPI_MASTER=y
+
+comment "SPI and I2C RTC drivers"
+
+config RTC_DRV_DS3232
+ tristate "Dallas/Maxim DS3232/DS3234"
+ depends on RTC_I2C_AND_SPI
+ select REGMAP_I2C if I2C
+ select REGMAP_SPI if SPI_MASTER
+ help
+ If you say yes here you get support for Dallas Semiconductor
+ DS3232 and DS3234 real-time clock chips. If an interrupt is associated
+ with the device, the alarm functionality is supported.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds3232.
+
+config RTC_DRV_DS3232_HWMON
+ bool "HWMON support for Dallas/Maxim DS3232/DS3234"
+ depends on RTC_DRV_DS3232 && HWMON && !(RTC_DRV_DS3232=y && HWMON=m)
+ default y
+ help
+ Say Y here if you want to expose temperature sensor data on
+ rtc-ds3232
+
+config RTC_DRV_PCF2127
+ tristate "NXP PCF2127"
+ depends on RTC_I2C_AND_SPI
+ select REGMAP_I2C if I2C
+ select REGMAP_SPI if SPI_MASTER
+ select WATCHDOG_CORE if WATCHDOG
+ help
+ If you say yes here you get support for the NXP PCF2127/29 RTC
+ chips with integrated quartz crystal for industrial applications.
+ Both chips also have watchdog timer and tamper switch detection
+ features.
+
+ PCF2127 has an additional feature of 512 bytes battery backed
+ memory that's accessible using nvmem interface.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-pcf2127.
+
+config RTC_DRV_RV3029C2
+ tristate "Micro Crystal RV3029/3049"
+ depends on RTC_I2C_AND_SPI
+ select REGMAP_I2C if I2C
+ select REGMAP_SPI if SPI_MASTER
+ help
+ If you say yes here you get support for the Micro Crystal
+ RV3029 and RV3049 RTC chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rv3029c2.
+
+config RTC_DRV_RV3029_HWMON
+ bool "HWMON support for RV3029/3049"
+ depends on RTC_DRV_RV3029C2 && HWMON
+ depends on !(RTC_DRV_RV3029C2=y && HWMON=m)
+ default y
+ help
+ Say Y here if you want to expose temperature sensor data on
+ rtc-rv3029.
+
+comment "Platform RTC drivers"
+
+# this 'CMOS' RTC driver is arch dependent because it requires
+# <asm/mc146818rtc.h> defining CMOS_READ/CMOS_WRITE, and a
+# global rtc_lock ... it's not yet just another platform_device.
+
+config RTC_DRV_CMOS
+ tristate "PC-style 'CMOS'"
+ depends on X86 || ARM || PPC || MIPS || SPARC64
+ default y if X86
+ select RTC_MC146818_LIB
+ help
+ Say "yes" here to get direct support for the real time clock
+ found in every PC or ACPI-based system, and some other boards.
+ Specifically the original MC146818, compatibles like those in
+ PC south bridges, the DS12887 or M48T86, some multifunction
+ or LPC bus chips, and so on.
+
+ Your system will need to define the platform device used by
+ this driver, otherwise it won't be accessible. This means
+ you can safely enable this driver if you don't know whether
+ or not your board has this kind of hardware.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-cmos.
+
+config RTC_DRV_ALPHA
+ bool "Alpha PC-style CMOS"
+ depends on ALPHA
+ select RTC_MC146818_LIB
+ default y
+ help
+ Direct support for the real-time clock found on every Alpha
+ system, specifically MC146818 compatibles. If in doubt, say Y.
+
+config RTC_DRV_VRTC
+ tristate "Virtual RTC for Intel MID platforms"
+ depends on X86_INTEL_MID
+ default y if X86_INTEL_MID
+
+ help
+ Say "yes" here to get direct support for the real time clock
+ found on Moorestown platforms. The VRTC is a emulated RTC that
+ derives its clock source from a real RTC in the PMIC. The MC146818
+ style programming interface is mostly conserved, but any
+ updates are done via IPC calls to the system controller FW.
+
+config RTC_DRV_DS1216
+ tristate "Dallas DS1216"
+ depends on SNI_RM
+ help
+ If you say yes here you get support for the Dallas DS1216 RTC chips.
+
+config RTC_DRV_DS1286
+ tristate "Dallas DS1286"
+ depends on HAS_IOMEM
+ help
+ If you say yes here you get support for the Dallas DS1286 RTC chips.
+
+config RTC_DRV_DS1511
+ tristate "Dallas DS1511"
+ depends on HAS_IOMEM
+ help
+ If you say yes here you get support for the
+ Dallas DS1511 timekeeping/watchdog chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1511.
+
+config RTC_DRV_DS1553
+ tristate "Maxim/Dallas DS1553"
+ depends on HAS_IOMEM
+ help
+ If you say yes here you get support for the
+ Maxim/Dallas DS1553 timekeeping chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1553.
+
+config RTC_DRV_DS1685_FAMILY
+ tristate "Dallas/Maxim DS1685 Family"
+ help
+ If you say yes here you get support for the Dallas/Maxim DS1685
+ family of real time chips. This family includes the DS1685/DS1687,
+ DS1689/DS1693, DS17285/DS17287, DS17485/DS17487, and
+ DS17885/DS17887 chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1685.
+
+choice
+ prompt "Subtype"
+ depends on RTC_DRV_DS1685_FAMILY
+ default RTC_DRV_DS1685
+
+config RTC_DRV_DS1685
+ bool "DS1685/DS1687"
+ help
+ This enables support for the Dallas/Maxim DS1685/DS1687 real time
+ clock chip.
+
+ This chip is commonly found in SGI O2 (IP32) and SGI Octane (IP30)
+ systems, as well as EPPC-405-UC modules by electronic system design
+ GmbH.
+
+config RTC_DRV_DS1689
+ bool "DS1689/DS1693"
+ help
+ This enables support for the Dallas/Maxim DS1689/DS1693 real time
+ clock chip.
+
+ This is an older RTC chip, supplanted by the DS1685/DS1687 above,
+ which supports a few minor features such as Vcc, Vbat, and Power
+ Cycle counters, plus a customer-specific, 8-byte ROM/Serial number.
+
+ It also works for the even older DS1688/DS1691 RTC chips, which are
+ virtually the same and carry the same model number. Both chips
+ have 114 bytes of user NVRAM.
+
+config RTC_DRV_DS17285
+ bool "DS17285/DS17287"
+ help
+ This enables support for the Dallas/Maxim DS17285/DS17287 real time
+ clock chip.
+
+ This chip features 2kb of extended NV-SRAM. It may possibly be
+ found in some SGI O2 systems (rare).
+
+config RTC_DRV_DS17485
+ bool "DS17485/DS17487"
+ help
+ This enables support for the Dallas/Maxim DS17485/DS17487 real time
+ clock chip.
+
+ This chip features 4kb of extended NV-SRAM.
+
+config RTC_DRV_DS17885
+ bool "DS17885/DS17887"
+ help
+ This enables support for the Dallas/Maxim DS17885/DS17887 real time
+ clock chip.
+
+ This chip features 8kb of extended NV-SRAM.
+
+endchoice
+
+config RTC_DRV_DS1742
+ tristate "Maxim/Dallas DS1742/1743"
+ depends on HAS_IOMEM
+ help
+ If you say yes here you get support for the
+ Maxim/Dallas DS1742/1743 timekeeping chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds1742.
+
+config RTC_DRV_DS2404
+ tristate "Maxim/Dallas DS2404"
+ help
+ If you say yes here you get support for the
+ Dallas DS2404 RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ds2404.
+
+config RTC_DRV_DA9052
+ tristate "Dialog DA9052/DA9053 RTC"
+ depends on PMIC_DA9052
+ help
+ Say y here to support the RTC driver for Dialog Semiconductor
+ DA9052-BC and DA9053-AA/Bx PMICs.
+
+config RTC_DRV_DA9055
+ tristate "Dialog Semiconductor DA9055 RTC"
+ depends on MFD_DA9055
+ help
+ If you say yes here you will get support for the
+ RTC of the Dialog DA9055 PMIC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-da9055
+
+config RTC_DRV_DA9063
+ tristate "Dialog Semiconductor DA9063/DA9062 RTC"
+ depends on MFD_DA9063 || MFD_DA9062
+ help
+ If you say yes here you will get support for the RTC subsystem
+ for the Dialog Semiconductor PMIC chips DA9063 and DA9062.
+
+ This driver can also be built as a module. If so, the module
+ will be called "rtc-da9063".
+
+config RTC_DRV_EFI
+ tristate "EFI RTC"
+ depends on EFI && !X86
+ help
+ If you say yes here you will get support for the EFI
+ Real Time Clock.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-efi.
+
+config RTC_DRV_STK17TA8
+ tristate "Simtek STK17TA8"
+ depends on HAS_IOMEM
+ help
+ If you say yes here you get support for the
+ Simtek STK17TA8 timekeeping chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-stk17ta8.
+
+config RTC_DRV_M48T86
+ tristate "ST M48T86/Dallas DS12887"
+ help
+ If you say Y here you will get support for the
+ ST M48T86 and Dallas DS12887 RTC chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-m48t86.
+
+config RTC_DRV_M48T35
+ tristate "ST M48T35"
+ depends on HAS_IOMEM
+ help
+ If you say Y here you will get support for the
+ ST M48T35 RTC chip.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-m48t35".
+
+config RTC_DRV_M48T59
+ tristate "ST M48T59/M48T08/M48T02"
+ depends on HAS_IOMEM
+ help
+ If you say Y here you will get support for the
+ ST M48T59 RTC chip and compatible ST M48T08 and M48T02.
+
+ These chips are usually found in Sun SPARC and UltraSPARC
+ workstations.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-m48t59".
+
+config RTC_DRV_MSM6242
+ tristate "Oki MSM6242"
+ depends on HAS_IOMEM
+ help
+ If you say yes here you get support for the Oki MSM6242
+ timekeeping chip. It is used in some Amiga models (e.g. A2000).
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-msm6242.
+
+config RTC_DRV_BQ4802
+ tristate "TI BQ4802"
+ depends on HAS_IOMEM
+ help
+ If you say Y here you will get support for the TI
+ BQ4802 RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-bq4802.
+
+config RTC_DRV_RP5C01
+ tristate "Ricoh RP5C01"
+ depends on HAS_IOMEM
+ help
+ If you say yes here you get support for the Ricoh RP5C01
+ timekeeping chip. It is used in some Amiga models (e.g. A3000
+ and A4000).
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-rp5c01.
+
+config RTC_DRV_V3020
+ tristate "EM Microelectronic V3020"
+ help
+ If you say yes here you will get support for the
+ EM Microelectronic v3020 RTC chip.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-v3020.
+
+config RTC_DRV_WM831X
+ tristate "Wolfson Microelectronics WM831x RTC"
+ depends on MFD_WM831X
+ help
+ If you say yes here you will get support for the RTC subsystem
+ of the Wolfson Microelectronics WM831X series PMICs.
+
+ This driver can also be built as a module. If so, the module
+ will be called "rtc-wm831x".
+
+config RTC_DRV_WM8350
+ tristate "Wolfson Microelectronics WM8350 RTC"
+ depends on MFD_WM8350
+ help
+ If you say yes here you will get support for the RTC subsystem
+ of the Wolfson Microelectronics WM8350.
+
+ This driver can also be built as a module. If so, the module
+ will be called "rtc-wm8350".
+
+config RTC_DRV_SC27XX
+ tristate "Spreadtrum SC27xx RTC"
+ depends on MFD_SC27XX_PMIC || COMPILE_TEST
+ help
+ If you say Y here you will get support for the RTC subsystem
+ of the Spreadtrum SC27xx series PMICs. The SC27xx series PMICs
+ includes the SC2720, SC2721, SC2723, SC2730 and SC2731 chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-sc27xx.
+
+config RTC_DRV_SPEAR
+ tristate "SPEAR ST RTC"
+ depends on PLAT_SPEAR || COMPILE_TEST
+ default y
+ help
+ If you say Y here you will get support for the RTC found on
+ spear
+
+config RTC_DRV_PCF50633
+ depends on MFD_PCF50633
+ tristate "NXP PCF50633 RTC"
+ help
+ If you say yes here you get support for the RTC subsystem of the
+ NXP PCF50633 used in embedded systems.
+
+config RTC_DRV_AB3100
+ tristate "ST-Ericsson AB3100 RTC"
+ depends on AB3100_CORE
+ default y if AB3100_CORE
+ help
+ Select this to enable the ST-Ericsson AB3100 Mixed Signal IC RTC
+ support. This chip contains a battery- and capacitor-backed RTC.
+
+config RTC_DRV_AB8500
+ tristate "ST-Ericsson AB8500 RTC"
+ depends on AB8500_CORE
+ select RTC_INTF_DEV
+ select RTC_INTF_DEV_UIE_EMUL
+ help
+ Select this to enable the ST-Ericsson AB8500 power management IC RTC
+ support. This chip contains a battery- and capacitor-backed RTC.
+
+config RTC_DRV_OPAL
+ tristate "IBM OPAL RTC driver"
+ depends on PPC_POWERNV
+ default y
+ help
+ If you say yes here you get support for the PowerNV platform RTC
+ driver based on OPAL interfaces.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-opal.
+
+config RTC_DRV_ZYNQMP
+ tristate "Xilinx Zynq Ultrascale+ MPSoC RTC"
+ depends on OF && HAS_IOMEM
+ help
+ If you say yes here you get support for the RTC controller found on
+ Xilinx Zynq Ultrascale+ MPSoC.
+
+config RTC_DRV_CROS_EC
+ tristate "Chrome OS EC RTC driver"
+ depends on CROS_EC
+ help
+ If you say yes here you will get support for the
+ Chrome OS Embedded Controller's RTC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-cros-ec.
+
+comment "on-CPU RTC drivers"
+
+config RTC_DRV_ASM9260
+ tristate "Alphascale asm9260 RTC"
+ depends on MACH_ASM9260 || COMPILE_TEST
+ help
+ If you say yes here you get support for the RTC on the
+ Alphascale asm9260 SoC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-asm9260.
+
+config RTC_DRV_DAVINCI
+ tristate "TI DaVinci RTC"
+ depends on ARCH_DAVINCI_DM365 || COMPILE_TEST
+ help
+ If you say yes here you get support for the RTC on the
+ DaVinci platforms (DM365).
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-davinci.
+
+config RTC_DRV_DIGICOLOR
+ tristate "Conexant Digicolor RTC"
+ depends on ARCH_DIGICOLOR || COMPILE_TEST
+ help
+ If you say yes here you get support for the RTC on Conexant
+ Digicolor platforms. This currently includes the CX92755 SoC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-digicolor.
+
+config RTC_DRV_IMXDI
+ tristate "Freescale IMX DryIce Real Time Clock"
+ depends on ARCH_MXC
+ help
+ Support for Freescale IMX DryIce RTC
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-imxdi".
+
+config RTC_DRV_FSL_FTM_ALARM
+ tristate "Freescale FlexTimer alarm timer"
+ depends on ARCH_LAYERSCAPE || SOC_LS1021A || COMPILE_TEST
+ help
+ For the FlexTimer in LS1012A, LS1021A, LS1028A, LS1043A, LS1046A,
+ LS1088A, LS208xA, we can use FTM as the wakeup source.
+
+ Say y here to enable FTM alarm support. The FTM alarm provides
+ alarm functions for wakeup system from deep sleep.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-fsl-ftm-alarm".
+
+config RTC_DRV_MESON
+ tristate "Amlogic Meson RTC"
+ depends on (ARM && ARCH_MESON) || COMPILE_TEST
+ select REGMAP_MMIO
+ help
+ Support for the RTC block on the Amlogic Meson6, Meson8, Meson8b
+ and Meson8m2 SoCs.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-meson".
+
+config RTC_DRV_MESON_VRTC
+ tristate "Amlogic Meson Virtual RTC"
+ depends on ARCH_MESON || COMPILE_TEST
+ default m if ARCH_MESON
+ help
+ If you say yes here you will get support for the
+ Virtual RTC of Amlogic SoCs.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-meson-vrtc.
+
+config RTC_DRV_OMAP
+ tristate "TI OMAP Real Time Clock"
+ depends on ARCH_OMAP || ARCH_DAVINCI || COMPILE_TEST
+ depends on OF
+ depends on PINCTRL
+ select GENERIC_PINCONF
+ help
+ Say "yes" here to support the on chip real time clock
+ present on TI OMAP1, AM33xx, DA8xx/OMAP-L13x, AM43xx and DRA7xx.
+
+ This driver can also be built as a module, if so, module
+ will be called rtc-omap.
+
+config HAVE_S3C_RTC
+ bool
+ help
+ This will include RTC support for Samsung SoCs. If
+ you want to include RTC support for any machine, kindly
+ select this in the respective mach-XXXX/Kconfig file.
+
+config RTC_DRV_S3C
+ tristate "Samsung S3C series SoC RTC"
+ depends on ARCH_S3C64XX || HAVE_S3C_RTC || COMPILE_TEST
+ help
+ RTC (Realtime Clock) driver for the clock inbuilt into the
+ Samsung S3C24XX series of SoCs. This can provide periodic
+ interrupt rates from 1Hz to 64Hz for user programs, and
+ wakeup from Alarm.
+
+ The driver currently supports the common features on all the
+ S3C24XX range, such as the S3C2410, S3C2412, S3C2413, S3C2440
+ and S3C2442.
+
+ This driver can also be build as a module. If so, the module
+ will be called rtc-s3c.
+
+config RTC_DRV_EP93XX
+ tristate "Cirrus Logic EP93XX"
+ depends on ARCH_EP93XX || COMPILE_TEST
+ help
+ If you say yes here you get support for the
+ RTC embedded in the Cirrus Logic EP93XX processors.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ep93xx.
+
+config RTC_DRV_SA1100
+ tristate "SA11x0/PXA2xx/PXA910"
+ depends on ARCH_SA1100 || ARCH_PXA || ARCH_MMP
+ help
+ If you say Y here you will get access to the real time clock
+ built into your SA11x0 or PXA2xx CPU.
+
+ To compile this driver as a module, choose M here: the
+ module will be called rtc-sa1100.
+
+config RTC_DRV_SH
+ tristate "SuperH On-Chip RTC"
+ depends on SUPERH || ARCH_RENESAS
+ help
+ Say Y here to enable support for the on-chip RTC found in
+ most SuperH processors. This RTC is also found in RZ/A SoCs.
+
+ To compile this driver as a module, choose M here: the
+ module will be called rtc-sh.
+
+config RTC_DRV_VR41XX
+ tristate "NEC VR41XX"
+ depends on CPU_VR41XX || COMPILE_TEST
+ help
+ If you say Y here you will get access to the real time clock
+ built into your NEC VR41XX CPU.
+
+ To compile this driver as a module, choose M here: the
+ module will be called rtc-vr41xx.
+
+config RTC_DRV_PL030
+ tristate "ARM AMBA PL030 RTC"
+ depends on ARM_AMBA
+ help
+ If you say Y here you will get access to ARM AMBA
+ PrimeCell PL030 RTC found on certain ARM SOCs.
+
+ To compile this driver as a module, choose M here: the
+ module will be called rtc-pl030.
+
+config RTC_DRV_PL031
+ tristate "ARM AMBA PL031 RTC"
+ depends on ARM_AMBA
+ help
+ If you say Y here you will get access to ARM AMBA
+ PrimeCell PL031 RTC found on certain ARM SOCs.
+
+ To compile this driver as a module, choose M here: the
+ module will be called rtc-pl031.
+
+config RTC_DRV_AT91RM9200
+ tristate "AT91RM9200 or some AT91SAM9 RTC"
+ depends on ARCH_AT91 || COMPILE_TEST
+ depends on OF
+ help
+ Driver for the internal RTC (Realtime Clock) module found on
+ Atmel AT91RM9200's and some AT91SAM9 chips. On AT91SAM9 chips
+ this is powered by the backup power supply.
+
+config RTC_DRV_AT91SAM9
+ tristate "AT91SAM9 RTT as RTC"
+ depends on ARCH_AT91 || COMPILE_TEST
+ depends on OF && HAS_IOMEM
+ select MFD_SYSCON
+ help
+ Some AT91SAM9 SoCs provide an RTT (Real Time Timer) block which
+ can be used as an RTC thanks to the backup power supply (e.g. a
+ small coin cell battery) which keeps this block and the GPBR
+ (General Purpose Backup Registers) block powered when the device
+ is shutdown.
+ Some AT91SAM9 SoCs provide a real RTC block, on those ones you'd
+ probably want to use the real RTC block instead of the "RTT as an
+ RTC" driver.
+
+config RTC_DRV_AU1XXX
+ tristate "Au1xxx Counter0 RTC support"
+ depends on MIPS_ALCHEMY
+ help
+ This is a driver for the Au1xxx on-chip Counter0 (Time-Of-Year
+ counter) to be used as a RTC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-au1xxx.
+
+config RTC_DRV_RS5C313
+ tristate "Ricoh RS5C313"
+ depends on SH_LANDISK
+ help
+ If you say yes here you get support for the Ricoh RS5C313 RTC chips.
+
+config RTC_DRV_GENERIC
+ tristate "Generic RTC support"
+ # Please consider writing a new RTC driver instead of using the generic
+ # RTC abstraction
+ depends on PARISC || M68K || PPC || SUPERH || COMPILE_TEST
+ help
+ Say Y or M here to enable RTC support on systems using the generic
+ RTC abstraction. If you do not know what you are doing, you should
+ just say Y.
+
+config RTC_DRV_PXA
+ tristate "PXA27x/PXA3xx"
+ depends on ARCH_PXA
+ select RTC_DRV_SA1100
+ help
+ If you say Y here you will get access to the real time clock
+ built into your PXA27x or PXA3xx CPU. This RTC is actually 2 RTCs
+ consisting of an SA1100 compatible RTC and the extended PXA RTC.
+
+ This RTC driver uses PXA RTC registers available since pxa27x
+ series (RDxR, RYxR) instead of legacy RCNR, RTAR.
+
+config RTC_DRV_VT8500
+ tristate "VIA/WonderMedia 85xx SoC RTC"
+ depends on ARCH_VT8500 || COMPILE_TEST
+ help
+ If you say Y here you will get access to the real time clock
+ built into your VIA VT8500 SoC or its relatives.
+
+
+config RTC_DRV_SUN4V
+ bool "SUN4V Hypervisor RTC"
+ depends on SPARC64
+ help
+ If you say Y here you will get support for the Hypervisor
+ based RTC on SUN4V systems.
+
+config RTC_DRV_SUN6I
+ bool "Allwinner A31 RTC"
+ default MACH_SUN6I || MACH_SUN8I
+ depends on COMMON_CLK
+ depends on ARCH_SUNXI || COMPILE_TEST
+ help
+ If you say Y here you will get support for the RTC found in
+ some Allwinner SoCs like the A31 or the A64.
+
+config RTC_DRV_SUNXI
+ tristate "Allwinner sun4i/sun7i RTC"
+ depends on MACH_SUN4I || MACH_SUN7I || COMPILE_TEST
+ help
+ If you say Y here you will get support for the RTC found on
+ Allwinner A10/A20.
+
+config RTC_DRV_STARFIRE
+ bool "Starfire RTC"
+ depends on SPARC64
+ help
+ If you say Y here you will get support for the RTC found on
+ Starfire systems.
+
+config RTC_DRV_TX4939
+ tristate "TX4939 SoC"
+ depends on SOC_TX4939 || COMPILE_TEST
+ help
+ Driver for the internal RTC (Realtime Clock) module found on
+ Toshiba TX4939 SoC.
+
+config RTC_DRV_MV
+ tristate "Marvell SoC RTC"
+ depends on ARCH_DOVE || ARCH_MVEBU || COMPILE_TEST
+ help
+ If you say yes here you will get support for the in-chip RTC
+ that can be found in some of Marvell's SoC devices, such as
+ the Kirkwood 88F6281 and 88F6192.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-mv.
+
+config RTC_DRV_ARMADA38X
+ tristate "Armada 38x Marvell SoC RTC"
+ depends on ARCH_MVEBU || COMPILE_TEST
+ help
+ If you say yes here you will get support for the in-chip RTC
+ that can be found in the Armada 38x Marvell's SoC device
+
+ This driver can also be built as a module. If so, the module
+ will be called armada38x-rtc.
+
+config RTC_DRV_CADENCE
+ tristate "Cadence RTC driver"
+ depends on OF && HAS_IOMEM
+ help
+ If you say Y here you will get access to Cadence RTC IP
+ found on certain SOCs.
+
+ To compile this driver as a module, choose M here: the
+ module will be called rtc-cadence.
+
+config RTC_DRV_FTRTC010
+ tristate "Faraday Technology FTRTC010 RTC"
+ depends on HAS_IOMEM
+ default ARCH_GEMINI
+ help
+ If you say Y here you will get support for the
+ Faraday Technolog FTRTC010 found on e.g. Gemini SoC's.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ftrtc010.
+
+config RTC_DRV_PS3
+ tristate "PS3 RTC"
+ depends on PPC_PS3
+ help
+ If you say yes here you will get support for the RTC on PS3.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ps3.
+
+config RTC_DRV_COH901331
+ tristate "ST-Ericsson COH 901 331 RTC"
+ depends on ARCH_U300 || COMPILE_TEST
+ help
+ If you say Y here you will get access to ST-Ericsson
+ COH 901 331 RTC clock found in some ST-Ericsson Mobile
+ Platforms.
+
+ This driver can also be built as a module. If so, the module
+ will be called "rtc-coh901331".
+
+
+config RTC_DRV_STMP
+ tristate "Freescale STMP3xxx/i.MX23/i.MX28 RTC"
+ depends on ARCH_MXS || COMPILE_TEST
+ select STMP_DEVICE
+ help
+ If you say yes here you will get support for the onboard
+ STMP3xxx/i.MX23/i.MX28 RTC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-stmp3xxx.
+
+config RTC_DRV_PCAP
+ tristate "PCAP RTC"
+ depends on EZX_PCAP
+ help
+ If you say Y here you will get support for the RTC found on
+ the PCAP2 ASIC used on some Motorola phones.
+
+config RTC_DRV_MC13XXX
+ depends on MFD_MC13XXX
+ tristate "Freescale MC13xxx RTC"
+ help
+ This enables support for the RTCs found on Freescale's PMICs
+ MC13783 and MC13892.
+
+config RTC_DRV_MPC5121
+ tristate "Freescale MPC5121 built-in RTC"
+ depends on PPC_MPC512x || PPC_MPC52xx
+ help
+ If you say yes here you will get support for the
+ built-in RTC on MPC5121 or on MPC5200.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-mpc5121.
+
+config RTC_DRV_JZ4740
+ tristate "Ingenic JZ4740 SoC"
+ depends on MIPS || COMPILE_TEST
+ depends on OF
+ help
+ If you say yes here you get support for the Ingenic JZ47xx SoCs RTC
+ controllers.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-jz4740.
+
+config RTC_DRV_LPC24XX
+ tristate "NXP RTC for LPC178x/18xx/408x/43xx"
+ depends on ARCH_LPC18XX || COMPILE_TEST
+ depends on OF && HAS_IOMEM
+ help
+ This enables support for the NXP RTC found which can be found on
+ NXP LPC178x/18xx/408x/43xx devices.
+
+ If you have one of the devices above enable this driver to use
+ the hardware RTC. This driver can also be built as a module. If
+ so, the module will be called rtc-lpc24xx.
+
+config RTC_DRV_LPC32XX
+ depends on ARCH_LPC32XX || COMPILE_TEST
+ tristate "NXP LPC32XX RTC"
+ help
+ This enables support for the NXP RTC in the LPC32XX
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-lpc32xx.
+
+config RTC_DRV_PM8XXX
+ tristate "Qualcomm PMIC8XXX RTC"
+ depends on MFD_PM8XXX || MFD_SPMI_PMIC || COMPILE_TEST
+ help
+ If you say yes here you get support for the
+ Qualcomm PMIC8XXX RTC.
+
+ To compile this driver as a module, choose M here: the
+ module will be called rtc-pm8xxx.
+
+config RTC_DRV_TEGRA
+ tristate "NVIDIA Tegra Internal RTC driver"
+ depends on ARCH_TEGRA || COMPILE_TEST
+ help
+ If you say yes here you get support for the
+ Tegra 200 series internal RTC module.
+
+ This drive can also be built as a module. If so, the module
+ will be called rtc-tegra.
+
+config RTC_DRV_LOONGSON1
+ tristate "loongson1 RTC support"
+ depends on MACH_LOONGSON32
+ help
+ This is a driver for the loongson1 on-chip Counter0 (Time-Of-Year
+ counter) to be used as a RTC.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-ls1x.
+
+config RTC_DRV_MXC
+ tristate "Freescale MXC Real Time Clock"
+ depends on ARCH_MXC
+ help
+ If you say yes here you get support for the Freescale MXC
+ RTC module.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-mxc".
+
+config RTC_DRV_MXC_V2
+ tristate "Freescale MXC Real Time Clock for i.MX53"
+ depends on ARCH_MXC
+ help
+ If you say yes here you get support for the Freescale MXC
+ SRTC module in i.MX53 processor.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-mxc_v2".
+
+config RTC_DRV_SNVS
+ tristate "Freescale SNVS RTC support"
+ select REGMAP_MMIO
+ depends on ARCH_MXC || COMPILE_TEST
+ depends on HAS_IOMEM
+ depends on OF
+ help
+ If you say yes here you get support for the Freescale SNVS
+ Low Power (LP) RTC module.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-snvs".
+
+config RTC_DRV_IMX_SC
+ depends on IMX_SCU
+ depends on HAVE_ARM_SMCCC
+ tristate "NXP i.MX System Controller RTC support"
+ help
+ If you say yes here you get support for the NXP i.MX System
+ Controller RTC module.
+
+config RTC_DRV_SIRFSOC
+ tristate "SiRFSOC RTC"
+ depends on ARCH_SIRF
+ help
+ Say "yes" here to support the real time clock on SiRF SOC chips.
+ This driver can also be built as a module called rtc-sirfsoc.
+
+config RTC_DRV_ST_LPC
+ tristate "STMicroelectronics LPC RTC"
+ depends on ARCH_STI
+ depends on OF
+ help
+ Say Y here to include STMicroelectronics Low Power Controller
+ (LPC) based RTC support.
+
+ To compile this driver as a module, choose M here: the
+ module will be called rtc-st-lpc.
+
+config RTC_DRV_MOXART
+ tristate "MOXA ART RTC"
+ depends on ARCH_MOXART || COMPILE_TEST
+ help
+ If you say yes here you get support for the MOXA ART
+ RTC module.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-moxart
+
+config RTC_DRV_MT2712
+ tristate "MediaTek MT2712 SoC based RTC"
+ depends on ARCH_MEDIATEK || COMPILE_TEST
+ help
+ This enables support for the real time clock built in the MediaTek
+ SoCs for MT2712.
+
+ This drive can also be built as a module. If so, the module
+ will be called rtc-mt2712.
+
+config RTC_DRV_MT6397
+ tristate "MediaTek PMIC based RTC"
+ depends on MFD_MT6397 || (COMPILE_TEST && IRQ_DOMAIN)
+ help
+ This selects the MediaTek(R) RTC driver. RTC is part of MediaTek
+ MT6397 PMIC. You should enable MT6397 PMIC MFD before select
+ MediaTek(R) RTC driver.
+
+ If you want to use MediaTek(R) RTC interface, select Y or M here.
+
+config RTC_DRV_MT7622
+ tristate "MediaTek SoC based RTC"
+ depends on ARCH_MEDIATEK || COMPILE_TEST
+ help
+ This enables support for the real time clock built in the MediaTek
+ SoCs.
+
+ This drive can also be built as a module. If so, the module
+ will be called rtc-mt7622.
+
+config RTC_DRV_XGENE
+ tristate "APM X-Gene RTC"
+ depends on HAS_IOMEM
+ depends on ARCH_XGENE || COMPILE_TEST
+ help
+ If you say yes here you get support for the APM X-Gene SoC real time
+ clock.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-xgene".
+
+config RTC_DRV_PIC32
+ tristate "Microchip PIC32 RTC"
+ depends on MACH_PIC32
+ default y
+ help
+ If you say yes here you get support for the PIC32 RTC module.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-pic32
+
+config RTC_DRV_R7301
+ tristate "EPSON TOYOCOM RTC-7301SF/DG"
+ select REGMAP_MMIO
+ depends on OF && HAS_IOMEM
+ help
+ If you say yes here you get support for the EPSON TOYOCOM
+ RTC-7301SF/DG chips.
+
+ This driver can also be built as a module. If so, the module
+ will be called rtc-r7301.
+
+config RTC_DRV_STM32
+ tristate "STM32 RTC"
+ select REGMAP_MMIO
+ depends on ARCH_STM32 || COMPILE_TEST
+ help
+ If you say yes here you get support for the STM32 On-Chip
+ Real Time Clock.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-stm32".
+
+config RTC_DRV_CPCAP
+ depends on MFD_CPCAP
+ tristate "Motorola CPCAP RTC"
+ help
+ Say y here for CPCAP rtc found on some Motorola phones
+ and tablets such as Droid 4.
+
+config RTC_DRV_RTD119X
+ bool "Realtek RTD129x RTC"
+ depends on ARCH_REALTEK || COMPILE_TEST
+ default ARCH_REALTEK
+ help
+ If you say yes here, you get support for the RTD1295 SoC
+ Real Time Clock.
+
+config RTC_DRV_ASPEED
+ tristate "ASPEED RTC"
+ depends on OF
+ depends on ARCH_ASPEED || COMPILE_TEST
+ help
+ If you say yes here you get support for the ASPEED BMC SoC real time
+ clocks.
+
+ This driver can also be built as a module, if so, the module
+ will be called "rtc-aspeed".
+
+comment "HID Sensor RTC drivers"
+
+config RTC_DRV_HID_SENSOR_TIME
+ tristate "HID Sensor Time"
+ depends on USB_HID
+ depends on HID_SENSOR_HUB && IIO
+ select HID_SENSOR_IIO_COMMON
+ help
+ Say yes here to build support for the HID Sensors of type Time.
+ This drivers makes such sensors available as RTCs.
+
+ If this driver is compiled as a module, it will be named
+ rtc-hid-sensor-time.
+
+config RTC_DRV_GOLDFISH
+ tristate "Goldfish Real Time Clock"
+ depends on OF && HAS_IOMEM
+ depends on GOLDFISH || COMPILE_TEST
+ help
+ Say yes to enable RTC driver for the Goldfish based virtual platform.
+
+ Goldfish is a code name for the virtual platform developed by Google
+ for Android emulation.
+
+config RTC_DRV_WILCO_EC
+ tristate "Wilco EC RTC"
+ depends on WILCO_EC
+ default m
+ help
+ If you say yes here, you get read/write support for the Real Time
+ Clock on the Wilco Embedded Controller (Wilco is a kind of Chromebook)
+
+ This can also be built as a module. If so, the module will
+ be named "rtc_wilco_ec".
+
+endif # RTC_CLASS
diff --git a/drivers/rtc/Makefile b/drivers/rtc/Makefile
new file mode 100644
index 000000000..bfb574641
--- /dev/null
+++ b/drivers/rtc/Makefile
@@ -0,0 +1,185 @@
+# SPDX-License-Identifier: GPL-2.0
+#
+# Makefile for RTC class/drivers.
+#
+
+ccflags-$(CONFIG_RTC_DEBUG) := -DDEBUG
+
+obj-$(CONFIG_RTC_LIB) += lib.o
+obj-$(CONFIG_RTC_SYSTOHC) += systohc.o
+obj-$(CONFIG_RTC_CLASS) += rtc-core.o
+obj-$(CONFIG_RTC_MC146818_LIB) += rtc-mc146818-lib.o
+rtc-core-y := class.o interface.o
+
+rtc-core-$(CONFIG_RTC_NVMEM) += nvmem.o
+rtc-core-$(CONFIG_RTC_INTF_DEV) += dev.o
+rtc-core-$(CONFIG_RTC_INTF_PROC) += proc.o
+rtc-core-$(CONFIG_RTC_INTF_SYSFS) += sysfs.o
+
+# Keep the list ordered.
+
+obj-$(CONFIG_RTC_DRV_88PM80X) += rtc-88pm80x.o
+obj-$(CONFIG_RTC_DRV_88PM860X) += rtc-88pm860x.o
+obj-$(CONFIG_RTC_DRV_AB3100) += rtc-ab3100.o
+obj-$(CONFIG_RTC_DRV_AB8500) += rtc-ab8500.o
+obj-$(CONFIG_RTC_DRV_ABB5ZES3) += rtc-ab-b5ze-s3.o
+obj-$(CONFIG_RTC_DRV_ABEOZ9) += rtc-ab-eoz9.o
+obj-$(CONFIG_RTC_DRV_ABX80X) += rtc-abx80x.o
+obj-$(CONFIG_RTC_DRV_AC100) += rtc-ac100.o
+obj-$(CONFIG_RTC_DRV_ARMADA38X) += rtc-armada38x.o
+obj-$(CONFIG_RTC_DRV_AS3722) += rtc-as3722.o
+obj-$(CONFIG_RTC_DRV_ASM9260) += rtc-asm9260.o
+obj-$(CONFIG_RTC_DRV_ASPEED) += rtc-aspeed.o
+obj-$(CONFIG_RTC_DRV_AT91RM9200)+= rtc-at91rm9200.o
+obj-$(CONFIG_RTC_DRV_AT91SAM9) += rtc-at91sam9.o
+obj-$(CONFIG_RTC_DRV_AU1XXX) += rtc-au1xxx.o
+obj-$(CONFIG_RTC_DRV_BD70528) += rtc-bd70528.o
+obj-$(CONFIG_RTC_DRV_BQ32K) += rtc-bq32k.o
+obj-$(CONFIG_RTC_DRV_BQ4802) += rtc-bq4802.o
+obj-$(CONFIG_RTC_DRV_BRCMSTB) += rtc-brcmstb-waketimer.o
+obj-$(CONFIG_RTC_DRV_CADENCE) += rtc-cadence.o
+obj-$(CONFIG_RTC_DRV_CMOS) += rtc-cmos.o
+obj-$(CONFIG_RTC_DRV_COH901331) += rtc-coh901331.o
+obj-$(CONFIG_RTC_DRV_CPCAP) += rtc-cpcap.o
+obj-$(CONFIG_RTC_DRV_CROS_EC) += rtc-cros-ec.o
+obj-$(CONFIG_RTC_DRV_DA9052) += rtc-da9052.o
+obj-$(CONFIG_RTC_DRV_DA9055) += rtc-da9055.o
+obj-$(CONFIG_RTC_DRV_DA9063) += rtc-da9063.o
+obj-$(CONFIG_RTC_DRV_DAVINCI) += rtc-davinci.o
+obj-$(CONFIG_RTC_DRV_DIGICOLOR) += rtc-digicolor.o
+obj-$(CONFIG_RTC_DRV_DM355EVM) += rtc-dm355evm.o
+obj-$(CONFIG_RTC_DRV_DS1216) += rtc-ds1216.o
+obj-$(CONFIG_RTC_DRV_DS1286) += rtc-ds1286.o
+obj-$(CONFIG_RTC_DRV_DS1302) += rtc-ds1302.o
+obj-$(CONFIG_RTC_DRV_DS1305) += rtc-ds1305.o
+obj-$(CONFIG_RTC_DRV_DS1307) += rtc-ds1307.o
+obj-$(CONFIG_RTC_DRV_DS1343) += rtc-ds1343.o
+obj-$(CONFIG_RTC_DRV_DS1347) += rtc-ds1347.o
+obj-$(CONFIG_RTC_DRV_DS1374) += rtc-ds1374.o
+obj-$(CONFIG_RTC_DRV_DS1390) += rtc-ds1390.o
+obj-$(CONFIG_RTC_DRV_DS1511) += rtc-ds1511.o
+obj-$(CONFIG_RTC_DRV_DS1553) += rtc-ds1553.o
+obj-$(CONFIG_RTC_DRV_DS1672) += rtc-ds1672.o
+obj-$(CONFIG_RTC_DRV_DS1685_FAMILY) += rtc-ds1685.o
+obj-$(CONFIG_RTC_DRV_DS1742) += rtc-ds1742.o
+obj-$(CONFIG_RTC_DRV_DS2404) += rtc-ds2404.o
+obj-$(CONFIG_RTC_DRV_DS3232) += rtc-ds3232.o
+obj-$(CONFIG_RTC_DRV_EFI) += rtc-efi.o
+obj-$(CONFIG_RTC_DRV_EM3027) += rtc-em3027.o
+obj-$(CONFIG_RTC_DRV_EP93XX) += rtc-ep93xx.o
+obj-$(CONFIG_RTC_DRV_FM3130) += rtc-fm3130.o
+obj-$(CONFIG_RTC_DRV_FSL_FTM_ALARM) += rtc-fsl-ftm-alarm.o
+obj-$(CONFIG_RTC_DRV_FTRTC010) += rtc-ftrtc010.o
+obj-$(CONFIG_RTC_DRV_GENERIC) += rtc-generic.o
+obj-$(CONFIG_RTC_DRV_GOLDFISH) += rtc-goldfish.o
+obj-$(CONFIG_RTC_DRV_HID_SENSOR_TIME) += rtc-hid-sensor-time.o
+obj-$(CONFIG_RTC_DRV_HYM8563) += rtc-hym8563.o
+obj-$(CONFIG_RTC_DRV_IMXDI) += rtc-imxdi.o
+obj-$(CONFIG_RTC_DRV_IMX_SC) += rtc-imx-sc.o
+obj-$(CONFIG_RTC_DRV_ISL12022) += rtc-isl12022.o
+obj-$(CONFIG_RTC_DRV_ISL12026) += rtc-isl12026.o
+obj-$(CONFIG_RTC_DRV_ISL1208) += rtc-isl1208.o
+obj-$(CONFIG_RTC_DRV_JZ4740) += rtc-jz4740.o
+obj-$(CONFIG_RTC_DRV_LOONGSON1) += rtc-ls1x.o
+obj-$(CONFIG_RTC_DRV_LP8788) += rtc-lp8788.o
+obj-$(CONFIG_RTC_DRV_LPC24XX) += rtc-lpc24xx.o
+obj-$(CONFIG_RTC_DRV_LPC32XX) += rtc-lpc32xx.o
+obj-$(CONFIG_RTC_DRV_M41T80) += rtc-m41t80.o
+obj-$(CONFIG_RTC_DRV_M41T93) += rtc-m41t93.o
+obj-$(CONFIG_RTC_DRV_M41T94) += rtc-m41t94.o
+obj-$(CONFIG_RTC_DRV_M48T35) += rtc-m48t35.o
+obj-$(CONFIG_RTC_DRV_M48T59) += rtc-m48t59.o
+obj-$(CONFIG_RTC_DRV_M48T86) += rtc-m48t86.o
+obj-$(CONFIG_RTC_DRV_MAX6900) += rtc-max6900.o
+obj-$(CONFIG_RTC_DRV_MAX6902) += rtc-max6902.o
+obj-$(CONFIG_RTC_DRV_MAX6916) += rtc-max6916.o
+obj-$(CONFIG_RTC_DRV_MAX77686) += rtc-max77686.o
+obj-$(CONFIG_RTC_DRV_MAX8907) += rtc-max8907.o
+obj-$(CONFIG_RTC_DRV_MAX8925) += rtc-max8925.o
+obj-$(CONFIG_RTC_DRV_MAX8997) += rtc-max8997.o
+obj-$(CONFIG_RTC_DRV_MAX8998) += rtc-max8998.o
+obj-$(CONFIG_RTC_DRV_MESON_VRTC)+= rtc-meson-vrtc.o
+obj-$(CONFIG_RTC_DRV_MC13XXX) += rtc-mc13xxx.o
+obj-$(CONFIG_RTC_DRV_MCP795) += rtc-mcp795.o
+obj-$(CONFIG_RTC_DRV_MESON) += rtc-meson.o
+obj-$(CONFIG_RTC_DRV_MOXART) += rtc-moxart.o
+obj-$(CONFIG_RTC_DRV_MPC5121) += rtc-mpc5121.o
+obj-$(CONFIG_RTC_DRV_MSM6242) += rtc-msm6242.o
+obj-$(CONFIG_RTC_DRV_MT2712) += rtc-mt2712.o
+obj-$(CONFIG_RTC_DRV_MT6397) += rtc-mt6397.o
+obj-$(CONFIG_RTC_DRV_MT7622) += rtc-mt7622.o
+obj-$(CONFIG_RTC_DRV_MV) += rtc-mv.o
+obj-$(CONFIG_RTC_DRV_MXC) += rtc-mxc.o
+obj-$(CONFIG_RTC_DRV_MXC_V2) += rtc-mxc_v2.o
+obj-$(CONFIG_RTC_DRV_OMAP) += rtc-omap.o
+obj-$(CONFIG_RTC_DRV_OPAL) += rtc-opal.o
+obj-$(CONFIG_RTC_DRV_PALMAS) += rtc-palmas.o
+obj-$(CONFIG_RTC_DRV_PCAP) += rtc-pcap.o
+obj-$(CONFIG_RTC_DRV_PCF2123) += rtc-pcf2123.o
+obj-$(CONFIG_RTC_DRV_PCF2127) += rtc-pcf2127.o
+obj-$(CONFIG_RTC_DRV_PCF50633) += rtc-pcf50633.o
+obj-$(CONFIG_RTC_DRV_PCF85063) += rtc-pcf85063.o
+obj-$(CONFIG_RTC_DRV_PCF8523) += rtc-pcf8523.o
+obj-$(CONFIG_RTC_DRV_PCF85363) += rtc-pcf85363.o
+obj-$(CONFIG_RTC_DRV_PCF8563) += rtc-pcf8563.o
+obj-$(CONFIG_RTC_DRV_PCF8583) += rtc-pcf8583.o
+obj-$(CONFIG_RTC_DRV_PIC32) += rtc-pic32.o
+obj-$(CONFIG_RTC_DRV_PL030) += rtc-pl030.o
+obj-$(CONFIG_RTC_DRV_PL031) += rtc-pl031.o
+obj-$(CONFIG_RTC_DRV_PM8XXX) += rtc-pm8xxx.o
+obj-$(CONFIG_RTC_DRV_PS3) += rtc-ps3.o
+obj-$(CONFIG_RTC_DRV_PXA) += rtc-pxa.o
+obj-$(CONFIG_RTC_DRV_R7301) += rtc-r7301.o
+obj-$(CONFIG_RTC_DRV_R9701) += rtc-r9701.o
+obj-$(CONFIG_RTC_DRV_RC5T583) += rtc-rc5t583.o
+obj-$(CONFIG_RTC_DRV_RC5T619) += rtc-rc5t619.o
+obj-$(CONFIG_RTC_DRV_RK808) += rtc-rk808.o
+obj-$(CONFIG_RTC_DRV_RP5C01) += rtc-rp5c01.o
+obj-$(CONFIG_RTC_DRV_RS5C313) += rtc-rs5c313.o
+obj-$(CONFIG_RTC_DRV_RS5C348) += rtc-rs5c348.o
+obj-$(CONFIG_RTC_DRV_RS5C372) += rtc-rs5c372.o
+obj-$(CONFIG_RTC_DRV_RTD119X) += rtc-rtd119x.o
+obj-$(CONFIG_RTC_DRV_RV3028) += rtc-rv3028.o
+obj-$(CONFIG_RTC_DRV_RV3029C2) += rtc-rv3029c2.o
+obj-$(CONFIG_RTC_DRV_RV3032) += rtc-rv3032.o
+obj-$(CONFIG_RTC_DRV_RV8803) += rtc-rv8803.o
+obj-$(CONFIG_RTC_DRV_RX4581) += rtc-rx4581.o
+obj-$(CONFIG_RTC_DRV_RX6110) += rtc-rx6110.o
+obj-$(CONFIG_RTC_DRV_RX8010) += rtc-rx8010.o
+obj-$(CONFIG_RTC_DRV_RX8025) += rtc-rx8025.o
+obj-$(CONFIG_RTC_DRV_RX8581) += rtc-rx8581.o
+obj-$(CONFIG_RTC_DRV_S35390A) += rtc-s35390a.o
+obj-$(CONFIG_RTC_DRV_S3C) += rtc-s3c.o
+obj-$(CONFIG_RTC_DRV_S5M) += rtc-s5m.o
+obj-$(CONFIG_RTC_DRV_SA1100) += rtc-sa1100.o
+obj-$(CONFIG_RTC_DRV_SC27XX) += rtc-sc27xx.o
+obj-$(CONFIG_RTC_DRV_SD3078) += rtc-sd3078.o
+obj-$(CONFIG_RTC_DRV_SH) += rtc-sh.o
+obj-$(CONFIG_RTC_DRV_SIRFSOC) += rtc-sirfsoc.o
+obj-$(CONFIG_RTC_DRV_SNVS) += rtc-snvs.o
+obj-$(CONFIG_RTC_DRV_SPEAR) += rtc-spear.o
+obj-$(CONFIG_RTC_DRV_STARFIRE) += rtc-starfire.o
+obj-$(CONFIG_RTC_DRV_STK17TA8) += rtc-stk17ta8.o
+obj-$(CONFIG_RTC_DRV_ST_LPC) += rtc-st-lpc.o
+obj-$(CONFIG_RTC_DRV_STM32) += rtc-stm32.o
+obj-$(CONFIG_RTC_DRV_STMP) += rtc-stmp3xxx.o
+obj-$(CONFIG_RTC_DRV_SUN4V) += rtc-sun4v.o
+obj-$(CONFIG_RTC_DRV_SUN6I) += rtc-sun6i.o
+obj-$(CONFIG_RTC_DRV_SUNXI) += rtc-sunxi.o
+obj-$(CONFIG_RTC_DRV_TEGRA) += rtc-tegra.o
+obj-$(CONFIG_RTC_DRV_TEST) += rtc-test.o
+obj-$(CONFIG_RTC_DRV_TPS6586X) += rtc-tps6586x.o
+obj-$(CONFIG_RTC_DRV_TPS65910) += rtc-tps65910.o
+obj-$(CONFIG_RTC_DRV_TPS80031) += rtc-tps80031.o
+obj-$(CONFIG_RTC_DRV_TWL4030) += rtc-twl.o
+obj-$(CONFIG_RTC_DRV_TX4939) += rtc-tx4939.o
+obj-$(CONFIG_RTC_DRV_V3020) += rtc-v3020.o
+obj-$(CONFIG_RTC_DRV_VR41XX) += rtc-vr41xx.o
+obj-$(CONFIG_RTC_DRV_VRTC) += rtc-mrst.o
+obj-$(CONFIG_RTC_DRV_VT8500) += rtc-vt8500.o
+obj-$(CONFIG_RTC_DRV_WILCO_EC) += rtc-wilco-ec.o
+obj-$(CONFIG_RTC_DRV_WM831X) += rtc-wm831x.o
+obj-$(CONFIG_RTC_DRV_WM8350) += rtc-wm8350.o
+obj-$(CONFIG_RTC_DRV_X1205) += rtc-x1205.o
+obj-$(CONFIG_RTC_DRV_XGENE) += rtc-xgene.o
+obj-$(CONFIG_RTC_DRV_ZYNQMP) += rtc-zynqmp.o
diff --git a/drivers/rtc/class.c b/drivers/rtc/class.c
new file mode 100644
index 000000000..625effe6c
--- /dev/null
+++ b/drivers/rtc/class.c
@@ -0,0 +1,487 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * RTC subsystem, base class
+ *
+ * Copyright (C) 2005 Tower Technologies
+ * Author: Alessandro Zummo <a.zummo@towertech.it>
+ *
+ * class skeleton from drivers/hwmon/hwmon.c
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/rtc.h>
+#include <linux/kdev_t.h>
+#include <linux/idr.h>
+#include <linux/slab.h>
+#include <linux/workqueue.h>
+
+#include "rtc-core.h"
+
+static DEFINE_IDA(rtc_ida);
+struct class *rtc_class;
+
+static void rtc_device_release(struct device *dev)
+{
+ struct rtc_device *rtc = to_rtc_device(dev);
+ struct timerqueue_head *head = &rtc->timerqueue;
+ struct timerqueue_node *node;
+
+ mutex_lock(&rtc->ops_lock);
+ while ((node = timerqueue_getnext(head)))
+ timerqueue_del(head, node);
+ mutex_unlock(&rtc->ops_lock);
+
+ cancel_work_sync(&rtc->irqwork);
+
+ ida_simple_remove(&rtc_ida, rtc->id);
+ kfree(rtc);
+}
+
+#ifdef CONFIG_RTC_HCTOSYS_DEVICE
+/* Result of the last RTC to system clock attempt. */
+int rtc_hctosys_ret = -ENODEV;
+
+/* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
+ * whether it stores the most close value or the value with partial
+ * seconds truncated. However, it is important that we use it to store
+ * the truncated value. This is because otherwise it is necessary,
+ * in an rtc sync function, to read both xtime.tv_sec and
+ * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
+ * of >32bits is not possible. So storing the most close value would
+ * slow down the sync API. So here we have the truncated value and
+ * the best guess is to add 0.5s.
+ */
+
+static void rtc_hctosys(struct rtc_device *rtc)
+{
+ int err;
+ struct rtc_time tm;
+ struct timespec64 tv64 = {
+ .tv_nsec = NSEC_PER_SEC >> 1,
+ };
+
+ err = rtc_read_time(rtc, &tm);
+ if (err) {
+ dev_err(rtc->dev.parent,
+ "hctosys: unable to read the hardware clock\n");
+ goto err_read;
+ }
+
+ tv64.tv_sec = rtc_tm_to_time64(&tm);
+
+#if BITS_PER_LONG == 32
+ if (tv64.tv_sec > INT_MAX) {
+ err = -ERANGE;
+ goto err_read;
+ }
+#endif
+
+ err = do_settimeofday64(&tv64);
+
+ dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
+ &tm, (long long)tv64.tv_sec);
+
+err_read:
+ rtc_hctosys_ret = err;
+}
+#endif
+
+#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
+/*
+ * On suspend(), measure the delta between one RTC and the
+ * system's wall clock; restore it on resume().
+ */
+
+static struct timespec64 old_rtc, old_system, old_delta;
+
+static int rtc_suspend(struct device *dev)
+{
+ struct rtc_device *rtc = to_rtc_device(dev);
+ struct rtc_time tm;
+ struct timespec64 delta, delta_delta;
+ int err;
+
+ if (timekeeping_rtc_skipsuspend())
+ return 0;
+
+ if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
+ return 0;
+
+ /* snapshot the current RTC and system time at suspend*/
+ err = rtc_read_time(rtc, &tm);
+ if (err < 0) {
+ pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev));
+ return 0;
+ }
+
+ ktime_get_real_ts64(&old_system);
+ old_rtc.tv_sec = rtc_tm_to_time64(&tm);
+
+ /*
+ * To avoid drift caused by repeated suspend/resumes,
+ * which each can add ~1 second drift error,
+ * try to compensate so the difference in system time
+ * and rtc time stays close to constant.
+ */
+ delta = timespec64_sub(old_system, old_rtc);
+ delta_delta = timespec64_sub(delta, old_delta);
+ if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
+ /*
+ * if delta_delta is too large, assume time correction
+ * has occurred and set old_delta to the current delta.
+ */
+ old_delta = delta;
+ } else {
+ /* Otherwise try to adjust old_system to compensate */
+ old_system = timespec64_sub(old_system, delta_delta);
+ }
+
+ return 0;
+}
+
+static int rtc_resume(struct device *dev)
+{
+ struct rtc_device *rtc = to_rtc_device(dev);
+ struct rtc_time tm;
+ struct timespec64 new_system, new_rtc;
+ struct timespec64 sleep_time;
+ int err;
+
+ if (timekeeping_rtc_skipresume())
+ return 0;
+
+ rtc_hctosys_ret = -ENODEV;
+ if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
+ return 0;
+
+ /* snapshot the current rtc and system time at resume */
+ ktime_get_real_ts64(&new_system);
+ err = rtc_read_time(rtc, &tm);
+ if (err < 0) {
+ pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev));
+ return 0;
+ }
+
+ new_rtc.tv_sec = rtc_tm_to_time64(&tm);
+ new_rtc.tv_nsec = 0;
+
+ if (new_rtc.tv_sec < old_rtc.tv_sec) {
+ pr_debug("%s: time travel!\n", dev_name(&rtc->dev));
+ return 0;
+ }
+
+ /* calculate the RTC time delta (sleep time)*/
+ sleep_time = timespec64_sub(new_rtc, old_rtc);
+
+ /*
+ * Since these RTC suspend/resume handlers are not called
+ * at the very end of suspend or the start of resume,
+ * some run-time may pass on either sides of the sleep time
+ * so subtract kernel run-time between rtc_suspend to rtc_resume
+ * to keep things accurate.
+ */
+ sleep_time = timespec64_sub(sleep_time,
+ timespec64_sub(new_system, old_system));
+
+ if (sleep_time.tv_sec >= 0)
+ timekeeping_inject_sleeptime64(&sleep_time);
+ rtc_hctosys_ret = 0;
+ return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
+#define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops)
+#else
+#define RTC_CLASS_DEV_PM_OPS NULL
+#endif
+
+/* Ensure the caller will set the id before releasing the device */
+static struct rtc_device *rtc_allocate_device(void)
+{
+ struct rtc_device *rtc;
+
+ rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return NULL;
+
+ device_initialize(&rtc->dev);
+
+ /* Drivers can revise this default after allocating the device. */
+ rtc->set_offset_nsec = NSEC_PER_SEC / 2;
+
+ rtc->irq_freq = 1;
+ rtc->max_user_freq = 64;
+ rtc->dev.class = rtc_class;
+ rtc->dev.groups = rtc_get_dev_attribute_groups();
+ rtc->dev.release = rtc_device_release;
+
+ mutex_init(&rtc->ops_lock);
+ spin_lock_init(&rtc->irq_lock);
+ init_waitqueue_head(&rtc->irq_queue);
+
+ /* Init timerqueue */
+ timerqueue_init_head(&rtc->timerqueue);
+ INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
+ /* Init aie timer */
+ rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
+ /* Init uie timer */
+ rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
+ /* Init pie timer */
+ hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+ rtc->pie_timer.function = rtc_pie_update_irq;
+ rtc->pie_enabled = 0;
+
+ return rtc;
+}
+
+static int rtc_device_get_id(struct device *dev)
+{
+ int of_id = -1, id = -1;
+
+ if (dev->of_node)
+ of_id = of_alias_get_id(dev->of_node, "rtc");
+ else if (dev->parent && dev->parent->of_node)
+ of_id = of_alias_get_id(dev->parent->of_node, "rtc");
+
+ if (of_id >= 0) {
+ id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
+ if (id < 0)
+ dev_warn(dev, "/aliases ID %d not available\n", of_id);
+ }
+
+ if (id < 0)
+ id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
+
+ return id;
+}
+
+static void rtc_device_get_offset(struct rtc_device *rtc)
+{
+ time64_t range_secs;
+ u32 start_year;
+ int ret;
+
+ /*
+ * If RTC driver did not implement the range of RTC hardware device,
+ * then we can not expand the RTC range by adding or subtracting one
+ * offset.
+ */
+ if (rtc->range_min == rtc->range_max)
+ return;
+
+ ret = device_property_read_u32(rtc->dev.parent, "start-year",
+ &start_year);
+ if (!ret) {
+ rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
+ rtc->set_start_time = true;
+ }
+
+ /*
+ * If user did not implement the start time for RTC driver, then no
+ * need to expand the RTC range.
+ */
+ if (!rtc->set_start_time)
+ return;
+
+ range_secs = rtc->range_max - rtc->range_min + 1;
+
+ /*
+ * If the start_secs is larger than the maximum seconds (rtc->range_max)
+ * supported by RTC hardware or the maximum seconds of new expanded
+ * range (start_secs + rtc->range_max - rtc->range_min) is less than
+ * rtc->range_min, which means the minimum seconds (rtc->range_min) of
+ * RTC hardware will be mapped to start_secs by adding one offset, so
+ * the offset seconds calculation formula should be:
+ * rtc->offset_secs = rtc->start_secs - rtc->range_min;
+ *
+ * If the start_secs is larger than the minimum seconds (rtc->range_min)
+ * supported by RTC hardware, then there is one region is overlapped
+ * between the original RTC hardware range and the new expanded range,
+ * and this overlapped region do not need to be mapped into the new
+ * expanded range due to it is valid for RTC device. So the minimum
+ * seconds of RTC hardware (rtc->range_min) should be mapped to
+ * rtc->range_max + 1, then the offset seconds formula should be:
+ * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
+ *
+ * If the start_secs is less than the minimum seconds (rtc->range_min),
+ * which is similar to case 2. So the start_secs should be mapped to
+ * start_secs + rtc->range_max - rtc->range_min + 1, then the
+ * offset seconds formula should be:
+ * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
+ *
+ * Otherwise the offset seconds should be 0.
+ */
+ if (rtc->start_secs > rtc->range_max ||
+ rtc->start_secs + range_secs - 1 < rtc->range_min)
+ rtc->offset_secs = rtc->start_secs - rtc->range_min;
+ else if (rtc->start_secs > rtc->range_min)
+ rtc->offset_secs = range_secs;
+ else if (rtc->start_secs < rtc->range_min)
+ rtc->offset_secs = -range_secs;
+ else
+ rtc->offset_secs = 0;
+}
+
+/**
+ * rtc_device_unregister - removes the previously registered RTC class device
+ *
+ * @rtc: the RTC class device to destroy
+ */
+static void rtc_device_unregister(struct rtc_device *rtc)
+{
+ mutex_lock(&rtc->ops_lock);
+ /*
+ * Remove innards of this RTC, then disable it, before
+ * letting any rtc_class_open() users access it again
+ */
+ rtc_proc_del_device(rtc);
+ cdev_device_del(&rtc->char_dev, &rtc->dev);
+ rtc->ops = NULL;
+ mutex_unlock(&rtc->ops_lock);
+ put_device(&rtc->dev);
+}
+
+static void devm_rtc_release_device(struct device *dev, void *res)
+{
+ struct rtc_device *rtc = *(struct rtc_device **)res;
+
+ rtc_nvmem_unregister(rtc);
+
+ if (rtc->registered)
+ rtc_device_unregister(rtc);
+ else
+ put_device(&rtc->dev);
+}
+
+struct rtc_device *devm_rtc_allocate_device(struct device *dev)
+{
+ struct rtc_device **ptr, *rtc;
+ int id, err;
+
+ id = rtc_device_get_id(dev);
+ if (id < 0)
+ return ERR_PTR(id);
+
+ ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL);
+ if (!ptr) {
+ err = -ENOMEM;
+ goto exit_ida;
+ }
+
+ rtc = rtc_allocate_device();
+ if (!rtc) {
+ err = -ENOMEM;
+ goto exit_devres;
+ }
+
+ *ptr = rtc;
+ devres_add(dev, ptr);
+
+ rtc->id = id;
+ rtc->dev.parent = dev;
+ dev_set_name(&rtc->dev, "rtc%d", id);
+
+ return rtc;
+
+exit_devres:
+ devres_free(ptr);
+exit_ida:
+ ida_simple_remove(&rtc_ida, id);
+ return ERR_PTR(err);
+}
+EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
+
+int __rtc_register_device(struct module *owner, struct rtc_device *rtc)
+{
+ struct rtc_wkalrm alrm;
+ int err;
+
+ if (!rtc->ops) {
+ dev_dbg(&rtc->dev, "no ops set\n");
+ return -EINVAL;
+ }
+
+ rtc->owner = owner;
+ rtc_device_get_offset(rtc);
+
+ /* Check to see if there is an ALARM already set in hw */
+ err = __rtc_read_alarm(rtc, &alrm);
+ if (!err && !rtc_valid_tm(&alrm.time))
+ rtc_initialize_alarm(rtc, &alrm);
+
+ rtc_dev_prepare(rtc);
+
+ err = cdev_device_add(&rtc->char_dev, &rtc->dev);
+ if (err)
+ dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
+ MAJOR(rtc->dev.devt), rtc->id);
+ else
+ dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
+ MAJOR(rtc->dev.devt), rtc->id);
+
+ rtc_proc_add_device(rtc);
+
+ rtc->registered = true;
+ dev_info(rtc->dev.parent, "registered as %s\n",
+ dev_name(&rtc->dev));
+
+#ifdef CONFIG_RTC_HCTOSYS_DEVICE
+ if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
+ rtc_hctosys(rtc);
+#endif
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(__rtc_register_device);
+
+/**
+ * devm_rtc_device_register - resource managed rtc_device_register()
+ * @dev: the device to register
+ * @name: the name of the device (unused)
+ * @ops: the rtc operations structure
+ * @owner: the module owner
+ *
+ * @return a struct rtc on success, or an ERR_PTR on error
+ *
+ * Managed rtc_device_register(). The rtc_device returned from this function
+ * are automatically freed on driver detach.
+ * This function is deprecated, use devm_rtc_allocate_device and
+ * rtc_register_device instead
+ */
+struct rtc_device *devm_rtc_device_register(struct device *dev,
+ const char *name,
+ const struct rtc_class_ops *ops,
+ struct module *owner)
+{
+ struct rtc_device *rtc;
+ int err;
+
+ rtc = devm_rtc_allocate_device(dev);
+ if (IS_ERR(rtc))
+ return rtc;
+
+ rtc->ops = ops;
+
+ err = __rtc_register_device(owner, rtc);
+ if (err)
+ return ERR_PTR(err);
+
+ return rtc;
+}
+EXPORT_SYMBOL_GPL(devm_rtc_device_register);
+
+static int __init rtc_init(void)
+{
+ rtc_class = class_create(THIS_MODULE, "rtc");
+ if (IS_ERR(rtc_class)) {
+ pr_err("couldn't create class\n");
+ return PTR_ERR(rtc_class);
+ }
+ rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
+ rtc_dev_init();
+ return 0;
+}
+subsys_initcall(rtc_init);
diff --git a/drivers/rtc/dev.c b/drivers/rtc/dev.c
new file mode 100644
index 000000000..5b8ebe861
--- /dev/null
+++ b/drivers/rtc/dev.c
@@ -0,0 +1,509 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * RTC subsystem, dev interface
+ *
+ * Copyright (C) 2005 Tower Technologies
+ * Author: Alessandro Zummo <a.zummo@towertech.it>
+ *
+ * based on arch/arm/common/rtctime.c
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/compat.h>
+#include <linux/module.h>
+#include <linux/rtc.h>
+#include <linux/sched/signal.h>
+#include "rtc-core.h"
+
+static dev_t rtc_devt;
+
+#define RTC_DEV_MAX 16 /* 16 RTCs should be enough for everyone... */
+
+static int rtc_dev_open(struct inode *inode, struct file *file)
+{
+ struct rtc_device *rtc = container_of(inode->i_cdev,
+ struct rtc_device, char_dev);
+
+ if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
+ return -EBUSY;
+
+ file->private_data = rtc;
+
+ spin_lock_irq(&rtc->irq_lock);
+ rtc->irq_data = 0;
+ spin_unlock_irq(&rtc->irq_lock);
+
+ return 0;
+}
+
+#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
+/*
+ * Routine to poll RTC seconds field for change as often as possible,
+ * after first RTC_UIE use timer to reduce polling
+ */
+static void rtc_uie_task(struct work_struct *work)
+{
+ struct rtc_device *rtc =
+ container_of(work, struct rtc_device, uie_task);
+ struct rtc_time tm;
+ int num = 0;
+ int err;
+
+ err = rtc_read_time(rtc, &tm);
+
+ spin_lock_irq(&rtc->irq_lock);
+ if (rtc->stop_uie_polling || err) {
+ rtc->uie_task_active = 0;
+ } else if (rtc->oldsecs != tm.tm_sec) {
+ num = (tm.tm_sec + 60 - rtc->oldsecs) % 60;
+ rtc->oldsecs = tm.tm_sec;
+ rtc->uie_timer.expires = jiffies + HZ - (HZ / 10);
+ rtc->uie_timer_active = 1;
+ rtc->uie_task_active = 0;
+ add_timer(&rtc->uie_timer);
+ } else if (schedule_work(&rtc->uie_task) == 0) {
+ rtc->uie_task_active = 0;
+ }
+ spin_unlock_irq(&rtc->irq_lock);
+ if (num)
+ rtc_handle_legacy_irq(rtc, num, RTC_UF);
+}
+
+static void rtc_uie_timer(struct timer_list *t)
+{
+ struct rtc_device *rtc = from_timer(rtc, t, uie_timer);
+ unsigned long flags;
+
+ spin_lock_irqsave(&rtc->irq_lock, flags);
+ rtc->uie_timer_active = 0;
+ rtc->uie_task_active = 1;
+ if ((schedule_work(&rtc->uie_task) == 0))
+ rtc->uie_task_active = 0;
+ spin_unlock_irqrestore(&rtc->irq_lock, flags);
+}
+
+static int clear_uie(struct rtc_device *rtc)
+{
+ spin_lock_irq(&rtc->irq_lock);
+ if (rtc->uie_irq_active) {
+ rtc->stop_uie_polling = 1;
+ if (rtc->uie_timer_active) {
+ spin_unlock_irq(&rtc->irq_lock);
+ del_timer_sync(&rtc->uie_timer);
+ spin_lock_irq(&rtc->irq_lock);
+ rtc->uie_timer_active = 0;
+ }
+ if (rtc->uie_task_active) {
+ spin_unlock_irq(&rtc->irq_lock);
+ flush_scheduled_work();
+ spin_lock_irq(&rtc->irq_lock);
+ }
+ rtc->uie_irq_active = 0;
+ }
+ spin_unlock_irq(&rtc->irq_lock);
+ return 0;
+}
+
+static int set_uie(struct rtc_device *rtc)
+{
+ struct rtc_time tm;
+ int err;
+
+ err = rtc_read_time(rtc, &tm);
+ if (err)
+ return err;
+ spin_lock_irq(&rtc->irq_lock);
+ if (!rtc->uie_irq_active) {
+ rtc->uie_irq_active = 1;
+ rtc->stop_uie_polling = 0;
+ rtc->oldsecs = tm.tm_sec;
+ rtc->uie_task_active = 1;
+ if (schedule_work(&rtc->uie_task) == 0)
+ rtc->uie_task_active = 0;
+ }
+ rtc->irq_data = 0;
+ spin_unlock_irq(&rtc->irq_lock);
+ return 0;
+}
+
+int rtc_dev_update_irq_enable_emul(struct rtc_device *rtc, unsigned int enabled)
+{
+ if (enabled)
+ return set_uie(rtc);
+ else
+ return clear_uie(rtc);
+}
+EXPORT_SYMBOL(rtc_dev_update_irq_enable_emul);
+
+#endif /* CONFIG_RTC_INTF_DEV_UIE_EMUL */
+
+static ssize_t
+rtc_dev_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
+{
+ struct rtc_device *rtc = file->private_data;
+
+ DECLARE_WAITQUEUE(wait, current);
+ unsigned long data;
+ ssize_t ret;
+
+ if (count != sizeof(unsigned int) && count < sizeof(unsigned long))
+ return -EINVAL;
+
+ add_wait_queue(&rtc->irq_queue, &wait);
+ do {
+ __set_current_state(TASK_INTERRUPTIBLE);
+
+ spin_lock_irq(&rtc->irq_lock);
+ data = rtc->irq_data;
+ rtc->irq_data = 0;
+ spin_unlock_irq(&rtc->irq_lock);
+
+ if (data != 0) {
+ ret = 0;
+ break;
+ }
+ if (file->f_flags & O_NONBLOCK) {
+ ret = -EAGAIN;
+ break;
+ }
+ if (signal_pending(current)) {
+ ret = -ERESTARTSYS;
+ break;
+ }
+ schedule();
+ } while (1);
+ set_current_state(TASK_RUNNING);
+ remove_wait_queue(&rtc->irq_queue, &wait);
+
+ if (ret == 0) {
+ if (sizeof(int) != sizeof(long) &&
+ count == sizeof(unsigned int))
+ ret = put_user(data, (unsigned int __user *)buf) ?:
+ sizeof(unsigned int);
+ else
+ ret = put_user(data, (unsigned long __user *)buf) ?:
+ sizeof(unsigned long);
+ }
+ return ret;
+}
+
+static __poll_t rtc_dev_poll(struct file *file, poll_table *wait)
+{
+ struct rtc_device *rtc = file->private_data;
+ unsigned long data;
+
+ poll_wait(file, &rtc->irq_queue, wait);
+
+ data = rtc->irq_data;
+
+ return (data != 0) ? (EPOLLIN | EPOLLRDNORM) : 0;
+}
+
+static long rtc_dev_ioctl(struct file *file,
+ unsigned int cmd, unsigned long arg)
+{
+ int err = 0;
+ struct rtc_device *rtc = file->private_data;
+ const struct rtc_class_ops *ops = rtc->ops;
+ struct rtc_time tm;
+ struct rtc_wkalrm alarm;
+ void __user *uarg = (void __user *)arg;
+
+ err = mutex_lock_interruptible(&rtc->ops_lock);
+ if (err)
+ return err;
+
+ /* check that the calling task has appropriate permissions
+ * for certain ioctls. doing this check here is useful
+ * to avoid duplicate code in each driver.
+ */
+ switch (cmd) {
+ case RTC_EPOCH_SET:
+ case RTC_SET_TIME:
+ if (!capable(CAP_SYS_TIME))
+ err = -EACCES;
+ break;
+
+ case RTC_IRQP_SET:
+ if (arg > rtc->max_user_freq && !capable(CAP_SYS_RESOURCE))
+ err = -EACCES;
+ break;
+
+ case RTC_PIE_ON:
+ if (rtc->irq_freq > rtc->max_user_freq &&
+ !capable(CAP_SYS_RESOURCE))
+ err = -EACCES;
+ break;
+ }
+
+ if (err)
+ goto done;
+
+ /*
+ * Drivers *SHOULD NOT* provide ioctl implementations
+ * for these requests. Instead, provide methods to
+ * support the following code, so that the RTC's main
+ * features are accessible without using ioctls.
+ *
+ * RTC and alarm times will be in UTC, by preference,
+ * but dual-booting with MS-Windows implies RTCs must
+ * use the local wall clock time.
+ */
+
+ switch (cmd) {
+ case RTC_ALM_READ:
+ mutex_unlock(&rtc->ops_lock);
+
+ err = rtc_read_alarm(rtc, &alarm);
+ if (err < 0)
+ return err;
+
+ if (copy_to_user(uarg, &alarm.time, sizeof(tm)))
+ err = -EFAULT;
+ return err;
+
+ case RTC_ALM_SET:
+ mutex_unlock(&rtc->ops_lock);
+
+ if (copy_from_user(&alarm.time, uarg, sizeof(tm)))
+ return -EFAULT;
+
+ alarm.enabled = 0;
+ alarm.pending = 0;
+ alarm.time.tm_wday = -1;
+ alarm.time.tm_yday = -1;
+ alarm.time.tm_isdst = -1;
+
+ /* RTC_ALM_SET alarms may be up to 24 hours in the future.
+ * Rather than expecting every RTC to implement "don't care"
+ * for day/month/year fields, just force the alarm to have
+ * the right values for those fields.
+ *
+ * RTC_WKALM_SET should be used instead. Not only does it
+ * eliminate the need for a separate RTC_AIE_ON call, it
+ * doesn't have the "alarm 23:59:59 in the future" race.
+ *
+ * NOTE: some legacy code may have used invalid fields as
+ * wildcards, exposing hardware "periodic alarm" capabilities.
+ * Not supported here.
+ */
+ {
+ time64_t now, then;
+
+ err = rtc_read_time(rtc, &tm);
+ if (err < 0)
+ return err;
+ now = rtc_tm_to_time64(&tm);
+
+ alarm.time.tm_mday = tm.tm_mday;
+ alarm.time.tm_mon = tm.tm_mon;
+ alarm.time.tm_year = tm.tm_year;
+ err = rtc_valid_tm(&alarm.time);
+ if (err < 0)
+ return err;
+ then = rtc_tm_to_time64(&alarm.time);
+
+ /* alarm may need to wrap into tomorrow */
+ if (then < now) {
+ rtc_time64_to_tm(now + 24 * 60 * 60, &tm);
+ alarm.time.tm_mday = tm.tm_mday;
+ alarm.time.tm_mon = tm.tm_mon;
+ alarm.time.tm_year = tm.tm_year;
+ }
+ }
+
+ return rtc_set_alarm(rtc, &alarm);
+
+ case RTC_RD_TIME:
+ mutex_unlock(&rtc->ops_lock);
+
+ err = rtc_read_time(rtc, &tm);
+ if (err < 0)
+ return err;
+
+ if (copy_to_user(uarg, &tm, sizeof(tm)))
+ err = -EFAULT;
+ return err;
+
+ case RTC_SET_TIME:
+ mutex_unlock(&rtc->ops_lock);
+
+ if (copy_from_user(&tm, uarg, sizeof(tm)))
+ return -EFAULT;
+
+ return rtc_set_time(rtc, &tm);
+
+ case RTC_PIE_ON:
+ err = rtc_irq_set_state(rtc, 1);
+ break;
+
+ case RTC_PIE_OFF:
+ err = rtc_irq_set_state(rtc, 0);
+ break;
+
+ case RTC_AIE_ON:
+ mutex_unlock(&rtc->ops_lock);
+ return rtc_alarm_irq_enable(rtc, 1);
+
+ case RTC_AIE_OFF:
+ mutex_unlock(&rtc->ops_lock);
+ return rtc_alarm_irq_enable(rtc, 0);
+
+ case RTC_UIE_ON:
+ mutex_unlock(&rtc->ops_lock);
+ return rtc_update_irq_enable(rtc, 1);
+
+ case RTC_UIE_OFF:
+ mutex_unlock(&rtc->ops_lock);
+ return rtc_update_irq_enable(rtc, 0);
+
+ case RTC_IRQP_SET:
+ err = rtc_irq_set_freq(rtc, arg);
+ break;
+ case RTC_IRQP_READ:
+ err = put_user(rtc->irq_freq, (unsigned long __user *)uarg);
+ break;
+
+ case RTC_WKALM_SET:
+ mutex_unlock(&rtc->ops_lock);
+ if (copy_from_user(&alarm, uarg, sizeof(alarm)))
+ return -EFAULT;
+
+ return rtc_set_alarm(rtc, &alarm);
+
+ case RTC_WKALM_RD:
+ mutex_unlock(&rtc->ops_lock);
+ err = rtc_read_alarm(rtc, &alarm);
+ if (err < 0)
+ return err;
+
+ if (copy_to_user(uarg, &alarm, sizeof(alarm)))
+ err = -EFAULT;
+ return err;
+
+ default:
+ /* Finally try the driver's ioctl interface */
+ if (ops->ioctl) {
+ err = ops->ioctl(rtc->dev.parent, cmd, arg);
+ if (err == -ENOIOCTLCMD)
+ err = -ENOTTY;
+ } else {
+ err = -ENOTTY;
+ }
+ break;
+ }
+
+done:
+ mutex_unlock(&rtc->ops_lock);
+ return err;
+}
+
+#ifdef CONFIG_COMPAT
+#define RTC_IRQP_SET32 _IOW('p', 0x0c, __u32)
+#define RTC_IRQP_READ32 _IOR('p', 0x0b, __u32)
+#define RTC_EPOCH_SET32 _IOW('p', 0x0e, __u32)
+
+static long rtc_dev_compat_ioctl(struct file *file,
+ unsigned int cmd, unsigned long arg)
+{
+ struct rtc_device *rtc = file->private_data;
+ void __user *uarg = compat_ptr(arg);
+
+ switch (cmd) {
+ case RTC_IRQP_READ32:
+ return put_user(rtc->irq_freq, (__u32 __user *)uarg);
+
+ case RTC_IRQP_SET32:
+ /* arg is a plain integer, not pointer */
+ return rtc_dev_ioctl(file, RTC_IRQP_SET, arg);
+
+ case RTC_EPOCH_SET32:
+ /* arg is a plain integer, not pointer */
+ return rtc_dev_ioctl(file, RTC_EPOCH_SET, arg);
+ }
+
+ return rtc_dev_ioctl(file, cmd, (unsigned long)uarg);
+}
+#endif
+
+static int rtc_dev_fasync(int fd, struct file *file, int on)
+{
+ struct rtc_device *rtc = file->private_data;
+
+ return fasync_helper(fd, file, on, &rtc->async_queue);
+}
+
+static int rtc_dev_release(struct inode *inode, struct file *file)
+{
+ struct rtc_device *rtc = file->private_data;
+
+ /* We shut down the repeating IRQs that userspace enabled,
+ * since nothing is listening to them.
+ * - Update (UIE) ... currently only managed through ioctls
+ * - Periodic (PIE) ... also used through rtc_*() interface calls
+ *
+ * Leave the alarm alone; it may be set to trigger a system wakeup
+ * later, or be used by kernel code, and is a one-shot event anyway.
+ */
+
+ /* Keep ioctl until all drivers are converted */
+ rtc_dev_ioctl(file, RTC_UIE_OFF, 0);
+ rtc_update_irq_enable(rtc, 0);
+ rtc_irq_set_state(rtc, 0);
+
+ clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
+ return 0;
+}
+
+static const struct file_operations rtc_dev_fops = {
+ .owner = THIS_MODULE,
+ .llseek = no_llseek,
+ .read = rtc_dev_read,
+ .poll = rtc_dev_poll,
+ .unlocked_ioctl = rtc_dev_ioctl,
+#ifdef CONFIG_COMPAT
+ .compat_ioctl = rtc_dev_compat_ioctl,
+#endif
+ .open = rtc_dev_open,
+ .release = rtc_dev_release,
+ .fasync = rtc_dev_fasync,
+};
+
+/* insertion/removal hooks */
+
+void rtc_dev_prepare(struct rtc_device *rtc)
+{
+ if (!rtc_devt)
+ return;
+
+ if (rtc->id >= RTC_DEV_MAX) {
+ dev_dbg(&rtc->dev, "too many RTC devices\n");
+ return;
+ }
+
+ rtc->dev.devt = MKDEV(MAJOR(rtc_devt), rtc->id);
+
+#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
+ INIT_WORK(&rtc->uie_task, rtc_uie_task);
+ timer_setup(&rtc->uie_timer, rtc_uie_timer, 0);
+#endif
+
+ cdev_init(&rtc->char_dev, &rtc_dev_fops);
+ rtc->char_dev.owner = rtc->owner;
+}
+
+void __init rtc_dev_init(void)
+{
+ int err;
+
+ err = alloc_chrdev_region(&rtc_devt, 0, RTC_DEV_MAX, "rtc");
+ if (err < 0)
+ pr_err("failed to allocate char dev region\n");
+}
+
+void __exit rtc_dev_exit(void)
+{
+ if (rtc_devt)
+ unregister_chrdev_region(rtc_devt, RTC_DEV_MAX);
+}
diff --git a/drivers/rtc/interface.c b/drivers/rtc/interface.c
new file mode 100644
index 000000000..146056858
--- /dev/null
+++ b/drivers/rtc/interface.c
@@ -0,0 +1,1089 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * RTC subsystem, interface functions
+ *
+ * Copyright (C) 2005 Tower Technologies
+ * Author: Alessandro Zummo <a.zummo@towertech.it>
+ *
+ * based on arch/arm/common/rtctime.c
+ */
+
+#include <linux/rtc.h>
+#include <linux/sched.h>
+#include <linux/module.h>
+#include <linux/log2.h>
+#include <linux/workqueue.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/rtc.h>
+
+static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
+static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
+
+static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
+{
+ time64_t secs;
+
+ if (!rtc->offset_secs)
+ return;
+
+ secs = rtc_tm_to_time64(tm);
+
+ /*
+ * Since the reading time values from RTC device are always in the RTC
+ * original valid range, but we need to skip the overlapped region
+ * between expanded range and original range, which is no need to add
+ * the offset.
+ */
+ if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
+ (rtc->start_secs < rtc->range_min &&
+ secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
+ return;
+
+ rtc_time64_to_tm(secs + rtc->offset_secs, tm);
+}
+
+static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
+{
+ time64_t secs;
+
+ if (!rtc->offset_secs)
+ return;
+
+ secs = rtc_tm_to_time64(tm);
+
+ /*
+ * If the setting time values are in the valid range of RTC hardware
+ * device, then no need to subtract the offset when setting time to RTC
+ * device. Otherwise we need to subtract the offset to make the time
+ * values are valid for RTC hardware device.
+ */
+ if (secs >= rtc->range_min && secs <= rtc->range_max)
+ return;
+
+ rtc_time64_to_tm(secs - rtc->offset_secs, tm);
+}
+
+static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
+{
+ if (rtc->range_min != rtc->range_max) {
+ time64_t time = rtc_tm_to_time64(tm);
+ time64_t range_min = rtc->set_start_time ? rtc->start_secs :
+ rtc->range_min;
+ timeu64_t range_max = rtc->set_start_time ?
+ (rtc->start_secs + rtc->range_max - rtc->range_min) :
+ rtc->range_max;
+
+ if (time < range_min || time > range_max)
+ return -ERANGE;
+ }
+
+ return 0;
+}
+
+static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
+{
+ int err;
+
+ if (!rtc->ops) {
+ err = -ENODEV;
+ } else if (!rtc->ops->read_time) {
+ err = -EINVAL;
+ } else {
+ memset(tm, 0, sizeof(struct rtc_time));
+ err = rtc->ops->read_time(rtc->dev.parent, tm);
+ if (err < 0) {
+ dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
+ err);
+ return err;
+ }
+
+ rtc_add_offset(rtc, tm);
+
+ err = rtc_valid_tm(tm);
+ if (err < 0)
+ dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
+ }
+ return err;
+}
+
+int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
+{
+ int err;
+
+ err = mutex_lock_interruptible(&rtc->ops_lock);
+ if (err)
+ return err;
+
+ err = __rtc_read_time(rtc, tm);
+ mutex_unlock(&rtc->ops_lock);
+
+ trace_rtc_read_time(rtc_tm_to_time64(tm), err);
+ return err;
+}
+EXPORT_SYMBOL_GPL(rtc_read_time);
+
+int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
+{
+ int err, uie;
+
+ err = rtc_valid_tm(tm);
+ if (err != 0)
+ return err;
+
+ err = rtc_valid_range(rtc, tm);
+ if (err)
+ return err;
+
+ rtc_subtract_offset(rtc, tm);
+
+#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
+ uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active;
+#else
+ uie = rtc->uie_rtctimer.enabled;
+#endif
+ if (uie) {
+ err = rtc_update_irq_enable(rtc, 0);
+ if (err)
+ return err;
+ }
+
+ err = mutex_lock_interruptible(&rtc->ops_lock);
+ if (err)
+ return err;
+
+ if (!rtc->ops)
+ err = -ENODEV;
+ else if (rtc->ops->set_time)
+ err = rtc->ops->set_time(rtc->dev.parent, tm);
+ else
+ err = -EINVAL;
+
+ pm_stay_awake(rtc->dev.parent);
+ mutex_unlock(&rtc->ops_lock);
+ /* A timer might have just expired */
+ schedule_work(&rtc->irqwork);
+
+ if (uie) {
+ err = rtc_update_irq_enable(rtc, 1);
+ if (err)
+ return err;
+ }
+
+ trace_rtc_set_time(rtc_tm_to_time64(tm), err);
+ return err;
+}
+EXPORT_SYMBOL_GPL(rtc_set_time);
+
+static int rtc_read_alarm_internal(struct rtc_device *rtc,
+ struct rtc_wkalrm *alarm)
+{
+ int err;
+
+ err = mutex_lock_interruptible(&rtc->ops_lock);
+ if (err)
+ return err;
+
+ if (!rtc->ops) {
+ err = -ENODEV;
+ } else if (!rtc->ops->read_alarm) {
+ err = -EINVAL;
+ } else {
+ alarm->enabled = 0;
+ alarm->pending = 0;
+ alarm->time.tm_sec = -1;
+ alarm->time.tm_min = -1;
+ alarm->time.tm_hour = -1;
+ alarm->time.tm_mday = -1;
+ alarm->time.tm_mon = -1;
+ alarm->time.tm_year = -1;
+ alarm->time.tm_wday = -1;
+ alarm->time.tm_yday = -1;
+ alarm->time.tm_isdst = -1;
+ err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
+ }
+
+ mutex_unlock(&rtc->ops_lock);
+
+ trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
+ return err;
+}
+
+int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
+{
+ int err;
+ struct rtc_time before, now;
+ int first_time = 1;
+ time64_t t_now, t_alm;
+ enum { none, day, month, year } missing = none;
+ unsigned int days;
+
+ /* The lower level RTC driver may return -1 in some fields,
+ * creating invalid alarm->time values, for reasons like:
+ *
+ * - The hardware may not be capable of filling them in;
+ * many alarms match only on time-of-day fields, not
+ * day/month/year calendar data.
+ *
+ * - Some hardware uses illegal values as "wildcard" match
+ * values, which non-Linux firmware (like a BIOS) may try
+ * to set up as e.g. "alarm 15 minutes after each hour".
+ * Linux uses only oneshot alarms.
+ *
+ * When we see that here, we deal with it by using values from
+ * a current RTC timestamp for any missing (-1) values. The
+ * RTC driver prevents "periodic alarm" modes.
+ *
+ * But this can be racey, because some fields of the RTC timestamp
+ * may have wrapped in the interval since we read the RTC alarm,
+ * which would lead to us inserting inconsistent values in place
+ * of the -1 fields.
+ *
+ * Reading the alarm and timestamp in the reverse sequence
+ * would have the same race condition, and not solve the issue.
+ *
+ * So, we must first read the RTC timestamp,
+ * then read the RTC alarm value,
+ * and then read a second RTC timestamp.
+ *
+ * If any fields of the second timestamp have changed
+ * when compared with the first timestamp, then we know
+ * our timestamp may be inconsistent with that used by
+ * the low-level rtc_read_alarm_internal() function.
+ *
+ * So, when the two timestamps disagree, we just loop and do
+ * the process again to get a fully consistent set of values.
+ *
+ * This could all instead be done in the lower level driver,
+ * but since more than one lower level RTC implementation needs it,
+ * then it's probably best best to do it here instead of there..
+ */
+
+ /* Get the "before" timestamp */
+ err = rtc_read_time(rtc, &before);
+ if (err < 0)
+ return err;
+ do {
+ if (!first_time)
+ memcpy(&before, &now, sizeof(struct rtc_time));
+ first_time = 0;
+
+ /* get the RTC alarm values, which may be incomplete */
+ err = rtc_read_alarm_internal(rtc, alarm);
+ if (err)
+ return err;
+
+ /* full-function RTCs won't have such missing fields */
+ if (rtc_valid_tm(&alarm->time) == 0) {
+ rtc_add_offset(rtc, &alarm->time);
+ return 0;
+ }
+
+ /* get the "after" timestamp, to detect wrapped fields */
+ err = rtc_read_time(rtc, &now);
+ if (err < 0)
+ return err;
+
+ /* note that tm_sec is a "don't care" value here: */
+ } while (before.tm_min != now.tm_min ||
+ before.tm_hour != now.tm_hour ||
+ before.tm_mon != now.tm_mon ||
+ before.tm_year != now.tm_year);
+
+ /* Fill in the missing alarm fields using the timestamp; we
+ * know there's at least one since alarm->time is invalid.
+ */
+ if (alarm->time.tm_sec == -1)
+ alarm->time.tm_sec = now.tm_sec;
+ if (alarm->time.tm_min == -1)
+ alarm->time.tm_min = now.tm_min;
+ if (alarm->time.tm_hour == -1)
+ alarm->time.tm_hour = now.tm_hour;
+
+ /* For simplicity, only support date rollover for now */
+ if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
+ alarm->time.tm_mday = now.tm_mday;
+ missing = day;
+ }
+ if ((unsigned int)alarm->time.tm_mon >= 12) {
+ alarm->time.tm_mon = now.tm_mon;
+ if (missing == none)
+ missing = month;
+ }
+ if (alarm->time.tm_year == -1) {
+ alarm->time.tm_year = now.tm_year;
+ if (missing == none)
+ missing = year;
+ }
+
+ /* Can't proceed if alarm is still invalid after replacing
+ * missing fields.
+ */
+ err = rtc_valid_tm(&alarm->time);
+ if (err)
+ goto done;
+
+ /* with luck, no rollover is needed */
+ t_now = rtc_tm_to_time64(&now);
+ t_alm = rtc_tm_to_time64(&alarm->time);
+ if (t_now < t_alm)
+ goto done;
+
+ switch (missing) {
+ /* 24 hour rollover ... if it's now 10am Monday, an alarm that
+ * that will trigger at 5am will do so at 5am Tuesday, which
+ * could also be in the next month or year. This is a common
+ * case, especially for PCs.
+ */
+ case day:
+ dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
+ t_alm += 24 * 60 * 60;
+ rtc_time64_to_tm(t_alm, &alarm->time);
+ break;
+
+ /* Month rollover ... if it's the 31th, an alarm on the 3rd will
+ * be next month. An alarm matching on the 30th, 29th, or 28th
+ * may end up in the month after that! Many newer PCs support
+ * this type of alarm.
+ */
+ case month:
+ dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
+ do {
+ if (alarm->time.tm_mon < 11) {
+ alarm->time.tm_mon++;
+ } else {
+ alarm->time.tm_mon = 0;
+ alarm->time.tm_year++;
+ }
+ days = rtc_month_days(alarm->time.tm_mon,
+ alarm->time.tm_year);
+ } while (days < alarm->time.tm_mday);
+ break;
+
+ /* Year rollover ... easy except for leap years! */
+ case year:
+ dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
+ do {
+ alarm->time.tm_year++;
+ } while (!is_leap_year(alarm->time.tm_year + 1900) &&
+ rtc_valid_tm(&alarm->time) != 0);
+ break;
+
+ default:
+ dev_warn(&rtc->dev, "alarm rollover not handled\n");
+ }
+
+ err = rtc_valid_tm(&alarm->time);
+
+done:
+ if (err)
+ dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
+ &alarm->time);
+
+ return err;
+}
+
+int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
+{
+ int err;
+
+ err = mutex_lock_interruptible(&rtc->ops_lock);
+ if (err)
+ return err;
+ if (!rtc->ops) {
+ err = -ENODEV;
+ } else if (!rtc->ops->read_alarm) {
+ err = -EINVAL;
+ } else {
+ memset(alarm, 0, sizeof(struct rtc_wkalrm));
+ alarm->enabled = rtc->aie_timer.enabled;
+ alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
+ }
+ mutex_unlock(&rtc->ops_lock);
+
+ trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
+ return err;
+}
+EXPORT_SYMBOL_GPL(rtc_read_alarm);
+
+static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
+{
+ struct rtc_time tm;
+ time64_t now, scheduled;
+ int err;
+
+ err = rtc_valid_tm(&alarm->time);
+ if (err)
+ return err;
+
+ scheduled = rtc_tm_to_time64(&alarm->time);
+
+ /* Make sure we're not setting alarms in the past */
+ err = __rtc_read_time(rtc, &tm);
+ if (err)
+ return err;
+ now = rtc_tm_to_time64(&tm);
+ if (scheduled <= now)
+ return -ETIME;
+ /*
+ * XXX - We just checked to make sure the alarm time is not
+ * in the past, but there is still a race window where if
+ * the is alarm set for the next second and the second ticks
+ * over right here, before we set the alarm.
+ */
+
+ rtc_subtract_offset(rtc, &alarm->time);
+
+ if (!rtc->ops)
+ err = -ENODEV;
+ else if (!rtc->ops->set_alarm)
+ err = -EINVAL;
+ else
+ err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
+
+ trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
+ return err;
+}
+
+int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
+{
+ int err;
+
+ if (!rtc->ops)
+ return -ENODEV;
+ else if (!rtc->ops->set_alarm)
+ return -EINVAL;
+
+ err = rtc_valid_tm(&alarm->time);
+ if (err != 0)
+ return err;
+
+ err = rtc_valid_range(rtc, &alarm->time);
+ if (err)
+ return err;
+
+ err = mutex_lock_interruptible(&rtc->ops_lock);
+ if (err)
+ return err;
+ if (rtc->aie_timer.enabled)
+ rtc_timer_remove(rtc, &rtc->aie_timer);
+
+ rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
+ rtc->aie_timer.period = 0;
+ if (alarm->enabled)
+ err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
+
+ mutex_unlock(&rtc->ops_lock);
+
+ return err;
+}
+EXPORT_SYMBOL_GPL(rtc_set_alarm);
+
+/* Called once per device from rtc_device_register */
+int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
+{
+ int err;
+ struct rtc_time now;
+
+ err = rtc_valid_tm(&alarm->time);
+ if (err != 0)
+ return err;
+
+ err = rtc_read_time(rtc, &now);
+ if (err)
+ return err;
+
+ err = mutex_lock_interruptible(&rtc->ops_lock);
+ if (err)
+ return err;
+
+ rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
+ rtc->aie_timer.period = 0;
+
+ /* Alarm has to be enabled & in the future for us to enqueue it */
+ if (alarm->enabled && (rtc_tm_to_ktime(now) <
+ rtc->aie_timer.node.expires)) {
+ rtc->aie_timer.enabled = 1;
+ timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
+ trace_rtc_timer_enqueue(&rtc->aie_timer);
+ }
+ mutex_unlock(&rtc->ops_lock);
+ return err;
+}
+EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
+
+int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
+{
+ int err;
+
+ err = mutex_lock_interruptible(&rtc->ops_lock);
+ if (err)
+ return err;
+
+ if (rtc->aie_timer.enabled != enabled) {
+ if (enabled)
+ err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
+ else
+ rtc_timer_remove(rtc, &rtc->aie_timer);
+ }
+
+ if (err)
+ /* nothing */;
+ else if (!rtc->ops)
+ err = -ENODEV;
+ else if (!rtc->ops->alarm_irq_enable)
+ err = -EINVAL;
+ else
+ err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
+
+ mutex_unlock(&rtc->ops_lock);
+
+ trace_rtc_alarm_irq_enable(enabled, err);
+ return err;
+}
+EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
+
+int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
+{
+ int rc = 0, err;
+
+ err = mutex_lock_interruptible(&rtc->ops_lock);
+ if (err)
+ return err;
+
+#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
+ if (enabled == 0 && rtc->uie_irq_active) {
+ mutex_unlock(&rtc->ops_lock);
+ return rtc_dev_update_irq_enable_emul(rtc, 0);
+ }
+#endif
+ /* make sure we're changing state */
+ if (rtc->uie_rtctimer.enabled == enabled)
+ goto out;
+
+ if (rtc->uie_unsupported) {
+ err = -EINVAL;
+ goto out;
+ }
+
+ if (enabled) {
+ struct rtc_time tm;
+ ktime_t now, onesec;
+
+ rc = __rtc_read_time(rtc, &tm);
+ if (rc)
+ goto out;
+ onesec = ktime_set(1, 0);
+ now = rtc_tm_to_ktime(tm);
+ rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
+ rtc->uie_rtctimer.period = ktime_set(1, 0);
+ err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
+ } else {
+ rtc_timer_remove(rtc, &rtc->uie_rtctimer);
+ }
+
+out:
+ mutex_unlock(&rtc->ops_lock);
+
+ /*
+ * __rtc_read_time() failed, this probably means that the RTC time has
+ * never been set or less probably there is a transient error on the
+ * bus. In any case, avoid enabling emulation has this will fail when
+ * reading the time too.
+ */
+ if (rc)
+ return rc;
+
+#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
+ /*
+ * Enable emulation if the driver returned -EINVAL to signal that it has
+ * been configured without interrupts or they are not available at the
+ * moment.
+ */
+ if (err == -EINVAL)
+ err = rtc_dev_update_irq_enable_emul(rtc, enabled);
+#endif
+ return err;
+}
+EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
+
+/**
+ * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
+ * @rtc: pointer to the rtc device
+ * @num: number of occurence of the event
+ * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF
+ *
+ * This function is called when an AIE, UIE or PIE mode interrupt
+ * has occurred (or been emulated).
+ *
+ */
+void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
+{
+ unsigned long flags;
+
+ /* mark one irq of the appropriate mode */
+ spin_lock_irqsave(&rtc->irq_lock, flags);
+ rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
+ spin_unlock_irqrestore(&rtc->irq_lock, flags);
+
+ wake_up_interruptible(&rtc->irq_queue);
+ kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
+}
+
+/**
+ * rtc_aie_update_irq - AIE mode rtctimer hook
+ * @rtc: pointer to the rtc_device
+ *
+ * This functions is called when the aie_timer expires.
+ */
+void rtc_aie_update_irq(struct rtc_device *rtc)
+{
+ rtc_handle_legacy_irq(rtc, 1, RTC_AF);
+}
+
+/**
+ * rtc_uie_update_irq - UIE mode rtctimer hook
+ * @rtc: pointer to the rtc_device
+ *
+ * This functions is called when the uie_timer expires.
+ */
+void rtc_uie_update_irq(struct rtc_device *rtc)
+{
+ rtc_handle_legacy_irq(rtc, 1, RTC_UF);
+}
+
+/**
+ * rtc_pie_update_irq - PIE mode hrtimer hook
+ * @timer: pointer to the pie mode hrtimer
+ *
+ * This function is used to emulate PIE mode interrupts
+ * using an hrtimer. This function is called when the periodic
+ * hrtimer expires.
+ */
+enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
+{
+ struct rtc_device *rtc;
+ ktime_t period;
+ u64 count;
+
+ rtc = container_of(timer, struct rtc_device, pie_timer);
+
+ period = NSEC_PER_SEC / rtc->irq_freq;
+ count = hrtimer_forward_now(timer, period);
+
+ rtc_handle_legacy_irq(rtc, count, RTC_PF);
+
+ return HRTIMER_RESTART;
+}
+
+/**
+ * rtc_update_irq - Triggered when a RTC interrupt occurs.
+ * @rtc: the rtc device
+ * @num: how many irqs are being reported (usually one)
+ * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
+ * Context: any
+ */
+void rtc_update_irq(struct rtc_device *rtc,
+ unsigned long num, unsigned long events)
+{
+ if (IS_ERR_OR_NULL(rtc))
+ return;
+
+ pm_stay_awake(rtc->dev.parent);
+ schedule_work(&rtc->irqwork);
+}
+EXPORT_SYMBOL_GPL(rtc_update_irq);
+
+struct rtc_device *rtc_class_open(const char *name)
+{
+ struct device *dev;
+ struct rtc_device *rtc = NULL;
+
+ dev = class_find_device_by_name(rtc_class, name);
+ if (dev)
+ rtc = to_rtc_device(dev);
+
+ if (rtc) {
+ if (!try_module_get(rtc->owner)) {
+ put_device(dev);
+ rtc = NULL;
+ }
+ }
+
+ return rtc;
+}
+EXPORT_SYMBOL_GPL(rtc_class_open);
+
+void rtc_class_close(struct rtc_device *rtc)
+{
+ module_put(rtc->owner);
+ put_device(&rtc->dev);
+}
+EXPORT_SYMBOL_GPL(rtc_class_close);
+
+static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
+{
+ /*
+ * We always cancel the timer here first, because otherwise
+ * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
+ * when we manage to start the timer before the callback
+ * returns HRTIMER_RESTART.
+ *
+ * We cannot use hrtimer_cancel() here as a running callback
+ * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
+ * would spin forever.
+ */
+ if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
+ return -1;
+
+ if (enabled) {
+ ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
+
+ hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
+ }
+ return 0;
+}
+
+/**
+ * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
+ * @rtc: the rtc device
+ * @enabled: true to enable periodic IRQs
+ * Context: any
+ *
+ * Note that rtc_irq_set_freq() should previously have been used to
+ * specify the desired frequency of periodic IRQ.
+ */
+int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
+{
+ int err = 0;
+
+ while (rtc_update_hrtimer(rtc, enabled) < 0)
+ cpu_relax();
+
+ rtc->pie_enabled = enabled;
+
+ trace_rtc_irq_set_state(enabled, err);
+ return err;
+}
+
+/**
+ * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
+ * @rtc: the rtc device
+ * @freq: positive frequency
+ * Context: any
+ *
+ * Note that rtc_irq_set_state() is used to enable or disable the
+ * periodic IRQs.
+ */
+int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
+{
+ int err = 0;
+
+ if (freq <= 0 || freq > RTC_MAX_FREQ)
+ return -EINVAL;
+
+ rtc->irq_freq = freq;
+ while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
+ cpu_relax();
+
+ trace_rtc_irq_set_freq(freq, err);
+ return err;
+}
+
+/**
+ * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
+ * @rtc: rtc device
+ * @timer: timer being added.
+ *
+ * Enqueues a timer onto the rtc devices timerqueue and sets
+ * the next alarm event appropriately.
+ *
+ * Sets the enabled bit on the added timer.
+ *
+ * Must hold ops_lock for proper serialization of timerqueue
+ */
+static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
+{
+ struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
+ struct rtc_time tm;
+ ktime_t now;
+ int err;
+
+ err = __rtc_read_time(rtc, &tm);
+ if (err)
+ return err;
+
+ timer->enabled = 1;
+ now = rtc_tm_to_ktime(tm);
+
+ /* Skip over expired timers */
+ while (next) {
+ if (next->expires >= now)
+ break;
+ next = timerqueue_iterate_next(next);
+ }
+
+ timerqueue_add(&rtc->timerqueue, &timer->node);
+ trace_rtc_timer_enqueue(timer);
+ if (!next || ktime_before(timer->node.expires, next->expires)) {
+ struct rtc_wkalrm alarm;
+
+ alarm.time = rtc_ktime_to_tm(timer->node.expires);
+ alarm.enabled = 1;
+ err = __rtc_set_alarm(rtc, &alarm);
+ if (err == -ETIME) {
+ pm_stay_awake(rtc->dev.parent);
+ schedule_work(&rtc->irqwork);
+ } else if (err) {
+ timerqueue_del(&rtc->timerqueue, &timer->node);
+ trace_rtc_timer_dequeue(timer);
+ timer->enabled = 0;
+ return err;
+ }
+ }
+ return 0;
+}
+
+static void rtc_alarm_disable(struct rtc_device *rtc)
+{
+ if (!rtc->ops || !rtc->ops->alarm_irq_enable)
+ return;
+
+ rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
+ trace_rtc_alarm_irq_enable(0, 0);
+}
+
+/**
+ * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
+ * @rtc: rtc device
+ * @timer: timer being removed.
+ *
+ * Removes a timer onto the rtc devices timerqueue and sets
+ * the next alarm event appropriately.
+ *
+ * Clears the enabled bit on the removed timer.
+ *
+ * Must hold ops_lock for proper serialization of timerqueue
+ */
+static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
+{
+ struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
+
+ timerqueue_del(&rtc->timerqueue, &timer->node);
+ trace_rtc_timer_dequeue(timer);
+ timer->enabled = 0;
+ if (next == &timer->node) {
+ struct rtc_wkalrm alarm;
+ int err;
+
+ next = timerqueue_getnext(&rtc->timerqueue);
+ if (!next) {
+ rtc_alarm_disable(rtc);
+ return;
+ }
+ alarm.time = rtc_ktime_to_tm(next->expires);
+ alarm.enabled = 1;
+ err = __rtc_set_alarm(rtc, &alarm);
+ if (err == -ETIME) {
+ pm_stay_awake(rtc->dev.parent);
+ schedule_work(&rtc->irqwork);
+ }
+ }
+}
+
+/**
+ * rtc_timer_do_work - Expires rtc timers
+ * @work: work item
+ *
+ * Expires rtc timers. Reprograms next alarm event if needed.
+ * Called via worktask.
+ *
+ * Serializes access to timerqueue via ops_lock mutex
+ */
+void rtc_timer_do_work(struct work_struct *work)
+{
+ struct rtc_timer *timer;
+ struct timerqueue_node *next;
+ ktime_t now;
+ struct rtc_time tm;
+
+ struct rtc_device *rtc =
+ container_of(work, struct rtc_device, irqwork);
+
+ mutex_lock(&rtc->ops_lock);
+again:
+ __rtc_read_time(rtc, &tm);
+ now = rtc_tm_to_ktime(tm);
+ while ((next = timerqueue_getnext(&rtc->timerqueue))) {
+ if (next->expires > now)
+ break;
+
+ /* expire timer */
+ timer = container_of(next, struct rtc_timer, node);
+ timerqueue_del(&rtc->timerqueue, &timer->node);
+ trace_rtc_timer_dequeue(timer);
+ timer->enabled = 0;
+ if (timer->func)
+ timer->func(timer->rtc);
+
+ trace_rtc_timer_fired(timer);
+ /* Re-add/fwd periodic timers */
+ if (ktime_to_ns(timer->period)) {
+ timer->node.expires = ktime_add(timer->node.expires,
+ timer->period);
+ timer->enabled = 1;
+ timerqueue_add(&rtc->timerqueue, &timer->node);
+ trace_rtc_timer_enqueue(timer);
+ }
+ }
+
+ /* Set next alarm */
+ if (next) {
+ struct rtc_wkalrm alarm;
+ int err;
+ int retry = 3;
+
+ alarm.time = rtc_ktime_to_tm(next->expires);
+ alarm.enabled = 1;
+reprogram:
+ err = __rtc_set_alarm(rtc, &alarm);
+ if (err == -ETIME) {
+ goto again;
+ } else if (err) {
+ if (retry-- > 0)
+ goto reprogram;
+
+ timer = container_of(next, struct rtc_timer, node);
+ timerqueue_del(&rtc->timerqueue, &timer->node);
+ trace_rtc_timer_dequeue(timer);
+ timer->enabled = 0;
+ dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
+ goto again;
+ }
+ } else {
+ rtc_alarm_disable(rtc);
+ }
+
+ pm_relax(rtc->dev.parent);
+ mutex_unlock(&rtc->ops_lock);
+}
+
+/* rtc_timer_init - Initializes an rtc_timer
+ * @timer: timer to be intiialized
+ * @f: function pointer to be called when timer fires
+ * @rtc: pointer to the rtc_device
+ *
+ * Kernel interface to initializing an rtc_timer.
+ */
+void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
+ struct rtc_device *rtc)
+{
+ timerqueue_init(&timer->node);
+ timer->enabled = 0;
+ timer->func = f;
+ timer->rtc = rtc;
+}
+
+/* rtc_timer_start - Sets an rtc_timer to fire in the future
+ * @ rtc: rtc device to be used
+ * @ timer: timer being set
+ * @ expires: time at which to expire the timer
+ * @ period: period that the timer will recur
+ *
+ * Kernel interface to set an rtc_timer
+ */
+int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
+ ktime_t expires, ktime_t period)
+{
+ int ret = 0;
+
+ mutex_lock(&rtc->ops_lock);
+ if (timer->enabled)
+ rtc_timer_remove(rtc, timer);
+
+ timer->node.expires = expires;
+ timer->period = period;
+
+ ret = rtc_timer_enqueue(rtc, timer);
+
+ mutex_unlock(&rtc->ops_lock);
+ return ret;
+}
+
+/* rtc_timer_cancel - Stops an rtc_timer
+ * @ rtc: rtc device to be used
+ * @ timer: timer being set
+ *
+ * Kernel interface to cancel an rtc_timer
+ */
+void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
+{
+ mutex_lock(&rtc->ops_lock);
+ if (timer->enabled)
+ rtc_timer_remove(rtc, timer);
+ mutex_unlock(&rtc->ops_lock);
+}
+
+/**
+ * rtc_read_offset - Read the amount of rtc offset in parts per billion
+ * @rtc: rtc device to be used
+ * @offset: the offset in parts per billion
+ *
+ * see below for details.
+ *
+ * Kernel interface to read rtc clock offset
+ * Returns 0 on success, or a negative number on error.
+ * If read_offset() is not implemented for the rtc, return -EINVAL
+ */
+int rtc_read_offset(struct rtc_device *rtc, long *offset)
+{
+ int ret;
+
+ if (!rtc->ops)
+ return -ENODEV;
+
+ if (!rtc->ops->read_offset)
+ return -EINVAL;
+
+ mutex_lock(&rtc->ops_lock);
+ ret = rtc->ops->read_offset(rtc->dev.parent, offset);
+ mutex_unlock(&rtc->ops_lock);
+
+ trace_rtc_read_offset(*offset, ret);
+ return ret;
+}
+
+/**
+ * rtc_set_offset - Adjusts the duration of the average second
+ * @rtc: rtc device to be used
+ * @offset: the offset in parts per billion
+ *
+ * Some rtc's allow an adjustment to the average duration of a second
+ * to compensate for differences in the actual clock rate due to temperature,
+ * the crystal, capacitor, etc.
+ *
+ * The adjustment applied is as follows:
+ * t = t0 * (1 + offset * 1e-9)
+ * where t0 is the measured length of 1 RTC second with offset = 0
+ *
+ * Kernel interface to adjust an rtc clock offset.
+ * Return 0 on success, or a negative number on error.
+ * If the rtc offset is not setable (or not implemented), return -EINVAL
+ */
+int rtc_set_offset(struct rtc_device *rtc, long offset)
+{
+ int ret;
+
+ if (!rtc->ops)
+ return -ENODEV;
+
+ if (!rtc->ops->set_offset)
+ return -EINVAL;
+
+ mutex_lock(&rtc->ops_lock);
+ ret = rtc->ops->set_offset(rtc->dev.parent, offset);
+ mutex_unlock(&rtc->ops_lock);
+
+ trace_rtc_set_offset(offset, ret);
+ return ret;
+}
diff --git a/drivers/rtc/lib.c b/drivers/rtc/lib.c
new file mode 100644
index 000000000..23284580d
--- /dev/null
+++ b/drivers/rtc/lib.c
@@ -0,0 +1,146 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * rtc and date/time utility functions
+ *
+ * Copyright (C) 2005-06 Tower Technologies
+ * Author: Alessandro Zummo <a.zummo@towertech.it>
+ *
+ * based on arch/arm/common/rtctime.c and other bits
+ */
+
+#include <linux/export.h>
+#include <linux/rtc.h>
+
+static const unsigned char rtc_days_in_month[] = {
+ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
+};
+
+static const unsigned short rtc_ydays[2][13] = {
+ /* Normal years */
+ { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
+ /* Leap years */
+ { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
+};
+
+#define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
+
+/*
+ * The number of days in the month.
+ */
+int rtc_month_days(unsigned int month, unsigned int year)
+{
+ return rtc_days_in_month[month] + (is_leap_year(year) && month == 1);
+}
+EXPORT_SYMBOL(rtc_month_days);
+
+/*
+ * The number of days since January 1. (0 to 365)
+ */
+int rtc_year_days(unsigned int day, unsigned int month, unsigned int year)
+{
+ return rtc_ydays[is_leap_year(year)][month] + day - 1;
+}
+EXPORT_SYMBOL(rtc_year_days);
+
+/*
+ * rtc_time64_to_tm - Converts time64_t to rtc_time.
+ * Convert seconds since 01-01-1970 00:00:00 to Gregorian date.
+ */
+void rtc_time64_to_tm(time64_t time, struct rtc_time *tm)
+{
+ unsigned int month, year, secs;
+ int days;
+
+ /* time must be positive */
+ days = div_s64_rem(time, 86400, &secs);
+
+ /* day of the week, 1970-01-01 was a Thursday */
+ tm->tm_wday = (days + 4) % 7;
+
+ year = 1970 + days / 365;
+ days -= (year - 1970) * 365
+ + LEAPS_THRU_END_OF(year - 1)
+ - LEAPS_THRU_END_OF(1970 - 1);
+ while (days < 0) {
+ year -= 1;
+ days += 365 + is_leap_year(year);
+ }
+ tm->tm_year = year - 1900;
+ tm->tm_yday = days + 1;
+
+ for (month = 0; month < 11; month++) {
+ int newdays;
+
+ newdays = days - rtc_month_days(month, year);
+ if (newdays < 0)
+ break;
+ days = newdays;
+ }
+ tm->tm_mon = month;
+ tm->tm_mday = days + 1;
+
+ tm->tm_hour = secs / 3600;
+ secs -= tm->tm_hour * 3600;
+ tm->tm_min = secs / 60;
+ tm->tm_sec = secs - tm->tm_min * 60;
+
+ tm->tm_isdst = 0;
+}
+EXPORT_SYMBOL(rtc_time64_to_tm);
+
+/*
+ * Does the rtc_time represent a valid date/time?
+ */
+int rtc_valid_tm(struct rtc_time *tm)
+{
+ if (tm->tm_year < 70 ||
+ tm->tm_year > (INT_MAX - 1900) ||
+ ((unsigned int)tm->tm_mon) >= 12 ||
+ tm->tm_mday < 1 ||
+ tm->tm_mday > rtc_month_days(tm->tm_mon,
+ ((unsigned int)tm->tm_year + 1900)) ||
+ ((unsigned int)tm->tm_hour) >= 24 ||
+ ((unsigned int)tm->tm_min) >= 60 ||
+ ((unsigned int)tm->tm_sec) >= 60)
+ return -EINVAL;
+
+ return 0;
+}
+EXPORT_SYMBOL(rtc_valid_tm);
+
+/*
+ * rtc_tm_to_time64 - Converts rtc_time to time64_t.
+ * Convert Gregorian date to seconds since 01-01-1970 00:00:00.
+ */
+time64_t rtc_tm_to_time64(struct rtc_time *tm)
+{
+ return mktime64(((unsigned int)tm->tm_year + 1900), tm->tm_mon + 1,
+ tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec);
+}
+EXPORT_SYMBOL(rtc_tm_to_time64);
+
+/*
+ * Convert rtc_time to ktime
+ */
+ktime_t rtc_tm_to_ktime(struct rtc_time tm)
+{
+ return ktime_set(rtc_tm_to_time64(&tm), 0);
+}
+EXPORT_SYMBOL_GPL(rtc_tm_to_ktime);
+
+/*
+ * Convert ktime to rtc_time
+ */
+struct rtc_time rtc_ktime_to_tm(ktime_t kt)
+{
+ struct timespec64 ts;
+ struct rtc_time ret;
+
+ ts = ktime_to_timespec64(kt);
+ /* Round up any ns */
+ if (ts.tv_nsec)
+ ts.tv_sec++;
+ rtc_time64_to_tm(ts.tv_sec, &ret);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(rtc_ktime_to_tm);
diff --git a/drivers/rtc/nvmem.c b/drivers/rtc/nvmem.c
new file mode 100644
index 000000000..4312096c7
--- /dev/null
+++ b/drivers/rtc/nvmem.c
@@ -0,0 +1,107 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * RTC subsystem, nvmem interface
+ *
+ * Copyright (C) 2017 Alexandre Belloni
+ */
+
+#include <linux/err.h>
+#include <linux/types.h>
+#include <linux/nvmem-consumer.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+#include <linux/sysfs.h>
+
+/*
+ * Deprecated ABI compatibility, this should be removed at some point
+ */
+
+static const char nvram_warning[] = "Deprecated ABI, please use nvmem";
+
+static ssize_t
+rtc_nvram_read(struct file *filp, struct kobject *kobj,
+ struct bin_attribute *attr,
+ char *buf, loff_t off, size_t count)
+{
+ dev_warn_once(kobj_to_dev(kobj), nvram_warning);
+
+ return nvmem_device_read(attr->private, off, count, buf);
+}
+
+static ssize_t
+rtc_nvram_write(struct file *filp, struct kobject *kobj,
+ struct bin_attribute *attr,
+ char *buf, loff_t off, size_t count)
+{
+ dev_warn_once(kobj_to_dev(kobj), nvram_warning);
+
+ return nvmem_device_write(attr->private, off, count, buf);
+}
+
+static int rtc_nvram_register(struct rtc_device *rtc,
+ struct nvmem_device *nvmem, size_t size)
+{
+ int err;
+
+ rtc->nvram = kzalloc(sizeof(*rtc->nvram), GFP_KERNEL);
+ if (!rtc->nvram)
+ return -ENOMEM;
+
+ rtc->nvram->attr.name = "nvram";
+ rtc->nvram->attr.mode = 0644;
+ rtc->nvram->private = nvmem;
+
+ sysfs_bin_attr_init(rtc->nvram);
+
+ rtc->nvram->read = rtc_nvram_read;
+ rtc->nvram->write = rtc_nvram_write;
+ rtc->nvram->size = size;
+
+ err = sysfs_create_bin_file(&rtc->dev.parent->kobj,
+ rtc->nvram);
+ if (err) {
+ kfree(rtc->nvram);
+ rtc->nvram = NULL;
+ }
+
+ return err;
+}
+
+static void rtc_nvram_unregister(struct rtc_device *rtc)
+{
+ sysfs_remove_bin_file(&rtc->dev.parent->kobj, rtc->nvram);
+ kfree(rtc->nvram);
+ rtc->nvram = NULL;
+}
+
+/*
+ * New ABI, uses nvmem
+ */
+int rtc_nvmem_register(struct rtc_device *rtc,
+ struct nvmem_config *nvmem_config)
+{
+ struct nvmem_device *nvmem;
+
+ if (!nvmem_config)
+ return -ENODEV;
+
+ nvmem_config->dev = rtc->dev.parent;
+ nvmem_config->owner = rtc->owner;
+ nvmem = devm_nvmem_register(rtc->dev.parent, nvmem_config);
+ if (IS_ERR(nvmem))
+ return PTR_ERR(nvmem);
+
+ /* Register the old ABI */
+ if (rtc->nvram_old_abi)
+ rtc_nvram_register(rtc, nvmem, nvmem_config->size);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(rtc_nvmem_register);
+
+void rtc_nvmem_unregister(struct rtc_device *rtc)
+{
+ /* unregister the old ABI */
+ if (rtc->nvram)
+ rtc_nvram_unregister(rtc);
+}
diff --git a/drivers/rtc/proc.c b/drivers/rtc/proc.c
new file mode 100644
index 000000000..cbcdbb19d
--- /dev/null
+++ b/drivers/rtc/proc.c
@@ -0,0 +1,92 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * RTC subsystem, proc interface
+ *
+ * Copyright (C) 2005-06 Tower Technologies
+ * Author: Alessandro Zummo <a.zummo@towertech.it>
+ *
+ * based on arch/arm/common/rtctime.c
+ */
+
+#include <linux/module.h>
+#include <linux/rtc.h>
+#include <linux/proc_fs.h>
+#include <linux/seq_file.h>
+
+#include "rtc-core.h"
+
+#define NAME_SIZE 10
+
+#if defined(CONFIG_RTC_HCTOSYS_DEVICE)
+static bool is_rtc_hctosys(struct rtc_device *rtc)
+{
+ int size;
+ char name[NAME_SIZE];
+
+ size = snprintf(name, NAME_SIZE, "rtc%d", rtc->id);
+ if (size >= NAME_SIZE)
+ return false;
+
+ return !strncmp(name, CONFIG_RTC_HCTOSYS_DEVICE, NAME_SIZE);
+}
+#else
+static bool is_rtc_hctosys(struct rtc_device *rtc)
+{
+ return (rtc->id == 0);
+}
+#endif
+
+static int rtc_proc_show(struct seq_file *seq, void *offset)
+{
+ int err;
+ struct rtc_device *rtc = seq->private;
+ const struct rtc_class_ops *ops = rtc->ops;
+ struct rtc_wkalrm alrm;
+ struct rtc_time tm;
+
+ err = rtc_read_time(rtc, &tm);
+ if (err == 0) {
+ seq_printf(seq,
+ "rtc_time\t: %ptRt\n"
+ "rtc_date\t: %ptRd\n",
+ &tm, &tm);
+ }
+
+ err = rtc_read_alarm(rtc, &alrm);
+ if (err == 0) {
+ seq_printf(seq, "alrm_time\t: %ptRt\n", &alrm.time);
+ seq_printf(seq, "alrm_date\t: %ptRd\n", &alrm.time);
+ seq_printf(seq, "alarm_IRQ\t: %s\n",
+ alrm.enabled ? "yes" : "no");
+ seq_printf(seq, "alrm_pending\t: %s\n",
+ alrm.pending ? "yes" : "no");
+ seq_printf(seq, "update IRQ enabled\t: %s\n",
+ (rtc->uie_rtctimer.enabled) ? "yes" : "no");
+ seq_printf(seq, "periodic IRQ enabled\t: %s\n",
+ (rtc->pie_enabled) ? "yes" : "no");
+ seq_printf(seq, "periodic IRQ frequency\t: %d\n",
+ rtc->irq_freq);
+ seq_printf(seq, "max user IRQ frequency\t: %d\n",
+ rtc->max_user_freq);
+ }
+
+ seq_printf(seq, "24hr\t\t: yes\n");
+
+ if (ops->proc)
+ ops->proc(rtc->dev.parent, seq);
+
+ return 0;
+}
+
+void rtc_proc_add_device(struct rtc_device *rtc)
+{
+ if (is_rtc_hctosys(rtc))
+ proc_create_single_data("driver/rtc", 0, NULL, rtc_proc_show,
+ rtc);
+}
+
+void rtc_proc_del_device(struct rtc_device *rtc)
+{
+ if (is_rtc_hctosys(rtc))
+ remove_proc_entry("driver/rtc", NULL);
+}
diff --git a/drivers/rtc/rtc-88pm80x.c b/drivers/rtc/rtc-88pm80x.c
new file mode 100644
index 000000000..75779e850
--- /dev/null
+++ b/drivers/rtc/rtc-88pm80x.c
@@ -0,0 +1,341 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Real Time Clock driver for Marvell 88PM80x PMIC
+ *
+ * Copyright (c) 2012 Marvell International Ltd.
+ * Wenzeng Chen<wzch@marvell.com>
+ * Qiao Zhou <zhouqiao@marvell.com>
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/regmap.h>
+#include <linux/mfd/core.h>
+#include <linux/mfd/88pm80x.h>
+#include <linux/rtc.h>
+
+#define PM800_RTC_COUNTER1 (0xD1)
+#define PM800_RTC_COUNTER2 (0xD2)
+#define PM800_RTC_COUNTER3 (0xD3)
+#define PM800_RTC_COUNTER4 (0xD4)
+#define PM800_RTC_EXPIRE1_1 (0xD5)
+#define PM800_RTC_EXPIRE1_2 (0xD6)
+#define PM800_RTC_EXPIRE1_3 (0xD7)
+#define PM800_RTC_EXPIRE1_4 (0xD8)
+#define PM800_RTC_TRIM1 (0xD9)
+#define PM800_RTC_TRIM2 (0xDA)
+#define PM800_RTC_TRIM3 (0xDB)
+#define PM800_RTC_TRIM4 (0xDC)
+#define PM800_RTC_EXPIRE2_1 (0xDD)
+#define PM800_RTC_EXPIRE2_2 (0xDE)
+#define PM800_RTC_EXPIRE2_3 (0xDF)
+#define PM800_RTC_EXPIRE2_4 (0xE0)
+
+#define PM800_POWER_DOWN_LOG1 (0xE5)
+#define PM800_POWER_DOWN_LOG2 (0xE6)
+
+struct pm80x_rtc_info {
+ struct pm80x_chip *chip;
+ struct regmap *map;
+ struct rtc_device *rtc_dev;
+ struct device *dev;
+
+ int irq;
+};
+
+static irqreturn_t rtc_update_handler(int irq, void *data)
+{
+ struct pm80x_rtc_info *info = (struct pm80x_rtc_info *)data;
+ int mask;
+
+ mask = PM800_ALARM | PM800_ALARM_WAKEUP;
+ regmap_update_bits(info->map, PM800_RTC_CONTROL, mask | PM800_ALARM1_EN,
+ mask);
+ rtc_update_irq(info->rtc_dev, 1, RTC_AF);
+ return IRQ_HANDLED;
+}
+
+static int pm80x_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct pm80x_rtc_info *info = dev_get_drvdata(dev);
+
+ if (enabled)
+ regmap_update_bits(info->map, PM800_RTC_CONTROL,
+ PM800_ALARM1_EN, PM800_ALARM1_EN);
+ else
+ regmap_update_bits(info->map, PM800_RTC_CONTROL,
+ PM800_ALARM1_EN, 0);
+ return 0;
+}
+
+/*
+ * Calculate the next alarm time given the requested alarm time mask
+ * and the current time.
+ */
+static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now,
+ struct rtc_time *alrm)
+{
+ unsigned long next_time;
+ unsigned long now_time;
+
+ next->tm_year = now->tm_year;
+ next->tm_mon = now->tm_mon;
+ next->tm_mday = now->tm_mday;
+ next->tm_hour = alrm->tm_hour;
+ next->tm_min = alrm->tm_min;
+ next->tm_sec = alrm->tm_sec;
+
+ now_time = rtc_tm_to_time64(now);
+ next_time = rtc_tm_to_time64(next);
+
+ if (next_time < now_time) {
+ /* Advance one day */
+ next_time += 60 * 60 * 24;
+ rtc_time64_to_tm(next_time, next);
+ }
+}
+
+static int pm80x_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pm80x_rtc_info *info = dev_get_drvdata(dev);
+ unsigned char buf[4];
+ unsigned long ticks, base, data;
+ regmap_raw_read(info->map, PM800_RTC_EXPIRE2_1, buf, 4);
+ base = ((unsigned long)buf[3] << 24) | (buf[2] << 16) |
+ (buf[1] << 8) | buf[0];
+ dev_dbg(info->dev, "%x-%x-%x-%x\n", buf[0], buf[1], buf[2], buf[3]);
+
+ /* load 32-bit read-only counter */
+ regmap_raw_read(info->map, PM800_RTC_COUNTER1, buf, 4);
+ data = ((unsigned long)buf[3] << 24) | (buf[2] << 16) |
+ (buf[1] << 8) | buf[0];
+ ticks = base + data;
+ dev_dbg(info->dev, "get base:0x%lx, RO count:0x%lx, ticks:0x%lx\n",
+ base, data, ticks);
+ rtc_time64_to_tm(ticks, tm);
+ return 0;
+}
+
+static int pm80x_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pm80x_rtc_info *info = dev_get_drvdata(dev);
+ unsigned char buf[4];
+ unsigned long ticks, base, data;
+
+ ticks = rtc_tm_to_time64(tm);
+
+ /* load 32-bit read-only counter */
+ regmap_raw_read(info->map, PM800_RTC_COUNTER1, buf, 4);
+ data = ((unsigned long)buf[3] << 24) | (buf[2] << 16) |
+ (buf[1] << 8) | buf[0];
+ base = ticks - data;
+ dev_dbg(info->dev, "set base:0x%lx, RO count:0x%lx, ticks:0x%lx\n",
+ base, data, ticks);
+ buf[0] = base & 0xFF;
+ buf[1] = (base >> 8) & 0xFF;
+ buf[2] = (base >> 16) & 0xFF;
+ buf[3] = (base >> 24) & 0xFF;
+ regmap_raw_write(info->map, PM800_RTC_EXPIRE2_1, buf, 4);
+
+ return 0;
+}
+
+static int pm80x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pm80x_rtc_info *info = dev_get_drvdata(dev);
+ unsigned char buf[4];
+ unsigned long ticks, base, data;
+ int ret;
+
+ regmap_raw_read(info->map, PM800_RTC_EXPIRE2_1, buf, 4);
+ base = ((unsigned long)buf[3] << 24) | (buf[2] << 16) |
+ (buf[1] << 8) | buf[0];
+ dev_dbg(info->dev, "%x-%x-%x-%x\n", buf[0], buf[1], buf[2], buf[3]);
+
+ regmap_raw_read(info->map, PM800_RTC_EXPIRE1_1, buf, 4);
+ data = ((unsigned long)buf[3] << 24) | (buf[2] << 16) |
+ (buf[1] << 8) | buf[0];
+ ticks = base + data;
+ dev_dbg(info->dev, "get base:0x%lx, RO count:0x%lx, ticks:0x%lx\n",
+ base, data, ticks);
+
+ rtc_time64_to_tm(ticks, &alrm->time);
+ regmap_read(info->map, PM800_RTC_CONTROL, &ret);
+ alrm->enabled = (ret & PM800_ALARM1_EN) ? 1 : 0;
+ alrm->pending = (ret & (PM800_ALARM | PM800_ALARM_WAKEUP)) ? 1 : 0;
+ return 0;
+}
+
+static int pm80x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pm80x_rtc_info *info = dev_get_drvdata(dev);
+ struct rtc_time now_tm, alarm_tm;
+ unsigned long ticks, base, data;
+ unsigned char buf[4];
+ int mask;
+
+ regmap_update_bits(info->map, PM800_RTC_CONTROL, PM800_ALARM1_EN, 0);
+
+ regmap_raw_read(info->map, PM800_RTC_EXPIRE2_1, buf, 4);
+ base = ((unsigned long)buf[3] << 24) | (buf[2] << 16) |
+ (buf[1] << 8) | buf[0];
+ dev_dbg(info->dev, "%x-%x-%x-%x\n", buf[0], buf[1], buf[2], buf[3]);
+
+ /* load 32-bit read-only counter */
+ regmap_raw_read(info->map, PM800_RTC_COUNTER1, buf, 4);
+ data = ((unsigned long)buf[3] << 24) | (buf[2] << 16) |
+ (buf[1] << 8) | buf[0];
+ ticks = base + data;
+ dev_dbg(info->dev, "get base:0x%lx, RO count:0x%lx, ticks:0x%lx\n",
+ base, data, ticks);
+
+ rtc_time64_to_tm(ticks, &now_tm);
+ dev_dbg(info->dev, "%s, now time : %lu\n", __func__, ticks);
+ rtc_next_alarm_time(&alarm_tm, &now_tm, &alrm->time);
+ /* get new ticks for alarm in 24 hours */
+ ticks = rtc_tm_to_time64(&alarm_tm);
+ dev_dbg(info->dev, "%s, alarm time: %lu\n", __func__, ticks);
+ data = ticks - base;
+
+ buf[0] = data & 0xff;
+ buf[1] = (data >> 8) & 0xff;
+ buf[2] = (data >> 16) & 0xff;
+ buf[3] = (data >> 24) & 0xff;
+ regmap_raw_write(info->map, PM800_RTC_EXPIRE1_1, buf, 4);
+ if (alrm->enabled) {
+ mask = PM800_ALARM | PM800_ALARM_WAKEUP | PM800_ALARM1_EN;
+ regmap_update_bits(info->map, PM800_RTC_CONTROL, mask, mask);
+ } else {
+ mask = PM800_ALARM | PM800_ALARM_WAKEUP | PM800_ALARM1_EN;
+ regmap_update_bits(info->map, PM800_RTC_CONTROL, mask,
+ PM800_ALARM | PM800_ALARM_WAKEUP);
+ }
+ return 0;
+}
+
+static const struct rtc_class_ops pm80x_rtc_ops = {
+ .read_time = pm80x_rtc_read_time,
+ .set_time = pm80x_rtc_set_time,
+ .read_alarm = pm80x_rtc_read_alarm,
+ .set_alarm = pm80x_rtc_set_alarm,
+ .alarm_irq_enable = pm80x_rtc_alarm_irq_enable,
+};
+
+#ifdef CONFIG_PM_SLEEP
+static int pm80x_rtc_suspend(struct device *dev)
+{
+ return pm80x_dev_suspend(dev);
+}
+
+static int pm80x_rtc_resume(struct device *dev)
+{
+ return pm80x_dev_resume(dev);
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(pm80x_rtc_pm_ops, pm80x_rtc_suspend, pm80x_rtc_resume);
+
+static int pm80x_rtc_probe(struct platform_device *pdev)
+{
+ struct pm80x_chip *chip = dev_get_drvdata(pdev->dev.parent);
+ struct pm80x_rtc_pdata *pdata = dev_get_platdata(&pdev->dev);
+ struct pm80x_rtc_info *info;
+ struct device_node *node = pdev->dev.of_node;
+ int ret;
+
+ if (!pdata && !node) {
+ dev_err(&pdev->dev,
+ "pm80x-rtc requires platform data or of_node\n");
+ return -EINVAL;
+ }
+
+ if (!pdata) {
+ pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
+ if (!pdata) {
+ dev_err(&pdev->dev, "failed to allocate memory\n");
+ return -ENOMEM;
+ }
+ }
+
+ info =
+ devm_kzalloc(&pdev->dev, sizeof(struct pm80x_rtc_info), GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+ info->irq = platform_get_irq(pdev, 0);
+ if (info->irq < 0) {
+ ret = -EINVAL;
+ goto out;
+ }
+
+ info->chip = chip;
+ info->map = chip->regmap;
+ if (!info->map) {
+ dev_err(&pdev->dev, "no regmap!\n");
+ ret = -EINVAL;
+ goto out;
+ }
+
+ info->dev = &pdev->dev;
+ dev_set_drvdata(&pdev->dev, info);
+
+ info->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(info->rtc_dev))
+ return PTR_ERR(info->rtc_dev);
+
+ ret = pm80x_request_irq(chip, info->irq, rtc_update_handler,
+ IRQF_ONESHOT, "rtc", info);
+ if (ret < 0) {
+ dev_err(chip->dev, "Failed to request IRQ: #%d: %d\n",
+ info->irq, ret);
+ goto out;
+ }
+
+ info->rtc_dev->ops = &pm80x_rtc_ops;
+ info->rtc_dev->range_max = U32_MAX;
+
+ ret = rtc_register_device(info->rtc_dev);
+ if (ret)
+ goto out_rtc;
+
+ /*
+ * enable internal XO instead of internal 3.25MHz clock since it can
+ * free running in PMIC power-down state.
+ */
+ regmap_update_bits(info->map, PM800_RTC_CONTROL, PM800_RTC1_USE_XO,
+ PM800_RTC1_USE_XO);
+
+ /* remember whether this power up is caused by PMIC RTC or not */
+ info->rtc_dev->dev.platform_data = &pdata->rtc_wakeup;
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ return 0;
+out_rtc:
+ pm80x_free_irq(chip, info->irq, info);
+out:
+ return ret;
+}
+
+static int pm80x_rtc_remove(struct platform_device *pdev)
+{
+ struct pm80x_rtc_info *info = platform_get_drvdata(pdev);
+ pm80x_free_irq(info->chip, info->irq, info);
+ return 0;
+}
+
+static struct platform_driver pm80x_rtc_driver = {
+ .driver = {
+ .name = "88pm80x-rtc",
+ .pm = &pm80x_rtc_pm_ops,
+ },
+ .probe = pm80x_rtc_probe,
+ .remove = pm80x_rtc_remove,
+};
+
+module_platform_driver(pm80x_rtc_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Marvell 88PM80x RTC driver");
+MODULE_AUTHOR("Qiao Zhou <zhouqiao@marvell.com>");
+MODULE_ALIAS("platform:88pm80x-rtc");
diff --git a/drivers/rtc/rtc-88pm860x.c b/drivers/rtc/rtc-88pm860x.c
new file mode 100644
index 000000000..c90457d00
--- /dev/null
+++ b/drivers/rtc/rtc-88pm860x.c
@@ -0,0 +1,383 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Real Time Clock driver for Marvell 88PM860x PMIC
+ *
+ * Copyright (c) 2010 Marvell International Ltd.
+ * Author: Haojian Zhuang <haojian.zhuang@marvell.com>
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/mutex.h>
+#include <linux/rtc.h>
+#include <linux/delay.h>
+#include <linux/mfd/core.h>
+#include <linux/mfd/88pm860x.h>
+
+#define VRTC_CALIBRATION
+
+struct pm860x_rtc_info {
+ struct pm860x_chip *chip;
+ struct i2c_client *i2c;
+ struct rtc_device *rtc_dev;
+ struct device *dev;
+ struct delayed_work calib_work;
+
+ int irq;
+ int vrtc;
+};
+
+#define REG_VRTC_MEAS1 0x7D
+
+#define REG0_ADDR 0xB0
+#define REG1_ADDR 0xB2
+#define REG2_ADDR 0xB4
+#define REG3_ADDR 0xB6
+
+#define REG0_DATA 0xB1
+#define REG1_DATA 0xB3
+#define REG2_DATA 0xB5
+#define REG3_DATA 0xB7
+
+/* bit definitions of Measurement Enable Register 2 (0x51) */
+#define MEAS2_VRTC (1 << 0)
+
+/* bit definitions of RTC Register 1 (0xA0) */
+#define ALARM_EN (1 << 3)
+#define ALARM_WAKEUP (1 << 4)
+#define ALARM (1 << 5)
+#define RTC1_USE_XO (1 << 7)
+
+#define VRTC_CALIB_INTERVAL (HZ * 60 * 10) /* 10 minutes */
+
+static irqreturn_t rtc_update_handler(int irq, void *data)
+{
+ struct pm860x_rtc_info *info = (struct pm860x_rtc_info *)data;
+ int mask;
+
+ mask = ALARM | ALARM_WAKEUP;
+ pm860x_set_bits(info->i2c, PM8607_RTC1, mask | ALARM_EN, mask);
+ rtc_update_irq(info->rtc_dev, 1, RTC_AF);
+ return IRQ_HANDLED;
+}
+
+static int pm860x_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct pm860x_rtc_info *info = dev_get_drvdata(dev);
+
+ if (enabled)
+ pm860x_set_bits(info->i2c, PM8607_RTC1, ALARM_EN, ALARM_EN);
+ else
+ pm860x_set_bits(info->i2c, PM8607_RTC1, ALARM_EN, 0);
+ return 0;
+}
+
+static int pm860x_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pm860x_rtc_info *info = dev_get_drvdata(dev);
+ unsigned char buf[8];
+ unsigned long ticks, base, data;
+
+ pm860x_page_bulk_read(info->i2c, REG0_ADDR, 8, buf);
+ dev_dbg(info->dev, "%x-%x-%x-%x-%x-%x-%x-%x\n", buf[0], buf[1],
+ buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
+ base = ((unsigned long)buf[1] << 24) | (buf[3] << 16) |
+ (buf[5] << 8) | buf[7];
+
+ /* load 32-bit read-only counter */
+ pm860x_bulk_read(info->i2c, PM8607_RTC_COUNTER1, 4, buf);
+ data = ((unsigned long)buf[3] << 24) | (buf[2] << 16) |
+ (buf[1] << 8) | buf[0];
+ ticks = base + data;
+ dev_dbg(info->dev, "get base:0x%lx, RO count:0x%lx, ticks:0x%lx\n",
+ base, data, ticks);
+
+ rtc_time64_to_tm(ticks, tm);
+
+ return 0;
+}
+
+static int pm860x_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pm860x_rtc_info *info = dev_get_drvdata(dev);
+ unsigned char buf[4];
+ unsigned long ticks, base, data;
+
+ ticks = rtc_tm_to_time64(tm);
+
+ /* load 32-bit read-only counter */
+ pm860x_bulk_read(info->i2c, PM8607_RTC_COUNTER1, 4, buf);
+ data = ((unsigned long)buf[3] << 24) | (buf[2] << 16) |
+ (buf[1] << 8) | buf[0];
+ base = ticks - data;
+ dev_dbg(info->dev, "set base:0x%lx, RO count:0x%lx, ticks:0x%lx\n",
+ base, data, ticks);
+
+ pm860x_page_reg_write(info->i2c, REG0_DATA, (base >> 24) & 0xFF);
+ pm860x_page_reg_write(info->i2c, REG1_DATA, (base >> 16) & 0xFF);
+ pm860x_page_reg_write(info->i2c, REG2_DATA, (base >> 8) & 0xFF);
+ pm860x_page_reg_write(info->i2c, REG3_DATA, base & 0xFF);
+
+ return 0;
+}
+
+static int pm860x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pm860x_rtc_info *info = dev_get_drvdata(dev);
+ unsigned char buf[8];
+ unsigned long ticks, base, data;
+ int ret;
+
+ pm860x_page_bulk_read(info->i2c, REG0_ADDR, 8, buf);
+ dev_dbg(info->dev, "%x-%x-%x-%x-%x-%x-%x-%x\n", buf[0], buf[1],
+ buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
+ base = ((unsigned long)buf[1] << 24) | (buf[3] << 16) |
+ (buf[5] << 8) | buf[7];
+
+ pm860x_bulk_read(info->i2c, PM8607_RTC_EXPIRE1, 4, buf);
+ data = ((unsigned long)buf[3] << 24) | (buf[2] << 16) |
+ (buf[1] << 8) | buf[0];
+ ticks = base + data;
+ dev_dbg(info->dev, "get base:0x%lx, RO count:0x%lx, ticks:0x%lx\n",
+ base, data, ticks);
+
+ rtc_time64_to_tm(ticks, &alrm->time);
+ ret = pm860x_reg_read(info->i2c, PM8607_RTC1);
+ alrm->enabled = (ret & ALARM_EN) ? 1 : 0;
+ alrm->pending = (ret & (ALARM | ALARM_WAKEUP)) ? 1 : 0;
+ return 0;
+}
+
+static int pm860x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pm860x_rtc_info *info = dev_get_drvdata(dev);
+ unsigned long ticks, base, data;
+ unsigned char buf[8];
+ int mask;
+
+ pm860x_set_bits(info->i2c, PM8607_RTC1, ALARM_EN, 0);
+
+ pm860x_page_bulk_read(info->i2c, REG0_ADDR, 8, buf);
+ dev_dbg(info->dev, "%x-%x-%x-%x-%x-%x-%x-%x\n", buf[0], buf[1],
+ buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
+ base = ((unsigned long)buf[1] << 24) | (buf[3] << 16) |
+ (buf[5] << 8) | buf[7];
+
+ ticks = rtc_tm_to_time64(&alrm->time);
+ data = ticks - base;
+
+ buf[0] = data & 0xff;
+ buf[1] = (data >> 8) & 0xff;
+ buf[2] = (data >> 16) & 0xff;
+ buf[3] = (data >> 24) & 0xff;
+ pm860x_bulk_write(info->i2c, PM8607_RTC_EXPIRE1, 4, buf);
+ if (alrm->enabled) {
+ mask = ALARM | ALARM_WAKEUP | ALARM_EN;
+ pm860x_set_bits(info->i2c, PM8607_RTC1, mask, mask);
+ } else {
+ mask = ALARM | ALARM_WAKEUP | ALARM_EN;
+ pm860x_set_bits(info->i2c, PM8607_RTC1, mask,
+ ALARM | ALARM_WAKEUP);
+ }
+ return 0;
+}
+
+static const struct rtc_class_ops pm860x_rtc_ops = {
+ .read_time = pm860x_rtc_read_time,
+ .set_time = pm860x_rtc_set_time,
+ .read_alarm = pm860x_rtc_read_alarm,
+ .set_alarm = pm860x_rtc_set_alarm,
+ .alarm_irq_enable = pm860x_rtc_alarm_irq_enable,
+};
+
+#ifdef VRTC_CALIBRATION
+static void calibrate_vrtc_work(struct work_struct *work)
+{
+ struct pm860x_rtc_info *info = container_of(work,
+ struct pm860x_rtc_info, calib_work.work);
+ unsigned char buf[2];
+ unsigned int sum, data, mean, vrtc_set;
+ int i;
+
+ for (i = 0, sum = 0; i < 16; i++) {
+ msleep(100);
+ pm860x_bulk_read(info->i2c, REG_VRTC_MEAS1, 2, buf);
+ data = (buf[0] << 4) | buf[1];
+ data = (data * 5400) >> 12; /* convert to mv */
+ sum += data;
+ }
+ mean = sum >> 4;
+ vrtc_set = 2700 + (info->vrtc & 0x3) * 200;
+ dev_dbg(info->dev, "mean:%d, vrtc_set:%d\n", mean, vrtc_set);
+
+ sum = pm860x_reg_read(info->i2c, PM8607_RTC_MISC1);
+ data = sum & 0x3;
+ if ((mean + 200) < vrtc_set) {
+ /* try higher voltage */
+ if (++data == 4)
+ goto out;
+ data = (sum & 0xf8) | (data & 0x3);
+ pm860x_reg_write(info->i2c, PM8607_RTC_MISC1, data);
+ } else if ((mean - 200) > vrtc_set) {
+ /* try lower voltage */
+ if (data-- == 0)
+ goto out;
+ data = (sum & 0xf8) | (data & 0x3);
+ pm860x_reg_write(info->i2c, PM8607_RTC_MISC1, data);
+ } else
+ goto out;
+ dev_dbg(info->dev, "set 0x%x to RTC_MISC1\n", data);
+ /* trigger next calibration since VRTC is updated */
+ schedule_delayed_work(&info->calib_work, VRTC_CALIB_INTERVAL);
+ return;
+out:
+ /* disable measurement */
+ pm860x_set_bits(info->i2c, PM8607_MEAS_EN2, MEAS2_VRTC, 0);
+ dev_dbg(info->dev, "finish VRTC calibration\n");
+ return;
+}
+#endif
+
+#ifdef CONFIG_OF
+static int pm860x_rtc_dt_init(struct platform_device *pdev,
+ struct pm860x_rtc_info *info)
+{
+ struct device_node *np = pdev->dev.parent->of_node;
+ int ret;
+ if (!np)
+ return -ENODEV;
+ np = of_get_child_by_name(np, "rtc");
+ if (!np) {
+ dev_err(&pdev->dev, "failed to find rtc node\n");
+ return -ENODEV;
+ }
+ ret = of_property_read_u32(np, "marvell,88pm860x-vrtc", &info->vrtc);
+ if (ret)
+ info->vrtc = 0;
+ of_node_put(np);
+ return 0;
+}
+#else
+#define pm860x_rtc_dt_init(x, y) do { } while (0)
+#endif
+
+static int pm860x_rtc_probe(struct platform_device *pdev)
+{
+ struct pm860x_chip *chip = dev_get_drvdata(pdev->dev.parent);
+ struct pm860x_rtc_info *info;
+ int ret;
+
+ info = devm_kzalloc(&pdev->dev, sizeof(struct pm860x_rtc_info),
+ GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+ info->irq = platform_get_irq(pdev, 0);
+ if (info->irq < 0)
+ return info->irq;
+
+ info->chip = chip;
+ info->i2c = (chip->id == CHIP_PM8607) ? chip->client : chip->companion;
+ info->dev = &pdev->dev;
+ dev_set_drvdata(&pdev->dev, info);
+
+ info->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(info->rtc_dev))
+ return PTR_ERR(info->rtc_dev);
+
+ ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
+ rtc_update_handler, IRQF_ONESHOT, "rtc",
+ info);
+ if (ret < 0) {
+ dev_err(chip->dev, "Failed to request IRQ: #%d: %d\n",
+ info->irq, ret);
+ return ret;
+ }
+
+ /* set addresses of 32-bit base value for RTC time */
+ pm860x_page_reg_write(info->i2c, REG0_ADDR, REG0_DATA);
+ pm860x_page_reg_write(info->i2c, REG1_ADDR, REG1_DATA);
+ pm860x_page_reg_write(info->i2c, REG2_ADDR, REG2_DATA);
+ pm860x_page_reg_write(info->i2c, REG3_ADDR, REG3_DATA);
+
+ pm860x_rtc_dt_init(pdev, info);
+
+ info->rtc_dev->ops = &pm860x_rtc_ops;
+ info->rtc_dev->range_max = U32_MAX;
+
+ ret = rtc_register_device(info->rtc_dev);
+ if (ret)
+ return ret;
+
+ /*
+ * enable internal XO instead of internal 3.25MHz clock since it can
+ * free running in PMIC power-down state.
+ */
+ pm860x_set_bits(info->i2c, PM8607_RTC1, RTC1_USE_XO, RTC1_USE_XO);
+
+#ifdef VRTC_CALIBRATION
+ /* <00> -- 2.7V, <01> -- 2.9V, <10> -- 3.1V, <11> -- 3.3V */
+ pm860x_set_bits(info->i2c, PM8607_MEAS_EN2, MEAS2_VRTC, MEAS2_VRTC);
+
+ /* calibrate VRTC */
+ INIT_DELAYED_WORK(&info->calib_work, calibrate_vrtc_work);
+ schedule_delayed_work(&info->calib_work, VRTC_CALIB_INTERVAL);
+#endif /* VRTC_CALIBRATION */
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ return 0;
+}
+
+static int pm860x_rtc_remove(struct platform_device *pdev)
+{
+ struct pm860x_rtc_info *info = platform_get_drvdata(pdev);
+
+#ifdef VRTC_CALIBRATION
+ cancel_delayed_work_sync(&info->calib_work);
+ /* disable measurement */
+ pm860x_set_bits(info->i2c, PM8607_MEAS_EN2, MEAS2_VRTC, 0);
+#endif /* VRTC_CALIBRATION */
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int pm860x_rtc_suspend(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct pm860x_chip *chip = dev_get_drvdata(pdev->dev.parent);
+
+ if (device_may_wakeup(dev))
+ chip->wakeup_flag |= 1 << PM8607_IRQ_RTC;
+ return 0;
+}
+static int pm860x_rtc_resume(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct pm860x_chip *chip = dev_get_drvdata(pdev->dev.parent);
+
+ if (device_may_wakeup(dev))
+ chip->wakeup_flag &= ~(1 << PM8607_IRQ_RTC);
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(pm860x_rtc_pm_ops, pm860x_rtc_suspend, pm860x_rtc_resume);
+
+static struct platform_driver pm860x_rtc_driver = {
+ .driver = {
+ .name = "88pm860x-rtc",
+ .pm = &pm860x_rtc_pm_ops,
+ },
+ .probe = pm860x_rtc_probe,
+ .remove = pm860x_rtc_remove,
+};
+
+module_platform_driver(pm860x_rtc_driver);
+
+MODULE_DESCRIPTION("Marvell 88PM860x RTC driver");
+MODULE_AUTHOR("Haojian Zhuang <haojian.zhuang@marvell.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-ab-b5ze-s3.c b/drivers/rtc/rtc-ab-b5ze-s3.c
new file mode 100644
index 000000000..2370ac0cd
--- /dev/null
+++ b/drivers/rtc/rtc-ab-b5ze-s3.c
@@ -0,0 +1,955 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
+ * I2C RTC / Alarm chip
+ *
+ * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
+ *
+ * Detailed datasheet of the chip is available here:
+ *
+ * https://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
+ *
+ * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
+ *
+ */
+
+#include <linux/module.h>
+#include <linux/rtc.h>
+#include <linux/i2c.h>
+#include <linux/bcd.h>
+#include <linux/of.h>
+#include <linux/regmap.h>
+#include <linux/interrupt.h>
+
+#define DRV_NAME "rtc-ab-b5ze-s3"
+
+/* Control section */
+#define ABB5ZES3_REG_CTRL1 0x00 /* Control 1 register */
+#define ABB5ZES3_REG_CTRL1_CIE BIT(0) /* Pulse interrupt enable */
+#define ABB5ZES3_REG_CTRL1_AIE BIT(1) /* Alarm interrupt enable */
+#define ABB5ZES3_REG_CTRL1_SIE BIT(2) /* Second interrupt enable */
+#define ABB5ZES3_REG_CTRL1_PM BIT(3) /* 24h/12h mode */
+#define ABB5ZES3_REG_CTRL1_SR BIT(4) /* Software reset */
+#define ABB5ZES3_REG_CTRL1_STOP BIT(5) /* RTC circuit enable */
+#define ABB5ZES3_REG_CTRL1_CAP BIT(7)
+
+#define ABB5ZES3_REG_CTRL2 0x01 /* Control 2 register */
+#define ABB5ZES3_REG_CTRL2_CTBIE BIT(0) /* Countdown timer B int. enable */
+#define ABB5ZES3_REG_CTRL2_CTAIE BIT(1) /* Countdown timer A int. enable */
+#define ABB5ZES3_REG_CTRL2_WTAIE BIT(2) /* Watchdog timer A int. enable */
+#define ABB5ZES3_REG_CTRL2_AF BIT(3) /* Alarm interrupt status */
+#define ABB5ZES3_REG_CTRL2_SF BIT(4) /* Second interrupt status */
+#define ABB5ZES3_REG_CTRL2_CTBF BIT(5) /* Countdown timer B int. status */
+#define ABB5ZES3_REG_CTRL2_CTAF BIT(6) /* Countdown timer A int. status */
+#define ABB5ZES3_REG_CTRL2_WTAF BIT(7) /* Watchdog timer A int. status */
+
+#define ABB5ZES3_REG_CTRL3 0x02 /* Control 3 register */
+#define ABB5ZES3_REG_CTRL3_PM2 BIT(7) /* Power Management bit 2 */
+#define ABB5ZES3_REG_CTRL3_PM1 BIT(6) /* Power Management bit 1 */
+#define ABB5ZES3_REG_CTRL3_PM0 BIT(5) /* Power Management bit 0 */
+#define ABB5ZES3_REG_CTRL3_BSF BIT(3) /* Battery switchover int. status */
+#define ABB5ZES3_REG_CTRL3_BLF BIT(2) /* Battery low int. status */
+#define ABB5ZES3_REG_CTRL3_BSIE BIT(1) /* Battery switchover int. enable */
+#define ABB5ZES3_REG_CTRL3_BLIE BIT(0) /* Battery low int. enable */
+
+#define ABB5ZES3_CTRL_SEC_LEN 3
+
+/* RTC section */
+#define ABB5ZES3_REG_RTC_SC 0x03 /* RTC Seconds register */
+#define ABB5ZES3_REG_RTC_SC_OSC BIT(7) /* Clock integrity status */
+#define ABB5ZES3_REG_RTC_MN 0x04 /* RTC Minutes register */
+#define ABB5ZES3_REG_RTC_HR 0x05 /* RTC Hours register */
+#define ABB5ZES3_REG_RTC_HR_PM BIT(5) /* RTC Hours PM bit */
+#define ABB5ZES3_REG_RTC_DT 0x06 /* RTC Date register */
+#define ABB5ZES3_REG_RTC_DW 0x07 /* RTC Day of the week register */
+#define ABB5ZES3_REG_RTC_MO 0x08 /* RTC Month register */
+#define ABB5ZES3_REG_RTC_YR 0x09 /* RTC Year register */
+
+#define ABB5ZES3_RTC_SEC_LEN 7
+
+/* Alarm section (enable bits are all active low) */
+#define ABB5ZES3_REG_ALRM_MN 0x0A /* Alarm - minute register */
+#define ABB5ZES3_REG_ALRM_MN_AE BIT(7) /* Minute enable */
+#define ABB5ZES3_REG_ALRM_HR 0x0B /* Alarm - hours register */
+#define ABB5ZES3_REG_ALRM_HR_AE BIT(7) /* Hour enable */
+#define ABB5ZES3_REG_ALRM_DT 0x0C /* Alarm - date register */
+#define ABB5ZES3_REG_ALRM_DT_AE BIT(7) /* Date (day of the month) enable */
+#define ABB5ZES3_REG_ALRM_DW 0x0D /* Alarm - day of the week reg. */
+#define ABB5ZES3_REG_ALRM_DW_AE BIT(7) /* Day of the week enable */
+
+#define ABB5ZES3_ALRM_SEC_LEN 4
+
+/* Frequency offset section */
+#define ABB5ZES3_REG_FREQ_OF 0x0E /* Frequency offset register */
+#define ABB5ZES3_REG_FREQ_OF_MODE 0x0E /* Offset mode: 2 hours / minute */
+
+/* CLOCKOUT section */
+#define ABB5ZES3_REG_TIM_CLK 0x0F /* Timer & Clockout register */
+#define ABB5ZES3_REG_TIM_CLK_TAM BIT(7) /* Permanent/pulsed timer A/int. 2 */
+#define ABB5ZES3_REG_TIM_CLK_TBM BIT(6) /* Permanent/pulsed timer B */
+#define ABB5ZES3_REG_TIM_CLK_COF2 BIT(5) /* Clkout Freq bit 2 */
+#define ABB5ZES3_REG_TIM_CLK_COF1 BIT(4) /* Clkout Freq bit 1 */
+#define ABB5ZES3_REG_TIM_CLK_COF0 BIT(3) /* Clkout Freq bit 0 */
+#define ABB5ZES3_REG_TIM_CLK_TAC1 BIT(2) /* Timer A: - 01 : countdown */
+#define ABB5ZES3_REG_TIM_CLK_TAC0 BIT(1) /* - 10 : timer */
+#define ABB5ZES3_REG_TIM_CLK_TBC BIT(0) /* Timer B enable */
+
+/* Timer A Section */
+#define ABB5ZES3_REG_TIMA_CLK 0x10 /* Timer A clock register */
+#define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2) /* Freq bit 2 */
+#define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1) /* Freq bit 1 */
+#define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0) /* Freq bit 0 */
+#define ABB5ZES3_REG_TIMA 0x11 /* Timer A register */
+
+#define ABB5ZES3_TIMA_SEC_LEN 2
+
+/* Timer B Section */
+#define ABB5ZES3_REG_TIMB_CLK 0x12 /* Timer B clock register */
+#define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
+#define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
+#define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
+#define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
+#define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
+#define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
+#define ABB5ZES3_REG_TIMB 0x13 /* Timer B register */
+#define ABB5ZES3_TIMB_SEC_LEN 2
+
+#define ABB5ZES3_MEM_MAP_LEN 0x14
+
+struct abb5zes3_rtc_data {
+ struct rtc_device *rtc;
+ struct regmap *regmap;
+
+ int irq;
+
+ bool battery_low;
+ bool timer_alarm; /* current alarm is via timer A */
+};
+
+/*
+ * Try and match register bits w/ fixed null values to see whether we
+ * are dealing with an ABB5ZES3.
+ */
+static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
+{
+ u8 regs[ABB5ZES3_MEM_MAP_LEN];
+ static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
+ 0x80, 0xc0, 0xc0, 0xf8,
+ 0xe0, 0x00, 0x00, 0x40,
+ 0x40, 0x78, 0x00, 0x00,
+ 0xf8, 0x00, 0x88, 0x00 };
+ int ret, i;
+
+ ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
+ if (regs[i] & mask[i]) /* check if bits are cleared */
+ return -ENODEV;
+ }
+
+ return 0;
+}
+
+/* Clear alarm status bit. */
+static int _abb5zes3_rtc_clear_alarm(struct device *dev)
+{
+ struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
+ int ret;
+
+ ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
+ ABB5ZES3_REG_CTRL2_AF, 0);
+ if (ret)
+ dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
+
+ return ret;
+}
+
+/* Enable or disable alarm (i.e. alarm interrupt generation) */
+static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
+{
+ struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
+ int ret;
+
+ ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
+ ABB5ZES3_REG_CTRL1_AIE,
+ enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
+ if (ret)
+ dev_err(dev, "%s: writing alarm INT failed (%d)\n",
+ __func__, ret);
+
+ return ret;
+}
+
+/* Enable or disable timer (watchdog timer A interrupt generation) */
+static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
+{
+ struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
+ int ret;
+
+ ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
+ ABB5ZES3_REG_CTRL2_WTAIE,
+ enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
+ if (ret)
+ dev_err(dev, "%s: writing timer INT failed (%d)\n",
+ __func__, ret);
+
+ return ret;
+}
+
+/*
+ * Note: we only read, so regmap inner lock protection is sufficient, i.e.
+ * we do not need driver's main lock protection.
+ */
+static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
+ u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
+ int ret = 0;
+
+ /*
+ * As we need to read CTRL1 register anyway to access 24/12h
+ * mode bit, we do a single bulk read of both control and RTC
+ * sections (they are consecutive). This also ease indexing
+ * of register values after bulk read.
+ */
+ ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
+ sizeof(regs));
+ if (ret) {
+ dev_err(dev, "%s: reading RTC time failed (%d)\n",
+ __func__, ret);
+ return ret;
+ }
+
+ /* If clock integrity is not guaranteed, do not return a time value */
+ if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC)
+ return -ENODATA;
+
+ tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
+ tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
+
+ if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
+ tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
+ if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
+ tm->tm_hour += 12;
+ } else { /* 24hr mode */
+ tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
+ }
+
+ tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
+ tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
+ tm->tm_mon = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
+ tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
+
+ return ret;
+}
+
+static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
+ u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
+ int ret;
+
+ regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
+ regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
+ regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
+ regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
+ regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
+ regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
+ regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
+
+ ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
+ regs + ABB5ZES3_REG_RTC_SC,
+ ABB5ZES3_RTC_SEC_LEN);
+
+ return ret;
+}
+
+/*
+ * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
+ * given number of seconds.
+ */
+static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
+{
+ *taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
+ *timer_a = secs;
+}
+
+/*
+ * Return current number of seconds in Timer A. As we only use
+ * timer A with a 1Hz freq, this is what we expect to have.
+ */
+static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
+{
+ if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
+ return -EINVAL;
+
+ *secs = timer_a;
+
+ return 0;
+}
+
+/*
+ * Read alarm currently configured via a watchdog timer using timer A. This
+ * is done by reading current RTC time and adding remaining timer time.
+ */
+static int _abb5zes3_rtc_read_timer(struct device *dev,
+ struct rtc_wkalrm *alarm)
+{
+ struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
+ struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
+ u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
+ unsigned long rtc_secs;
+ unsigned int reg;
+ u8 timer_secs;
+ int ret;
+
+ /*
+ * Instead of doing two separate calls, because they are consecutive,
+ * we grab both clockout register and Timer A section. The latter is
+ * used to decide if timer A is enabled (as a watchdog timer).
+ */
+ ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
+ ABB5ZES3_TIMA_SEC_LEN + 1);
+ if (ret) {
+ dev_err(dev, "%s: reading Timer A section failed (%d)\n",
+ __func__, ret);
+ return ret;
+ }
+
+ /* get current time ... */
+ ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
+ if (ret)
+ return ret;
+
+ /* ... convert to seconds ... */
+ rtc_secs = rtc_tm_to_time64(&rtc_tm);
+
+ /* ... add remaining timer A time ... */
+ ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
+ if (ret)
+ return ret;
+
+ /* ... and convert back. */
+ rtc_time64_to_tm(rtc_secs + timer_secs, alarm_tm);
+
+ ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, &reg);
+ if (ret) {
+ dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
+ __func__, ret);
+ return ret;
+ }
+
+ alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);
+
+ return 0;
+}
+
+/* Read alarm currently configured via a RTC alarm registers. */
+static int _abb5zes3_rtc_read_alarm(struct device *dev,
+ struct rtc_wkalrm *alarm)
+{
+ struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
+ struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
+ unsigned long rtc_secs, alarm_secs;
+ u8 regs[ABB5ZES3_ALRM_SEC_LEN];
+ unsigned int reg;
+ int ret;
+
+ ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
+ ABB5ZES3_ALRM_SEC_LEN);
+ if (ret) {
+ dev_err(dev, "%s: reading alarm section failed (%d)\n",
+ __func__, ret);
+ return ret;
+ }
+
+ alarm_tm->tm_sec = 0;
+ alarm_tm->tm_min = bcd2bin(regs[0] & 0x7f);
+ alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
+ alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
+ alarm_tm->tm_wday = -1;
+
+ /*
+ * The alarm section does not store year/month. We use the ones in rtc
+ * section as a basis and increment month and then year if needed to get
+ * alarm after current time.
+ */
+ ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
+ if (ret)
+ return ret;
+
+ alarm_tm->tm_year = rtc_tm.tm_year;
+ alarm_tm->tm_mon = rtc_tm.tm_mon;
+
+ rtc_secs = rtc_tm_to_time64(&rtc_tm);
+ alarm_secs = rtc_tm_to_time64(alarm_tm);
+
+ if (alarm_secs < rtc_secs) {
+ if (alarm_tm->tm_mon == 11) {
+ alarm_tm->tm_mon = 0;
+ alarm_tm->tm_year += 1;
+ } else {
+ alarm_tm->tm_mon += 1;
+ }
+ }
+
+ ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, &reg);
+ if (ret) {
+ dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
+ __func__, ret);
+ return ret;
+ }
+
+ alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
+
+ return 0;
+}
+
+/*
+ * As the Alarm mechanism supported by the chip is only accurate to the
+ * minute, we use the watchdog timer mechanism provided by timer A
+ * (up to 256 seconds w/ a second accuracy) for low alarm values (below
+ * 4 minutes). Otherwise, we use the common alarm mechanism provided
+ * by the chip. In order for that to work, we keep track of currently
+ * configured timer type via 'timer_alarm' flag in our private data
+ * structure.
+ */
+static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
+ int ret;
+
+ if (data->timer_alarm)
+ ret = _abb5zes3_rtc_read_timer(dev, alarm);
+ else
+ ret = _abb5zes3_rtc_read_alarm(dev, alarm);
+
+ return ret;
+}
+
+/*
+ * Set alarm using chip alarm mechanism. It is only accurate to the
+ * minute (not the second). The function expects alarm interrupt to
+ * be disabled.
+ */
+static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
+ struct rtc_time *alarm_tm = &alarm->time;
+ u8 regs[ABB5ZES3_ALRM_SEC_LEN];
+ struct rtc_time rtc_tm;
+ int ret, enable = 1;
+
+ if (!alarm->enabled) {
+ enable = 0;
+ } else {
+ unsigned long rtc_secs, alarm_secs;
+
+ /*
+ * Chip only support alarms up to one month in the future. Let's
+ * return an error if we get something after that limit.
+ * Comparison is done by incrementing rtc_tm month field by one
+ * and checking alarm value is still below.
+ */
+ ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
+ if (ret)
+ return ret;
+
+ if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
+ rtc_tm.tm_mon = 0;
+ rtc_tm.tm_year += 1;
+ } else {
+ rtc_tm.tm_mon += 1;
+ }
+
+ rtc_secs = rtc_tm_to_time64(&rtc_tm);
+ alarm_secs = rtc_tm_to_time64(alarm_tm);
+
+ if (alarm_secs > rtc_secs) {
+ dev_err(dev, "%s: alarm maximum is one month in the future (%d)\n",
+ __func__, ret);
+ return -EINVAL;
+ }
+ }
+
+ /*
+ * Program all alarm registers but DW one. For each register, setting
+ * MSB to 0 enables associated alarm.
+ */
+ regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
+ regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
+ regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
+ regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
+
+ ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
+ ABB5ZES3_ALRM_SEC_LEN);
+ if (ret < 0) {
+ dev_err(dev, "%s: writing ALARM section failed (%d)\n",
+ __func__, ret);
+ return ret;
+ }
+
+ /* Record currently configured alarm is not a timer */
+ data->timer_alarm = 0;
+
+ /* Enable or disable alarm interrupt generation */
+ return _abb5zes3_rtc_update_alarm(dev, enable);
+}
+
+/*
+ * Set alarm using timer watchdog (via timer A) mechanism. The function expects
+ * timer A interrupt to be disabled.
+ */
+static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
+ u8 secs)
+{
+ struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
+ u8 regs[ABB5ZES3_TIMA_SEC_LEN];
+ u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
+ int ret = 0;
+
+ /* Program given number of seconds to Timer A registers */
+ sec_to_timer_a(secs, &regs[0], &regs[1]);
+ ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
+ ABB5ZES3_TIMA_SEC_LEN);
+ if (ret < 0) {
+ dev_err(dev, "%s: writing timer section failed\n", __func__);
+ return ret;
+ }
+
+ /* Configure Timer A as a watchdog timer */
+ ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
+ mask, ABB5ZES3_REG_TIM_CLK_TAC1);
+ if (ret)
+ dev_err(dev, "%s: failed to update timer\n", __func__);
+
+ /* Record currently configured alarm is a timer */
+ data->timer_alarm = 1;
+
+ /* Enable or disable timer interrupt generation */
+ return _abb5zes3_rtc_update_timer(dev, alarm->enabled);
+}
+
+/*
+ * The chip has an alarm which is only accurate to the minute. In order to
+ * handle alarms below that limit, we use the watchdog timer function of
+ * timer A. More precisely, the timer method is used for alarms below 240
+ * seconds.
+ */
+static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
+ struct rtc_time *alarm_tm = &alarm->time;
+ unsigned long rtc_secs, alarm_secs;
+ struct rtc_time rtc_tm;
+ int ret;
+
+ ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
+ if (ret)
+ return ret;
+
+ rtc_secs = rtc_tm_to_time64(&rtc_tm);
+ alarm_secs = rtc_tm_to_time64(alarm_tm);
+
+ /* Let's first disable both the alarm and the timer interrupts */
+ ret = _abb5zes3_rtc_update_alarm(dev, false);
+ if (ret < 0) {
+ dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
+ ret);
+ return ret;
+ }
+ ret = _abb5zes3_rtc_update_timer(dev, false);
+ if (ret < 0) {
+ dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
+ ret);
+ return ret;
+ }
+
+ data->timer_alarm = 0;
+
+ /*
+ * Let's now configure the alarm; if we are expected to ring in
+ * more than 240s, then we setup an alarm. Otherwise, a timer.
+ */
+ if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
+ ret = _abb5zes3_rtc_set_timer(dev, alarm,
+ alarm_secs - rtc_secs);
+ else
+ ret = _abb5zes3_rtc_set_alarm(dev, alarm);
+
+ if (ret)
+ dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
+ ret);
+
+ return ret;
+}
+
+/* Enable or disable battery low irq generation */
+static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
+ bool enable)
+{
+ return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
+ ABB5ZES3_REG_CTRL3_BLIE,
+ enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
+}
+
+/*
+ * Check current RTC status and enable/disable what needs to be. Return 0 if
+ * everything went ok and a negative value upon error.
+ */
+static int abb5zes3_rtc_check_setup(struct device *dev)
+{
+ struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
+ struct regmap *regmap = data->regmap;
+ unsigned int reg;
+ int ret;
+ u8 mask;
+
+ /*
+ * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
+ * is disabled here to prevent polluting the interrupt line and
+ * uselessly triggering the IRQ handler we install for alarm and battery
+ * low events. Note: this is done before clearing int. status below
+ * in this function.
+ * We also disable all timers and set timer interrupt to permanent (not
+ * pulsed).
+ */
+ mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
+ ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
+ ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
+ ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
+ ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
+ ABB5ZES3_REG_TIM_CLK_COF0 |
+ ABB5ZES3_REG_TIM_CLK_COF1 |
+ ABB5ZES3_REG_TIM_CLK_COF2);
+ if (ret < 0) {
+ dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
+ __func__, ret);
+ return ret;
+ }
+
+ /*
+ * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
+ * individually by clearing/setting MSB of each associated register. So,
+ * we set all alarm enable bits to disable current alarm setting.
+ */
+ mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
+ ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
+ ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
+ if (ret < 0) {
+ dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
+ __func__, ret);
+ return ret;
+ }
+
+ /* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
+ mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
+ ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
+ ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
+ ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
+ if (ret < 0) {
+ dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
+ __func__, ret);
+ return ret;
+ }
+
+ /*
+ * Set Control 2 register (timer int. disabled, alarm status cleared).
+ * WTAF is read-only and cleared automatically by reading the register.
+ */
+ mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
+ ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
+ ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
+ ABB5ZES3_REG_CTRL2_CTAF);
+ ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
+ if (ret < 0) {
+ dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
+ __func__, ret);
+ return ret;
+ }
+
+ /*
+ * Enable battery low detection function and battery switchover function
+ * (standard mode). Disable associated interrupts. Clear battery
+ * switchover flag but not battery low flag. The latter is checked
+ * later below.
+ */
+ mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 |
+ ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE |
+ ABB5ZES3_REG_CTRL3_BSIE | ABB5ZES3_REG_CTRL3_BSF);
+ ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
+ if (ret < 0) {
+ dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
+ __func__, ret);
+ return ret;
+ }
+
+ /* Check oscillator integrity flag */
+ ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, &reg);
+ if (ret < 0) {
+ dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
+ __func__, ret);
+ return ret;
+ }
+
+ if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
+ dev_err(dev, "clock integrity not guaranteed. Osc. has stopped or has been interrupted.\n");
+ dev_err(dev, "change battery (if not already done) and then set time to reset osc. failure flag.\n");
+ }
+
+ /*
+ * Check battery low flag at startup: this allows reporting battery
+ * is low at startup when IRQ line is not connected. Note: we record
+ * current status to avoid reenabling this interrupt later in probe
+ * function if battery is low.
+ */
+ ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, &reg);
+ if (ret < 0) {
+ dev_err(dev, "%s: unable to read battery low flag (%d)\n",
+ __func__, ret);
+ return ret;
+ }
+
+ data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
+ if (data->battery_low) {
+ dev_err(dev, "RTC battery is low; please, consider changing it!\n");
+
+ ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
+ if (ret)
+ dev_err(dev, "%s: disabling battery low interrupt generation failed (%d)\n",
+ __func__, ret);
+ }
+
+ return ret;
+}
+
+static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enable)
+{
+ struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
+ int ret = 0;
+
+ if (rtc_data->irq) {
+ if (rtc_data->timer_alarm)
+ ret = _abb5zes3_rtc_update_timer(dev, enable);
+ else
+ ret = _abb5zes3_rtc_update_alarm(dev, enable);
+ }
+
+ return ret;
+}
+
+static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
+{
+ struct i2c_client *client = data;
+ struct device *dev = &client->dev;
+ struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
+ struct rtc_device *rtc = rtc_data->rtc;
+ u8 regs[ABB5ZES3_CTRL_SEC_LEN];
+ int ret, handled = IRQ_NONE;
+
+ ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
+ ABB5ZES3_CTRL_SEC_LEN);
+ if (ret) {
+ dev_err(dev, "%s: unable to read control section (%d)!\n",
+ __func__, ret);
+ return handled;
+ }
+
+ /*
+ * Check battery low detection flag and disable battery low interrupt
+ * generation if flag is set (interrupt can only be cleared when
+ * battery is replaced).
+ */
+ if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
+ dev_err(dev, "RTC battery is low; please change it!\n");
+
+ _abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
+
+ handled = IRQ_HANDLED;
+ }
+
+ /* Check alarm flag */
+ if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
+ dev_dbg(dev, "RTC alarm!\n");
+
+ rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
+
+ /* Acknowledge and disable the alarm */
+ _abb5zes3_rtc_clear_alarm(dev);
+ _abb5zes3_rtc_update_alarm(dev, 0);
+
+ handled = IRQ_HANDLED;
+ }
+
+ /* Check watchdog Timer A flag */
+ if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
+ dev_dbg(dev, "RTC timer!\n");
+
+ rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
+
+ /*
+ * Acknowledge and disable the alarm. Note: WTAF
+ * flag had been cleared when reading CTRL2
+ */
+ _abb5zes3_rtc_update_timer(dev, 0);
+
+ rtc_data->timer_alarm = 0;
+
+ handled = IRQ_HANDLED;
+ }
+
+ return handled;
+}
+
+static const struct rtc_class_ops rtc_ops = {
+ .read_time = _abb5zes3_rtc_read_time,
+ .set_time = abb5zes3_rtc_set_time,
+ .read_alarm = abb5zes3_rtc_read_alarm,
+ .set_alarm = abb5zes3_rtc_set_alarm,
+ .alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
+};
+
+static const struct regmap_config abb5zes3_rtc_regmap_config = {
+ .reg_bits = 8,
+ .val_bits = 8,
+};
+
+static int abb5zes3_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct abb5zes3_rtc_data *data = NULL;
+ struct device *dev = &client->dev;
+ struct regmap *regmap;
+ int ret;
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
+ I2C_FUNC_SMBUS_BYTE_DATA |
+ I2C_FUNC_SMBUS_I2C_BLOCK))
+ return -ENODEV;
+
+ regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
+ if (IS_ERR(regmap)) {
+ ret = PTR_ERR(regmap);
+ dev_err(dev, "%s: regmap allocation failed: %d\n",
+ __func__, ret);
+ return ret;
+ }
+
+ ret = abb5zes3_i2c_validate_chip(regmap);
+ if (ret)
+ return ret;
+
+ data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
+ if (!data)
+ return -ENOMEM;
+
+ data->regmap = regmap;
+ dev_set_drvdata(dev, data);
+
+ ret = abb5zes3_rtc_check_setup(dev);
+ if (ret)
+ return ret;
+
+ data->rtc = devm_rtc_allocate_device(dev);
+ ret = PTR_ERR_OR_ZERO(data->rtc);
+ if (ret) {
+ dev_err(dev, "%s: unable to allocate RTC device (%d)\n",
+ __func__, ret);
+ return ret;
+ }
+
+ if (client->irq > 0) {
+ ret = devm_request_threaded_irq(dev, client->irq, NULL,
+ _abb5zes3_rtc_interrupt,
+ IRQF_SHARED | IRQF_ONESHOT,
+ DRV_NAME, client);
+ if (!ret) {
+ device_init_wakeup(dev, true);
+ data->irq = client->irq;
+ dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
+ client->irq);
+ } else {
+ dev_err(dev, "%s: irq %d unavailable (%d)\n",
+ __func__, client->irq, ret);
+ goto err;
+ }
+ }
+
+ data->rtc->ops = &rtc_ops;
+ data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ data->rtc->range_max = RTC_TIMESTAMP_END_2099;
+
+ /* Enable battery low detection interrupt if battery not already low */
+ if (!data->battery_low && data->irq) {
+ ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
+ if (ret) {
+ dev_err(dev, "%s: enabling battery low interrupt generation failed (%d)\n",
+ __func__, ret);
+ goto err;
+ }
+ }
+
+ ret = rtc_register_device(data->rtc);
+
+err:
+ if (ret && data->irq)
+ device_init_wakeup(dev, false);
+ return ret;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int abb5zes3_rtc_suspend(struct device *dev)
+{
+ struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ return enable_irq_wake(rtc_data->irq);
+
+ return 0;
+}
+
+static int abb5zes3_rtc_resume(struct device *dev)
+{
+ struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ return disable_irq_wake(rtc_data->irq);
+
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
+ abb5zes3_rtc_resume);
+
+#ifdef CONFIG_OF
+static const struct of_device_id abb5zes3_dt_match[] = {
+ { .compatible = "abracon,abb5zes3" },
+ { },
+};
+MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
+#endif
+
+static const struct i2c_device_id abb5zes3_id[] = {
+ { "abb5zes3", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
+
+static struct i2c_driver abb5zes3_driver = {
+ .driver = {
+ .name = DRV_NAME,
+ .pm = &abb5zes3_rtc_pm_ops,
+ .of_match_table = of_match_ptr(abb5zes3_dt_match),
+ },
+ .probe = abb5zes3_probe,
+ .id_table = abb5zes3_id,
+};
+module_i2c_driver(abb5zes3_driver);
+
+MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
+MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-ab-eoz9.c b/drivers/rtc/rtc-ab-eoz9.c
new file mode 100644
index 000000000..d690985ca
--- /dev/null
+++ b/drivers/rtc/rtc-ab-eoz9.c
@@ -0,0 +1,457 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Real Time Clock driver for AB-RTCMC-32.768kHz-EOZ9 chip.
+ * Copyright (C) 2019 Orolia
+ *
+ */
+
+#include <linux/module.h>
+#include <linux/rtc.h>
+#include <linux/i2c.h>
+#include <linux/bcd.h>
+#include <linux/of.h>
+#include <linux/regmap.h>
+#include <linux/hwmon.h>
+#include <linux/hwmon-sysfs.h>
+
+#define ABEOZ9_REG_CTRL1 0x00
+#define ABEOZ9_REG_CTRL1_MASK GENMASK(7, 0)
+#define ABEOZ9_REG_CTRL1_WE BIT(0)
+#define ABEOZ9_REG_CTRL1_TE BIT(1)
+#define ABEOZ9_REG_CTRL1_TAR BIT(2)
+#define ABEOZ9_REG_CTRL1_EERE BIT(3)
+#define ABEOZ9_REG_CTRL1_SRON BIT(4)
+#define ABEOZ9_REG_CTRL1_TD0 BIT(5)
+#define ABEOZ9_REG_CTRL1_TD1 BIT(6)
+#define ABEOZ9_REG_CTRL1_CLKINT BIT(7)
+
+#define ABEOZ9_REG_CTRL_INT 0x01
+#define ABEOZ9_REG_CTRL_INT_AIE BIT(0)
+#define ABEOZ9_REG_CTRL_INT_TIE BIT(1)
+#define ABEOZ9_REG_CTRL_INT_V1IE BIT(2)
+#define ABEOZ9_REG_CTRL_INT_V2IE BIT(3)
+#define ABEOZ9_REG_CTRL_INT_SRIE BIT(4)
+
+#define ABEOZ9_REG_CTRL_INT_FLAG 0x02
+#define ABEOZ9_REG_CTRL_INT_FLAG_AF BIT(0)
+#define ABEOZ9_REG_CTRL_INT_FLAG_TF BIT(1)
+#define ABEOZ9_REG_CTRL_INT_FLAG_V1IF BIT(2)
+#define ABEOZ9_REG_CTRL_INT_FLAG_V2IF BIT(3)
+#define ABEOZ9_REG_CTRL_INT_FLAG_SRF BIT(4)
+
+#define ABEOZ9_REG_CTRL_STATUS 0x03
+#define ABEOZ9_REG_CTRL_STATUS_V1F BIT(2)
+#define ABEOZ9_REG_CTRL_STATUS_V2F BIT(3)
+#define ABEOZ9_REG_CTRL_STATUS_SR BIT(4)
+#define ABEOZ9_REG_CTRL_STATUS_PON BIT(5)
+#define ABEOZ9_REG_CTRL_STATUS_EEBUSY BIT(7)
+
+#define ABEOZ9_REG_SEC 0x08
+#define ABEOZ9_REG_MIN 0x09
+#define ABEOZ9_REG_HOURS 0x0A
+#define ABEOZ9_HOURS_PM BIT(6)
+#define ABEOZ9_REG_DAYS 0x0B
+#define ABEOZ9_REG_WEEKDAYS 0x0C
+#define ABEOZ9_REG_MONTHS 0x0D
+#define ABEOZ9_REG_YEARS 0x0E
+
+#define ABEOZ9_SEC_LEN 7
+
+#define ABEOZ9_REG_REG_TEMP 0x20
+#define ABEOZ953_TEMP_MAX 120
+#define ABEOZ953_TEMP_MIN -60
+
+#define ABEOZ9_REG_EEPROM 0x30
+#define ABEOZ9_REG_EEPROM_MASK GENMASK(8, 0)
+#define ABEOZ9_REG_EEPROM_THP BIT(0)
+#define ABEOZ9_REG_EEPROM_THE BIT(1)
+#define ABEOZ9_REG_EEPROM_FD0 BIT(2)
+#define ABEOZ9_REG_EEPROM_FD1 BIT(3)
+#define ABEOZ9_REG_EEPROM_R1K BIT(4)
+#define ABEOZ9_REG_EEPROM_R5K BIT(5)
+#define ABEOZ9_REG_EEPROM_R20K BIT(6)
+#define ABEOZ9_REG_EEPROM_R80K BIT(7)
+
+struct abeoz9_rtc_data {
+ struct rtc_device *rtc;
+ struct regmap *regmap;
+ struct device *hwmon_dev;
+};
+
+static int abeoz9_check_validity(struct device *dev)
+{
+ struct abeoz9_rtc_data *data = dev_get_drvdata(dev);
+ struct regmap *regmap = data->regmap;
+ int ret;
+ int val;
+
+ ret = regmap_read(regmap, ABEOZ9_REG_CTRL_STATUS, &val);
+ if (ret < 0) {
+ dev_err(dev,
+ "unable to get CTRL_STATUS register (%d)\n", ret);
+ return ret;
+ }
+
+ if (val & ABEOZ9_REG_CTRL_STATUS_PON) {
+ dev_warn(dev, "power-on reset detected, date is invalid\n");
+ return -EINVAL;
+ }
+
+ if (val & ABEOZ9_REG_CTRL_STATUS_V1F) {
+ dev_warn(dev,
+ "voltage drops below VLOW1 threshold, date is invalid\n");
+ return -EINVAL;
+ }
+
+ if ((val & ABEOZ9_REG_CTRL_STATUS_V2F)) {
+ dev_warn(dev,
+ "voltage drops below VLOW2 threshold, date is invalid\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int abeoz9_reset_validity(struct regmap *regmap)
+{
+ return regmap_update_bits(regmap, ABEOZ9_REG_CTRL_STATUS,
+ ABEOZ9_REG_CTRL_STATUS_V1F |
+ ABEOZ9_REG_CTRL_STATUS_V2F |
+ ABEOZ9_REG_CTRL_STATUS_PON,
+ 0);
+}
+
+static int abeoz9_rtc_get_time(struct device *dev, struct rtc_time *tm)
+{
+ struct abeoz9_rtc_data *data = dev_get_drvdata(dev);
+ u8 regs[ABEOZ9_SEC_LEN];
+ int ret;
+
+ ret = abeoz9_check_validity(dev);
+ if (ret)
+ return ret;
+
+ ret = regmap_bulk_read(data->regmap, ABEOZ9_REG_SEC,
+ regs,
+ sizeof(regs));
+ if (ret) {
+ dev_err(dev, "reading RTC time failed (%d)\n", ret);
+ return ret;
+ }
+
+ tm->tm_sec = bcd2bin(regs[ABEOZ9_REG_SEC - ABEOZ9_REG_SEC] & 0x7F);
+ tm->tm_min = bcd2bin(regs[ABEOZ9_REG_MIN - ABEOZ9_REG_SEC] & 0x7F);
+
+ if (regs[ABEOZ9_REG_HOURS - ABEOZ9_REG_SEC] & ABEOZ9_HOURS_PM) {
+ tm->tm_hour =
+ bcd2bin(regs[ABEOZ9_REG_HOURS - ABEOZ9_REG_SEC] & 0x1f);
+ if (regs[ABEOZ9_REG_HOURS - ABEOZ9_REG_SEC] & ABEOZ9_HOURS_PM)
+ tm->tm_hour += 12;
+ } else {
+ tm->tm_hour = bcd2bin(regs[ABEOZ9_REG_HOURS - ABEOZ9_REG_SEC]);
+ }
+
+ tm->tm_mday = bcd2bin(regs[ABEOZ9_REG_DAYS - ABEOZ9_REG_SEC]);
+ tm->tm_wday = bcd2bin(regs[ABEOZ9_REG_WEEKDAYS - ABEOZ9_REG_SEC]);
+ tm->tm_mon = bcd2bin(regs[ABEOZ9_REG_MONTHS - ABEOZ9_REG_SEC]) - 1;
+ tm->tm_year = bcd2bin(regs[ABEOZ9_REG_YEARS - ABEOZ9_REG_SEC]) + 100;
+
+ return ret;
+}
+
+static int abeoz9_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct abeoz9_rtc_data *data = dev_get_drvdata(dev);
+ struct regmap *regmap = data->regmap;
+ u8 regs[ABEOZ9_SEC_LEN];
+ int ret;
+
+ regs[ABEOZ9_REG_SEC - ABEOZ9_REG_SEC] = bin2bcd(tm->tm_sec);
+ regs[ABEOZ9_REG_MIN - ABEOZ9_REG_SEC] = bin2bcd(tm->tm_min);
+ regs[ABEOZ9_REG_HOURS - ABEOZ9_REG_SEC] = bin2bcd(tm->tm_hour);
+ regs[ABEOZ9_REG_DAYS - ABEOZ9_REG_SEC] = bin2bcd(tm->tm_mday);
+ regs[ABEOZ9_REG_WEEKDAYS - ABEOZ9_REG_SEC] = bin2bcd(tm->tm_wday);
+ regs[ABEOZ9_REG_MONTHS - ABEOZ9_REG_SEC] = bin2bcd(tm->tm_mon + 1);
+ regs[ABEOZ9_REG_YEARS - ABEOZ9_REG_SEC] = bin2bcd(tm->tm_year - 100);
+
+ ret = regmap_bulk_write(data->regmap, ABEOZ9_REG_SEC,
+ regs,
+ sizeof(regs));
+
+ if (ret) {
+ dev_err(dev, "set RTC time failed (%d)\n", ret);
+ return ret;
+ }
+
+ return abeoz9_reset_validity(regmap);
+}
+
+static int abeoz9_trickle_parse_dt(struct device_node *node)
+{
+ u32 ohms = 0;
+
+ if (of_property_read_u32(node, "trickle-resistor-ohms", &ohms))
+ return 0;
+
+ switch (ohms) {
+ case 1000:
+ return ABEOZ9_REG_EEPROM_R1K;
+ case 5000:
+ return ABEOZ9_REG_EEPROM_R5K;
+ case 20000:
+ return ABEOZ9_REG_EEPROM_R20K;
+ case 80000:
+ return ABEOZ9_REG_EEPROM_R80K;
+ default:
+ return 0;
+ }
+}
+
+static int abeoz9_rtc_setup(struct device *dev, struct device_node *node)
+{
+ struct abeoz9_rtc_data *data = dev_get_drvdata(dev);
+ struct regmap *regmap = data->regmap;
+ int ret;
+
+ /* Enable Self Recovery, Clock for Watch and EEPROM refresh functions */
+ ret = regmap_update_bits(regmap, ABEOZ9_REG_CTRL1,
+ ABEOZ9_REG_CTRL1_MASK,
+ ABEOZ9_REG_CTRL1_WE |
+ ABEOZ9_REG_CTRL1_EERE |
+ ABEOZ9_REG_CTRL1_SRON);
+ if (ret < 0) {
+ dev_err(dev, "unable to set CTRL_1 register (%d)\n", ret);
+ return ret;
+ }
+
+ ret = regmap_write(regmap, ABEOZ9_REG_CTRL_INT, 0);
+ if (ret < 0) {
+ dev_err(dev,
+ "unable to set control CTRL_INT register (%d)\n",
+ ret);
+ return ret;
+ }
+
+ ret = regmap_write(regmap, ABEOZ9_REG_CTRL_INT_FLAG, 0);
+ if (ret < 0) {
+ dev_err(dev,
+ "unable to set control CTRL_INT_FLAG register (%d)\n",
+ ret);
+ return ret;
+ }
+
+ ret = abeoz9_trickle_parse_dt(node);
+
+ /* Enable built-in termometer */
+ ret |= ABEOZ9_REG_EEPROM_THE;
+
+ ret = regmap_update_bits(regmap, ABEOZ9_REG_EEPROM,
+ ABEOZ9_REG_EEPROM_MASK,
+ ret);
+ if (ret < 0) {
+ dev_err(dev, "unable to set EEPROM register (%d)\n", ret);
+ return ret;
+ }
+
+ return ret;
+}
+
+static const struct rtc_class_ops rtc_ops = {
+ .read_time = abeoz9_rtc_get_time,
+ .set_time = abeoz9_rtc_set_time,
+};
+
+static const struct regmap_config abeoz9_rtc_regmap_config = {
+ .reg_bits = 8,
+ .val_bits = 8,
+};
+
+#if IS_REACHABLE(CONFIG_HWMON)
+
+static int abeoz9z3_temp_read(struct device *dev,
+ enum hwmon_sensor_types type,
+ u32 attr, int channel, long *temp)
+{
+ struct abeoz9_rtc_data *data = dev_get_drvdata(dev);
+ struct regmap *regmap = data->regmap;
+ int ret;
+ unsigned int val;
+
+ ret = regmap_read(regmap, ABEOZ9_REG_CTRL_STATUS, &val);
+ if (ret < 0)
+ return ret;
+
+ if ((val & ABEOZ9_REG_CTRL_STATUS_V1F) ||
+ (val & ABEOZ9_REG_CTRL_STATUS_V2F)) {
+ dev_err(dev,
+ "thermometer might be disabled due to low voltage\n");
+ return -EINVAL;
+ }
+
+ switch (attr) {
+ case hwmon_temp_input:
+ ret = regmap_read(regmap, ABEOZ9_REG_REG_TEMP, &val);
+ if (ret < 0)
+ return ret;
+ *temp = 1000 * (val + ABEOZ953_TEMP_MIN);
+ return 0;
+ case hwmon_temp_max:
+ *temp = 1000 * ABEOZ953_TEMP_MAX;
+ return 0;
+ case hwmon_temp_min:
+ *temp = 1000 * ABEOZ953_TEMP_MIN;
+ return 0;
+ default:
+ return -EOPNOTSUPP;
+ }
+}
+
+static umode_t abeoz9_is_visible(const void *data,
+ enum hwmon_sensor_types type,
+ u32 attr, int channel)
+{
+ switch (attr) {
+ case hwmon_temp_input:
+ case hwmon_temp_max:
+ case hwmon_temp_min:
+ return 0444;
+ default:
+ return 0;
+ }
+}
+
+static const u32 abeoz9_chip_config[] = {
+ HWMON_C_REGISTER_TZ,
+ 0
+};
+
+static const struct hwmon_channel_info abeoz9_chip = {
+ .type = hwmon_chip,
+ .config = abeoz9_chip_config,
+};
+
+static const u32 abeoz9_temp_config[] = {
+ HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN,
+ 0
+};
+
+static const struct hwmon_channel_info abeoz9_temp = {
+ .type = hwmon_temp,
+ .config = abeoz9_temp_config,
+};
+
+static const struct hwmon_channel_info *abeoz9_info[] = {
+ &abeoz9_chip,
+ &abeoz9_temp,
+ NULL
+};
+
+static const struct hwmon_ops abeoz9_hwmon_ops = {
+ .is_visible = abeoz9_is_visible,
+ .read = abeoz9z3_temp_read,
+};
+
+static const struct hwmon_chip_info abeoz9_chip_info = {
+ .ops = &abeoz9_hwmon_ops,
+ .info = abeoz9_info,
+};
+
+static void abeoz9_hwmon_register(struct device *dev,
+ struct abeoz9_rtc_data *data)
+{
+ data->hwmon_dev =
+ devm_hwmon_device_register_with_info(dev,
+ "abeoz9",
+ data,
+ &abeoz9_chip_info,
+ NULL);
+ if (IS_ERR(data->hwmon_dev)) {
+ dev_warn(dev, "unable to register hwmon device %ld\n",
+ PTR_ERR(data->hwmon_dev));
+ }
+}
+
+#else
+
+static void abeoz9_hwmon_register(struct device *dev,
+ struct abeoz9_rtc_data *data)
+{
+}
+
+#endif
+
+static int abeoz9_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct abeoz9_rtc_data *data = NULL;
+ struct device *dev = &client->dev;
+ struct regmap *regmap;
+ int ret;
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
+ I2C_FUNC_SMBUS_BYTE_DATA |
+ I2C_FUNC_SMBUS_I2C_BLOCK))
+ return -ENODEV;
+
+ regmap = devm_regmap_init_i2c(client, &abeoz9_rtc_regmap_config);
+ if (IS_ERR(regmap)) {
+ ret = PTR_ERR(regmap);
+ dev_err(dev, "regmap allocation failed: %d\n", ret);
+ return ret;
+ }
+
+ data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
+ if (!data)
+ return -ENOMEM;
+
+ data->regmap = regmap;
+ dev_set_drvdata(dev, data);
+
+ ret = abeoz9_rtc_setup(dev, client->dev.of_node);
+ if (ret)
+ return ret;
+
+ data->rtc = devm_rtc_allocate_device(dev);
+ ret = PTR_ERR_OR_ZERO(data->rtc);
+ if (ret)
+ return ret;
+
+ data->rtc->ops = &rtc_ops;
+ data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ data->rtc->range_max = RTC_TIMESTAMP_END_2099;
+
+ ret = rtc_register_device(data->rtc);
+ if (ret)
+ return ret;
+
+ abeoz9_hwmon_register(dev, data);
+ return 0;
+}
+
+#ifdef CONFIG_OF
+static const struct of_device_id abeoz9_dt_match[] = {
+ { .compatible = "abracon,abeoz9" },
+ { },
+};
+MODULE_DEVICE_TABLE(of, abeoz9_dt_match);
+#endif
+
+static const struct i2c_device_id abeoz9_id[] = {
+ { "abeoz9", 0 },
+ { }
+};
+
+static struct i2c_driver abeoz9_driver = {
+ .driver = {
+ .name = "rtc-ab-eoz9",
+ .of_match_table = of_match_ptr(abeoz9_dt_match),
+ },
+ .probe = abeoz9_probe,
+ .id_table = abeoz9_id,
+};
+
+module_i2c_driver(abeoz9_driver);
+
+MODULE_AUTHOR("Artem Panfilov <panfilov.artyom@gmail.com>");
+MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-EOZ9 RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-ab3100.c b/drivers/rtc/rtc-ab3100.c
new file mode 100644
index 000000000..2ed6def90
--- /dev/null
+++ b/drivers/rtc/rtc-ab3100.c
@@ -0,0 +1,254 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2007-2009 ST-Ericsson AB
+ * RTC clock driver for the AB3100 Analog Baseband Chip
+ * Author: Linus Walleij <linus.walleij@stericsson.com>
+ */
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/mfd/abx500.h>
+
+/* Clock rate in Hz */
+#define AB3100_RTC_CLOCK_RATE 32768
+
+/*
+ * The AB3100 RTC registers. These are the same for
+ * AB3000 and AB3100.
+ * Control register:
+ * Bit 0: RTC Monitor cleared=0, active=1, if you set it
+ * to 1 it remains active until RTC power is lost.
+ * Bit 1: 32 kHz Oscillator, 0 = on, 1 = bypass
+ * Bit 2: Alarm on, 0 = off, 1 = on
+ * Bit 3: 32 kHz buffer disabling, 0 = enabled, 1 = disabled
+ */
+#define AB3100_RTC 0x53
+/* default setting, buffer disabled, alarm on */
+#define RTC_SETTING 0x30
+/* Alarm when AL0-AL3 == TI0-TI3 */
+#define AB3100_AL0 0x56
+#define AB3100_AL1 0x57
+#define AB3100_AL2 0x58
+#define AB3100_AL3 0x59
+/* This 48-bit register that counts up at 32768 Hz */
+#define AB3100_TI0 0x5a
+#define AB3100_TI1 0x5b
+#define AB3100_TI2 0x5c
+#define AB3100_TI3 0x5d
+#define AB3100_TI4 0x5e
+#define AB3100_TI5 0x5f
+
+/*
+ * RTC clock functions and device struct declaration
+ */
+static int ab3100_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ u8 regs[] = {AB3100_TI0, AB3100_TI1, AB3100_TI2,
+ AB3100_TI3, AB3100_TI4, AB3100_TI5};
+ unsigned char buf[6];
+ u64 hw_counter = rtc_tm_to_time64(tm) * AB3100_RTC_CLOCK_RATE * 2;
+ int err = 0;
+ int i;
+
+ buf[0] = (hw_counter) & 0xFF;
+ buf[1] = (hw_counter >> 8) & 0xFF;
+ buf[2] = (hw_counter >> 16) & 0xFF;
+ buf[3] = (hw_counter >> 24) & 0xFF;
+ buf[4] = (hw_counter >> 32) & 0xFF;
+ buf[5] = (hw_counter >> 40) & 0xFF;
+
+ for (i = 0; i < 6; i++) {
+ err = abx500_set_register_interruptible(dev, 0,
+ regs[i], buf[i]);
+ if (err)
+ return err;
+ }
+
+ /* Set the flag to mark that the clock is now set */
+ return abx500_mask_and_set_register_interruptible(dev, 0,
+ AB3100_RTC,
+ 0x01, 0x01);
+
+}
+
+static int ab3100_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ time64_t time;
+ u8 rtcval;
+ int err;
+
+ err = abx500_get_register_interruptible(dev, 0,
+ AB3100_RTC, &rtcval);
+ if (err)
+ return err;
+
+ if (!(rtcval & 0x01)) {
+ dev_info(dev, "clock not set (lost power)");
+ return -EINVAL;
+ } else {
+ u64 hw_counter;
+ u8 buf[6];
+
+ /* Read out time registers */
+ err = abx500_get_register_page_interruptible(dev, 0,
+ AB3100_TI0,
+ buf, 6);
+ if (err != 0)
+ return err;
+
+ hw_counter = ((u64) buf[5] << 40) | ((u64) buf[4] << 32) |
+ ((u64) buf[3] << 24) | ((u64) buf[2] << 16) |
+ ((u64) buf[1] << 8) | (u64) buf[0];
+ time = hw_counter / (u64) (AB3100_RTC_CLOCK_RATE * 2);
+ }
+
+ rtc_time64_to_tm(time, tm);
+
+ return 0;
+}
+
+static int ab3100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ time64_t time;
+ u64 hw_counter;
+ u8 buf[6];
+ u8 rtcval;
+ int err;
+
+ /* Figure out if alarm is enabled or not */
+ err = abx500_get_register_interruptible(dev, 0,
+ AB3100_RTC, &rtcval);
+ if (err)
+ return err;
+ if (rtcval & 0x04)
+ alarm->enabled = 1;
+ else
+ alarm->enabled = 0;
+ /* No idea how this could be represented */
+ alarm->pending = 0;
+ /* Read out alarm registers, only 4 bytes */
+ err = abx500_get_register_page_interruptible(dev, 0,
+ AB3100_AL0, buf, 4);
+ if (err)
+ return err;
+ hw_counter = ((u64) buf[3] << 40) | ((u64) buf[2] << 32) |
+ ((u64) buf[1] << 24) | ((u64) buf[0] << 16);
+ time = hw_counter / (u64) (AB3100_RTC_CLOCK_RATE * 2);
+
+ rtc_time64_to_tm(time, &alarm->time);
+
+ return rtc_valid_tm(&alarm->time);
+}
+
+static int ab3100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ u8 regs[] = {AB3100_AL0, AB3100_AL1, AB3100_AL2, AB3100_AL3};
+ unsigned char buf[4];
+ time64_t secs;
+ u64 hw_counter;
+ int err;
+ int i;
+
+ secs = rtc_tm_to_time64(&alarm->time);
+ hw_counter = secs * AB3100_RTC_CLOCK_RATE * 2;
+ buf[0] = (hw_counter >> 16) & 0xFF;
+ buf[1] = (hw_counter >> 24) & 0xFF;
+ buf[2] = (hw_counter >> 32) & 0xFF;
+ buf[3] = (hw_counter >> 40) & 0xFF;
+
+ /* Set the alarm */
+ for (i = 0; i < 4; i++) {
+ err = abx500_set_register_interruptible(dev, 0,
+ regs[i], buf[i]);
+ if (err)
+ return err;
+ }
+ /* Then enable the alarm */
+ return abx500_mask_and_set_register_interruptible(dev, 0,
+ AB3100_RTC, (1 << 2),
+ alarm->enabled << 2);
+}
+
+static int ab3100_rtc_irq_enable(struct device *dev, unsigned int enabled)
+{
+ /*
+ * It's not possible to enable/disable the alarm IRQ for this RTC.
+ * It does not actually trigger any IRQ: instead its only function is
+ * to power up the system, if it wasn't on. This will manifest as
+ * a "power up cause" in the AB3100 power driver (battery charging etc)
+ * and need to be handled there instead.
+ */
+ if (enabled)
+ return abx500_mask_and_set_register_interruptible(dev, 0,
+ AB3100_RTC, (1 << 2),
+ 1 << 2);
+ else
+ return abx500_mask_and_set_register_interruptible(dev, 0,
+ AB3100_RTC, (1 << 2),
+ 0);
+}
+
+static const struct rtc_class_ops ab3100_rtc_ops = {
+ .read_time = ab3100_rtc_read_time,
+ .set_time = ab3100_rtc_set_time,
+ .read_alarm = ab3100_rtc_read_alarm,
+ .set_alarm = ab3100_rtc_set_alarm,
+ .alarm_irq_enable = ab3100_rtc_irq_enable,
+};
+
+static int __init ab3100_rtc_probe(struct platform_device *pdev)
+{
+ int err;
+ u8 regval;
+ struct rtc_device *rtc;
+
+ /* The first RTC register needs special treatment */
+ err = abx500_get_register_interruptible(&pdev->dev, 0,
+ AB3100_RTC, &regval);
+ if (err) {
+ dev_err(&pdev->dev, "unable to read RTC register\n");
+ return -ENODEV;
+ }
+
+ if ((regval & 0xFE) != RTC_SETTING) {
+ dev_warn(&pdev->dev, "not default value in RTC reg 0x%x\n",
+ regval);
+ }
+
+ if ((regval & 1) == 0) {
+ /*
+ * Set bit to detect power loss.
+ * This bit remains until RTC power is lost.
+ */
+ regval = 1 | RTC_SETTING;
+ err = abx500_set_register_interruptible(&pdev->dev, 0,
+ AB3100_RTC, regval);
+ /* Ignore any error on this write */
+ }
+
+ rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ rtc->ops = &ab3100_rtc_ops;
+ /* 48bit counter at (AB3100_RTC_CLOCK_RATE * 2) */
+ rtc->range_max = U32_MAX;
+
+ platform_set_drvdata(pdev, rtc);
+
+ return rtc_register_device(rtc);
+}
+
+static struct platform_driver ab3100_rtc_driver = {
+ .driver = {
+ .name = "ab3100-rtc",
+ },
+};
+
+module_platform_driver_probe(ab3100_rtc_driver, ab3100_rtc_probe);
+
+MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
+MODULE_DESCRIPTION("AB3100 RTC Driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-ab8500.c b/drivers/rtc/rtc-ab8500.c
new file mode 100644
index 000000000..3d60f3283
--- /dev/null
+++ b/drivers/rtc/rtc-ab8500.c
@@ -0,0 +1,431 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) ST-Ericsson SA 2010
+ *
+ * Author: Virupax Sadashivpetimath <virupax.sadashivpetimath@stericsson.com>
+ *
+ * RTC clock driver for the RTC part of the AB8500 Power management chip.
+ * Based on RTC clock driver for the AB3100 Analog Baseband Chip by
+ * Linus Walleij <linus.walleij@stericsson.com>
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/mfd/abx500.h>
+#include <linux/mfd/abx500/ab8500.h>
+#include <linux/delay.h>
+#include <linux/of.h>
+#include <linux/pm_wakeirq.h>
+
+#define AB8500_RTC_SOFF_STAT_REG 0x00
+#define AB8500_RTC_CC_CONF_REG 0x01
+#define AB8500_RTC_READ_REQ_REG 0x02
+#define AB8500_RTC_WATCH_TSECMID_REG 0x03
+#define AB8500_RTC_WATCH_TSECHI_REG 0x04
+#define AB8500_RTC_WATCH_TMIN_LOW_REG 0x05
+#define AB8500_RTC_WATCH_TMIN_MID_REG 0x06
+#define AB8500_RTC_WATCH_TMIN_HI_REG 0x07
+#define AB8500_RTC_ALRM_MIN_LOW_REG 0x08
+#define AB8500_RTC_ALRM_MIN_MID_REG 0x09
+#define AB8500_RTC_ALRM_MIN_HI_REG 0x0A
+#define AB8500_RTC_STAT_REG 0x0B
+#define AB8500_RTC_BKUP_CHG_REG 0x0C
+#define AB8500_RTC_FORCE_BKUP_REG 0x0D
+#define AB8500_RTC_CALIB_REG 0x0E
+#define AB8500_RTC_SWITCH_STAT_REG 0x0F
+
+/* RtcReadRequest bits */
+#define RTC_READ_REQUEST 0x01
+#define RTC_WRITE_REQUEST 0x02
+
+/* RtcCtrl bits */
+#define RTC_ALARM_ENA 0x04
+#define RTC_STATUS_DATA 0x01
+
+#define COUNTS_PER_SEC (0xF000 / 60)
+
+static const u8 ab8500_rtc_time_regs[] = {
+ AB8500_RTC_WATCH_TMIN_HI_REG, AB8500_RTC_WATCH_TMIN_MID_REG,
+ AB8500_RTC_WATCH_TMIN_LOW_REG, AB8500_RTC_WATCH_TSECHI_REG,
+ AB8500_RTC_WATCH_TSECMID_REG
+};
+
+static const u8 ab8500_rtc_alarm_regs[] = {
+ AB8500_RTC_ALRM_MIN_HI_REG, AB8500_RTC_ALRM_MIN_MID_REG,
+ AB8500_RTC_ALRM_MIN_LOW_REG
+};
+
+static int ab8500_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ unsigned long timeout = jiffies + HZ;
+ int retval, i;
+ unsigned long mins, secs;
+ unsigned char buf[ARRAY_SIZE(ab8500_rtc_time_regs)];
+ u8 value;
+
+ /* Request a data read */
+ retval = abx500_set_register_interruptible(dev,
+ AB8500_RTC, AB8500_RTC_READ_REQ_REG, RTC_READ_REQUEST);
+ if (retval < 0)
+ return retval;
+
+ /* Wait for some cycles after enabling the rtc read in ab8500 */
+ while (time_before(jiffies, timeout)) {
+ retval = abx500_get_register_interruptible(dev,
+ AB8500_RTC, AB8500_RTC_READ_REQ_REG, &value);
+ if (retval < 0)
+ return retval;
+
+ if (!(value & RTC_READ_REQUEST))
+ break;
+
+ usleep_range(1000, 5000);
+ }
+
+ /* Read the Watchtime registers */
+ for (i = 0; i < ARRAY_SIZE(ab8500_rtc_time_regs); i++) {
+ retval = abx500_get_register_interruptible(dev,
+ AB8500_RTC, ab8500_rtc_time_regs[i], &value);
+ if (retval < 0)
+ return retval;
+ buf[i] = value;
+ }
+
+ mins = (buf[0] << 16) | (buf[1] << 8) | buf[2];
+
+ secs = (buf[3] << 8) | buf[4];
+ secs = secs / COUNTS_PER_SEC;
+ secs = secs + (mins * 60);
+
+ rtc_time64_to_tm(secs, tm);
+ return 0;
+}
+
+static int ab8500_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ int retval, i;
+ unsigned char buf[ARRAY_SIZE(ab8500_rtc_time_regs)];
+ unsigned long no_secs, no_mins, secs = 0;
+
+ secs = rtc_tm_to_time64(tm);
+
+ no_mins = secs / 60;
+
+ no_secs = secs % 60;
+ /* Make the seconds count as per the RTC resolution */
+ no_secs = no_secs * COUNTS_PER_SEC;
+
+ buf[4] = no_secs & 0xFF;
+ buf[3] = (no_secs >> 8) & 0xFF;
+
+ buf[2] = no_mins & 0xFF;
+ buf[1] = (no_mins >> 8) & 0xFF;
+ buf[0] = (no_mins >> 16) & 0xFF;
+
+ for (i = 0; i < ARRAY_SIZE(ab8500_rtc_time_regs); i++) {
+ retval = abx500_set_register_interruptible(dev, AB8500_RTC,
+ ab8500_rtc_time_regs[i], buf[i]);
+ if (retval < 0)
+ return retval;
+ }
+
+ /* Request a data write */
+ return abx500_set_register_interruptible(dev, AB8500_RTC,
+ AB8500_RTC_READ_REQ_REG, RTC_WRITE_REQUEST);
+}
+
+static int ab8500_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ int retval, i;
+ u8 rtc_ctrl, value;
+ unsigned char buf[ARRAY_SIZE(ab8500_rtc_alarm_regs)];
+ unsigned long secs, mins;
+
+ /* Check if the alarm is enabled or not */
+ retval = abx500_get_register_interruptible(dev, AB8500_RTC,
+ AB8500_RTC_STAT_REG, &rtc_ctrl);
+ if (retval < 0)
+ return retval;
+
+ if (rtc_ctrl & RTC_ALARM_ENA)
+ alarm->enabled = 1;
+ else
+ alarm->enabled = 0;
+
+ alarm->pending = 0;
+
+ for (i = 0; i < ARRAY_SIZE(ab8500_rtc_alarm_regs); i++) {
+ retval = abx500_get_register_interruptible(dev, AB8500_RTC,
+ ab8500_rtc_alarm_regs[i], &value);
+ if (retval < 0)
+ return retval;
+ buf[i] = value;
+ }
+
+ mins = (buf[0] << 16) | (buf[1] << 8) | (buf[2]);
+ secs = mins * 60;
+
+ rtc_time64_to_tm(secs, &alarm->time);
+
+ return 0;
+}
+
+static int ab8500_rtc_irq_enable(struct device *dev, unsigned int enabled)
+{
+ return abx500_mask_and_set_register_interruptible(dev, AB8500_RTC,
+ AB8500_RTC_STAT_REG, RTC_ALARM_ENA,
+ enabled ? RTC_ALARM_ENA : 0);
+}
+
+static int ab8500_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ int retval, i;
+ unsigned char buf[ARRAY_SIZE(ab8500_rtc_alarm_regs)];
+ unsigned long mins, secs = 0, cursec = 0;
+ struct rtc_time curtm;
+
+ /* Get the number of seconds since 1970 */
+ secs = rtc_tm_to_time64(&alarm->time);
+
+ /*
+ * Check whether alarm is set less than 1min.
+ * Since our RTC doesn't support alarm resolution less than 1min,
+ * return -EINVAL, so UIE EMUL can take it up, incase of UIE_ON
+ */
+ ab8500_rtc_read_time(dev, &curtm); /* Read current time */
+ cursec = rtc_tm_to_time64(&curtm);
+ if ((secs - cursec) < 59) {
+ dev_dbg(dev, "Alarm less than 1 minute not supported\r\n");
+ return -EINVAL;
+ }
+
+ mins = secs / 60;
+
+ buf[2] = mins & 0xFF;
+ buf[1] = (mins >> 8) & 0xFF;
+ buf[0] = (mins >> 16) & 0xFF;
+
+ /* Set the alarm time */
+ for (i = 0; i < ARRAY_SIZE(ab8500_rtc_alarm_regs); i++) {
+ retval = abx500_set_register_interruptible(dev, AB8500_RTC,
+ ab8500_rtc_alarm_regs[i], buf[i]);
+ if (retval < 0)
+ return retval;
+ }
+
+ return ab8500_rtc_irq_enable(dev, alarm->enabled);
+}
+
+static int ab8500_rtc_set_calibration(struct device *dev, int calibration)
+{
+ int retval;
+ u8 rtccal = 0;
+
+ /*
+ * Check that the calibration value (which is in units of 0.5
+ * parts-per-million) is in the AB8500's range for RtcCalibration
+ * register. -128 (0x80) is not permitted because the AB8500 uses
+ * a sign-bit rather than two's complement, so 0x80 is just another
+ * representation of zero.
+ */
+ if ((calibration < -127) || (calibration > 127)) {
+ dev_err(dev, "RtcCalibration value outside permitted range\n");
+ return -EINVAL;
+ }
+
+ /*
+ * The AB8500 uses sign (in bit7) and magnitude (in bits0-7)
+ * so need to convert to this sort of representation before writing
+ * into RtcCalibration register...
+ */
+ if (calibration >= 0)
+ rtccal = 0x7F & calibration;
+ else
+ rtccal = ~(calibration - 1) | 0x80;
+
+ retval = abx500_set_register_interruptible(dev, AB8500_RTC,
+ AB8500_RTC_CALIB_REG, rtccal);
+
+ return retval;
+}
+
+static int ab8500_rtc_get_calibration(struct device *dev, int *calibration)
+{
+ int retval;
+ u8 rtccal = 0;
+
+ retval = abx500_get_register_interruptible(dev, AB8500_RTC,
+ AB8500_RTC_CALIB_REG, &rtccal);
+ if (retval >= 0) {
+ /*
+ * The AB8500 uses sign (in bit7) and magnitude (in bits0-7)
+ * so need to convert value from RtcCalibration register into
+ * a two's complement signed value...
+ */
+ if (rtccal & 0x80)
+ *calibration = 0 - (rtccal & 0x7F);
+ else
+ *calibration = 0x7F & rtccal;
+ }
+
+ return retval;
+}
+
+static ssize_t ab8500_sysfs_store_rtc_calibration(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ int retval;
+ int calibration = 0;
+
+ if (sscanf(buf, " %i ", &calibration) != 1) {
+ dev_err(dev, "Failed to store RTC calibration attribute\n");
+ return -EINVAL;
+ }
+
+ retval = ab8500_rtc_set_calibration(dev, calibration);
+
+ return retval ? retval : count;
+}
+
+static ssize_t ab8500_sysfs_show_rtc_calibration(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ int retval = 0;
+ int calibration = 0;
+
+ retval = ab8500_rtc_get_calibration(dev, &calibration);
+ if (retval < 0) {
+ dev_err(dev, "Failed to read RTC calibration attribute\n");
+ sprintf(buf, "0\n");
+ return retval;
+ }
+
+ return sprintf(buf, "%d\n", calibration);
+}
+
+static DEVICE_ATTR(rtc_calibration, S_IRUGO | S_IWUSR,
+ ab8500_sysfs_show_rtc_calibration,
+ ab8500_sysfs_store_rtc_calibration);
+
+static struct attribute *ab8500_rtc_attrs[] = {
+ &dev_attr_rtc_calibration.attr,
+ NULL
+};
+
+static const struct attribute_group ab8500_rtc_sysfs_files = {
+ .attrs = ab8500_rtc_attrs,
+};
+
+static irqreturn_t rtc_alarm_handler(int irq, void *data)
+{
+ struct rtc_device *rtc = data;
+ unsigned long events = RTC_IRQF | RTC_AF;
+
+ dev_dbg(&rtc->dev, "%s\n", __func__);
+ rtc_update_irq(rtc, 1, events);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops ab8500_rtc_ops = {
+ .read_time = ab8500_rtc_read_time,
+ .set_time = ab8500_rtc_set_time,
+ .read_alarm = ab8500_rtc_read_alarm,
+ .set_alarm = ab8500_rtc_set_alarm,
+ .alarm_irq_enable = ab8500_rtc_irq_enable,
+};
+
+static const struct platform_device_id ab85xx_rtc_ids[] = {
+ { "ab8500-rtc", (kernel_ulong_t)&ab8500_rtc_ops, },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(platform, ab85xx_rtc_ids);
+
+static int ab8500_rtc_probe(struct platform_device *pdev)
+{
+ const struct platform_device_id *platid = platform_get_device_id(pdev);
+ int err;
+ struct rtc_device *rtc;
+ u8 rtc_ctrl;
+ int irq;
+
+ irq = platform_get_irq_byname(pdev, "ALARM");
+ if (irq < 0)
+ return irq;
+
+ /* For RTC supply test */
+ err = abx500_mask_and_set_register_interruptible(&pdev->dev, AB8500_RTC,
+ AB8500_RTC_STAT_REG, RTC_STATUS_DATA, RTC_STATUS_DATA);
+ if (err < 0)
+ return err;
+
+ /* Wait for reset by the PorRtc */
+ usleep_range(1000, 5000);
+
+ err = abx500_get_register_interruptible(&pdev->dev, AB8500_RTC,
+ AB8500_RTC_STAT_REG, &rtc_ctrl);
+ if (err < 0)
+ return err;
+
+ /* Check if the RTC Supply fails */
+ if (!(rtc_ctrl & RTC_STATUS_DATA)) {
+ dev_err(&pdev->dev, "RTC supply failure\n");
+ return -ENODEV;
+ }
+
+ device_init_wakeup(&pdev->dev, true);
+
+ rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ rtc->ops = (struct rtc_class_ops *)platid->driver_data;
+
+ err = devm_request_threaded_irq(&pdev->dev, irq, NULL,
+ rtc_alarm_handler, IRQF_ONESHOT,
+ "ab8500-rtc", rtc);
+ if (err < 0)
+ return err;
+
+ dev_pm_set_wake_irq(&pdev->dev, irq);
+ platform_set_drvdata(pdev, rtc);
+
+ rtc->uie_unsupported = 1;
+
+ rtc->range_max = (1ULL << 24) * 60 - 1; // 24-bit minutes + 59 secs
+ rtc->start_secs = RTC_TIMESTAMP_BEGIN_2000;
+ rtc->set_start_time = true;
+
+ err = rtc_add_group(rtc, &ab8500_rtc_sysfs_files);
+ if (err)
+ return err;
+
+ return rtc_register_device(rtc);
+}
+
+static int ab8500_rtc_remove(struct platform_device *pdev)
+{
+ dev_pm_clear_wake_irq(&pdev->dev);
+ device_init_wakeup(&pdev->dev, false);
+
+ return 0;
+}
+
+static struct platform_driver ab8500_rtc_driver = {
+ .driver = {
+ .name = "ab8500-rtc",
+ },
+ .probe = ab8500_rtc_probe,
+ .remove = ab8500_rtc_remove,
+ .id_table = ab85xx_rtc_ids,
+};
+
+module_platform_driver(ab8500_rtc_driver);
+
+MODULE_AUTHOR("Virupax Sadashivpetimath <virupax.sadashivpetimath@stericsson.com>");
+MODULE_DESCRIPTION("AB8500 RTC Driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-abx80x.c b/drivers/rtc/rtc-abx80x.c
new file mode 100644
index 000000000..803725b3a
--- /dev/null
+++ b/drivers/rtc/rtc-abx80x.c
@@ -0,0 +1,933 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * A driver for the I2C members of the Abracon AB x8xx RTC family,
+ * and compatible: AB 1805 and AB 0805
+ *
+ * Copyright 2014-2015 Macq S.A.
+ *
+ * Author: Philippe De Muyter <phdm@macqel.be>
+ * Author: Alexandre Belloni <alexandre.belloni@bootlin.com>
+ *
+ */
+
+#include <linux/bcd.h>
+#include <linux/i2c.h>
+#include <linux/module.h>
+#include <linux/of_device.h>
+#include <linux/rtc.h>
+#include <linux/watchdog.h>
+
+#define ABX8XX_REG_HTH 0x00
+#define ABX8XX_REG_SC 0x01
+#define ABX8XX_REG_MN 0x02
+#define ABX8XX_REG_HR 0x03
+#define ABX8XX_REG_DA 0x04
+#define ABX8XX_REG_MO 0x05
+#define ABX8XX_REG_YR 0x06
+#define ABX8XX_REG_WD 0x07
+
+#define ABX8XX_REG_AHTH 0x08
+#define ABX8XX_REG_ASC 0x09
+#define ABX8XX_REG_AMN 0x0a
+#define ABX8XX_REG_AHR 0x0b
+#define ABX8XX_REG_ADA 0x0c
+#define ABX8XX_REG_AMO 0x0d
+#define ABX8XX_REG_AWD 0x0e
+
+#define ABX8XX_REG_STATUS 0x0f
+#define ABX8XX_STATUS_AF BIT(2)
+#define ABX8XX_STATUS_BLF BIT(4)
+#define ABX8XX_STATUS_WDT BIT(6)
+
+#define ABX8XX_REG_CTRL1 0x10
+#define ABX8XX_CTRL_WRITE BIT(0)
+#define ABX8XX_CTRL_ARST BIT(2)
+#define ABX8XX_CTRL_12_24 BIT(6)
+
+#define ABX8XX_REG_CTRL2 0x11
+#define ABX8XX_CTRL2_RSVD BIT(5)
+
+#define ABX8XX_REG_IRQ 0x12
+#define ABX8XX_IRQ_AIE BIT(2)
+#define ABX8XX_IRQ_IM_1_4 (0x3 << 5)
+
+#define ABX8XX_REG_CD_TIMER_CTL 0x18
+
+#define ABX8XX_REG_OSC 0x1c
+#define ABX8XX_OSC_FOS BIT(3)
+#define ABX8XX_OSC_BOS BIT(4)
+#define ABX8XX_OSC_ACAL_512 BIT(5)
+#define ABX8XX_OSC_ACAL_1024 BIT(6)
+
+#define ABX8XX_OSC_OSEL BIT(7)
+
+#define ABX8XX_REG_OSS 0x1d
+#define ABX8XX_OSS_OF BIT(1)
+#define ABX8XX_OSS_OMODE BIT(4)
+
+#define ABX8XX_REG_WDT 0x1b
+#define ABX8XX_WDT_WDS BIT(7)
+#define ABX8XX_WDT_BMB_MASK 0x7c
+#define ABX8XX_WDT_BMB_SHIFT 2
+#define ABX8XX_WDT_MAX_TIME (ABX8XX_WDT_BMB_MASK >> ABX8XX_WDT_BMB_SHIFT)
+#define ABX8XX_WDT_WRB_MASK 0x03
+#define ABX8XX_WDT_WRB_1HZ 0x02
+
+#define ABX8XX_REG_CFG_KEY 0x1f
+#define ABX8XX_CFG_KEY_OSC 0xa1
+#define ABX8XX_CFG_KEY_MISC 0x9d
+
+#define ABX8XX_REG_ID0 0x28
+
+#define ABX8XX_REG_OUT_CTRL 0x30
+#define ABX8XX_OUT_CTRL_EXDS BIT(4)
+
+#define ABX8XX_REG_TRICKLE 0x20
+#define ABX8XX_TRICKLE_CHARGE_ENABLE 0xa0
+#define ABX8XX_TRICKLE_STANDARD_DIODE 0x8
+#define ABX8XX_TRICKLE_SCHOTTKY_DIODE 0x4
+
+static u8 trickle_resistors[] = {0, 3, 6, 11};
+
+enum abx80x_chip {AB0801, AB0803, AB0804, AB0805,
+ AB1801, AB1803, AB1804, AB1805, RV1805, ABX80X};
+
+struct abx80x_cap {
+ u16 pn;
+ bool has_tc;
+ bool has_wdog;
+};
+
+static struct abx80x_cap abx80x_caps[] = {
+ [AB0801] = {.pn = 0x0801},
+ [AB0803] = {.pn = 0x0803},
+ [AB0804] = {.pn = 0x0804, .has_tc = true, .has_wdog = true},
+ [AB0805] = {.pn = 0x0805, .has_tc = true, .has_wdog = true},
+ [AB1801] = {.pn = 0x1801},
+ [AB1803] = {.pn = 0x1803},
+ [AB1804] = {.pn = 0x1804, .has_tc = true, .has_wdog = true},
+ [AB1805] = {.pn = 0x1805, .has_tc = true, .has_wdog = true},
+ [RV1805] = {.pn = 0x1805, .has_tc = true, .has_wdog = true},
+ [ABX80X] = {.pn = 0}
+};
+
+struct abx80x_priv {
+ struct rtc_device *rtc;
+ struct i2c_client *client;
+ struct watchdog_device wdog;
+};
+
+static int abx80x_is_rc_mode(struct i2c_client *client)
+{
+ int flags = 0;
+
+ flags = i2c_smbus_read_byte_data(client, ABX8XX_REG_OSS);
+ if (flags < 0) {
+ dev_err(&client->dev,
+ "Failed to read autocalibration attribute\n");
+ return flags;
+ }
+
+ return (flags & ABX8XX_OSS_OMODE) ? 1 : 0;
+}
+
+static int abx80x_enable_trickle_charger(struct i2c_client *client,
+ u8 trickle_cfg)
+{
+ int err;
+
+ /*
+ * Write the configuration key register to enable access to the Trickle
+ * register
+ */
+ err = i2c_smbus_write_byte_data(client, ABX8XX_REG_CFG_KEY,
+ ABX8XX_CFG_KEY_MISC);
+ if (err < 0) {
+ dev_err(&client->dev, "Unable to write configuration key\n");
+ return -EIO;
+ }
+
+ err = i2c_smbus_write_byte_data(client, ABX8XX_REG_TRICKLE,
+ ABX8XX_TRICKLE_CHARGE_ENABLE |
+ trickle_cfg);
+ if (err < 0) {
+ dev_err(&client->dev, "Unable to write trickle register\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static int abx80x_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ unsigned char buf[8];
+ int err, flags, rc_mode = 0;
+
+ /* Read the Oscillator Failure only in XT mode */
+ rc_mode = abx80x_is_rc_mode(client);
+ if (rc_mode < 0)
+ return rc_mode;
+
+ if (!rc_mode) {
+ flags = i2c_smbus_read_byte_data(client, ABX8XX_REG_OSS);
+ if (flags < 0)
+ return flags;
+
+ if (flags & ABX8XX_OSS_OF) {
+ dev_err(dev, "Oscillator failure, data is invalid.\n");
+ return -EINVAL;
+ }
+ }
+
+ err = i2c_smbus_read_i2c_block_data(client, ABX8XX_REG_HTH,
+ sizeof(buf), buf);
+ if (err < 0) {
+ dev_err(&client->dev, "Unable to read date\n");
+ return -EIO;
+ }
+
+ tm->tm_sec = bcd2bin(buf[ABX8XX_REG_SC] & 0x7F);
+ tm->tm_min = bcd2bin(buf[ABX8XX_REG_MN] & 0x7F);
+ tm->tm_hour = bcd2bin(buf[ABX8XX_REG_HR] & 0x3F);
+ tm->tm_wday = buf[ABX8XX_REG_WD] & 0x7;
+ tm->tm_mday = bcd2bin(buf[ABX8XX_REG_DA] & 0x3F);
+ tm->tm_mon = bcd2bin(buf[ABX8XX_REG_MO] & 0x1F) - 1;
+ tm->tm_year = bcd2bin(buf[ABX8XX_REG_YR]) + 100;
+
+ return 0;
+}
+
+static int abx80x_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ unsigned char buf[8];
+ int err, flags;
+
+ if (tm->tm_year < 100)
+ return -EINVAL;
+
+ buf[ABX8XX_REG_HTH] = 0;
+ buf[ABX8XX_REG_SC] = bin2bcd(tm->tm_sec);
+ buf[ABX8XX_REG_MN] = bin2bcd(tm->tm_min);
+ buf[ABX8XX_REG_HR] = bin2bcd(tm->tm_hour);
+ buf[ABX8XX_REG_DA] = bin2bcd(tm->tm_mday);
+ buf[ABX8XX_REG_MO] = bin2bcd(tm->tm_mon + 1);
+ buf[ABX8XX_REG_YR] = bin2bcd(tm->tm_year - 100);
+ buf[ABX8XX_REG_WD] = tm->tm_wday;
+
+ err = i2c_smbus_write_i2c_block_data(client, ABX8XX_REG_HTH,
+ sizeof(buf), buf);
+ if (err < 0) {
+ dev_err(&client->dev, "Unable to write to date registers\n");
+ return -EIO;
+ }
+
+ /* Clear the OF bit of Oscillator Status Register */
+ flags = i2c_smbus_read_byte_data(client, ABX8XX_REG_OSS);
+ if (flags < 0)
+ return flags;
+
+ err = i2c_smbus_write_byte_data(client, ABX8XX_REG_OSS,
+ flags & ~ABX8XX_OSS_OF);
+ if (err < 0) {
+ dev_err(&client->dev, "Unable to write oscillator status register\n");
+ return err;
+ }
+
+ return 0;
+}
+
+static irqreturn_t abx80x_handle_irq(int irq, void *dev_id)
+{
+ struct i2c_client *client = dev_id;
+ struct abx80x_priv *priv = i2c_get_clientdata(client);
+ struct rtc_device *rtc = priv->rtc;
+ int status;
+
+ status = i2c_smbus_read_byte_data(client, ABX8XX_REG_STATUS);
+ if (status < 0)
+ return IRQ_NONE;
+
+ if (status & ABX8XX_STATUS_AF)
+ rtc_update_irq(rtc, 1, RTC_AF | RTC_IRQF);
+
+ /*
+ * It is unclear if we'll get an interrupt before the external
+ * reset kicks in.
+ */
+ if (status & ABX8XX_STATUS_WDT)
+ dev_alert(&client->dev, "watchdog timeout interrupt.\n");
+
+ i2c_smbus_write_byte_data(client, ABX8XX_REG_STATUS, 0);
+
+ return IRQ_HANDLED;
+}
+
+static int abx80x_read_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ unsigned char buf[7];
+
+ int irq_mask, err;
+
+ if (client->irq <= 0)
+ return -EINVAL;
+
+ err = i2c_smbus_read_i2c_block_data(client, ABX8XX_REG_ASC,
+ sizeof(buf), buf);
+ if (err)
+ return err;
+
+ irq_mask = i2c_smbus_read_byte_data(client, ABX8XX_REG_IRQ);
+ if (irq_mask < 0)
+ return irq_mask;
+
+ t->time.tm_sec = bcd2bin(buf[0] & 0x7F);
+ t->time.tm_min = bcd2bin(buf[1] & 0x7F);
+ t->time.tm_hour = bcd2bin(buf[2] & 0x3F);
+ t->time.tm_mday = bcd2bin(buf[3] & 0x3F);
+ t->time.tm_mon = bcd2bin(buf[4] & 0x1F) - 1;
+ t->time.tm_wday = buf[5] & 0x7;
+
+ t->enabled = !!(irq_mask & ABX8XX_IRQ_AIE);
+ t->pending = (buf[6] & ABX8XX_STATUS_AF) && t->enabled;
+
+ return err;
+}
+
+static int abx80x_set_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ u8 alarm[6];
+ int err;
+
+ if (client->irq <= 0)
+ return -EINVAL;
+
+ alarm[0] = 0x0;
+ alarm[1] = bin2bcd(t->time.tm_sec);
+ alarm[2] = bin2bcd(t->time.tm_min);
+ alarm[3] = bin2bcd(t->time.tm_hour);
+ alarm[4] = bin2bcd(t->time.tm_mday);
+ alarm[5] = bin2bcd(t->time.tm_mon + 1);
+
+ err = i2c_smbus_write_i2c_block_data(client, ABX8XX_REG_AHTH,
+ sizeof(alarm), alarm);
+ if (err < 0) {
+ dev_err(&client->dev, "Unable to write alarm registers\n");
+ return -EIO;
+ }
+
+ if (t->enabled) {
+ err = i2c_smbus_write_byte_data(client, ABX8XX_REG_IRQ,
+ (ABX8XX_IRQ_IM_1_4 |
+ ABX8XX_IRQ_AIE));
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+static int abx80x_rtc_set_autocalibration(struct device *dev,
+ int autocalibration)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ int retval, flags = 0;
+
+ if ((autocalibration != 0) && (autocalibration != 1024) &&
+ (autocalibration != 512)) {
+ dev_err(dev, "autocalibration value outside permitted range\n");
+ return -EINVAL;
+ }
+
+ flags = i2c_smbus_read_byte_data(client, ABX8XX_REG_OSC);
+ if (flags < 0)
+ return flags;
+
+ if (autocalibration == 0) {
+ flags &= ~(ABX8XX_OSC_ACAL_512 | ABX8XX_OSC_ACAL_1024);
+ } else if (autocalibration == 1024) {
+ /* 1024 autocalibration is 0x10 */
+ flags |= ABX8XX_OSC_ACAL_1024;
+ flags &= ~(ABX8XX_OSC_ACAL_512);
+ } else {
+ /* 512 autocalibration is 0x11 */
+ flags |= (ABX8XX_OSC_ACAL_1024 | ABX8XX_OSC_ACAL_512);
+ }
+
+ /* Unlock write access to Oscillator Control Register */
+ retval = i2c_smbus_write_byte_data(client, ABX8XX_REG_CFG_KEY,
+ ABX8XX_CFG_KEY_OSC);
+ if (retval < 0) {
+ dev_err(dev, "Failed to write CONFIG_KEY register\n");
+ return retval;
+ }
+
+ retval = i2c_smbus_write_byte_data(client, ABX8XX_REG_OSC, flags);
+
+ return retval;
+}
+
+static int abx80x_rtc_get_autocalibration(struct device *dev)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ int flags = 0, autocalibration;
+
+ flags = i2c_smbus_read_byte_data(client, ABX8XX_REG_OSC);
+ if (flags < 0)
+ return flags;
+
+ if (flags & ABX8XX_OSC_ACAL_512)
+ autocalibration = 512;
+ else if (flags & ABX8XX_OSC_ACAL_1024)
+ autocalibration = 1024;
+ else
+ autocalibration = 0;
+
+ return autocalibration;
+}
+
+static ssize_t autocalibration_store(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ int retval;
+ unsigned long autocalibration = 0;
+
+ retval = kstrtoul(buf, 10, &autocalibration);
+ if (retval < 0) {
+ dev_err(dev, "Failed to store RTC autocalibration attribute\n");
+ return -EINVAL;
+ }
+
+ retval = abx80x_rtc_set_autocalibration(dev->parent, autocalibration);
+
+ return retval ? retval : count;
+}
+
+static ssize_t autocalibration_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ int autocalibration = 0;
+
+ autocalibration = abx80x_rtc_get_autocalibration(dev->parent);
+ if (autocalibration < 0) {
+ dev_err(dev, "Failed to read RTC autocalibration\n");
+ sprintf(buf, "0\n");
+ return autocalibration;
+ }
+
+ return sprintf(buf, "%d\n", autocalibration);
+}
+
+static DEVICE_ATTR_RW(autocalibration);
+
+static ssize_t oscillator_store(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ struct i2c_client *client = to_i2c_client(dev->parent);
+ int retval, flags, rc_mode = 0;
+
+ if (strncmp(buf, "rc", 2) == 0) {
+ rc_mode = 1;
+ } else if (strncmp(buf, "xtal", 4) == 0) {
+ rc_mode = 0;
+ } else {
+ dev_err(dev, "Oscillator selection value outside permitted ones\n");
+ return -EINVAL;
+ }
+
+ flags = i2c_smbus_read_byte_data(client, ABX8XX_REG_OSC);
+ if (flags < 0)
+ return flags;
+
+ if (rc_mode == 0)
+ flags &= ~(ABX8XX_OSC_OSEL);
+ else
+ flags |= (ABX8XX_OSC_OSEL);
+
+ /* Unlock write access on Oscillator Control register */
+ retval = i2c_smbus_write_byte_data(client, ABX8XX_REG_CFG_KEY,
+ ABX8XX_CFG_KEY_OSC);
+ if (retval < 0) {
+ dev_err(dev, "Failed to write CONFIG_KEY register\n");
+ return retval;
+ }
+
+ retval = i2c_smbus_write_byte_data(client, ABX8XX_REG_OSC, flags);
+ if (retval < 0) {
+ dev_err(dev, "Failed to write Oscillator Control register\n");
+ return retval;
+ }
+
+ return retval ? retval : count;
+}
+
+static ssize_t oscillator_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ int rc_mode = 0;
+ struct i2c_client *client = to_i2c_client(dev->parent);
+
+ rc_mode = abx80x_is_rc_mode(client);
+
+ if (rc_mode < 0) {
+ dev_err(dev, "Failed to read RTC oscillator selection\n");
+ sprintf(buf, "\n");
+ return rc_mode;
+ }
+
+ if (rc_mode)
+ return sprintf(buf, "rc\n");
+ else
+ return sprintf(buf, "xtal\n");
+}
+
+static DEVICE_ATTR_RW(oscillator);
+
+static struct attribute *rtc_calib_attrs[] = {
+ &dev_attr_autocalibration.attr,
+ &dev_attr_oscillator.attr,
+ NULL,
+};
+
+static const struct attribute_group rtc_calib_attr_group = {
+ .attrs = rtc_calib_attrs,
+};
+
+static int abx80x_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ int err;
+
+ if (enabled)
+ err = i2c_smbus_write_byte_data(client, ABX8XX_REG_IRQ,
+ (ABX8XX_IRQ_IM_1_4 |
+ ABX8XX_IRQ_AIE));
+ else
+ err = i2c_smbus_write_byte_data(client, ABX8XX_REG_IRQ,
+ ABX8XX_IRQ_IM_1_4);
+ return err;
+}
+
+static int abx80x_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ int status, tmp;
+
+ switch (cmd) {
+ case RTC_VL_READ:
+ status = i2c_smbus_read_byte_data(client, ABX8XX_REG_STATUS);
+ if (status < 0)
+ return status;
+
+ tmp = status & ABX8XX_STATUS_BLF ? RTC_VL_BACKUP_LOW : 0;
+
+ return put_user(tmp, (unsigned int __user *)arg);
+
+ case RTC_VL_CLR:
+ status = i2c_smbus_read_byte_data(client, ABX8XX_REG_STATUS);
+ if (status < 0)
+ return status;
+
+ status &= ~ABX8XX_STATUS_BLF;
+
+ tmp = i2c_smbus_write_byte_data(client, ABX8XX_REG_STATUS, 0);
+ if (tmp < 0)
+ return tmp;
+
+ return 0;
+
+ default:
+ return -ENOIOCTLCMD;
+ }
+}
+
+static const struct rtc_class_ops abx80x_rtc_ops = {
+ .read_time = abx80x_rtc_read_time,
+ .set_time = abx80x_rtc_set_time,
+ .read_alarm = abx80x_read_alarm,
+ .set_alarm = abx80x_set_alarm,
+ .alarm_irq_enable = abx80x_alarm_irq_enable,
+ .ioctl = abx80x_ioctl,
+};
+
+static int abx80x_dt_trickle_cfg(struct i2c_client *client)
+{
+ struct device_node *np = client->dev.of_node;
+ const char *diode;
+ int trickle_cfg = 0;
+ int i, ret;
+ u32 tmp;
+
+ ret = of_property_read_string(np, "abracon,tc-diode", &diode);
+ if (ret)
+ return ret;
+
+ if (!strcmp(diode, "standard")) {
+ trickle_cfg |= ABX8XX_TRICKLE_STANDARD_DIODE;
+ } else if (!strcmp(diode, "schottky")) {
+ trickle_cfg |= ABX8XX_TRICKLE_SCHOTTKY_DIODE;
+ } else {
+ dev_dbg(&client->dev, "Invalid tc-diode value: %s\n", diode);
+ return -EINVAL;
+ }
+
+ ret = of_property_read_u32(np, "abracon,tc-resistor", &tmp);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < sizeof(trickle_resistors); i++)
+ if (trickle_resistors[i] == tmp)
+ break;
+
+ if (i == sizeof(trickle_resistors)) {
+ dev_dbg(&client->dev, "Invalid tc-resistor value: %u\n", tmp);
+ return -EINVAL;
+ }
+
+ return (trickle_cfg | i);
+}
+
+#ifdef CONFIG_WATCHDOG
+
+static inline u8 timeout_bits(unsigned int timeout)
+{
+ return ((timeout << ABX8XX_WDT_BMB_SHIFT) & ABX8XX_WDT_BMB_MASK) |
+ ABX8XX_WDT_WRB_1HZ;
+}
+
+static int __abx80x_wdog_set_timeout(struct watchdog_device *wdog,
+ unsigned int timeout)
+{
+ struct abx80x_priv *priv = watchdog_get_drvdata(wdog);
+ u8 val = ABX8XX_WDT_WDS | timeout_bits(timeout);
+
+ /*
+ * Writing any timeout to the WDT register resets the watchdog timer.
+ * Writing 0 disables it.
+ */
+ return i2c_smbus_write_byte_data(priv->client, ABX8XX_REG_WDT, val);
+}
+
+static int abx80x_wdog_set_timeout(struct watchdog_device *wdog,
+ unsigned int new_timeout)
+{
+ int err = 0;
+
+ if (watchdog_hw_running(wdog))
+ err = __abx80x_wdog_set_timeout(wdog, new_timeout);
+
+ if (err == 0)
+ wdog->timeout = new_timeout;
+
+ return err;
+}
+
+static int abx80x_wdog_ping(struct watchdog_device *wdog)
+{
+ return __abx80x_wdog_set_timeout(wdog, wdog->timeout);
+}
+
+static int abx80x_wdog_start(struct watchdog_device *wdog)
+{
+ return __abx80x_wdog_set_timeout(wdog, wdog->timeout);
+}
+
+static int abx80x_wdog_stop(struct watchdog_device *wdog)
+{
+ return __abx80x_wdog_set_timeout(wdog, 0);
+}
+
+static const struct watchdog_info abx80x_wdog_info = {
+ .identity = "abx80x watchdog",
+ .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE,
+};
+
+static const struct watchdog_ops abx80x_wdog_ops = {
+ .owner = THIS_MODULE,
+ .start = abx80x_wdog_start,
+ .stop = abx80x_wdog_stop,
+ .ping = abx80x_wdog_ping,
+ .set_timeout = abx80x_wdog_set_timeout,
+};
+
+static int abx80x_setup_watchdog(struct abx80x_priv *priv)
+{
+ priv->wdog.parent = &priv->client->dev;
+ priv->wdog.ops = &abx80x_wdog_ops;
+ priv->wdog.info = &abx80x_wdog_info;
+ priv->wdog.min_timeout = 1;
+ priv->wdog.max_timeout = ABX8XX_WDT_MAX_TIME;
+ priv->wdog.timeout = ABX8XX_WDT_MAX_TIME;
+
+ watchdog_set_drvdata(&priv->wdog, priv);
+
+ return devm_watchdog_register_device(&priv->client->dev, &priv->wdog);
+}
+#else
+static int abx80x_setup_watchdog(struct abx80x_priv *priv)
+{
+ return 0;
+}
+#endif
+
+static int abx80x_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct device_node *np = client->dev.of_node;
+ struct abx80x_priv *priv;
+ int i, data, err, trickle_cfg = -EINVAL;
+ char buf[7];
+ unsigned int part = id->driver_data;
+ unsigned int partnumber;
+ unsigned int majrev, minrev;
+ unsigned int lot;
+ unsigned int wafer;
+ unsigned int uid;
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
+ return -ENODEV;
+
+ err = i2c_smbus_read_i2c_block_data(client, ABX8XX_REG_ID0,
+ sizeof(buf), buf);
+ if (err < 0) {
+ dev_err(&client->dev, "Unable to read partnumber\n");
+ return -EIO;
+ }
+
+ partnumber = (buf[0] << 8) | buf[1];
+ majrev = buf[2] >> 3;
+ minrev = buf[2] & 0x7;
+ lot = ((buf[4] & 0x80) << 2) | ((buf[6] & 0x80) << 1) | buf[3];
+ uid = ((buf[4] & 0x7f) << 8) | buf[5];
+ wafer = (buf[6] & 0x7c) >> 2;
+ dev_info(&client->dev, "model %04x, revision %u.%u, lot %x, wafer %x, uid %x\n",
+ partnumber, majrev, minrev, lot, wafer, uid);
+
+ data = i2c_smbus_read_byte_data(client, ABX8XX_REG_CTRL1);
+ if (data < 0) {
+ dev_err(&client->dev, "Unable to read control register\n");
+ return -EIO;
+ }
+
+ err = i2c_smbus_write_byte_data(client, ABX8XX_REG_CTRL1,
+ ((data & ~(ABX8XX_CTRL_12_24 |
+ ABX8XX_CTRL_ARST)) |
+ ABX8XX_CTRL_WRITE));
+ if (err < 0) {
+ dev_err(&client->dev, "Unable to write control register\n");
+ return -EIO;
+ }
+
+ /* Configure RV1805 specifics */
+ if (part == RV1805) {
+ /*
+ * Avoid accidentally entering test mode. This can happen
+ * on the RV1805 in case the reserved bit 5 in control2
+ * register is set. RV-1805-C3 datasheet indicates that
+ * the bit should be cleared in section 11h - Control2.
+ */
+ data = i2c_smbus_read_byte_data(client, ABX8XX_REG_CTRL2);
+ if (data < 0) {
+ dev_err(&client->dev,
+ "Unable to read control2 register\n");
+ return -EIO;
+ }
+
+ err = i2c_smbus_write_byte_data(client, ABX8XX_REG_CTRL2,
+ data & ~ABX8XX_CTRL2_RSVD);
+ if (err < 0) {
+ dev_err(&client->dev,
+ "Unable to write control2 register\n");
+ return -EIO;
+ }
+
+ /*
+ * Avoid extra power leakage. The RV1805 uses smaller
+ * 10pin package and the EXTI input is not present.
+ * Disable it to avoid leakage.
+ */
+ data = i2c_smbus_read_byte_data(client, ABX8XX_REG_OUT_CTRL);
+ if (data < 0) {
+ dev_err(&client->dev,
+ "Unable to read output control register\n");
+ return -EIO;
+ }
+
+ /*
+ * Write the configuration key register to enable access to
+ * the config2 register
+ */
+ err = i2c_smbus_write_byte_data(client, ABX8XX_REG_CFG_KEY,
+ ABX8XX_CFG_KEY_MISC);
+ if (err < 0) {
+ dev_err(&client->dev,
+ "Unable to write configuration key\n");
+ return -EIO;
+ }
+
+ err = i2c_smbus_write_byte_data(client, ABX8XX_REG_OUT_CTRL,
+ data | ABX8XX_OUT_CTRL_EXDS);
+ if (err < 0) {
+ dev_err(&client->dev,
+ "Unable to write output control register\n");
+ return -EIO;
+ }
+ }
+
+ /* part autodetection */
+ if (part == ABX80X) {
+ for (i = 0; abx80x_caps[i].pn; i++)
+ if (partnumber == abx80x_caps[i].pn)
+ break;
+ if (abx80x_caps[i].pn == 0) {
+ dev_err(&client->dev, "Unknown part: %04x\n",
+ partnumber);
+ return -EINVAL;
+ }
+ part = i;
+ }
+
+ if (partnumber != abx80x_caps[part].pn) {
+ dev_err(&client->dev, "partnumber mismatch %04x != %04x\n",
+ partnumber, abx80x_caps[part].pn);
+ return -EINVAL;
+ }
+
+ if (np && abx80x_caps[part].has_tc)
+ trickle_cfg = abx80x_dt_trickle_cfg(client);
+
+ if (trickle_cfg > 0) {
+ dev_info(&client->dev, "Enabling trickle charger: %02x\n",
+ trickle_cfg);
+ abx80x_enable_trickle_charger(client, trickle_cfg);
+ }
+
+ err = i2c_smbus_write_byte_data(client, ABX8XX_REG_CD_TIMER_CTL,
+ BIT(2));
+ if (err)
+ return err;
+
+ priv = devm_kzalloc(&client->dev, sizeof(*priv), GFP_KERNEL);
+ if (priv == NULL)
+ return -ENOMEM;
+
+ priv->rtc = devm_rtc_allocate_device(&client->dev);
+ if (IS_ERR(priv->rtc))
+ return PTR_ERR(priv->rtc);
+
+ priv->rtc->ops = &abx80x_rtc_ops;
+ priv->client = client;
+
+ i2c_set_clientdata(client, priv);
+
+ if (abx80x_caps[part].has_wdog) {
+ err = abx80x_setup_watchdog(priv);
+ if (err)
+ return err;
+ }
+
+ if (client->irq > 0) {
+ dev_info(&client->dev, "IRQ %d supplied\n", client->irq);
+ err = devm_request_threaded_irq(&client->dev, client->irq, NULL,
+ abx80x_handle_irq,
+ IRQF_SHARED | IRQF_ONESHOT,
+ "abx8xx",
+ client);
+ if (err) {
+ dev_err(&client->dev, "unable to request IRQ, alarms disabled\n");
+ client->irq = 0;
+ }
+ }
+
+ err = rtc_add_group(priv->rtc, &rtc_calib_attr_group);
+ if (err) {
+ dev_err(&client->dev, "Failed to create sysfs group: %d\n",
+ err);
+ return err;
+ }
+
+ return rtc_register_device(priv->rtc);
+}
+
+static const struct i2c_device_id abx80x_id[] = {
+ { "abx80x", ABX80X },
+ { "ab0801", AB0801 },
+ { "ab0803", AB0803 },
+ { "ab0804", AB0804 },
+ { "ab0805", AB0805 },
+ { "ab1801", AB1801 },
+ { "ab1803", AB1803 },
+ { "ab1804", AB1804 },
+ { "ab1805", AB1805 },
+ { "rv1805", RV1805 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, abx80x_id);
+
+#ifdef CONFIG_OF
+static const struct of_device_id abx80x_of_match[] = {
+ {
+ .compatible = "abracon,abx80x",
+ .data = (void *)ABX80X
+ },
+ {
+ .compatible = "abracon,ab0801",
+ .data = (void *)AB0801
+ },
+ {
+ .compatible = "abracon,ab0803",
+ .data = (void *)AB0803
+ },
+ {
+ .compatible = "abracon,ab0804",
+ .data = (void *)AB0804
+ },
+ {
+ .compatible = "abracon,ab0805",
+ .data = (void *)AB0805
+ },
+ {
+ .compatible = "abracon,ab1801",
+ .data = (void *)AB1801
+ },
+ {
+ .compatible = "abracon,ab1803",
+ .data = (void *)AB1803
+ },
+ {
+ .compatible = "abracon,ab1804",
+ .data = (void *)AB1804
+ },
+ {
+ .compatible = "abracon,ab1805",
+ .data = (void *)AB1805
+ },
+ {
+ .compatible = "microcrystal,rv1805",
+ .data = (void *)RV1805
+ },
+ { }
+};
+MODULE_DEVICE_TABLE(of, abx80x_of_match);
+#endif
+
+static struct i2c_driver abx80x_driver = {
+ .driver = {
+ .name = "rtc-abx80x",
+ .of_match_table = of_match_ptr(abx80x_of_match),
+ },
+ .probe = abx80x_probe,
+ .id_table = abx80x_id,
+};
+
+module_i2c_driver(abx80x_driver);
+
+MODULE_AUTHOR("Philippe De Muyter <phdm@macqel.be>");
+MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@bootlin.com>");
+MODULE_DESCRIPTION("Abracon ABX80X RTC driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-ac100.c b/drivers/rtc/rtc-ac100.c
new file mode 100644
index 000000000..29223931a
--- /dev/null
+++ b/drivers/rtc/rtc-ac100.c
@@ -0,0 +1,643 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * RTC Driver for X-Powers AC100
+ *
+ * Copyright (c) 2016 Chen-Yu Tsai
+ *
+ * Chen-Yu Tsai <wens@csie.org>
+ */
+
+#include <linux/bcd.h>
+#include <linux/clk-provider.h>
+#include <linux/device.h>
+#include <linux/interrupt.h>
+#include <linux/kernel.h>
+#include <linux/mfd/ac100.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/regmap.h>
+#include <linux/rtc.h>
+#include <linux/types.h>
+
+/* Control register */
+#define AC100_RTC_CTRL_24HOUR BIT(0)
+
+/* Clock output register bits */
+#define AC100_CLKOUT_PRE_DIV_SHIFT 5
+#define AC100_CLKOUT_PRE_DIV_WIDTH 3
+#define AC100_CLKOUT_MUX_SHIFT 4
+#define AC100_CLKOUT_MUX_WIDTH 1
+#define AC100_CLKOUT_DIV_SHIFT 1
+#define AC100_CLKOUT_DIV_WIDTH 3
+#define AC100_CLKOUT_EN BIT(0)
+
+/* RTC */
+#define AC100_RTC_SEC_MASK GENMASK(6, 0)
+#define AC100_RTC_MIN_MASK GENMASK(6, 0)
+#define AC100_RTC_HOU_MASK GENMASK(5, 0)
+#define AC100_RTC_WEE_MASK GENMASK(2, 0)
+#define AC100_RTC_DAY_MASK GENMASK(5, 0)
+#define AC100_RTC_MON_MASK GENMASK(4, 0)
+#define AC100_RTC_YEA_MASK GENMASK(7, 0)
+#define AC100_RTC_YEA_LEAP BIT(15)
+#define AC100_RTC_UPD_TRIGGER BIT(15)
+
+/* Alarm (wall clock) */
+#define AC100_ALM_INT_ENABLE BIT(0)
+
+#define AC100_ALM_SEC_MASK GENMASK(6, 0)
+#define AC100_ALM_MIN_MASK GENMASK(6, 0)
+#define AC100_ALM_HOU_MASK GENMASK(5, 0)
+#define AC100_ALM_WEE_MASK GENMASK(2, 0)
+#define AC100_ALM_DAY_MASK GENMASK(5, 0)
+#define AC100_ALM_MON_MASK GENMASK(4, 0)
+#define AC100_ALM_YEA_MASK GENMASK(7, 0)
+#define AC100_ALM_ENABLE_FLAG BIT(15)
+#define AC100_ALM_UPD_TRIGGER BIT(15)
+
+/*
+ * The year parameter passed to the driver is usually an offset relative to
+ * the year 1900. This macro is used to convert this offset to another one
+ * relative to the minimum year allowed by the hardware.
+ *
+ * The year range is 1970 - 2069. This range is selected to match Allwinner's
+ * driver.
+ */
+#define AC100_YEAR_MIN 1970
+#define AC100_YEAR_MAX 2069
+#define AC100_YEAR_OFF (AC100_YEAR_MIN - 1900)
+
+struct ac100_clkout {
+ struct clk_hw hw;
+ struct regmap *regmap;
+ u8 offset;
+};
+
+#define to_ac100_clkout(_hw) container_of(_hw, struct ac100_clkout, hw)
+
+#define AC100_RTC_32K_NAME "ac100-rtc-32k"
+#define AC100_RTC_32K_RATE 32768
+#define AC100_CLKOUT_NUM 3
+
+static const char * const ac100_clkout_names[AC100_CLKOUT_NUM] = {
+ "ac100-cko1-rtc",
+ "ac100-cko2-rtc",
+ "ac100-cko3-rtc",
+};
+
+struct ac100_rtc_dev {
+ struct rtc_device *rtc;
+ struct device *dev;
+ struct regmap *regmap;
+ int irq;
+ unsigned long alarm;
+
+ struct clk_hw *rtc_32k_clk;
+ struct ac100_clkout clks[AC100_CLKOUT_NUM];
+ struct clk_hw_onecell_data *clk_data;
+};
+
+/**
+ * Clock controls for 3 clock output pins
+ */
+
+static const struct clk_div_table ac100_clkout_prediv[] = {
+ { .val = 0, .div = 1 },
+ { .val = 1, .div = 2 },
+ { .val = 2, .div = 4 },
+ { .val = 3, .div = 8 },
+ { .val = 4, .div = 16 },
+ { .val = 5, .div = 32 },
+ { .val = 6, .div = 64 },
+ { .val = 7, .div = 122 },
+ { },
+};
+
+/* Abuse the fact that one parent is 32768 Hz, and the other is 4 MHz */
+static unsigned long ac100_clkout_recalc_rate(struct clk_hw *hw,
+ unsigned long prate)
+{
+ struct ac100_clkout *clk = to_ac100_clkout(hw);
+ unsigned int reg, div;
+
+ regmap_read(clk->regmap, clk->offset, &reg);
+
+ /* Handle pre-divider first */
+ if (prate != AC100_RTC_32K_RATE) {
+ div = (reg >> AC100_CLKOUT_PRE_DIV_SHIFT) &
+ ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1);
+ prate = divider_recalc_rate(hw, prate, div,
+ ac100_clkout_prediv, 0,
+ AC100_CLKOUT_PRE_DIV_WIDTH);
+ }
+
+ div = (reg >> AC100_CLKOUT_DIV_SHIFT) &
+ (BIT(AC100_CLKOUT_DIV_WIDTH) - 1);
+ return divider_recalc_rate(hw, prate, div, NULL,
+ CLK_DIVIDER_POWER_OF_TWO,
+ AC100_CLKOUT_DIV_WIDTH);
+}
+
+static long ac100_clkout_round_rate(struct clk_hw *hw, unsigned long rate,
+ unsigned long prate)
+{
+ unsigned long best_rate = 0, tmp_rate, tmp_prate;
+ int i;
+
+ if (prate == AC100_RTC_32K_RATE)
+ return divider_round_rate(hw, rate, &prate, NULL,
+ AC100_CLKOUT_DIV_WIDTH,
+ CLK_DIVIDER_POWER_OF_TWO);
+
+ for (i = 0; ac100_clkout_prediv[i].div; i++) {
+ tmp_prate = DIV_ROUND_UP(prate, ac100_clkout_prediv[i].val);
+ tmp_rate = divider_round_rate(hw, rate, &tmp_prate, NULL,
+ AC100_CLKOUT_DIV_WIDTH,
+ CLK_DIVIDER_POWER_OF_TWO);
+
+ if (tmp_rate > rate)
+ continue;
+ if (rate - tmp_rate < best_rate - tmp_rate)
+ best_rate = tmp_rate;
+ }
+
+ return best_rate;
+}
+
+static int ac100_clkout_determine_rate(struct clk_hw *hw,
+ struct clk_rate_request *req)
+{
+ struct clk_hw *best_parent;
+ unsigned long best = 0;
+ int i, num_parents = clk_hw_get_num_parents(hw);
+
+ for (i = 0; i < num_parents; i++) {
+ struct clk_hw *parent = clk_hw_get_parent_by_index(hw, i);
+ unsigned long tmp, prate;
+
+ /*
+ * The clock has two parents, one is a fixed clock which is
+ * internally registered by the ac100 driver. The other parent
+ * is a clock from the codec side of the chip, which we
+ * properly declare and reference in the devicetree and is
+ * not implemented in any driver right now.
+ * If the clock core looks for the parent of that second
+ * missing clock, it can't find one that is registered and
+ * returns NULL.
+ * So we end up in a situation where clk_hw_get_num_parents
+ * returns the amount of clocks we can be parented to, but
+ * clk_hw_get_parent_by_index will not return the orphan
+ * clocks.
+ * Thus we need to check if the parent exists before
+ * we get the parent rate, so we could use the RTC
+ * without waiting for the codec to be supported.
+ */
+ if (!parent)
+ continue;
+
+ prate = clk_hw_get_rate(parent);
+
+ tmp = ac100_clkout_round_rate(hw, req->rate, prate);
+
+ if (tmp > req->rate)
+ continue;
+ if (req->rate - tmp < req->rate - best) {
+ best = tmp;
+ best_parent = parent;
+ }
+ }
+
+ if (!best)
+ return -EINVAL;
+
+ req->best_parent_hw = best_parent;
+ req->best_parent_rate = best;
+ req->rate = best;
+
+ return 0;
+}
+
+static int ac100_clkout_set_rate(struct clk_hw *hw, unsigned long rate,
+ unsigned long prate)
+{
+ struct ac100_clkout *clk = to_ac100_clkout(hw);
+ int div = 0, pre_div = 0;
+
+ do {
+ div = divider_get_val(rate * ac100_clkout_prediv[pre_div].div,
+ prate, NULL, AC100_CLKOUT_DIV_WIDTH,
+ CLK_DIVIDER_POWER_OF_TWO);
+ if (div >= 0)
+ break;
+ } while (prate != AC100_RTC_32K_RATE &&
+ ac100_clkout_prediv[++pre_div].div);
+
+ if (div < 0)
+ return div;
+
+ pre_div = ac100_clkout_prediv[pre_div].val;
+
+ regmap_update_bits(clk->regmap, clk->offset,
+ ((1 << AC100_CLKOUT_DIV_WIDTH) - 1) << AC100_CLKOUT_DIV_SHIFT |
+ ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1) << AC100_CLKOUT_PRE_DIV_SHIFT,
+ (div - 1) << AC100_CLKOUT_DIV_SHIFT |
+ (pre_div - 1) << AC100_CLKOUT_PRE_DIV_SHIFT);
+
+ return 0;
+}
+
+static int ac100_clkout_prepare(struct clk_hw *hw)
+{
+ struct ac100_clkout *clk = to_ac100_clkout(hw);
+
+ return regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN,
+ AC100_CLKOUT_EN);
+}
+
+static void ac100_clkout_unprepare(struct clk_hw *hw)
+{
+ struct ac100_clkout *clk = to_ac100_clkout(hw);
+
+ regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN, 0);
+}
+
+static int ac100_clkout_is_prepared(struct clk_hw *hw)
+{
+ struct ac100_clkout *clk = to_ac100_clkout(hw);
+ unsigned int reg;
+
+ regmap_read(clk->regmap, clk->offset, &reg);
+
+ return reg & AC100_CLKOUT_EN;
+}
+
+static u8 ac100_clkout_get_parent(struct clk_hw *hw)
+{
+ struct ac100_clkout *clk = to_ac100_clkout(hw);
+ unsigned int reg;
+
+ regmap_read(clk->regmap, clk->offset, &reg);
+
+ return (reg >> AC100_CLKOUT_MUX_SHIFT) & 0x1;
+}
+
+static int ac100_clkout_set_parent(struct clk_hw *hw, u8 index)
+{
+ struct ac100_clkout *clk = to_ac100_clkout(hw);
+
+ return regmap_update_bits(clk->regmap, clk->offset,
+ BIT(AC100_CLKOUT_MUX_SHIFT),
+ index ? BIT(AC100_CLKOUT_MUX_SHIFT) : 0);
+}
+
+static const struct clk_ops ac100_clkout_ops = {
+ .prepare = ac100_clkout_prepare,
+ .unprepare = ac100_clkout_unprepare,
+ .is_prepared = ac100_clkout_is_prepared,
+ .recalc_rate = ac100_clkout_recalc_rate,
+ .determine_rate = ac100_clkout_determine_rate,
+ .get_parent = ac100_clkout_get_parent,
+ .set_parent = ac100_clkout_set_parent,
+ .set_rate = ac100_clkout_set_rate,
+};
+
+static int ac100_rtc_register_clks(struct ac100_rtc_dev *chip)
+{
+ struct device_node *np = chip->dev->of_node;
+ const char *parents[2] = {AC100_RTC_32K_NAME};
+ int i, ret;
+
+ chip->clk_data = devm_kzalloc(chip->dev,
+ struct_size(chip->clk_data, hws,
+ AC100_CLKOUT_NUM),
+ GFP_KERNEL);
+ if (!chip->clk_data)
+ return -ENOMEM;
+
+ chip->rtc_32k_clk = clk_hw_register_fixed_rate(chip->dev,
+ AC100_RTC_32K_NAME,
+ NULL, 0,
+ AC100_RTC_32K_RATE);
+ if (IS_ERR(chip->rtc_32k_clk)) {
+ ret = PTR_ERR(chip->rtc_32k_clk);
+ dev_err(chip->dev, "Failed to register RTC-32k clock: %d\n",
+ ret);
+ return ret;
+ }
+
+ parents[1] = of_clk_get_parent_name(np, 0);
+ if (!parents[1]) {
+ dev_err(chip->dev, "Failed to get ADDA 4M clock\n");
+ return -EINVAL;
+ }
+
+ for (i = 0; i < AC100_CLKOUT_NUM; i++) {
+ struct ac100_clkout *clk = &chip->clks[i];
+ struct clk_init_data init = {
+ .name = ac100_clkout_names[i],
+ .ops = &ac100_clkout_ops,
+ .parent_names = parents,
+ .num_parents = ARRAY_SIZE(parents),
+ .flags = 0,
+ };
+
+ of_property_read_string_index(np, "clock-output-names",
+ i, &init.name);
+ clk->regmap = chip->regmap;
+ clk->offset = AC100_CLKOUT_CTRL1 + i;
+ clk->hw.init = &init;
+
+ ret = devm_clk_hw_register(chip->dev, &clk->hw);
+ if (ret) {
+ dev_err(chip->dev, "Failed to register clk '%s': %d\n",
+ init.name, ret);
+ goto err_unregister_rtc_32k;
+ }
+
+ chip->clk_data->hws[i] = &clk->hw;
+ }
+
+ chip->clk_data->num = i;
+ ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, chip->clk_data);
+ if (ret)
+ goto err_unregister_rtc_32k;
+
+ return 0;
+
+err_unregister_rtc_32k:
+ clk_unregister_fixed_rate(chip->rtc_32k_clk->clk);
+
+ return ret;
+}
+
+static void ac100_rtc_unregister_clks(struct ac100_rtc_dev *chip)
+{
+ of_clk_del_provider(chip->dev->of_node);
+ clk_unregister_fixed_rate(chip->rtc_32k_clk->clk);
+}
+
+/**
+ * RTC related bits
+ */
+static int ac100_rtc_get_time(struct device *dev, struct rtc_time *rtc_tm)
+{
+ struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
+ struct regmap *regmap = chip->regmap;
+ u16 reg[7];
+ int ret;
+
+ ret = regmap_bulk_read(regmap, AC100_RTC_SEC, reg, 7);
+ if (ret)
+ return ret;
+
+ rtc_tm->tm_sec = bcd2bin(reg[0] & AC100_RTC_SEC_MASK);
+ rtc_tm->tm_min = bcd2bin(reg[1] & AC100_RTC_MIN_MASK);
+ rtc_tm->tm_hour = bcd2bin(reg[2] & AC100_RTC_HOU_MASK);
+ rtc_tm->tm_wday = bcd2bin(reg[3] & AC100_RTC_WEE_MASK);
+ rtc_tm->tm_mday = bcd2bin(reg[4] & AC100_RTC_DAY_MASK);
+ rtc_tm->tm_mon = bcd2bin(reg[5] & AC100_RTC_MON_MASK) - 1;
+ rtc_tm->tm_year = bcd2bin(reg[6] & AC100_RTC_YEA_MASK) +
+ AC100_YEAR_OFF;
+
+ return 0;
+}
+
+static int ac100_rtc_set_time(struct device *dev, struct rtc_time *rtc_tm)
+{
+ struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
+ struct regmap *regmap = chip->regmap;
+ int year;
+ u16 reg[8];
+
+ /* our RTC has a limited year range... */
+ year = rtc_tm->tm_year - AC100_YEAR_OFF;
+ if (year < 0 || year > (AC100_YEAR_MAX - 1900)) {
+ dev_err(dev, "rtc only supports year in range %d - %d\n",
+ AC100_YEAR_MIN, AC100_YEAR_MAX);
+ return -EINVAL;
+ }
+
+ /* convert to BCD */
+ reg[0] = bin2bcd(rtc_tm->tm_sec) & AC100_RTC_SEC_MASK;
+ reg[1] = bin2bcd(rtc_tm->tm_min) & AC100_RTC_MIN_MASK;
+ reg[2] = bin2bcd(rtc_tm->tm_hour) & AC100_RTC_HOU_MASK;
+ reg[3] = bin2bcd(rtc_tm->tm_wday) & AC100_RTC_WEE_MASK;
+ reg[4] = bin2bcd(rtc_tm->tm_mday) & AC100_RTC_DAY_MASK;
+ reg[5] = bin2bcd(rtc_tm->tm_mon + 1) & AC100_RTC_MON_MASK;
+ reg[6] = bin2bcd(year) & AC100_RTC_YEA_MASK;
+ /* trigger write */
+ reg[7] = AC100_RTC_UPD_TRIGGER;
+
+ /* Is it a leap year? */
+ if (is_leap_year(year + AC100_YEAR_OFF + 1900))
+ reg[6] |= AC100_RTC_YEA_LEAP;
+
+ return regmap_bulk_write(regmap, AC100_RTC_SEC, reg, 8);
+}
+
+static int ac100_rtc_alarm_irq_enable(struct device *dev, unsigned int en)
+{
+ struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
+ struct regmap *regmap = chip->regmap;
+ unsigned int val;
+
+ val = en ? AC100_ALM_INT_ENABLE : 0;
+
+ return regmap_write(regmap, AC100_ALM_INT_ENA, val);
+}
+
+static int ac100_rtc_get_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
+ struct regmap *regmap = chip->regmap;
+ struct rtc_time *alrm_tm = &alrm->time;
+ u16 reg[7];
+ unsigned int val;
+ int ret;
+
+ ret = regmap_read(regmap, AC100_ALM_INT_ENA, &val);
+ if (ret)
+ return ret;
+
+ alrm->enabled = !!(val & AC100_ALM_INT_ENABLE);
+
+ ret = regmap_bulk_read(regmap, AC100_ALM_SEC, reg, 7);
+ if (ret)
+ return ret;
+
+ alrm_tm->tm_sec = bcd2bin(reg[0] & AC100_ALM_SEC_MASK);
+ alrm_tm->tm_min = bcd2bin(reg[1] & AC100_ALM_MIN_MASK);
+ alrm_tm->tm_hour = bcd2bin(reg[2] & AC100_ALM_HOU_MASK);
+ alrm_tm->tm_wday = bcd2bin(reg[3] & AC100_ALM_WEE_MASK);
+ alrm_tm->tm_mday = bcd2bin(reg[4] & AC100_ALM_DAY_MASK);
+ alrm_tm->tm_mon = bcd2bin(reg[5] & AC100_ALM_MON_MASK) - 1;
+ alrm_tm->tm_year = bcd2bin(reg[6] & AC100_ALM_YEA_MASK) +
+ AC100_YEAR_OFF;
+
+ return 0;
+}
+
+static int ac100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
+ struct regmap *regmap = chip->regmap;
+ struct rtc_time *alrm_tm = &alrm->time;
+ u16 reg[8];
+ int year;
+ int ret;
+
+ /* our alarm has a limited year range... */
+ year = alrm_tm->tm_year - AC100_YEAR_OFF;
+ if (year < 0 || year > (AC100_YEAR_MAX - 1900)) {
+ dev_err(dev, "alarm only supports year in range %d - %d\n",
+ AC100_YEAR_MIN, AC100_YEAR_MAX);
+ return -EINVAL;
+ }
+
+ /* convert to BCD */
+ reg[0] = (bin2bcd(alrm_tm->tm_sec) & AC100_ALM_SEC_MASK) |
+ AC100_ALM_ENABLE_FLAG;
+ reg[1] = (bin2bcd(alrm_tm->tm_min) & AC100_ALM_MIN_MASK) |
+ AC100_ALM_ENABLE_FLAG;
+ reg[2] = (bin2bcd(alrm_tm->tm_hour) & AC100_ALM_HOU_MASK) |
+ AC100_ALM_ENABLE_FLAG;
+ /* Do not enable weekday alarm */
+ reg[3] = bin2bcd(alrm_tm->tm_wday) & AC100_ALM_WEE_MASK;
+ reg[4] = (bin2bcd(alrm_tm->tm_mday) & AC100_ALM_DAY_MASK) |
+ AC100_ALM_ENABLE_FLAG;
+ reg[5] = (bin2bcd(alrm_tm->tm_mon + 1) & AC100_ALM_MON_MASK) |
+ AC100_ALM_ENABLE_FLAG;
+ reg[6] = (bin2bcd(year) & AC100_ALM_YEA_MASK) |
+ AC100_ALM_ENABLE_FLAG;
+ /* trigger write */
+ reg[7] = AC100_ALM_UPD_TRIGGER;
+
+ ret = regmap_bulk_write(regmap, AC100_ALM_SEC, reg, 8);
+ if (ret)
+ return ret;
+
+ return ac100_rtc_alarm_irq_enable(dev, alrm->enabled);
+}
+
+static irqreturn_t ac100_rtc_irq(int irq, void *data)
+{
+ struct ac100_rtc_dev *chip = data;
+ struct regmap *regmap = chip->regmap;
+ unsigned int val = 0;
+ int ret;
+
+ mutex_lock(&chip->rtc->ops_lock);
+
+ /* read status */
+ ret = regmap_read(regmap, AC100_ALM_INT_STA, &val);
+ if (ret)
+ goto out;
+
+ if (val & AC100_ALM_INT_ENABLE) {
+ /* signal rtc framework */
+ rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
+
+ /* clear status */
+ ret = regmap_write(regmap, AC100_ALM_INT_STA, val);
+ if (ret)
+ goto out;
+
+ /* disable interrupt */
+ ret = ac100_rtc_alarm_irq_enable(chip->dev, 0);
+ if (ret)
+ goto out;
+ }
+
+out:
+ mutex_unlock(&chip->rtc->ops_lock);
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops ac100_rtc_ops = {
+ .read_time = ac100_rtc_get_time,
+ .set_time = ac100_rtc_set_time,
+ .read_alarm = ac100_rtc_get_alarm,
+ .set_alarm = ac100_rtc_set_alarm,
+ .alarm_irq_enable = ac100_rtc_alarm_irq_enable,
+};
+
+static int ac100_rtc_probe(struct platform_device *pdev)
+{
+ struct ac100_dev *ac100 = dev_get_drvdata(pdev->dev.parent);
+ struct ac100_rtc_dev *chip;
+ int ret;
+
+ chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
+ if (!chip)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, chip);
+ chip->dev = &pdev->dev;
+ chip->regmap = ac100->regmap;
+
+ chip->irq = platform_get_irq(pdev, 0);
+ if (chip->irq < 0)
+ return chip->irq;
+
+ chip->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(chip->rtc))
+ return PTR_ERR(chip->rtc);
+
+ chip->rtc->ops = &ac100_rtc_ops;
+
+ ret = devm_request_threaded_irq(&pdev->dev, chip->irq, NULL,
+ ac100_rtc_irq,
+ IRQF_SHARED | IRQF_ONESHOT,
+ dev_name(&pdev->dev), chip);
+ if (ret) {
+ dev_err(&pdev->dev, "Could not request IRQ\n");
+ return ret;
+ }
+
+ /* always use 24 hour mode */
+ regmap_write_bits(chip->regmap, AC100_RTC_CTRL, AC100_RTC_CTRL_24HOUR,
+ AC100_RTC_CTRL_24HOUR);
+
+ /* disable counter alarm interrupt */
+ regmap_write(chip->regmap, AC100_ALM_INT_ENA, 0);
+
+ /* clear counter alarm pending interrupts */
+ regmap_write(chip->regmap, AC100_ALM_INT_STA, AC100_ALM_INT_ENABLE);
+
+ ret = ac100_rtc_register_clks(chip);
+ if (ret)
+ return ret;
+
+ return rtc_register_device(chip->rtc);
+}
+
+static int ac100_rtc_remove(struct platform_device *pdev)
+{
+ struct ac100_rtc_dev *chip = platform_get_drvdata(pdev);
+
+ ac100_rtc_unregister_clks(chip);
+
+ return 0;
+}
+
+static const struct of_device_id ac100_rtc_match[] = {
+ { .compatible = "x-powers,ac100-rtc" },
+ { },
+};
+MODULE_DEVICE_TABLE(of, ac100_rtc_match);
+
+static struct platform_driver ac100_rtc_driver = {
+ .probe = ac100_rtc_probe,
+ .remove = ac100_rtc_remove,
+ .driver = {
+ .name = "ac100-rtc",
+ .of_match_table = of_match_ptr(ac100_rtc_match),
+ },
+};
+module_platform_driver(ac100_rtc_driver);
+
+MODULE_DESCRIPTION("X-Powers AC100 RTC driver");
+MODULE_AUTHOR("Chen-Yu Tsai <wens@csie.org>");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-armada38x.c b/drivers/rtc/rtc-armada38x.c
new file mode 100644
index 000000000..94d7c22fc
--- /dev/null
+++ b/drivers/rtc/rtc-armada38x.c
@@ -0,0 +1,604 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * RTC driver for the Armada 38x Marvell SoCs
+ *
+ * Copyright (C) 2015 Marvell
+ *
+ * Gregory Clement <gregory.clement@free-electrons.com>
+ */
+
+#include <linux/delay.h>
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+
+#define RTC_STATUS 0x0
+#define RTC_STATUS_ALARM1 BIT(0)
+#define RTC_STATUS_ALARM2 BIT(1)
+#define RTC_IRQ1_CONF 0x4
+#define RTC_IRQ2_CONF 0x8
+#define RTC_IRQ_AL_EN BIT(0)
+#define RTC_IRQ_FREQ_EN BIT(1)
+#define RTC_IRQ_FREQ_1HZ BIT(2)
+#define RTC_CCR 0x18
+#define RTC_CCR_MODE BIT(15)
+#define RTC_CONF_TEST 0x1C
+#define RTC_NOMINAL_TIMING BIT(13)
+
+#define RTC_TIME 0xC
+#define RTC_ALARM1 0x10
+#define RTC_ALARM2 0x14
+
+/* Armada38x SoC registers */
+#define RTC_38X_BRIDGE_TIMING_CTL 0x0
+#define RTC_38X_PERIOD_OFFS 0
+#define RTC_38X_PERIOD_MASK (0x3FF << RTC_38X_PERIOD_OFFS)
+#define RTC_38X_READ_DELAY_OFFS 26
+#define RTC_38X_READ_DELAY_MASK (0x1F << RTC_38X_READ_DELAY_OFFS)
+
+/* Armada 7K/8K registers */
+#define RTC_8K_BRIDGE_TIMING_CTL0 0x0
+#define RTC_8K_WRCLK_PERIOD_OFFS 0
+#define RTC_8K_WRCLK_PERIOD_MASK (0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS)
+#define RTC_8K_WRCLK_SETUP_OFFS 16
+#define RTC_8K_WRCLK_SETUP_MASK (0xFFFF << RTC_8K_WRCLK_SETUP_OFFS)
+#define RTC_8K_BRIDGE_TIMING_CTL1 0x4
+#define RTC_8K_READ_DELAY_OFFS 0
+#define RTC_8K_READ_DELAY_MASK (0xFFFF << RTC_8K_READ_DELAY_OFFS)
+
+#define RTC_8K_ISR 0x10
+#define RTC_8K_IMR 0x14
+#define RTC_8K_ALARM2 BIT(0)
+
+#define SOC_RTC_INTERRUPT 0x8
+#define SOC_RTC_ALARM1 BIT(0)
+#define SOC_RTC_ALARM2 BIT(1)
+#define SOC_RTC_ALARM1_MASK BIT(2)
+#define SOC_RTC_ALARM2_MASK BIT(3)
+
+#define SAMPLE_NR 100
+
+struct value_to_freq {
+ u32 value;
+ u8 freq;
+};
+
+struct armada38x_rtc {
+ struct rtc_device *rtc_dev;
+ void __iomem *regs;
+ void __iomem *regs_soc;
+ spinlock_t lock;
+ int irq;
+ bool initialized;
+ struct value_to_freq *val_to_freq;
+ const struct armada38x_rtc_data *data;
+};
+
+#define ALARM1 0
+#define ALARM2 1
+
+#define ALARM_REG(base, alarm) ((base) + (alarm) * sizeof(u32))
+
+struct armada38x_rtc_data {
+ /* Initialize the RTC-MBUS bridge timing */
+ void (*update_mbus_timing)(struct armada38x_rtc *rtc);
+ u32 (*read_rtc_reg)(struct armada38x_rtc *rtc, u8 rtc_reg);
+ void (*clear_isr)(struct armada38x_rtc *rtc);
+ void (*unmask_interrupt)(struct armada38x_rtc *rtc);
+ u32 alarm;
+};
+
+/*
+ * According to the datasheet, the OS should wait 5us after every
+ * register write to the RTC hard macro so that the required update
+ * can occur without holding off the system bus
+ * According to errata RES-3124064, Write to any RTC register
+ * may fail. As a workaround, before writing to RTC
+ * register, issue a dummy write of 0x0 twice to RTC Status
+ * register.
+ */
+
+static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset)
+{
+ writel(0, rtc->regs + RTC_STATUS);
+ writel(0, rtc->regs + RTC_STATUS);
+ writel(val, rtc->regs + offset);
+ udelay(5);
+}
+
+/* Update RTC-MBUS bridge timing parameters */
+static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc *rtc)
+{
+ u32 reg;
+
+ reg = readl(rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
+ reg &= ~RTC_38X_PERIOD_MASK;
+ reg |= 0x3FF << RTC_38X_PERIOD_OFFS; /* Maximum value */
+ reg &= ~RTC_38X_READ_DELAY_MASK;
+ reg |= 0x1F << RTC_38X_READ_DELAY_OFFS; /* Maximum value */
+ writel(reg, rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
+}
+
+static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc *rtc)
+{
+ u32 reg;
+
+ reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
+ reg &= ~RTC_8K_WRCLK_PERIOD_MASK;
+ reg |= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS;
+ reg &= ~RTC_8K_WRCLK_SETUP_MASK;
+ reg |= 0x29 << RTC_8K_WRCLK_SETUP_OFFS;
+ writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
+
+ reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
+ reg &= ~RTC_8K_READ_DELAY_MASK;
+ reg |= 0x3F << RTC_8K_READ_DELAY_OFFS;
+ writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
+}
+
+static u32 read_rtc_register(struct armada38x_rtc *rtc, u8 rtc_reg)
+{
+ return readl(rtc->regs + rtc_reg);
+}
+
+static u32 read_rtc_register_38x_wa(struct armada38x_rtc *rtc, u8 rtc_reg)
+{
+ int i, index_max = 0, max = 0;
+
+ for (i = 0; i < SAMPLE_NR; i++) {
+ rtc->val_to_freq[i].value = readl(rtc->regs + rtc_reg);
+ rtc->val_to_freq[i].freq = 0;
+ }
+
+ for (i = 0; i < SAMPLE_NR; i++) {
+ int j = 0;
+ u32 value = rtc->val_to_freq[i].value;
+
+ while (rtc->val_to_freq[j].freq) {
+ if (rtc->val_to_freq[j].value == value) {
+ rtc->val_to_freq[j].freq++;
+ break;
+ }
+ j++;
+ }
+
+ if (!rtc->val_to_freq[j].freq) {
+ rtc->val_to_freq[j].value = value;
+ rtc->val_to_freq[j].freq = 1;
+ }
+
+ if (rtc->val_to_freq[j].freq > max) {
+ index_max = j;
+ max = rtc->val_to_freq[j].freq;
+ }
+
+ /*
+ * If a value already has half of the sample this is the most
+ * frequent one and we can stop the research right now
+ */
+ if (max > SAMPLE_NR / 2)
+ break;
+ }
+
+ return rtc->val_to_freq[index_max].value;
+}
+
+static void armada38x_clear_isr(struct armada38x_rtc *rtc)
+{
+ u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
+
+ writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT);
+}
+
+static void armada38x_unmask_interrupt(struct armada38x_rtc *rtc)
+{
+ u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
+
+ writel(val | SOC_RTC_ALARM1_MASK, rtc->regs_soc + SOC_RTC_INTERRUPT);
+}
+
+static void armada8k_clear_isr(struct armada38x_rtc *rtc)
+{
+ writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_ISR);
+}
+
+static void armada8k_unmask_interrupt(struct armada38x_rtc *rtc)
+{
+ writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_IMR);
+}
+
+static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct armada38x_rtc *rtc = dev_get_drvdata(dev);
+ unsigned long time, flags;
+
+ spin_lock_irqsave(&rtc->lock, flags);
+ time = rtc->data->read_rtc_reg(rtc, RTC_TIME);
+ spin_unlock_irqrestore(&rtc->lock, flags);
+
+ rtc_time64_to_tm(time, tm);
+
+ return 0;
+}
+
+static void armada38x_rtc_reset(struct armada38x_rtc *rtc)
+{
+ u32 reg;
+
+ reg = rtc->data->read_rtc_reg(rtc, RTC_CONF_TEST);
+ /* If bits [7:0] are non-zero, assume RTC was uninitialized */
+ if (reg & 0xff) {
+ rtc_delayed_write(0, rtc, RTC_CONF_TEST);
+ msleep(500); /* Oscillator startup time */
+ rtc_delayed_write(0, rtc, RTC_TIME);
+ rtc_delayed_write(SOC_RTC_ALARM1 | SOC_RTC_ALARM2, rtc,
+ RTC_STATUS);
+ rtc_delayed_write(RTC_NOMINAL_TIMING, rtc, RTC_CCR);
+ }
+ rtc->initialized = true;
+}
+
+static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct armada38x_rtc *rtc = dev_get_drvdata(dev);
+ unsigned long time, flags;
+
+ time = rtc_tm_to_time64(tm);
+
+ if (!rtc->initialized)
+ armada38x_rtc_reset(rtc);
+
+ spin_lock_irqsave(&rtc->lock, flags);
+ rtc_delayed_write(time, rtc, RTC_TIME);
+ spin_unlock_irqrestore(&rtc->lock, flags);
+
+ return 0;
+}
+
+static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct armada38x_rtc *rtc = dev_get_drvdata(dev);
+ unsigned long time, flags;
+ u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
+ u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
+ u32 val;
+
+ spin_lock_irqsave(&rtc->lock, flags);
+
+ time = rtc->data->read_rtc_reg(rtc, reg);
+ val = rtc->data->read_rtc_reg(rtc, reg_irq) & RTC_IRQ_AL_EN;
+
+ spin_unlock_irqrestore(&rtc->lock, flags);
+
+ alrm->enabled = val ? 1 : 0;
+ rtc_time64_to_tm(time, &alrm->time);
+
+ return 0;
+}
+
+static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct armada38x_rtc *rtc = dev_get_drvdata(dev);
+ u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
+ u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
+ unsigned long time, flags;
+
+ time = rtc_tm_to_time64(&alrm->time);
+
+ spin_lock_irqsave(&rtc->lock, flags);
+
+ rtc_delayed_write(time, rtc, reg);
+
+ if (alrm->enabled) {
+ rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
+ rtc->data->unmask_interrupt(rtc);
+ }
+
+ spin_unlock_irqrestore(&rtc->lock, flags);
+
+ return 0;
+}
+
+static int armada38x_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct armada38x_rtc *rtc = dev_get_drvdata(dev);
+ u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
+ unsigned long flags;
+
+ spin_lock_irqsave(&rtc->lock, flags);
+
+ if (enabled)
+ rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
+ else
+ rtc_delayed_write(0, rtc, reg_irq);
+
+ spin_unlock_irqrestore(&rtc->lock, flags);
+
+ return 0;
+}
+
+static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data)
+{
+ struct armada38x_rtc *rtc = data;
+ u32 val;
+ int event = RTC_IRQF | RTC_AF;
+ u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
+
+ dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq);
+
+ spin_lock(&rtc->lock);
+
+ rtc->data->clear_isr(rtc);
+ val = rtc->data->read_rtc_reg(rtc, reg_irq);
+ /* disable all the interrupts for alarm*/
+ rtc_delayed_write(0, rtc, reg_irq);
+ /* Ack the event */
+ rtc_delayed_write(1 << rtc->data->alarm, rtc, RTC_STATUS);
+
+ spin_unlock(&rtc->lock);
+
+ if (val & RTC_IRQ_FREQ_EN) {
+ if (val & RTC_IRQ_FREQ_1HZ)
+ event |= RTC_UF;
+ else
+ event |= RTC_PF;
+ }
+
+ rtc_update_irq(rtc->rtc_dev, 1, event);
+
+ return IRQ_HANDLED;
+}
+
+/*
+ * The information given in the Armada 388 functional spec is complex.
+ * They give two different formulas for calculating the offset value,
+ * but when considering "Offset" as an 8-bit signed integer, they both
+ * reduce down to (we shall rename "Offset" as "val" here):
+ *
+ * val = (f_ideal / f_measured - 1) / resolution where f_ideal = 32768
+ *
+ * Converting to time, f = 1/t:
+ * val = (t_measured / t_ideal - 1) / resolution where t_ideal = 1/32768
+ *
+ * => t_measured / t_ideal = val * resolution + 1
+ *
+ * "offset" in the RTC interface is defined as:
+ * t = t0 * (1 + offset * 1e-9)
+ * where t is the desired period, t0 is the measured period with a zero
+ * offset, which is t_measured above. With t0 = t_measured and t = t_ideal,
+ * offset = (t_ideal / t_measured - 1) / 1e-9
+ *
+ * => t_ideal / t_measured = offset * 1e-9 + 1
+ *
+ * so:
+ *
+ * offset * 1e-9 + 1 = 1 / (val * resolution + 1)
+ *
+ * We want "resolution" to be an integer, so resolution = R * 1e-9, giving
+ * offset = 1e18 / (val * R + 1e9) - 1e9
+ * val = (1e18 / (offset + 1e9) - 1e9) / R
+ * with a common transformation:
+ * f(x) = 1e18 / (x + 1e9) - 1e9
+ * offset = f(val * R)
+ * val = f(offset) / R
+ *
+ * Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb).
+ */
+static long armada38x_ppb_convert(long ppb)
+{
+ long div = ppb + 1000000000L;
+
+ return div_s64(1000000000000000000LL + div / 2, div) - 1000000000L;
+}
+
+static int armada38x_rtc_read_offset(struct device *dev, long *offset)
+{
+ struct armada38x_rtc *rtc = dev_get_drvdata(dev);
+ unsigned long ccr, flags;
+ long ppb_cor;
+
+ spin_lock_irqsave(&rtc->lock, flags);
+ ccr = rtc->data->read_rtc_reg(rtc, RTC_CCR);
+ spin_unlock_irqrestore(&rtc->lock, flags);
+
+ ppb_cor = (ccr & RTC_CCR_MODE ? 3815 : 954) * (s8)ccr;
+ /* ppb_cor + 1000000000L can never be zero */
+ *offset = armada38x_ppb_convert(ppb_cor);
+
+ return 0;
+}
+
+static int armada38x_rtc_set_offset(struct device *dev, long offset)
+{
+ struct armada38x_rtc *rtc = dev_get_drvdata(dev);
+ unsigned long ccr = 0;
+ long ppb_cor, off;
+
+ /*
+ * The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we
+ * need to clamp the input. This equates to -484270 .. 488558.
+ * Not only is this to stop out of range "off" but also to
+ * avoid the division by zero in armada38x_ppb_convert().
+ */
+ offset = clamp(offset, -484270L, 488558L);
+
+ ppb_cor = armada38x_ppb_convert(offset);
+
+ /*
+ * Use low update mode where possible, which gives a better
+ * resolution of correction.
+ */
+ off = DIV_ROUND_CLOSEST(ppb_cor, 954);
+ if (off > 127 || off < -128) {
+ ccr = RTC_CCR_MODE;
+ off = DIV_ROUND_CLOSEST(ppb_cor, 3815);
+ }
+
+ /*
+ * Armada 388 requires a bit pattern in bits 14..8 depending on
+ * the sign bit: { 0, ~S, S, S, S, S, S }
+ */
+ ccr |= (off & 0x3fff) ^ 0x2000;
+ rtc_delayed_write(ccr, rtc, RTC_CCR);
+
+ return 0;
+}
+
+static const struct rtc_class_ops armada38x_rtc_ops = {
+ .read_time = armada38x_rtc_read_time,
+ .set_time = armada38x_rtc_set_time,
+ .read_alarm = armada38x_rtc_read_alarm,
+ .set_alarm = armada38x_rtc_set_alarm,
+ .alarm_irq_enable = armada38x_rtc_alarm_irq_enable,
+ .read_offset = armada38x_rtc_read_offset,
+ .set_offset = armada38x_rtc_set_offset,
+};
+
+static const struct rtc_class_ops armada38x_rtc_ops_noirq = {
+ .read_time = armada38x_rtc_read_time,
+ .set_time = armada38x_rtc_set_time,
+ .read_alarm = armada38x_rtc_read_alarm,
+ .read_offset = armada38x_rtc_read_offset,
+ .set_offset = armada38x_rtc_set_offset,
+};
+
+static const struct armada38x_rtc_data armada38x_data = {
+ .update_mbus_timing = rtc_update_38x_mbus_timing_params,
+ .read_rtc_reg = read_rtc_register_38x_wa,
+ .clear_isr = armada38x_clear_isr,
+ .unmask_interrupt = armada38x_unmask_interrupt,
+ .alarm = ALARM1,
+};
+
+static const struct armada38x_rtc_data armada8k_data = {
+ .update_mbus_timing = rtc_update_8k_mbus_timing_params,
+ .read_rtc_reg = read_rtc_register,
+ .clear_isr = armada8k_clear_isr,
+ .unmask_interrupt = armada8k_unmask_interrupt,
+ .alarm = ALARM2,
+};
+
+#ifdef CONFIG_OF
+static const struct of_device_id armada38x_rtc_of_match_table[] = {
+ {
+ .compatible = "marvell,armada-380-rtc",
+ .data = &armada38x_data,
+ },
+ {
+ .compatible = "marvell,armada-8k-rtc",
+ .data = &armada8k_data,
+ },
+ {}
+};
+MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table);
+#endif
+
+static __init int armada38x_rtc_probe(struct platform_device *pdev)
+{
+ struct resource *res;
+ struct armada38x_rtc *rtc;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc),
+ GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->data = of_device_get_match_data(&pdev->dev);
+
+ rtc->val_to_freq = devm_kcalloc(&pdev->dev, SAMPLE_NR,
+ sizeof(struct value_to_freq), GFP_KERNEL);
+ if (!rtc->val_to_freq)
+ return -ENOMEM;
+
+ spin_lock_init(&rtc->lock);
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc");
+ rtc->regs = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(rtc->regs))
+ return PTR_ERR(rtc->regs);
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc-soc");
+ rtc->regs_soc = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(rtc->regs_soc))
+ return PTR_ERR(rtc->regs_soc);
+
+ rtc->irq = platform_get_irq(pdev, 0);
+ if (rtc->irq < 0)
+ return rtc->irq;
+
+ rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc->rtc_dev))
+ return PTR_ERR(rtc->rtc_dev);
+
+ if (devm_request_irq(&pdev->dev, rtc->irq, armada38x_rtc_alarm_irq,
+ 0, pdev->name, rtc) < 0) {
+ dev_warn(&pdev->dev, "Interrupt not available.\n");
+ rtc->irq = -1;
+ }
+ platform_set_drvdata(pdev, rtc);
+
+ if (rtc->irq != -1) {
+ device_init_wakeup(&pdev->dev, 1);
+ rtc->rtc_dev->ops = &armada38x_rtc_ops;
+ } else {
+ /*
+ * If there is no interrupt available then we can't
+ * use the alarm
+ */
+ rtc->rtc_dev->ops = &armada38x_rtc_ops_noirq;
+ }
+
+ /* Update RTC-MBUS bridge timing parameters */
+ rtc->data->update_mbus_timing(rtc);
+
+ rtc->rtc_dev->range_max = U32_MAX;
+
+ return rtc_register_device(rtc->rtc_dev);
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int armada38x_rtc_suspend(struct device *dev)
+{
+ if (device_may_wakeup(dev)) {
+ struct armada38x_rtc *rtc = dev_get_drvdata(dev);
+
+ return enable_irq_wake(rtc->irq);
+ }
+
+ return 0;
+}
+
+static int armada38x_rtc_resume(struct device *dev)
+{
+ if (device_may_wakeup(dev)) {
+ struct armada38x_rtc *rtc = dev_get_drvdata(dev);
+
+ /* Update RTC-MBUS bridge timing parameters */
+ rtc->data->update_mbus_timing(rtc);
+
+ return disable_irq_wake(rtc->irq);
+ }
+
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops,
+ armada38x_rtc_suspend, armada38x_rtc_resume);
+
+static struct platform_driver armada38x_rtc_driver = {
+ .driver = {
+ .name = "armada38x-rtc",
+ .pm = &armada38x_rtc_pm_ops,
+ .of_match_table = of_match_ptr(armada38x_rtc_of_match_table),
+ },
+};
+
+module_platform_driver_probe(armada38x_rtc_driver, armada38x_rtc_probe);
+
+MODULE_DESCRIPTION("Marvell Armada 38x RTC driver");
+MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-as3722.c b/drivers/rtc/rtc-as3722.c
new file mode 100644
index 000000000..0f21af27f
--- /dev/null
+++ b/drivers/rtc/rtc-as3722.c
@@ -0,0 +1,252 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * rtc-as3722.c - Real Time Clock driver for ams AS3722 PMICs
+ *
+ * Copyright (C) 2013 ams AG
+ * Copyright (c) 2013, NVIDIA Corporation. All rights reserved.
+ *
+ * Author: Florian Lobmaier <florian.lobmaier@ams.com>
+ * Author: Laxman Dewangan <ldewangan@nvidia.com>
+ */
+
+#include <linux/bcd.h>
+#include <linux/completion.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/ioctl.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/mfd/as3722.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/time.h>
+
+#define AS3722_RTC_START_YEAR 2000
+struct as3722_rtc {
+ struct rtc_device *rtc;
+ struct device *dev;
+ struct as3722 *as3722;
+ int alarm_irq;
+ bool irq_enable;
+};
+
+static void as3722_time_to_reg(u8 *rbuff, struct rtc_time *tm)
+{
+ rbuff[0] = bin2bcd(tm->tm_sec);
+ rbuff[1] = bin2bcd(tm->tm_min);
+ rbuff[2] = bin2bcd(tm->tm_hour);
+ rbuff[3] = bin2bcd(tm->tm_mday);
+ rbuff[4] = bin2bcd(tm->tm_mon + 1);
+ rbuff[5] = bin2bcd(tm->tm_year - (AS3722_RTC_START_YEAR - 1900));
+}
+
+static void as3722_reg_to_time(u8 *rbuff, struct rtc_time *tm)
+{
+ tm->tm_sec = bcd2bin(rbuff[0] & 0x7F);
+ tm->tm_min = bcd2bin(rbuff[1] & 0x7F);
+ tm->tm_hour = bcd2bin(rbuff[2] & 0x3F);
+ tm->tm_mday = bcd2bin(rbuff[3] & 0x3F);
+ tm->tm_mon = bcd2bin(rbuff[4] & 0x1F) - 1;
+ tm->tm_year = (AS3722_RTC_START_YEAR - 1900) + bcd2bin(rbuff[5] & 0x7F);
+ return;
+}
+
+static int as3722_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct as3722_rtc *as3722_rtc = dev_get_drvdata(dev);
+ struct as3722 *as3722 = as3722_rtc->as3722;
+ u8 as_time_array[6];
+ int ret;
+
+ ret = as3722_block_read(as3722, AS3722_RTC_SECOND_REG,
+ 6, as_time_array);
+ if (ret < 0) {
+ dev_err(dev, "RTC_SECOND reg block read failed %d\n", ret);
+ return ret;
+ }
+ as3722_reg_to_time(as_time_array, tm);
+ return 0;
+}
+
+static int as3722_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct as3722_rtc *as3722_rtc = dev_get_drvdata(dev);
+ struct as3722 *as3722 = as3722_rtc->as3722;
+ u8 as_time_array[6];
+ int ret;
+
+ if (tm->tm_year < (AS3722_RTC_START_YEAR - 1900))
+ return -EINVAL;
+
+ as3722_time_to_reg(as_time_array, tm);
+ ret = as3722_block_write(as3722, AS3722_RTC_SECOND_REG, 6,
+ as_time_array);
+ if (ret < 0)
+ dev_err(dev, "RTC_SECOND reg block write failed %d\n", ret);
+ return ret;
+}
+
+static int as3722_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct as3722_rtc *as3722_rtc = dev_get_drvdata(dev);
+
+ if (enabled && !as3722_rtc->irq_enable) {
+ enable_irq(as3722_rtc->alarm_irq);
+ as3722_rtc->irq_enable = true;
+ } else if (!enabled && as3722_rtc->irq_enable) {
+ disable_irq(as3722_rtc->alarm_irq);
+ as3722_rtc->irq_enable = false;
+ }
+ return 0;
+}
+
+static int as3722_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct as3722_rtc *as3722_rtc = dev_get_drvdata(dev);
+ struct as3722 *as3722 = as3722_rtc->as3722;
+ u8 as_time_array[6];
+ int ret;
+
+ ret = as3722_block_read(as3722, AS3722_RTC_ALARM_SECOND_REG, 6,
+ as_time_array);
+ if (ret < 0) {
+ dev_err(dev, "RTC_ALARM_SECOND block read failed %d\n", ret);
+ return ret;
+ }
+
+ as3722_reg_to_time(as_time_array, &alrm->time);
+ return 0;
+}
+
+static int as3722_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct as3722_rtc *as3722_rtc = dev_get_drvdata(dev);
+ struct as3722 *as3722 = as3722_rtc->as3722;
+ u8 as_time_array[6];
+ int ret;
+
+ if (alrm->time.tm_year < (AS3722_RTC_START_YEAR - 1900))
+ return -EINVAL;
+
+ ret = as3722_rtc_alarm_irq_enable(dev, 0);
+ if (ret < 0) {
+ dev_err(dev, "Disable RTC alarm failed\n");
+ return ret;
+ }
+
+ as3722_time_to_reg(as_time_array, &alrm->time);
+ ret = as3722_block_write(as3722, AS3722_RTC_ALARM_SECOND_REG, 6,
+ as_time_array);
+ if (ret < 0) {
+ dev_err(dev, "RTC_ALARM_SECOND block write failed %d\n", ret);
+ return ret;
+ }
+
+ if (alrm->enabled)
+ ret = as3722_rtc_alarm_irq_enable(dev, alrm->enabled);
+ return ret;
+}
+
+static irqreturn_t as3722_alarm_irq(int irq, void *data)
+{
+ struct as3722_rtc *as3722_rtc = data;
+
+ rtc_update_irq(as3722_rtc->rtc, 1, RTC_IRQF | RTC_AF);
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops as3722_rtc_ops = {
+ .read_time = as3722_rtc_read_time,
+ .set_time = as3722_rtc_set_time,
+ .read_alarm = as3722_rtc_read_alarm,
+ .set_alarm = as3722_rtc_set_alarm,
+ .alarm_irq_enable = as3722_rtc_alarm_irq_enable,
+};
+
+static int as3722_rtc_probe(struct platform_device *pdev)
+{
+ struct as3722 *as3722 = dev_get_drvdata(pdev->dev.parent);
+ struct as3722_rtc *as3722_rtc;
+ int ret;
+
+ as3722_rtc = devm_kzalloc(&pdev->dev, sizeof(*as3722_rtc), GFP_KERNEL);
+ if (!as3722_rtc)
+ return -ENOMEM;
+
+ as3722_rtc->as3722 = as3722;
+ as3722_rtc->dev = &pdev->dev;
+ platform_set_drvdata(pdev, as3722_rtc);
+
+ /* Enable the RTC to make sure it is running. */
+ ret = as3722_update_bits(as3722, AS3722_RTC_CONTROL_REG,
+ AS3722_RTC_ON | AS3722_RTC_ALARM_WAKEUP_EN,
+ AS3722_RTC_ON | AS3722_RTC_ALARM_WAKEUP_EN);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "RTC_CONTROL reg write failed: %d\n", ret);
+ return ret;
+ }
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ as3722_rtc->rtc = devm_rtc_device_register(&pdev->dev, "as3722-rtc",
+ &as3722_rtc_ops, THIS_MODULE);
+ if (IS_ERR(as3722_rtc->rtc)) {
+ ret = PTR_ERR(as3722_rtc->rtc);
+ dev_err(&pdev->dev, "RTC register failed: %d\n", ret);
+ return ret;
+ }
+
+ as3722_rtc->alarm_irq = platform_get_irq(pdev, 0);
+ dev_info(&pdev->dev, "RTC interrupt %d\n", as3722_rtc->alarm_irq);
+
+ ret = devm_request_threaded_irq(&pdev->dev, as3722_rtc->alarm_irq, NULL,
+ as3722_alarm_irq, IRQF_ONESHOT,
+ "rtc-alarm", as3722_rtc);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "Failed to request alarm IRQ %d: %d\n",
+ as3722_rtc->alarm_irq, ret);
+ return ret;
+ }
+ disable_irq(as3722_rtc->alarm_irq);
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int as3722_rtc_suspend(struct device *dev)
+{
+ struct as3722_rtc *as3722_rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ enable_irq_wake(as3722_rtc->alarm_irq);
+
+ return 0;
+}
+
+static int as3722_rtc_resume(struct device *dev)
+{
+ struct as3722_rtc *as3722_rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ disable_irq_wake(as3722_rtc->alarm_irq);
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(as3722_rtc_pm_ops, as3722_rtc_suspend,
+ as3722_rtc_resume);
+
+static struct platform_driver as3722_rtc_driver = {
+ .probe = as3722_rtc_probe,
+ .driver = {
+ .name = "as3722-rtc",
+ .pm = &as3722_rtc_pm_ops,
+ },
+};
+module_platform_driver(as3722_rtc_driver);
+
+MODULE_DESCRIPTION("RTC driver for AS3722 PMICs");
+MODULE_ALIAS("platform:as3722-rtc");
+MODULE_AUTHOR("Florian Lobmaier <florian.lobmaier@ams.com>");
+MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-asm9260.c b/drivers/rtc/rtc-asm9260.c
new file mode 100644
index 000000000..3ab81cdec
--- /dev/null
+++ b/drivers/rtc/rtc-asm9260.c
@@ -0,0 +1,340 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Copyright (C) 2016 Oleksij Rempel <linux@rempel-privat.de>
+ */
+
+#include <linux/clk.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+
+/* Miscellaneous registers */
+/* Interrupt Location Register */
+#define HW_ILR 0x00
+#define BM_RTCALF BIT(1)
+#define BM_RTCCIF BIT(0)
+
+/* Clock Control Register */
+#define HW_CCR 0x08
+/* Calibration counter disable */
+#define BM_CCALOFF BIT(4)
+/* Reset internal oscillator divider */
+#define BM_CTCRST BIT(1)
+/* Clock Enable */
+#define BM_CLKEN BIT(0)
+
+/* Counter Increment Interrupt Register */
+#define HW_CIIR 0x0C
+#define BM_CIIR_IMYEAR BIT(7)
+#define BM_CIIR_IMMON BIT(6)
+#define BM_CIIR_IMDOY BIT(5)
+#define BM_CIIR_IMDOW BIT(4)
+#define BM_CIIR_IMDOM BIT(3)
+#define BM_CIIR_IMHOUR BIT(2)
+#define BM_CIIR_IMMIN BIT(1)
+#define BM_CIIR_IMSEC BIT(0)
+
+/* Alarm Mask Register */
+#define HW_AMR 0x10
+#define BM_AMR_IMYEAR BIT(7)
+#define BM_AMR_IMMON BIT(6)
+#define BM_AMR_IMDOY BIT(5)
+#define BM_AMR_IMDOW BIT(4)
+#define BM_AMR_IMDOM BIT(3)
+#define BM_AMR_IMHOUR BIT(2)
+#define BM_AMR_IMMIN BIT(1)
+#define BM_AMR_IMSEC BIT(0)
+#define BM_AMR_OFF 0xff
+
+/* Consolidated time registers */
+#define HW_CTIME0 0x14
+#define BM_CTIME0_DOW_S 24
+#define BM_CTIME0_DOW_M 0x7
+#define BM_CTIME0_HOUR_S 16
+#define BM_CTIME0_HOUR_M 0x1f
+#define BM_CTIME0_MIN_S 8
+#define BM_CTIME0_MIN_M 0x3f
+#define BM_CTIME0_SEC_S 0
+#define BM_CTIME0_SEC_M 0x3f
+
+#define HW_CTIME1 0x18
+#define BM_CTIME1_YEAR_S 16
+#define BM_CTIME1_YEAR_M 0xfff
+#define BM_CTIME1_MON_S 8
+#define BM_CTIME1_MON_M 0xf
+#define BM_CTIME1_DOM_S 0
+#define BM_CTIME1_DOM_M 0x1f
+
+#define HW_CTIME2 0x1C
+#define BM_CTIME2_DOY_S 0
+#define BM_CTIME2_DOY_M 0xfff
+
+/* Time counter registers */
+#define HW_SEC 0x20
+#define HW_MIN 0x24
+#define HW_HOUR 0x28
+#define HW_DOM 0x2C
+#define HW_DOW 0x30
+#define HW_DOY 0x34
+#define HW_MONTH 0x38
+#define HW_YEAR 0x3C
+
+#define HW_CALIBRATION 0x40
+#define BM_CALDIR_BACK BIT(17)
+#define BM_CALVAL_M 0x1ffff
+
+/* General purpose registers */
+#define HW_GPREG0 0x44
+#define HW_GPREG1 0x48
+#define HW_GPREG2 0x4C
+#define HW_GPREG3 0x50
+#define HW_GPREG4 0x54
+
+/* Alarm register group */
+#define HW_ALSEC 0x60
+#define HW_ALMIN 0x64
+#define HW_ALHOUR 0x68
+#define HW_ALDOM 0x6C
+#define HW_ALDOW 0x70
+#define HW_ALDOY 0x74
+#define HW_ALMON 0x78
+#define HW_ALYEAR 0x7C
+
+struct asm9260_rtc_priv {
+ struct device *dev;
+ void __iomem *iobase;
+ struct rtc_device *rtc;
+ struct clk *clk;
+};
+
+static irqreturn_t asm9260_rtc_irq(int irq, void *dev_id)
+{
+ struct asm9260_rtc_priv *priv = dev_id;
+ u32 isr;
+ unsigned long events = 0;
+
+ mutex_lock(&priv->rtc->ops_lock);
+ isr = ioread32(priv->iobase + HW_CIIR);
+ if (!isr) {
+ mutex_unlock(&priv->rtc->ops_lock);
+ return IRQ_NONE;
+ }
+
+ iowrite32(0, priv->iobase + HW_CIIR);
+ mutex_unlock(&priv->rtc->ops_lock);
+
+ events |= RTC_AF | RTC_IRQF;
+
+ rtc_update_irq(priv->rtc, 1, events);
+
+ return IRQ_HANDLED;
+}
+
+static int asm9260_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct asm9260_rtc_priv *priv = dev_get_drvdata(dev);
+ u32 ctime0, ctime1, ctime2;
+
+ ctime0 = ioread32(priv->iobase + HW_CTIME0);
+ ctime1 = ioread32(priv->iobase + HW_CTIME1);
+ ctime2 = ioread32(priv->iobase + HW_CTIME2);
+
+ if (ctime1 != ioread32(priv->iobase + HW_CTIME1)) {
+ /*
+ * woops, counter flipped right now. Now we are safe
+ * to reread.
+ */
+ ctime0 = ioread32(priv->iobase + HW_CTIME0);
+ ctime1 = ioread32(priv->iobase + HW_CTIME1);
+ ctime2 = ioread32(priv->iobase + HW_CTIME2);
+ }
+
+ tm->tm_sec = (ctime0 >> BM_CTIME0_SEC_S) & BM_CTIME0_SEC_M;
+ tm->tm_min = (ctime0 >> BM_CTIME0_MIN_S) & BM_CTIME0_MIN_M;
+ tm->tm_hour = (ctime0 >> BM_CTIME0_HOUR_S) & BM_CTIME0_HOUR_M;
+ tm->tm_wday = (ctime0 >> BM_CTIME0_DOW_S) & BM_CTIME0_DOW_M;
+
+ tm->tm_mday = (ctime1 >> BM_CTIME1_DOM_S) & BM_CTIME1_DOM_M;
+ tm->tm_mon = (ctime1 >> BM_CTIME1_MON_S) & BM_CTIME1_MON_M;
+ tm->tm_year = (ctime1 >> BM_CTIME1_YEAR_S) & BM_CTIME1_YEAR_M;
+
+ tm->tm_yday = (ctime2 >> BM_CTIME2_DOY_S) & BM_CTIME2_DOY_M;
+
+ return 0;
+}
+
+static int asm9260_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct asm9260_rtc_priv *priv = dev_get_drvdata(dev);
+
+ /*
+ * make sure SEC counter will not flip other counter on write time,
+ * real value will be written at the enf of sequence.
+ */
+ iowrite32(0, priv->iobase + HW_SEC);
+
+ iowrite32(tm->tm_year, priv->iobase + HW_YEAR);
+ iowrite32(tm->tm_mon, priv->iobase + HW_MONTH);
+ iowrite32(tm->tm_mday, priv->iobase + HW_DOM);
+ iowrite32(tm->tm_wday, priv->iobase + HW_DOW);
+ iowrite32(tm->tm_yday, priv->iobase + HW_DOY);
+ iowrite32(tm->tm_hour, priv->iobase + HW_HOUR);
+ iowrite32(tm->tm_min, priv->iobase + HW_MIN);
+ iowrite32(tm->tm_sec, priv->iobase + HW_SEC);
+
+ return 0;
+}
+
+static int asm9260_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct asm9260_rtc_priv *priv = dev_get_drvdata(dev);
+
+ alrm->time.tm_year = ioread32(priv->iobase + HW_ALYEAR);
+ alrm->time.tm_mon = ioread32(priv->iobase + HW_ALMON);
+ alrm->time.tm_mday = ioread32(priv->iobase + HW_ALDOM);
+ alrm->time.tm_wday = ioread32(priv->iobase + HW_ALDOW);
+ alrm->time.tm_yday = ioread32(priv->iobase + HW_ALDOY);
+ alrm->time.tm_hour = ioread32(priv->iobase + HW_ALHOUR);
+ alrm->time.tm_min = ioread32(priv->iobase + HW_ALMIN);
+ alrm->time.tm_sec = ioread32(priv->iobase + HW_ALSEC);
+
+ alrm->enabled = ioread32(priv->iobase + HW_AMR) ? 1 : 0;
+ alrm->pending = ioread32(priv->iobase + HW_CIIR) ? 1 : 0;
+
+ return rtc_valid_tm(&alrm->time);
+}
+
+static int asm9260_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct asm9260_rtc_priv *priv = dev_get_drvdata(dev);
+
+ iowrite32(alrm->time.tm_year, priv->iobase + HW_ALYEAR);
+ iowrite32(alrm->time.tm_mon, priv->iobase + HW_ALMON);
+ iowrite32(alrm->time.tm_mday, priv->iobase + HW_ALDOM);
+ iowrite32(alrm->time.tm_wday, priv->iobase + HW_ALDOW);
+ iowrite32(alrm->time.tm_yday, priv->iobase + HW_ALDOY);
+ iowrite32(alrm->time.tm_hour, priv->iobase + HW_ALHOUR);
+ iowrite32(alrm->time.tm_min, priv->iobase + HW_ALMIN);
+ iowrite32(alrm->time.tm_sec, priv->iobase + HW_ALSEC);
+
+ iowrite32(alrm->enabled ? 0 : BM_AMR_OFF, priv->iobase + HW_AMR);
+
+ return 0;
+}
+
+static int asm9260_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct asm9260_rtc_priv *priv = dev_get_drvdata(dev);
+
+ iowrite32(enabled ? 0 : BM_AMR_OFF, priv->iobase + HW_AMR);
+ return 0;
+}
+
+static const struct rtc_class_ops asm9260_rtc_ops = {
+ .read_time = asm9260_rtc_read_time,
+ .set_time = asm9260_rtc_set_time,
+ .read_alarm = asm9260_rtc_read_alarm,
+ .set_alarm = asm9260_rtc_set_alarm,
+ .alarm_irq_enable = asm9260_alarm_irq_enable,
+};
+
+static int asm9260_rtc_probe(struct platform_device *pdev)
+{
+ struct asm9260_rtc_priv *priv;
+ struct device *dev = &pdev->dev;
+ int irq_alarm, ret;
+ u32 ccr;
+
+ priv = devm_kzalloc(dev, sizeof(struct asm9260_rtc_priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ priv->dev = &pdev->dev;
+ platform_set_drvdata(pdev, priv);
+
+ irq_alarm = platform_get_irq(pdev, 0);
+ if (irq_alarm < 0)
+ return irq_alarm;
+
+ priv->iobase = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(priv->iobase))
+ return PTR_ERR(priv->iobase);
+
+ priv->clk = devm_clk_get(dev, "ahb");
+ if (IS_ERR(priv->clk))
+ return PTR_ERR(priv->clk);
+
+ ret = clk_prepare_enable(priv->clk);
+ if (ret) {
+ dev_err(dev, "Failed to enable clk!\n");
+ return ret;
+ }
+
+ ccr = ioread32(priv->iobase + HW_CCR);
+ /* if dev is not enabled, reset it */
+ if ((ccr & (BM_CLKEN | BM_CTCRST)) != BM_CLKEN) {
+ iowrite32(BM_CTCRST, priv->iobase + HW_CCR);
+ ccr = 0;
+ }
+
+ iowrite32(BM_CLKEN | ccr, priv->iobase + HW_CCR);
+ iowrite32(0, priv->iobase + HW_CIIR);
+ iowrite32(BM_AMR_OFF, priv->iobase + HW_AMR);
+
+ priv->rtc = devm_rtc_device_register(dev, dev_name(dev),
+ &asm9260_rtc_ops, THIS_MODULE);
+ if (IS_ERR(priv->rtc)) {
+ ret = PTR_ERR(priv->rtc);
+ dev_err(dev, "Failed to register RTC device: %d\n", ret);
+ goto err_return;
+ }
+
+ ret = devm_request_threaded_irq(dev, irq_alarm, NULL,
+ asm9260_rtc_irq, IRQF_ONESHOT,
+ dev_name(dev), priv);
+ if (ret < 0) {
+ dev_err(dev, "can't get irq %i, err %d\n",
+ irq_alarm, ret);
+ goto err_return;
+ }
+
+ return 0;
+
+err_return:
+ clk_disable_unprepare(priv->clk);
+ return ret;
+}
+
+static int asm9260_rtc_remove(struct platform_device *pdev)
+{
+ struct asm9260_rtc_priv *priv = platform_get_drvdata(pdev);
+
+ /* Disable alarm matching */
+ iowrite32(BM_AMR_OFF, priv->iobase + HW_AMR);
+ clk_disable_unprepare(priv->clk);
+ return 0;
+}
+
+static const struct of_device_id asm9260_dt_ids[] = {
+ { .compatible = "alphascale,asm9260-rtc", },
+ {}
+};
+MODULE_DEVICE_TABLE(of, asm9260_dt_ids);
+
+static struct platform_driver asm9260_rtc_driver = {
+ .probe = asm9260_rtc_probe,
+ .remove = asm9260_rtc_remove,
+ .driver = {
+ .name = "asm9260-rtc",
+ .of_match_table = asm9260_dt_ids,
+ },
+};
+
+module_platform_driver(asm9260_rtc_driver);
+
+MODULE_AUTHOR("Oleksij Rempel <linux@rempel-privat.de>");
+MODULE_DESCRIPTION("Alphascale asm9260 SoC Realtime Clock Driver (RTC)");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-aspeed.c b/drivers/rtc/rtc-aspeed.c
new file mode 100644
index 000000000..eacdd0637
--- /dev/null
+++ b/drivers/rtc/rtc-aspeed.c
@@ -0,0 +1,129 @@
+// SPDX-License-Identifier: GPL-2.0+
+// Copyright 2015 IBM Corp.
+
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/io.h>
+
+struct aspeed_rtc {
+ struct rtc_device *rtc_dev;
+ void __iomem *base;
+};
+
+#define RTC_TIME 0x00
+#define RTC_YEAR 0x04
+#define RTC_CTRL 0x10
+
+#define RTC_UNLOCK BIT(1)
+#define RTC_ENABLE BIT(0)
+
+static int aspeed_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct aspeed_rtc *rtc = dev_get_drvdata(dev);
+ unsigned int cent, year;
+ u32 reg1, reg2;
+
+ if (!(readl(rtc->base + RTC_CTRL) & RTC_ENABLE)) {
+ dev_dbg(dev, "%s failing as rtc disabled\n", __func__);
+ return -EINVAL;
+ }
+
+ do {
+ reg2 = readl(rtc->base + RTC_YEAR);
+ reg1 = readl(rtc->base + RTC_TIME);
+ } while (reg2 != readl(rtc->base + RTC_YEAR));
+
+ tm->tm_mday = (reg1 >> 24) & 0x1f;
+ tm->tm_hour = (reg1 >> 16) & 0x1f;
+ tm->tm_min = (reg1 >> 8) & 0x3f;
+ tm->tm_sec = (reg1 >> 0) & 0x3f;
+
+ cent = (reg2 >> 16) & 0x1f;
+ year = (reg2 >> 8) & 0x7f;
+ tm->tm_mon = ((reg2 >> 0) & 0x0f) - 1;
+ tm->tm_year = year + (cent * 100) - 1900;
+
+ dev_dbg(dev, "%s %ptR", __func__, tm);
+
+ return 0;
+}
+
+static int aspeed_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct aspeed_rtc *rtc = dev_get_drvdata(dev);
+ u32 reg1, reg2, ctrl;
+ int year, cent;
+
+ cent = (tm->tm_year + 1900) / 100;
+ year = tm->tm_year % 100;
+
+ reg1 = (tm->tm_mday << 24) | (tm->tm_hour << 16) | (tm->tm_min << 8) |
+ tm->tm_sec;
+
+ reg2 = ((cent & 0x1f) << 16) | ((year & 0x7f) << 8) |
+ ((tm->tm_mon + 1) & 0xf);
+
+ ctrl = readl(rtc->base + RTC_CTRL);
+ writel(ctrl | RTC_UNLOCK, rtc->base + RTC_CTRL);
+
+ writel(reg1, rtc->base + RTC_TIME);
+ writel(reg2, rtc->base + RTC_YEAR);
+
+ /* Re-lock and ensure enable is set now that a time is programmed */
+ writel(ctrl | RTC_ENABLE, rtc->base + RTC_CTRL);
+
+ return 0;
+}
+
+static const struct rtc_class_ops aspeed_rtc_ops = {
+ .read_time = aspeed_rtc_read_time,
+ .set_time = aspeed_rtc_set_time,
+};
+
+static int aspeed_rtc_probe(struct platform_device *pdev)
+{
+ struct aspeed_rtc *rtc;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(rtc->base))
+ return PTR_ERR(rtc->base);
+
+ rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc->rtc_dev))
+ return PTR_ERR(rtc->rtc_dev);
+
+ platform_set_drvdata(pdev, rtc);
+
+ rtc->rtc_dev->ops = &aspeed_rtc_ops;
+ rtc->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_1900;
+ rtc->rtc_dev->range_max = 38814989399LL; /* 3199-12-31 23:59:59 */
+
+ return rtc_register_device(rtc->rtc_dev);
+}
+
+static const struct of_device_id aspeed_rtc_match[] = {
+ { .compatible = "aspeed,ast2400-rtc", },
+ { .compatible = "aspeed,ast2500-rtc", },
+ { .compatible = "aspeed,ast2600-rtc", },
+ {}
+};
+MODULE_DEVICE_TABLE(of, aspeed_rtc_match);
+
+static struct platform_driver aspeed_rtc_driver = {
+ .driver = {
+ .name = "aspeed-rtc",
+ .of_match_table = of_match_ptr(aspeed_rtc_match),
+ },
+};
+
+module_platform_driver_probe(aspeed_rtc_driver, aspeed_rtc_probe);
+
+MODULE_DESCRIPTION("ASPEED RTC driver");
+MODULE_AUTHOR("Joel Stanley <joel@jms.id.au>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-at91rm9200.c b/drivers/rtc/rtc-at91rm9200.c
new file mode 100644
index 000000000..5e811e04c
--- /dev/null
+++ b/drivers/rtc/rtc-at91rm9200.c
@@ -0,0 +1,556 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Real Time Clock interface for Linux on Atmel AT91RM9200
+ *
+ * Copyright (C) 2002 Rick Bronson
+ *
+ * Converted to RTC class model by Andrew Victor
+ *
+ * Ported to Linux 2.6 by Steven Scholz
+ * Based on s3c2410-rtc.c Simtec Electronics
+ *
+ * Based on sa1100-rtc.c by Nils Faerber
+ * Based on rtc.c by Paul Gortmaker
+ */
+
+#include <linux/bcd.h>
+#include <linux/bitfield.h>
+#include <linux/clk.h>
+#include <linux/completion.h>
+#include <linux/interrupt.h>
+#include <linux/ioctl.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of_device.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/spinlock.h>
+#include <linux/suspend.h>
+#include <linux/time.h>
+#include <linux/uaccess.h>
+
+#define AT91_RTC_CR 0x00 /* Control Register */
+#define AT91_RTC_UPDTIM BIT(0) /* Update Request Time Register */
+#define AT91_RTC_UPDCAL BIT(1) /* Update Request Calendar Register */
+
+#define AT91_RTC_MR 0x04 /* Mode Register */
+
+#define AT91_RTC_TIMR 0x08 /* Time Register */
+#define AT91_RTC_SEC GENMASK(6, 0) /* Current Second */
+#define AT91_RTC_MIN GENMASK(14, 8) /* Current Minute */
+#define AT91_RTC_HOUR GENMASK(21, 16) /* Current Hour */
+#define AT91_RTC_AMPM BIT(22) /* Ante Meridiem Post Meridiem Indicator */
+
+#define AT91_RTC_CALR 0x0c /* Calendar Register */
+#define AT91_RTC_CENT GENMASK(6, 0) /* Current Century */
+#define AT91_RTC_YEAR GENMASK(15, 8) /* Current Year */
+#define AT91_RTC_MONTH GENMASK(20, 16) /* Current Month */
+#define AT91_RTC_DAY GENMASK(23, 21) /* Current Day */
+#define AT91_RTC_DATE GENMASK(29, 24) /* Current Date */
+
+#define AT91_RTC_TIMALR 0x10 /* Time Alarm Register */
+#define AT91_RTC_SECEN BIT(7) /* Second Alarm Enable */
+#define AT91_RTC_MINEN BIT(15) /* Minute Alarm Enable */
+#define AT91_RTC_HOUREN BIT(23) /* Hour Alarm Enable */
+
+#define AT91_RTC_CALALR 0x14 /* Calendar Alarm Register */
+#define AT91_RTC_MTHEN BIT(23) /* Month Alarm Enable */
+#define AT91_RTC_DATEEN BIT(31) /* Date Alarm Enable */
+
+#define AT91_RTC_SR 0x18 /* Status Register */
+#define AT91_RTC_ACKUPD BIT(0) /* Acknowledge for Update */
+#define AT91_RTC_ALARM BIT(1) /* Alarm Flag */
+#define AT91_RTC_SECEV BIT(2) /* Second Event */
+#define AT91_RTC_TIMEV BIT(3) /* Time Event */
+#define AT91_RTC_CALEV BIT(4) /* Calendar Event */
+
+#define AT91_RTC_SCCR 0x1c /* Status Clear Command Register */
+#define AT91_RTC_IER 0x20 /* Interrupt Enable Register */
+#define AT91_RTC_IDR 0x24 /* Interrupt Disable Register */
+#define AT91_RTC_IMR 0x28 /* Interrupt Mask Register */
+
+#define AT91_RTC_VER 0x2c /* Valid Entry Register */
+#define AT91_RTC_NVTIM BIT(0) /* Non valid Time */
+#define AT91_RTC_NVCAL BIT(1) /* Non valid Calendar */
+#define AT91_RTC_NVTIMALR BIT(2) /* Non valid Time Alarm */
+#define AT91_RTC_NVCALALR BIT(3) /* Non valid Calendar Alarm */
+
+#define at91_rtc_read(field) \
+ readl_relaxed(at91_rtc_regs + field)
+#define at91_rtc_write(field, val) \
+ writel_relaxed((val), at91_rtc_regs + field)
+
+struct at91_rtc_config {
+ bool use_shadow_imr;
+};
+
+static const struct at91_rtc_config *at91_rtc_config;
+static DECLARE_COMPLETION(at91_rtc_updated);
+static DECLARE_COMPLETION(at91_rtc_upd_rdy);
+static void __iomem *at91_rtc_regs;
+static int irq;
+static DEFINE_SPINLOCK(at91_rtc_lock);
+static u32 at91_rtc_shadow_imr;
+static bool suspended;
+static DEFINE_SPINLOCK(suspended_lock);
+static unsigned long cached_events;
+static u32 at91_rtc_imr;
+static struct clk *sclk;
+
+static void at91_rtc_write_ier(u32 mask)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&at91_rtc_lock, flags);
+ at91_rtc_shadow_imr |= mask;
+ at91_rtc_write(AT91_RTC_IER, mask);
+ spin_unlock_irqrestore(&at91_rtc_lock, flags);
+}
+
+static void at91_rtc_write_idr(u32 mask)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&at91_rtc_lock, flags);
+ at91_rtc_write(AT91_RTC_IDR, mask);
+ /*
+ * Register read back (of any RTC-register) needed to make sure
+ * IDR-register write has reached the peripheral before updating
+ * shadow mask.
+ *
+ * Note that there is still a possibility that the mask is updated
+ * before interrupts have actually been disabled in hardware. The only
+ * way to be certain would be to poll the IMR-register, which is is
+ * the very register we are trying to emulate. The register read back
+ * is a reasonable heuristic.
+ */
+ at91_rtc_read(AT91_RTC_SR);
+ at91_rtc_shadow_imr &= ~mask;
+ spin_unlock_irqrestore(&at91_rtc_lock, flags);
+}
+
+static u32 at91_rtc_read_imr(void)
+{
+ unsigned long flags;
+ u32 mask;
+
+ if (at91_rtc_config->use_shadow_imr) {
+ spin_lock_irqsave(&at91_rtc_lock, flags);
+ mask = at91_rtc_shadow_imr;
+ spin_unlock_irqrestore(&at91_rtc_lock, flags);
+ } else {
+ mask = at91_rtc_read(AT91_RTC_IMR);
+ }
+
+ return mask;
+}
+
+/*
+ * Decode time/date into rtc_time structure
+ */
+static void at91_rtc_decodetime(unsigned int timereg, unsigned int calreg,
+ struct rtc_time *tm)
+{
+ unsigned int time, date;
+
+ /* must read twice in case it changes */
+ do {
+ time = at91_rtc_read(timereg);
+ date = at91_rtc_read(calreg);
+ } while ((time != at91_rtc_read(timereg)) ||
+ (date != at91_rtc_read(calreg)));
+
+ tm->tm_sec = bcd2bin(FIELD_GET(AT91_RTC_SEC, time));
+ tm->tm_min = bcd2bin(FIELD_GET(AT91_RTC_MIN, time));
+ tm->tm_hour = bcd2bin(FIELD_GET(AT91_RTC_HOUR, time));
+
+ /*
+ * The Calendar Alarm register does not have a field for
+ * the year - so these will return an invalid value.
+ */
+ tm->tm_year = bcd2bin(date & AT91_RTC_CENT) * 100; /* century */
+ tm->tm_year += bcd2bin(FIELD_GET(AT91_RTC_YEAR, date)); /* year */
+
+ tm->tm_wday = bcd2bin(FIELD_GET(AT91_RTC_DAY, date)) - 1; /* day of the week [0-6], Sunday=0 */
+ tm->tm_mon = bcd2bin(FIELD_GET(AT91_RTC_MONTH, date)) - 1;
+ tm->tm_mday = bcd2bin(FIELD_GET(AT91_RTC_DATE, date));
+}
+
+/*
+ * Read current time and date in RTC
+ */
+static int at91_rtc_readtime(struct device *dev, struct rtc_time *tm)
+{
+ at91_rtc_decodetime(AT91_RTC_TIMR, AT91_RTC_CALR, tm);
+ tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
+ tm->tm_year = tm->tm_year - 1900;
+
+ dev_dbg(dev, "%s(): %ptR\n", __func__, tm);
+
+ return 0;
+}
+
+/*
+ * Set current time and date in RTC
+ */
+static int at91_rtc_settime(struct device *dev, struct rtc_time *tm)
+{
+ unsigned long cr;
+
+ dev_dbg(dev, "%s(): %ptR\n", __func__, tm);
+
+ wait_for_completion(&at91_rtc_upd_rdy);
+
+ /* Stop Time/Calendar from counting */
+ cr = at91_rtc_read(AT91_RTC_CR);
+ at91_rtc_write(AT91_RTC_CR, cr | AT91_RTC_UPDCAL | AT91_RTC_UPDTIM);
+
+ at91_rtc_write_ier(AT91_RTC_ACKUPD);
+ wait_for_completion(&at91_rtc_updated); /* wait for ACKUPD interrupt */
+ at91_rtc_write_idr(AT91_RTC_ACKUPD);
+
+ at91_rtc_write(AT91_RTC_TIMR,
+ FIELD_PREP(AT91_RTC_SEC, bin2bcd(tm->tm_sec))
+ | FIELD_PREP(AT91_RTC_MIN, bin2bcd(tm->tm_min))
+ | FIELD_PREP(AT91_RTC_HOUR, bin2bcd(tm->tm_hour)));
+
+ at91_rtc_write(AT91_RTC_CALR,
+ FIELD_PREP(AT91_RTC_CENT,
+ bin2bcd((tm->tm_year + 1900) / 100))
+ | FIELD_PREP(AT91_RTC_YEAR, bin2bcd(tm->tm_year % 100))
+ | FIELD_PREP(AT91_RTC_MONTH, bin2bcd(tm->tm_mon + 1))
+ | FIELD_PREP(AT91_RTC_DAY, bin2bcd(tm->tm_wday + 1))
+ | FIELD_PREP(AT91_RTC_DATE, bin2bcd(tm->tm_mday)));
+
+ /* Restart Time/Calendar */
+ cr = at91_rtc_read(AT91_RTC_CR);
+ at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_SECEV);
+ at91_rtc_write(AT91_RTC_CR, cr & ~(AT91_RTC_UPDCAL | AT91_RTC_UPDTIM));
+ at91_rtc_write_ier(AT91_RTC_SECEV);
+
+ return 0;
+}
+
+/*
+ * Read alarm time and date in RTC
+ */
+static int at91_rtc_readalarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rtc_time *tm = &alrm->time;
+
+ at91_rtc_decodetime(AT91_RTC_TIMALR, AT91_RTC_CALALR, tm);
+ tm->tm_year = -1;
+
+ alrm->enabled = (at91_rtc_read_imr() & AT91_RTC_ALARM)
+ ? 1 : 0;
+
+ dev_dbg(dev, "%s(): %ptR %sabled\n", __func__, tm,
+ alrm->enabled ? "en" : "dis");
+
+ return 0;
+}
+
+/*
+ * Set alarm time and date in RTC
+ */
+static int at91_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rtc_time tm = alrm->time;
+
+ at91_rtc_write_idr(AT91_RTC_ALARM);
+ at91_rtc_write(AT91_RTC_TIMALR,
+ FIELD_PREP(AT91_RTC_SEC, bin2bcd(alrm->time.tm_sec))
+ | FIELD_PREP(AT91_RTC_MIN, bin2bcd(alrm->time.tm_min))
+ | FIELD_PREP(AT91_RTC_HOUR, bin2bcd(alrm->time.tm_hour))
+ | AT91_RTC_HOUREN | AT91_RTC_MINEN | AT91_RTC_SECEN);
+ at91_rtc_write(AT91_RTC_CALALR,
+ FIELD_PREP(AT91_RTC_MONTH, bin2bcd(alrm->time.tm_mon + 1))
+ | FIELD_PREP(AT91_RTC_DATE, bin2bcd(alrm->time.tm_mday))
+ | AT91_RTC_DATEEN | AT91_RTC_MTHEN);
+
+ if (alrm->enabled) {
+ at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_ALARM);
+ at91_rtc_write_ier(AT91_RTC_ALARM);
+ }
+
+ dev_dbg(dev, "%s(): %ptR\n", __func__, &tm);
+
+ return 0;
+}
+
+static int at91_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ dev_dbg(dev, "%s(): cmd=%08x\n", __func__, enabled);
+
+ if (enabled) {
+ at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_ALARM);
+ at91_rtc_write_ier(AT91_RTC_ALARM);
+ } else
+ at91_rtc_write_idr(AT91_RTC_ALARM);
+
+ return 0;
+}
+
+/*
+ * IRQ handler for the RTC
+ */
+static irqreturn_t at91_rtc_interrupt(int irq, void *dev_id)
+{
+ struct platform_device *pdev = dev_id;
+ struct rtc_device *rtc = platform_get_drvdata(pdev);
+ unsigned int rtsr;
+ unsigned long events = 0;
+ int ret = IRQ_NONE;
+
+ spin_lock(&suspended_lock);
+ rtsr = at91_rtc_read(AT91_RTC_SR) & at91_rtc_read_imr();
+ if (rtsr) { /* this interrupt is shared! Is it ours? */
+ if (rtsr & AT91_RTC_ALARM)
+ events |= (RTC_AF | RTC_IRQF);
+ if (rtsr & AT91_RTC_SECEV) {
+ complete(&at91_rtc_upd_rdy);
+ at91_rtc_write_idr(AT91_RTC_SECEV);
+ }
+ if (rtsr & AT91_RTC_ACKUPD)
+ complete(&at91_rtc_updated);
+
+ at91_rtc_write(AT91_RTC_SCCR, rtsr); /* clear status reg */
+
+ if (!suspended) {
+ rtc_update_irq(rtc, 1, events);
+
+ dev_dbg(&pdev->dev, "%s(): num=%ld, events=0x%02lx\n",
+ __func__, events >> 8, events & 0x000000FF);
+ } else {
+ cached_events |= events;
+ at91_rtc_write_idr(at91_rtc_imr);
+ pm_system_wakeup();
+ }
+
+ ret = IRQ_HANDLED;
+ }
+ spin_unlock(&suspended_lock);
+
+ return ret;
+}
+
+static const struct at91_rtc_config at91rm9200_config = {
+};
+
+static const struct at91_rtc_config at91sam9x5_config = {
+ .use_shadow_imr = true,
+};
+
+static const struct of_device_id at91_rtc_dt_ids[] = {
+ {
+ .compatible = "atmel,at91rm9200-rtc",
+ .data = &at91rm9200_config,
+ }, {
+ .compatible = "atmel,at91sam9x5-rtc",
+ .data = &at91sam9x5_config,
+ }, {
+ .compatible = "atmel,sama5d4-rtc",
+ .data = &at91rm9200_config,
+ }, {
+ .compatible = "atmel,sama5d2-rtc",
+ .data = &at91rm9200_config,
+ }, {
+ /* sentinel */
+ }
+};
+MODULE_DEVICE_TABLE(of, at91_rtc_dt_ids);
+
+static const struct rtc_class_ops at91_rtc_ops = {
+ .read_time = at91_rtc_readtime,
+ .set_time = at91_rtc_settime,
+ .read_alarm = at91_rtc_readalarm,
+ .set_alarm = at91_rtc_setalarm,
+ .alarm_irq_enable = at91_rtc_alarm_irq_enable,
+};
+
+/*
+ * Initialize and install RTC driver
+ */
+static int __init at91_rtc_probe(struct platform_device *pdev)
+{
+ struct rtc_device *rtc;
+ struct resource *regs;
+ int ret = 0;
+
+ at91_rtc_config = of_device_get_match_data(&pdev->dev);
+ if (!at91_rtc_config)
+ return -ENODEV;
+
+ regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!regs) {
+ dev_err(&pdev->dev, "no mmio resource defined\n");
+ return -ENXIO;
+ }
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return -ENXIO;
+
+ at91_rtc_regs = devm_ioremap(&pdev->dev, regs->start,
+ resource_size(regs));
+ if (!at91_rtc_regs) {
+ dev_err(&pdev->dev, "failed to map registers, aborting.\n");
+ return -ENOMEM;
+ }
+
+ rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+ platform_set_drvdata(pdev, rtc);
+
+ sclk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(sclk))
+ return PTR_ERR(sclk);
+
+ ret = clk_prepare_enable(sclk);
+ if (ret) {
+ dev_err(&pdev->dev, "Could not enable slow clock\n");
+ return ret;
+ }
+
+ at91_rtc_write(AT91_RTC_CR, 0);
+ at91_rtc_write(AT91_RTC_MR, 0); /* 24 hour mode */
+
+ /* Disable all interrupts */
+ at91_rtc_write_idr(AT91_RTC_ACKUPD | AT91_RTC_ALARM |
+ AT91_RTC_SECEV | AT91_RTC_TIMEV |
+ AT91_RTC_CALEV);
+
+ ret = devm_request_irq(&pdev->dev, irq, at91_rtc_interrupt,
+ IRQF_SHARED | IRQF_COND_SUSPEND,
+ "at91_rtc", pdev);
+ if (ret) {
+ dev_err(&pdev->dev, "IRQ %d already in use.\n", irq);
+ goto err_clk;
+ }
+
+ /* cpu init code should really have flagged this device as
+ * being wake-capable; if it didn't, do that here.
+ */
+ if (!device_can_wakeup(&pdev->dev))
+ device_init_wakeup(&pdev->dev, 1);
+
+ rtc->ops = &at91_rtc_ops;
+ rtc->range_min = RTC_TIMESTAMP_BEGIN_1900;
+ rtc->range_max = RTC_TIMESTAMP_END_2099;
+ ret = rtc_register_device(rtc);
+ if (ret)
+ goto err_clk;
+
+ /* enable SECEV interrupt in order to initialize at91_rtc_upd_rdy
+ * completion.
+ */
+ at91_rtc_write_ier(AT91_RTC_SECEV);
+
+ dev_info(&pdev->dev, "AT91 Real Time Clock driver.\n");
+ return 0;
+
+err_clk:
+ clk_disable_unprepare(sclk);
+
+ return ret;
+}
+
+/*
+ * Disable and remove the RTC driver
+ */
+static int __exit at91_rtc_remove(struct platform_device *pdev)
+{
+ /* Disable all interrupts */
+ at91_rtc_write_idr(AT91_RTC_ACKUPD | AT91_RTC_ALARM |
+ AT91_RTC_SECEV | AT91_RTC_TIMEV |
+ AT91_RTC_CALEV);
+
+ clk_disable_unprepare(sclk);
+
+ return 0;
+}
+
+static void at91_rtc_shutdown(struct platform_device *pdev)
+{
+ /* Disable all interrupts */
+ at91_rtc_write(AT91_RTC_IDR, AT91_RTC_ACKUPD | AT91_RTC_ALARM |
+ AT91_RTC_SECEV | AT91_RTC_TIMEV |
+ AT91_RTC_CALEV);
+}
+
+#ifdef CONFIG_PM_SLEEP
+
+/* AT91RM9200 RTC Power management control */
+
+static int at91_rtc_suspend(struct device *dev)
+{
+ /* this IRQ is shared with DBGU and other hardware which isn't
+ * necessarily doing PM like we are...
+ */
+ at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_ALARM);
+
+ at91_rtc_imr = at91_rtc_read_imr()
+ & (AT91_RTC_ALARM|AT91_RTC_SECEV);
+ if (at91_rtc_imr) {
+ if (device_may_wakeup(dev)) {
+ unsigned long flags;
+
+ enable_irq_wake(irq);
+
+ spin_lock_irqsave(&suspended_lock, flags);
+ suspended = true;
+ spin_unlock_irqrestore(&suspended_lock, flags);
+ } else {
+ at91_rtc_write_idr(at91_rtc_imr);
+ }
+ }
+ return 0;
+}
+
+static int at91_rtc_resume(struct device *dev)
+{
+ struct rtc_device *rtc = dev_get_drvdata(dev);
+
+ if (at91_rtc_imr) {
+ if (device_may_wakeup(dev)) {
+ unsigned long flags;
+
+ spin_lock_irqsave(&suspended_lock, flags);
+
+ if (cached_events) {
+ rtc_update_irq(rtc, 1, cached_events);
+ cached_events = 0;
+ }
+
+ suspended = false;
+ spin_unlock_irqrestore(&suspended_lock, flags);
+
+ disable_irq_wake(irq);
+ }
+ at91_rtc_write_ier(at91_rtc_imr);
+ }
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(at91_rtc_pm_ops, at91_rtc_suspend, at91_rtc_resume);
+
+static struct platform_driver at91_rtc_driver = {
+ .remove = __exit_p(at91_rtc_remove),
+ .shutdown = at91_rtc_shutdown,
+ .driver = {
+ .name = "at91_rtc",
+ .pm = &at91_rtc_pm_ops,
+ .of_match_table = of_match_ptr(at91_rtc_dt_ids),
+ },
+};
+
+module_platform_driver_probe(at91_rtc_driver, at91_rtc_probe);
+
+MODULE_AUTHOR("Rick Bronson");
+MODULE_DESCRIPTION("RTC driver for Atmel AT91RM9200");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:at91_rtc");
diff --git a/drivers/rtc/rtc-at91sam9.c b/drivers/rtc/rtc-at91sam9.c
new file mode 100644
index 000000000..e39e89867
--- /dev/null
+++ b/drivers/rtc/rtc-at91sam9.c
@@ -0,0 +1,547 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * "RTT as Real Time Clock" driver for AT91SAM9 SoC family
+ *
+ * (C) 2007 Michel Benoit
+ *
+ * Based on rtc-at91rm9200.c by Rick Bronson
+ */
+
+#include <linux/clk.h>
+#include <linux/interrupt.h>
+#include <linux/ioctl.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/mfd/syscon.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/regmap.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+#include <linux/suspend.h>
+#include <linux/time.h>
+
+/*
+ * This driver uses two configurable hardware resources that live in the
+ * AT91SAM9 backup power domain (intended to be powered at all times)
+ * to implement the Real Time Clock interfaces
+ *
+ * - A "Real-time Timer" (RTT) counts up in seconds from a base time.
+ * We can't assign the counter value (CRTV) ... but we can reset it.
+ *
+ * - One of the "General Purpose Backup Registers" (GPBRs) holds the
+ * base time, normally an offset from the beginning of the POSIX
+ * epoch (1970-Jan-1 00:00:00 UTC). Some systems also include the
+ * local timezone's offset.
+ *
+ * The RTC's value is the RTT counter plus that offset. The RTC's alarm
+ * is likewise a base (ALMV) plus that offset.
+ *
+ * Not all RTTs will be used as RTCs; some systems have multiple RTTs to
+ * choose from, or a "real" RTC module. All systems have multiple GPBR
+ * registers available, likewise usable for more than "RTC" support.
+ */
+
+#define AT91_RTT_MR 0x00 /* Real-time Mode Register */
+#define AT91_RTT_RTPRES (0xffff << 0) /* Timer Prescaler Value */
+#define AT91_RTT_ALMIEN BIT(16) /* Alarm Interrupt Enable */
+#define AT91_RTT_RTTINCIEN BIT(17) /* Increment Interrupt Enable */
+#define AT91_RTT_RTTRST BIT(18) /* Timer Restart */
+
+#define AT91_RTT_AR 0x04 /* Real-time Alarm Register */
+#define AT91_RTT_ALMV (0xffffffff) /* Alarm Value */
+
+#define AT91_RTT_VR 0x08 /* Real-time Value Register */
+#define AT91_RTT_CRTV (0xffffffff) /* Current Real-time Value */
+
+#define AT91_RTT_SR 0x0c /* Real-time Status Register */
+#define AT91_RTT_ALMS BIT(0) /* Alarm Status */
+#define AT91_RTT_RTTINC BIT(1) /* Timer Increment */
+
+/*
+ * We store ALARM_DISABLED in ALMV to record that no alarm is set.
+ * It's also the reset value for that field.
+ */
+#define ALARM_DISABLED ((u32)~0)
+
+struct sam9_rtc {
+ void __iomem *rtt;
+ struct rtc_device *rtcdev;
+ u32 imr;
+ struct regmap *gpbr;
+ unsigned int gpbr_offset;
+ int irq;
+ struct clk *sclk;
+ bool suspended;
+ unsigned long events;
+ spinlock_t lock;
+};
+
+#define rtt_readl(rtc, field) \
+ readl((rtc)->rtt + AT91_RTT_ ## field)
+#define rtt_writel(rtc, field, val) \
+ writel((val), (rtc)->rtt + AT91_RTT_ ## field)
+
+static inline unsigned int gpbr_readl(struct sam9_rtc *rtc)
+{
+ unsigned int val;
+
+ regmap_read(rtc->gpbr, rtc->gpbr_offset, &val);
+
+ return val;
+}
+
+static inline void gpbr_writel(struct sam9_rtc *rtc, unsigned int val)
+{
+ regmap_write(rtc->gpbr, rtc->gpbr_offset, val);
+}
+
+/*
+ * Read current time and date in RTC
+ */
+static int at91_rtc_readtime(struct device *dev, struct rtc_time *tm)
+{
+ struct sam9_rtc *rtc = dev_get_drvdata(dev);
+ u32 secs, secs2;
+ u32 offset;
+
+ /* read current time offset */
+ offset = gpbr_readl(rtc);
+ if (offset == 0)
+ return -EILSEQ;
+
+ /* reread the counter to help sync the two clock domains */
+ secs = rtt_readl(rtc, VR);
+ secs2 = rtt_readl(rtc, VR);
+ if (secs != secs2)
+ secs = rtt_readl(rtc, VR);
+
+ rtc_time64_to_tm(offset + secs, tm);
+
+ dev_dbg(dev, "%s: %ptR\n", __func__, tm);
+
+ return 0;
+}
+
+/*
+ * Set current time and date in RTC
+ */
+static int at91_rtc_settime(struct device *dev, struct rtc_time *tm)
+{
+ struct sam9_rtc *rtc = dev_get_drvdata(dev);
+ u32 offset, alarm, mr;
+ unsigned long secs;
+
+ dev_dbg(dev, "%s: %ptR\n", __func__, tm);
+
+ secs = rtc_tm_to_time64(tm);
+
+ mr = rtt_readl(rtc, MR);
+
+ /* disable interrupts */
+ rtt_writel(rtc, MR, mr & ~(AT91_RTT_ALMIEN | AT91_RTT_RTTINCIEN));
+
+ /* read current time offset */
+ offset = gpbr_readl(rtc);
+
+ /* store the new base time in a battery backup register */
+ secs += 1;
+ gpbr_writel(rtc, secs);
+
+ /* adjust the alarm time for the new base */
+ alarm = rtt_readl(rtc, AR);
+ if (alarm != ALARM_DISABLED) {
+ if (offset > secs) {
+ /* time jumped backwards, increase time until alarm */
+ alarm += (offset - secs);
+ } else if ((alarm + offset) > secs) {
+ /* time jumped forwards, decrease time until alarm */
+ alarm -= (secs - offset);
+ } else {
+ /* time jumped past the alarm, disable alarm */
+ alarm = ALARM_DISABLED;
+ mr &= ~AT91_RTT_ALMIEN;
+ }
+ rtt_writel(rtc, AR, alarm);
+ }
+
+ /* reset the timer, and re-enable interrupts */
+ rtt_writel(rtc, MR, mr | AT91_RTT_RTTRST);
+
+ return 0;
+}
+
+static int at91_rtc_readalarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct sam9_rtc *rtc = dev_get_drvdata(dev);
+ struct rtc_time *tm = &alrm->time;
+ u32 alarm = rtt_readl(rtc, AR);
+ u32 offset;
+
+ offset = gpbr_readl(rtc);
+ if (offset == 0)
+ return -EILSEQ;
+
+ memset(alrm, 0, sizeof(*alrm));
+ if (alarm != ALARM_DISABLED && offset != 0) {
+ rtc_time64_to_tm(offset + alarm, tm);
+
+ dev_dbg(dev, "%s: %ptR\n", __func__, tm);
+
+ if (rtt_readl(rtc, MR) & AT91_RTT_ALMIEN)
+ alrm->enabled = 1;
+ }
+
+ return 0;
+}
+
+static int at91_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct sam9_rtc *rtc = dev_get_drvdata(dev);
+ struct rtc_time *tm = &alrm->time;
+ unsigned long secs;
+ u32 offset;
+ u32 mr;
+
+ secs = rtc_tm_to_time64(tm);
+
+ offset = gpbr_readl(rtc);
+ if (offset == 0) {
+ /* time is not set */
+ return -EILSEQ;
+ }
+ mr = rtt_readl(rtc, MR);
+ rtt_writel(rtc, MR, mr & ~AT91_RTT_ALMIEN);
+
+ /* alarm in the past? finish and leave disabled */
+ if (secs <= offset) {
+ rtt_writel(rtc, AR, ALARM_DISABLED);
+ return 0;
+ }
+
+ /* else set alarm and maybe enable it */
+ rtt_writel(rtc, AR, secs - offset);
+ if (alrm->enabled)
+ rtt_writel(rtc, MR, mr | AT91_RTT_ALMIEN);
+
+ dev_dbg(dev, "%s: %ptR\n", __func__, tm);
+
+ return 0;
+}
+
+static int at91_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct sam9_rtc *rtc = dev_get_drvdata(dev);
+ u32 mr = rtt_readl(rtc, MR);
+
+ dev_dbg(dev, "alarm_irq_enable: enabled=%08x, mr %08x\n", enabled, mr);
+ if (enabled)
+ rtt_writel(rtc, MR, mr | AT91_RTT_ALMIEN);
+ else
+ rtt_writel(rtc, MR, mr & ~AT91_RTT_ALMIEN);
+ return 0;
+}
+
+/*
+ * Provide additional RTC information in /proc/driver/rtc
+ */
+static int at91_rtc_proc(struct device *dev, struct seq_file *seq)
+{
+ struct sam9_rtc *rtc = dev_get_drvdata(dev);
+ u32 mr = rtt_readl(rtc, MR);
+
+ seq_printf(seq, "update_IRQ\t: %s\n",
+ (mr & AT91_RTT_RTTINCIEN) ? "yes" : "no");
+ return 0;
+}
+
+static irqreturn_t at91_rtc_cache_events(struct sam9_rtc *rtc)
+{
+ u32 sr, mr;
+
+ /* Shared interrupt may be for another device. Note: reading
+ * SR clears it, so we must only read it in this irq handler!
+ */
+ mr = rtt_readl(rtc, MR) & (AT91_RTT_ALMIEN | AT91_RTT_RTTINCIEN);
+ sr = rtt_readl(rtc, SR) & (mr >> 16);
+ if (!sr)
+ return IRQ_NONE;
+
+ /* alarm status */
+ if (sr & AT91_RTT_ALMS)
+ rtc->events |= (RTC_AF | RTC_IRQF);
+
+ /* timer update/increment */
+ if (sr & AT91_RTT_RTTINC)
+ rtc->events |= (RTC_UF | RTC_IRQF);
+
+ return IRQ_HANDLED;
+}
+
+static void at91_rtc_flush_events(struct sam9_rtc *rtc)
+{
+ if (!rtc->events)
+ return;
+
+ rtc_update_irq(rtc->rtcdev, 1, rtc->events);
+ rtc->events = 0;
+
+ pr_debug("%s: num=%ld, events=0x%02lx\n", __func__,
+ rtc->events >> 8, rtc->events & 0x000000FF);
+}
+
+/*
+ * IRQ handler for the RTC
+ */
+static irqreturn_t at91_rtc_interrupt(int irq, void *_rtc)
+{
+ struct sam9_rtc *rtc = _rtc;
+ int ret;
+
+ spin_lock(&rtc->lock);
+
+ ret = at91_rtc_cache_events(rtc);
+
+ /* We're called in suspended state */
+ if (rtc->suspended) {
+ /* Mask irqs coming from this peripheral */
+ rtt_writel(rtc, MR,
+ rtt_readl(rtc, MR) &
+ ~(AT91_RTT_ALMIEN | AT91_RTT_RTTINCIEN));
+ /* Trigger a system wakeup */
+ pm_system_wakeup();
+ } else {
+ at91_rtc_flush_events(rtc);
+ }
+
+ spin_unlock(&rtc->lock);
+
+ return ret;
+}
+
+static const struct rtc_class_ops at91_rtc_ops = {
+ .read_time = at91_rtc_readtime,
+ .set_time = at91_rtc_settime,
+ .read_alarm = at91_rtc_readalarm,
+ .set_alarm = at91_rtc_setalarm,
+ .proc = at91_rtc_proc,
+ .alarm_irq_enable = at91_rtc_alarm_irq_enable,
+};
+
+/*
+ * Initialize and install RTC driver
+ */
+static int at91_rtc_probe(struct platform_device *pdev)
+{
+ struct sam9_rtc *rtc;
+ int ret, irq;
+ u32 mr;
+ unsigned int sclk_rate;
+ struct of_phandle_args args;
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return irq;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ spin_lock_init(&rtc->lock);
+ rtc->irq = irq;
+
+ /* platform setup code should have handled this; sigh */
+ if (!device_can_wakeup(&pdev->dev))
+ device_init_wakeup(&pdev->dev, 1);
+
+ platform_set_drvdata(pdev, rtc);
+
+ rtc->rtt = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(rtc->rtt))
+ return PTR_ERR(rtc->rtt);
+
+ ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node,
+ "atmel,rtt-rtc-time-reg", 1, 0,
+ &args);
+ if (ret)
+ return ret;
+
+ rtc->gpbr = syscon_node_to_regmap(args.np);
+ rtc->gpbr_offset = args.args[0];
+ if (IS_ERR(rtc->gpbr)) {
+ dev_err(&pdev->dev, "failed to retrieve gpbr regmap, aborting.\n");
+ return -ENOMEM;
+ }
+
+ rtc->sclk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(rtc->sclk))
+ return PTR_ERR(rtc->sclk);
+
+ ret = clk_prepare_enable(rtc->sclk);
+ if (ret) {
+ dev_err(&pdev->dev, "Could not enable slow clock\n");
+ return ret;
+ }
+
+ sclk_rate = clk_get_rate(rtc->sclk);
+ if (!sclk_rate || sclk_rate > AT91_RTT_RTPRES) {
+ dev_err(&pdev->dev, "Invalid slow clock rate\n");
+ ret = -EINVAL;
+ goto err_clk;
+ }
+
+ mr = rtt_readl(rtc, MR);
+
+ /* unless RTT is counting at 1 Hz, re-initialize it */
+ if ((mr & AT91_RTT_RTPRES) != sclk_rate) {
+ mr = AT91_RTT_RTTRST | (sclk_rate & AT91_RTT_RTPRES);
+ gpbr_writel(rtc, 0);
+ }
+
+ /* disable all interrupts (same as on shutdown path) */
+ mr &= ~(AT91_RTT_ALMIEN | AT91_RTT_RTTINCIEN);
+ rtt_writel(rtc, MR, mr);
+
+ rtc->rtcdev = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc->rtcdev)) {
+ ret = PTR_ERR(rtc->rtcdev);
+ goto err_clk;
+ }
+
+ rtc->rtcdev->ops = &at91_rtc_ops;
+ rtc->rtcdev->range_max = U32_MAX;
+
+ /* register irq handler after we know what name we'll use */
+ ret = devm_request_irq(&pdev->dev, rtc->irq, at91_rtc_interrupt,
+ IRQF_SHARED | IRQF_COND_SUSPEND,
+ dev_name(&rtc->rtcdev->dev), rtc);
+ if (ret) {
+ dev_dbg(&pdev->dev, "can't share IRQ %d?\n", rtc->irq);
+ goto err_clk;
+ }
+
+ /* NOTE: sam9260 rev A silicon has a ROM bug which resets the
+ * RTT on at least some reboots. If you have that chip, you must
+ * initialize the time from some external source like a GPS, wall
+ * clock, discrete RTC, etc
+ */
+
+ if (gpbr_readl(rtc) == 0)
+ dev_warn(&pdev->dev, "%s: SET TIME!\n",
+ dev_name(&rtc->rtcdev->dev));
+
+ return rtc_register_device(rtc->rtcdev);
+
+err_clk:
+ clk_disable_unprepare(rtc->sclk);
+
+ return ret;
+}
+
+/*
+ * Disable and remove the RTC driver
+ */
+static int at91_rtc_remove(struct platform_device *pdev)
+{
+ struct sam9_rtc *rtc = platform_get_drvdata(pdev);
+ u32 mr = rtt_readl(rtc, MR);
+
+ /* disable all interrupts */
+ rtt_writel(rtc, MR, mr & ~(AT91_RTT_ALMIEN | AT91_RTT_RTTINCIEN));
+
+ clk_disable_unprepare(rtc->sclk);
+
+ return 0;
+}
+
+static void at91_rtc_shutdown(struct platform_device *pdev)
+{
+ struct sam9_rtc *rtc = platform_get_drvdata(pdev);
+ u32 mr = rtt_readl(rtc, MR);
+
+ rtc->imr = mr & (AT91_RTT_ALMIEN | AT91_RTT_RTTINCIEN);
+ rtt_writel(rtc, MR, mr & ~rtc->imr);
+}
+
+#ifdef CONFIG_PM_SLEEP
+
+/* AT91SAM9 RTC Power management control */
+
+static int at91_rtc_suspend(struct device *dev)
+{
+ struct sam9_rtc *rtc = dev_get_drvdata(dev);
+ u32 mr = rtt_readl(rtc, MR);
+
+ /*
+ * This IRQ is shared with DBGU and other hardware which isn't
+ * necessarily a wakeup event source.
+ */
+ rtc->imr = mr & (AT91_RTT_ALMIEN | AT91_RTT_RTTINCIEN);
+ if (rtc->imr) {
+ if (device_may_wakeup(dev) && (mr & AT91_RTT_ALMIEN)) {
+ unsigned long flags;
+
+ enable_irq_wake(rtc->irq);
+ spin_lock_irqsave(&rtc->lock, flags);
+ rtc->suspended = true;
+ spin_unlock_irqrestore(&rtc->lock, flags);
+ /* don't let RTTINC cause wakeups */
+ if (mr & AT91_RTT_RTTINCIEN)
+ rtt_writel(rtc, MR, mr & ~AT91_RTT_RTTINCIEN);
+ } else {
+ rtt_writel(rtc, MR, mr & ~rtc->imr);
+ }
+ }
+
+ return 0;
+}
+
+static int at91_rtc_resume(struct device *dev)
+{
+ struct sam9_rtc *rtc = dev_get_drvdata(dev);
+ u32 mr;
+
+ if (rtc->imr) {
+ unsigned long flags;
+
+ if (device_may_wakeup(dev))
+ disable_irq_wake(rtc->irq);
+ mr = rtt_readl(rtc, MR);
+ rtt_writel(rtc, MR, mr | rtc->imr);
+
+ spin_lock_irqsave(&rtc->lock, flags);
+ rtc->suspended = false;
+ at91_rtc_cache_events(rtc);
+ at91_rtc_flush_events(rtc);
+ spin_unlock_irqrestore(&rtc->lock, flags);
+ }
+
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(at91_rtc_pm_ops, at91_rtc_suspend, at91_rtc_resume);
+
+static const struct of_device_id at91_rtc_dt_ids[] = {
+ { .compatible = "atmel,at91sam9260-rtt" },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, at91_rtc_dt_ids);
+
+static struct platform_driver at91_rtc_driver = {
+ .probe = at91_rtc_probe,
+ .remove = at91_rtc_remove,
+ .shutdown = at91_rtc_shutdown,
+ .driver = {
+ .name = "rtc-at91sam9",
+ .pm = &at91_rtc_pm_ops,
+ .of_match_table = of_match_ptr(at91_rtc_dt_ids),
+ },
+};
+
+module_platform_driver(at91_rtc_driver);
+
+MODULE_AUTHOR("Michel Benoit");
+MODULE_DESCRIPTION("RTC driver for Atmel AT91SAM9x");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-au1xxx.c b/drivers/rtc/rtc-au1xxx.c
new file mode 100644
index 000000000..791bebcb6
--- /dev/null
+++ b/drivers/rtc/rtc-au1xxx.c
@@ -0,0 +1,121 @@
+/*
+ * Au1xxx counter0 (aka Time-Of-Year counter) RTC interface driver.
+ *
+ * Copyright (C) 2008 Manuel Lauss <mano@roarinelk.homelinux.net>
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ */
+
+/* All current Au1xxx SoCs have 2 counters fed by an external 32.768 kHz
+ * crystal. Counter 0, which keeps counting during sleep/powerdown, is
+ * used to count seconds since the beginning of the unix epoch.
+ *
+ * The counters must be configured and enabled by bootloader/board code;
+ * no checks as to whether they really get a proper 32.768kHz clock are
+ * made as this would take far too long.
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/rtc.h>
+#include <linux/init.h>
+#include <linux/platform_device.h>
+#include <linux/io.h>
+#include <asm/mach-au1x00/au1000.h>
+
+/* 32kHz clock enabled and detected */
+#define CNTR_OK (SYS_CNTRL_E0 | SYS_CNTRL_32S)
+
+static int au1xtoy_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ unsigned long t;
+
+ t = alchemy_rdsys(AU1000_SYS_TOYREAD);
+
+ rtc_time64_to_tm(t, tm);
+
+ return 0;
+}
+
+static int au1xtoy_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ unsigned long t;
+
+ t = rtc_tm_to_time64(tm);
+
+ alchemy_wrsys(t, AU1000_SYS_TOYWRITE);
+
+ /* wait for the pending register write to succeed. This can
+ * take up to 6 seconds...
+ */
+ while (alchemy_rdsys(AU1000_SYS_CNTRCTRL) & SYS_CNTRL_C0S)
+ msleep(1);
+
+ return 0;
+}
+
+static const struct rtc_class_ops au1xtoy_rtc_ops = {
+ .read_time = au1xtoy_rtc_read_time,
+ .set_time = au1xtoy_rtc_set_time,
+};
+
+static int au1xtoy_rtc_probe(struct platform_device *pdev)
+{
+ struct rtc_device *rtcdev;
+ unsigned long t;
+
+ t = alchemy_rdsys(AU1000_SYS_CNTRCTRL);
+ if (!(t & CNTR_OK)) {
+ dev_err(&pdev->dev, "counters not working; aborting.\n");
+ return -ENODEV;
+ }
+
+ /* set counter0 tickrate to 1Hz if necessary */
+ if (alchemy_rdsys(AU1000_SYS_TOYTRIM) != 32767) {
+ /* wait until hardware gives access to TRIM register */
+ t = 0x00100000;
+ while ((alchemy_rdsys(AU1000_SYS_CNTRCTRL) & SYS_CNTRL_T0S) && --t)
+ msleep(1);
+
+ if (!t) {
+ /* timed out waiting for register access; assume
+ * counters are unusable.
+ */
+ dev_err(&pdev->dev, "timeout waiting for access\n");
+ return -ETIMEDOUT;
+ }
+
+ /* set 1Hz TOY tick rate */
+ alchemy_wrsys(32767, AU1000_SYS_TOYTRIM);
+ }
+
+ /* wait until the hardware allows writes to the counter reg */
+ while (alchemy_rdsys(AU1000_SYS_CNTRCTRL) & SYS_CNTRL_C0S)
+ msleep(1);
+
+ rtcdev = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtcdev))
+ return PTR_ERR(rtcdev);
+
+ rtcdev->ops = &au1xtoy_rtc_ops;
+ rtcdev->range_max = U32_MAX;
+
+ platform_set_drvdata(pdev, rtcdev);
+
+ return rtc_register_device(rtcdev);
+}
+
+static struct platform_driver au1xrtc_driver = {
+ .driver = {
+ .name = "rtc-au1xxx",
+ },
+};
+
+module_platform_driver_probe(au1xrtc_driver, au1xtoy_rtc_probe);
+
+MODULE_DESCRIPTION("Au1xxx TOY-counter-based RTC driver");
+MODULE_AUTHOR("Manuel Lauss <manuel.lauss@gmail.com>");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:rtc-au1xxx");
diff --git a/drivers/rtc/rtc-bd70528.c b/drivers/rtc/rtc-bd70528.c
new file mode 100644
index 000000000..4492b7704
--- /dev/null
+++ b/drivers/rtc/rtc-bd70528.c
@@ -0,0 +1,630 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+//
+// Copyright (C) 2018 ROHM Semiconductors
+//
+// RTC driver for ROHM BD70528 PMIC
+
+#include <linux/bcd.h>
+#include <linux/mfd/rohm-bd70528.h>
+#include <linux/mfd/rohm-bd71828.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/regmap.h>
+#include <linux/rtc.h>
+
+/*
+ * We read regs RTC_SEC => RTC_YEAR
+ * this struct is ordered according to chip registers.
+ * Keep it u8 only (or packed) to avoid padding issues.
+ */
+struct bd70528_rtc_day {
+ u8 sec;
+ u8 min;
+ u8 hour;
+} __packed;
+
+struct bd70528_rtc_data {
+ struct bd70528_rtc_day time;
+ u8 week;
+ u8 day;
+ u8 month;
+ u8 year;
+} __packed;
+
+struct bd70528_rtc_wake {
+ struct bd70528_rtc_day time;
+ u8 ctrl;
+} __packed;
+
+struct bd71828_rtc_alm {
+ struct bd70528_rtc_data alm0;
+ struct bd70528_rtc_data alm1;
+ u8 alm_mask;
+ u8 alm1_mask;
+} __packed;
+
+struct bd70528_rtc_alm {
+ struct bd70528_rtc_data data;
+ u8 alm_mask;
+ u8 alm_repeat;
+} __packed;
+
+struct bd70528_rtc {
+ struct rohm_regmap_dev *parent;
+ struct device *dev;
+ u8 reg_time_start;
+ bool has_rtc_timers;
+};
+
+static int bd70528_set_wake(struct rohm_regmap_dev *bd70528,
+ int enable, int *old_state)
+{
+ int ret;
+ unsigned int ctrl_reg;
+
+ ret = regmap_read(bd70528->regmap, BD70528_REG_WAKE_EN, &ctrl_reg);
+ if (ret)
+ return ret;
+
+ if (old_state) {
+ if (ctrl_reg & BD70528_MASK_WAKE_EN)
+ *old_state |= BD70528_WAKE_STATE_BIT;
+ else
+ *old_state &= ~BD70528_WAKE_STATE_BIT;
+
+ if (!enable == !(*old_state & BD70528_WAKE_STATE_BIT))
+ return 0;
+ }
+
+ if (enable)
+ ctrl_reg |= BD70528_MASK_WAKE_EN;
+ else
+ ctrl_reg &= ~BD70528_MASK_WAKE_EN;
+
+ return regmap_write(bd70528->regmap, BD70528_REG_WAKE_EN,
+ ctrl_reg);
+}
+
+static int bd70528_set_elapsed_tmr(struct rohm_regmap_dev *bd70528,
+ int enable, int *old_state)
+{
+ int ret;
+ unsigned int ctrl_reg;
+
+ /*
+ * TBD
+ * What is the purpose of elapsed timer ?
+ * Is the timeout registers counting down, or is the disable - re-enable
+ * going to restart the elapsed-time counting? If counting is restarted
+ * the timeout should be decreased by the amount of time that has
+ * elapsed since starting the timer. Maybe we should store the monotonic
+ * clock value when timer is started so that if RTC is set while timer
+ * is armed we could do the compensation. This is a hack if RTC/system
+ * clk are drifting. OTOH, RTC controlled via I2C is in any case
+ * inaccurate...
+ */
+ ret = regmap_read(bd70528->regmap, BD70528_REG_ELAPSED_TIMER_EN,
+ &ctrl_reg);
+ if (ret)
+ return ret;
+
+ if (old_state) {
+ if (ctrl_reg & BD70528_MASK_ELAPSED_TIMER_EN)
+ *old_state |= BD70528_ELAPSED_STATE_BIT;
+ else
+ *old_state &= ~BD70528_ELAPSED_STATE_BIT;
+
+ if ((!enable) == (!(*old_state & BD70528_ELAPSED_STATE_BIT)))
+ return 0;
+ }
+
+ if (enable)
+ ctrl_reg |= BD70528_MASK_ELAPSED_TIMER_EN;
+ else
+ ctrl_reg &= ~BD70528_MASK_ELAPSED_TIMER_EN;
+
+ return regmap_write(bd70528->regmap, BD70528_REG_ELAPSED_TIMER_EN,
+ ctrl_reg);
+}
+
+static int bd70528_set_rtc_based_timers(struct bd70528_rtc *r, int new_state,
+ int *old_state)
+{
+ int ret;
+
+ ret = bd70528_wdt_set(r->parent, new_state & BD70528_WDT_STATE_BIT,
+ old_state);
+ if (ret) {
+ dev_err(r->dev,
+ "Failed to disable WDG for RTC setting (%d)\n", ret);
+ return ret;
+ }
+ ret = bd70528_set_elapsed_tmr(r->parent,
+ new_state & BD70528_ELAPSED_STATE_BIT,
+ old_state);
+ if (ret) {
+ dev_err(r->dev,
+ "Failed to disable 'elapsed timer' for RTC setting\n");
+ return ret;
+ }
+ ret = bd70528_set_wake(r->parent, new_state & BD70528_WAKE_STATE_BIT,
+ old_state);
+ if (ret) {
+ dev_err(r->dev,
+ "Failed to disable 'wake timer' for RTC setting\n");
+ return ret;
+ }
+
+ return ret;
+}
+
+static int bd70528_re_enable_rtc_based_timers(struct bd70528_rtc *r,
+ int old_state)
+{
+ if (!r->has_rtc_timers)
+ return 0;
+
+ return bd70528_set_rtc_based_timers(r, old_state, NULL);
+}
+
+static int bd70528_disable_rtc_based_timers(struct bd70528_rtc *r,
+ int *old_state)
+{
+ if (!r->has_rtc_timers)
+ return 0;
+
+ return bd70528_set_rtc_based_timers(r, 0, old_state);
+}
+
+static inline void tmday2rtc(struct rtc_time *t, struct bd70528_rtc_day *d)
+{
+ d->sec &= ~BD70528_MASK_RTC_SEC;
+ d->min &= ~BD70528_MASK_RTC_MINUTE;
+ d->hour &= ~BD70528_MASK_RTC_HOUR;
+ d->sec |= bin2bcd(t->tm_sec);
+ d->min |= bin2bcd(t->tm_min);
+ d->hour |= bin2bcd(t->tm_hour);
+}
+
+static inline void tm2rtc(struct rtc_time *t, struct bd70528_rtc_data *r)
+{
+ r->day &= ~BD70528_MASK_RTC_DAY;
+ r->week &= ~BD70528_MASK_RTC_WEEK;
+ r->month &= ~BD70528_MASK_RTC_MONTH;
+ /*
+ * PM and 24H bits are not used by Wake - thus we clear them
+ * here and not in tmday2rtc() which is also used by wake.
+ */
+ r->time.hour &= ~(BD70528_MASK_RTC_HOUR_PM | BD70528_MASK_RTC_HOUR_24H);
+
+ tmday2rtc(t, &r->time);
+ /*
+ * We do always set time in 24H mode.
+ */
+ r->time.hour |= BD70528_MASK_RTC_HOUR_24H;
+ r->day |= bin2bcd(t->tm_mday);
+ r->week |= bin2bcd(t->tm_wday);
+ r->month |= bin2bcd(t->tm_mon + 1);
+ r->year = bin2bcd(t->tm_year - 100);
+}
+
+static inline void rtc2tm(struct bd70528_rtc_data *r, struct rtc_time *t)
+{
+ t->tm_sec = bcd2bin(r->time.sec & BD70528_MASK_RTC_SEC);
+ t->tm_min = bcd2bin(r->time.min & BD70528_MASK_RTC_MINUTE);
+ t->tm_hour = bcd2bin(r->time.hour & BD70528_MASK_RTC_HOUR);
+ /*
+ * If RTC is in 12H mode, then bit BD70528_MASK_RTC_HOUR_PM
+ * is not BCD value but tells whether it is AM or PM
+ */
+ if (!(r->time.hour & BD70528_MASK_RTC_HOUR_24H)) {
+ t->tm_hour %= 12;
+ if (r->time.hour & BD70528_MASK_RTC_HOUR_PM)
+ t->tm_hour += 12;
+ }
+ t->tm_mday = bcd2bin(r->day & BD70528_MASK_RTC_DAY);
+ t->tm_mon = bcd2bin(r->month & BD70528_MASK_RTC_MONTH) - 1;
+ t->tm_year = 100 + bcd2bin(r->year & BD70528_MASK_RTC_YEAR);
+ t->tm_wday = bcd2bin(r->week & BD70528_MASK_RTC_WEEK);
+}
+
+static int bd71828_set_alarm(struct device *dev, struct rtc_wkalrm *a)
+{
+ int ret;
+ struct bd71828_rtc_alm alm;
+ struct bd70528_rtc *r = dev_get_drvdata(dev);
+ struct rohm_regmap_dev *parent = r->parent;
+
+ ret = regmap_bulk_read(parent->regmap, BD71828_REG_RTC_ALM_START,
+ &alm, sizeof(alm));
+ if (ret) {
+ dev_err(dev, "Failed to read alarm regs\n");
+ return ret;
+ }
+
+ tm2rtc(&a->time, &alm.alm0);
+
+ if (!a->enabled)
+ alm.alm_mask &= ~BD70528_MASK_ALM_EN;
+ else
+ alm.alm_mask |= BD70528_MASK_ALM_EN;
+
+ ret = regmap_bulk_write(parent->regmap, BD71828_REG_RTC_ALM_START,
+ &alm, sizeof(alm));
+ if (ret)
+ dev_err(dev, "Failed to set alarm time\n");
+
+ return ret;
+
+}
+
+static int bd70528_set_alarm(struct device *dev, struct rtc_wkalrm *a)
+{
+ struct bd70528_rtc_wake wake;
+ struct bd70528_rtc_alm alm;
+ int ret;
+ struct bd70528_rtc *r = dev_get_drvdata(dev);
+ struct rohm_regmap_dev *parent = r->parent;
+
+ ret = regmap_bulk_read(parent->regmap, BD70528_REG_RTC_WAKE_START,
+ &wake, sizeof(wake));
+ if (ret) {
+ dev_err(dev, "Failed to read wake regs\n");
+ return ret;
+ }
+
+ ret = regmap_bulk_read(parent->regmap, BD70528_REG_RTC_ALM_START,
+ &alm, sizeof(alm));
+ if (ret) {
+ dev_err(dev, "Failed to read alarm regs\n");
+ return ret;
+ }
+
+ tm2rtc(&a->time, &alm.data);
+ tmday2rtc(&a->time, &wake.time);
+
+ if (a->enabled) {
+ alm.alm_mask &= ~BD70528_MASK_ALM_EN;
+ wake.ctrl |= BD70528_MASK_WAKE_EN;
+ } else {
+ alm.alm_mask |= BD70528_MASK_ALM_EN;
+ wake.ctrl &= ~BD70528_MASK_WAKE_EN;
+ }
+
+ ret = regmap_bulk_write(parent->regmap,
+ BD70528_REG_RTC_WAKE_START, &wake,
+ sizeof(wake));
+ if (ret) {
+ dev_err(dev, "Failed to set wake time\n");
+ return ret;
+ }
+ ret = regmap_bulk_write(parent->regmap, BD70528_REG_RTC_ALM_START,
+ &alm, sizeof(alm));
+ if (ret)
+ dev_err(dev, "Failed to set alarm time\n");
+
+ return ret;
+}
+
+static int bd71828_read_alarm(struct device *dev, struct rtc_wkalrm *a)
+{
+ int ret;
+ struct bd71828_rtc_alm alm;
+ struct bd70528_rtc *r = dev_get_drvdata(dev);
+ struct rohm_regmap_dev *parent = r->parent;
+
+ ret = regmap_bulk_read(parent->regmap, BD71828_REG_RTC_ALM_START,
+ &alm, sizeof(alm));
+ if (ret) {
+ dev_err(dev, "Failed to read alarm regs\n");
+ return ret;
+ }
+
+ rtc2tm(&alm.alm0, &a->time);
+ a->time.tm_mday = -1;
+ a->time.tm_mon = -1;
+ a->time.tm_year = -1;
+ a->enabled = !!(alm.alm_mask & BD70528_MASK_ALM_EN);
+ a->pending = 0;
+
+ return 0;
+}
+
+static int bd70528_read_alarm(struct device *dev, struct rtc_wkalrm *a)
+{
+ struct bd70528_rtc_alm alm;
+ int ret;
+ struct bd70528_rtc *r = dev_get_drvdata(dev);
+ struct rohm_regmap_dev *parent = r->parent;
+
+ ret = regmap_bulk_read(parent->regmap, BD70528_REG_RTC_ALM_START,
+ &alm, sizeof(alm));
+ if (ret) {
+ dev_err(dev, "Failed to read alarm regs\n");
+ return ret;
+ }
+
+ rtc2tm(&alm.data, &a->time);
+ a->time.tm_mday = -1;
+ a->time.tm_mon = -1;
+ a->time.tm_year = -1;
+ a->enabled = !(alm.alm_mask & BD70528_MASK_ALM_EN);
+ a->pending = 0;
+
+ return 0;
+}
+
+static int bd70528_set_time_locked(struct device *dev, struct rtc_time *t)
+{
+ int ret, tmpret, old_states;
+ struct bd70528_rtc_data rtc_data;
+ struct bd70528_rtc *r = dev_get_drvdata(dev);
+ struct rohm_regmap_dev *parent = r->parent;
+
+ ret = bd70528_disable_rtc_based_timers(r, &old_states);
+ if (ret)
+ return ret;
+
+ tmpret = regmap_bulk_read(parent->regmap,
+ r->reg_time_start, &rtc_data,
+ sizeof(rtc_data));
+ if (tmpret) {
+ dev_err(dev, "Failed to read RTC time registers\n");
+ goto renable_out;
+ }
+ tm2rtc(t, &rtc_data);
+
+ tmpret = regmap_bulk_write(parent->regmap,
+ r->reg_time_start, &rtc_data,
+ sizeof(rtc_data));
+ if (tmpret) {
+ dev_err(dev, "Failed to set RTC time\n");
+ goto renable_out;
+ }
+
+renable_out:
+ ret = bd70528_re_enable_rtc_based_timers(r, old_states);
+ if (tmpret)
+ ret = tmpret;
+
+ return ret;
+}
+
+static int bd71828_set_time(struct device *dev, struct rtc_time *t)
+{
+ return bd70528_set_time_locked(dev, t);
+}
+
+static int bd70528_set_time(struct device *dev, struct rtc_time *t)
+{
+ int ret;
+ struct bd70528_rtc *r = dev_get_drvdata(dev);
+
+ bd70528_wdt_lock(r->parent);
+ ret = bd70528_set_time_locked(dev, t);
+ bd70528_wdt_unlock(r->parent);
+ return ret;
+}
+
+static int bd70528_get_time(struct device *dev, struct rtc_time *t)
+{
+ struct bd70528_rtc *r = dev_get_drvdata(dev);
+ struct rohm_regmap_dev *parent = r->parent;
+ struct bd70528_rtc_data rtc_data;
+ int ret;
+
+ /* read the RTC date and time registers all at once */
+ ret = regmap_bulk_read(parent->regmap,
+ r->reg_time_start, &rtc_data,
+ sizeof(rtc_data));
+ if (ret) {
+ dev_err(dev, "Failed to read RTC time (err %d)\n", ret);
+ return ret;
+ }
+
+ rtc2tm(&rtc_data, t);
+
+ return 0;
+}
+
+static int bd70528_alm_enable(struct device *dev, unsigned int enabled)
+{
+ int ret;
+ unsigned int enableval = BD70528_MASK_ALM_EN;
+ struct bd70528_rtc *r = dev_get_drvdata(dev);
+
+ if (enabled)
+ enableval = 0;
+
+ bd70528_wdt_lock(r->parent);
+ ret = bd70528_set_wake(r->parent, enabled, NULL);
+ if (ret) {
+ dev_err(dev, "Failed to change wake state\n");
+ goto out_unlock;
+ }
+ ret = regmap_update_bits(r->parent->regmap, BD70528_REG_RTC_ALM_MASK,
+ BD70528_MASK_ALM_EN, enableval);
+ if (ret)
+ dev_err(dev, "Failed to change alarm state\n");
+
+out_unlock:
+ bd70528_wdt_unlock(r->parent);
+ return ret;
+}
+
+static int bd71828_alm_enable(struct device *dev, unsigned int enabled)
+{
+ int ret;
+ struct bd70528_rtc *r = dev_get_drvdata(dev);
+ unsigned int enableval = BD70528_MASK_ALM_EN;
+
+ if (!enabled)
+ enableval = 0;
+
+ ret = regmap_update_bits(r->parent->regmap, BD71828_REG_RTC_ALM0_MASK,
+ BD70528_MASK_ALM_EN, enableval);
+ if (ret)
+ dev_err(dev, "Failed to change alarm state\n");
+
+ return ret;
+}
+
+static const struct rtc_class_ops bd70528_rtc_ops = {
+ .read_time = bd70528_get_time,
+ .set_time = bd70528_set_time,
+ .read_alarm = bd70528_read_alarm,
+ .set_alarm = bd70528_set_alarm,
+ .alarm_irq_enable = bd70528_alm_enable,
+};
+
+static const struct rtc_class_ops bd71828_rtc_ops = {
+ .read_time = bd70528_get_time,
+ .set_time = bd71828_set_time,
+ .read_alarm = bd71828_read_alarm,
+ .set_alarm = bd71828_set_alarm,
+ .alarm_irq_enable = bd71828_alm_enable,
+};
+
+static irqreturn_t alm_hndlr(int irq, void *data)
+{
+ struct rtc_device *rtc = data;
+
+ rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF | RTC_PF);
+ return IRQ_HANDLED;
+}
+
+static int bd70528_probe(struct platform_device *pdev)
+{
+ struct bd70528_rtc *bd_rtc;
+ const struct rtc_class_ops *rtc_ops;
+ struct rohm_regmap_dev *parent;
+ const char *irq_name;
+ int ret;
+ struct rtc_device *rtc;
+ int irq;
+ unsigned int hr;
+ bool enable_main_irq = false;
+ u8 hour_reg;
+ enum rohm_chip_type chip = platform_get_device_id(pdev)->driver_data;
+
+ parent = dev_get_drvdata(pdev->dev.parent);
+ if (!parent) {
+ dev_err(&pdev->dev, "No MFD driver data\n");
+ return -EINVAL;
+ }
+ bd_rtc = devm_kzalloc(&pdev->dev, sizeof(*bd_rtc), GFP_KERNEL);
+ if (!bd_rtc)
+ return -ENOMEM;
+
+ bd_rtc->parent = parent;
+ bd_rtc->dev = &pdev->dev;
+
+ switch (chip) {
+ case ROHM_CHIP_TYPE_BD70528:
+ irq_name = "bd70528-rtc-alm";
+ bd_rtc->has_rtc_timers = true;
+ bd_rtc->reg_time_start = BD70528_REG_RTC_START;
+ hour_reg = BD70528_REG_RTC_HOUR;
+ enable_main_irq = true;
+ rtc_ops = &bd70528_rtc_ops;
+ break;
+ case ROHM_CHIP_TYPE_BD71828:
+ irq_name = "bd71828-rtc-alm-0";
+ bd_rtc->reg_time_start = BD71828_REG_RTC_START;
+ hour_reg = BD71828_REG_RTC_HOUR;
+ rtc_ops = &bd71828_rtc_ops;
+ break;
+ default:
+ dev_err(&pdev->dev, "Unknown chip\n");
+ return -ENOENT;
+ }
+
+ irq = platform_get_irq_byname(pdev, irq_name);
+
+ if (irq < 0)
+ return irq;
+
+ platform_set_drvdata(pdev, bd_rtc);
+
+ ret = regmap_read(parent->regmap, hour_reg, &hr);
+
+ if (ret) {
+ dev_err(&pdev->dev, "Failed to reag RTC clock\n");
+ return ret;
+ }
+
+ if (!(hr & BD70528_MASK_RTC_HOUR_24H)) {
+ struct rtc_time t;
+
+ ret = rtc_ops->read_time(&pdev->dev, &t);
+
+ if (!ret)
+ ret = rtc_ops->set_time(&pdev->dev, &t);
+
+ if (ret) {
+ dev_err(&pdev->dev,
+ "Setting 24H clock for RTC failed\n");
+ return ret;
+ }
+ }
+
+ device_set_wakeup_capable(&pdev->dev, true);
+ device_wakeup_enable(&pdev->dev);
+
+ rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc)) {
+ dev_err(&pdev->dev, "RTC device creation failed\n");
+ return PTR_ERR(rtc);
+ }
+
+ rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ rtc->range_max = RTC_TIMESTAMP_END_2099;
+ rtc->ops = rtc_ops;
+
+ /* Request alarm IRQ prior to registerig the RTC */
+ ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, &alm_hndlr,
+ IRQF_ONESHOT, "bd70528-rtc", rtc);
+ if (ret)
+ return ret;
+
+ /*
+ * BD70528 irq controller is not touching the main mask register.
+ * So enable the RTC block interrupts at main level. We can just
+ * leave them enabled as irq-controller should disable irqs
+ * from sub-registers when IRQ is disabled or freed.
+ */
+ if (enable_main_irq) {
+ ret = regmap_update_bits(parent->regmap,
+ BD70528_REG_INT_MAIN_MASK,
+ BD70528_INT_RTC_MASK, 0);
+ if (ret) {
+ dev_err(&pdev->dev, "Failed to enable RTC interrupts\n");
+ return ret;
+ }
+ }
+
+ return rtc_register_device(rtc);
+}
+
+static const struct platform_device_id bd718x7_rtc_id[] = {
+ { "bd70528-rtc", ROHM_CHIP_TYPE_BD70528 },
+ { "bd71828-rtc", ROHM_CHIP_TYPE_BD71828 },
+ { },
+};
+MODULE_DEVICE_TABLE(platform, bd718x7_rtc_id);
+
+static struct platform_driver bd70528_rtc = {
+ .driver = {
+ .name = "bd70528-rtc"
+ },
+ .probe = bd70528_probe,
+ .id_table = bd718x7_rtc_id,
+};
+
+module_platform_driver(bd70528_rtc);
+
+MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>");
+MODULE_DESCRIPTION("ROHM BD70528 and BD71828 PMIC RTC driver");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:bd70528-rtc");
diff --git a/drivers/rtc/rtc-bq32k.c b/drivers/rtc/rtc-bq32k.c
new file mode 100644
index 000000000..933e42372
--- /dev/null
+++ b/drivers/rtc/rtc-bq32k.c
@@ -0,0 +1,334 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Driver for TI BQ32000 RTC.
+ *
+ * Copyright (C) 2009 Semihalf.
+ * Copyright (C) 2014 Pavel Machek <pavel@denx.de>
+ *
+ * You can get hardware description at
+ * https://www.ti.com/lit/ds/symlink/bq32000.pdf
+ */
+
+#include <linux/module.h>
+#include <linux/i2c.h>
+#include <linux/rtc.h>
+#include <linux/init.h>
+#include <linux/errno.h>
+#include <linux/bcd.h>
+
+#define BQ32K_SECONDS 0x00 /* Seconds register address */
+#define BQ32K_SECONDS_MASK 0x7F /* Mask over seconds value */
+#define BQ32K_STOP 0x80 /* Oscillator Stop flat */
+
+#define BQ32K_MINUTES 0x01 /* Minutes register address */
+#define BQ32K_MINUTES_MASK 0x7F /* Mask over minutes value */
+#define BQ32K_OF 0x80 /* Oscillator Failure flag */
+
+#define BQ32K_HOURS_MASK 0x3F /* Mask over hours value */
+#define BQ32K_CENT 0x40 /* Century flag */
+#define BQ32K_CENT_EN 0x80 /* Century flag enable bit */
+
+#define BQ32K_CALIBRATION 0x07 /* CAL_CFG1, calibration and control */
+#define BQ32K_TCH2 0x08 /* Trickle charge enable */
+#define BQ32K_CFG2 0x09 /* Trickle charger control */
+#define BQ32K_TCFE BIT(6) /* Trickle charge FET bypass */
+
+#define MAX_LEN 10 /* Maximum number of consecutive
+ * register for this particular RTC.
+ */
+
+struct bq32k_regs {
+ uint8_t seconds;
+ uint8_t minutes;
+ uint8_t cent_hours;
+ uint8_t day;
+ uint8_t date;
+ uint8_t month;
+ uint8_t years;
+};
+
+static struct i2c_driver bq32k_driver;
+
+static int bq32k_read(struct device *dev, void *data, uint8_t off, uint8_t len)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct i2c_msg msgs[] = {
+ {
+ .addr = client->addr,
+ .flags = 0,
+ .len = 1,
+ .buf = &off,
+ }, {
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = len,
+ .buf = data,
+ }
+ };
+
+ if (i2c_transfer(client->adapter, msgs, 2) == 2)
+ return 0;
+
+ return -EIO;
+}
+
+static int bq32k_write(struct device *dev, void *data, uint8_t off, uint8_t len)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ uint8_t buffer[MAX_LEN + 1];
+
+ buffer[0] = off;
+ memcpy(&buffer[1], data, len);
+
+ if (i2c_master_send(client, buffer, len + 1) == len + 1)
+ return 0;
+
+ return -EIO;
+}
+
+static int bq32k_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct bq32k_regs regs;
+ int error;
+
+ error = bq32k_read(dev, &regs, 0, sizeof(regs));
+ if (error)
+ return error;
+
+ /*
+ * In case of oscillator failure, the register contents should be
+ * considered invalid. The flag is cleared the next time the RTC is set.
+ */
+ if (regs.minutes & BQ32K_OF)
+ return -EINVAL;
+
+ tm->tm_sec = bcd2bin(regs.seconds & BQ32K_SECONDS_MASK);
+ tm->tm_min = bcd2bin(regs.minutes & BQ32K_MINUTES_MASK);
+ tm->tm_hour = bcd2bin(regs.cent_hours & BQ32K_HOURS_MASK);
+ tm->tm_mday = bcd2bin(regs.date);
+ tm->tm_wday = bcd2bin(regs.day) - 1;
+ tm->tm_mon = bcd2bin(regs.month) - 1;
+ tm->tm_year = bcd2bin(regs.years) +
+ ((regs.cent_hours & BQ32K_CENT) ? 100 : 0);
+
+ return 0;
+}
+
+static int bq32k_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct bq32k_regs regs;
+
+ regs.seconds = bin2bcd(tm->tm_sec);
+ regs.minutes = bin2bcd(tm->tm_min);
+ regs.cent_hours = bin2bcd(tm->tm_hour) | BQ32K_CENT_EN;
+ regs.day = bin2bcd(tm->tm_wday + 1);
+ regs.date = bin2bcd(tm->tm_mday);
+ regs.month = bin2bcd(tm->tm_mon + 1);
+
+ if (tm->tm_year >= 100) {
+ regs.cent_hours |= BQ32K_CENT;
+ regs.years = bin2bcd(tm->tm_year - 100);
+ } else
+ regs.years = bin2bcd(tm->tm_year);
+
+ return bq32k_write(dev, &regs, 0, sizeof(regs));
+}
+
+static const struct rtc_class_ops bq32k_rtc_ops = {
+ .read_time = bq32k_rtc_read_time,
+ .set_time = bq32k_rtc_set_time,
+};
+
+static int trickle_charger_of_init(struct device *dev, struct device_node *node)
+{
+ unsigned char reg;
+ int error;
+ u32 ohms = 0;
+
+ if (of_property_read_u32(node, "trickle-resistor-ohms" , &ohms))
+ return 0;
+
+ switch (ohms) {
+ case 180+940:
+ /*
+ * TCHE[3:0] == 0x05, TCH2 == 1, TCFE == 0 (charging
+ * over diode and 940ohm resistor)
+ */
+
+ if (of_property_read_bool(node, "trickle-diode-disable")) {
+ dev_err(dev, "diode and resistor mismatch\n");
+ return -EINVAL;
+ }
+ reg = 0x05;
+ break;
+
+ case 180+20000:
+ /* diode disabled */
+
+ if (!of_property_read_bool(node, "trickle-diode-disable")) {
+ dev_err(dev, "bq32k: diode and resistor mismatch\n");
+ return -EINVAL;
+ }
+ reg = 0x45;
+ break;
+
+ default:
+ dev_err(dev, "invalid resistor value (%d)\n", ohms);
+ return -EINVAL;
+ }
+
+ error = bq32k_write(dev, &reg, BQ32K_CFG2, 1);
+ if (error)
+ return error;
+
+ reg = 0x20;
+ error = bq32k_write(dev, &reg, BQ32K_TCH2, 1);
+ if (error)
+ return error;
+
+ dev_info(dev, "Enabled trickle RTC battery charge.\n");
+ return 0;
+}
+
+static ssize_t bq32k_sysfs_show_tricklecharge_bypass(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ int reg, error;
+
+ error = bq32k_read(dev, &reg, BQ32K_CFG2, 1);
+ if (error)
+ return error;
+
+ return sprintf(buf, "%d\n", (reg & BQ32K_TCFE) ? 1 : 0);
+}
+
+static ssize_t bq32k_sysfs_store_tricklecharge_bypass(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ int reg, enable, error;
+
+ if (kstrtoint(buf, 0, &enable))
+ return -EINVAL;
+
+ error = bq32k_read(dev, &reg, BQ32K_CFG2, 1);
+ if (error)
+ return error;
+
+ if (enable) {
+ reg |= BQ32K_TCFE;
+ error = bq32k_write(dev, &reg, BQ32K_CFG2, 1);
+ if (error)
+ return error;
+
+ dev_info(dev, "Enabled trickle charge FET bypass.\n");
+ } else {
+ reg &= ~BQ32K_TCFE;
+ error = bq32k_write(dev, &reg, BQ32K_CFG2, 1);
+ if (error)
+ return error;
+
+ dev_info(dev, "Disabled trickle charge FET bypass.\n");
+ }
+
+ return count;
+}
+
+static DEVICE_ATTR(trickle_charge_bypass, 0644,
+ bq32k_sysfs_show_tricklecharge_bypass,
+ bq32k_sysfs_store_tricklecharge_bypass);
+
+static int bq32k_sysfs_register(struct device *dev)
+{
+ return device_create_file(dev, &dev_attr_trickle_charge_bypass);
+}
+
+static void bq32k_sysfs_unregister(struct device *dev)
+{
+ device_remove_file(dev, &dev_attr_trickle_charge_bypass);
+}
+
+static int bq32k_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct device *dev = &client->dev;
+ struct rtc_device *rtc;
+ uint8_t reg;
+ int error;
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
+ return -ENODEV;
+
+ /* Check Oscillator Stop flag */
+ error = bq32k_read(dev, &reg, BQ32K_SECONDS, 1);
+ if (!error && (reg & BQ32K_STOP)) {
+ dev_warn(dev, "Oscillator was halted. Restarting...\n");
+ reg &= ~BQ32K_STOP;
+ error = bq32k_write(dev, &reg, BQ32K_SECONDS, 1);
+ }
+ if (error)
+ return error;
+
+ /* Check Oscillator Failure flag */
+ error = bq32k_read(dev, &reg, BQ32K_MINUTES, 1);
+ if (error)
+ return error;
+ if (reg & BQ32K_OF)
+ dev_warn(dev, "Oscillator Failure. Check RTC battery.\n");
+
+ if (client->dev.of_node)
+ trickle_charger_of_init(dev, client->dev.of_node);
+
+ rtc = devm_rtc_device_register(&client->dev, bq32k_driver.driver.name,
+ &bq32k_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ error = bq32k_sysfs_register(&client->dev);
+ if (error) {
+ dev_err(&client->dev,
+ "Unable to create sysfs entries for rtc bq32000\n");
+ return error;
+ }
+
+
+ i2c_set_clientdata(client, rtc);
+
+ return 0;
+}
+
+static int bq32k_remove(struct i2c_client *client)
+{
+ bq32k_sysfs_unregister(&client->dev);
+
+ return 0;
+}
+
+static const struct i2c_device_id bq32k_id[] = {
+ { "bq32000", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, bq32k_id);
+
+static const struct of_device_id bq32k_of_match[] = {
+ { .compatible = "ti,bq32000" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, bq32k_of_match);
+
+static struct i2c_driver bq32k_driver = {
+ .driver = {
+ .name = "bq32k",
+ .of_match_table = of_match_ptr(bq32k_of_match),
+ },
+ .probe = bq32k_probe,
+ .remove = bq32k_remove,
+ .id_table = bq32k_id,
+};
+
+module_i2c_driver(bq32k_driver);
+
+MODULE_AUTHOR("Semihalf, Piotr Ziecik <kosmo@semihalf.com>");
+MODULE_DESCRIPTION("TI BQ32000 I2C RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-bq4802.c b/drivers/rtc/rtc-bq4802.c
new file mode 100644
index 000000000..472e75668
--- /dev/null
+++ b/drivers/rtc/rtc-bq4802.c
@@ -0,0 +1,202 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* rtc-bq4802.c: TI BQ4802 RTC driver.
+ *
+ * Copyright (C) 2008 David S. Miller <davem@davemloft.net>
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/bcd.h>
+#include <linux/slab.h>
+
+MODULE_AUTHOR("David S. Miller <davem@davemloft.net>");
+MODULE_DESCRIPTION("TI BQ4802 RTC driver");
+MODULE_LICENSE("GPL");
+
+struct bq4802 {
+ void __iomem *regs;
+ unsigned long ioport;
+ struct rtc_device *rtc;
+ spinlock_t lock;
+ struct resource *r;
+ u8 (*read)(struct bq4802 *, int);
+ void (*write)(struct bq4802 *, int, u8);
+};
+
+static u8 bq4802_read_io(struct bq4802 *p, int off)
+{
+ return inb(p->ioport + off);
+}
+
+static void bq4802_write_io(struct bq4802 *p, int off, u8 val)
+{
+ outb(val, p->ioport + off);
+}
+
+static u8 bq4802_read_mem(struct bq4802 *p, int off)
+{
+ return readb(p->regs + off);
+}
+
+static void bq4802_write_mem(struct bq4802 *p, int off, u8 val)
+{
+ writeb(val, p->regs + off);
+}
+
+static int bq4802_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct bq4802 *p = dev_get_drvdata(dev);
+ unsigned long flags;
+ unsigned int century;
+ u8 val;
+
+ spin_lock_irqsave(&p->lock, flags);
+
+ val = p->read(p, 0x0e);
+ p->write(p, 0xe, val | 0x08);
+
+ tm->tm_sec = p->read(p, 0x00);
+ tm->tm_min = p->read(p, 0x02);
+ tm->tm_hour = p->read(p, 0x04);
+ tm->tm_mday = p->read(p, 0x06);
+ tm->tm_mon = p->read(p, 0x09);
+ tm->tm_year = p->read(p, 0x0a);
+ tm->tm_wday = p->read(p, 0x08);
+ century = p->read(p, 0x0f);
+
+ p->write(p, 0x0e, val);
+
+ spin_unlock_irqrestore(&p->lock, flags);
+
+ tm->tm_sec = bcd2bin(tm->tm_sec);
+ tm->tm_min = bcd2bin(tm->tm_min);
+ tm->tm_hour = bcd2bin(tm->tm_hour);
+ tm->tm_mday = bcd2bin(tm->tm_mday);
+ tm->tm_mon = bcd2bin(tm->tm_mon);
+ tm->tm_year = bcd2bin(tm->tm_year);
+ tm->tm_wday = bcd2bin(tm->tm_wday);
+ century = bcd2bin(century);
+
+ tm->tm_year += (century * 100);
+ tm->tm_year -= 1900;
+
+ tm->tm_mon--;
+
+ return 0;
+}
+
+static int bq4802_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct bq4802 *p = dev_get_drvdata(dev);
+ u8 sec, min, hrs, day, mon, yrs, century, val;
+ unsigned long flags;
+ unsigned int year;
+
+ year = tm->tm_year + 1900;
+ century = year / 100;
+ yrs = year % 100;
+
+ mon = tm->tm_mon + 1; /* tm_mon starts at zero */
+ day = tm->tm_mday;
+ hrs = tm->tm_hour;
+ min = tm->tm_min;
+ sec = tm->tm_sec;
+
+ sec = bin2bcd(sec);
+ min = bin2bcd(min);
+ hrs = bin2bcd(hrs);
+ day = bin2bcd(day);
+ mon = bin2bcd(mon);
+ yrs = bin2bcd(yrs);
+ century = bin2bcd(century);
+
+ spin_lock_irqsave(&p->lock, flags);
+
+ val = p->read(p, 0x0e);
+ p->write(p, 0x0e, val | 0x08);
+
+ p->write(p, 0x00, sec);
+ p->write(p, 0x02, min);
+ p->write(p, 0x04, hrs);
+ p->write(p, 0x06, day);
+ p->write(p, 0x09, mon);
+ p->write(p, 0x0a, yrs);
+ p->write(p, 0x0f, century);
+
+ p->write(p, 0x0e, val);
+
+ spin_unlock_irqrestore(&p->lock, flags);
+
+ return 0;
+}
+
+static const struct rtc_class_ops bq4802_ops = {
+ .read_time = bq4802_read_time,
+ .set_time = bq4802_set_time,
+};
+
+static int bq4802_probe(struct platform_device *pdev)
+{
+ struct bq4802 *p = devm_kzalloc(&pdev->dev, sizeof(*p), GFP_KERNEL);
+ int err = -ENOMEM;
+
+ if (!p)
+ goto out;
+
+ spin_lock_init(&p->lock);
+
+ p->r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!p->r) {
+ p->r = platform_get_resource(pdev, IORESOURCE_IO, 0);
+ err = -EINVAL;
+ if (!p->r)
+ goto out;
+ }
+ if (p->r->flags & IORESOURCE_IO) {
+ p->ioport = p->r->start;
+ p->read = bq4802_read_io;
+ p->write = bq4802_write_io;
+ } else if (p->r->flags & IORESOURCE_MEM) {
+ p->regs = devm_ioremap(&pdev->dev, p->r->start,
+ resource_size(p->r));
+ if (!p->regs){
+ err = -ENOMEM;
+ goto out;
+ }
+ p->read = bq4802_read_mem;
+ p->write = bq4802_write_mem;
+ } else {
+ err = -EINVAL;
+ goto out;
+ }
+
+ platform_set_drvdata(pdev, p);
+
+ p->rtc = devm_rtc_device_register(&pdev->dev, "bq4802",
+ &bq4802_ops, THIS_MODULE);
+ if (IS_ERR(p->rtc)) {
+ err = PTR_ERR(p->rtc);
+ goto out;
+ }
+
+ err = 0;
+out:
+ return err;
+
+}
+
+/* work with hotplug and coldplug */
+MODULE_ALIAS("platform:rtc-bq4802");
+
+static struct platform_driver bq4802_driver = {
+ .driver = {
+ .name = "rtc-bq4802",
+ },
+ .probe = bq4802_probe,
+};
+
+module_platform_driver(bq4802_driver);
diff --git a/drivers/rtc/rtc-brcmstb-waketimer.c b/drivers/rtc/rtc-brcmstb-waketimer.c
new file mode 100644
index 000000000..4fee57c51
--- /dev/null
+++ b/drivers/rtc/rtc-brcmstb-waketimer.c
@@ -0,0 +1,329 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright © 2014-2017 Broadcom
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/clk.h>
+#include <linux/device.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/irqreturn.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/pm.h>
+#include <linux/pm_wakeup.h>
+#include <linux/reboot.h>
+#include <linux/rtc.h>
+#include <linux/stat.h>
+#include <linux/suspend.h>
+
+struct brcmstb_waketmr {
+ struct rtc_device *rtc;
+ struct device *dev;
+ void __iomem *base;
+ int irq;
+ struct notifier_block reboot_notifier;
+ struct clk *clk;
+ u32 rate;
+};
+
+#define BRCMSTB_WKTMR_EVENT 0x00
+#define BRCMSTB_WKTMR_COUNTER 0x04
+#define BRCMSTB_WKTMR_ALARM 0x08
+#define BRCMSTB_WKTMR_PRESCALER 0x0C
+#define BRCMSTB_WKTMR_PRESCALER_VAL 0x10
+
+#define BRCMSTB_WKTMR_DEFAULT_FREQ 27000000
+
+static inline void brcmstb_waketmr_clear_alarm(struct brcmstb_waketmr *timer)
+{
+ writel_relaxed(1, timer->base + BRCMSTB_WKTMR_EVENT);
+ (void)readl_relaxed(timer->base + BRCMSTB_WKTMR_EVENT);
+}
+
+static void brcmstb_waketmr_set_alarm(struct brcmstb_waketmr *timer,
+ unsigned int secs)
+{
+ brcmstb_waketmr_clear_alarm(timer);
+
+ /* Make sure we are actually counting in seconds */
+ writel_relaxed(timer->rate, timer->base + BRCMSTB_WKTMR_PRESCALER);
+
+ writel_relaxed(secs + 1, timer->base + BRCMSTB_WKTMR_ALARM);
+}
+
+static irqreturn_t brcmstb_waketmr_irq(int irq, void *data)
+{
+ struct brcmstb_waketmr *timer = data;
+
+ pm_wakeup_event(timer->dev, 0);
+
+ return IRQ_HANDLED;
+}
+
+struct wktmr_time {
+ u32 sec;
+ u32 pre;
+};
+
+static void wktmr_read(struct brcmstb_waketmr *timer,
+ struct wktmr_time *t)
+{
+ u32 tmp;
+
+ do {
+ t->sec = readl_relaxed(timer->base + BRCMSTB_WKTMR_COUNTER);
+ tmp = readl_relaxed(timer->base + BRCMSTB_WKTMR_PRESCALER_VAL);
+ } while (tmp >= timer->rate);
+
+ t->pre = timer->rate - tmp;
+}
+
+static int brcmstb_waketmr_prepare_suspend(struct brcmstb_waketmr *timer)
+{
+ struct device *dev = timer->dev;
+ int ret = 0;
+
+ if (device_may_wakeup(dev)) {
+ ret = enable_irq_wake(timer->irq);
+ if (ret) {
+ dev_err(dev, "failed to enable wake-up interrupt\n");
+ return ret;
+ }
+ }
+
+ return ret;
+}
+
+/* If enabled as a wakeup-source, arm the timer when powering off */
+static int brcmstb_waketmr_reboot(struct notifier_block *nb,
+ unsigned long action, void *data)
+{
+ struct brcmstb_waketmr *timer;
+
+ timer = container_of(nb, struct brcmstb_waketmr, reboot_notifier);
+
+ /* Set timer for cold boot */
+ if (action == SYS_POWER_OFF)
+ brcmstb_waketmr_prepare_suspend(timer);
+
+ return NOTIFY_DONE;
+}
+
+static int brcmstb_waketmr_gettime(struct device *dev,
+ struct rtc_time *tm)
+{
+ struct brcmstb_waketmr *timer = dev_get_drvdata(dev);
+ struct wktmr_time now;
+
+ wktmr_read(timer, &now);
+
+ rtc_time64_to_tm(now.sec, tm);
+
+ return 0;
+}
+
+static int brcmstb_waketmr_settime(struct device *dev,
+ struct rtc_time *tm)
+{
+ struct brcmstb_waketmr *timer = dev_get_drvdata(dev);
+ time64_t sec;
+
+ sec = rtc_tm_to_time64(tm);
+
+ writel_relaxed(sec, timer->base + BRCMSTB_WKTMR_COUNTER);
+
+ return 0;
+}
+
+static int brcmstb_waketmr_getalarm(struct device *dev,
+ struct rtc_wkalrm *alarm)
+{
+ struct brcmstb_waketmr *timer = dev_get_drvdata(dev);
+ time64_t sec;
+ u32 reg;
+
+ sec = readl_relaxed(timer->base + BRCMSTB_WKTMR_ALARM);
+ if (sec != 0) {
+ /* Alarm is enabled */
+ alarm->enabled = 1;
+ rtc_time64_to_tm(sec, &alarm->time);
+ }
+
+ reg = readl_relaxed(timer->base + BRCMSTB_WKTMR_EVENT);
+ alarm->pending = !!(reg & 1);
+
+ return 0;
+}
+
+static int brcmstb_waketmr_setalarm(struct device *dev,
+ struct rtc_wkalrm *alarm)
+{
+ struct brcmstb_waketmr *timer = dev_get_drvdata(dev);
+ time64_t sec;
+
+ if (alarm->enabled)
+ sec = rtc_tm_to_time64(&alarm->time);
+ else
+ sec = 0;
+
+ brcmstb_waketmr_set_alarm(timer, sec);
+
+ return 0;
+}
+
+/*
+ * Does not do much but keep the RTC class happy. We always support
+ * alarms.
+ */
+static int brcmstb_waketmr_alarm_enable(struct device *dev,
+ unsigned int enabled)
+{
+ return 0;
+}
+
+static const struct rtc_class_ops brcmstb_waketmr_ops = {
+ .read_time = brcmstb_waketmr_gettime,
+ .set_time = brcmstb_waketmr_settime,
+ .read_alarm = brcmstb_waketmr_getalarm,
+ .set_alarm = brcmstb_waketmr_setalarm,
+ .alarm_irq_enable = brcmstb_waketmr_alarm_enable,
+};
+
+static int brcmstb_waketmr_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct brcmstb_waketmr *timer;
+ int ret;
+
+ timer = devm_kzalloc(dev, sizeof(*timer), GFP_KERNEL);
+ if (!timer)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, timer);
+ timer->dev = dev;
+
+ timer->base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(timer->base))
+ return PTR_ERR(timer->base);
+
+ timer->rtc = devm_rtc_allocate_device(dev);
+ if (IS_ERR(timer->rtc))
+ return PTR_ERR(timer->rtc);
+
+ /*
+ * Set wakeup capability before requesting wakeup interrupt, so we can
+ * process boot-time "wakeups" (e.g., from S5 soft-off)
+ */
+ device_set_wakeup_capable(dev, true);
+ device_wakeup_enable(dev);
+
+ timer->irq = platform_get_irq(pdev, 0);
+ if (timer->irq < 0)
+ return -ENODEV;
+
+ timer->clk = devm_clk_get(dev, NULL);
+ if (!IS_ERR(timer->clk)) {
+ ret = clk_prepare_enable(timer->clk);
+ if (ret)
+ return ret;
+ timer->rate = clk_get_rate(timer->clk);
+ if (!timer->rate)
+ timer->rate = BRCMSTB_WKTMR_DEFAULT_FREQ;
+ } else {
+ timer->rate = BRCMSTB_WKTMR_DEFAULT_FREQ;
+ timer->clk = NULL;
+ }
+
+ ret = devm_request_irq(dev, timer->irq, brcmstb_waketmr_irq, 0,
+ "brcmstb-waketimer", timer);
+ if (ret < 0)
+ goto err_clk;
+
+ timer->reboot_notifier.notifier_call = brcmstb_waketmr_reboot;
+ register_reboot_notifier(&timer->reboot_notifier);
+
+ timer->rtc->ops = &brcmstb_waketmr_ops;
+ timer->rtc->range_max = U32_MAX;
+
+ ret = rtc_register_device(timer->rtc);
+ if (ret)
+ goto err_notifier;
+
+ dev_info(dev, "registered, with irq %d\n", timer->irq);
+
+ return 0;
+
+err_notifier:
+ unregister_reboot_notifier(&timer->reboot_notifier);
+
+err_clk:
+ if (timer->clk)
+ clk_disable_unprepare(timer->clk);
+
+ return ret;
+}
+
+static int brcmstb_waketmr_remove(struct platform_device *pdev)
+{
+ struct brcmstb_waketmr *timer = dev_get_drvdata(&pdev->dev);
+
+ unregister_reboot_notifier(&timer->reboot_notifier);
+ clk_disable_unprepare(timer->clk);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int brcmstb_waketmr_suspend(struct device *dev)
+{
+ struct brcmstb_waketmr *timer = dev_get_drvdata(dev);
+
+ return brcmstb_waketmr_prepare_suspend(timer);
+}
+
+static int brcmstb_waketmr_resume(struct device *dev)
+{
+ struct brcmstb_waketmr *timer = dev_get_drvdata(dev);
+ int ret;
+
+ if (!device_may_wakeup(dev))
+ return 0;
+
+ ret = disable_irq_wake(timer->irq);
+
+ brcmstb_waketmr_clear_alarm(timer);
+
+ return ret;
+}
+#endif /* CONFIG_PM_SLEEP */
+
+static SIMPLE_DEV_PM_OPS(brcmstb_waketmr_pm_ops,
+ brcmstb_waketmr_suspend, brcmstb_waketmr_resume);
+
+static const struct of_device_id brcmstb_waketmr_of_match[] = {
+ { .compatible = "brcm,brcmstb-waketimer" },
+ { /* sentinel */ },
+};
+
+static struct platform_driver brcmstb_waketmr_driver = {
+ .probe = brcmstb_waketmr_probe,
+ .remove = brcmstb_waketmr_remove,
+ .driver = {
+ .name = "brcmstb-waketimer",
+ .pm = &brcmstb_waketmr_pm_ops,
+ .of_match_table = of_match_ptr(brcmstb_waketmr_of_match),
+ }
+};
+module_platform_driver(brcmstb_waketmr_driver);
+
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Brian Norris");
+MODULE_AUTHOR("Markus Mayer");
+MODULE_DESCRIPTION("Wake-up timer driver for STB chips");
diff --git a/drivers/rtc/rtc-cadence.c b/drivers/rtc/rtc-cadence.c
new file mode 100644
index 000000000..595d5d252
--- /dev/null
+++ b/drivers/rtc/rtc-cadence.c
@@ -0,0 +1,414 @@
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright 2019 Cadence
+ *
+ * Authors:
+ * Jan Kotas <jank@cadence.com>
+ */
+
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/of.h>
+#include <linux/io.h>
+#include <linux/rtc.h>
+#include <linux/clk.h>
+#include <linux/bcd.h>
+#include <linux/bitfield.h>
+#include <linux/interrupt.h>
+#include <linux/pm_wakeirq.h>
+
+/* Registers */
+#define CDNS_RTC_CTLR 0x00
+#define CDNS_RTC_HMR 0x04
+#define CDNS_RTC_TIMR 0x08
+#define CDNS_RTC_CALR 0x0C
+#define CDNS_RTC_TIMAR 0x10
+#define CDNS_RTC_CALAR 0x14
+#define CDNS_RTC_AENR 0x18
+#define CDNS_RTC_EFLR 0x1C
+#define CDNS_RTC_IENR 0x20
+#define CDNS_RTC_IDISR 0x24
+#define CDNS_RTC_IMSKR 0x28
+#define CDNS_RTC_STSR 0x2C
+#define CDNS_RTC_KRTCR 0x30
+
+/* Control */
+#define CDNS_RTC_CTLR_TIME BIT(0)
+#define CDNS_RTC_CTLR_CAL BIT(1)
+#define CDNS_RTC_CTLR_TIME_CAL (CDNS_RTC_CTLR_TIME | CDNS_RTC_CTLR_CAL)
+
+/* Status */
+#define CDNS_RTC_STSR_VT BIT(0)
+#define CDNS_RTC_STSR_VC BIT(1)
+#define CDNS_RTC_STSR_VTA BIT(2)
+#define CDNS_RTC_STSR_VCA BIT(3)
+#define CDNS_RTC_STSR_VT_VC (CDNS_RTC_STSR_VT | CDNS_RTC_STSR_VC)
+#define CDNS_RTC_STSR_VTA_VCA (CDNS_RTC_STSR_VTA | CDNS_RTC_STSR_VCA)
+
+/* Keep RTC */
+#define CDNS_RTC_KRTCR_KRTC BIT(0)
+
+/* Alarm, Event, Interrupt */
+#define CDNS_RTC_AEI_HOS BIT(0)
+#define CDNS_RTC_AEI_SEC BIT(1)
+#define CDNS_RTC_AEI_MIN BIT(2)
+#define CDNS_RTC_AEI_HOUR BIT(3)
+#define CDNS_RTC_AEI_DATE BIT(4)
+#define CDNS_RTC_AEI_MNTH BIT(5)
+#define CDNS_RTC_AEI_ALRM BIT(6)
+
+/* Time */
+#define CDNS_RTC_TIME_H GENMASK(7, 0)
+#define CDNS_RTC_TIME_S GENMASK(14, 8)
+#define CDNS_RTC_TIME_M GENMASK(22, 16)
+#define CDNS_RTC_TIME_HR GENMASK(29, 24)
+#define CDNS_RTC_TIME_PM BIT(30)
+#define CDNS_RTC_TIME_CH BIT(31)
+
+/* Calendar */
+#define CDNS_RTC_CAL_DAY GENMASK(2, 0)
+#define CDNS_RTC_CAL_M GENMASK(7, 3)
+#define CDNS_RTC_CAL_D GENMASK(13, 8)
+#define CDNS_RTC_CAL_Y GENMASK(23, 16)
+#define CDNS_RTC_CAL_C GENMASK(29, 24)
+#define CDNS_RTC_CAL_CH BIT(31)
+
+#define CDNS_RTC_MAX_REGS_TRIES 3
+
+struct cdns_rtc {
+ struct rtc_device *rtc_dev;
+ struct clk *pclk;
+ struct clk *ref_clk;
+ void __iomem *regs;
+ int irq;
+};
+
+static void cdns_rtc_set_enabled(struct cdns_rtc *crtc, bool enabled)
+{
+ u32 reg = enabled ? 0x0 : CDNS_RTC_CTLR_TIME_CAL;
+
+ writel(reg, crtc->regs + CDNS_RTC_CTLR);
+}
+
+static bool cdns_rtc_get_enabled(struct cdns_rtc *crtc)
+{
+ return !(readl(crtc->regs + CDNS_RTC_CTLR) & CDNS_RTC_CTLR_TIME_CAL);
+}
+
+static irqreturn_t cdns_rtc_irq_handler(int irq, void *id)
+{
+ struct device *dev = id;
+ struct cdns_rtc *crtc = dev_get_drvdata(dev);
+
+ /* Reading the register clears it */
+ if (!(readl(crtc->regs + CDNS_RTC_EFLR) & CDNS_RTC_AEI_ALRM))
+ return IRQ_NONE;
+
+ rtc_update_irq(crtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
+ return IRQ_HANDLED;
+}
+
+static u32 cdns_rtc_time2reg(struct rtc_time *tm)
+{
+ return FIELD_PREP(CDNS_RTC_TIME_S, bin2bcd(tm->tm_sec))
+ | FIELD_PREP(CDNS_RTC_TIME_M, bin2bcd(tm->tm_min))
+ | FIELD_PREP(CDNS_RTC_TIME_HR, bin2bcd(tm->tm_hour));
+}
+
+static void cdns_rtc_reg2time(u32 reg, struct rtc_time *tm)
+{
+ tm->tm_sec = bcd2bin(FIELD_GET(CDNS_RTC_TIME_S, reg));
+ tm->tm_min = bcd2bin(FIELD_GET(CDNS_RTC_TIME_M, reg));
+ tm->tm_hour = bcd2bin(FIELD_GET(CDNS_RTC_TIME_HR, reg));
+}
+
+static int cdns_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct cdns_rtc *crtc = dev_get_drvdata(dev);
+ u32 reg;
+
+ /* If the RTC is disabled, assume the values are invalid */
+ if (!cdns_rtc_get_enabled(crtc))
+ return -EINVAL;
+
+ cdns_rtc_set_enabled(crtc, false);
+
+ reg = readl(crtc->regs + CDNS_RTC_TIMR);
+ cdns_rtc_reg2time(reg, tm);
+
+ reg = readl(crtc->regs + CDNS_RTC_CALR);
+ tm->tm_mday = bcd2bin(FIELD_GET(CDNS_RTC_CAL_D, reg));
+ tm->tm_mon = bcd2bin(FIELD_GET(CDNS_RTC_CAL_M, reg)) - 1;
+ tm->tm_year = bcd2bin(FIELD_GET(CDNS_RTC_CAL_Y, reg))
+ + bcd2bin(FIELD_GET(CDNS_RTC_CAL_C, reg)) * 100 - 1900;
+ tm->tm_wday = bcd2bin(FIELD_GET(CDNS_RTC_CAL_DAY, reg)) - 1;
+
+ cdns_rtc_set_enabled(crtc, true);
+ return 0;
+}
+
+static int cdns_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct cdns_rtc *crtc = dev_get_drvdata(dev);
+ u32 timr, calr, stsr;
+ int ret = -EIO;
+ int year = tm->tm_year + 1900;
+ int tries;
+
+ cdns_rtc_set_enabled(crtc, false);
+
+ timr = cdns_rtc_time2reg(tm);
+
+ calr = FIELD_PREP(CDNS_RTC_CAL_D, bin2bcd(tm->tm_mday))
+ | FIELD_PREP(CDNS_RTC_CAL_M, bin2bcd(tm->tm_mon + 1))
+ | FIELD_PREP(CDNS_RTC_CAL_Y, bin2bcd(year % 100))
+ | FIELD_PREP(CDNS_RTC_CAL_C, bin2bcd(year / 100))
+ | FIELD_PREP(CDNS_RTC_CAL_DAY, tm->tm_wday + 1);
+
+ /* Update registers, check valid flags */
+ for (tries = 0; tries < CDNS_RTC_MAX_REGS_TRIES; tries++) {
+ writel(timr, crtc->regs + CDNS_RTC_TIMR);
+ writel(calr, crtc->regs + CDNS_RTC_CALR);
+ stsr = readl(crtc->regs + CDNS_RTC_STSR);
+
+ if ((stsr & CDNS_RTC_STSR_VT_VC) == CDNS_RTC_STSR_VT_VC) {
+ ret = 0;
+ break;
+ }
+ }
+
+ cdns_rtc_set_enabled(crtc, true);
+ return ret;
+}
+
+static int cdns_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct cdns_rtc *crtc = dev_get_drvdata(dev);
+
+ if (enabled) {
+ writel((CDNS_RTC_AEI_SEC | CDNS_RTC_AEI_MIN | CDNS_RTC_AEI_HOUR
+ | CDNS_RTC_AEI_DATE | CDNS_RTC_AEI_MNTH),
+ crtc->regs + CDNS_RTC_AENR);
+ writel(CDNS_RTC_AEI_ALRM, crtc->regs + CDNS_RTC_IENR);
+ } else {
+ writel(0, crtc->regs + CDNS_RTC_AENR);
+ writel(CDNS_RTC_AEI_ALRM, crtc->regs + CDNS_RTC_IDISR);
+ }
+
+ return 0;
+}
+
+static int cdns_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct cdns_rtc *crtc = dev_get_drvdata(dev);
+ u32 reg;
+
+ reg = readl(crtc->regs + CDNS_RTC_TIMAR);
+ cdns_rtc_reg2time(reg, &alarm->time);
+
+ reg = readl(crtc->regs + CDNS_RTC_CALAR);
+ alarm->time.tm_mday = bcd2bin(FIELD_GET(CDNS_RTC_CAL_D, reg));
+ alarm->time.tm_mon = bcd2bin(FIELD_GET(CDNS_RTC_CAL_M, reg)) - 1;
+
+ return 0;
+}
+
+static int cdns_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct cdns_rtc *crtc = dev_get_drvdata(dev);
+ int ret = -EIO;
+ int tries;
+ u32 timar, calar, stsr;
+
+ cdns_rtc_alarm_irq_enable(dev, 0);
+
+ timar = cdns_rtc_time2reg(&alarm->time);
+ calar = FIELD_PREP(CDNS_RTC_CAL_D, bin2bcd(alarm->time.tm_mday))
+ | FIELD_PREP(CDNS_RTC_CAL_M, bin2bcd(alarm->time.tm_mon + 1));
+
+ /* Update registers, check valid alarm flags */
+ for (tries = 0; tries < CDNS_RTC_MAX_REGS_TRIES; tries++) {
+ writel(timar, crtc->regs + CDNS_RTC_TIMAR);
+ writel(calar, crtc->regs + CDNS_RTC_CALAR);
+ stsr = readl(crtc->regs + CDNS_RTC_STSR);
+
+ if ((stsr & CDNS_RTC_STSR_VTA_VCA) == CDNS_RTC_STSR_VTA_VCA) {
+ ret = 0;
+ break;
+ }
+ }
+
+ if (!ret)
+ cdns_rtc_alarm_irq_enable(dev, alarm->enabled);
+ return ret;
+}
+
+static const struct rtc_class_ops cdns_rtc_ops = {
+ .read_time = cdns_rtc_read_time,
+ .set_time = cdns_rtc_set_time,
+ .read_alarm = cdns_rtc_read_alarm,
+ .set_alarm = cdns_rtc_set_alarm,
+ .alarm_irq_enable = cdns_rtc_alarm_irq_enable,
+};
+
+static int cdns_rtc_probe(struct platform_device *pdev)
+{
+ struct cdns_rtc *crtc;
+ int ret;
+ unsigned long ref_clk_freq;
+
+ crtc = devm_kzalloc(&pdev->dev, sizeof(*crtc), GFP_KERNEL);
+ if (!crtc)
+ return -ENOMEM;
+
+ crtc->regs = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(crtc->regs))
+ return PTR_ERR(crtc->regs);
+
+ crtc->irq = platform_get_irq(pdev, 0);
+ if (crtc->irq < 0)
+ return -EINVAL;
+
+ crtc->pclk = devm_clk_get(&pdev->dev, "pclk");
+ if (IS_ERR(crtc->pclk)) {
+ ret = PTR_ERR(crtc->pclk);
+ dev_err(&pdev->dev,
+ "Failed to retrieve the peripheral clock, %d\n", ret);
+ return ret;
+ }
+
+ crtc->ref_clk = devm_clk_get(&pdev->dev, "ref_clk");
+ if (IS_ERR(crtc->ref_clk)) {
+ ret = PTR_ERR(crtc->ref_clk);
+ dev_err(&pdev->dev,
+ "Failed to retrieve the reference clock, %d\n", ret);
+ return ret;
+ }
+
+ crtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(crtc->rtc_dev))
+ return PTR_ERR(crtc->rtc_dev);
+
+ platform_set_drvdata(pdev, crtc);
+
+ ret = clk_prepare_enable(crtc->pclk);
+ if (ret) {
+ dev_err(&pdev->dev,
+ "Failed to enable the peripheral clock, %d\n", ret);
+ return ret;
+ }
+
+ ret = clk_prepare_enable(crtc->ref_clk);
+ if (ret) {
+ dev_err(&pdev->dev,
+ "Failed to enable the reference clock, %d\n", ret);
+ goto err_disable_pclk;
+ }
+
+ ref_clk_freq = clk_get_rate(crtc->ref_clk);
+ if ((ref_clk_freq != 1) && (ref_clk_freq != 100)) {
+ dev_err(&pdev->dev,
+ "Invalid reference clock frequency %lu Hz.\n",
+ ref_clk_freq);
+ ret = -EINVAL;
+ goto err_disable_ref_clk;
+ }
+
+ ret = devm_request_irq(&pdev->dev, crtc->irq,
+ cdns_rtc_irq_handler, 0,
+ dev_name(&pdev->dev), &pdev->dev);
+ if (ret) {
+ dev_err(&pdev->dev,
+ "Failed to request interrupt for the device, %d\n",
+ ret);
+ goto err_disable_ref_clk;
+ }
+
+ /* The RTC supports 01.01.1900 - 31.12.2999 */
+ crtc->rtc_dev->range_min = mktime64(1900, 1, 1, 0, 0, 0);
+ crtc->rtc_dev->range_max = mktime64(2999, 12, 31, 23, 59, 59);
+
+ crtc->rtc_dev->ops = &cdns_rtc_ops;
+ device_init_wakeup(&pdev->dev, true);
+
+ /* Always use 24-hour mode and keep the RTC values */
+ writel(0, crtc->regs + CDNS_RTC_HMR);
+ writel(CDNS_RTC_KRTCR_KRTC, crtc->regs + CDNS_RTC_KRTCR);
+
+ ret = rtc_register_device(crtc->rtc_dev);
+ if (ret)
+ goto err_disable_wakeup;
+
+ return 0;
+
+err_disable_wakeup:
+ device_init_wakeup(&pdev->dev, false);
+
+err_disable_ref_clk:
+ clk_disable_unprepare(crtc->ref_clk);
+
+err_disable_pclk:
+ clk_disable_unprepare(crtc->pclk);
+
+ return ret;
+}
+
+static int cdns_rtc_remove(struct platform_device *pdev)
+{
+ struct cdns_rtc *crtc = platform_get_drvdata(pdev);
+
+ cdns_rtc_alarm_irq_enable(&pdev->dev, 0);
+ device_init_wakeup(&pdev->dev, 0);
+
+ clk_disable_unprepare(crtc->pclk);
+ clk_disable_unprepare(crtc->ref_clk);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int cdns_rtc_suspend(struct device *dev)
+{
+ struct cdns_rtc *crtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ enable_irq_wake(crtc->irq);
+
+ return 0;
+}
+
+static int cdns_rtc_resume(struct device *dev)
+{
+ struct cdns_rtc *crtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ disable_irq_wake(crtc->irq);
+
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(cdns_rtc_pm_ops, cdns_rtc_suspend, cdns_rtc_resume);
+
+static const struct of_device_id cdns_rtc_of_match[] = {
+ { .compatible = "cdns,rtc-r109v3" },
+ { },
+};
+MODULE_DEVICE_TABLE(of, cdns_rtc_of_match);
+
+static struct platform_driver cdns_rtc_driver = {
+ .driver = {
+ .name = "cdns-rtc",
+ .of_match_table = cdns_rtc_of_match,
+ .pm = &cdns_rtc_pm_ops,
+ },
+ .probe = cdns_rtc_probe,
+ .remove = cdns_rtc_remove,
+};
+module_platform_driver(cdns_rtc_driver);
+
+MODULE_AUTHOR("Jan Kotas <jank@cadence.com>");
+MODULE_DESCRIPTION("Cadence RTC driver");
+MODULE_LICENSE("GPL v2");
+MODULE_ALIAS("platform:cdns-rtc");
diff --git a/drivers/rtc/rtc-cmos.c b/drivers/rtc/rtc-cmos.c
new file mode 100644
index 000000000..7f560937b
--- /dev/null
+++ b/drivers/rtc/rtc-cmos.c
@@ -0,0 +1,1578 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * RTC class driver for "CMOS RTC": PCs, ACPI, etc
+ *
+ * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
+ * Copyright (C) 2006 David Brownell (convert to new framework)
+ */
+
+/*
+ * The original "cmos clock" chip was an MC146818 chip, now obsolete.
+ * That defined the register interface now provided by all PCs, some
+ * non-PC systems, and incorporated into ACPI. Modern PC chipsets
+ * integrate an MC146818 clone in their southbridge, and boards use
+ * that instead of discrete clones like the DS12887 or M48T86. There
+ * are also clones that connect using the LPC bus.
+ *
+ * That register API is also used directly by various other drivers
+ * (notably for integrated NVRAM), infrastructure (x86 has code to
+ * bypass the RTC framework, directly reading the RTC during boot
+ * and updating minutes/seconds for systems using NTP synch) and
+ * utilities (like userspace 'hwclock', if no /dev node exists).
+ *
+ * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
+ * interrupts disabled, holding the global rtc_lock, to exclude those
+ * other drivers and utilities on correctly configured systems.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/spinlock.h>
+#include <linux/platform_device.h>
+#include <linux/log2.h>
+#include <linux/pm.h>
+#include <linux/of.h>
+#include <linux/of_platform.h>
+#ifdef CONFIG_X86
+#include <asm/i8259.h>
+#include <asm/processor.h>
+#include <linux/dmi.h>
+#endif
+
+/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
+#include <linux/mc146818rtc.h>
+
+#ifdef CONFIG_ACPI
+/*
+ * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
+ *
+ * If cleared, ACPI SCI is only used to wake up the system from suspend
+ *
+ * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
+ */
+
+static bool use_acpi_alarm;
+module_param(use_acpi_alarm, bool, 0444);
+
+static inline int cmos_use_acpi_alarm(void)
+{
+ return use_acpi_alarm;
+}
+#else /* !CONFIG_ACPI */
+
+static inline int cmos_use_acpi_alarm(void)
+{
+ return 0;
+}
+#endif
+
+struct cmos_rtc {
+ struct rtc_device *rtc;
+ struct device *dev;
+ int irq;
+ struct resource *iomem;
+ time64_t alarm_expires;
+
+ void (*wake_on)(struct device *);
+ void (*wake_off)(struct device *);
+
+ u8 enabled_wake;
+ u8 suspend_ctrl;
+
+ /* newer hardware extends the original register set */
+ u8 day_alrm;
+ u8 mon_alrm;
+ u8 century;
+
+ struct rtc_wkalrm saved_wkalrm;
+};
+
+/* both platform and pnp busses use negative numbers for invalid irqs */
+#define is_valid_irq(n) ((n) > 0)
+
+static const char driver_name[] = "rtc_cmos";
+
+/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
+ * always mask it against the irq enable bits in RTC_CONTROL. Bit values
+ * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
+ */
+#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
+
+static inline int is_intr(u8 rtc_intr)
+{
+ if (!(rtc_intr & RTC_IRQF))
+ return 0;
+ return rtc_intr & RTC_IRQMASK;
+}
+
+/*----------------------------------------------------------------*/
+
+/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
+ * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
+ * used in a broken "legacy replacement" mode. The breakage includes
+ * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
+ * other (better) use.
+ *
+ * When that broken mode is in use, platform glue provides a partial
+ * emulation of hardware RTC IRQ facilities using HPET #1. We don't
+ * want to use HPET for anything except those IRQs though...
+ */
+#ifdef CONFIG_HPET_EMULATE_RTC
+#include <asm/hpet.h>
+#else
+
+static inline int is_hpet_enabled(void)
+{
+ return 0;
+}
+
+static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
+{
+ return 0;
+}
+
+static inline int hpet_set_rtc_irq_bit(unsigned long mask)
+{
+ return 0;
+}
+
+static inline int
+hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
+{
+ return 0;
+}
+
+static inline int hpet_set_periodic_freq(unsigned long freq)
+{
+ return 0;
+}
+
+static inline int hpet_rtc_dropped_irq(void)
+{
+ return 0;
+}
+
+static inline int hpet_rtc_timer_init(void)
+{
+ return 0;
+}
+
+extern irq_handler_t hpet_rtc_interrupt;
+
+static inline int hpet_register_irq_handler(irq_handler_t handler)
+{
+ return 0;
+}
+
+static inline int hpet_unregister_irq_handler(irq_handler_t handler)
+{
+ return 0;
+}
+
+#endif
+
+/* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
+static inline int use_hpet_alarm(void)
+{
+ return is_hpet_enabled() && !cmos_use_acpi_alarm();
+}
+
+/*----------------------------------------------------------------*/
+
+#ifdef RTC_PORT
+
+/* Most newer x86 systems have two register banks, the first used
+ * for RTC and NVRAM and the second only for NVRAM. Caller must
+ * own rtc_lock ... and we won't worry about access during NMI.
+ */
+#define can_bank2 true
+
+static inline unsigned char cmos_read_bank2(unsigned char addr)
+{
+ outb(addr, RTC_PORT(2));
+ return inb(RTC_PORT(3));
+}
+
+static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
+{
+ outb(addr, RTC_PORT(2));
+ outb(val, RTC_PORT(3));
+}
+
+#else
+
+#define can_bank2 false
+
+static inline unsigned char cmos_read_bank2(unsigned char addr)
+{
+ return 0;
+}
+
+static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
+{
+}
+
+#endif
+
+/*----------------------------------------------------------------*/
+
+static int cmos_read_time(struct device *dev, struct rtc_time *t)
+{
+ int ret;
+
+ /*
+ * If pm_trace abused the RTC for storage, set the timespec to 0,
+ * which tells the caller that this RTC value is unusable.
+ */
+ if (!pm_trace_rtc_valid())
+ return -EIO;
+
+ ret = mc146818_get_time(t);
+ if (ret < 0) {
+ dev_err_ratelimited(dev, "unable to read current time\n");
+ return ret;
+ }
+
+ return 0;
+}
+
+static int cmos_set_time(struct device *dev, struct rtc_time *t)
+{
+ /* NOTE: this ignores the issue whereby updating the seconds
+ * takes effect exactly 500ms after we write the register.
+ * (Also queueing and other delays before we get this far.)
+ */
+ return mc146818_set_time(t);
+}
+
+struct cmos_read_alarm_callback_param {
+ struct cmos_rtc *cmos;
+ struct rtc_time *time;
+ unsigned char rtc_control;
+};
+
+static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
+ void *param_in)
+{
+ struct cmos_read_alarm_callback_param *p =
+ (struct cmos_read_alarm_callback_param *)param_in;
+ struct rtc_time *time = p->time;
+
+ time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
+ time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
+ time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
+
+ if (p->cmos->day_alrm) {
+ /* ignore upper bits on readback per ACPI spec */
+ time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
+ if (!time->tm_mday)
+ time->tm_mday = -1;
+
+ if (p->cmos->mon_alrm) {
+ time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
+ if (!time->tm_mon)
+ time->tm_mon = -1;
+ }
+ }
+
+ p->rtc_control = CMOS_READ(RTC_CONTROL);
+}
+
+static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct cmos_rtc *cmos = dev_get_drvdata(dev);
+ struct cmos_read_alarm_callback_param p = {
+ .cmos = cmos,
+ .time = &t->time,
+ };
+
+ /* This not only a rtc_op, but also called directly */
+ if (!is_valid_irq(cmos->irq))
+ return -EIO;
+
+ /* Basic alarms only support hour, minute, and seconds fields.
+ * Some also support day and month, for alarms up to a year in
+ * the future.
+ */
+
+ /* Some Intel chipsets disconnect the alarm registers when the clock
+ * update is in progress - during this time reads return bogus values
+ * and writes may fail silently. See for example "7th Generation Intel®
+ * Processor Family I/O for U/Y Platforms [...] Datasheet", section
+ * 27.7.1
+ *
+ * Use the mc146818_avoid_UIP() function to avoid this.
+ */
+ if (!mc146818_avoid_UIP(cmos_read_alarm_callback, &p))
+ return -EIO;
+
+ if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
+ if (((unsigned)t->time.tm_sec) < 0x60)
+ t->time.tm_sec = bcd2bin(t->time.tm_sec);
+ else
+ t->time.tm_sec = -1;
+ if (((unsigned)t->time.tm_min) < 0x60)
+ t->time.tm_min = bcd2bin(t->time.tm_min);
+ else
+ t->time.tm_min = -1;
+ if (((unsigned)t->time.tm_hour) < 0x24)
+ t->time.tm_hour = bcd2bin(t->time.tm_hour);
+ else
+ t->time.tm_hour = -1;
+
+ if (cmos->day_alrm) {
+ if (((unsigned)t->time.tm_mday) <= 0x31)
+ t->time.tm_mday = bcd2bin(t->time.tm_mday);
+ else
+ t->time.tm_mday = -1;
+
+ if (cmos->mon_alrm) {
+ if (((unsigned)t->time.tm_mon) <= 0x12)
+ t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
+ else
+ t->time.tm_mon = -1;
+ }
+ }
+ }
+
+ t->enabled = !!(p.rtc_control & RTC_AIE);
+ t->pending = 0;
+
+ return 0;
+}
+
+static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
+{
+ unsigned char rtc_intr;
+
+ /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
+ * allegedly some older rtcs need that to handle irqs properly
+ */
+ rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
+
+ if (use_hpet_alarm())
+ return;
+
+ rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
+ if (is_intr(rtc_intr))
+ rtc_update_irq(cmos->rtc, 1, rtc_intr);
+}
+
+static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
+{
+ unsigned char rtc_control;
+
+ /* flush any pending IRQ status, notably for update irqs,
+ * before we enable new IRQs
+ */
+ rtc_control = CMOS_READ(RTC_CONTROL);
+ cmos_checkintr(cmos, rtc_control);
+
+ rtc_control |= mask;
+ CMOS_WRITE(rtc_control, RTC_CONTROL);
+ if (use_hpet_alarm())
+ hpet_set_rtc_irq_bit(mask);
+
+ if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
+ if (cmos->wake_on)
+ cmos->wake_on(cmos->dev);
+ }
+
+ cmos_checkintr(cmos, rtc_control);
+}
+
+static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
+{
+ unsigned char rtc_control;
+
+ rtc_control = CMOS_READ(RTC_CONTROL);
+ rtc_control &= ~mask;
+ CMOS_WRITE(rtc_control, RTC_CONTROL);
+ if (use_hpet_alarm())
+ hpet_mask_rtc_irq_bit(mask);
+
+ if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
+ if (cmos->wake_off)
+ cmos->wake_off(cmos->dev);
+ }
+
+ cmos_checkintr(cmos, rtc_control);
+}
+
+static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct cmos_rtc *cmos = dev_get_drvdata(dev);
+ struct rtc_time now;
+
+ cmos_read_time(dev, &now);
+
+ if (!cmos->day_alrm) {
+ time64_t t_max_date;
+ time64_t t_alrm;
+
+ t_max_date = rtc_tm_to_time64(&now);
+ t_max_date += 24 * 60 * 60 - 1;
+ t_alrm = rtc_tm_to_time64(&t->time);
+ if (t_alrm > t_max_date) {
+ dev_err(dev,
+ "Alarms can be up to one day in the future\n");
+ return -EINVAL;
+ }
+ } else if (!cmos->mon_alrm) {
+ struct rtc_time max_date = now;
+ time64_t t_max_date;
+ time64_t t_alrm;
+ int max_mday;
+
+ if (max_date.tm_mon == 11) {
+ max_date.tm_mon = 0;
+ max_date.tm_year += 1;
+ } else {
+ max_date.tm_mon += 1;
+ }
+ max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
+ if (max_date.tm_mday > max_mday)
+ max_date.tm_mday = max_mday;
+
+ t_max_date = rtc_tm_to_time64(&max_date);
+ t_max_date -= 1;
+ t_alrm = rtc_tm_to_time64(&t->time);
+ if (t_alrm > t_max_date) {
+ dev_err(dev,
+ "Alarms can be up to one month in the future\n");
+ return -EINVAL;
+ }
+ } else {
+ struct rtc_time max_date = now;
+ time64_t t_max_date;
+ time64_t t_alrm;
+ int max_mday;
+
+ max_date.tm_year += 1;
+ max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
+ if (max_date.tm_mday > max_mday)
+ max_date.tm_mday = max_mday;
+
+ t_max_date = rtc_tm_to_time64(&max_date);
+ t_max_date -= 1;
+ t_alrm = rtc_tm_to_time64(&t->time);
+ if (t_alrm > t_max_date) {
+ dev_err(dev,
+ "Alarms can be up to one year in the future\n");
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+struct cmos_set_alarm_callback_param {
+ struct cmos_rtc *cmos;
+ unsigned char mon, mday, hrs, min, sec;
+ struct rtc_wkalrm *t;
+};
+
+/* Note: this function may be executed by mc146818_avoid_UIP() more then
+ * once
+ */
+static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
+ void *param_in)
+{
+ struct cmos_set_alarm_callback_param *p =
+ (struct cmos_set_alarm_callback_param *)param_in;
+
+ /* next rtc irq must not be from previous alarm setting */
+ cmos_irq_disable(p->cmos, RTC_AIE);
+
+ /* update alarm */
+ CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
+ CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
+ CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
+
+ /* the system may support an "enhanced" alarm */
+ if (p->cmos->day_alrm) {
+ CMOS_WRITE(p->mday, p->cmos->day_alrm);
+ if (p->cmos->mon_alrm)
+ CMOS_WRITE(p->mon, p->cmos->mon_alrm);
+ }
+
+ if (use_hpet_alarm()) {
+ /*
+ * FIXME the HPET alarm glue currently ignores day_alrm
+ * and mon_alrm ...
+ */
+ hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
+ p->t->time.tm_sec);
+ }
+
+ if (p->t->enabled)
+ cmos_irq_enable(p->cmos, RTC_AIE);
+}
+
+static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct cmos_rtc *cmos = dev_get_drvdata(dev);
+ struct cmos_set_alarm_callback_param p = {
+ .cmos = cmos,
+ .t = t
+ };
+ unsigned char rtc_control;
+ int ret;
+
+ /* This not only a rtc_op, but also called directly */
+ if (!is_valid_irq(cmos->irq))
+ return -EIO;
+
+ ret = cmos_validate_alarm(dev, t);
+ if (ret < 0)
+ return ret;
+
+ p.mon = t->time.tm_mon + 1;
+ p.mday = t->time.tm_mday;
+ p.hrs = t->time.tm_hour;
+ p.min = t->time.tm_min;
+ p.sec = t->time.tm_sec;
+
+ spin_lock_irq(&rtc_lock);
+ rtc_control = CMOS_READ(RTC_CONTROL);
+ spin_unlock_irq(&rtc_lock);
+
+ if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
+ /* Writing 0xff means "don't care" or "match all". */
+ p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
+ p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
+ p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
+ p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
+ p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
+ }
+
+ /*
+ * Some Intel chipsets disconnect the alarm registers when the clock
+ * update is in progress - during this time writes fail silently.
+ *
+ * Use mc146818_avoid_UIP() to avoid this.
+ */
+ if (!mc146818_avoid_UIP(cmos_set_alarm_callback, &p))
+ return -EIO;
+
+ cmos->alarm_expires = rtc_tm_to_time64(&t->time);
+
+ return 0;
+}
+
+static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct cmos_rtc *cmos = dev_get_drvdata(dev);
+ unsigned long flags;
+
+ spin_lock_irqsave(&rtc_lock, flags);
+
+ if (enabled)
+ cmos_irq_enable(cmos, RTC_AIE);
+ else
+ cmos_irq_disable(cmos, RTC_AIE);
+
+ spin_unlock_irqrestore(&rtc_lock, flags);
+ return 0;
+}
+
+#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
+
+static int cmos_procfs(struct device *dev, struct seq_file *seq)
+{
+ struct cmos_rtc *cmos = dev_get_drvdata(dev);
+ unsigned char rtc_control, valid;
+
+ spin_lock_irq(&rtc_lock);
+ rtc_control = CMOS_READ(RTC_CONTROL);
+ valid = CMOS_READ(RTC_VALID);
+ spin_unlock_irq(&rtc_lock);
+
+ /* NOTE: at least ICH6 reports battery status using a different
+ * (non-RTC) bit; and SQWE is ignored on many current systems.
+ */
+ seq_printf(seq,
+ "periodic_IRQ\t: %s\n"
+ "update_IRQ\t: %s\n"
+ "HPET_emulated\t: %s\n"
+ // "square_wave\t: %s\n"
+ "BCD\t\t: %s\n"
+ "DST_enable\t: %s\n"
+ "periodic_freq\t: %d\n"
+ "batt_status\t: %s\n",
+ (rtc_control & RTC_PIE) ? "yes" : "no",
+ (rtc_control & RTC_UIE) ? "yes" : "no",
+ use_hpet_alarm() ? "yes" : "no",
+ // (rtc_control & RTC_SQWE) ? "yes" : "no",
+ (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
+ (rtc_control & RTC_DST_EN) ? "yes" : "no",
+ cmos->rtc->irq_freq,
+ (valid & RTC_VRT) ? "okay" : "dead");
+
+ return 0;
+}
+
+#else
+#define cmos_procfs NULL
+#endif
+
+static const struct rtc_class_ops cmos_rtc_ops = {
+ .read_time = cmos_read_time,
+ .set_time = cmos_set_time,
+ .read_alarm = cmos_read_alarm,
+ .set_alarm = cmos_set_alarm,
+ .proc = cmos_procfs,
+ .alarm_irq_enable = cmos_alarm_irq_enable,
+};
+
+static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
+ .read_time = cmos_read_time,
+ .set_time = cmos_set_time,
+ .proc = cmos_procfs,
+};
+
+/*----------------------------------------------------------------*/
+
+/*
+ * All these chips have at least 64 bytes of address space, shared by
+ * RTC registers and NVRAM. Most of those bytes of NVRAM are used
+ * by boot firmware. Modern chips have 128 or 256 bytes.
+ */
+
+#define NVRAM_OFFSET (RTC_REG_D + 1)
+
+static int cmos_nvram_read(void *priv, unsigned int off, void *val,
+ size_t count)
+{
+ unsigned char *buf = val;
+ int retval;
+
+ off += NVRAM_OFFSET;
+ spin_lock_irq(&rtc_lock);
+ for (retval = 0; count; count--, off++, retval++) {
+ if (off < 128)
+ *buf++ = CMOS_READ(off);
+ else if (can_bank2)
+ *buf++ = cmos_read_bank2(off);
+ else
+ break;
+ }
+ spin_unlock_irq(&rtc_lock);
+
+ return retval;
+}
+
+static int cmos_nvram_write(void *priv, unsigned int off, void *val,
+ size_t count)
+{
+ struct cmos_rtc *cmos = priv;
+ unsigned char *buf = val;
+ int retval;
+
+ /* NOTE: on at least PCs and Ataris, the boot firmware uses a
+ * checksum on part of the NVRAM data. That's currently ignored
+ * here. If userspace is smart enough to know what fields of
+ * NVRAM to update, updating checksums is also part of its job.
+ */
+ off += NVRAM_OFFSET;
+ spin_lock_irq(&rtc_lock);
+ for (retval = 0; count; count--, off++, retval++) {
+ /* don't trash RTC registers */
+ if (off == cmos->day_alrm
+ || off == cmos->mon_alrm
+ || off == cmos->century)
+ buf++;
+ else if (off < 128)
+ CMOS_WRITE(*buf++, off);
+ else if (can_bank2)
+ cmos_write_bank2(*buf++, off);
+ else
+ break;
+ }
+ spin_unlock_irq(&rtc_lock);
+
+ return retval;
+}
+
+/*----------------------------------------------------------------*/
+
+static struct cmos_rtc cmos_rtc;
+
+static irqreturn_t cmos_interrupt(int irq, void *p)
+{
+ u8 irqstat;
+ u8 rtc_control;
+
+ spin_lock(&rtc_lock);
+
+ /* When the HPET interrupt handler calls us, the interrupt
+ * status is passed as arg1 instead of the irq number. But
+ * always clear irq status, even when HPET is in the way.
+ *
+ * Note that HPET and RTC are almost certainly out of phase,
+ * giving different IRQ status ...
+ */
+ irqstat = CMOS_READ(RTC_INTR_FLAGS);
+ rtc_control = CMOS_READ(RTC_CONTROL);
+ if (use_hpet_alarm())
+ irqstat = (unsigned long)irq & 0xF0;
+
+ /* If we were suspended, RTC_CONTROL may not be accurate since the
+ * bios may have cleared it.
+ */
+ if (!cmos_rtc.suspend_ctrl)
+ irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
+ else
+ irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
+
+ /* All Linux RTC alarms should be treated as if they were oneshot.
+ * Similar code may be needed in system wakeup paths, in case the
+ * alarm woke the system.
+ */
+ if (irqstat & RTC_AIE) {
+ cmos_rtc.suspend_ctrl &= ~RTC_AIE;
+ rtc_control &= ~RTC_AIE;
+ CMOS_WRITE(rtc_control, RTC_CONTROL);
+ if (use_hpet_alarm())
+ hpet_mask_rtc_irq_bit(RTC_AIE);
+ CMOS_READ(RTC_INTR_FLAGS);
+ }
+ spin_unlock(&rtc_lock);
+
+ if (is_intr(irqstat)) {
+ rtc_update_irq(p, 1, irqstat);
+ return IRQ_HANDLED;
+ } else
+ return IRQ_NONE;
+}
+
+#ifdef CONFIG_ACPI
+
+#include <linux/acpi.h>
+
+static u32 rtc_handler(void *context)
+{
+ struct device *dev = context;
+ struct cmos_rtc *cmos = dev_get_drvdata(dev);
+ unsigned char rtc_control = 0;
+ unsigned char rtc_intr;
+ unsigned long flags;
+
+
+ /*
+ * Always update rtc irq when ACPI is used as RTC Alarm.
+ * Or else, ACPI SCI is enabled during suspend/resume only,
+ * update rtc irq in that case.
+ */
+ if (cmos_use_acpi_alarm())
+ cmos_interrupt(0, (void *)cmos->rtc);
+ else {
+ /* Fix me: can we use cmos_interrupt() here as well? */
+ spin_lock_irqsave(&rtc_lock, flags);
+ if (cmos_rtc.suspend_ctrl)
+ rtc_control = CMOS_READ(RTC_CONTROL);
+ if (rtc_control & RTC_AIE) {
+ cmos_rtc.suspend_ctrl &= ~RTC_AIE;
+ CMOS_WRITE(rtc_control, RTC_CONTROL);
+ rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
+ rtc_update_irq(cmos->rtc, 1, rtc_intr);
+ }
+ spin_unlock_irqrestore(&rtc_lock, flags);
+ }
+
+ pm_wakeup_hard_event(dev);
+ acpi_clear_event(ACPI_EVENT_RTC);
+ acpi_disable_event(ACPI_EVENT_RTC, 0);
+ return ACPI_INTERRUPT_HANDLED;
+}
+
+static void acpi_rtc_event_setup(struct device *dev)
+{
+ if (acpi_disabled)
+ return;
+
+ acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
+ /*
+ * After the RTC handler is installed, the Fixed_RTC event should
+ * be disabled. Only when the RTC alarm is set will it be enabled.
+ */
+ acpi_clear_event(ACPI_EVENT_RTC);
+ acpi_disable_event(ACPI_EVENT_RTC, 0);
+}
+
+static void acpi_rtc_event_cleanup(void)
+{
+ if (acpi_disabled)
+ return;
+
+ acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler);
+}
+
+static void rtc_wake_on(struct device *dev)
+{
+ acpi_clear_event(ACPI_EVENT_RTC);
+ acpi_enable_event(ACPI_EVENT_RTC, 0);
+}
+
+static void rtc_wake_off(struct device *dev)
+{
+ acpi_disable_event(ACPI_EVENT_RTC, 0);
+}
+
+#ifdef CONFIG_X86
+/* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
+static void use_acpi_alarm_quirks(void)
+{
+ if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
+ return;
+
+ if (!is_hpet_enabled())
+ return;
+
+ if (dmi_get_bios_year() < 2015)
+ return;
+
+ use_acpi_alarm = true;
+}
+#else
+static inline void use_acpi_alarm_quirks(void) { }
+#endif
+
+static void acpi_cmos_wake_setup(struct device *dev)
+{
+ if (acpi_disabled)
+ return;
+
+ use_acpi_alarm_quirks();
+
+ cmos_rtc.wake_on = rtc_wake_on;
+ cmos_rtc.wake_off = rtc_wake_off;
+
+ /* ACPI tables bug workaround. */
+ if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
+ dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
+ acpi_gbl_FADT.month_alarm);
+ acpi_gbl_FADT.month_alarm = 0;
+ }
+
+ cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
+ cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
+ cmos_rtc.century = acpi_gbl_FADT.century;
+
+ if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
+ dev_info(dev, "RTC can wake from S4\n");
+
+ /* RTC always wakes from S1/S2/S3, and often S4/STD */
+ device_init_wakeup(dev, 1);
+}
+
+static void cmos_check_acpi_rtc_status(struct device *dev,
+ unsigned char *rtc_control)
+{
+ struct cmos_rtc *cmos = dev_get_drvdata(dev);
+ acpi_event_status rtc_status;
+ acpi_status status;
+
+ if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
+ return;
+
+ status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
+ if (ACPI_FAILURE(status)) {
+ dev_err(dev, "Could not get RTC status\n");
+ } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
+ unsigned char mask;
+ *rtc_control &= ~RTC_AIE;
+ CMOS_WRITE(*rtc_control, RTC_CONTROL);
+ mask = CMOS_READ(RTC_INTR_FLAGS);
+ rtc_update_irq(cmos->rtc, 1, mask);
+ }
+}
+
+#else /* !CONFIG_ACPI */
+
+static inline void acpi_rtc_event_setup(struct device *dev)
+{
+}
+
+static inline void acpi_rtc_event_cleanup(void)
+{
+}
+
+static inline void acpi_cmos_wake_setup(struct device *dev)
+{
+}
+
+static inline void cmos_check_acpi_rtc_status(struct device *dev,
+ unsigned char *rtc_control)
+{
+}
+#endif /* CONFIG_ACPI */
+
+#ifdef CONFIG_PNP
+#define INITSECTION
+
+#else
+#define INITSECTION __init
+#endif
+
+static int INITSECTION
+cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
+{
+ struct cmos_rtc_board_info *info = dev_get_platdata(dev);
+ int retval = 0;
+ unsigned char rtc_control;
+ unsigned address_space;
+ u32 flags = 0;
+ struct nvmem_config nvmem_cfg = {
+ .name = "cmos_nvram",
+ .word_size = 1,
+ .stride = 1,
+ .reg_read = cmos_nvram_read,
+ .reg_write = cmos_nvram_write,
+ .priv = &cmos_rtc,
+ };
+
+ /* there can be only one ... */
+ if (cmos_rtc.dev)
+ return -EBUSY;
+
+ if (!ports)
+ return -ENODEV;
+
+ /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
+ *
+ * REVISIT non-x86 systems may instead use memory space resources
+ * (needing ioremap etc), not i/o space resources like this ...
+ */
+ if (RTC_IOMAPPED)
+ ports = request_region(ports->start, resource_size(ports),
+ driver_name);
+ else
+ ports = request_mem_region(ports->start, resource_size(ports),
+ driver_name);
+ if (!ports) {
+ dev_dbg(dev, "i/o registers already in use\n");
+ return -EBUSY;
+ }
+
+ cmos_rtc.irq = rtc_irq;
+ cmos_rtc.iomem = ports;
+
+ /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
+ * driver did, but don't reject unknown configs. Old hardware
+ * won't address 128 bytes. Newer chips have multiple banks,
+ * though they may not be listed in one I/O resource.
+ */
+#if defined(CONFIG_ATARI)
+ address_space = 64;
+#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
+ || defined(__sparc__) || defined(__mips__) \
+ || defined(__powerpc__)
+ address_space = 128;
+#else
+#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
+ address_space = 128;
+#endif
+ if (can_bank2 && ports->end > (ports->start + 1))
+ address_space = 256;
+
+ /* For ACPI systems extension info comes from the FADT. On others,
+ * board specific setup provides it as appropriate. Systems where
+ * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
+ * some almost-clones) can provide hooks to make that behave.
+ *
+ * Note that ACPI doesn't preclude putting these registers into
+ * "extended" areas of the chip, including some that we won't yet
+ * expect CMOS_READ and friends to handle.
+ */
+ if (info) {
+ if (info->flags)
+ flags = info->flags;
+ if (info->address_space)
+ address_space = info->address_space;
+
+ cmos_rtc.day_alrm = info->rtc_day_alarm;
+ cmos_rtc.mon_alrm = info->rtc_mon_alarm;
+ cmos_rtc.century = info->rtc_century;
+
+ if (info->wake_on && info->wake_off) {
+ cmos_rtc.wake_on = info->wake_on;
+ cmos_rtc.wake_off = info->wake_off;
+ }
+ } else {
+ acpi_cmos_wake_setup(dev);
+ }
+
+ if (cmos_rtc.day_alrm >= 128)
+ cmos_rtc.day_alrm = 0;
+
+ if (cmos_rtc.mon_alrm >= 128)
+ cmos_rtc.mon_alrm = 0;
+
+ if (cmos_rtc.century >= 128)
+ cmos_rtc.century = 0;
+
+ cmos_rtc.dev = dev;
+ dev_set_drvdata(dev, &cmos_rtc);
+
+ cmos_rtc.rtc = devm_rtc_allocate_device(dev);
+ if (IS_ERR(cmos_rtc.rtc)) {
+ retval = PTR_ERR(cmos_rtc.rtc);
+ goto cleanup0;
+ }
+
+ rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
+
+ if (!mc146818_does_rtc_work()) {
+ dev_warn(dev, "broken or not accessible\n");
+ retval = -ENXIO;
+ goto cleanup1;
+ }
+
+ spin_lock_irq(&rtc_lock);
+
+ if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
+ /* force periodic irq to CMOS reset default of 1024Hz;
+ *
+ * REVISIT it's been reported that at least one x86_64 ALI
+ * mobo doesn't use 32KHz here ... for portability we might
+ * need to do something about other clock frequencies.
+ */
+ cmos_rtc.rtc->irq_freq = 1024;
+ if (use_hpet_alarm())
+ hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
+ CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
+ }
+
+ /* disable irqs */
+ if (is_valid_irq(rtc_irq))
+ cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
+
+ rtc_control = CMOS_READ(RTC_CONTROL);
+
+ spin_unlock_irq(&rtc_lock);
+
+ if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
+ dev_warn(dev, "only 24-hr supported\n");
+ retval = -ENXIO;
+ goto cleanup1;
+ }
+
+ if (use_hpet_alarm())
+ hpet_rtc_timer_init();
+
+ if (is_valid_irq(rtc_irq)) {
+ irq_handler_t rtc_cmos_int_handler;
+
+ if (use_hpet_alarm()) {
+ rtc_cmos_int_handler = hpet_rtc_interrupt;
+ retval = hpet_register_irq_handler(cmos_interrupt);
+ if (retval) {
+ hpet_mask_rtc_irq_bit(RTC_IRQMASK);
+ dev_warn(dev, "hpet_register_irq_handler "
+ " failed in rtc_init().");
+ goto cleanup1;
+ }
+ } else
+ rtc_cmos_int_handler = cmos_interrupt;
+
+ retval = request_irq(rtc_irq, rtc_cmos_int_handler,
+ 0, dev_name(&cmos_rtc.rtc->dev),
+ cmos_rtc.rtc);
+ if (retval < 0) {
+ dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
+ goto cleanup1;
+ }
+
+ cmos_rtc.rtc->ops = &cmos_rtc_ops;
+ } else {
+ cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
+ }
+
+ cmos_rtc.rtc->nvram_old_abi = true;
+ retval = rtc_register_device(cmos_rtc.rtc);
+ if (retval)
+ goto cleanup2;
+
+ /* export at least the first block of NVRAM */
+ nvmem_cfg.size = address_space - NVRAM_OFFSET;
+ if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
+ dev_err(dev, "nvmem registration failed\n");
+
+ /*
+ * Everything has gone well so far, so by default register a handler for
+ * the ACPI RTC fixed event.
+ */
+ if (!info)
+ acpi_rtc_event_setup(dev);
+
+ dev_info(dev, "%s%s, %d bytes nvram%s\n",
+ !is_valid_irq(rtc_irq) ? "no alarms" :
+ cmos_rtc.mon_alrm ? "alarms up to one year" :
+ cmos_rtc.day_alrm ? "alarms up to one month" :
+ "alarms up to one day",
+ cmos_rtc.century ? ", y3k" : "",
+ nvmem_cfg.size,
+ use_hpet_alarm() ? ", hpet irqs" : "");
+
+ return 0;
+
+cleanup2:
+ if (is_valid_irq(rtc_irq))
+ free_irq(rtc_irq, cmos_rtc.rtc);
+cleanup1:
+ cmos_rtc.dev = NULL;
+cleanup0:
+ if (RTC_IOMAPPED)
+ release_region(ports->start, resource_size(ports));
+ else
+ release_mem_region(ports->start, resource_size(ports));
+ return retval;
+}
+
+static void cmos_do_shutdown(int rtc_irq)
+{
+ spin_lock_irq(&rtc_lock);
+ if (is_valid_irq(rtc_irq))
+ cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
+ spin_unlock_irq(&rtc_lock);
+}
+
+static void cmos_do_remove(struct device *dev)
+{
+ struct cmos_rtc *cmos = dev_get_drvdata(dev);
+ struct resource *ports;
+
+ cmos_do_shutdown(cmos->irq);
+
+ if (is_valid_irq(cmos->irq)) {
+ free_irq(cmos->irq, cmos->rtc);
+ if (use_hpet_alarm())
+ hpet_unregister_irq_handler(cmos_interrupt);
+ }
+
+ if (!dev_get_platdata(dev))
+ acpi_rtc_event_cleanup();
+
+ cmos->rtc = NULL;
+
+ ports = cmos->iomem;
+ if (RTC_IOMAPPED)
+ release_region(ports->start, resource_size(ports));
+ else
+ release_mem_region(ports->start, resource_size(ports));
+ cmos->iomem = NULL;
+
+ cmos->dev = NULL;
+}
+
+static int cmos_aie_poweroff(struct device *dev)
+{
+ struct cmos_rtc *cmos = dev_get_drvdata(dev);
+ struct rtc_time now;
+ time64_t t_now;
+ int retval = 0;
+ unsigned char rtc_control;
+
+ if (!cmos->alarm_expires)
+ return -EINVAL;
+
+ spin_lock_irq(&rtc_lock);
+ rtc_control = CMOS_READ(RTC_CONTROL);
+ spin_unlock_irq(&rtc_lock);
+
+ /* We only care about the situation where AIE is disabled. */
+ if (rtc_control & RTC_AIE)
+ return -EBUSY;
+
+ cmos_read_time(dev, &now);
+ t_now = rtc_tm_to_time64(&now);
+
+ /*
+ * When enabling "RTC wake-up" in BIOS setup, the machine reboots
+ * automatically right after shutdown on some buggy boxes.
+ * This automatic rebooting issue won't happen when the alarm
+ * time is larger than now+1 seconds.
+ *
+ * If the alarm time is equal to now+1 seconds, the issue can be
+ * prevented by cancelling the alarm.
+ */
+ if (cmos->alarm_expires == t_now + 1) {
+ struct rtc_wkalrm alarm;
+
+ /* Cancel the AIE timer by configuring the past time. */
+ rtc_time64_to_tm(t_now - 1, &alarm.time);
+ alarm.enabled = 0;
+ retval = cmos_set_alarm(dev, &alarm);
+ } else if (cmos->alarm_expires > t_now + 1) {
+ retval = -EBUSY;
+ }
+
+ return retval;
+}
+
+static int cmos_suspend(struct device *dev)
+{
+ struct cmos_rtc *cmos = dev_get_drvdata(dev);
+ unsigned char tmp;
+
+ /* only the alarm might be a wakeup event source */
+ spin_lock_irq(&rtc_lock);
+ cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
+ if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
+ unsigned char mask;
+
+ if (device_may_wakeup(dev))
+ mask = RTC_IRQMASK & ~RTC_AIE;
+ else
+ mask = RTC_IRQMASK;
+ tmp &= ~mask;
+ CMOS_WRITE(tmp, RTC_CONTROL);
+ if (use_hpet_alarm())
+ hpet_mask_rtc_irq_bit(mask);
+ cmos_checkintr(cmos, tmp);
+ }
+ spin_unlock_irq(&rtc_lock);
+
+ if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
+ cmos->enabled_wake = 1;
+ if (cmos->wake_on)
+ cmos->wake_on(dev);
+ else
+ enable_irq_wake(cmos->irq);
+ }
+
+ memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
+ cmos_read_alarm(dev, &cmos->saved_wkalrm);
+
+ dev_dbg(dev, "suspend%s, ctrl %02x\n",
+ (tmp & RTC_AIE) ? ", alarm may wake" : "",
+ tmp);
+
+ return 0;
+}
+
+/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
+ * after a detour through G3 "mechanical off", although the ACPI spec
+ * says wakeup should only work from G1/S4 "hibernate". To most users,
+ * distinctions between S4 and S5 are pointless. So when the hardware
+ * allows, don't draw that distinction.
+ */
+static inline int cmos_poweroff(struct device *dev)
+{
+ if (!IS_ENABLED(CONFIG_PM))
+ return -ENOSYS;
+
+ return cmos_suspend(dev);
+}
+
+static void cmos_check_wkalrm(struct device *dev)
+{
+ struct cmos_rtc *cmos = dev_get_drvdata(dev);
+ struct rtc_wkalrm current_alarm;
+ time64_t t_now;
+ time64_t t_current_expires;
+ time64_t t_saved_expires;
+ struct rtc_time now;
+
+ /* Check if we have RTC Alarm armed */
+ if (!(cmos->suspend_ctrl & RTC_AIE))
+ return;
+
+ cmos_read_time(dev, &now);
+ t_now = rtc_tm_to_time64(&now);
+
+ /*
+ * ACPI RTC wake event is cleared after resume from STR,
+ * ACK the rtc irq here
+ */
+ if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
+ local_irq_disable();
+ cmos_interrupt(0, (void *)cmos->rtc);
+ local_irq_enable();
+ return;
+ }
+
+ memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
+ cmos_read_alarm(dev, &current_alarm);
+ t_current_expires = rtc_tm_to_time64(&current_alarm.time);
+ t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
+ if (t_current_expires != t_saved_expires ||
+ cmos->saved_wkalrm.enabled != current_alarm.enabled) {
+ cmos_set_alarm(dev, &cmos->saved_wkalrm);
+ }
+}
+
+static int __maybe_unused cmos_resume(struct device *dev)
+{
+ struct cmos_rtc *cmos = dev_get_drvdata(dev);
+ unsigned char tmp;
+
+ if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
+ if (cmos->wake_off)
+ cmos->wake_off(dev);
+ else
+ disable_irq_wake(cmos->irq);
+ cmos->enabled_wake = 0;
+ }
+
+ /* The BIOS might have changed the alarm, restore it */
+ cmos_check_wkalrm(dev);
+
+ spin_lock_irq(&rtc_lock);
+ tmp = cmos->suspend_ctrl;
+ cmos->suspend_ctrl = 0;
+ /* re-enable any irqs previously active */
+ if (tmp & RTC_IRQMASK) {
+ unsigned char mask;
+
+ if (device_may_wakeup(dev) && use_hpet_alarm())
+ hpet_rtc_timer_init();
+
+ do {
+ CMOS_WRITE(tmp, RTC_CONTROL);
+ if (use_hpet_alarm())
+ hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
+
+ mask = CMOS_READ(RTC_INTR_FLAGS);
+ mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
+ if (!use_hpet_alarm() || !is_intr(mask))
+ break;
+
+ /* force one-shot behavior if HPET blocked
+ * the wake alarm's irq
+ */
+ rtc_update_irq(cmos->rtc, 1, mask);
+ tmp &= ~RTC_AIE;
+ hpet_mask_rtc_irq_bit(RTC_AIE);
+ } while (mask & RTC_AIE);
+
+ if (tmp & RTC_AIE)
+ cmos_check_acpi_rtc_status(dev, &tmp);
+ }
+ spin_unlock_irq(&rtc_lock);
+
+ dev_dbg(dev, "resume, ctrl %02x\n", tmp);
+
+ return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
+
+/*----------------------------------------------------------------*/
+
+/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
+ * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
+ * probably list them in similar PNPBIOS tables; so PNP is more common.
+ *
+ * We don't use legacy "poke at the hardware" probing. Ancient PCs that
+ * predate even PNPBIOS should set up platform_bus devices.
+ */
+
+#ifdef CONFIG_PNP
+
+#include <linux/pnp.h>
+
+static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
+{
+ int irq;
+
+ if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
+ irq = 0;
+#ifdef CONFIG_X86
+ /* Some machines contain a PNP entry for the RTC, but
+ * don't define the IRQ. It should always be safe to
+ * hardcode it on systems with a legacy PIC.
+ */
+ if (nr_legacy_irqs())
+ irq = RTC_IRQ;
+#endif
+ } else {
+ irq = pnp_irq(pnp, 0);
+ }
+
+ return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
+}
+
+static void cmos_pnp_remove(struct pnp_dev *pnp)
+{
+ cmos_do_remove(&pnp->dev);
+}
+
+static void cmos_pnp_shutdown(struct pnp_dev *pnp)
+{
+ struct device *dev = &pnp->dev;
+ struct cmos_rtc *cmos = dev_get_drvdata(dev);
+
+ if (system_state == SYSTEM_POWER_OFF) {
+ int retval = cmos_poweroff(dev);
+
+ if (cmos_aie_poweroff(dev) < 0 && !retval)
+ return;
+ }
+
+ cmos_do_shutdown(cmos->irq);
+}
+
+static const struct pnp_device_id rtc_ids[] = {
+ { .id = "PNP0b00", },
+ { .id = "PNP0b01", },
+ { .id = "PNP0b02", },
+ { },
+};
+MODULE_DEVICE_TABLE(pnp, rtc_ids);
+
+static struct pnp_driver cmos_pnp_driver = {
+ .name = driver_name,
+ .id_table = rtc_ids,
+ .probe = cmos_pnp_probe,
+ .remove = cmos_pnp_remove,
+ .shutdown = cmos_pnp_shutdown,
+
+ /* flag ensures resume() gets called, and stops syslog spam */
+ .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
+ .driver = {
+ .pm = &cmos_pm_ops,
+ },
+};
+
+#endif /* CONFIG_PNP */
+
+#ifdef CONFIG_OF
+static const struct of_device_id of_cmos_match[] = {
+ {
+ .compatible = "motorola,mc146818",
+ },
+ { },
+};
+MODULE_DEVICE_TABLE(of, of_cmos_match);
+
+static __init void cmos_of_init(struct platform_device *pdev)
+{
+ struct device_node *node = pdev->dev.of_node;
+ const __be32 *val;
+
+ if (!node)
+ return;
+
+ val = of_get_property(node, "ctrl-reg", NULL);
+ if (val)
+ CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
+
+ val = of_get_property(node, "freq-reg", NULL);
+ if (val)
+ CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
+}
+#else
+static inline void cmos_of_init(struct platform_device *pdev) {}
+#endif
+/*----------------------------------------------------------------*/
+
+/* Platform setup should have set up an RTC device, when PNP is
+ * unavailable ... this could happen even on (older) PCs.
+ */
+
+static int __init cmos_platform_probe(struct platform_device *pdev)
+{
+ struct resource *resource;
+ int irq;
+
+ cmos_of_init(pdev);
+
+ if (RTC_IOMAPPED)
+ resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
+ else
+ resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ irq = -1;
+
+ return cmos_do_probe(&pdev->dev, resource, irq);
+}
+
+static int cmos_platform_remove(struct platform_device *pdev)
+{
+ cmos_do_remove(&pdev->dev);
+ return 0;
+}
+
+static void cmos_platform_shutdown(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct cmos_rtc *cmos = dev_get_drvdata(dev);
+
+ if (system_state == SYSTEM_POWER_OFF) {
+ int retval = cmos_poweroff(dev);
+
+ if (cmos_aie_poweroff(dev) < 0 && !retval)
+ return;
+ }
+
+ cmos_do_shutdown(cmos->irq);
+}
+
+/* work with hotplug and coldplug */
+MODULE_ALIAS("platform:rtc_cmos");
+
+static struct platform_driver cmos_platform_driver = {
+ .remove = cmos_platform_remove,
+ .shutdown = cmos_platform_shutdown,
+ .driver = {
+ .name = driver_name,
+ .pm = &cmos_pm_ops,
+ .of_match_table = of_match_ptr(of_cmos_match),
+ }
+};
+
+#ifdef CONFIG_PNP
+static bool pnp_driver_registered;
+#endif
+static bool platform_driver_registered;
+
+static int __init cmos_init(void)
+{
+ int retval = 0;
+
+#ifdef CONFIG_PNP
+ retval = pnp_register_driver(&cmos_pnp_driver);
+ if (retval == 0)
+ pnp_driver_registered = true;
+#endif
+
+ if (!cmos_rtc.dev) {
+ retval = platform_driver_probe(&cmos_platform_driver,
+ cmos_platform_probe);
+ if (retval == 0)
+ platform_driver_registered = true;
+ }
+
+ if (retval == 0)
+ return 0;
+
+#ifdef CONFIG_PNP
+ if (pnp_driver_registered)
+ pnp_unregister_driver(&cmos_pnp_driver);
+#endif
+ return retval;
+}
+module_init(cmos_init);
+
+static void __exit cmos_exit(void)
+{
+#ifdef CONFIG_PNP
+ if (pnp_driver_registered)
+ pnp_unregister_driver(&cmos_pnp_driver);
+#endif
+ if (platform_driver_registered)
+ platform_driver_unregister(&cmos_platform_driver);
+}
+module_exit(cmos_exit);
+
+
+MODULE_AUTHOR("David Brownell");
+MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-coh901331.c b/drivers/rtc/rtc-coh901331.c
new file mode 100644
index 000000000..da59917c9
--- /dev/null
+++ b/drivers/rtc/rtc-coh901331.c
@@ -0,0 +1,290 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2007-2009 ST-Ericsson AB
+ * Real Time Clock interface for ST-Ericsson AB COH 901 331 RTC.
+ * Author: Linus Walleij <linus.walleij@stericsson.com>
+ * Based on rtc-pl031.c by Deepak Saxena <dsaxena@plexity.net>
+ * Copyright 2006 (c) MontaVista Software, Inc.
+ */
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/mod_devicetable.h>
+#include <linux/rtc.h>
+#include <linux/clk.h>
+#include <linux/interrupt.h>
+#include <linux/pm.h>
+#include <linux/platform_device.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+
+/*
+ * Registers in the COH 901 331
+ */
+/* Alarm value 32bit (R/W) */
+#define COH901331_ALARM 0x00U
+/* Used to set current time 32bit (R/W) */
+#define COH901331_SET_TIME 0x04U
+/* Indication if current time is valid 32bit (R/-) */
+#define COH901331_VALID 0x08U
+/* Read the current time 32bit (R/-) */
+#define COH901331_CUR_TIME 0x0cU
+/* Event register for the "alarm" interrupt */
+#define COH901331_IRQ_EVENT 0x10U
+/* Mask register for the "alarm" interrupt */
+#define COH901331_IRQ_MASK 0x14U
+/* Force register for the "alarm" interrupt */
+#define COH901331_IRQ_FORCE 0x18U
+
+/*
+ * Reference to RTC block clock
+ * Notice that the frequent clk_enable()/clk_disable() on this
+ * clock is mainly to be able to turn on/off other clocks in the
+ * hierarchy as needed, the RTC clock is always on anyway.
+ */
+struct coh901331_port {
+ struct rtc_device *rtc;
+ struct clk *clk;
+ void __iomem *virtbase;
+ int irq;
+#ifdef CONFIG_PM_SLEEP
+ u32 irqmaskstore;
+#endif
+};
+
+static irqreturn_t coh901331_interrupt(int irq, void *data)
+{
+ struct coh901331_port *rtap = data;
+
+ clk_enable(rtap->clk);
+ /* Ack IRQ */
+ writel(1, rtap->virtbase + COH901331_IRQ_EVENT);
+ /*
+ * Disable the interrupt. This is necessary because
+ * the RTC lives on a lower-clocked line and will
+ * not release the IRQ line until after a few (slower)
+ * clock cycles. The interrupt will be re-enabled when
+ * a new alarm is set anyway.
+ */
+ writel(0, rtap->virtbase + COH901331_IRQ_MASK);
+ clk_disable(rtap->clk);
+
+ /* Set alarm flag */
+ rtc_update_irq(rtap->rtc, 1, RTC_AF);
+
+ return IRQ_HANDLED;
+}
+
+static int coh901331_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct coh901331_port *rtap = dev_get_drvdata(dev);
+
+ clk_enable(rtap->clk);
+ /* Check if the time is valid */
+ if (!readl(rtap->virtbase + COH901331_VALID)) {
+ clk_disable(rtap->clk);
+ return -EINVAL;
+ }
+
+ rtc_time64_to_tm(readl(rtap->virtbase + COH901331_CUR_TIME), tm);
+ clk_disable(rtap->clk);
+ return 0;
+}
+
+static int coh901331_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct coh901331_port *rtap = dev_get_drvdata(dev);
+
+ clk_enable(rtap->clk);
+ writel(rtc_tm_to_time64(tm), rtap->virtbase + COH901331_SET_TIME);
+ clk_disable(rtap->clk);
+
+ return 0;
+}
+
+static int coh901331_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct coh901331_port *rtap = dev_get_drvdata(dev);
+
+ clk_enable(rtap->clk);
+ rtc_time64_to_tm(readl(rtap->virtbase + COH901331_ALARM), &alarm->time);
+ alarm->pending = readl(rtap->virtbase + COH901331_IRQ_EVENT) & 1U;
+ alarm->enabled = readl(rtap->virtbase + COH901331_IRQ_MASK) & 1U;
+ clk_disable(rtap->clk);
+
+ return 0;
+}
+
+static int coh901331_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct coh901331_port *rtap = dev_get_drvdata(dev);
+ unsigned long time = rtc_tm_to_time64(&alarm->time);
+
+ clk_enable(rtap->clk);
+ writel(time, rtap->virtbase + COH901331_ALARM);
+ writel(alarm->enabled, rtap->virtbase + COH901331_IRQ_MASK);
+ clk_disable(rtap->clk);
+
+ return 0;
+}
+
+static int coh901331_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct coh901331_port *rtap = dev_get_drvdata(dev);
+
+ clk_enable(rtap->clk);
+ if (enabled)
+ writel(1, rtap->virtbase + COH901331_IRQ_MASK);
+ else
+ writel(0, rtap->virtbase + COH901331_IRQ_MASK);
+ clk_disable(rtap->clk);
+
+ return 0;
+}
+
+static const struct rtc_class_ops coh901331_ops = {
+ .read_time = coh901331_read_time,
+ .set_time = coh901331_set_time,
+ .read_alarm = coh901331_read_alarm,
+ .set_alarm = coh901331_set_alarm,
+ .alarm_irq_enable = coh901331_alarm_irq_enable,
+};
+
+static int __exit coh901331_remove(struct platform_device *pdev)
+{
+ struct coh901331_port *rtap = platform_get_drvdata(pdev);
+
+ if (rtap)
+ clk_unprepare(rtap->clk);
+
+ return 0;
+}
+
+
+static int __init coh901331_probe(struct platform_device *pdev)
+{
+ int ret;
+ struct coh901331_port *rtap;
+
+ rtap = devm_kzalloc(&pdev->dev,
+ sizeof(struct coh901331_port), GFP_KERNEL);
+ if (!rtap)
+ return -ENOMEM;
+
+ rtap->virtbase = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(rtap->virtbase))
+ return PTR_ERR(rtap->virtbase);
+
+ rtap->irq = platform_get_irq(pdev, 0);
+ if (devm_request_irq(&pdev->dev, rtap->irq, coh901331_interrupt, 0,
+ "RTC COH 901 331 Alarm", rtap))
+ return -EIO;
+
+ rtap->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(rtap->clk)) {
+ ret = PTR_ERR(rtap->clk);
+ dev_err(&pdev->dev, "could not get clock\n");
+ return ret;
+ }
+
+ rtap->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtap->rtc))
+ return PTR_ERR(rtap->rtc);
+
+ rtap->rtc->ops = &coh901331_ops;
+ rtap->rtc->range_max = U32_MAX;
+
+ /* We enable/disable the clock only to assure it works */
+ ret = clk_prepare_enable(rtap->clk);
+ if (ret) {
+ dev_err(&pdev->dev, "could not enable clock\n");
+ return ret;
+ }
+ clk_disable(rtap->clk);
+
+ platform_set_drvdata(pdev, rtap);
+
+ ret = rtc_register_device(rtap->rtc);
+ if (ret)
+ goto out_no_rtc;
+
+ return 0;
+
+ out_no_rtc:
+ clk_unprepare(rtap->clk);
+ return ret;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int coh901331_suspend(struct device *dev)
+{
+ struct coh901331_port *rtap = dev_get_drvdata(dev);
+
+ /*
+ * If this RTC alarm will be used for waking the system up,
+ * don't disable it of course. Else we just disable the alarm
+ * and await suspension.
+ */
+ if (device_may_wakeup(dev)) {
+ enable_irq_wake(rtap->irq);
+ } else {
+ clk_enable(rtap->clk);
+ rtap->irqmaskstore = readl(rtap->virtbase + COH901331_IRQ_MASK);
+ writel(0, rtap->virtbase + COH901331_IRQ_MASK);
+ clk_disable(rtap->clk);
+ }
+ clk_unprepare(rtap->clk);
+ return 0;
+}
+
+static int coh901331_resume(struct device *dev)
+{
+ int ret;
+ struct coh901331_port *rtap = dev_get_drvdata(dev);
+
+ ret = clk_prepare(rtap->clk);
+ if (ret)
+ return ret;
+
+ if (device_may_wakeup(dev)) {
+ disable_irq_wake(rtap->irq);
+ } else {
+ clk_enable(rtap->clk);
+ writel(rtap->irqmaskstore, rtap->virtbase + COH901331_IRQ_MASK);
+ clk_disable(rtap->clk);
+ }
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(coh901331_pm_ops, coh901331_suspend, coh901331_resume);
+
+static void coh901331_shutdown(struct platform_device *pdev)
+{
+ struct coh901331_port *rtap = platform_get_drvdata(pdev);
+
+ clk_enable(rtap->clk);
+ writel(0, rtap->virtbase + COH901331_IRQ_MASK);
+ clk_disable_unprepare(rtap->clk);
+}
+
+static const struct of_device_id coh901331_dt_match[] = {
+ { .compatible = "stericsson,coh901331" },
+ {},
+};
+MODULE_DEVICE_TABLE(of, coh901331_dt_match);
+
+static struct platform_driver coh901331_driver = {
+ .driver = {
+ .name = "rtc-coh901331",
+ .pm = &coh901331_pm_ops,
+ .of_match_table = coh901331_dt_match,
+ },
+ .remove = __exit_p(coh901331_remove),
+ .shutdown = coh901331_shutdown,
+};
+
+module_platform_driver_probe(coh901331_driver, coh901331_probe);
+
+MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
+MODULE_DESCRIPTION("ST-Ericsson AB COH 901 331 RTC Driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-core.h b/drivers/rtc/rtc-core.h
new file mode 100644
index 000000000..0abf98983
--- /dev/null
+++ b/drivers/rtc/rtc-core.h
@@ -0,0 +1,48 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifdef CONFIG_RTC_INTF_DEV
+
+extern void __init rtc_dev_init(void);
+extern void __exit rtc_dev_exit(void);
+extern void rtc_dev_prepare(struct rtc_device *rtc);
+
+#else
+
+static inline void rtc_dev_init(void)
+{
+}
+
+static inline void rtc_dev_exit(void)
+{
+}
+
+static inline void rtc_dev_prepare(struct rtc_device *rtc)
+{
+}
+
+#endif
+
+#ifdef CONFIG_RTC_INTF_PROC
+
+extern void rtc_proc_add_device(struct rtc_device *rtc);
+extern void rtc_proc_del_device(struct rtc_device *rtc);
+
+#else
+
+static inline void rtc_proc_add_device(struct rtc_device *rtc)
+{
+}
+
+static inline void rtc_proc_del_device(struct rtc_device *rtc)
+{
+}
+
+#endif
+
+#ifdef CONFIG_RTC_INTF_SYSFS
+const struct attribute_group **rtc_get_dev_attribute_groups(void);
+#else
+static inline const struct attribute_group **rtc_get_dev_attribute_groups(void)
+{
+ return NULL;
+}
+#endif
diff --git a/drivers/rtc/rtc-cpcap.c b/drivers/rtc/rtc-cpcap.c
new file mode 100644
index 000000000..800667d73
--- /dev/null
+++ b/drivers/rtc/rtc-cpcap.c
@@ -0,0 +1,324 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Motorola CPCAP PMIC RTC driver
+ *
+ * Based on cpcap-regulator.c from Motorola Linux kernel tree
+ * Copyright (C) 2009 Motorola, Inc.
+ *
+ * Rewritten for mainline kernel
+ * - use DT
+ * - use regmap
+ * - use standard interrupt framework
+ * - use managed device resources
+ * - remove custom "secure clock daemon" helpers
+ *
+ * Copyright (C) 2017 Sebastian Reichel <sre@kernel.org>
+ */
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/mod_devicetable.h>
+#include <linux/init.h>
+#include <linux/device.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/err.h>
+#include <linux/regmap.h>
+#include <linux/mfd/motorola-cpcap.h>
+#include <linux/slab.h>
+#include <linux/sched.h>
+
+#define SECS_PER_DAY 86400
+#define DAY_MASK 0x7FFF
+#define TOD1_MASK 0x00FF
+#define TOD2_MASK 0x01FF
+
+struct cpcap_time {
+ int day;
+ int tod1;
+ int tod2;
+};
+
+struct cpcap_rtc {
+ struct regmap *regmap;
+ struct rtc_device *rtc_dev;
+ u16 vendor;
+ int alarm_irq;
+ bool alarm_enabled;
+ int update_irq;
+ bool update_enabled;
+};
+
+static void cpcap2rtc_time(struct rtc_time *rtc, struct cpcap_time *cpcap)
+{
+ unsigned long int tod;
+ unsigned long int time;
+
+ tod = (cpcap->tod1 & TOD1_MASK) | ((cpcap->tod2 & TOD2_MASK) << 8);
+ time = tod + ((cpcap->day & DAY_MASK) * SECS_PER_DAY);
+
+ rtc_time64_to_tm(time, rtc);
+}
+
+static void rtc2cpcap_time(struct cpcap_time *cpcap, struct rtc_time *rtc)
+{
+ unsigned long time;
+
+ time = rtc_tm_to_time64(rtc);
+
+ cpcap->day = time / SECS_PER_DAY;
+ time %= SECS_PER_DAY;
+ cpcap->tod2 = (time >> 8) & TOD2_MASK;
+ cpcap->tod1 = time & TOD1_MASK;
+}
+
+static int cpcap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct cpcap_rtc *rtc = dev_get_drvdata(dev);
+
+ if (rtc->alarm_enabled == enabled)
+ return 0;
+
+ if (enabled)
+ enable_irq(rtc->alarm_irq);
+ else
+ disable_irq(rtc->alarm_irq);
+
+ rtc->alarm_enabled = !!enabled;
+
+ return 0;
+}
+
+static int cpcap_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct cpcap_rtc *rtc;
+ struct cpcap_time cpcap_tm;
+ int temp_tod2;
+ int ret;
+
+ rtc = dev_get_drvdata(dev);
+
+ ret = regmap_read(rtc->regmap, CPCAP_REG_TOD2, &temp_tod2);
+ ret |= regmap_read(rtc->regmap, CPCAP_REG_DAY, &cpcap_tm.day);
+ ret |= regmap_read(rtc->regmap, CPCAP_REG_TOD1, &cpcap_tm.tod1);
+ ret |= regmap_read(rtc->regmap, CPCAP_REG_TOD2, &cpcap_tm.tod2);
+
+ if (temp_tod2 > cpcap_tm.tod2)
+ ret |= regmap_read(rtc->regmap, CPCAP_REG_DAY, &cpcap_tm.day);
+
+ if (ret) {
+ dev_err(dev, "Failed to read time\n");
+ return -EIO;
+ }
+
+ cpcap2rtc_time(tm, &cpcap_tm);
+
+ return 0;
+}
+
+static int cpcap_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct cpcap_rtc *rtc;
+ struct cpcap_time cpcap_tm;
+ int ret = 0;
+
+ rtc = dev_get_drvdata(dev);
+
+ rtc2cpcap_time(&cpcap_tm, tm);
+
+ if (rtc->alarm_enabled)
+ disable_irq(rtc->alarm_irq);
+ if (rtc->update_enabled)
+ disable_irq(rtc->update_irq);
+
+ if (rtc->vendor == CPCAP_VENDOR_ST) {
+ /* The TOD1 and TOD2 registers MUST be written in this order
+ * for the change to properly set.
+ */
+ ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD1,
+ TOD1_MASK, cpcap_tm.tod1);
+ ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD2,
+ TOD2_MASK, cpcap_tm.tod2);
+ ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_DAY,
+ DAY_MASK, cpcap_tm.day);
+ } else {
+ /* Clearing the upper lower 8 bits of the TOD guarantees that
+ * the upper half of TOD (TOD2) will not increment for 0xFF RTC
+ * ticks (255 seconds). During this time we can safely write
+ * to DAY, TOD2, then TOD1 (in that order) and expect RTC to be
+ * synchronized to the exact time requested upon the final write
+ * to TOD1.
+ */
+ ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD1,
+ TOD1_MASK, 0);
+ ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_DAY,
+ DAY_MASK, cpcap_tm.day);
+ ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD2,
+ TOD2_MASK, cpcap_tm.tod2);
+ ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TOD1,
+ TOD1_MASK, cpcap_tm.tod1);
+ }
+
+ if (rtc->update_enabled)
+ enable_irq(rtc->update_irq);
+ if (rtc->alarm_enabled)
+ enable_irq(rtc->alarm_irq);
+
+ return ret;
+}
+
+static int cpcap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct cpcap_rtc *rtc;
+ struct cpcap_time cpcap_tm;
+ int ret;
+
+ rtc = dev_get_drvdata(dev);
+
+ alrm->enabled = rtc->alarm_enabled;
+
+ ret = regmap_read(rtc->regmap, CPCAP_REG_DAYA, &cpcap_tm.day);
+ ret |= regmap_read(rtc->regmap, CPCAP_REG_TODA2, &cpcap_tm.tod2);
+ ret |= regmap_read(rtc->regmap, CPCAP_REG_TODA1, &cpcap_tm.tod1);
+
+ if (ret) {
+ dev_err(dev, "Failed to read time\n");
+ return -EIO;
+ }
+
+ cpcap2rtc_time(&alrm->time, &cpcap_tm);
+ return rtc_valid_tm(&alrm->time);
+}
+
+static int cpcap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct cpcap_rtc *rtc;
+ struct cpcap_time cpcap_tm;
+ int ret;
+
+ rtc = dev_get_drvdata(dev);
+
+ rtc2cpcap_time(&cpcap_tm, &alrm->time);
+
+ if (rtc->alarm_enabled)
+ disable_irq(rtc->alarm_irq);
+
+ ret = regmap_update_bits(rtc->regmap, CPCAP_REG_DAYA, DAY_MASK,
+ cpcap_tm.day);
+ ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TODA2, TOD2_MASK,
+ cpcap_tm.tod2);
+ ret |= regmap_update_bits(rtc->regmap, CPCAP_REG_TODA1, TOD1_MASK,
+ cpcap_tm.tod1);
+
+ if (!ret) {
+ enable_irq(rtc->alarm_irq);
+ rtc->alarm_enabled = true;
+ }
+
+ return ret;
+}
+
+static const struct rtc_class_ops cpcap_rtc_ops = {
+ .read_time = cpcap_rtc_read_time,
+ .set_time = cpcap_rtc_set_time,
+ .read_alarm = cpcap_rtc_read_alarm,
+ .set_alarm = cpcap_rtc_set_alarm,
+ .alarm_irq_enable = cpcap_rtc_alarm_irq_enable,
+};
+
+static irqreturn_t cpcap_rtc_alarm_irq(int irq, void *data)
+{
+ struct cpcap_rtc *rtc = data;
+
+ rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
+ return IRQ_HANDLED;
+}
+
+static irqreturn_t cpcap_rtc_update_irq(int irq, void *data)
+{
+ struct cpcap_rtc *rtc = data;
+
+ rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
+ return IRQ_HANDLED;
+}
+
+static int cpcap_rtc_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct cpcap_rtc *rtc;
+ int err;
+
+ rtc = devm_kzalloc(dev, sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->regmap = dev_get_regmap(dev->parent, NULL);
+ if (!rtc->regmap)
+ return -ENODEV;
+
+ platform_set_drvdata(pdev, rtc);
+ rtc->rtc_dev = devm_rtc_allocate_device(dev);
+ if (IS_ERR(rtc->rtc_dev))
+ return PTR_ERR(rtc->rtc_dev);
+
+ rtc->rtc_dev->ops = &cpcap_rtc_ops;
+ rtc->rtc_dev->range_max = (timeu64_t) (DAY_MASK + 1) * SECS_PER_DAY - 1;
+
+ err = cpcap_get_vendor(dev, rtc->regmap, &rtc->vendor);
+ if (err)
+ return err;
+
+ rtc->alarm_irq = platform_get_irq(pdev, 0);
+ err = devm_request_threaded_irq(dev, rtc->alarm_irq, NULL,
+ cpcap_rtc_alarm_irq, IRQF_TRIGGER_NONE,
+ "rtc_alarm", rtc);
+ if (err) {
+ dev_err(dev, "Could not request alarm irq: %d\n", err);
+ return err;
+ }
+ disable_irq(rtc->alarm_irq);
+
+ /* Stock Android uses the 1 Hz interrupt for "secure clock daemon",
+ * which is not supported by the mainline kernel. The mainline kernel
+ * does not use the irq at the moment, but we explicitly request and
+ * disable it, so that its masked and does not wake up the processor
+ * every second.
+ */
+ rtc->update_irq = platform_get_irq(pdev, 1);
+ err = devm_request_threaded_irq(dev, rtc->update_irq, NULL,
+ cpcap_rtc_update_irq, IRQF_TRIGGER_NONE,
+ "rtc_1hz", rtc);
+ if (err) {
+ dev_err(dev, "Could not request update irq: %d\n", err);
+ return err;
+ }
+ disable_irq(rtc->update_irq);
+
+ err = device_init_wakeup(dev, 1);
+ if (err) {
+ dev_err(dev, "wakeup initialization failed (%d)\n", err);
+ /* ignore error and continue without wakeup support */
+ }
+
+ return rtc_register_device(rtc->rtc_dev);
+}
+
+static const struct of_device_id cpcap_rtc_of_match[] = {
+ { .compatible = "motorola,cpcap-rtc", },
+ {},
+};
+MODULE_DEVICE_TABLE(of, cpcap_rtc_of_match);
+
+static struct platform_driver cpcap_rtc_driver = {
+ .probe = cpcap_rtc_probe,
+ .driver = {
+ .name = "cpcap-rtc",
+ .of_match_table = cpcap_rtc_of_match,
+ },
+};
+
+module_platform_driver(cpcap_rtc_driver);
+
+MODULE_ALIAS("platform:cpcap-rtc");
+MODULE_DESCRIPTION("CPCAP RTC driver");
+MODULE_AUTHOR("Sebastian Reichel <sre@kernel.org>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-cros-ec.c b/drivers/rtc/rtc-cros-ec.c
new file mode 100644
index 000000000..f7343c289
--- /dev/null
+++ b/drivers/rtc/rtc-cros-ec.c
@@ -0,0 +1,400 @@
+// SPDX-License-Identifier: GPL-2.0
+// RTC driver for ChromeOS Embedded Controller.
+//
+// Copyright (C) 2017 Google, Inc.
+// Author: Stephen Barber <smbarber@chromium.org>
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/platform_data/cros_ec_commands.h>
+#include <linux/platform_data/cros_ec_proto.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+
+#define DRV_NAME "cros-ec-rtc"
+
+/**
+ * struct cros_ec_rtc - Driver data for EC RTC
+ *
+ * @cros_ec: Pointer to EC device
+ * @rtc: Pointer to RTC device
+ * @notifier: Notifier info for responding to EC events
+ * @saved_alarm: Alarm to restore when interrupts are reenabled
+ */
+struct cros_ec_rtc {
+ struct cros_ec_device *cros_ec;
+ struct rtc_device *rtc;
+ struct notifier_block notifier;
+ u32 saved_alarm;
+};
+
+static int cros_ec_rtc_get(struct cros_ec_device *cros_ec, u32 command,
+ u32 *response)
+{
+ int ret;
+ struct {
+ struct cros_ec_command msg;
+ struct ec_response_rtc data;
+ } __packed msg;
+
+ memset(&msg, 0, sizeof(msg));
+ msg.msg.command = command;
+ msg.msg.insize = sizeof(msg.data);
+
+ ret = cros_ec_cmd_xfer_status(cros_ec, &msg.msg);
+ if (ret < 0) {
+ dev_err(cros_ec->dev,
+ "error getting %s from EC: %d\n",
+ command == EC_CMD_RTC_GET_VALUE ? "time" : "alarm",
+ ret);
+ return ret;
+ }
+
+ *response = msg.data.time;
+
+ return 0;
+}
+
+static int cros_ec_rtc_set(struct cros_ec_device *cros_ec, u32 command,
+ u32 param)
+{
+ int ret = 0;
+ struct {
+ struct cros_ec_command msg;
+ struct ec_response_rtc data;
+ } __packed msg;
+
+ memset(&msg, 0, sizeof(msg));
+ msg.msg.command = command;
+ msg.msg.outsize = sizeof(msg.data);
+ msg.data.time = param;
+
+ ret = cros_ec_cmd_xfer_status(cros_ec, &msg.msg);
+ if (ret < 0) {
+ dev_err(cros_ec->dev, "error setting %s on EC: %d\n",
+ command == EC_CMD_RTC_SET_VALUE ? "time" : "alarm",
+ ret);
+ return ret;
+ }
+
+ return 0;
+}
+
+/* Read the current time from the EC. */
+static int cros_ec_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct cros_ec_rtc *cros_ec_rtc = dev_get_drvdata(dev);
+ struct cros_ec_device *cros_ec = cros_ec_rtc->cros_ec;
+ int ret;
+ u32 time;
+
+ ret = cros_ec_rtc_get(cros_ec, EC_CMD_RTC_GET_VALUE, &time);
+ if (ret) {
+ dev_err(dev, "error getting time: %d\n", ret);
+ return ret;
+ }
+
+ rtc_time64_to_tm(time, tm);
+
+ return 0;
+}
+
+/* Set the current EC time. */
+static int cros_ec_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct cros_ec_rtc *cros_ec_rtc = dev_get_drvdata(dev);
+ struct cros_ec_device *cros_ec = cros_ec_rtc->cros_ec;
+ int ret;
+ time64_t time = rtc_tm_to_time64(tm);
+
+ ret = cros_ec_rtc_set(cros_ec, EC_CMD_RTC_SET_VALUE, (u32)time);
+ if (ret < 0) {
+ dev_err(dev, "error setting time: %d\n", ret);
+ return ret;
+ }
+
+ return 0;
+}
+
+/* Read alarm time from RTC. */
+static int cros_ec_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct cros_ec_rtc *cros_ec_rtc = dev_get_drvdata(dev);
+ struct cros_ec_device *cros_ec = cros_ec_rtc->cros_ec;
+ int ret;
+ u32 current_time, alarm_offset;
+
+ /*
+ * The EC host command for getting the alarm is relative (i.e. 5
+ * seconds from now) whereas rtc_wkalrm is absolute. Get the current
+ * RTC time first so we can calculate the relative time.
+ */
+ ret = cros_ec_rtc_get(cros_ec, EC_CMD_RTC_GET_VALUE, &current_time);
+ if (ret < 0) {
+ dev_err(dev, "error getting time: %d\n", ret);
+ return ret;
+ }
+
+ ret = cros_ec_rtc_get(cros_ec, EC_CMD_RTC_GET_ALARM, &alarm_offset);
+ if (ret < 0) {
+ dev_err(dev, "error getting alarm: %d\n", ret);
+ return ret;
+ }
+
+ rtc_time64_to_tm(current_time + alarm_offset, &alrm->time);
+
+ return 0;
+}
+
+/* Set the EC's RTC alarm. */
+static int cros_ec_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct cros_ec_rtc *cros_ec_rtc = dev_get_drvdata(dev);
+ struct cros_ec_device *cros_ec = cros_ec_rtc->cros_ec;
+ int ret;
+ time64_t alarm_time;
+ u32 current_time, alarm_offset;
+
+ /*
+ * The EC host command for setting the alarm is relative
+ * (i.e. 5 seconds from now) whereas rtc_wkalrm is absolute.
+ * Get the current RTC time first so we can calculate the
+ * relative time.
+ */
+ ret = cros_ec_rtc_get(cros_ec, EC_CMD_RTC_GET_VALUE, &current_time);
+ if (ret < 0) {
+ dev_err(dev, "error getting time: %d\n", ret);
+ return ret;
+ }
+
+ alarm_time = rtc_tm_to_time64(&alrm->time);
+
+ if (alarm_time < 0 || alarm_time > U32_MAX)
+ return -EINVAL;
+
+ if (!alrm->enabled) {
+ /*
+ * If the alarm is being disabled, send an alarm
+ * clear command.
+ */
+ alarm_offset = EC_RTC_ALARM_CLEAR;
+ cros_ec_rtc->saved_alarm = (u32)alarm_time;
+ } else {
+ /* Don't set an alarm in the past. */
+ if ((u32)alarm_time <= current_time)
+ return -ETIME;
+
+ alarm_offset = (u32)alarm_time - current_time;
+ }
+
+ ret = cros_ec_rtc_set(cros_ec, EC_CMD_RTC_SET_ALARM, alarm_offset);
+ if (ret < 0) {
+ dev_err(dev, "error setting alarm: %d\n", ret);
+ return ret;
+ }
+
+ return 0;
+}
+
+static int cros_ec_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct cros_ec_rtc *cros_ec_rtc = dev_get_drvdata(dev);
+ struct cros_ec_device *cros_ec = cros_ec_rtc->cros_ec;
+ int ret;
+ u32 current_time, alarm_offset, alarm_value;
+
+ ret = cros_ec_rtc_get(cros_ec, EC_CMD_RTC_GET_VALUE, &current_time);
+ if (ret < 0) {
+ dev_err(dev, "error getting time: %d\n", ret);
+ return ret;
+ }
+
+ if (enabled) {
+ /* Restore saved alarm if it's still in the future. */
+ if (cros_ec_rtc->saved_alarm < current_time)
+ alarm_offset = EC_RTC_ALARM_CLEAR;
+ else
+ alarm_offset = cros_ec_rtc->saved_alarm - current_time;
+
+ ret = cros_ec_rtc_set(cros_ec, EC_CMD_RTC_SET_ALARM,
+ alarm_offset);
+ if (ret < 0) {
+ dev_err(dev, "error restoring alarm: %d\n", ret);
+ return ret;
+ }
+ } else {
+ /* Disable alarm, saving the old alarm value. */
+ ret = cros_ec_rtc_get(cros_ec, EC_CMD_RTC_GET_ALARM,
+ &alarm_offset);
+ if (ret < 0) {
+ dev_err(dev, "error saving alarm: %d\n", ret);
+ return ret;
+ }
+
+ alarm_value = current_time + alarm_offset;
+
+ /*
+ * If the current EC alarm is already past, we don't want
+ * to set an alarm when we go through the alarm irq enable
+ * path.
+ */
+ if (alarm_value < current_time)
+ cros_ec_rtc->saved_alarm = EC_RTC_ALARM_CLEAR;
+ else
+ cros_ec_rtc->saved_alarm = alarm_value;
+
+ alarm_offset = EC_RTC_ALARM_CLEAR;
+ ret = cros_ec_rtc_set(cros_ec, EC_CMD_RTC_SET_ALARM,
+ alarm_offset);
+ if (ret < 0) {
+ dev_err(dev, "error disabling alarm: %d\n", ret);
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+static int cros_ec_rtc_event(struct notifier_block *nb,
+ unsigned long queued_during_suspend,
+ void *_notify)
+{
+ struct cros_ec_rtc *cros_ec_rtc;
+ struct rtc_device *rtc;
+ struct cros_ec_device *cros_ec;
+ u32 host_event;
+
+ cros_ec_rtc = container_of(nb, struct cros_ec_rtc, notifier);
+ rtc = cros_ec_rtc->rtc;
+ cros_ec = cros_ec_rtc->cros_ec;
+
+ host_event = cros_ec_get_host_event(cros_ec);
+ if (host_event & EC_HOST_EVENT_MASK(EC_HOST_EVENT_RTC)) {
+ rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
+ return NOTIFY_OK;
+ } else {
+ return NOTIFY_DONE;
+ }
+}
+
+static const struct rtc_class_ops cros_ec_rtc_ops = {
+ .read_time = cros_ec_rtc_read_time,
+ .set_time = cros_ec_rtc_set_time,
+ .read_alarm = cros_ec_rtc_read_alarm,
+ .set_alarm = cros_ec_rtc_set_alarm,
+ .alarm_irq_enable = cros_ec_rtc_alarm_irq_enable,
+};
+
+#ifdef CONFIG_PM_SLEEP
+static int cros_ec_rtc_suspend(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct cros_ec_rtc *cros_ec_rtc = dev_get_drvdata(&pdev->dev);
+
+ if (device_may_wakeup(dev))
+ return enable_irq_wake(cros_ec_rtc->cros_ec->irq);
+
+ return 0;
+}
+
+static int cros_ec_rtc_resume(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct cros_ec_rtc *cros_ec_rtc = dev_get_drvdata(&pdev->dev);
+
+ if (device_may_wakeup(dev))
+ return disable_irq_wake(cros_ec_rtc->cros_ec->irq);
+
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(cros_ec_rtc_pm_ops, cros_ec_rtc_suspend,
+ cros_ec_rtc_resume);
+
+static int cros_ec_rtc_probe(struct platform_device *pdev)
+{
+ struct cros_ec_dev *ec_dev = dev_get_drvdata(pdev->dev.parent);
+ struct cros_ec_device *cros_ec = ec_dev->ec_dev;
+ struct cros_ec_rtc *cros_ec_rtc;
+ struct rtc_time tm;
+ int ret;
+
+ cros_ec_rtc = devm_kzalloc(&pdev->dev, sizeof(*cros_ec_rtc),
+ GFP_KERNEL);
+ if (!cros_ec_rtc)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, cros_ec_rtc);
+ cros_ec_rtc->cros_ec = cros_ec;
+
+ /* Get initial time */
+ ret = cros_ec_rtc_read_time(&pdev->dev, &tm);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to read RTC time\n");
+ return ret;
+ }
+
+ ret = device_init_wakeup(&pdev->dev, 1);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to initialize wakeup\n");
+ return ret;
+ }
+
+ cros_ec_rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(cros_ec_rtc->rtc))
+ return PTR_ERR(cros_ec_rtc->rtc);
+
+ cros_ec_rtc->rtc->ops = &cros_ec_rtc_ops;
+ cros_ec_rtc->rtc->range_max = U32_MAX;
+
+ ret = rtc_register_device(cros_ec_rtc->rtc);
+ if (ret)
+ return ret;
+
+ /* Get RTC events from the EC. */
+ cros_ec_rtc->notifier.notifier_call = cros_ec_rtc_event;
+ ret = blocking_notifier_chain_register(&cros_ec->event_notifier,
+ &cros_ec_rtc->notifier);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to register notifier\n");
+ return ret;
+ }
+
+ return 0;
+}
+
+static int cros_ec_rtc_remove(struct platform_device *pdev)
+{
+ struct cros_ec_rtc *cros_ec_rtc = platform_get_drvdata(pdev);
+ struct device *dev = &pdev->dev;
+ int ret;
+
+ ret = blocking_notifier_chain_unregister(
+ &cros_ec_rtc->cros_ec->event_notifier,
+ &cros_ec_rtc->notifier);
+ if (ret) {
+ dev_err(dev, "failed to unregister notifier\n");
+ return ret;
+ }
+
+ return 0;
+}
+
+static struct platform_driver cros_ec_rtc_driver = {
+ .probe = cros_ec_rtc_probe,
+ .remove = cros_ec_rtc_remove,
+ .driver = {
+ .name = DRV_NAME,
+ .pm = &cros_ec_rtc_pm_ops,
+ },
+};
+
+module_platform_driver(cros_ec_rtc_driver);
+
+MODULE_DESCRIPTION("RTC driver for Chrome OS ECs");
+MODULE_AUTHOR("Stephen Barber <smbarber@chromium.org>");
+MODULE_LICENSE("GPL v2");
+MODULE_ALIAS("platform:" DRV_NAME);
diff --git a/drivers/rtc/rtc-da9052.c b/drivers/rtc/rtc-da9052.c
new file mode 100644
index 000000000..58de10da3
--- /dev/null
+++ b/drivers/rtc/rtc-da9052.c
@@ -0,0 +1,333 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Real time clock driver for DA9052
+ *
+ * Copyright(c) 2012 Dialog Semiconductor Ltd.
+ *
+ * Author: Dajun Dajun Chen <dajun.chen@diasemi.com>
+ */
+
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/err.h>
+#include <linux/delay.h>
+
+#include <linux/mfd/da9052/da9052.h>
+#include <linux/mfd/da9052/reg.h>
+
+#define rtc_err(rtc, fmt, ...) \
+ dev_err(rtc->da9052->dev, "%s: " fmt, __func__, ##__VA_ARGS__)
+
+#define DA9052_GET_TIME_RETRIES 5
+
+struct da9052_rtc {
+ struct rtc_device *rtc;
+ struct da9052 *da9052;
+};
+
+static int da9052_rtc_enable_alarm(struct da9052_rtc *rtc, bool enable)
+{
+ int ret;
+ if (enable) {
+ ret = da9052_reg_update(rtc->da9052, DA9052_ALARM_Y_REG,
+ DA9052_ALARM_Y_ALARM_ON|DA9052_ALARM_Y_TICK_ON,
+ DA9052_ALARM_Y_ALARM_ON);
+ if (ret != 0)
+ rtc_err(rtc, "Failed to enable ALM: %d\n", ret);
+ } else {
+ ret = da9052_reg_update(rtc->da9052, DA9052_ALARM_Y_REG,
+ DA9052_ALARM_Y_ALARM_ON|DA9052_ALARM_Y_TICK_ON, 0);
+ if (ret != 0)
+ rtc_err(rtc, "Write error: %d\n", ret);
+ }
+ return ret;
+}
+
+static irqreturn_t da9052_rtc_irq(int irq, void *data)
+{
+ struct da9052_rtc *rtc = data;
+
+ rtc_update_irq(rtc->rtc, 1, RTC_IRQF | RTC_AF);
+
+ return IRQ_HANDLED;
+}
+
+static int da9052_read_alarm(struct da9052_rtc *rtc, struct rtc_time *rtc_tm)
+{
+ int ret;
+ uint8_t v[2][5];
+ int idx = 1;
+ int timeout = DA9052_GET_TIME_RETRIES;
+
+ ret = da9052_group_read(rtc->da9052, DA9052_ALARM_MI_REG, 5, &v[0][0]);
+ if (ret) {
+ rtc_err(rtc, "Failed to group read ALM: %d\n", ret);
+ return ret;
+ }
+
+ do {
+ ret = da9052_group_read(rtc->da9052,
+ DA9052_ALARM_MI_REG, 5, &v[idx][0]);
+ if (ret) {
+ rtc_err(rtc, "Failed to group read ALM: %d\n", ret);
+ return ret;
+ }
+
+ if (memcmp(&v[0][0], &v[1][0], 5) == 0) {
+ rtc_tm->tm_year = (v[0][4] & DA9052_RTC_YEAR) + 100;
+ rtc_tm->tm_mon = (v[0][3] & DA9052_RTC_MONTH) - 1;
+ rtc_tm->tm_mday = v[0][2] & DA9052_RTC_DAY;
+ rtc_tm->tm_hour = v[0][1] & DA9052_RTC_HOUR;
+ rtc_tm->tm_min = v[0][0] & DA9052_RTC_MIN;
+ rtc_tm->tm_sec = 0;
+
+ ret = rtc_valid_tm(rtc_tm);
+ return ret;
+ }
+
+ idx = (1-idx);
+ msleep(20);
+
+ } while (timeout--);
+
+ rtc_err(rtc, "Timed out reading alarm time\n");
+
+ return -EIO;
+}
+
+static int da9052_set_alarm(struct da9052_rtc *rtc, struct rtc_time *rtc_tm)
+{
+ struct da9052 *da9052 = rtc->da9052;
+ unsigned long alm_time;
+ int ret;
+ uint8_t v[3];
+
+ alm_time = rtc_tm_to_time64(rtc_tm);
+
+ if (rtc_tm->tm_sec > 0) {
+ alm_time += 60 - rtc_tm->tm_sec;
+ rtc_time64_to_tm(alm_time, rtc_tm);
+ }
+ BUG_ON(rtc_tm->tm_sec); /* it will cause repeated irqs if not zero */
+
+ rtc_tm->tm_year -= 100;
+ rtc_tm->tm_mon += 1;
+
+ ret = da9052_reg_update(da9052, DA9052_ALARM_MI_REG,
+ DA9052_RTC_MIN, rtc_tm->tm_min);
+ if (ret != 0) {
+ rtc_err(rtc, "Failed to write ALRM MIN: %d\n", ret);
+ return ret;
+ }
+
+ v[0] = rtc_tm->tm_hour;
+ v[1] = rtc_tm->tm_mday;
+ v[2] = rtc_tm->tm_mon;
+
+ ret = da9052_group_write(da9052, DA9052_ALARM_H_REG, 3, v);
+ if (ret < 0)
+ return ret;
+
+ ret = da9052_reg_update(da9052, DA9052_ALARM_Y_REG,
+ DA9052_RTC_YEAR, rtc_tm->tm_year);
+ if (ret != 0)
+ rtc_err(rtc, "Failed to write ALRM YEAR: %d\n", ret);
+
+ return ret;
+}
+
+static int da9052_rtc_get_alarm_status(struct da9052_rtc *rtc)
+{
+ int ret;
+
+ ret = da9052_reg_read(rtc->da9052, DA9052_ALARM_Y_REG);
+ if (ret < 0) {
+ rtc_err(rtc, "Failed to read ALM: %d\n", ret);
+ return ret;
+ }
+
+ return !!(ret&DA9052_ALARM_Y_ALARM_ON);
+}
+
+static int da9052_rtc_read_time(struct device *dev, struct rtc_time *rtc_tm)
+{
+ struct da9052_rtc *rtc = dev_get_drvdata(dev);
+ int ret;
+ uint8_t v[2][6];
+ int idx = 1;
+ int timeout = DA9052_GET_TIME_RETRIES;
+
+ ret = da9052_group_read(rtc->da9052, DA9052_COUNT_S_REG, 6, &v[0][0]);
+ if (ret) {
+ rtc_err(rtc, "Failed to read RTC time : %d\n", ret);
+ return ret;
+ }
+
+ do {
+ ret = da9052_group_read(rtc->da9052,
+ DA9052_COUNT_S_REG, 6, &v[idx][0]);
+ if (ret) {
+ rtc_err(rtc, "Failed to read RTC time : %d\n", ret);
+ return ret;
+ }
+
+ if (memcmp(&v[0][0], &v[1][0], 6) == 0) {
+ rtc_tm->tm_year = (v[0][5] & DA9052_RTC_YEAR) + 100;
+ rtc_tm->tm_mon = (v[0][4] & DA9052_RTC_MONTH) - 1;
+ rtc_tm->tm_mday = v[0][3] & DA9052_RTC_DAY;
+ rtc_tm->tm_hour = v[0][2] & DA9052_RTC_HOUR;
+ rtc_tm->tm_min = v[0][1] & DA9052_RTC_MIN;
+ rtc_tm->tm_sec = v[0][0] & DA9052_RTC_SEC;
+
+ return 0;
+ }
+
+ idx = (1-idx);
+ msleep(20);
+
+ } while (timeout--);
+
+ rtc_err(rtc, "Timed out reading time\n");
+
+ return -EIO;
+}
+
+static int da9052_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct da9052_rtc *rtc;
+ uint8_t v[6];
+ int ret;
+
+ /* DA9052 only has 6 bits for year - to represent 2000-2063 */
+ if ((tm->tm_year < 100) || (tm->tm_year > 163))
+ return -EINVAL;
+
+ rtc = dev_get_drvdata(dev);
+
+ v[0] = tm->tm_sec;
+ v[1] = tm->tm_min;
+ v[2] = tm->tm_hour;
+ v[3] = tm->tm_mday;
+ v[4] = tm->tm_mon + 1;
+ v[5] = tm->tm_year - 100;
+
+ ret = da9052_group_write(rtc->da9052, DA9052_COUNT_S_REG, 6, v);
+ if (ret < 0)
+ rtc_err(rtc, "failed to set RTC time: %d\n", ret);
+ return ret;
+}
+
+static int da9052_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ int ret;
+ struct rtc_time *tm = &alrm->time;
+ struct da9052_rtc *rtc = dev_get_drvdata(dev);
+
+ ret = da9052_read_alarm(rtc, tm);
+ if (ret < 0) {
+ rtc_err(rtc, "failed to read RTC alarm: %d\n", ret);
+ return ret;
+ }
+
+ alrm->enabled = da9052_rtc_get_alarm_status(rtc);
+ return 0;
+}
+
+static int da9052_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ int ret;
+ struct rtc_time *tm = &alrm->time;
+ struct da9052_rtc *rtc = dev_get_drvdata(dev);
+
+ /* DA9052 only has 6 bits for year - to represent 2000-2063 */
+ if ((tm->tm_year < 100) || (tm->tm_year > 163))
+ return -EINVAL;
+
+ ret = da9052_rtc_enable_alarm(rtc, 0);
+ if (ret < 0)
+ return ret;
+
+ ret = da9052_set_alarm(rtc, tm);
+ if (ret < 0)
+ return ret;
+
+ ret = da9052_rtc_enable_alarm(rtc, 1);
+ return ret;
+}
+
+static int da9052_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct da9052_rtc *rtc = dev_get_drvdata(dev);
+
+ return da9052_rtc_enable_alarm(rtc, enabled);
+}
+
+static const struct rtc_class_ops da9052_rtc_ops = {
+ .read_time = da9052_rtc_read_time,
+ .set_time = da9052_rtc_set_time,
+ .read_alarm = da9052_rtc_read_alarm,
+ .set_alarm = da9052_rtc_set_alarm,
+ .alarm_irq_enable = da9052_rtc_alarm_irq_enable,
+};
+
+static int da9052_rtc_probe(struct platform_device *pdev)
+{
+ struct da9052_rtc *rtc;
+ int ret;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(struct da9052_rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->da9052 = dev_get_drvdata(pdev->dev.parent);
+ platform_set_drvdata(pdev, rtc);
+
+ ret = da9052_reg_write(rtc->da9052, DA9052_BBAT_CONT_REG, 0xFE);
+ if (ret < 0) {
+ rtc_err(rtc,
+ "Failed to setup RTC battery charging: %d\n", ret);
+ return ret;
+ }
+
+ ret = da9052_reg_update(rtc->da9052, DA9052_ALARM_Y_REG,
+ DA9052_ALARM_Y_TICK_ON, 0);
+ if (ret != 0)
+ rtc_err(rtc, "Failed to disable TICKS: %d\n", ret);
+
+ device_init_wakeup(&pdev->dev, true);
+ rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc->rtc))
+ return PTR_ERR(rtc->rtc);
+
+ rtc->rtc->ops = &da9052_rtc_ops;
+ rtc->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ rtc->rtc->range_max = RTC_TIMESTAMP_END_2063;
+
+ ret = rtc_register_device(rtc->rtc);
+ if (ret)
+ return ret;
+
+ ret = da9052_request_irq(rtc->da9052, DA9052_IRQ_ALARM, "ALM",
+ da9052_rtc_irq, rtc);
+ if (ret != 0) {
+ rtc_err(rtc, "irq registration failed: %d\n", ret);
+ return ret;
+ }
+
+ return 0;
+}
+
+static struct platform_driver da9052_rtc_driver = {
+ .probe = da9052_rtc_probe,
+ .driver = {
+ .name = "da9052-rtc",
+ },
+};
+
+module_platform_driver(da9052_rtc_driver);
+
+MODULE_AUTHOR("Anthony Olech <Anthony.Olech@diasemi.com>");
+MODULE_DESCRIPTION("RTC driver for Dialog DA9052 PMIC");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:da9052-rtc");
diff --git a/drivers/rtc/rtc-da9055.c b/drivers/rtc/rtc-da9055.c
new file mode 100644
index 000000000..844168fca
--- /dev/null
+++ b/drivers/rtc/rtc-da9055.c
@@ -0,0 +1,399 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Real time clock driver for DA9055
+ *
+ * Copyright(c) 2012 Dialog Semiconductor Ltd.
+ *
+ * Author: Dajun Dajun Chen <dajun.chen@diasemi.com>
+ */
+
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+
+#include <linux/mfd/da9055/core.h>
+#include <linux/mfd/da9055/reg.h>
+#include <linux/mfd/da9055/pdata.h>
+
+struct da9055_rtc {
+ struct rtc_device *rtc;
+ struct da9055 *da9055;
+ int alarm_enable;
+};
+
+static int da9055_rtc_enable_alarm(struct da9055_rtc *rtc, bool enable)
+{
+ int ret;
+ if (enable) {
+ ret = da9055_reg_update(rtc->da9055, DA9055_REG_ALARM_Y,
+ DA9055_RTC_ALM_EN,
+ DA9055_RTC_ALM_EN);
+ if (ret != 0)
+ dev_err(rtc->da9055->dev, "Failed to enable ALM: %d\n",
+ ret);
+ rtc->alarm_enable = 1;
+ } else {
+ ret = da9055_reg_update(rtc->da9055, DA9055_REG_ALARM_Y,
+ DA9055_RTC_ALM_EN, 0);
+ if (ret != 0)
+ dev_err(rtc->da9055->dev,
+ "Failed to disable ALM: %d\n", ret);
+ rtc->alarm_enable = 0;
+ }
+ return ret;
+}
+
+static irqreturn_t da9055_rtc_alm_irq(int irq, void *data)
+{
+ struct da9055_rtc *rtc = data;
+
+ da9055_rtc_enable_alarm(rtc, 0);
+ rtc_update_irq(rtc->rtc, 1, RTC_IRQF | RTC_AF);
+
+ return IRQ_HANDLED;
+}
+
+static int da9055_read_alarm(struct da9055 *da9055, struct rtc_time *rtc_tm)
+{
+ int ret;
+ uint8_t v[5];
+
+ ret = da9055_group_read(da9055, DA9055_REG_ALARM_MI, 5, v);
+ if (ret != 0) {
+ dev_err(da9055->dev, "Failed to group read ALM: %d\n", ret);
+ return ret;
+ }
+
+ rtc_tm->tm_year = (v[4] & DA9055_RTC_ALM_YEAR) + 100;
+ rtc_tm->tm_mon = (v[3] & DA9055_RTC_ALM_MONTH) - 1;
+ rtc_tm->tm_mday = v[2] & DA9055_RTC_ALM_DAY;
+ rtc_tm->tm_hour = v[1] & DA9055_RTC_ALM_HOUR;
+ rtc_tm->tm_min = v[0] & DA9055_RTC_ALM_MIN;
+ rtc_tm->tm_sec = 0;
+
+ return rtc_valid_tm(rtc_tm);
+}
+
+static int da9055_set_alarm(struct da9055 *da9055, struct rtc_time *rtc_tm)
+{
+ int ret;
+ uint8_t v[2];
+
+ rtc_tm->tm_year -= 100;
+ rtc_tm->tm_mon += 1;
+
+ ret = da9055_reg_update(da9055, DA9055_REG_ALARM_MI,
+ DA9055_RTC_ALM_MIN, rtc_tm->tm_min);
+ if (ret != 0) {
+ dev_err(da9055->dev, "Failed to write ALRM MIN: %d\n", ret);
+ return ret;
+ }
+
+ v[0] = rtc_tm->tm_hour;
+ v[1] = rtc_tm->tm_mday;
+
+ ret = da9055_group_write(da9055, DA9055_REG_ALARM_H, 2, v);
+ if (ret < 0)
+ return ret;
+
+ ret = da9055_reg_update(da9055, DA9055_REG_ALARM_MO,
+ DA9055_RTC_ALM_MONTH, rtc_tm->tm_mon);
+ if (ret < 0)
+ dev_err(da9055->dev, "Failed to write ALM Month:%d\n", ret);
+
+ ret = da9055_reg_update(da9055, DA9055_REG_ALARM_Y,
+ DA9055_RTC_ALM_YEAR, rtc_tm->tm_year);
+ if (ret < 0)
+ dev_err(da9055->dev, "Failed to write ALM Year:%d\n", ret);
+
+ return ret;
+}
+
+static int da9055_rtc_get_alarm_status(struct da9055 *da9055)
+{
+ int ret;
+
+ ret = da9055_reg_read(da9055, DA9055_REG_ALARM_Y);
+ if (ret < 0) {
+ dev_err(da9055->dev, "Failed to read ALM: %d\n", ret);
+ return ret;
+ }
+ ret &= DA9055_RTC_ALM_EN;
+ return (ret > 0) ? 1 : 0;
+}
+
+static int da9055_rtc_read_time(struct device *dev, struct rtc_time *rtc_tm)
+{
+ struct da9055_rtc *rtc = dev_get_drvdata(dev);
+ uint8_t v[6];
+ int ret;
+
+ ret = da9055_reg_read(rtc->da9055, DA9055_REG_COUNT_S);
+ if (ret < 0)
+ return ret;
+
+ /*
+ * Registers are only valid when RTC_READ
+ * status bit is asserted
+ */
+ if (!(ret & DA9055_RTC_READ))
+ return -EBUSY;
+
+ ret = da9055_group_read(rtc->da9055, DA9055_REG_COUNT_S, 6, v);
+ if (ret < 0) {
+ dev_err(rtc->da9055->dev, "Failed to read RTC time : %d\n",
+ ret);
+ return ret;
+ }
+
+ rtc_tm->tm_year = (v[5] & DA9055_RTC_YEAR) + 100;
+ rtc_tm->tm_mon = (v[4] & DA9055_RTC_MONTH) - 1;
+ rtc_tm->tm_mday = v[3] & DA9055_RTC_DAY;
+ rtc_tm->tm_hour = v[2] & DA9055_RTC_HOUR;
+ rtc_tm->tm_min = v[1] & DA9055_RTC_MIN;
+ rtc_tm->tm_sec = v[0] & DA9055_RTC_SEC;
+
+ return 0;
+}
+
+static int da9055_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct da9055_rtc *rtc;
+ uint8_t v[6];
+
+ rtc = dev_get_drvdata(dev);
+
+ v[0] = tm->tm_sec;
+ v[1] = tm->tm_min;
+ v[2] = tm->tm_hour;
+ v[3] = tm->tm_mday;
+ v[4] = tm->tm_mon + 1;
+ v[5] = tm->tm_year - 100;
+
+ return da9055_group_write(rtc->da9055, DA9055_REG_COUNT_S, 6, v);
+}
+
+static int da9055_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ int ret;
+ struct rtc_time *tm = &alrm->time;
+ struct da9055_rtc *rtc = dev_get_drvdata(dev);
+
+ ret = da9055_read_alarm(rtc->da9055, tm);
+
+ if (ret)
+ return ret;
+
+ alrm->enabled = da9055_rtc_get_alarm_status(rtc->da9055);
+
+ return 0;
+}
+
+static int da9055_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ int ret;
+ struct rtc_time *tm = &alrm->time;
+ struct da9055_rtc *rtc = dev_get_drvdata(dev);
+
+ ret = da9055_rtc_enable_alarm(rtc, 0);
+ if (ret < 0)
+ return ret;
+
+ ret = da9055_set_alarm(rtc->da9055, tm);
+ if (ret)
+ return ret;
+
+ ret = da9055_rtc_enable_alarm(rtc, 1);
+
+ return ret;
+}
+
+static int da9055_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct da9055_rtc *rtc = dev_get_drvdata(dev);
+
+ return da9055_rtc_enable_alarm(rtc, enabled);
+}
+
+static const struct rtc_class_ops da9055_rtc_ops = {
+ .read_time = da9055_rtc_read_time,
+ .set_time = da9055_rtc_set_time,
+ .read_alarm = da9055_rtc_read_alarm,
+ .set_alarm = da9055_rtc_set_alarm,
+ .alarm_irq_enable = da9055_rtc_alarm_irq_enable,
+};
+
+static int da9055_rtc_device_init(struct da9055 *da9055,
+ struct da9055_pdata *pdata)
+{
+ int ret;
+
+ /* Enable RTC and the internal Crystal */
+ ret = da9055_reg_update(da9055, DA9055_REG_CONTROL_B,
+ DA9055_RTC_EN, DA9055_RTC_EN);
+ if (ret < 0)
+ return ret;
+ ret = da9055_reg_update(da9055, DA9055_REG_EN_32K,
+ DA9055_CRYSTAL_EN, DA9055_CRYSTAL_EN);
+ if (ret < 0)
+ return ret;
+
+ /* Enable RTC in Power Down mode */
+ ret = da9055_reg_update(da9055, DA9055_REG_CONTROL_B,
+ DA9055_RTC_MODE_PD, DA9055_RTC_MODE_PD);
+ if (ret < 0)
+ return ret;
+
+ /* Enable RTC in Reset mode */
+ if (pdata && pdata->reset_enable) {
+ ret = da9055_reg_update(da9055, DA9055_REG_CONTROL_B,
+ DA9055_RTC_MODE_SD,
+ DA9055_RTC_MODE_SD <<
+ DA9055_RTC_MODE_SD_SHIFT);
+ if (ret < 0)
+ return ret;
+ }
+
+ /* Disable the RTC TICK ALM */
+ ret = da9055_reg_update(da9055, DA9055_REG_ALARM_MO,
+ DA9055_RTC_TICK_WAKE_MASK, 0);
+ if (ret < 0)
+ return ret;
+
+ return 0;
+}
+
+static int da9055_rtc_probe(struct platform_device *pdev)
+{
+ struct da9055_rtc *rtc;
+ struct da9055_pdata *pdata = NULL;
+ int ret, alm_irq;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(struct da9055_rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->da9055 = dev_get_drvdata(pdev->dev.parent);
+ pdata = dev_get_platdata(rtc->da9055->dev);
+ platform_set_drvdata(pdev, rtc);
+
+ ret = da9055_rtc_device_init(rtc->da9055, pdata);
+ if (ret < 0)
+ goto err_rtc;
+
+ ret = da9055_reg_read(rtc->da9055, DA9055_REG_ALARM_Y);
+ if (ret < 0)
+ goto err_rtc;
+
+ if (ret & DA9055_RTC_ALM_EN)
+ rtc->alarm_enable = 1;
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ rtc->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
+ &da9055_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rtc->rtc)) {
+ ret = PTR_ERR(rtc->rtc);
+ goto err_rtc;
+ }
+
+ alm_irq = platform_get_irq_byname(pdev, "ALM");
+ if (alm_irq < 0)
+ return alm_irq;
+
+ ret = devm_request_threaded_irq(&pdev->dev, alm_irq, NULL,
+ da9055_rtc_alm_irq,
+ IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
+ "ALM", rtc);
+ if (ret != 0)
+ dev_err(rtc->da9055->dev, "irq registration failed: %d\n", ret);
+
+err_rtc:
+ return ret;
+
+}
+
+#ifdef CONFIG_PM
+/* Turn off the alarm if it should not be a wake source. */
+static int da9055_rtc_suspend(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct da9055_rtc *rtc = dev_get_drvdata(&pdev->dev);
+ int ret;
+
+ if (!device_may_wakeup(&pdev->dev)) {
+ /* Disable the ALM IRQ */
+ ret = da9055_rtc_enable_alarm(rtc, 0);
+ if (ret < 0)
+ dev_err(&pdev->dev, "Failed to disable RTC ALM\n");
+ }
+
+ return 0;
+}
+
+/* Enable the alarm if it should be enabled (in case it was disabled to
+ * prevent use as a wake source).
+ */
+static int da9055_rtc_resume(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct da9055_rtc *rtc = dev_get_drvdata(&pdev->dev);
+ int ret;
+
+ if (!device_may_wakeup(&pdev->dev)) {
+ if (rtc->alarm_enable) {
+ ret = da9055_rtc_enable_alarm(rtc, 1);
+ if (ret < 0)
+ dev_err(&pdev->dev,
+ "Failed to restart RTC ALM\n");
+ }
+ }
+
+ return 0;
+}
+
+/* Unconditionally disable the alarm */
+static int da9055_rtc_freeze(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct da9055_rtc *rtc = dev_get_drvdata(&pdev->dev);
+ int ret;
+
+ ret = da9055_rtc_enable_alarm(rtc, 0);
+ if (ret < 0)
+ dev_err(&pdev->dev, "Failed to freeze RTC ALMs\n");
+
+ return 0;
+
+}
+#else
+#define da9055_rtc_suspend NULL
+#define da9055_rtc_resume NULL
+#define da9055_rtc_freeze NULL
+#endif
+
+static const struct dev_pm_ops da9055_rtc_pm_ops = {
+ .suspend = da9055_rtc_suspend,
+ .resume = da9055_rtc_resume,
+
+ .freeze = da9055_rtc_freeze,
+ .thaw = da9055_rtc_resume,
+ .restore = da9055_rtc_resume,
+
+ .poweroff = da9055_rtc_suspend,
+};
+
+static struct platform_driver da9055_rtc_driver = {
+ .probe = da9055_rtc_probe,
+ .driver = {
+ .name = "da9055-rtc",
+ .pm = &da9055_rtc_pm_ops,
+ },
+};
+
+module_platform_driver(da9055_rtc_driver);
+
+MODULE_AUTHOR("David Dajun Chen <dchen@diasemi.com>");
+MODULE_DESCRIPTION("RTC driver for Dialog DA9055 PMIC");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:da9055-rtc");
diff --git a/drivers/rtc/rtc-da9063.c b/drivers/rtc/rtc-da9063.c
new file mode 100644
index 000000000..046b1d4c3
--- /dev/null
+++ b/drivers/rtc/rtc-da9063.c
@@ -0,0 +1,513 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Real time clock device driver for DA9063
+ * Copyright (C) 2013-2015 Dialog Semiconductor Ltd.
+ */
+
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/regmap.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+
+#include <linux/mfd/da9062/registers.h>
+#include <linux/mfd/da9063/registers.h>
+#include <linux/mfd/da9063/core.h>
+
+#define YEARS_TO_DA9063(year) ((year) - 100)
+#define MONTHS_TO_DA9063(month) ((month) + 1)
+#define YEARS_FROM_DA9063(year) ((year) + 100)
+#define MONTHS_FROM_DA9063(month) ((month) - 1)
+
+enum {
+ RTC_SEC = 0,
+ RTC_MIN = 1,
+ RTC_HOUR = 2,
+ RTC_DAY = 3,
+ RTC_MONTH = 4,
+ RTC_YEAR = 5,
+ RTC_DATA_LEN
+};
+
+struct da9063_compatible_rtc_regmap {
+ /* REGS */
+ int rtc_enable_reg;
+ int rtc_enable_32k_crystal_reg;
+ int rtc_alarm_secs_reg;
+ int rtc_alarm_year_reg;
+ int rtc_count_secs_reg;
+ int rtc_count_year_reg;
+ int rtc_event_reg;
+ /* MASKS */
+ int rtc_enable_mask;
+ int rtc_crystal_mask;
+ int rtc_event_alarm_mask;
+ int rtc_alarm_on_mask;
+ int rtc_alarm_status_mask;
+ int rtc_tick_on_mask;
+ int rtc_ready_to_read_mask;
+ int rtc_count_sec_mask;
+ int rtc_count_min_mask;
+ int rtc_count_hour_mask;
+ int rtc_count_day_mask;
+ int rtc_count_month_mask;
+ int rtc_count_year_mask;
+ /* ALARM CONFIG */
+ int rtc_data_start;
+ int rtc_alarm_len;
+};
+
+struct da9063_compatible_rtc {
+ struct rtc_device *rtc_dev;
+ struct rtc_time alarm_time;
+ struct regmap *regmap;
+ const struct da9063_compatible_rtc_regmap *config;
+ bool rtc_sync;
+};
+
+static const struct da9063_compatible_rtc_regmap da9063_ad_regs = {
+ /* REGS */
+ .rtc_enable_reg = DA9063_REG_CONTROL_E,
+ .rtc_alarm_secs_reg = DA9063_AD_REG_ALARM_MI,
+ .rtc_alarm_year_reg = DA9063_AD_REG_ALARM_Y,
+ .rtc_count_secs_reg = DA9063_REG_COUNT_S,
+ .rtc_count_year_reg = DA9063_REG_COUNT_Y,
+ .rtc_event_reg = DA9063_REG_EVENT_A,
+ /* MASKS */
+ .rtc_enable_mask = DA9063_RTC_EN,
+ .rtc_crystal_mask = DA9063_CRYSTAL,
+ .rtc_enable_32k_crystal_reg = DA9063_REG_EN_32K,
+ .rtc_event_alarm_mask = DA9063_E_ALARM,
+ .rtc_alarm_on_mask = DA9063_ALARM_ON,
+ .rtc_alarm_status_mask = DA9063_ALARM_STATUS_ALARM |
+ DA9063_ALARM_STATUS_TICK,
+ .rtc_tick_on_mask = DA9063_TICK_ON,
+ .rtc_ready_to_read_mask = DA9063_RTC_READ,
+ .rtc_count_sec_mask = DA9063_COUNT_SEC_MASK,
+ .rtc_count_min_mask = DA9063_COUNT_MIN_MASK,
+ .rtc_count_hour_mask = DA9063_COUNT_HOUR_MASK,
+ .rtc_count_day_mask = DA9063_COUNT_DAY_MASK,
+ .rtc_count_month_mask = DA9063_COUNT_MONTH_MASK,
+ .rtc_count_year_mask = DA9063_COUNT_YEAR_MASK,
+ /* ALARM CONFIG */
+ .rtc_data_start = RTC_MIN,
+ .rtc_alarm_len = RTC_DATA_LEN - 1,
+};
+
+static const struct da9063_compatible_rtc_regmap da9063_bb_regs = {
+ /* REGS */
+ .rtc_enable_reg = DA9063_REG_CONTROL_E,
+ .rtc_alarm_secs_reg = DA9063_BB_REG_ALARM_S,
+ .rtc_alarm_year_reg = DA9063_BB_REG_ALARM_Y,
+ .rtc_count_secs_reg = DA9063_REG_COUNT_S,
+ .rtc_count_year_reg = DA9063_REG_COUNT_Y,
+ .rtc_event_reg = DA9063_REG_EVENT_A,
+ /* MASKS */
+ .rtc_enable_mask = DA9063_RTC_EN,
+ .rtc_crystal_mask = DA9063_CRYSTAL,
+ .rtc_enable_32k_crystal_reg = DA9063_REG_EN_32K,
+ .rtc_event_alarm_mask = DA9063_E_ALARM,
+ .rtc_alarm_on_mask = DA9063_ALARM_ON,
+ .rtc_alarm_status_mask = DA9063_ALARM_STATUS_ALARM |
+ DA9063_ALARM_STATUS_TICK,
+ .rtc_tick_on_mask = DA9063_TICK_ON,
+ .rtc_ready_to_read_mask = DA9063_RTC_READ,
+ .rtc_count_sec_mask = DA9063_COUNT_SEC_MASK,
+ .rtc_count_min_mask = DA9063_COUNT_MIN_MASK,
+ .rtc_count_hour_mask = DA9063_COUNT_HOUR_MASK,
+ .rtc_count_day_mask = DA9063_COUNT_DAY_MASK,
+ .rtc_count_month_mask = DA9063_COUNT_MONTH_MASK,
+ .rtc_count_year_mask = DA9063_COUNT_YEAR_MASK,
+ /* ALARM CONFIG */
+ .rtc_data_start = RTC_SEC,
+ .rtc_alarm_len = RTC_DATA_LEN,
+};
+
+static const struct da9063_compatible_rtc_regmap da9062_aa_regs = {
+ /* REGS */
+ .rtc_enable_reg = DA9062AA_CONTROL_E,
+ .rtc_alarm_secs_reg = DA9062AA_ALARM_S,
+ .rtc_alarm_year_reg = DA9062AA_ALARM_Y,
+ .rtc_count_secs_reg = DA9062AA_COUNT_S,
+ .rtc_count_year_reg = DA9062AA_COUNT_Y,
+ .rtc_event_reg = DA9062AA_EVENT_A,
+ /* MASKS */
+ .rtc_enable_mask = DA9062AA_RTC_EN_MASK,
+ .rtc_crystal_mask = DA9062AA_CRYSTAL_MASK,
+ .rtc_enable_32k_crystal_reg = DA9062AA_EN_32K,
+ .rtc_event_alarm_mask = DA9062AA_M_ALARM_MASK,
+ .rtc_alarm_on_mask = DA9062AA_ALARM_ON_MASK,
+ .rtc_alarm_status_mask = (0x02 << 6),
+ .rtc_tick_on_mask = DA9062AA_TICK_ON_MASK,
+ .rtc_ready_to_read_mask = DA9062AA_RTC_READ_MASK,
+ .rtc_count_sec_mask = DA9062AA_COUNT_SEC_MASK,
+ .rtc_count_min_mask = DA9062AA_COUNT_MIN_MASK,
+ .rtc_count_hour_mask = DA9062AA_COUNT_HOUR_MASK,
+ .rtc_count_day_mask = DA9062AA_COUNT_DAY_MASK,
+ .rtc_count_month_mask = DA9062AA_COUNT_MONTH_MASK,
+ .rtc_count_year_mask = DA9062AA_COUNT_YEAR_MASK,
+ /* ALARM CONFIG */
+ .rtc_data_start = RTC_SEC,
+ .rtc_alarm_len = RTC_DATA_LEN,
+};
+
+static const struct of_device_id da9063_compatible_reg_id_table[] = {
+ { .compatible = "dlg,da9063-rtc", .data = &da9063_bb_regs },
+ { .compatible = "dlg,da9062-rtc", .data = &da9062_aa_regs },
+ { },
+};
+MODULE_DEVICE_TABLE(of, da9063_compatible_reg_id_table);
+
+static void da9063_data_to_tm(u8 *data, struct rtc_time *tm,
+ struct da9063_compatible_rtc *rtc)
+{
+ const struct da9063_compatible_rtc_regmap *config = rtc->config;
+
+ tm->tm_sec = data[RTC_SEC] & config->rtc_count_sec_mask;
+ tm->tm_min = data[RTC_MIN] & config->rtc_count_min_mask;
+ tm->tm_hour = data[RTC_HOUR] & config->rtc_count_hour_mask;
+ tm->tm_mday = data[RTC_DAY] & config->rtc_count_day_mask;
+ tm->tm_mon = MONTHS_FROM_DA9063(data[RTC_MONTH] &
+ config->rtc_count_month_mask);
+ tm->tm_year = YEARS_FROM_DA9063(data[RTC_YEAR] &
+ config->rtc_count_year_mask);
+}
+
+static void da9063_tm_to_data(struct rtc_time *tm, u8 *data,
+ struct da9063_compatible_rtc *rtc)
+{
+ const struct da9063_compatible_rtc_regmap *config = rtc->config;
+
+ data[RTC_SEC] = tm->tm_sec & config->rtc_count_sec_mask;
+ data[RTC_MIN] = tm->tm_min & config->rtc_count_min_mask;
+ data[RTC_HOUR] = tm->tm_hour & config->rtc_count_hour_mask;
+ data[RTC_DAY] = tm->tm_mday & config->rtc_count_day_mask;
+ data[RTC_MONTH] = MONTHS_TO_DA9063(tm->tm_mon) &
+ config->rtc_count_month_mask;
+ data[RTC_YEAR] = YEARS_TO_DA9063(tm->tm_year) &
+ config->rtc_count_year_mask;
+}
+
+static int da9063_rtc_stop_alarm(struct device *dev)
+{
+ struct da9063_compatible_rtc *rtc = dev_get_drvdata(dev);
+ const struct da9063_compatible_rtc_regmap *config = rtc->config;
+
+ return regmap_update_bits(rtc->regmap,
+ config->rtc_alarm_year_reg,
+ config->rtc_alarm_on_mask,
+ 0);
+}
+
+static int da9063_rtc_start_alarm(struct device *dev)
+{
+ struct da9063_compatible_rtc *rtc = dev_get_drvdata(dev);
+ const struct da9063_compatible_rtc_regmap *config = rtc->config;
+
+ return regmap_update_bits(rtc->regmap,
+ config->rtc_alarm_year_reg,
+ config->rtc_alarm_on_mask,
+ config->rtc_alarm_on_mask);
+}
+
+static int da9063_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct da9063_compatible_rtc *rtc = dev_get_drvdata(dev);
+ const struct da9063_compatible_rtc_regmap *config = rtc->config;
+ unsigned long tm_secs;
+ unsigned long al_secs;
+ u8 data[RTC_DATA_LEN];
+ int ret;
+
+ ret = regmap_bulk_read(rtc->regmap,
+ config->rtc_count_secs_reg,
+ data, RTC_DATA_LEN);
+ if (ret < 0) {
+ dev_err(dev, "Failed to read RTC time data: %d\n", ret);
+ return ret;
+ }
+
+ if (!(data[RTC_SEC] & config->rtc_ready_to_read_mask)) {
+ dev_dbg(dev, "RTC not yet ready to be read by the host\n");
+ return -EINVAL;
+ }
+
+ da9063_data_to_tm(data, tm, rtc);
+
+ tm_secs = rtc_tm_to_time64(tm);
+ al_secs = rtc_tm_to_time64(&rtc->alarm_time);
+
+ /* handle the rtc synchronisation delay */
+ if (rtc->rtc_sync == true && al_secs - tm_secs == 1)
+ memcpy(tm, &rtc->alarm_time, sizeof(struct rtc_time));
+ else
+ rtc->rtc_sync = false;
+
+ return 0;
+}
+
+static int da9063_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct da9063_compatible_rtc *rtc = dev_get_drvdata(dev);
+ const struct da9063_compatible_rtc_regmap *config = rtc->config;
+ u8 data[RTC_DATA_LEN];
+ int ret;
+
+ da9063_tm_to_data(tm, data, rtc);
+ ret = regmap_bulk_write(rtc->regmap,
+ config->rtc_count_secs_reg,
+ data, RTC_DATA_LEN);
+ if (ret < 0)
+ dev_err(dev, "Failed to set RTC time data: %d\n", ret);
+
+ return ret;
+}
+
+static int da9063_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct da9063_compatible_rtc *rtc = dev_get_drvdata(dev);
+ const struct da9063_compatible_rtc_regmap *config = rtc->config;
+ u8 data[RTC_DATA_LEN];
+ int ret;
+ unsigned int val;
+
+ data[RTC_SEC] = 0;
+ ret = regmap_bulk_read(rtc->regmap,
+ config->rtc_alarm_secs_reg,
+ &data[config->rtc_data_start],
+ config->rtc_alarm_len);
+ if (ret < 0)
+ return ret;
+
+ da9063_data_to_tm(data, &alrm->time, rtc);
+
+ alrm->enabled = !!(data[RTC_YEAR] & config->rtc_alarm_on_mask);
+
+ ret = regmap_read(rtc->regmap,
+ config->rtc_event_reg,
+ &val);
+ if (ret < 0)
+ return ret;
+
+ if (val & config->rtc_event_alarm_mask)
+ alrm->pending = 1;
+ else
+ alrm->pending = 0;
+
+ return 0;
+}
+
+static int da9063_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct da9063_compatible_rtc *rtc = dev_get_drvdata(dev);
+ const struct da9063_compatible_rtc_regmap *config = rtc->config;
+ u8 data[RTC_DATA_LEN];
+ int ret;
+
+ da9063_tm_to_data(&alrm->time, data, rtc);
+
+ ret = da9063_rtc_stop_alarm(dev);
+ if (ret < 0) {
+ dev_err(dev, "Failed to stop alarm: %d\n", ret);
+ return ret;
+ }
+
+ ret = regmap_bulk_write(rtc->regmap,
+ config->rtc_alarm_secs_reg,
+ &data[config->rtc_data_start],
+ config->rtc_alarm_len);
+ if (ret < 0) {
+ dev_err(dev, "Failed to write alarm: %d\n", ret);
+ return ret;
+ }
+
+ da9063_data_to_tm(data, &rtc->alarm_time, rtc);
+
+ if (alrm->enabled) {
+ ret = da9063_rtc_start_alarm(dev);
+ if (ret < 0) {
+ dev_err(dev, "Failed to start alarm: %d\n", ret);
+ return ret;
+ }
+ }
+
+ return ret;
+}
+
+static int da9063_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ if (enabled)
+ return da9063_rtc_start_alarm(dev);
+ else
+ return da9063_rtc_stop_alarm(dev);
+}
+
+static irqreturn_t da9063_alarm_event(int irq, void *data)
+{
+ struct da9063_compatible_rtc *rtc = data;
+ const struct da9063_compatible_rtc_regmap *config = rtc->config;
+
+ regmap_update_bits(rtc->regmap,
+ config->rtc_alarm_year_reg,
+ config->rtc_alarm_on_mask,
+ 0);
+
+ rtc->rtc_sync = true;
+ rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops da9063_rtc_ops = {
+ .read_time = da9063_rtc_read_time,
+ .set_time = da9063_rtc_set_time,
+ .read_alarm = da9063_rtc_read_alarm,
+ .set_alarm = da9063_rtc_set_alarm,
+ .alarm_irq_enable = da9063_rtc_alarm_irq_enable,
+};
+
+static int da9063_rtc_probe(struct platform_device *pdev)
+{
+ struct da9063_compatible_rtc *rtc;
+ const struct da9063_compatible_rtc_regmap *config;
+ const struct of_device_id *match;
+ int irq_alarm;
+ u8 data[RTC_DATA_LEN];
+ int ret;
+
+ if (!pdev->dev.of_node)
+ return -ENXIO;
+
+ match = of_match_node(da9063_compatible_reg_id_table,
+ pdev->dev.of_node);
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->config = match->data;
+ if (of_device_is_compatible(pdev->dev.of_node, "dlg,da9063-rtc")) {
+ struct da9063 *chip = dev_get_drvdata(pdev->dev.parent);
+
+ if (chip->variant_code == PMIC_DA9063_AD)
+ rtc->config = &da9063_ad_regs;
+ }
+
+ rtc->regmap = dev_get_regmap(pdev->dev.parent, NULL);
+ if (!rtc->regmap) {
+ dev_warn(&pdev->dev, "Parent regmap unavailable.\n");
+ return -ENXIO;
+ }
+
+ config = rtc->config;
+ ret = regmap_update_bits(rtc->regmap,
+ config->rtc_enable_reg,
+ config->rtc_enable_mask,
+ config->rtc_enable_mask);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "Failed to enable RTC\n");
+ return ret;
+ }
+
+ ret = regmap_update_bits(rtc->regmap,
+ config->rtc_enable_32k_crystal_reg,
+ config->rtc_crystal_mask,
+ config->rtc_crystal_mask);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "Failed to run 32kHz oscillator\n");
+ return ret;
+ }
+
+ ret = regmap_update_bits(rtc->regmap,
+ config->rtc_alarm_secs_reg,
+ config->rtc_alarm_status_mask,
+ 0);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "Failed to access RTC alarm register\n");
+ return ret;
+ }
+
+ ret = regmap_update_bits(rtc->regmap,
+ config->rtc_alarm_secs_reg,
+ DA9063_ALARM_STATUS_ALARM,
+ DA9063_ALARM_STATUS_ALARM);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "Failed to access RTC alarm register\n");
+ return ret;
+ }
+
+ ret = regmap_update_bits(rtc->regmap,
+ config->rtc_alarm_year_reg,
+ config->rtc_tick_on_mask,
+ 0);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "Failed to disable TICKs\n");
+ return ret;
+ }
+
+ data[RTC_SEC] = 0;
+ ret = regmap_bulk_read(rtc->regmap,
+ config->rtc_alarm_secs_reg,
+ &data[config->rtc_data_start],
+ config->rtc_alarm_len);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "Failed to read initial alarm data: %d\n",
+ ret);
+ return ret;
+ }
+
+ platform_set_drvdata(pdev, rtc);
+
+ rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc->rtc_dev))
+ return PTR_ERR(rtc->rtc_dev);
+
+ rtc->rtc_dev->ops = &da9063_rtc_ops;
+ rtc->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ rtc->rtc_dev->range_max = RTC_TIMESTAMP_END_2063;
+
+ da9063_data_to_tm(data, &rtc->alarm_time, rtc);
+ rtc->rtc_sync = false;
+
+ /*
+ * TODO: some models have alarms on a minute boundary but still support
+ * real hardware interrupts. Add this once the core supports it.
+ */
+ if (config->rtc_data_start != RTC_SEC)
+ rtc->rtc_dev->uie_unsupported = 1;
+
+ irq_alarm = platform_get_irq_byname(pdev, "ALARM");
+ if (irq_alarm < 0)
+ return irq_alarm;
+
+ ret = devm_request_threaded_irq(&pdev->dev, irq_alarm, NULL,
+ da9063_alarm_event,
+ IRQF_TRIGGER_LOW | IRQF_ONESHOT,
+ "ALARM", rtc);
+ if (ret)
+ dev_err(&pdev->dev, "Failed to request ALARM IRQ %d: %d\n",
+ irq_alarm, ret);
+
+ return rtc_register_device(rtc->rtc_dev);
+}
+
+static struct platform_driver da9063_rtc_driver = {
+ .probe = da9063_rtc_probe,
+ .driver = {
+ .name = DA9063_DRVNAME_RTC,
+ .of_match_table = da9063_compatible_reg_id_table,
+ },
+};
+
+module_platform_driver(da9063_rtc_driver);
+
+MODULE_AUTHOR("S Twiss <stwiss.opensource@diasemi.com>");
+MODULE_DESCRIPTION("Real time clock device driver for Dialog DA9063");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:" DA9063_DRVNAME_RTC);
diff --git a/drivers/rtc/rtc-davinci.c b/drivers/rtc/rtc-davinci.c
new file mode 100644
index 000000000..73f87a17c
--- /dev/null
+++ b/drivers/rtc/rtc-davinci.c
@@ -0,0 +1,512 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * DaVinci Power Management and Real Time Clock Driver for TI platforms
+ *
+ * Copyright (C) 2009 Texas Instruments, Inc
+ *
+ * Author: Miguel Aguilar <miguel.aguilar@ridgerun.com>
+ */
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/ioport.h>
+#include <linux/delay.h>
+#include <linux/spinlock.h>
+#include <linux/rtc.h>
+#include <linux/bcd.h>
+#include <linux/platform_device.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+
+/*
+ * The DaVinci RTC is a simple RTC with the following
+ * Sec: 0 - 59 : BCD count
+ * Min: 0 - 59 : BCD count
+ * Hour: 0 - 23 : BCD count
+ * Day: 0 - 0x7FFF(32767) : Binary count ( Over 89 years )
+ */
+
+/* PRTC interface registers */
+#define DAVINCI_PRTCIF_PID 0x00
+#define PRTCIF_CTLR 0x04
+#define PRTCIF_LDATA 0x08
+#define PRTCIF_UDATA 0x0C
+#define PRTCIF_INTEN 0x10
+#define PRTCIF_INTFLG 0x14
+
+/* PRTCIF_CTLR bit fields */
+#define PRTCIF_CTLR_BUSY BIT(31)
+#define PRTCIF_CTLR_SIZE BIT(25)
+#define PRTCIF_CTLR_DIR BIT(24)
+#define PRTCIF_CTLR_BENU_MSB BIT(23)
+#define PRTCIF_CTLR_BENU_3RD_BYTE BIT(22)
+#define PRTCIF_CTLR_BENU_2ND_BYTE BIT(21)
+#define PRTCIF_CTLR_BENU_LSB BIT(20)
+#define PRTCIF_CTLR_BENU_MASK (0x00F00000)
+#define PRTCIF_CTLR_BENL_MSB BIT(19)
+#define PRTCIF_CTLR_BENL_3RD_BYTE BIT(18)
+#define PRTCIF_CTLR_BENL_2ND_BYTE BIT(17)
+#define PRTCIF_CTLR_BENL_LSB BIT(16)
+#define PRTCIF_CTLR_BENL_MASK (0x000F0000)
+
+/* PRTCIF_INTEN bit fields */
+#define PRTCIF_INTEN_RTCSS BIT(1)
+#define PRTCIF_INTEN_RTCIF BIT(0)
+#define PRTCIF_INTEN_MASK (PRTCIF_INTEN_RTCSS \
+ | PRTCIF_INTEN_RTCIF)
+
+/* PRTCIF_INTFLG bit fields */
+#define PRTCIF_INTFLG_RTCSS BIT(1)
+#define PRTCIF_INTFLG_RTCIF BIT(0)
+#define PRTCIF_INTFLG_MASK (PRTCIF_INTFLG_RTCSS \
+ | PRTCIF_INTFLG_RTCIF)
+
+/* PRTC subsystem registers */
+#define PRTCSS_RTC_INTC_EXTENA1 (0x0C)
+#define PRTCSS_RTC_CTRL (0x10)
+#define PRTCSS_RTC_WDT (0x11)
+#define PRTCSS_RTC_TMR0 (0x12)
+#define PRTCSS_RTC_TMR1 (0x13)
+#define PRTCSS_RTC_CCTRL (0x14)
+#define PRTCSS_RTC_SEC (0x15)
+#define PRTCSS_RTC_MIN (0x16)
+#define PRTCSS_RTC_HOUR (0x17)
+#define PRTCSS_RTC_DAY0 (0x18)
+#define PRTCSS_RTC_DAY1 (0x19)
+#define PRTCSS_RTC_AMIN (0x1A)
+#define PRTCSS_RTC_AHOUR (0x1B)
+#define PRTCSS_RTC_ADAY0 (0x1C)
+#define PRTCSS_RTC_ADAY1 (0x1D)
+#define PRTCSS_RTC_CLKC_CNT (0x20)
+
+/* PRTCSS_RTC_INTC_EXTENA1 */
+#define PRTCSS_RTC_INTC_EXTENA1_MASK (0x07)
+
+/* PRTCSS_RTC_CTRL bit fields */
+#define PRTCSS_RTC_CTRL_WDTBUS BIT(7)
+#define PRTCSS_RTC_CTRL_WEN BIT(6)
+#define PRTCSS_RTC_CTRL_WDRT BIT(5)
+#define PRTCSS_RTC_CTRL_WDTFLG BIT(4)
+#define PRTCSS_RTC_CTRL_TE BIT(3)
+#define PRTCSS_RTC_CTRL_TIEN BIT(2)
+#define PRTCSS_RTC_CTRL_TMRFLG BIT(1)
+#define PRTCSS_RTC_CTRL_TMMD BIT(0)
+
+/* PRTCSS_RTC_CCTRL bit fields */
+#define PRTCSS_RTC_CCTRL_CALBUSY BIT(7)
+#define PRTCSS_RTC_CCTRL_DAEN BIT(5)
+#define PRTCSS_RTC_CCTRL_HAEN BIT(4)
+#define PRTCSS_RTC_CCTRL_MAEN BIT(3)
+#define PRTCSS_RTC_CCTRL_ALMFLG BIT(2)
+#define PRTCSS_RTC_CCTRL_AIEN BIT(1)
+#define PRTCSS_RTC_CCTRL_CAEN BIT(0)
+
+static DEFINE_SPINLOCK(davinci_rtc_lock);
+
+struct davinci_rtc {
+ struct rtc_device *rtc;
+ void __iomem *base;
+ int irq;
+};
+
+static inline void rtcif_write(struct davinci_rtc *davinci_rtc,
+ u32 val, u32 addr)
+{
+ writel(val, davinci_rtc->base + addr);
+}
+
+static inline u32 rtcif_read(struct davinci_rtc *davinci_rtc, u32 addr)
+{
+ return readl(davinci_rtc->base + addr);
+}
+
+static inline void rtcif_wait(struct davinci_rtc *davinci_rtc)
+{
+ while (rtcif_read(davinci_rtc, PRTCIF_CTLR) & PRTCIF_CTLR_BUSY)
+ cpu_relax();
+}
+
+static inline void rtcss_write(struct davinci_rtc *davinci_rtc,
+ unsigned long val, u8 addr)
+{
+ rtcif_wait(davinci_rtc);
+
+ rtcif_write(davinci_rtc, PRTCIF_CTLR_BENL_LSB | addr, PRTCIF_CTLR);
+ rtcif_write(davinci_rtc, val, PRTCIF_LDATA);
+
+ rtcif_wait(davinci_rtc);
+}
+
+static inline u8 rtcss_read(struct davinci_rtc *davinci_rtc, u8 addr)
+{
+ rtcif_wait(davinci_rtc);
+
+ rtcif_write(davinci_rtc, PRTCIF_CTLR_DIR | PRTCIF_CTLR_BENL_LSB | addr,
+ PRTCIF_CTLR);
+
+ rtcif_wait(davinci_rtc);
+
+ return rtcif_read(davinci_rtc, PRTCIF_LDATA);
+}
+
+static inline void davinci_rtcss_calendar_wait(struct davinci_rtc *davinci_rtc)
+{
+ while (rtcss_read(davinci_rtc, PRTCSS_RTC_CCTRL) &
+ PRTCSS_RTC_CCTRL_CALBUSY)
+ cpu_relax();
+}
+
+static irqreturn_t davinci_rtc_interrupt(int irq, void *class_dev)
+{
+ struct davinci_rtc *davinci_rtc = class_dev;
+ unsigned long events = 0;
+ u32 irq_flg;
+ u8 alm_irq, tmr_irq;
+ u8 rtc_ctrl, rtc_cctrl;
+ int ret = IRQ_NONE;
+
+ irq_flg = rtcif_read(davinci_rtc, PRTCIF_INTFLG) &
+ PRTCIF_INTFLG_RTCSS;
+
+ alm_irq = rtcss_read(davinci_rtc, PRTCSS_RTC_CCTRL) &
+ PRTCSS_RTC_CCTRL_ALMFLG;
+
+ tmr_irq = rtcss_read(davinci_rtc, PRTCSS_RTC_CTRL) &
+ PRTCSS_RTC_CTRL_TMRFLG;
+
+ if (irq_flg) {
+ if (alm_irq) {
+ events |= RTC_IRQF | RTC_AF;
+ rtc_cctrl = rtcss_read(davinci_rtc, PRTCSS_RTC_CCTRL);
+ rtc_cctrl |= PRTCSS_RTC_CCTRL_ALMFLG;
+ rtcss_write(davinci_rtc, rtc_cctrl, PRTCSS_RTC_CCTRL);
+ } else if (tmr_irq) {
+ events |= RTC_IRQF | RTC_PF;
+ rtc_ctrl = rtcss_read(davinci_rtc, PRTCSS_RTC_CTRL);
+ rtc_ctrl |= PRTCSS_RTC_CTRL_TMRFLG;
+ rtcss_write(davinci_rtc, rtc_ctrl, PRTCSS_RTC_CTRL);
+ }
+
+ rtcif_write(davinci_rtc, PRTCIF_INTFLG_RTCSS,
+ PRTCIF_INTFLG);
+ rtc_update_irq(davinci_rtc->rtc, 1, events);
+
+ ret = IRQ_HANDLED;
+ }
+
+ return ret;
+}
+
+static int
+davinci_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
+{
+ struct davinci_rtc *davinci_rtc = dev_get_drvdata(dev);
+ u8 rtc_ctrl;
+ unsigned long flags;
+ int ret = 0;
+
+ spin_lock_irqsave(&davinci_rtc_lock, flags);
+
+ rtc_ctrl = rtcss_read(davinci_rtc, PRTCSS_RTC_CTRL);
+
+ switch (cmd) {
+ case RTC_WIE_ON:
+ rtc_ctrl |= PRTCSS_RTC_CTRL_WEN | PRTCSS_RTC_CTRL_WDTFLG;
+ break;
+ case RTC_WIE_OFF:
+ rtc_ctrl &= ~PRTCSS_RTC_CTRL_WEN;
+ break;
+ default:
+ ret = -ENOIOCTLCMD;
+ }
+
+ rtcss_write(davinci_rtc, rtc_ctrl, PRTCSS_RTC_CTRL);
+
+ spin_unlock_irqrestore(&davinci_rtc_lock, flags);
+
+ return ret;
+}
+
+static void convertfromdays(u16 days, struct rtc_time *tm)
+{
+ int tmp_days, year, mon;
+
+ for (year = 2000;; year++) {
+ tmp_days = rtc_year_days(1, 12, year);
+ if (days >= tmp_days)
+ days -= tmp_days;
+ else {
+ for (mon = 0;; mon++) {
+ tmp_days = rtc_month_days(mon, year);
+ if (days >= tmp_days) {
+ days -= tmp_days;
+ } else {
+ tm->tm_year = year - 1900;
+ tm->tm_mon = mon;
+ tm->tm_mday = days + 1;
+ break;
+ }
+ }
+ break;
+ }
+ }
+}
+
+static void convert2days(u16 *days, struct rtc_time *tm)
+{
+ int i;
+ *days = 0;
+
+ for (i = 2000; i < 1900 + tm->tm_year; i++)
+ *days += rtc_year_days(1, 12, i);
+
+ *days += rtc_year_days(tm->tm_mday, tm->tm_mon, 1900 + tm->tm_year);
+}
+
+static int davinci_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct davinci_rtc *davinci_rtc = dev_get_drvdata(dev);
+ u16 days = 0;
+ u8 day0, day1;
+ unsigned long flags;
+
+ spin_lock_irqsave(&davinci_rtc_lock, flags);
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ tm->tm_sec = bcd2bin(rtcss_read(davinci_rtc, PRTCSS_RTC_SEC));
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ tm->tm_min = bcd2bin(rtcss_read(davinci_rtc, PRTCSS_RTC_MIN));
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ tm->tm_hour = bcd2bin(rtcss_read(davinci_rtc, PRTCSS_RTC_HOUR));
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ day0 = rtcss_read(davinci_rtc, PRTCSS_RTC_DAY0);
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ day1 = rtcss_read(davinci_rtc, PRTCSS_RTC_DAY1);
+
+ spin_unlock_irqrestore(&davinci_rtc_lock, flags);
+
+ days |= day1;
+ days <<= 8;
+ days |= day0;
+
+ convertfromdays(days, tm);
+
+ return 0;
+}
+
+static int davinci_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct davinci_rtc *davinci_rtc = dev_get_drvdata(dev);
+ u16 days;
+ u8 rtc_cctrl;
+ unsigned long flags;
+
+ convert2days(&days, tm);
+
+ spin_lock_irqsave(&davinci_rtc_lock, flags);
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ rtcss_write(davinci_rtc, bin2bcd(tm->tm_sec), PRTCSS_RTC_SEC);
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ rtcss_write(davinci_rtc, bin2bcd(tm->tm_min), PRTCSS_RTC_MIN);
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ rtcss_write(davinci_rtc, bin2bcd(tm->tm_hour), PRTCSS_RTC_HOUR);
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ rtcss_write(davinci_rtc, days & 0xFF, PRTCSS_RTC_DAY0);
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ rtcss_write(davinci_rtc, (days & 0xFF00) >> 8, PRTCSS_RTC_DAY1);
+
+ rtc_cctrl = rtcss_read(davinci_rtc, PRTCSS_RTC_CCTRL);
+ rtc_cctrl |= PRTCSS_RTC_CCTRL_CAEN;
+ rtcss_write(davinci_rtc, rtc_cctrl, PRTCSS_RTC_CCTRL);
+
+ spin_unlock_irqrestore(&davinci_rtc_lock, flags);
+
+ return 0;
+}
+
+static int davinci_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct davinci_rtc *davinci_rtc = dev_get_drvdata(dev);
+ unsigned long flags;
+ u8 rtc_cctrl = rtcss_read(davinci_rtc, PRTCSS_RTC_CCTRL);
+
+ spin_lock_irqsave(&davinci_rtc_lock, flags);
+
+ if (enabled)
+ rtc_cctrl |= PRTCSS_RTC_CCTRL_DAEN |
+ PRTCSS_RTC_CCTRL_HAEN |
+ PRTCSS_RTC_CCTRL_MAEN |
+ PRTCSS_RTC_CCTRL_ALMFLG |
+ PRTCSS_RTC_CCTRL_AIEN;
+ else
+ rtc_cctrl &= ~PRTCSS_RTC_CCTRL_AIEN;
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ rtcss_write(davinci_rtc, rtc_cctrl, PRTCSS_RTC_CCTRL);
+
+ spin_unlock_irqrestore(&davinci_rtc_lock, flags);
+
+ return 0;
+}
+
+static int davinci_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct davinci_rtc *davinci_rtc = dev_get_drvdata(dev);
+ u16 days = 0;
+ u8 day0, day1;
+ unsigned long flags;
+
+ alm->time.tm_sec = 0;
+
+ spin_lock_irqsave(&davinci_rtc_lock, flags);
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ alm->time.tm_min = bcd2bin(rtcss_read(davinci_rtc, PRTCSS_RTC_AMIN));
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ alm->time.tm_hour = bcd2bin(rtcss_read(davinci_rtc, PRTCSS_RTC_AHOUR));
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ day0 = rtcss_read(davinci_rtc, PRTCSS_RTC_ADAY0);
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ day1 = rtcss_read(davinci_rtc, PRTCSS_RTC_ADAY1);
+
+ spin_unlock_irqrestore(&davinci_rtc_lock, flags);
+ days |= day1;
+ days <<= 8;
+ days |= day0;
+
+ convertfromdays(days, &alm->time);
+
+ alm->pending = !!(rtcss_read(davinci_rtc,
+ PRTCSS_RTC_CCTRL) &
+ PRTCSS_RTC_CCTRL_AIEN);
+ alm->enabled = alm->pending && device_may_wakeup(dev);
+
+ return 0;
+}
+
+static int davinci_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct davinci_rtc *davinci_rtc = dev_get_drvdata(dev);
+ unsigned long flags;
+ u16 days;
+
+ convert2days(&days, &alm->time);
+
+ spin_lock_irqsave(&davinci_rtc_lock, flags);
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ rtcss_write(davinci_rtc, bin2bcd(alm->time.tm_min), PRTCSS_RTC_AMIN);
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ rtcss_write(davinci_rtc, bin2bcd(alm->time.tm_hour), PRTCSS_RTC_AHOUR);
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ rtcss_write(davinci_rtc, days & 0xFF, PRTCSS_RTC_ADAY0);
+
+ davinci_rtcss_calendar_wait(davinci_rtc);
+ rtcss_write(davinci_rtc, (days & 0xFF00) >> 8, PRTCSS_RTC_ADAY1);
+
+ spin_unlock_irqrestore(&davinci_rtc_lock, flags);
+
+ return 0;
+}
+
+static const struct rtc_class_ops davinci_rtc_ops = {
+ .ioctl = davinci_rtc_ioctl,
+ .read_time = davinci_rtc_read_time,
+ .set_time = davinci_rtc_set_time,
+ .alarm_irq_enable = davinci_rtc_alarm_irq_enable,
+ .read_alarm = davinci_rtc_read_alarm,
+ .set_alarm = davinci_rtc_set_alarm,
+};
+
+static int __init davinci_rtc_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct davinci_rtc *davinci_rtc;
+ int ret = 0;
+
+ davinci_rtc = devm_kzalloc(&pdev->dev, sizeof(struct davinci_rtc), GFP_KERNEL);
+ if (!davinci_rtc)
+ return -ENOMEM;
+
+ davinci_rtc->irq = platform_get_irq(pdev, 0);
+ if (davinci_rtc->irq < 0)
+ return davinci_rtc->irq;
+
+ davinci_rtc->base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(davinci_rtc->base))
+ return PTR_ERR(davinci_rtc->base);
+
+ platform_set_drvdata(pdev, davinci_rtc);
+
+ davinci_rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(davinci_rtc->rtc))
+ return PTR_ERR(davinci_rtc->rtc);
+
+ davinci_rtc->rtc->ops = &davinci_rtc_ops;
+ davinci_rtc->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ davinci_rtc->rtc->range_max = RTC_TIMESTAMP_BEGIN_2000 + (1 << 16) * 86400ULL - 1;
+
+ rtcif_write(davinci_rtc, PRTCIF_INTFLG_RTCSS, PRTCIF_INTFLG);
+ rtcif_write(davinci_rtc, 0, PRTCIF_INTEN);
+ rtcss_write(davinci_rtc, 0, PRTCSS_RTC_INTC_EXTENA1);
+
+ rtcss_write(davinci_rtc, 0, PRTCSS_RTC_CTRL);
+ rtcss_write(davinci_rtc, 0, PRTCSS_RTC_CCTRL);
+
+ ret = devm_request_irq(dev, davinci_rtc->irq, davinci_rtc_interrupt,
+ 0, "davinci_rtc", davinci_rtc);
+ if (ret < 0) {
+ dev_err(dev, "unable to register davinci RTC interrupt\n");
+ return ret;
+ }
+
+ /* Enable interrupts */
+ rtcif_write(davinci_rtc, PRTCIF_INTEN_RTCSS, PRTCIF_INTEN);
+ rtcss_write(davinci_rtc, PRTCSS_RTC_INTC_EXTENA1_MASK,
+ PRTCSS_RTC_INTC_EXTENA1);
+
+ rtcss_write(davinci_rtc, PRTCSS_RTC_CCTRL_CAEN, PRTCSS_RTC_CCTRL);
+
+ device_init_wakeup(&pdev->dev, 0);
+
+ return rtc_register_device(davinci_rtc->rtc);
+}
+
+static int __exit davinci_rtc_remove(struct platform_device *pdev)
+{
+ struct davinci_rtc *davinci_rtc = platform_get_drvdata(pdev);
+
+ device_init_wakeup(&pdev->dev, 0);
+
+ rtcif_write(davinci_rtc, 0, PRTCIF_INTEN);
+
+ return 0;
+}
+
+static struct platform_driver davinci_rtc_driver = {
+ .remove = __exit_p(davinci_rtc_remove),
+ .driver = {
+ .name = "rtc_davinci",
+ },
+};
+
+module_platform_driver_probe(davinci_rtc_driver, davinci_rtc_probe);
+
+MODULE_AUTHOR("Miguel Aguilar <miguel.aguilar@ridgerun.com>");
+MODULE_DESCRIPTION("Texas Instruments DaVinci PRTC Driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-digicolor.c b/drivers/rtc/rtc-digicolor.c
new file mode 100644
index 000000000..200d85b01
--- /dev/null
+++ b/drivers/rtc/rtc-digicolor.c
@@ -0,0 +1,224 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Real Time Clock driver for Conexant Digicolor
+ *
+ * Copyright (C) 2015 Paradox Innovation Ltd.
+ *
+ * Author: Baruch Siach <baruch@tkos.co.il>
+ */
+
+#include <linux/io.h>
+#include <linux/iopoll.h>
+#include <linux/delay.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/of.h>
+
+#define DC_RTC_CONTROL 0x0
+#define DC_RTC_TIME 0x8
+#define DC_RTC_REFERENCE 0xc
+#define DC_RTC_ALARM 0x10
+#define DC_RTC_INTFLAG_CLEAR 0x14
+#define DC_RTC_INTENABLE 0x16
+
+#define DC_RTC_CMD_MASK 0xf
+#define DC_RTC_GO_BUSY BIT(7)
+
+#define CMD_NOP 0
+#define CMD_RESET 1
+#define CMD_WRITE 3
+#define CMD_READ 4
+
+#define CMD_DELAY_US (10*1000)
+#define CMD_TIMEOUT_US (500*CMD_DELAY_US)
+
+struct dc_rtc {
+ struct rtc_device *rtc_dev;
+ void __iomem *regs;
+};
+
+static int dc_rtc_cmds(struct dc_rtc *rtc, const u8 *cmds, int len)
+{
+ u8 val;
+ int i, ret;
+
+ for (i = 0; i < len; i++) {
+ writeb_relaxed((cmds[i] & DC_RTC_CMD_MASK) | DC_RTC_GO_BUSY,
+ rtc->regs + DC_RTC_CONTROL);
+ ret = readb_relaxed_poll_timeout(
+ rtc->regs + DC_RTC_CONTROL, val,
+ !(val & DC_RTC_GO_BUSY), CMD_DELAY_US, CMD_TIMEOUT_US);
+ if (ret < 0)
+ return ret;
+ }
+
+ return 0;
+}
+
+static int dc_rtc_read(struct dc_rtc *rtc, unsigned long *val)
+{
+ static const u8 read_cmds[] = {CMD_READ, CMD_NOP};
+ u32 reference, time1, time2;
+ int ret;
+
+ ret = dc_rtc_cmds(rtc, read_cmds, ARRAY_SIZE(read_cmds));
+ if (ret < 0)
+ return ret;
+
+ reference = readl_relaxed(rtc->regs + DC_RTC_REFERENCE);
+ time1 = readl_relaxed(rtc->regs + DC_RTC_TIME);
+ /* Read twice to ensure consistency */
+ while (1) {
+ time2 = readl_relaxed(rtc->regs + DC_RTC_TIME);
+ if (time1 == time2)
+ break;
+ time1 = time2;
+ }
+
+ *val = reference + time1;
+ return 0;
+}
+
+static int dc_rtc_write(struct dc_rtc *rtc, u32 val)
+{
+ static const u8 write_cmds[] = {CMD_WRITE, CMD_NOP, CMD_RESET, CMD_NOP};
+
+ writel_relaxed(val, rtc->regs + DC_RTC_REFERENCE);
+ return dc_rtc_cmds(rtc, write_cmds, ARRAY_SIZE(write_cmds));
+}
+
+static int dc_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct dc_rtc *rtc = dev_get_drvdata(dev);
+ unsigned long now;
+ int ret;
+
+ ret = dc_rtc_read(rtc, &now);
+ if (ret < 0)
+ return ret;
+ rtc_time64_to_tm(now, tm);
+
+ return 0;
+}
+
+static int dc_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct dc_rtc *rtc = dev_get_drvdata(dev);
+
+ return dc_rtc_write(rtc, rtc_tm_to_time64(tm));
+}
+
+static int dc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct dc_rtc *rtc = dev_get_drvdata(dev);
+ u32 alarm_reg, reference;
+ unsigned long now;
+ int ret;
+
+ alarm_reg = readl_relaxed(rtc->regs + DC_RTC_ALARM);
+ reference = readl_relaxed(rtc->regs + DC_RTC_REFERENCE);
+ rtc_time64_to_tm(reference + alarm_reg, &alarm->time);
+
+ ret = dc_rtc_read(rtc, &now);
+ if (ret < 0)
+ return ret;
+
+ alarm->pending = alarm_reg + reference > now;
+ alarm->enabled = readl_relaxed(rtc->regs + DC_RTC_INTENABLE);
+
+ return 0;
+}
+
+static int dc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct dc_rtc *rtc = dev_get_drvdata(dev);
+ time64_t alarm_time;
+ u32 reference;
+
+ alarm_time = rtc_tm_to_time64(&alarm->time);
+
+ reference = readl_relaxed(rtc->regs + DC_RTC_REFERENCE);
+ writel_relaxed(alarm_time - reference, rtc->regs + DC_RTC_ALARM);
+
+ writeb_relaxed(!!alarm->enabled, rtc->regs + DC_RTC_INTENABLE);
+
+ return 0;
+}
+
+static int dc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct dc_rtc *rtc = dev_get_drvdata(dev);
+
+ writeb_relaxed(!!enabled, rtc->regs + DC_RTC_INTENABLE);
+
+ return 0;
+}
+
+static const struct rtc_class_ops dc_rtc_ops = {
+ .read_time = dc_rtc_read_time,
+ .set_time = dc_rtc_set_time,
+ .read_alarm = dc_rtc_read_alarm,
+ .set_alarm = dc_rtc_set_alarm,
+ .alarm_irq_enable = dc_rtc_alarm_irq_enable,
+};
+
+static irqreturn_t dc_rtc_irq(int irq, void *dev_id)
+{
+ struct dc_rtc *rtc = dev_id;
+
+ writeb_relaxed(1, rtc->regs + DC_RTC_INTFLAG_CLEAR);
+ rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
+
+ return IRQ_HANDLED;
+}
+
+static int __init dc_rtc_probe(struct platform_device *pdev)
+{
+ struct dc_rtc *rtc;
+ int irq, ret;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->regs = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(rtc->regs))
+ return PTR_ERR(rtc->regs);
+
+ rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc->rtc_dev))
+ return PTR_ERR(rtc->rtc_dev);
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return irq;
+ ret = devm_request_irq(&pdev->dev, irq, dc_rtc_irq, 0, pdev->name, rtc);
+ if (ret < 0)
+ return ret;
+
+ platform_set_drvdata(pdev, rtc);
+
+ rtc->rtc_dev->ops = &dc_rtc_ops;
+ rtc->rtc_dev->range_max = U32_MAX;
+
+ return rtc_register_device(rtc->rtc_dev);
+}
+
+static const struct of_device_id dc_dt_ids[] = {
+ { .compatible = "cnxt,cx92755-rtc" },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, dc_dt_ids);
+
+static struct platform_driver dc_rtc_driver = {
+ .driver = {
+ .name = "digicolor_rtc",
+ .of_match_table = of_match_ptr(dc_dt_ids),
+ },
+};
+module_platform_driver_probe(dc_rtc_driver, dc_rtc_probe);
+
+MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
+MODULE_DESCRIPTION("Conexant Digicolor Realtime Clock Driver (RTC)");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-dm355evm.c b/drivers/rtc/rtc-dm355evm.c
new file mode 100644
index 000000000..cd947a208
--- /dev/null
+++ b/drivers/rtc/rtc-dm355evm.c
@@ -0,0 +1,151 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * rtc-dm355evm.c - access battery-backed counter in MSP430 firmware
+ *
+ * Copyright (c) 2008 by David Brownell
+ */
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+
+#include <linux/mfd/dm355evm_msp.h>
+#include <linux/module.h>
+
+
+/*
+ * The MSP430 firmware on the DM355 EVM uses a watch crystal to feed
+ * a 1 Hz counter. When a backup battery is supplied, that makes a
+ * reasonable RTC for applications where alarms and non-NTP drift
+ * compensation aren't important.
+ *
+ * The only real glitch is the inability to read or write all four
+ * counter bytes atomically: the count may increment in the middle
+ * of an operation, causing trouble when the LSB rolls over.
+ *
+ * This driver was tested with firmware revision A4.
+ */
+union evm_time {
+ u8 bytes[4];
+ u32 value;
+};
+
+static int dm355evm_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ union evm_time time;
+ int status;
+ int tries = 0;
+
+ do {
+ /*
+ * Read LSB(0) to MSB(3) bytes. Defend against the counter
+ * rolling over by re-reading until the value is stable,
+ * and assuming the four reads take at most a few seconds.
+ */
+ status = dm355evm_msp_read(DM355EVM_MSP_RTC_0);
+ if (status < 0)
+ return status;
+ if (tries && time.bytes[0] == status)
+ break;
+ time.bytes[0] = status;
+
+ status = dm355evm_msp_read(DM355EVM_MSP_RTC_1);
+ if (status < 0)
+ return status;
+ if (tries && time.bytes[1] == status)
+ break;
+ time.bytes[1] = status;
+
+ status = dm355evm_msp_read(DM355EVM_MSP_RTC_2);
+ if (status < 0)
+ return status;
+ if (tries && time.bytes[2] == status)
+ break;
+ time.bytes[2] = status;
+
+ status = dm355evm_msp_read(DM355EVM_MSP_RTC_3);
+ if (status < 0)
+ return status;
+ if (tries && time.bytes[3] == status)
+ break;
+ time.bytes[3] = status;
+
+ } while (++tries < 5);
+
+ dev_dbg(dev, "read timestamp %08x\n", time.value);
+
+ rtc_time64_to_tm(le32_to_cpu(time.value), tm);
+ return 0;
+}
+
+static int dm355evm_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ union evm_time time;
+ unsigned long value;
+ int status;
+
+ value = rtc_tm_to_time64(tm);
+ time.value = cpu_to_le32(value);
+
+ dev_dbg(dev, "write timestamp %08x\n", time.value);
+
+ /*
+ * REVISIT handle non-atomic writes ... maybe just retry until
+ * byte[1] sticks (no rollover)?
+ */
+ status = dm355evm_msp_write(time.bytes[0], DM355EVM_MSP_RTC_0);
+ if (status < 0)
+ return status;
+
+ status = dm355evm_msp_write(time.bytes[1], DM355EVM_MSP_RTC_1);
+ if (status < 0)
+ return status;
+
+ status = dm355evm_msp_write(time.bytes[2], DM355EVM_MSP_RTC_2);
+ if (status < 0)
+ return status;
+
+ status = dm355evm_msp_write(time.bytes[3], DM355EVM_MSP_RTC_3);
+ if (status < 0)
+ return status;
+
+ return 0;
+}
+
+static const struct rtc_class_ops dm355evm_rtc_ops = {
+ .read_time = dm355evm_rtc_read_time,
+ .set_time = dm355evm_rtc_set_time,
+};
+
+/*----------------------------------------------------------------------*/
+
+static int dm355evm_rtc_probe(struct platform_device *pdev)
+{
+ struct rtc_device *rtc;
+
+ rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ platform_set_drvdata(pdev, rtc);
+
+ rtc->ops = &dm355evm_rtc_ops;
+ rtc->range_max = U32_MAX;
+
+ return rtc_register_device(rtc);
+}
+
+/*
+ * I2C is used to talk to the MSP430, but this platform device is
+ * exposed by an MFD driver that manages I2C communications.
+ */
+static struct platform_driver rtc_dm355evm_driver = {
+ .probe = dm355evm_rtc_probe,
+ .driver = {
+ .name = "rtc-dm355evm",
+ },
+};
+
+module_platform_driver(rtc_dm355evm_driver);
+
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-ds1216.c b/drivers/rtc/rtc-ds1216.c
new file mode 100644
index 000000000..7eeb3f359
--- /dev/null
+++ b/drivers/rtc/rtc-ds1216.c
@@ -0,0 +1,174 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Dallas DS1216 RTC driver
+ *
+ * Copyright (c) 2007 Thomas Bogendoerfer
+ *
+ */
+
+#include <linux/module.h>
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+#include <linux/bcd.h>
+#include <linux/slab.h>
+
+struct ds1216_regs {
+ u8 tsec;
+ u8 sec;
+ u8 min;
+ u8 hour;
+ u8 wday;
+ u8 mday;
+ u8 month;
+ u8 year;
+};
+
+#define DS1216_HOUR_1224 (1 << 7)
+#define DS1216_HOUR_AMPM (1 << 5)
+
+struct ds1216_priv {
+ struct rtc_device *rtc;
+ void __iomem *ioaddr;
+};
+
+static const u8 magic[] = {
+ 0xc5, 0x3a, 0xa3, 0x5c, 0xc5, 0x3a, 0xa3, 0x5c
+};
+
+/*
+ * Read the 64 bit we'd like to have - It a series
+ * of 64 bits showing up in the LSB of the base register.
+ *
+ */
+static void ds1216_read(u8 __iomem *ioaddr, u8 *buf)
+{
+ unsigned char c;
+ int i, j;
+
+ for (i = 0; i < 8; i++) {
+ c = 0;
+ for (j = 0; j < 8; j++)
+ c |= (readb(ioaddr) & 0x1) << j;
+ buf[i] = c;
+ }
+}
+
+static void ds1216_write(u8 __iomem *ioaddr, const u8 *buf)
+{
+ unsigned char c;
+ int i, j;
+
+ for (i = 0; i < 8; i++) {
+ c = buf[i];
+ for (j = 0; j < 8; j++) {
+ writeb(c, ioaddr);
+ c = c >> 1;
+ }
+ }
+}
+
+static void ds1216_switch_ds_to_clock(u8 __iomem *ioaddr)
+{
+ /* Reset magic pointer */
+ readb(ioaddr);
+ /* Write 64 bit magic to DS1216 */
+ ds1216_write(ioaddr, magic);
+}
+
+static int ds1216_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct ds1216_priv *priv = dev_get_drvdata(dev);
+ struct ds1216_regs regs;
+
+ ds1216_switch_ds_to_clock(priv->ioaddr);
+ ds1216_read(priv->ioaddr, (u8 *)&regs);
+
+ tm->tm_sec = bcd2bin(regs.sec);
+ tm->tm_min = bcd2bin(regs.min);
+ if (regs.hour & DS1216_HOUR_1224) {
+ /* AM/PM mode */
+ tm->tm_hour = bcd2bin(regs.hour & 0x1f);
+ if (regs.hour & DS1216_HOUR_AMPM)
+ tm->tm_hour += 12;
+ } else
+ tm->tm_hour = bcd2bin(regs.hour & 0x3f);
+ tm->tm_wday = (regs.wday & 7) - 1;
+ tm->tm_mday = bcd2bin(regs.mday & 0x3f);
+ tm->tm_mon = bcd2bin(regs.month & 0x1f);
+ tm->tm_year = bcd2bin(regs.year);
+ if (tm->tm_year < 70)
+ tm->tm_year += 100;
+
+ return 0;
+}
+
+static int ds1216_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct ds1216_priv *priv = dev_get_drvdata(dev);
+ struct ds1216_regs regs;
+
+ ds1216_switch_ds_to_clock(priv->ioaddr);
+ ds1216_read(priv->ioaddr, (u8 *)&regs);
+
+ regs.tsec = 0; /* clear 0.1 and 0.01 seconds */
+ regs.sec = bin2bcd(tm->tm_sec);
+ regs.min = bin2bcd(tm->tm_min);
+ regs.hour &= DS1216_HOUR_1224;
+ if (regs.hour && tm->tm_hour > 12) {
+ regs.hour |= DS1216_HOUR_AMPM;
+ tm->tm_hour -= 12;
+ }
+ regs.hour |= bin2bcd(tm->tm_hour);
+ regs.wday &= ~7;
+ regs.wday |= tm->tm_wday;
+ regs.mday = bin2bcd(tm->tm_mday);
+ regs.month = bin2bcd(tm->tm_mon);
+ regs.year = bin2bcd(tm->tm_year % 100);
+
+ ds1216_switch_ds_to_clock(priv->ioaddr);
+ ds1216_write(priv->ioaddr, (u8 *)&regs);
+ return 0;
+}
+
+static const struct rtc_class_ops ds1216_rtc_ops = {
+ .read_time = ds1216_rtc_read_time,
+ .set_time = ds1216_rtc_set_time,
+};
+
+static int __init ds1216_rtc_probe(struct platform_device *pdev)
+{
+ struct ds1216_priv *priv;
+ u8 dummy[8];
+
+ priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, priv);
+
+ priv->ioaddr = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(priv->ioaddr))
+ return PTR_ERR(priv->ioaddr);
+
+ priv->rtc = devm_rtc_device_register(&pdev->dev, "ds1216",
+ &ds1216_rtc_ops, THIS_MODULE);
+ if (IS_ERR(priv->rtc))
+ return PTR_ERR(priv->rtc);
+
+ /* dummy read to get clock into a known state */
+ ds1216_read(priv->ioaddr, dummy);
+ return 0;
+}
+
+static struct platform_driver ds1216_rtc_platform_driver = {
+ .driver = {
+ .name = "rtc-ds1216",
+ },
+};
+
+module_platform_driver_probe(ds1216_rtc_platform_driver, ds1216_rtc_probe);
+
+MODULE_AUTHOR("Thomas Bogendoerfer <tsbogend@alpha.franken.de>");
+MODULE_DESCRIPTION("DS1216 RTC driver");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:rtc-ds1216");
diff --git a/drivers/rtc/rtc-ds1286.c b/drivers/rtc/rtc-ds1286.c
new file mode 100644
index 000000000..7acf849d4
--- /dev/null
+++ b/drivers/rtc/rtc-ds1286.c
@@ -0,0 +1,358 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * DS1286 Real Time Clock interface for Linux
+ *
+ * Copyright (C) 1998, 1999, 2000 Ralf Baechle
+ * Copyright (C) 2008 Thomas Bogendoerfer
+ *
+ * Based on code written by Paul Gortmaker.
+ */
+
+#include <linux/module.h>
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+#include <linux/bcd.h>
+#include <linux/rtc/ds1286.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+
+struct ds1286_priv {
+ struct rtc_device *rtc;
+ u32 __iomem *rtcregs;
+ spinlock_t lock;
+};
+
+static inline u8 ds1286_rtc_read(struct ds1286_priv *priv, int reg)
+{
+ return __raw_readl(&priv->rtcregs[reg]) & 0xff;
+}
+
+static inline void ds1286_rtc_write(struct ds1286_priv *priv, u8 data, int reg)
+{
+ __raw_writel(data, &priv->rtcregs[reg]);
+}
+
+
+static int ds1286_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct ds1286_priv *priv = dev_get_drvdata(dev);
+ unsigned long flags;
+ unsigned char val;
+
+ /* Allow or mask alarm interrupts */
+ spin_lock_irqsave(&priv->lock, flags);
+ val = ds1286_rtc_read(priv, RTC_CMD);
+ if (enabled)
+ val &= ~RTC_TDM;
+ else
+ val |= RTC_TDM;
+ ds1286_rtc_write(priv, val, RTC_CMD);
+ spin_unlock_irqrestore(&priv->lock, flags);
+
+ return 0;
+}
+
+#ifdef CONFIG_RTC_INTF_DEV
+
+static int ds1286_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
+{
+ struct ds1286_priv *priv = dev_get_drvdata(dev);
+ unsigned long flags;
+ unsigned char val;
+
+ switch (cmd) {
+ case RTC_WIE_OFF:
+ /* Mask watchdog int. enab. bit */
+ spin_lock_irqsave(&priv->lock, flags);
+ val = ds1286_rtc_read(priv, RTC_CMD);
+ val |= RTC_WAM;
+ ds1286_rtc_write(priv, val, RTC_CMD);
+ spin_unlock_irqrestore(&priv->lock, flags);
+ break;
+ case RTC_WIE_ON:
+ /* Allow watchdog interrupts. */
+ spin_lock_irqsave(&priv->lock, flags);
+ val = ds1286_rtc_read(priv, RTC_CMD);
+ val &= ~RTC_WAM;
+ ds1286_rtc_write(priv, val, RTC_CMD);
+ spin_unlock_irqrestore(&priv->lock, flags);
+ break;
+ default:
+ return -ENOIOCTLCMD;
+ }
+ return 0;
+}
+
+#else
+#define ds1286_ioctl NULL
+#endif
+
+#ifdef CONFIG_PROC_FS
+
+static int ds1286_proc(struct device *dev, struct seq_file *seq)
+{
+ struct ds1286_priv *priv = dev_get_drvdata(dev);
+ unsigned char month, cmd, amode;
+ const char *s;
+
+ month = ds1286_rtc_read(priv, RTC_MONTH);
+ seq_printf(seq,
+ "oscillator\t: %s\n"
+ "square_wave\t: %s\n",
+ (month & RTC_EOSC) ? "disabled" : "enabled",
+ (month & RTC_ESQW) ? "disabled" : "enabled");
+
+ amode = ((ds1286_rtc_read(priv, RTC_MINUTES_ALARM) & 0x80) >> 5) |
+ ((ds1286_rtc_read(priv, RTC_HOURS_ALARM) & 0x80) >> 6) |
+ ((ds1286_rtc_read(priv, RTC_DAY_ALARM) & 0x80) >> 7);
+ switch (amode) {
+ case 7:
+ s = "each minute";
+ break;
+ case 3:
+ s = "minutes match";
+ break;
+ case 1:
+ s = "hours and minutes match";
+ break;
+ case 0:
+ s = "days, hours and minutes match";
+ break;
+ default:
+ s = "invalid";
+ break;
+ }
+ seq_printf(seq, "alarm_mode\t: %s\n", s);
+
+ cmd = ds1286_rtc_read(priv, RTC_CMD);
+ seq_printf(seq,
+ "alarm_enable\t: %s\n"
+ "wdog_alarm\t: %s\n"
+ "alarm_mask\t: %s\n"
+ "wdog_alarm_mask\t: %s\n"
+ "interrupt_mode\t: %s\n"
+ "INTB_mode\t: %s_active\n"
+ "interrupt_pins\t: %s\n",
+ (cmd & RTC_TDF) ? "yes" : "no",
+ (cmd & RTC_WAF) ? "yes" : "no",
+ (cmd & RTC_TDM) ? "disabled" : "enabled",
+ (cmd & RTC_WAM) ? "disabled" : "enabled",
+ (cmd & RTC_PU_LVL) ? "pulse" : "level",
+ (cmd & RTC_IBH_LO) ? "low" : "high",
+ (cmd & RTC_IPSW) ? "unswapped" : "swapped");
+ return 0;
+}
+
+#else
+#define ds1286_proc NULL
+#endif
+
+static int ds1286_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct ds1286_priv *priv = dev_get_drvdata(dev);
+ unsigned char save_control;
+ unsigned long flags;
+ unsigned long uip_watchdog = jiffies;
+
+ /*
+ * read RTC once any update in progress is done. The update
+ * can take just over 2ms. We wait 10 to 20ms. There is no need to
+ * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
+ * If you need to know *exactly* when a second has started, enable
+ * periodic update complete interrupts, (via ioctl) and then
+ * immediately read /dev/rtc which will block until you get the IRQ.
+ * Once the read clears, read the RTC time (again via ioctl). Easy.
+ */
+
+ if (ds1286_rtc_read(priv, RTC_CMD) & RTC_TE)
+ while (time_before(jiffies, uip_watchdog + 2*HZ/100))
+ barrier();
+
+ /*
+ * Only the values that we read from the RTC are set. We leave
+ * tm_wday, tm_yday and tm_isdst untouched. Even though the
+ * RTC has RTC_DAY_OF_WEEK, we ignore it, as it is only updated
+ * by the RTC when initially set to a non-zero value.
+ */
+ spin_lock_irqsave(&priv->lock, flags);
+ save_control = ds1286_rtc_read(priv, RTC_CMD);
+ ds1286_rtc_write(priv, (save_control|RTC_TE), RTC_CMD);
+
+ tm->tm_sec = ds1286_rtc_read(priv, RTC_SECONDS);
+ tm->tm_min = ds1286_rtc_read(priv, RTC_MINUTES);
+ tm->tm_hour = ds1286_rtc_read(priv, RTC_HOURS) & 0x3f;
+ tm->tm_mday = ds1286_rtc_read(priv, RTC_DATE);
+ tm->tm_mon = ds1286_rtc_read(priv, RTC_MONTH) & 0x1f;
+ tm->tm_year = ds1286_rtc_read(priv, RTC_YEAR);
+
+ ds1286_rtc_write(priv, save_control, RTC_CMD);
+ spin_unlock_irqrestore(&priv->lock, flags);
+
+ tm->tm_sec = bcd2bin(tm->tm_sec);
+ tm->tm_min = bcd2bin(tm->tm_min);
+ tm->tm_hour = bcd2bin(tm->tm_hour);
+ tm->tm_mday = bcd2bin(tm->tm_mday);
+ tm->tm_mon = bcd2bin(tm->tm_mon);
+ tm->tm_year = bcd2bin(tm->tm_year);
+
+ /*
+ * Account for differences between how the RTC uses the values
+ * and how they are defined in a struct rtc_time;
+ */
+ if (tm->tm_year < 45)
+ tm->tm_year += 30;
+ tm->tm_year += 40;
+ if (tm->tm_year < 70)
+ tm->tm_year += 100;
+
+ tm->tm_mon--;
+
+ return 0;
+}
+
+static int ds1286_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct ds1286_priv *priv = dev_get_drvdata(dev);
+ unsigned char mon, day, hrs, min, sec;
+ unsigned char save_control;
+ unsigned int yrs;
+ unsigned long flags;
+
+ yrs = tm->tm_year + 1900;
+ mon = tm->tm_mon + 1; /* tm_mon starts at zero */
+ day = tm->tm_mday;
+ hrs = tm->tm_hour;
+ min = tm->tm_min;
+ sec = tm->tm_sec;
+
+ if (yrs < 1970)
+ return -EINVAL;
+
+ yrs -= 1940;
+ if (yrs > 255) /* They are unsigned */
+ return -EINVAL;
+
+ if (yrs >= 100)
+ yrs -= 100;
+
+ sec = bin2bcd(sec);
+ min = bin2bcd(min);
+ hrs = bin2bcd(hrs);
+ day = bin2bcd(day);
+ mon = bin2bcd(mon);
+ yrs = bin2bcd(yrs);
+
+ spin_lock_irqsave(&priv->lock, flags);
+ save_control = ds1286_rtc_read(priv, RTC_CMD);
+ ds1286_rtc_write(priv, (save_control|RTC_TE), RTC_CMD);
+
+ ds1286_rtc_write(priv, yrs, RTC_YEAR);
+ ds1286_rtc_write(priv, mon, RTC_MONTH);
+ ds1286_rtc_write(priv, day, RTC_DATE);
+ ds1286_rtc_write(priv, hrs, RTC_HOURS);
+ ds1286_rtc_write(priv, min, RTC_MINUTES);
+ ds1286_rtc_write(priv, sec, RTC_SECONDS);
+ ds1286_rtc_write(priv, 0, RTC_HUNDREDTH_SECOND);
+
+ ds1286_rtc_write(priv, save_control, RTC_CMD);
+ spin_unlock_irqrestore(&priv->lock, flags);
+ return 0;
+}
+
+static int ds1286_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct ds1286_priv *priv = dev_get_drvdata(dev);
+ unsigned long flags;
+
+ /*
+ * Only the values that we read from the RTC are set. That
+ * means only tm_wday, tm_hour, tm_min.
+ */
+ spin_lock_irqsave(&priv->lock, flags);
+ alm->time.tm_min = ds1286_rtc_read(priv, RTC_MINUTES_ALARM) & 0x7f;
+ alm->time.tm_hour = ds1286_rtc_read(priv, RTC_HOURS_ALARM) & 0x1f;
+ alm->time.tm_wday = ds1286_rtc_read(priv, RTC_DAY_ALARM) & 0x07;
+ ds1286_rtc_read(priv, RTC_CMD);
+ spin_unlock_irqrestore(&priv->lock, flags);
+
+ alm->time.tm_min = bcd2bin(alm->time.tm_min);
+ alm->time.tm_hour = bcd2bin(alm->time.tm_hour);
+ alm->time.tm_sec = 0;
+ return 0;
+}
+
+static int ds1286_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct ds1286_priv *priv = dev_get_drvdata(dev);
+ unsigned char hrs, min, sec;
+
+ hrs = alm->time.tm_hour;
+ min = alm->time.tm_min;
+ sec = alm->time.tm_sec;
+
+ if (hrs >= 24)
+ hrs = 0xff;
+
+ if (min >= 60)
+ min = 0xff;
+
+ if (sec != 0)
+ return -EINVAL;
+
+ min = bin2bcd(min);
+ hrs = bin2bcd(hrs);
+
+ spin_lock(&priv->lock);
+ ds1286_rtc_write(priv, hrs, RTC_HOURS_ALARM);
+ ds1286_rtc_write(priv, min, RTC_MINUTES_ALARM);
+ spin_unlock(&priv->lock);
+
+ return 0;
+}
+
+static const struct rtc_class_ops ds1286_ops = {
+ .ioctl = ds1286_ioctl,
+ .proc = ds1286_proc,
+ .read_time = ds1286_read_time,
+ .set_time = ds1286_set_time,
+ .read_alarm = ds1286_read_alarm,
+ .set_alarm = ds1286_set_alarm,
+ .alarm_irq_enable = ds1286_alarm_irq_enable,
+};
+
+static int ds1286_probe(struct platform_device *pdev)
+{
+ struct rtc_device *rtc;
+ struct ds1286_priv *priv;
+
+ priv = devm_kzalloc(&pdev->dev, sizeof(struct ds1286_priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ priv->rtcregs = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(priv->rtcregs))
+ return PTR_ERR(priv->rtcregs);
+
+ spin_lock_init(&priv->lock);
+ platform_set_drvdata(pdev, priv);
+ rtc = devm_rtc_device_register(&pdev->dev, "ds1286", &ds1286_ops,
+ THIS_MODULE);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+ priv->rtc = rtc;
+ return 0;
+}
+
+static struct platform_driver ds1286_platform_driver = {
+ .driver = {
+ .name = "rtc-ds1286",
+ },
+ .probe = ds1286_probe,
+};
+
+module_platform_driver(ds1286_platform_driver);
+
+MODULE_AUTHOR("Thomas Bogendoerfer <tsbogend@alpha.franken.de>");
+MODULE_DESCRIPTION("DS1286 RTC driver");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:rtc-ds1286");
diff --git a/drivers/rtc/rtc-ds1302.c b/drivers/rtc/rtc-ds1302.c
new file mode 100644
index 000000000..b3de6d2e6
--- /dev/null
+++ b/drivers/rtc/rtc-ds1302.c
@@ -0,0 +1,213 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Dallas DS1302 RTC Support
+ *
+ * Copyright (C) 2002 David McCullough
+ * Copyright (C) 2003 - 2007 Paul Mundt
+ */
+
+#include <linux/bcd.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/rtc.h>
+#include <linux/spi/spi.h>
+
+#define RTC_CMD_READ 0x81 /* Read command */
+#define RTC_CMD_WRITE 0x80 /* Write command */
+
+#define RTC_CMD_WRITE_ENABLE 0x00 /* Write enable */
+#define RTC_CMD_WRITE_DISABLE 0x80 /* Write disable */
+
+#define RTC_ADDR_RAM0 0x20 /* Address of RAM0 */
+#define RTC_ADDR_TCR 0x08 /* Address of trickle charge register */
+#define RTC_CLCK_BURST 0x1F /* Address of clock burst */
+#define RTC_CLCK_LEN 0x08 /* Size of clock burst */
+#define RTC_ADDR_CTRL 0x07 /* Address of control register */
+#define RTC_ADDR_YEAR 0x06 /* Address of year register */
+#define RTC_ADDR_DAY 0x05 /* Address of day of week register */
+#define RTC_ADDR_MON 0x04 /* Address of month register */
+#define RTC_ADDR_DATE 0x03 /* Address of day of month register */
+#define RTC_ADDR_HOUR 0x02 /* Address of hour register */
+#define RTC_ADDR_MIN 0x01 /* Address of minute register */
+#define RTC_ADDR_SEC 0x00 /* Address of second register */
+
+static int ds1302_rtc_set_time(struct device *dev, struct rtc_time *time)
+{
+ struct spi_device *spi = dev_get_drvdata(dev);
+ u8 buf[1 + RTC_CLCK_LEN];
+ u8 *bp;
+ int status;
+
+ /* Enable writing */
+ bp = buf;
+ *bp++ = RTC_ADDR_CTRL << 1 | RTC_CMD_WRITE;
+ *bp++ = RTC_CMD_WRITE_ENABLE;
+
+ status = spi_write_then_read(spi, buf, 2,
+ NULL, 0);
+ if (status)
+ return status;
+
+ /* Write registers starting at the first time/date address. */
+ bp = buf;
+ *bp++ = RTC_CLCK_BURST << 1 | RTC_CMD_WRITE;
+
+ *bp++ = bin2bcd(time->tm_sec);
+ *bp++ = bin2bcd(time->tm_min);
+ *bp++ = bin2bcd(time->tm_hour);
+ *bp++ = bin2bcd(time->tm_mday);
+ *bp++ = bin2bcd(time->tm_mon + 1);
+ *bp++ = time->tm_wday + 1;
+ *bp++ = bin2bcd(time->tm_year % 100);
+ *bp++ = RTC_CMD_WRITE_DISABLE;
+
+ /* use write-then-read since dma from stack is nonportable */
+ return spi_write_then_read(spi, buf, sizeof(buf),
+ NULL, 0);
+}
+
+static int ds1302_rtc_get_time(struct device *dev, struct rtc_time *time)
+{
+ struct spi_device *spi = dev_get_drvdata(dev);
+ u8 addr = RTC_CLCK_BURST << 1 | RTC_CMD_READ;
+ u8 buf[RTC_CLCK_LEN - 1];
+ int status;
+
+ /* Use write-then-read to get all the date/time registers
+ * since dma from stack is nonportable
+ */
+ status = spi_write_then_read(spi, &addr, sizeof(addr),
+ buf, sizeof(buf));
+ if (status < 0)
+ return status;
+
+ /* Decode the registers */
+ time->tm_sec = bcd2bin(buf[RTC_ADDR_SEC]);
+ time->tm_min = bcd2bin(buf[RTC_ADDR_MIN]);
+ time->tm_hour = bcd2bin(buf[RTC_ADDR_HOUR]);
+ time->tm_wday = buf[RTC_ADDR_DAY] - 1;
+ time->tm_mday = bcd2bin(buf[RTC_ADDR_DATE]);
+ time->tm_mon = bcd2bin(buf[RTC_ADDR_MON]) - 1;
+ time->tm_year = bcd2bin(buf[RTC_ADDR_YEAR]) + 100;
+
+ return 0;
+}
+
+static const struct rtc_class_ops ds1302_rtc_ops = {
+ .read_time = ds1302_rtc_get_time,
+ .set_time = ds1302_rtc_set_time,
+};
+
+static int ds1302_probe(struct spi_device *spi)
+{
+ struct rtc_device *rtc;
+ u8 addr;
+ u8 buf[4];
+ u8 *bp;
+ int status;
+
+ /* Sanity check board setup data. This may be hooked up
+ * in 3wire mode, but we don't care. Note that unless
+ * there's an inverter in place, this needs SPI_CS_HIGH!
+ */
+ if (spi->bits_per_word && (spi->bits_per_word != 8)) {
+ dev_err(&spi->dev, "bad word length\n");
+ return -EINVAL;
+ } else if (spi->max_speed_hz > 2000000) {
+ dev_err(&spi->dev, "speed is too high\n");
+ return -EINVAL;
+ } else if (spi->mode & SPI_CPHA) {
+ dev_err(&spi->dev, "bad mode\n");
+ return -EINVAL;
+ }
+
+ addr = RTC_ADDR_CTRL << 1 | RTC_CMD_READ;
+ status = spi_write_then_read(spi, &addr, sizeof(addr), buf, 1);
+ if (status < 0) {
+ dev_err(&spi->dev, "control register read error %d\n",
+ status);
+ return status;
+ }
+
+ if ((buf[0] & ~RTC_CMD_WRITE_DISABLE) != 0) {
+ status = spi_write_then_read(spi, &addr, sizeof(addr), buf, 1);
+ if (status < 0) {
+ dev_err(&spi->dev, "control register read error %d\n",
+ status);
+ return status;
+ }
+
+ if ((buf[0] & ~RTC_CMD_WRITE_DISABLE) != 0) {
+ dev_err(&spi->dev, "junk in control register\n");
+ return -ENODEV;
+ }
+ }
+ if (buf[0] == 0) {
+ bp = buf;
+ *bp++ = RTC_ADDR_CTRL << 1 | RTC_CMD_WRITE;
+ *bp++ = RTC_CMD_WRITE_DISABLE;
+
+ status = spi_write_then_read(spi, buf, 2, NULL, 0);
+ if (status < 0) {
+ dev_err(&spi->dev, "control register write error %d\n",
+ status);
+ return status;
+ }
+
+ addr = RTC_ADDR_CTRL << 1 | RTC_CMD_READ;
+ status = spi_write_then_read(spi, &addr, sizeof(addr), buf, 1);
+ if (status < 0) {
+ dev_err(&spi->dev,
+ "error %d reading control register\n",
+ status);
+ return status;
+ }
+
+ if (buf[0] != RTC_CMD_WRITE_DISABLE) {
+ dev_err(&spi->dev, "failed to detect chip\n");
+ return -ENODEV;
+ }
+ }
+
+ spi_set_drvdata(spi, spi);
+
+ rtc = devm_rtc_device_register(&spi->dev, "ds1302",
+ &ds1302_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rtc)) {
+ status = PTR_ERR(rtc);
+ dev_err(&spi->dev, "error %d registering rtc\n", status);
+ return status;
+ }
+
+ return 0;
+}
+
+static int ds1302_remove(struct spi_device *spi)
+{
+ spi_set_drvdata(spi, NULL);
+ return 0;
+}
+
+#ifdef CONFIG_OF
+static const struct of_device_id ds1302_dt_ids[] = {
+ { .compatible = "maxim,ds1302", },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, ds1302_dt_ids);
+#endif
+
+static struct spi_driver ds1302_driver = {
+ .driver.name = "rtc-ds1302",
+ .driver.of_match_table = of_match_ptr(ds1302_dt_ids),
+ .probe = ds1302_probe,
+ .remove = ds1302_remove,
+};
+
+module_spi_driver(ds1302_driver);
+
+MODULE_DESCRIPTION("Dallas DS1302 RTC driver");
+MODULE_AUTHOR("Paul Mundt, David McCullough");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-ds1305.c b/drivers/rtc/rtc-ds1305.c
new file mode 100644
index 000000000..a3d790889
--- /dev/null
+++ b/drivers/rtc/rtc-ds1305.c
@@ -0,0 +1,750 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
+ *
+ * Copyright (C) 2008 David Brownell
+ */
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/bcd.h>
+#include <linux/slab.h>
+#include <linux/rtc.h>
+#include <linux/workqueue.h>
+
+#include <linux/spi/spi.h>
+#include <linux/spi/ds1305.h>
+#include <linux/module.h>
+
+
+/*
+ * Registers ... mask DS1305_WRITE into register address to write,
+ * otherwise you're reading it. All non-bitmask values are BCD.
+ */
+#define DS1305_WRITE 0x80
+
+
+/* RTC date/time ... the main special cases are that we:
+ * - Need fancy "hours" encoding in 12hour mode
+ * - Don't rely on the "day-of-week" field (or tm_wday)
+ * - Are a 21st-century clock (2000 <= year < 2100)
+ */
+#define DS1305_RTC_LEN 7 /* bytes for RTC regs */
+
+#define DS1305_SEC 0x00 /* register addresses */
+#define DS1305_MIN 0x01
+#define DS1305_HOUR 0x02
+# define DS1305_HR_12 0x40 /* set == 12 hr mode */
+# define DS1305_HR_PM 0x20 /* set == PM (12hr mode) */
+#define DS1305_WDAY 0x03
+#define DS1305_MDAY 0x04
+#define DS1305_MON 0x05
+#define DS1305_YEAR 0x06
+
+
+/* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
+ * DS1305_ALM_DISABLE disables a match field (some combos are bad).
+ *
+ * NOTE that since we don't use WDAY, we limit ourselves to alarms
+ * only one day into the future (vs potentially up to a week).
+ *
+ * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
+ * don't currently support them. We'd either need to do it only when
+ * no alarm is pending (not the standard model), or to use the second
+ * alarm (implying that this is a DS1305 not DS1306, *and* that either
+ * it's wired up a second IRQ we know, or that INTCN is set)
+ */
+#define DS1305_ALM_LEN 4 /* bytes for ALM regs */
+#define DS1305_ALM_DISABLE 0x80
+
+#define DS1305_ALM0(r) (0x07 + (r)) /* register addresses */
+#define DS1305_ALM1(r) (0x0b + (r))
+
+
+/* three control registers */
+#define DS1305_CONTROL_LEN 3 /* bytes of control regs */
+
+#define DS1305_CONTROL 0x0f /* register addresses */
+# define DS1305_nEOSC 0x80 /* low enables oscillator */
+# define DS1305_WP 0x40 /* write protect */
+# define DS1305_INTCN 0x04 /* clear == only int0 used */
+# define DS1306_1HZ 0x04 /* enable 1Hz output */
+# define DS1305_AEI1 0x02 /* enable ALM1 IRQ */
+# define DS1305_AEI0 0x01 /* enable ALM0 IRQ */
+#define DS1305_STATUS 0x10
+/* status has just AEIx bits, mirrored as IRQFx */
+#define DS1305_TRICKLE 0x11
+/* trickle bits are defined in <linux/spi/ds1305.h> */
+
+/* a bunch of NVRAM */
+#define DS1305_NVRAM_LEN 96 /* bytes of NVRAM */
+
+#define DS1305_NVRAM 0x20 /* register addresses */
+
+
+struct ds1305 {
+ struct spi_device *spi;
+ struct rtc_device *rtc;
+
+ struct work_struct work;
+
+ unsigned long flags;
+#define FLAG_EXITING 0
+
+ bool hr12;
+ u8 ctrl[DS1305_CONTROL_LEN];
+};
+
+
+/*----------------------------------------------------------------------*/
+
+/*
+ * Utilities ... tolerate 12-hour AM/PM notation in case of non-Linux
+ * software (like a bootloader) which may require it.
+ */
+
+static unsigned bcd2hour(u8 bcd)
+{
+ if (bcd & DS1305_HR_12) {
+ unsigned hour = 0;
+
+ bcd &= ~DS1305_HR_12;
+ if (bcd & DS1305_HR_PM) {
+ hour = 12;
+ bcd &= ~DS1305_HR_PM;
+ }
+ hour += bcd2bin(bcd);
+ return hour - 1;
+ }
+ return bcd2bin(bcd);
+}
+
+static u8 hour2bcd(bool hr12, int hour)
+{
+ if (hr12) {
+ hour++;
+ if (hour <= 12)
+ return DS1305_HR_12 | bin2bcd(hour);
+ hour -= 12;
+ return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
+ }
+ return bin2bcd(hour);
+}
+
+/*----------------------------------------------------------------------*/
+
+/*
+ * Interface to RTC framework
+ */
+
+static int ds1305_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct ds1305 *ds1305 = dev_get_drvdata(dev);
+ u8 buf[2];
+ long err = -EINVAL;
+
+ buf[0] = DS1305_WRITE | DS1305_CONTROL;
+ buf[1] = ds1305->ctrl[0];
+
+ if (enabled) {
+ if (ds1305->ctrl[0] & DS1305_AEI0)
+ goto done;
+ buf[1] |= DS1305_AEI0;
+ } else {
+ if (!(buf[1] & DS1305_AEI0))
+ goto done;
+ buf[1] &= ~DS1305_AEI0;
+ }
+ err = spi_write_then_read(ds1305->spi, buf, sizeof(buf), NULL, 0);
+ if (err >= 0)
+ ds1305->ctrl[0] = buf[1];
+done:
+ return err;
+
+}
+
+
+/*
+ * Get/set of date and time is pretty normal.
+ */
+
+static int ds1305_get_time(struct device *dev, struct rtc_time *time)
+{
+ struct ds1305 *ds1305 = dev_get_drvdata(dev);
+ u8 addr = DS1305_SEC;
+ u8 buf[DS1305_RTC_LEN];
+ int status;
+
+ /* Use write-then-read to get all the date/time registers
+ * since dma from stack is nonportable
+ */
+ status = spi_write_then_read(ds1305->spi, &addr, sizeof(addr),
+ buf, sizeof(buf));
+ if (status < 0)
+ return status;
+
+ dev_vdbg(dev, "%s: %3ph, %4ph\n", "read", &buf[0], &buf[3]);
+
+ /* Decode the registers */
+ time->tm_sec = bcd2bin(buf[DS1305_SEC]);
+ time->tm_min = bcd2bin(buf[DS1305_MIN]);
+ time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
+ time->tm_wday = buf[DS1305_WDAY] - 1;
+ time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
+ time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
+ time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
+
+ dev_vdbg(dev, "%s secs=%d, mins=%d, "
+ "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
+ "read", time->tm_sec, time->tm_min,
+ time->tm_hour, time->tm_mday,
+ time->tm_mon, time->tm_year, time->tm_wday);
+
+ return 0;
+}
+
+static int ds1305_set_time(struct device *dev, struct rtc_time *time)
+{
+ struct ds1305 *ds1305 = dev_get_drvdata(dev);
+ u8 buf[1 + DS1305_RTC_LEN];
+ u8 *bp = buf;
+
+ dev_vdbg(dev, "%s secs=%d, mins=%d, "
+ "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
+ "write", time->tm_sec, time->tm_min,
+ time->tm_hour, time->tm_mday,
+ time->tm_mon, time->tm_year, time->tm_wday);
+
+ /* Write registers starting at the first time/date address. */
+ *bp++ = DS1305_WRITE | DS1305_SEC;
+
+ *bp++ = bin2bcd(time->tm_sec);
+ *bp++ = bin2bcd(time->tm_min);
+ *bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
+ *bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
+ *bp++ = bin2bcd(time->tm_mday);
+ *bp++ = bin2bcd(time->tm_mon + 1);
+ *bp++ = bin2bcd(time->tm_year - 100);
+
+ dev_dbg(dev, "%s: %3ph, %4ph\n", "write", &buf[1], &buf[4]);
+
+ /* use write-then-read since dma from stack is nonportable */
+ return spi_write_then_read(ds1305->spi, buf, sizeof(buf),
+ NULL, 0);
+}
+
+/*
+ * Get/set of alarm is a bit funky:
+ *
+ * - First there's the inherent raciness of getting the (partitioned)
+ * status of an alarm that could trigger while we're reading parts
+ * of that status.
+ *
+ * - Second there's its limited range (we could increase it a bit by
+ * relying on WDAY), which means it will easily roll over.
+ *
+ * - Third there's the choice of two alarms and alarm signals.
+ * Here we use ALM0 and expect that nINT0 (open drain) is used;
+ * that's the only real option for DS1306 runtime alarms, and is
+ * natural on DS1305.
+ *
+ * - Fourth, there's also ALM1, and a second interrupt signal:
+ * + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
+ * + On DS1306 ALM1 only uses INT1 (an active high pulse)
+ * and it won't work when VCC1 is active.
+ *
+ * So to be most general, we should probably set both alarms to the
+ * same value, letting ALM1 be the wakeup event source on DS1306
+ * and handling several wiring options on DS1305.
+ *
+ * - Fifth, we support the polled mode (as well as possible; why not?)
+ * even when no interrupt line is wired to an IRQ.
+ */
+
+/*
+ * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
+ */
+static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct ds1305 *ds1305 = dev_get_drvdata(dev);
+ struct spi_device *spi = ds1305->spi;
+ u8 addr;
+ int status;
+ u8 buf[DS1305_ALM_LEN];
+
+ /* Refresh control register cache BEFORE reading ALM0 registers,
+ * since reading alarm registers acks any pending IRQ. That
+ * makes returning "pending" status a bit of a lie, but that bit
+ * of EFI status is at best fragile anyway (given IRQ handlers).
+ */
+ addr = DS1305_CONTROL;
+ status = spi_write_then_read(spi, &addr, sizeof(addr),
+ ds1305->ctrl, sizeof(ds1305->ctrl));
+ if (status < 0)
+ return status;
+
+ alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
+ alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
+
+ /* get and check ALM0 registers */
+ addr = DS1305_ALM0(DS1305_SEC);
+ status = spi_write_then_read(spi, &addr, sizeof(addr),
+ buf, sizeof(buf));
+ if (status < 0)
+ return status;
+
+ dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
+ "alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
+ buf[DS1305_HOUR], buf[DS1305_WDAY]);
+
+ if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
+ || (DS1305_ALM_DISABLE & buf[DS1305_MIN])
+ || (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
+ return -EIO;
+
+ /* Stuff these values into alm->time and let RTC framework code
+ * fill in the rest ... and also handle rollover to tomorrow when
+ * that's needed.
+ */
+ alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
+ alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
+ alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
+
+ return 0;
+}
+
+/*
+ * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
+ */
+static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct ds1305 *ds1305 = dev_get_drvdata(dev);
+ struct spi_device *spi = ds1305->spi;
+ unsigned long now, later;
+ struct rtc_time tm;
+ int status;
+ u8 buf[1 + DS1305_ALM_LEN];
+
+ /* convert desired alarm to time_t */
+ later = rtc_tm_to_time64(&alm->time);
+
+ /* Read current time as time_t */
+ status = ds1305_get_time(dev, &tm);
+ if (status < 0)
+ return status;
+ now = rtc_tm_to_time64(&tm);
+
+ /* make sure alarm fires within the next 24 hours */
+ if (later <= now)
+ return -EINVAL;
+ if ((later - now) > 24 * 60 * 60)
+ return -EDOM;
+
+ /* disable alarm if needed */
+ if (ds1305->ctrl[0] & DS1305_AEI0) {
+ ds1305->ctrl[0] &= ~DS1305_AEI0;
+
+ buf[0] = DS1305_WRITE | DS1305_CONTROL;
+ buf[1] = ds1305->ctrl[0];
+ status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
+ if (status < 0)
+ return status;
+ }
+
+ /* write alarm */
+ buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
+ buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
+ buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
+ buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
+ buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
+
+ dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
+ "alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
+ buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
+
+ status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
+ if (status < 0)
+ return status;
+
+ /* enable alarm if requested */
+ if (alm->enabled) {
+ ds1305->ctrl[0] |= DS1305_AEI0;
+
+ buf[0] = DS1305_WRITE | DS1305_CONTROL;
+ buf[1] = ds1305->ctrl[0];
+ status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
+ }
+
+ return status;
+}
+
+#ifdef CONFIG_PROC_FS
+
+static int ds1305_proc(struct device *dev, struct seq_file *seq)
+{
+ struct ds1305 *ds1305 = dev_get_drvdata(dev);
+ char *diodes = "no";
+ char *resistors = "";
+
+ /* ctrl[2] is treated as read-only; no locking needed */
+ if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
+ switch (ds1305->ctrl[2] & 0x0c) {
+ case DS1305_TRICKLE_DS2:
+ diodes = "2 diodes, ";
+ break;
+ case DS1305_TRICKLE_DS1:
+ diodes = "1 diode, ";
+ break;
+ default:
+ goto done;
+ }
+ switch (ds1305->ctrl[2] & 0x03) {
+ case DS1305_TRICKLE_2K:
+ resistors = "2k Ohm";
+ break;
+ case DS1305_TRICKLE_4K:
+ resistors = "4k Ohm";
+ break;
+ case DS1305_TRICKLE_8K:
+ resistors = "8k Ohm";
+ break;
+ default:
+ diodes = "no";
+ break;
+ }
+ }
+
+done:
+ seq_printf(seq, "trickle_charge\t: %s%s\n", diodes, resistors);
+
+ return 0;
+}
+
+#else
+#define ds1305_proc NULL
+#endif
+
+static const struct rtc_class_ops ds1305_ops = {
+ .read_time = ds1305_get_time,
+ .set_time = ds1305_set_time,
+ .read_alarm = ds1305_get_alarm,
+ .set_alarm = ds1305_set_alarm,
+ .proc = ds1305_proc,
+ .alarm_irq_enable = ds1305_alarm_irq_enable,
+};
+
+static void ds1305_work(struct work_struct *work)
+{
+ struct ds1305 *ds1305 = container_of(work, struct ds1305, work);
+ struct mutex *lock = &ds1305->rtc->ops_lock;
+ struct spi_device *spi = ds1305->spi;
+ u8 buf[3];
+ int status;
+
+ /* lock to protect ds1305->ctrl */
+ mutex_lock(lock);
+
+ /* Disable the IRQ, and clear its status ... for now, we "know"
+ * that if more than one alarm is active, they're in sync.
+ * Note that reading ALM data registers also clears IRQ status.
+ */
+ ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
+ ds1305->ctrl[1] = 0;
+
+ buf[0] = DS1305_WRITE | DS1305_CONTROL;
+ buf[1] = ds1305->ctrl[0];
+ buf[2] = 0;
+
+ status = spi_write_then_read(spi, buf, sizeof(buf),
+ NULL, 0);
+ if (status < 0)
+ dev_dbg(&spi->dev, "clear irq --> %d\n", status);
+
+ mutex_unlock(lock);
+
+ if (!test_bit(FLAG_EXITING, &ds1305->flags))
+ enable_irq(spi->irq);
+
+ rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
+}
+
+/*
+ * This "real" IRQ handler hands off to a workqueue mostly to allow
+ * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
+ * I/O requests in IRQ context (to clear the IRQ status).
+ */
+static irqreturn_t ds1305_irq(int irq, void *p)
+{
+ struct ds1305 *ds1305 = p;
+
+ disable_irq(irq);
+ schedule_work(&ds1305->work);
+ return IRQ_HANDLED;
+}
+
+/*----------------------------------------------------------------------*/
+
+/*
+ * Interface for NVRAM
+ */
+
+static void msg_init(struct spi_message *m, struct spi_transfer *x,
+ u8 *addr, size_t count, char *tx, char *rx)
+{
+ spi_message_init(m);
+ memset(x, 0, 2 * sizeof(*x));
+
+ x->tx_buf = addr;
+ x->len = 1;
+ spi_message_add_tail(x, m);
+
+ x++;
+
+ x->tx_buf = tx;
+ x->rx_buf = rx;
+ x->len = count;
+ spi_message_add_tail(x, m);
+}
+
+static int ds1305_nvram_read(void *priv, unsigned int off, void *buf,
+ size_t count)
+{
+ struct ds1305 *ds1305 = priv;
+ struct spi_device *spi = ds1305->spi;
+ u8 addr;
+ struct spi_message m;
+ struct spi_transfer x[2];
+
+ addr = DS1305_NVRAM + off;
+ msg_init(&m, x, &addr, count, NULL, buf);
+
+ return spi_sync(spi, &m);
+}
+
+static int ds1305_nvram_write(void *priv, unsigned int off, void *buf,
+ size_t count)
+{
+ struct ds1305 *ds1305 = priv;
+ struct spi_device *spi = ds1305->spi;
+ u8 addr;
+ struct spi_message m;
+ struct spi_transfer x[2];
+
+ addr = (DS1305_WRITE | DS1305_NVRAM) + off;
+ msg_init(&m, x, &addr, count, buf, NULL);
+
+ return spi_sync(spi, &m);
+}
+
+/*----------------------------------------------------------------------*/
+
+/*
+ * Interface to SPI stack
+ */
+
+static int ds1305_probe(struct spi_device *spi)
+{
+ struct ds1305 *ds1305;
+ int status;
+ u8 addr, value;
+ struct ds1305_platform_data *pdata = dev_get_platdata(&spi->dev);
+ bool write_ctrl = false;
+ struct nvmem_config ds1305_nvmem_cfg = {
+ .name = "ds1305_nvram",
+ .word_size = 1,
+ .stride = 1,
+ .size = DS1305_NVRAM_LEN,
+ .reg_read = ds1305_nvram_read,
+ .reg_write = ds1305_nvram_write,
+ };
+
+ /* Sanity check board setup data. This may be hooked up
+ * in 3wire mode, but we don't care. Note that unless
+ * there's an inverter in place, this needs SPI_CS_HIGH!
+ */
+ if ((spi->bits_per_word && spi->bits_per_word != 8)
+ || (spi->max_speed_hz > 2000000)
+ || !(spi->mode & SPI_CPHA))
+ return -EINVAL;
+
+ /* set up driver data */
+ ds1305 = devm_kzalloc(&spi->dev, sizeof(*ds1305), GFP_KERNEL);
+ if (!ds1305)
+ return -ENOMEM;
+ ds1305->spi = spi;
+ spi_set_drvdata(spi, ds1305);
+
+ /* read and cache control registers */
+ addr = DS1305_CONTROL;
+ status = spi_write_then_read(spi, &addr, sizeof(addr),
+ ds1305->ctrl, sizeof(ds1305->ctrl));
+ if (status < 0) {
+ dev_dbg(&spi->dev, "can't %s, %d\n",
+ "read", status);
+ return status;
+ }
+
+ dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "read", ds1305->ctrl);
+
+ /* Sanity check register values ... partially compensating for the
+ * fact that SPI has no device handshake. A pullup on MISO would
+ * make these tests fail; but not all systems will have one. If
+ * some register is neither 0x00 nor 0xff, a chip is likely there.
+ */
+ if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
+ dev_dbg(&spi->dev, "RTC chip is not present\n");
+ return -ENODEV;
+ }
+ if (ds1305->ctrl[2] == 0)
+ dev_dbg(&spi->dev, "chip may not be present\n");
+
+ /* enable writes if needed ... if we were paranoid it would
+ * make sense to enable them only when absolutely necessary.
+ */
+ if (ds1305->ctrl[0] & DS1305_WP) {
+ u8 buf[2];
+
+ ds1305->ctrl[0] &= ~DS1305_WP;
+
+ buf[0] = DS1305_WRITE | DS1305_CONTROL;
+ buf[1] = ds1305->ctrl[0];
+ status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
+
+ dev_dbg(&spi->dev, "clear WP --> %d\n", status);
+ if (status < 0)
+ return status;
+ }
+
+ /* on DS1305, maybe start oscillator; like most low power
+ * oscillators, it may take a second to stabilize
+ */
+ if (ds1305->ctrl[0] & DS1305_nEOSC) {
+ ds1305->ctrl[0] &= ~DS1305_nEOSC;
+ write_ctrl = true;
+ dev_warn(&spi->dev, "SET TIME!\n");
+ }
+
+ /* ack any pending IRQs */
+ if (ds1305->ctrl[1]) {
+ ds1305->ctrl[1] = 0;
+ write_ctrl = true;
+ }
+
+ /* this may need one-time (re)init */
+ if (pdata) {
+ /* maybe enable trickle charge */
+ if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
+ ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
+ | pdata->trickle;
+ write_ctrl = true;
+ }
+
+ /* on DS1306, configure 1 Hz signal */
+ if (pdata->is_ds1306) {
+ if (pdata->en_1hz) {
+ if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
+ ds1305->ctrl[0] |= DS1306_1HZ;
+ write_ctrl = true;
+ }
+ } else {
+ if (ds1305->ctrl[0] & DS1306_1HZ) {
+ ds1305->ctrl[0] &= ~DS1306_1HZ;
+ write_ctrl = true;
+ }
+ }
+ }
+ }
+
+ if (write_ctrl) {
+ u8 buf[4];
+
+ buf[0] = DS1305_WRITE | DS1305_CONTROL;
+ buf[1] = ds1305->ctrl[0];
+ buf[2] = ds1305->ctrl[1];
+ buf[3] = ds1305->ctrl[2];
+ status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
+ if (status < 0) {
+ dev_dbg(&spi->dev, "can't %s, %d\n",
+ "write", status);
+ return status;
+ }
+
+ dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "write", ds1305->ctrl);
+ }
+
+ /* see if non-Linux software set up AM/PM mode */
+ addr = DS1305_HOUR;
+ status = spi_write_then_read(spi, &addr, sizeof(addr),
+ &value, sizeof(value));
+ if (status < 0) {
+ dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
+ return status;
+ }
+
+ ds1305->hr12 = (DS1305_HR_12 & value) != 0;
+ if (ds1305->hr12)
+ dev_dbg(&spi->dev, "AM/PM\n");
+
+ /* register RTC ... from here on, ds1305->ctrl needs locking */
+ ds1305->rtc = devm_rtc_allocate_device(&spi->dev);
+ if (IS_ERR(ds1305->rtc))
+ return PTR_ERR(ds1305->rtc);
+
+ ds1305->rtc->ops = &ds1305_ops;
+ ds1305->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ ds1305->rtc->range_max = RTC_TIMESTAMP_END_2099;
+
+ ds1305_nvmem_cfg.priv = ds1305;
+ ds1305->rtc->nvram_old_abi = true;
+ status = rtc_register_device(ds1305->rtc);
+ if (status)
+ return status;
+
+ rtc_nvmem_register(ds1305->rtc, &ds1305_nvmem_cfg);
+
+ /* Maybe set up alarm IRQ; be ready to handle it triggering right
+ * away. NOTE that we don't share this. The signal is active low,
+ * and we can't ack it before a SPI message delay. We temporarily
+ * disable the IRQ until it's acked, which lets us work with more
+ * IRQ trigger modes (not all IRQ controllers can do falling edge).
+ */
+ if (spi->irq) {
+ INIT_WORK(&ds1305->work, ds1305_work);
+ status = devm_request_irq(&spi->dev, spi->irq, ds1305_irq,
+ 0, dev_name(&ds1305->rtc->dev), ds1305);
+ if (status < 0) {
+ dev_err(&spi->dev, "request_irq %d --> %d\n",
+ spi->irq, status);
+ } else {
+ device_set_wakeup_capable(&spi->dev, 1);
+ }
+ }
+
+ return 0;
+}
+
+static int ds1305_remove(struct spi_device *spi)
+{
+ struct ds1305 *ds1305 = spi_get_drvdata(spi);
+
+ /* carefully shut down irq and workqueue, if present */
+ if (spi->irq) {
+ set_bit(FLAG_EXITING, &ds1305->flags);
+ devm_free_irq(&spi->dev, spi->irq, ds1305);
+ cancel_work_sync(&ds1305->work);
+ }
+
+ return 0;
+}
+
+static struct spi_driver ds1305_driver = {
+ .driver.name = "rtc-ds1305",
+ .probe = ds1305_probe,
+ .remove = ds1305_remove,
+ /* REVISIT add suspend/resume */
+};
+
+module_spi_driver(ds1305_driver);
+
+MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("spi:rtc-ds1305");
diff --git a/drivers/rtc/rtc-ds1307.c b/drivers/rtc/rtc-ds1307.c
new file mode 100644
index 000000000..07a9cc916
--- /dev/null
+++ b/drivers/rtc/rtc-ds1307.c
@@ -0,0 +1,2085 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * rtc-ds1307.c - RTC driver for some mostly-compatible I2C chips.
+ *
+ * Copyright (C) 2005 James Chapman (ds1337 core)
+ * Copyright (C) 2006 David Brownell
+ * Copyright (C) 2009 Matthias Fuchs (rx8025 support)
+ * Copyright (C) 2012 Bertrand Achard (nvram access fixes)
+ */
+
+#include <linux/acpi.h>
+#include <linux/bcd.h>
+#include <linux/i2c.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/of_device.h>
+#include <linux/rtc/ds1307.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/hwmon.h>
+#include <linux/hwmon-sysfs.h>
+#include <linux/clk-provider.h>
+#include <linux/regmap.h>
+#include <linux/watchdog.h>
+
+/*
+ * We can't determine type by probing, but if we expect pre-Linux code
+ * to have set the chip up as a clock (turning on the oscillator and
+ * setting the date and time), Linux can ignore the non-clock features.
+ * That's a natural job for a factory or repair bench.
+ */
+enum ds_type {
+ ds_1307,
+ ds_1308,
+ ds_1337,
+ ds_1338,
+ ds_1339,
+ ds_1340,
+ ds_1341,
+ ds_1388,
+ ds_3231,
+ m41t0,
+ m41t00,
+ m41t11,
+ mcp794xx,
+ rx_8025,
+ rx_8130,
+ last_ds_type /* always last */
+ /* rs5c372 too? different address... */
+};
+
+/* RTC registers don't differ much, except for the century flag */
+#define DS1307_REG_SECS 0x00 /* 00-59 */
+# define DS1307_BIT_CH 0x80
+# define DS1340_BIT_nEOSC 0x80
+# define MCP794XX_BIT_ST 0x80
+#define DS1307_REG_MIN 0x01 /* 00-59 */
+# define M41T0_BIT_OF 0x80
+#define DS1307_REG_HOUR 0x02 /* 00-23, or 1-12{am,pm} */
+# define DS1307_BIT_12HR 0x40 /* in REG_HOUR */
+# define DS1307_BIT_PM 0x20 /* in REG_HOUR */
+# define DS1340_BIT_CENTURY_EN 0x80 /* in REG_HOUR */
+# define DS1340_BIT_CENTURY 0x40 /* in REG_HOUR */
+#define DS1307_REG_WDAY 0x03 /* 01-07 */
+# define MCP794XX_BIT_VBATEN 0x08
+#define DS1307_REG_MDAY 0x04 /* 01-31 */
+#define DS1307_REG_MONTH 0x05 /* 01-12 */
+# define DS1337_BIT_CENTURY 0x80 /* in REG_MONTH */
+#define DS1307_REG_YEAR 0x06 /* 00-99 */
+
+/*
+ * Other registers (control, status, alarms, trickle charge, NVRAM, etc)
+ * start at 7, and they differ a LOT. Only control and status matter for
+ * basic RTC date and time functionality; be careful using them.
+ */
+#define DS1307_REG_CONTROL 0x07 /* or ds1338 */
+# define DS1307_BIT_OUT 0x80
+# define DS1338_BIT_OSF 0x20
+# define DS1307_BIT_SQWE 0x10
+# define DS1307_BIT_RS1 0x02
+# define DS1307_BIT_RS0 0x01
+#define DS1337_REG_CONTROL 0x0e
+# define DS1337_BIT_nEOSC 0x80
+# define DS1339_BIT_BBSQI 0x20
+# define DS3231_BIT_BBSQW 0x40 /* same as BBSQI */
+# define DS1337_BIT_RS2 0x10
+# define DS1337_BIT_RS1 0x08
+# define DS1337_BIT_INTCN 0x04
+# define DS1337_BIT_A2IE 0x02
+# define DS1337_BIT_A1IE 0x01
+#define DS1340_REG_CONTROL 0x07
+# define DS1340_BIT_OUT 0x80
+# define DS1340_BIT_FT 0x40
+# define DS1340_BIT_CALIB_SIGN 0x20
+# define DS1340_M_CALIBRATION 0x1f
+#define DS1340_REG_FLAG 0x09
+# define DS1340_BIT_OSF 0x80
+#define DS1337_REG_STATUS 0x0f
+# define DS1337_BIT_OSF 0x80
+# define DS3231_BIT_EN32KHZ 0x08
+# define DS1337_BIT_A2I 0x02
+# define DS1337_BIT_A1I 0x01
+#define DS1339_REG_ALARM1_SECS 0x07
+
+#define DS13XX_TRICKLE_CHARGER_MAGIC 0xa0
+
+#define RX8025_REG_CTRL1 0x0e
+# define RX8025_BIT_2412 0x20
+#define RX8025_REG_CTRL2 0x0f
+# define RX8025_BIT_PON 0x10
+# define RX8025_BIT_VDET 0x40
+# define RX8025_BIT_XST 0x20
+
+#define RX8130_REG_ALARM_MIN 0x17
+#define RX8130_REG_ALARM_HOUR 0x18
+#define RX8130_REG_ALARM_WEEK_OR_DAY 0x19
+#define RX8130_REG_EXTENSION 0x1c
+#define RX8130_REG_EXTENSION_WADA BIT(3)
+#define RX8130_REG_FLAG 0x1d
+#define RX8130_REG_FLAG_VLF BIT(1)
+#define RX8130_REG_FLAG_AF BIT(3)
+#define RX8130_REG_CONTROL0 0x1e
+#define RX8130_REG_CONTROL0_AIE BIT(3)
+#define RX8130_REG_CONTROL1 0x1f
+#define RX8130_REG_CONTROL1_INIEN BIT(4)
+#define RX8130_REG_CONTROL1_CHGEN BIT(5)
+
+#define MCP794XX_REG_CONTROL 0x07
+# define MCP794XX_BIT_ALM0_EN 0x10
+# define MCP794XX_BIT_ALM1_EN 0x20
+#define MCP794XX_REG_ALARM0_BASE 0x0a
+#define MCP794XX_REG_ALARM0_CTRL 0x0d
+#define MCP794XX_REG_ALARM1_BASE 0x11
+#define MCP794XX_REG_ALARM1_CTRL 0x14
+# define MCP794XX_BIT_ALMX_IF BIT(3)
+# define MCP794XX_BIT_ALMX_C0 BIT(4)
+# define MCP794XX_BIT_ALMX_C1 BIT(5)
+# define MCP794XX_BIT_ALMX_C2 BIT(6)
+# define MCP794XX_BIT_ALMX_POL BIT(7)
+# define MCP794XX_MSK_ALMX_MATCH (MCP794XX_BIT_ALMX_C0 | \
+ MCP794XX_BIT_ALMX_C1 | \
+ MCP794XX_BIT_ALMX_C2)
+
+#define M41TXX_REG_CONTROL 0x07
+# define M41TXX_BIT_OUT BIT(7)
+# define M41TXX_BIT_FT BIT(6)
+# define M41TXX_BIT_CALIB_SIGN BIT(5)
+# define M41TXX_M_CALIBRATION GENMASK(4, 0)
+
+#define DS1388_REG_WDOG_HUN_SECS 0x08
+#define DS1388_REG_WDOG_SECS 0x09
+#define DS1388_REG_FLAG 0x0b
+# define DS1388_BIT_WF BIT(6)
+# define DS1388_BIT_OSF BIT(7)
+#define DS1388_REG_CONTROL 0x0c
+# define DS1388_BIT_RST BIT(0)
+# define DS1388_BIT_WDE BIT(1)
+# define DS1388_BIT_nEOSC BIT(7)
+
+/* negative offset step is -2.034ppm */
+#define M41TXX_NEG_OFFSET_STEP_PPB 2034
+/* positive offset step is +4.068ppm */
+#define M41TXX_POS_OFFSET_STEP_PPB 4068
+/* Min and max values supported with 'offset' interface by M41TXX */
+#define M41TXX_MIN_OFFSET ((-31) * M41TXX_NEG_OFFSET_STEP_PPB)
+#define M41TXX_MAX_OFFSET ((31) * M41TXX_POS_OFFSET_STEP_PPB)
+
+struct ds1307 {
+ enum ds_type type;
+ unsigned long flags;
+#define HAS_NVRAM 0 /* bit 0 == sysfs file active */
+#define HAS_ALARM 1 /* bit 1 == irq claimed */
+ struct device *dev;
+ struct regmap *regmap;
+ const char *name;
+ struct rtc_device *rtc;
+#ifdef CONFIG_COMMON_CLK
+ struct clk_hw clks[2];
+#endif
+};
+
+struct chip_desc {
+ unsigned alarm:1;
+ u16 nvram_offset;
+ u16 nvram_size;
+ u8 offset; /* register's offset */
+ u8 century_reg;
+ u8 century_enable_bit;
+ u8 century_bit;
+ u8 bbsqi_bit;
+ irq_handler_t irq_handler;
+ const struct rtc_class_ops *rtc_ops;
+ u16 trickle_charger_reg;
+ u8 (*do_trickle_setup)(struct ds1307 *, u32,
+ bool);
+ /* Does the RTC require trickle-resistor-ohms to select the value of
+ * the resistor between Vcc and Vbackup?
+ */
+ bool requires_trickle_resistor;
+ /* Some RTC's batteries and supercaps were charged by default, others
+ * allow charging but were not configured previously to do so.
+ * Remember this behavior to stay backwards compatible.
+ */
+ bool charge_default;
+};
+
+static const struct chip_desc chips[last_ds_type];
+
+static int ds1307_get_time(struct device *dev, struct rtc_time *t)
+{
+ struct ds1307 *ds1307 = dev_get_drvdata(dev);
+ int tmp, ret;
+ const struct chip_desc *chip = &chips[ds1307->type];
+ u8 regs[7];
+
+ if (ds1307->type == rx_8130) {
+ unsigned int regflag;
+ ret = regmap_read(ds1307->regmap, RX8130_REG_FLAG, &regflag);
+ if (ret) {
+ dev_err(dev, "%s error %d\n", "read", ret);
+ return ret;
+ }
+
+ if (regflag & RX8130_REG_FLAG_VLF) {
+ dev_warn_once(dev, "oscillator failed, set time!\n");
+ return -EINVAL;
+ }
+ }
+
+ /* read the RTC date and time registers all at once */
+ ret = regmap_bulk_read(ds1307->regmap, chip->offset, regs,
+ sizeof(regs));
+ if (ret) {
+ dev_err(dev, "%s error %d\n", "read", ret);
+ return ret;
+ }
+
+ dev_dbg(dev, "%s: %7ph\n", "read", regs);
+
+ /* if oscillator fail bit is set, no data can be trusted */
+ if (ds1307->type == m41t0 &&
+ regs[DS1307_REG_MIN] & M41T0_BIT_OF) {
+ dev_warn_once(dev, "oscillator failed, set time!\n");
+ return -EINVAL;
+ }
+
+ tmp = regs[DS1307_REG_SECS];
+ switch (ds1307->type) {
+ case ds_1307:
+ case m41t0:
+ case m41t00:
+ case m41t11:
+ if (tmp & DS1307_BIT_CH)
+ return -EINVAL;
+ break;
+ case ds_1308:
+ case ds_1338:
+ if (tmp & DS1307_BIT_CH)
+ return -EINVAL;
+
+ ret = regmap_read(ds1307->regmap, DS1307_REG_CONTROL, &tmp);
+ if (ret)
+ return ret;
+ if (tmp & DS1338_BIT_OSF)
+ return -EINVAL;
+ break;
+ case ds_1340:
+ if (tmp & DS1340_BIT_nEOSC)
+ return -EINVAL;
+
+ ret = regmap_read(ds1307->regmap, DS1340_REG_FLAG, &tmp);
+ if (ret)
+ return ret;
+ if (tmp & DS1340_BIT_OSF)
+ return -EINVAL;
+ break;
+ case ds_1388:
+ ret = regmap_read(ds1307->regmap, DS1388_REG_FLAG, &tmp);
+ if (ret)
+ return ret;
+ if (tmp & DS1388_BIT_OSF)
+ return -EINVAL;
+ break;
+ case mcp794xx:
+ if (!(tmp & MCP794XX_BIT_ST))
+ return -EINVAL;
+
+ break;
+ default:
+ break;
+ }
+
+ t->tm_sec = bcd2bin(regs[DS1307_REG_SECS] & 0x7f);
+ t->tm_min = bcd2bin(regs[DS1307_REG_MIN] & 0x7f);
+ tmp = regs[DS1307_REG_HOUR] & 0x3f;
+ t->tm_hour = bcd2bin(tmp);
+ /* rx8130 is bit position, not BCD */
+ if (ds1307->type == rx_8130)
+ t->tm_wday = fls(regs[DS1307_REG_WDAY] & 0x7f);
+ else
+ t->tm_wday = bcd2bin(regs[DS1307_REG_WDAY] & 0x07) - 1;
+ t->tm_mday = bcd2bin(regs[DS1307_REG_MDAY] & 0x3f);
+ tmp = regs[DS1307_REG_MONTH] & 0x1f;
+ t->tm_mon = bcd2bin(tmp) - 1;
+ t->tm_year = bcd2bin(regs[DS1307_REG_YEAR]) + 100;
+
+ if (regs[chip->century_reg] & chip->century_bit &&
+ IS_ENABLED(CONFIG_RTC_DRV_DS1307_CENTURY))
+ t->tm_year += 100;
+
+ dev_dbg(dev, "%s secs=%d, mins=%d, "
+ "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
+ "read", t->tm_sec, t->tm_min,
+ t->tm_hour, t->tm_mday,
+ t->tm_mon, t->tm_year, t->tm_wday);
+
+ return 0;
+}
+
+static int ds1307_set_time(struct device *dev, struct rtc_time *t)
+{
+ struct ds1307 *ds1307 = dev_get_drvdata(dev);
+ const struct chip_desc *chip = &chips[ds1307->type];
+ int result;
+ int tmp;
+ u8 regs[7];
+
+ dev_dbg(dev, "%s secs=%d, mins=%d, "
+ "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
+ "write", t->tm_sec, t->tm_min,
+ t->tm_hour, t->tm_mday,
+ t->tm_mon, t->tm_year, t->tm_wday);
+
+ if (t->tm_year < 100)
+ return -EINVAL;
+
+#ifdef CONFIG_RTC_DRV_DS1307_CENTURY
+ if (t->tm_year > (chip->century_bit ? 299 : 199))
+ return -EINVAL;
+#else
+ if (t->tm_year > 199)
+ return -EINVAL;
+#endif
+
+ regs[DS1307_REG_SECS] = bin2bcd(t->tm_sec);
+ regs[DS1307_REG_MIN] = bin2bcd(t->tm_min);
+ regs[DS1307_REG_HOUR] = bin2bcd(t->tm_hour);
+ /* rx8130 is bit position, not BCD */
+ if (ds1307->type == rx_8130)
+ regs[DS1307_REG_WDAY] = 1 << t->tm_wday;
+ else
+ regs[DS1307_REG_WDAY] = bin2bcd(t->tm_wday + 1);
+ regs[DS1307_REG_MDAY] = bin2bcd(t->tm_mday);
+ regs[DS1307_REG_MONTH] = bin2bcd(t->tm_mon + 1);
+
+ /* assume 20YY not 19YY */
+ tmp = t->tm_year - 100;
+ regs[DS1307_REG_YEAR] = bin2bcd(tmp);
+
+ if (chip->century_enable_bit)
+ regs[chip->century_reg] |= chip->century_enable_bit;
+ if (t->tm_year > 199 && chip->century_bit)
+ regs[chip->century_reg] |= chip->century_bit;
+
+ switch (ds1307->type) {
+ case ds_1308:
+ case ds_1338:
+ regmap_update_bits(ds1307->regmap, DS1307_REG_CONTROL,
+ DS1338_BIT_OSF, 0);
+ break;
+ case ds_1340:
+ regmap_update_bits(ds1307->regmap, DS1340_REG_FLAG,
+ DS1340_BIT_OSF, 0);
+ break;
+ case ds_1388:
+ regmap_update_bits(ds1307->regmap, DS1388_REG_FLAG,
+ DS1388_BIT_OSF, 0);
+ break;
+ case mcp794xx:
+ /*
+ * these bits were cleared when preparing the date/time
+ * values and need to be set again before writing the
+ * regsfer out to the device.
+ */
+ regs[DS1307_REG_SECS] |= MCP794XX_BIT_ST;
+ regs[DS1307_REG_WDAY] |= MCP794XX_BIT_VBATEN;
+ break;
+ default:
+ break;
+ }
+
+ dev_dbg(dev, "%s: %7ph\n", "write", regs);
+
+ result = regmap_bulk_write(ds1307->regmap, chip->offset, regs,
+ sizeof(regs));
+ if (result) {
+ dev_err(dev, "%s error %d\n", "write", result);
+ return result;
+ }
+
+ if (ds1307->type == rx_8130) {
+ /* clear Voltage Loss Flag as data is available now */
+ result = regmap_write(ds1307->regmap, RX8130_REG_FLAG,
+ ~(u8)RX8130_REG_FLAG_VLF);
+ if (result) {
+ dev_err(dev, "%s error %d\n", "write", result);
+ return result;
+ }
+ }
+
+ return 0;
+}
+
+static int ds1337_read_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct ds1307 *ds1307 = dev_get_drvdata(dev);
+ int ret;
+ u8 regs[9];
+
+ if (!test_bit(HAS_ALARM, &ds1307->flags))
+ return -EINVAL;
+
+ /* read all ALARM1, ALARM2, and status registers at once */
+ ret = regmap_bulk_read(ds1307->regmap, DS1339_REG_ALARM1_SECS,
+ regs, sizeof(regs));
+ if (ret) {
+ dev_err(dev, "%s error %d\n", "alarm read", ret);
+ return ret;
+ }
+
+ dev_dbg(dev, "%s: %4ph, %3ph, %2ph\n", "alarm read",
+ &regs[0], &regs[4], &regs[7]);
+
+ /*
+ * report alarm time (ALARM1); assume 24 hour and day-of-month modes,
+ * and that all four fields are checked matches
+ */
+ t->time.tm_sec = bcd2bin(regs[0] & 0x7f);
+ t->time.tm_min = bcd2bin(regs[1] & 0x7f);
+ t->time.tm_hour = bcd2bin(regs[2] & 0x3f);
+ t->time.tm_mday = bcd2bin(regs[3] & 0x3f);
+
+ /* ... and status */
+ t->enabled = !!(regs[7] & DS1337_BIT_A1IE);
+ t->pending = !!(regs[8] & DS1337_BIT_A1I);
+
+ dev_dbg(dev, "%s secs=%d, mins=%d, "
+ "hours=%d, mday=%d, enabled=%d, pending=%d\n",
+ "alarm read", t->time.tm_sec, t->time.tm_min,
+ t->time.tm_hour, t->time.tm_mday,
+ t->enabled, t->pending);
+
+ return 0;
+}
+
+static int ds1337_set_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct ds1307 *ds1307 = dev_get_drvdata(dev);
+ unsigned char regs[9];
+ u8 control, status;
+ int ret;
+
+ if (!test_bit(HAS_ALARM, &ds1307->flags))
+ return -EINVAL;
+
+ dev_dbg(dev, "%s secs=%d, mins=%d, "
+ "hours=%d, mday=%d, enabled=%d, pending=%d\n",
+ "alarm set", t->time.tm_sec, t->time.tm_min,
+ t->time.tm_hour, t->time.tm_mday,
+ t->enabled, t->pending);
+
+ /* read current status of both alarms and the chip */
+ ret = regmap_bulk_read(ds1307->regmap, DS1339_REG_ALARM1_SECS, regs,
+ sizeof(regs));
+ if (ret) {
+ dev_err(dev, "%s error %d\n", "alarm write", ret);
+ return ret;
+ }
+ control = regs[7];
+ status = regs[8];
+
+ dev_dbg(dev, "%s: %4ph, %3ph, %02x %02x\n", "alarm set (old status)",
+ &regs[0], &regs[4], control, status);
+
+ /* set ALARM1, using 24 hour and day-of-month modes */
+ regs[0] = bin2bcd(t->time.tm_sec);
+ regs[1] = bin2bcd(t->time.tm_min);
+ regs[2] = bin2bcd(t->time.tm_hour);
+ regs[3] = bin2bcd(t->time.tm_mday);
+
+ /* set ALARM2 to non-garbage */
+ regs[4] = 0;
+ regs[5] = 0;
+ regs[6] = 0;
+
+ /* disable alarms */
+ regs[7] = control & ~(DS1337_BIT_A1IE | DS1337_BIT_A2IE);
+ regs[8] = status & ~(DS1337_BIT_A1I | DS1337_BIT_A2I);
+
+ ret = regmap_bulk_write(ds1307->regmap, DS1339_REG_ALARM1_SECS, regs,
+ sizeof(regs));
+ if (ret) {
+ dev_err(dev, "can't set alarm time\n");
+ return ret;
+ }
+
+ /* optionally enable ALARM1 */
+ if (t->enabled) {
+ dev_dbg(dev, "alarm IRQ armed\n");
+ regs[7] |= DS1337_BIT_A1IE; /* only ALARM1 is used */
+ regmap_write(ds1307->regmap, DS1337_REG_CONTROL, regs[7]);
+ }
+
+ return 0;
+}
+
+static int ds1307_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct ds1307 *ds1307 = dev_get_drvdata(dev);
+
+ if (!test_bit(HAS_ALARM, &ds1307->flags))
+ return -ENOTTY;
+
+ return regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
+ DS1337_BIT_A1IE,
+ enabled ? DS1337_BIT_A1IE : 0);
+}
+
+static u8 do_trickle_setup_ds1339(struct ds1307 *ds1307, u32 ohms, bool diode)
+{
+ u8 setup = (diode) ? DS1307_TRICKLE_CHARGER_DIODE :
+ DS1307_TRICKLE_CHARGER_NO_DIODE;
+
+ setup |= DS13XX_TRICKLE_CHARGER_MAGIC;
+
+ switch (ohms) {
+ case 250:
+ setup |= DS1307_TRICKLE_CHARGER_250_OHM;
+ break;
+ case 2000:
+ setup |= DS1307_TRICKLE_CHARGER_2K_OHM;
+ break;
+ case 4000:
+ setup |= DS1307_TRICKLE_CHARGER_4K_OHM;
+ break;
+ default:
+ dev_warn(ds1307->dev,
+ "Unsupported ohm value %u in dt\n", ohms);
+ return 0;
+ }
+ return setup;
+}
+
+static u8 do_trickle_setup_rx8130(struct ds1307 *ds1307, u32 ohms, bool diode)
+{
+ /* make sure that the backup battery is enabled */
+ u8 setup = RX8130_REG_CONTROL1_INIEN;
+ if (diode)
+ setup |= RX8130_REG_CONTROL1_CHGEN;
+
+ return setup;
+}
+
+static irqreturn_t rx8130_irq(int irq, void *dev_id)
+{
+ struct ds1307 *ds1307 = dev_id;
+ struct mutex *lock = &ds1307->rtc->ops_lock;
+ u8 ctl[3];
+ int ret;
+
+ mutex_lock(lock);
+
+ /* Read control registers. */
+ ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
+ sizeof(ctl));
+ if (ret < 0)
+ goto out;
+ if (!(ctl[1] & RX8130_REG_FLAG_AF))
+ goto out;
+ ctl[1] &= ~RX8130_REG_FLAG_AF;
+ ctl[2] &= ~RX8130_REG_CONTROL0_AIE;
+
+ ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
+ sizeof(ctl));
+ if (ret < 0)
+ goto out;
+
+ rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
+
+out:
+ mutex_unlock(lock);
+
+ return IRQ_HANDLED;
+}
+
+static int rx8130_read_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct ds1307 *ds1307 = dev_get_drvdata(dev);
+ u8 ald[3], ctl[3];
+ int ret;
+
+ if (!test_bit(HAS_ALARM, &ds1307->flags))
+ return -EINVAL;
+
+ /* Read alarm registers. */
+ ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_ALARM_MIN, ald,
+ sizeof(ald));
+ if (ret < 0)
+ return ret;
+
+ /* Read control registers. */
+ ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
+ sizeof(ctl));
+ if (ret < 0)
+ return ret;
+
+ t->enabled = !!(ctl[2] & RX8130_REG_CONTROL0_AIE);
+ t->pending = !!(ctl[1] & RX8130_REG_FLAG_AF);
+
+ /* Report alarm 0 time assuming 24-hour and day-of-month modes. */
+ t->time.tm_sec = -1;
+ t->time.tm_min = bcd2bin(ald[0] & 0x7f);
+ t->time.tm_hour = bcd2bin(ald[1] & 0x7f);
+ t->time.tm_wday = -1;
+ t->time.tm_mday = bcd2bin(ald[2] & 0x7f);
+ t->time.tm_mon = -1;
+ t->time.tm_year = -1;
+ t->time.tm_yday = -1;
+ t->time.tm_isdst = -1;
+
+ dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d enabled=%d\n",
+ __func__, t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
+ t->time.tm_wday, t->time.tm_mday, t->time.tm_mon, t->enabled);
+
+ return 0;
+}
+
+static int rx8130_set_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct ds1307 *ds1307 = dev_get_drvdata(dev);
+ u8 ald[3], ctl[3];
+ int ret;
+
+ if (!test_bit(HAS_ALARM, &ds1307->flags))
+ return -EINVAL;
+
+ dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
+ "enabled=%d pending=%d\n", __func__,
+ t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
+ t->time.tm_wday, t->time.tm_mday, t->time.tm_mon,
+ t->enabled, t->pending);
+
+ /* Read control registers. */
+ ret = regmap_bulk_read(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
+ sizeof(ctl));
+ if (ret < 0)
+ return ret;
+
+ ctl[0] &= RX8130_REG_EXTENSION_WADA;
+ ctl[1] &= ~RX8130_REG_FLAG_AF;
+ ctl[2] &= ~RX8130_REG_CONTROL0_AIE;
+
+ ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_EXTENSION, ctl,
+ sizeof(ctl));
+ if (ret < 0)
+ return ret;
+
+ /* Hardware alarm precision is 1 minute! */
+ ald[0] = bin2bcd(t->time.tm_min);
+ ald[1] = bin2bcd(t->time.tm_hour);
+ ald[2] = bin2bcd(t->time.tm_mday);
+
+ ret = regmap_bulk_write(ds1307->regmap, RX8130_REG_ALARM_MIN, ald,
+ sizeof(ald));
+ if (ret < 0)
+ return ret;
+
+ if (!t->enabled)
+ return 0;
+
+ ctl[2] |= RX8130_REG_CONTROL0_AIE;
+
+ return regmap_write(ds1307->regmap, RX8130_REG_CONTROL0, ctl[2]);
+}
+
+static int rx8130_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct ds1307 *ds1307 = dev_get_drvdata(dev);
+ int ret, reg;
+
+ if (!test_bit(HAS_ALARM, &ds1307->flags))
+ return -EINVAL;
+
+ ret = regmap_read(ds1307->regmap, RX8130_REG_CONTROL0, &reg);
+ if (ret < 0)
+ return ret;
+
+ if (enabled)
+ reg |= RX8130_REG_CONTROL0_AIE;
+ else
+ reg &= ~RX8130_REG_CONTROL0_AIE;
+
+ return regmap_write(ds1307->regmap, RX8130_REG_CONTROL0, reg);
+}
+
+static irqreturn_t mcp794xx_irq(int irq, void *dev_id)
+{
+ struct ds1307 *ds1307 = dev_id;
+ struct mutex *lock = &ds1307->rtc->ops_lock;
+ int reg, ret;
+
+ mutex_lock(lock);
+
+ /* Check and clear alarm 0 interrupt flag. */
+ ret = regmap_read(ds1307->regmap, MCP794XX_REG_ALARM0_CTRL, &reg);
+ if (ret)
+ goto out;
+ if (!(reg & MCP794XX_BIT_ALMX_IF))
+ goto out;
+ reg &= ~MCP794XX_BIT_ALMX_IF;
+ ret = regmap_write(ds1307->regmap, MCP794XX_REG_ALARM0_CTRL, reg);
+ if (ret)
+ goto out;
+
+ /* Disable alarm 0. */
+ ret = regmap_update_bits(ds1307->regmap, MCP794XX_REG_CONTROL,
+ MCP794XX_BIT_ALM0_EN, 0);
+ if (ret)
+ goto out;
+
+ rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
+
+out:
+ mutex_unlock(lock);
+
+ return IRQ_HANDLED;
+}
+
+static int mcp794xx_read_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct ds1307 *ds1307 = dev_get_drvdata(dev);
+ u8 regs[10];
+ int ret;
+
+ if (!test_bit(HAS_ALARM, &ds1307->flags))
+ return -EINVAL;
+
+ /* Read control and alarm 0 registers. */
+ ret = regmap_bulk_read(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
+ sizeof(regs));
+ if (ret)
+ return ret;
+
+ t->enabled = !!(regs[0] & MCP794XX_BIT_ALM0_EN);
+
+ /* Report alarm 0 time assuming 24-hour and day-of-month modes. */
+ t->time.tm_sec = bcd2bin(regs[3] & 0x7f);
+ t->time.tm_min = bcd2bin(regs[4] & 0x7f);
+ t->time.tm_hour = bcd2bin(regs[5] & 0x3f);
+ t->time.tm_wday = bcd2bin(regs[6] & 0x7) - 1;
+ t->time.tm_mday = bcd2bin(regs[7] & 0x3f);
+ t->time.tm_mon = bcd2bin(regs[8] & 0x1f) - 1;
+ t->time.tm_year = -1;
+ t->time.tm_yday = -1;
+ t->time.tm_isdst = -1;
+
+ dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
+ "enabled=%d polarity=%d irq=%d match=%lu\n", __func__,
+ t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
+ t->time.tm_wday, t->time.tm_mday, t->time.tm_mon, t->enabled,
+ !!(regs[6] & MCP794XX_BIT_ALMX_POL),
+ !!(regs[6] & MCP794XX_BIT_ALMX_IF),
+ (regs[6] & MCP794XX_MSK_ALMX_MATCH) >> 4);
+
+ return 0;
+}
+
+/*
+ * We may have a random RTC weekday, therefore calculate alarm weekday based
+ * on current weekday we read from the RTC timekeeping regs
+ */
+static int mcp794xx_alm_weekday(struct device *dev, struct rtc_time *tm_alarm)
+{
+ struct rtc_time tm_now;
+ int days_now, days_alarm, ret;
+
+ ret = ds1307_get_time(dev, &tm_now);
+ if (ret)
+ return ret;
+
+ days_now = div_s64(rtc_tm_to_time64(&tm_now), 24 * 60 * 60);
+ days_alarm = div_s64(rtc_tm_to_time64(tm_alarm), 24 * 60 * 60);
+
+ return (tm_now.tm_wday + days_alarm - days_now) % 7 + 1;
+}
+
+static int mcp794xx_set_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct ds1307 *ds1307 = dev_get_drvdata(dev);
+ unsigned char regs[10];
+ int wday, ret;
+
+ if (!test_bit(HAS_ALARM, &ds1307->flags))
+ return -EINVAL;
+
+ wday = mcp794xx_alm_weekday(dev, &t->time);
+ if (wday < 0)
+ return wday;
+
+ dev_dbg(dev, "%s, sec=%d min=%d hour=%d wday=%d mday=%d mon=%d "
+ "enabled=%d pending=%d\n", __func__,
+ t->time.tm_sec, t->time.tm_min, t->time.tm_hour,
+ t->time.tm_wday, t->time.tm_mday, t->time.tm_mon,
+ t->enabled, t->pending);
+
+ /* Read control and alarm 0 registers. */
+ ret = regmap_bulk_read(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
+ sizeof(regs));
+ if (ret)
+ return ret;
+
+ /* Set alarm 0, using 24-hour and day-of-month modes. */
+ regs[3] = bin2bcd(t->time.tm_sec);
+ regs[4] = bin2bcd(t->time.tm_min);
+ regs[5] = bin2bcd(t->time.tm_hour);
+ regs[6] = wday;
+ regs[7] = bin2bcd(t->time.tm_mday);
+ regs[8] = bin2bcd(t->time.tm_mon + 1);
+
+ /* Clear the alarm 0 interrupt flag. */
+ regs[6] &= ~MCP794XX_BIT_ALMX_IF;
+ /* Set alarm match: second, minute, hour, day, date, month. */
+ regs[6] |= MCP794XX_MSK_ALMX_MATCH;
+ /* Disable interrupt. We will not enable until completely programmed */
+ regs[0] &= ~MCP794XX_BIT_ALM0_EN;
+
+ ret = regmap_bulk_write(ds1307->regmap, MCP794XX_REG_CONTROL, regs,
+ sizeof(regs));
+ if (ret)
+ return ret;
+
+ if (!t->enabled)
+ return 0;
+ regs[0] |= MCP794XX_BIT_ALM0_EN;
+ return regmap_write(ds1307->regmap, MCP794XX_REG_CONTROL, regs[0]);
+}
+
+static int mcp794xx_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct ds1307 *ds1307 = dev_get_drvdata(dev);
+
+ if (!test_bit(HAS_ALARM, &ds1307->flags))
+ return -EINVAL;
+
+ return regmap_update_bits(ds1307->regmap, MCP794XX_REG_CONTROL,
+ MCP794XX_BIT_ALM0_EN,
+ enabled ? MCP794XX_BIT_ALM0_EN : 0);
+}
+
+static int m41txx_rtc_read_offset(struct device *dev, long *offset)
+{
+ struct ds1307 *ds1307 = dev_get_drvdata(dev);
+ unsigned int ctrl_reg;
+ u8 val;
+
+ regmap_read(ds1307->regmap, M41TXX_REG_CONTROL, &ctrl_reg);
+
+ val = ctrl_reg & M41TXX_M_CALIBRATION;
+
+ /* check if positive */
+ if (ctrl_reg & M41TXX_BIT_CALIB_SIGN)
+ *offset = (val * M41TXX_POS_OFFSET_STEP_PPB);
+ else
+ *offset = -(val * M41TXX_NEG_OFFSET_STEP_PPB);
+
+ return 0;
+}
+
+static int m41txx_rtc_set_offset(struct device *dev, long offset)
+{
+ struct ds1307 *ds1307 = dev_get_drvdata(dev);
+ unsigned int ctrl_reg;
+
+ if ((offset < M41TXX_MIN_OFFSET) || (offset > M41TXX_MAX_OFFSET))
+ return -ERANGE;
+
+ if (offset >= 0) {
+ ctrl_reg = DIV_ROUND_CLOSEST(offset,
+ M41TXX_POS_OFFSET_STEP_PPB);
+ ctrl_reg |= M41TXX_BIT_CALIB_SIGN;
+ } else {
+ ctrl_reg = DIV_ROUND_CLOSEST(abs(offset),
+ M41TXX_NEG_OFFSET_STEP_PPB);
+ }
+
+ return regmap_update_bits(ds1307->regmap, M41TXX_REG_CONTROL,
+ M41TXX_M_CALIBRATION | M41TXX_BIT_CALIB_SIGN,
+ ctrl_reg);
+}
+
+#ifdef CONFIG_WATCHDOG_CORE
+static int ds1388_wdt_start(struct watchdog_device *wdt_dev)
+{
+ struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
+ u8 regs[2];
+ int ret;
+
+ ret = regmap_update_bits(ds1307->regmap, DS1388_REG_FLAG,
+ DS1388_BIT_WF, 0);
+ if (ret)
+ return ret;
+
+ ret = regmap_update_bits(ds1307->regmap, DS1388_REG_CONTROL,
+ DS1388_BIT_WDE | DS1388_BIT_RST, 0);
+ if (ret)
+ return ret;
+
+ /*
+ * watchdog timeouts are measured in seconds. So ignore hundredths of
+ * seconds field.
+ */
+ regs[0] = 0;
+ regs[1] = bin2bcd(wdt_dev->timeout);
+
+ ret = regmap_bulk_write(ds1307->regmap, DS1388_REG_WDOG_HUN_SECS, regs,
+ sizeof(regs));
+ if (ret)
+ return ret;
+
+ return regmap_update_bits(ds1307->regmap, DS1388_REG_CONTROL,
+ DS1388_BIT_WDE | DS1388_BIT_RST,
+ DS1388_BIT_WDE | DS1388_BIT_RST);
+}
+
+static int ds1388_wdt_stop(struct watchdog_device *wdt_dev)
+{
+ struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
+
+ return regmap_update_bits(ds1307->regmap, DS1388_REG_CONTROL,
+ DS1388_BIT_WDE | DS1388_BIT_RST, 0);
+}
+
+static int ds1388_wdt_ping(struct watchdog_device *wdt_dev)
+{
+ struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
+ u8 regs[2];
+
+ return regmap_bulk_read(ds1307->regmap, DS1388_REG_WDOG_HUN_SECS, regs,
+ sizeof(regs));
+}
+
+static int ds1388_wdt_set_timeout(struct watchdog_device *wdt_dev,
+ unsigned int val)
+{
+ struct ds1307 *ds1307 = watchdog_get_drvdata(wdt_dev);
+ u8 regs[2];
+
+ wdt_dev->timeout = val;
+ regs[0] = 0;
+ regs[1] = bin2bcd(wdt_dev->timeout);
+
+ return regmap_bulk_write(ds1307->regmap, DS1388_REG_WDOG_HUN_SECS, regs,
+ sizeof(regs));
+}
+#endif
+
+static const struct rtc_class_ops rx8130_rtc_ops = {
+ .read_time = ds1307_get_time,
+ .set_time = ds1307_set_time,
+ .read_alarm = rx8130_read_alarm,
+ .set_alarm = rx8130_set_alarm,
+ .alarm_irq_enable = rx8130_alarm_irq_enable,
+};
+
+static const struct rtc_class_ops mcp794xx_rtc_ops = {
+ .read_time = ds1307_get_time,
+ .set_time = ds1307_set_time,
+ .read_alarm = mcp794xx_read_alarm,
+ .set_alarm = mcp794xx_set_alarm,
+ .alarm_irq_enable = mcp794xx_alarm_irq_enable,
+};
+
+static const struct rtc_class_ops m41txx_rtc_ops = {
+ .read_time = ds1307_get_time,
+ .set_time = ds1307_set_time,
+ .read_alarm = ds1337_read_alarm,
+ .set_alarm = ds1337_set_alarm,
+ .alarm_irq_enable = ds1307_alarm_irq_enable,
+ .read_offset = m41txx_rtc_read_offset,
+ .set_offset = m41txx_rtc_set_offset,
+};
+
+static const struct chip_desc chips[last_ds_type] = {
+ [ds_1307] = {
+ .nvram_offset = 8,
+ .nvram_size = 56,
+ },
+ [ds_1308] = {
+ .nvram_offset = 8,
+ .nvram_size = 56,
+ },
+ [ds_1337] = {
+ .alarm = 1,
+ .century_reg = DS1307_REG_MONTH,
+ .century_bit = DS1337_BIT_CENTURY,
+ },
+ [ds_1338] = {
+ .nvram_offset = 8,
+ .nvram_size = 56,
+ },
+ [ds_1339] = {
+ .alarm = 1,
+ .century_reg = DS1307_REG_MONTH,
+ .century_bit = DS1337_BIT_CENTURY,
+ .bbsqi_bit = DS1339_BIT_BBSQI,
+ .trickle_charger_reg = 0x10,
+ .do_trickle_setup = &do_trickle_setup_ds1339,
+ .requires_trickle_resistor = true,
+ .charge_default = true,
+ },
+ [ds_1340] = {
+ .century_reg = DS1307_REG_HOUR,
+ .century_enable_bit = DS1340_BIT_CENTURY_EN,
+ .century_bit = DS1340_BIT_CENTURY,
+ .do_trickle_setup = &do_trickle_setup_ds1339,
+ .trickle_charger_reg = 0x08,
+ .requires_trickle_resistor = true,
+ .charge_default = true,
+ },
+ [ds_1341] = {
+ .century_reg = DS1307_REG_MONTH,
+ .century_bit = DS1337_BIT_CENTURY,
+ },
+ [ds_1388] = {
+ .offset = 1,
+ .trickle_charger_reg = 0x0a,
+ },
+ [ds_3231] = {
+ .alarm = 1,
+ .century_reg = DS1307_REG_MONTH,
+ .century_bit = DS1337_BIT_CENTURY,
+ .bbsqi_bit = DS3231_BIT_BBSQW,
+ },
+ [rx_8130] = {
+ .alarm = 1,
+ /* this is battery backed SRAM */
+ .nvram_offset = 0x20,
+ .nvram_size = 4, /* 32bit (4 word x 8 bit) */
+ .offset = 0x10,
+ .irq_handler = rx8130_irq,
+ .rtc_ops = &rx8130_rtc_ops,
+ .trickle_charger_reg = RX8130_REG_CONTROL1,
+ .do_trickle_setup = &do_trickle_setup_rx8130,
+ },
+ [m41t0] = {
+ .rtc_ops = &m41txx_rtc_ops,
+ },
+ [m41t00] = {
+ .rtc_ops = &m41txx_rtc_ops,
+ },
+ [m41t11] = {
+ /* this is battery backed SRAM */
+ .nvram_offset = 8,
+ .nvram_size = 56,
+ .rtc_ops = &m41txx_rtc_ops,
+ },
+ [mcp794xx] = {
+ .alarm = 1,
+ /* this is battery backed SRAM */
+ .nvram_offset = 0x20,
+ .nvram_size = 0x40,
+ .irq_handler = mcp794xx_irq,
+ .rtc_ops = &mcp794xx_rtc_ops,
+ },
+};
+
+static const struct i2c_device_id ds1307_id[] = {
+ { "ds1307", ds_1307 },
+ { "ds1308", ds_1308 },
+ { "ds1337", ds_1337 },
+ { "ds1338", ds_1338 },
+ { "ds1339", ds_1339 },
+ { "ds1388", ds_1388 },
+ { "ds1340", ds_1340 },
+ { "ds1341", ds_1341 },
+ { "ds3231", ds_3231 },
+ { "m41t0", m41t0 },
+ { "m41t00", m41t00 },
+ { "m41t11", m41t11 },
+ { "mcp7940x", mcp794xx },
+ { "mcp7941x", mcp794xx },
+ { "pt7c4338", ds_1307 },
+ { "rx8025", rx_8025 },
+ { "isl12057", ds_1337 },
+ { "rx8130", rx_8130 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, ds1307_id);
+
+#ifdef CONFIG_OF
+static const struct of_device_id ds1307_of_match[] = {
+ {
+ .compatible = "dallas,ds1307",
+ .data = (void *)ds_1307
+ },
+ {
+ .compatible = "dallas,ds1308",
+ .data = (void *)ds_1308
+ },
+ {
+ .compatible = "dallas,ds1337",
+ .data = (void *)ds_1337
+ },
+ {
+ .compatible = "dallas,ds1338",
+ .data = (void *)ds_1338
+ },
+ {
+ .compatible = "dallas,ds1339",
+ .data = (void *)ds_1339
+ },
+ {
+ .compatible = "dallas,ds1388",
+ .data = (void *)ds_1388
+ },
+ {
+ .compatible = "dallas,ds1340",
+ .data = (void *)ds_1340
+ },
+ {
+ .compatible = "dallas,ds1341",
+ .data = (void *)ds_1341
+ },
+ {
+ .compatible = "maxim,ds3231",
+ .data = (void *)ds_3231
+ },
+ {
+ .compatible = "st,m41t0",
+ .data = (void *)m41t0
+ },
+ {
+ .compatible = "st,m41t00",
+ .data = (void *)m41t00
+ },
+ {
+ .compatible = "st,m41t11",
+ .data = (void *)m41t11
+ },
+ {
+ .compatible = "microchip,mcp7940x",
+ .data = (void *)mcp794xx
+ },
+ {
+ .compatible = "microchip,mcp7941x",
+ .data = (void *)mcp794xx
+ },
+ {
+ .compatible = "pericom,pt7c4338",
+ .data = (void *)ds_1307
+ },
+ {
+ .compatible = "epson,rx8025",
+ .data = (void *)rx_8025
+ },
+ {
+ .compatible = "isil,isl12057",
+ .data = (void *)ds_1337
+ },
+ {
+ .compatible = "epson,rx8130",
+ .data = (void *)rx_8130
+ },
+ { }
+};
+MODULE_DEVICE_TABLE(of, ds1307_of_match);
+#endif
+
+#ifdef CONFIG_ACPI
+static const struct acpi_device_id ds1307_acpi_ids[] = {
+ { .id = "DS1307", .driver_data = ds_1307 },
+ { .id = "DS1308", .driver_data = ds_1308 },
+ { .id = "DS1337", .driver_data = ds_1337 },
+ { .id = "DS1338", .driver_data = ds_1338 },
+ { .id = "DS1339", .driver_data = ds_1339 },
+ { .id = "DS1388", .driver_data = ds_1388 },
+ { .id = "DS1340", .driver_data = ds_1340 },
+ { .id = "DS1341", .driver_data = ds_1341 },
+ { .id = "DS3231", .driver_data = ds_3231 },
+ { .id = "M41T0", .driver_data = m41t0 },
+ { .id = "M41T00", .driver_data = m41t00 },
+ { .id = "M41T11", .driver_data = m41t11 },
+ { .id = "MCP7940X", .driver_data = mcp794xx },
+ { .id = "MCP7941X", .driver_data = mcp794xx },
+ { .id = "PT7C4338", .driver_data = ds_1307 },
+ { .id = "RX8025", .driver_data = rx_8025 },
+ { .id = "ISL12057", .driver_data = ds_1337 },
+ { .id = "RX8130", .driver_data = rx_8130 },
+ { }
+};
+MODULE_DEVICE_TABLE(acpi, ds1307_acpi_ids);
+#endif
+
+/*
+ * The ds1337 and ds1339 both have two alarms, but we only use the first
+ * one (with a "seconds" field). For ds1337 we expect nINTA is our alarm
+ * signal; ds1339 chips have only one alarm signal.
+ */
+static irqreturn_t ds1307_irq(int irq, void *dev_id)
+{
+ struct ds1307 *ds1307 = dev_id;
+ struct mutex *lock = &ds1307->rtc->ops_lock;
+ int stat, ret;
+
+ mutex_lock(lock);
+ ret = regmap_read(ds1307->regmap, DS1337_REG_STATUS, &stat);
+ if (ret)
+ goto out;
+
+ if (stat & DS1337_BIT_A1I) {
+ stat &= ~DS1337_BIT_A1I;
+ regmap_write(ds1307->regmap, DS1337_REG_STATUS, stat);
+
+ ret = regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
+ DS1337_BIT_A1IE, 0);
+ if (ret)
+ goto out;
+
+ rtc_update_irq(ds1307->rtc, 1, RTC_AF | RTC_IRQF);
+ }
+
+out:
+ mutex_unlock(lock);
+
+ return IRQ_HANDLED;
+}
+
+/*----------------------------------------------------------------------*/
+
+static const struct rtc_class_ops ds13xx_rtc_ops = {
+ .read_time = ds1307_get_time,
+ .set_time = ds1307_set_time,
+ .read_alarm = ds1337_read_alarm,
+ .set_alarm = ds1337_set_alarm,
+ .alarm_irq_enable = ds1307_alarm_irq_enable,
+};
+
+static ssize_t frequency_test_store(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ struct ds1307 *ds1307 = dev_get_drvdata(dev->parent);
+ bool freq_test_en;
+ int ret;
+
+ ret = kstrtobool(buf, &freq_test_en);
+ if (ret) {
+ dev_err(dev, "Failed to store RTC Frequency Test attribute\n");
+ return ret;
+ }
+
+ regmap_update_bits(ds1307->regmap, M41TXX_REG_CONTROL, M41TXX_BIT_FT,
+ freq_test_en ? M41TXX_BIT_FT : 0);
+
+ return count;
+}
+
+static ssize_t frequency_test_show(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct ds1307 *ds1307 = dev_get_drvdata(dev->parent);
+ unsigned int ctrl_reg;
+
+ regmap_read(ds1307->regmap, M41TXX_REG_CONTROL, &ctrl_reg);
+
+ return scnprintf(buf, PAGE_SIZE, (ctrl_reg & M41TXX_BIT_FT) ? "on\n" :
+ "off\n");
+}
+
+static DEVICE_ATTR_RW(frequency_test);
+
+static struct attribute *rtc_freq_test_attrs[] = {
+ &dev_attr_frequency_test.attr,
+ NULL,
+};
+
+static const struct attribute_group rtc_freq_test_attr_group = {
+ .attrs = rtc_freq_test_attrs,
+};
+
+static int ds1307_add_frequency_test(struct ds1307 *ds1307)
+{
+ int err;
+
+ switch (ds1307->type) {
+ case m41t0:
+ case m41t00:
+ case m41t11:
+ err = rtc_add_group(ds1307->rtc, &rtc_freq_test_attr_group);
+ if (err)
+ return err;
+ break;
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+/*----------------------------------------------------------------------*/
+
+static int ds1307_nvram_read(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ struct ds1307 *ds1307 = priv;
+ const struct chip_desc *chip = &chips[ds1307->type];
+
+ return regmap_bulk_read(ds1307->regmap, chip->nvram_offset + offset,
+ val, bytes);
+}
+
+static int ds1307_nvram_write(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ struct ds1307 *ds1307 = priv;
+ const struct chip_desc *chip = &chips[ds1307->type];
+
+ return regmap_bulk_write(ds1307->regmap, chip->nvram_offset + offset,
+ val, bytes);
+}
+
+/*----------------------------------------------------------------------*/
+
+static u8 ds1307_trickle_init(struct ds1307 *ds1307,
+ const struct chip_desc *chip)
+{
+ u32 ohms, chargeable;
+ bool diode = chip->charge_default;
+
+ if (!chip->do_trickle_setup)
+ return 0;
+
+ if (device_property_read_u32(ds1307->dev, "trickle-resistor-ohms",
+ &ohms) && chip->requires_trickle_resistor)
+ return 0;
+
+ /* aux-voltage-chargeable takes precedence over the deprecated
+ * trickle-diode-disable
+ */
+ if (!device_property_read_u32(ds1307->dev, "aux-voltage-chargeable",
+ &chargeable)) {
+ switch (chargeable) {
+ case 0:
+ diode = false;
+ break;
+ case 1:
+ diode = true;
+ break;
+ default:
+ dev_warn(ds1307->dev,
+ "unsupported aux-voltage-chargeable value\n");
+ break;
+ }
+ } else if (device_property_read_bool(ds1307->dev,
+ "trickle-diode-disable")) {
+ diode = false;
+ }
+
+ return chip->do_trickle_setup(ds1307, ohms, diode);
+}
+
+/*----------------------------------------------------------------------*/
+
+#if IS_REACHABLE(CONFIG_HWMON)
+
+/*
+ * Temperature sensor support for ds3231 devices.
+ */
+
+#define DS3231_REG_TEMPERATURE 0x11
+
+/*
+ * A user-initiated temperature conversion is not started by this function,
+ * so the temperature is updated once every 64 seconds.
+ */
+static int ds3231_hwmon_read_temp(struct device *dev, s32 *mC)
+{
+ struct ds1307 *ds1307 = dev_get_drvdata(dev);
+ u8 temp_buf[2];
+ s16 temp;
+ int ret;
+
+ ret = regmap_bulk_read(ds1307->regmap, DS3231_REG_TEMPERATURE,
+ temp_buf, sizeof(temp_buf));
+ if (ret)
+ return ret;
+ /*
+ * Temperature is represented as a 10-bit code with a resolution of
+ * 0.25 degree celsius and encoded in two's complement format.
+ */
+ temp = (temp_buf[0] << 8) | temp_buf[1];
+ temp >>= 6;
+ *mC = temp * 250;
+
+ return 0;
+}
+
+static ssize_t ds3231_hwmon_show_temp(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ int ret;
+ s32 temp;
+
+ ret = ds3231_hwmon_read_temp(dev, &temp);
+ if (ret)
+ return ret;
+
+ return sprintf(buf, "%d\n", temp);
+}
+static SENSOR_DEVICE_ATTR(temp1_input, 0444, ds3231_hwmon_show_temp,
+ NULL, 0);
+
+static struct attribute *ds3231_hwmon_attrs[] = {
+ &sensor_dev_attr_temp1_input.dev_attr.attr,
+ NULL,
+};
+ATTRIBUTE_GROUPS(ds3231_hwmon);
+
+static void ds1307_hwmon_register(struct ds1307 *ds1307)
+{
+ struct device *dev;
+
+ if (ds1307->type != ds_3231)
+ return;
+
+ dev = devm_hwmon_device_register_with_groups(ds1307->dev, ds1307->name,
+ ds1307,
+ ds3231_hwmon_groups);
+ if (IS_ERR(dev)) {
+ dev_warn(ds1307->dev, "unable to register hwmon device %ld\n",
+ PTR_ERR(dev));
+ }
+}
+
+#else
+
+static void ds1307_hwmon_register(struct ds1307 *ds1307)
+{
+}
+
+#endif /* CONFIG_RTC_DRV_DS1307_HWMON */
+
+/*----------------------------------------------------------------------*/
+
+/*
+ * Square-wave output support for DS3231
+ * Datasheet: https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
+ */
+#ifdef CONFIG_COMMON_CLK
+
+enum {
+ DS3231_CLK_SQW = 0,
+ DS3231_CLK_32KHZ,
+};
+
+#define clk_sqw_to_ds1307(clk) \
+ container_of(clk, struct ds1307, clks[DS3231_CLK_SQW])
+#define clk_32khz_to_ds1307(clk) \
+ container_of(clk, struct ds1307, clks[DS3231_CLK_32KHZ])
+
+static int ds3231_clk_sqw_rates[] = {
+ 1,
+ 1024,
+ 4096,
+ 8192,
+};
+
+static int ds1337_write_control(struct ds1307 *ds1307, u8 mask, u8 value)
+{
+ struct mutex *lock = &ds1307->rtc->ops_lock;
+ int ret;
+
+ mutex_lock(lock);
+ ret = regmap_update_bits(ds1307->regmap, DS1337_REG_CONTROL,
+ mask, value);
+ mutex_unlock(lock);
+
+ return ret;
+}
+
+static unsigned long ds3231_clk_sqw_recalc_rate(struct clk_hw *hw,
+ unsigned long parent_rate)
+{
+ struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
+ int control, ret;
+ int rate_sel = 0;
+
+ ret = regmap_read(ds1307->regmap, DS1337_REG_CONTROL, &control);
+ if (ret)
+ return ret;
+ if (control & DS1337_BIT_RS1)
+ rate_sel += 1;
+ if (control & DS1337_BIT_RS2)
+ rate_sel += 2;
+
+ return ds3231_clk_sqw_rates[rate_sel];
+}
+
+static long ds3231_clk_sqw_round_rate(struct clk_hw *hw, unsigned long rate,
+ unsigned long *prate)
+{
+ int i;
+
+ for (i = ARRAY_SIZE(ds3231_clk_sqw_rates) - 1; i >= 0; i--) {
+ if (ds3231_clk_sqw_rates[i] <= rate)
+ return ds3231_clk_sqw_rates[i];
+ }
+
+ return 0;
+}
+
+static int ds3231_clk_sqw_set_rate(struct clk_hw *hw, unsigned long rate,
+ unsigned long parent_rate)
+{
+ struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
+ int control = 0;
+ int rate_sel;
+
+ for (rate_sel = 0; rate_sel < ARRAY_SIZE(ds3231_clk_sqw_rates);
+ rate_sel++) {
+ if (ds3231_clk_sqw_rates[rate_sel] == rate)
+ break;
+ }
+
+ if (rate_sel == ARRAY_SIZE(ds3231_clk_sqw_rates))
+ return -EINVAL;
+
+ if (rate_sel & 1)
+ control |= DS1337_BIT_RS1;
+ if (rate_sel & 2)
+ control |= DS1337_BIT_RS2;
+
+ return ds1337_write_control(ds1307, DS1337_BIT_RS1 | DS1337_BIT_RS2,
+ control);
+}
+
+static int ds3231_clk_sqw_prepare(struct clk_hw *hw)
+{
+ struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
+
+ return ds1337_write_control(ds1307, DS1337_BIT_INTCN, 0);
+}
+
+static void ds3231_clk_sqw_unprepare(struct clk_hw *hw)
+{
+ struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
+
+ ds1337_write_control(ds1307, DS1337_BIT_INTCN, DS1337_BIT_INTCN);
+}
+
+static int ds3231_clk_sqw_is_prepared(struct clk_hw *hw)
+{
+ struct ds1307 *ds1307 = clk_sqw_to_ds1307(hw);
+ int control, ret;
+
+ ret = regmap_read(ds1307->regmap, DS1337_REG_CONTROL, &control);
+ if (ret)
+ return ret;
+
+ return !(control & DS1337_BIT_INTCN);
+}
+
+static const struct clk_ops ds3231_clk_sqw_ops = {
+ .prepare = ds3231_clk_sqw_prepare,
+ .unprepare = ds3231_clk_sqw_unprepare,
+ .is_prepared = ds3231_clk_sqw_is_prepared,
+ .recalc_rate = ds3231_clk_sqw_recalc_rate,
+ .round_rate = ds3231_clk_sqw_round_rate,
+ .set_rate = ds3231_clk_sqw_set_rate,
+};
+
+static unsigned long ds3231_clk_32khz_recalc_rate(struct clk_hw *hw,
+ unsigned long parent_rate)
+{
+ return 32768;
+}
+
+static int ds3231_clk_32khz_control(struct ds1307 *ds1307, bool enable)
+{
+ struct mutex *lock = &ds1307->rtc->ops_lock;
+ int ret;
+
+ mutex_lock(lock);
+ ret = regmap_update_bits(ds1307->regmap, DS1337_REG_STATUS,
+ DS3231_BIT_EN32KHZ,
+ enable ? DS3231_BIT_EN32KHZ : 0);
+ mutex_unlock(lock);
+
+ return ret;
+}
+
+static int ds3231_clk_32khz_prepare(struct clk_hw *hw)
+{
+ struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
+
+ return ds3231_clk_32khz_control(ds1307, true);
+}
+
+static void ds3231_clk_32khz_unprepare(struct clk_hw *hw)
+{
+ struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
+
+ ds3231_clk_32khz_control(ds1307, false);
+}
+
+static int ds3231_clk_32khz_is_prepared(struct clk_hw *hw)
+{
+ struct ds1307 *ds1307 = clk_32khz_to_ds1307(hw);
+ int status, ret;
+
+ ret = regmap_read(ds1307->regmap, DS1337_REG_STATUS, &status);
+ if (ret)
+ return ret;
+
+ return !!(status & DS3231_BIT_EN32KHZ);
+}
+
+static const struct clk_ops ds3231_clk_32khz_ops = {
+ .prepare = ds3231_clk_32khz_prepare,
+ .unprepare = ds3231_clk_32khz_unprepare,
+ .is_prepared = ds3231_clk_32khz_is_prepared,
+ .recalc_rate = ds3231_clk_32khz_recalc_rate,
+};
+
+static struct clk_init_data ds3231_clks_init[] = {
+ [DS3231_CLK_SQW] = {
+ .name = "ds3231_clk_sqw",
+ .ops = &ds3231_clk_sqw_ops,
+ },
+ [DS3231_CLK_32KHZ] = {
+ .name = "ds3231_clk_32khz",
+ .ops = &ds3231_clk_32khz_ops,
+ },
+};
+
+static int ds3231_clks_register(struct ds1307 *ds1307)
+{
+ struct device_node *node = ds1307->dev->of_node;
+ struct clk_onecell_data *onecell;
+ int i;
+
+ onecell = devm_kzalloc(ds1307->dev, sizeof(*onecell), GFP_KERNEL);
+ if (!onecell)
+ return -ENOMEM;
+
+ onecell->clk_num = ARRAY_SIZE(ds3231_clks_init);
+ onecell->clks = devm_kcalloc(ds1307->dev, onecell->clk_num,
+ sizeof(onecell->clks[0]), GFP_KERNEL);
+ if (!onecell->clks)
+ return -ENOMEM;
+
+ for (i = 0; i < ARRAY_SIZE(ds3231_clks_init); i++) {
+ struct clk_init_data init = ds3231_clks_init[i];
+
+ /*
+ * Interrupt signal due to alarm conditions and square-wave
+ * output share same pin, so don't initialize both.
+ */
+ if (i == DS3231_CLK_SQW && test_bit(HAS_ALARM, &ds1307->flags))
+ continue;
+
+ /* optional override of the clockname */
+ of_property_read_string_index(node, "clock-output-names", i,
+ &init.name);
+ ds1307->clks[i].init = &init;
+
+ onecell->clks[i] = devm_clk_register(ds1307->dev,
+ &ds1307->clks[i]);
+ if (IS_ERR(onecell->clks[i]))
+ return PTR_ERR(onecell->clks[i]);
+ }
+
+ if (!node)
+ return 0;
+
+ of_clk_add_provider(node, of_clk_src_onecell_get, onecell);
+
+ return 0;
+}
+
+static void ds1307_clks_register(struct ds1307 *ds1307)
+{
+ int ret;
+
+ if (ds1307->type != ds_3231)
+ return;
+
+ ret = ds3231_clks_register(ds1307);
+ if (ret) {
+ dev_warn(ds1307->dev, "unable to register clock device %d\n",
+ ret);
+ }
+}
+
+#else
+
+static void ds1307_clks_register(struct ds1307 *ds1307)
+{
+}
+
+#endif /* CONFIG_COMMON_CLK */
+
+#ifdef CONFIG_WATCHDOG_CORE
+static const struct watchdog_info ds1388_wdt_info = {
+ .options = WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING | WDIOF_MAGICCLOSE,
+ .identity = "DS1388 watchdog",
+};
+
+static const struct watchdog_ops ds1388_wdt_ops = {
+ .owner = THIS_MODULE,
+ .start = ds1388_wdt_start,
+ .stop = ds1388_wdt_stop,
+ .ping = ds1388_wdt_ping,
+ .set_timeout = ds1388_wdt_set_timeout,
+
+};
+
+static void ds1307_wdt_register(struct ds1307 *ds1307)
+{
+ struct watchdog_device *wdt;
+ int err;
+ int val;
+
+ if (ds1307->type != ds_1388)
+ return;
+
+ wdt = devm_kzalloc(ds1307->dev, sizeof(*wdt), GFP_KERNEL);
+ if (!wdt)
+ return;
+
+ err = regmap_read(ds1307->regmap, DS1388_REG_FLAG, &val);
+ if (!err && val & DS1388_BIT_WF)
+ wdt->bootstatus = WDIOF_CARDRESET;
+
+ wdt->info = &ds1388_wdt_info;
+ wdt->ops = &ds1388_wdt_ops;
+ wdt->timeout = 99;
+ wdt->max_timeout = 99;
+ wdt->min_timeout = 1;
+
+ watchdog_init_timeout(wdt, 0, ds1307->dev);
+ watchdog_set_drvdata(wdt, ds1307);
+ devm_watchdog_register_device(ds1307->dev, wdt);
+}
+#else
+static void ds1307_wdt_register(struct ds1307 *ds1307)
+{
+}
+#endif /* CONFIG_WATCHDOG_CORE */
+
+static const struct regmap_config regmap_config = {
+ .reg_bits = 8,
+ .val_bits = 8,
+};
+
+static int ds1307_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct ds1307 *ds1307;
+ int err = -ENODEV;
+ int tmp;
+ const struct chip_desc *chip;
+ bool want_irq;
+ bool ds1307_can_wakeup_device = false;
+ unsigned char regs[8];
+ struct ds1307_platform_data *pdata = dev_get_platdata(&client->dev);
+ u8 trickle_charger_setup = 0;
+
+ ds1307 = devm_kzalloc(&client->dev, sizeof(struct ds1307), GFP_KERNEL);
+ if (!ds1307)
+ return -ENOMEM;
+
+ dev_set_drvdata(&client->dev, ds1307);
+ ds1307->dev = &client->dev;
+ ds1307->name = client->name;
+
+ ds1307->regmap = devm_regmap_init_i2c(client, &regmap_config);
+ if (IS_ERR(ds1307->regmap)) {
+ dev_err(ds1307->dev, "regmap allocation failed\n");
+ return PTR_ERR(ds1307->regmap);
+ }
+
+ i2c_set_clientdata(client, ds1307);
+
+ if (client->dev.of_node) {
+ ds1307->type = (enum ds_type)
+ of_device_get_match_data(&client->dev);
+ chip = &chips[ds1307->type];
+ } else if (id) {
+ chip = &chips[id->driver_data];
+ ds1307->type = id->driver_data;
+ } else {
+ const struct acpi_device_id *acpi_id;
+
+ acpi_id = acpi_match_device(ACPI_PTR(ds1307_acpi_ids),
+ ds1307->dev);
+ if (!acpi_id)
+ return -ENODEV;
+ chip = &chips[acpi_id->driver_data];
+ ds1307->type = acpi_id->driver_data;
+ }
+
+ want_irq = client->irq > 0 && chip->alarm;
+
+ if (!pdata)
+ trickle_charger_setup = ds1307_trickle_init(ds1307, chip);
+ else if (pdata->trickle_charger_setup)
+ trickle_charger_setup = pdata->trickle_charger_setup;
+
+ if (trickle_charger_setup && chip->trickle_charger_reg) {
+ dev_dbg(ds1307->dev,
+ "writing trickle charger info 0x%x to 0x%x\n",
+ trickle_charger_setup, chip->trickle_charger_reg);
+ regmap_write(ds1307->regmap, chip->trickle_charger_reg,
+ trickle_charger_setup);
+ }
+
+#ifdef CONFIG_OF
+/*
+ * For devices with no IRQ directly connected to the SoC, the RTC chip
+ * can be forced as a wakeup source by stating that explicitly in
+ * the device's .dts file using the "wakeup-source" boolean property.
+ * If the "wakeup-source" property is set, don't request an IRQ.
+ * This will guarantee the 'wakealarm' sysfs entry is available on the device,
+ * if supported by the RTC.
+ */
+ if (chip->alarm && of_property_read_bool(client->dev.of_node,
+ "wakeup-source"))
+ ds1307_can_wakeup_device = true;
+#endif
+
+ switch (ds1307->type) {
+ case ds_1337:
+ case ds_1339:
+ case ds_1341:
+ case ds_3231:
+ /* get registers that the "rtc" read below won't read... */
+ err = regmap_bulk_read(ds1307->regmap, DS1337_REG_CONTROL,
+ regs, 2);
+ if (err) {
+ dev_dbg(ds1307->dev, "read error %d\n", err);
+ goto exit;
+ }
+
+ /* oscillator off? turn it on, so clock can tick. */
+ if (regs[0] & DS1337_BIT_nEOSC)
+ regs[0] &= ~DS1337_BIT_nEOSC;
+
+ /*
+ * Using IRQ or defined as wakeup-source?
+ * Disable the square wave and both alarms.
+ * For some variants, be sure alarms can trigger when we're
+ * running on Vbackup (BBSQI/BBSQW)
+ */
+ if (want_irq || ds1307_can_wakeup_device) {
+ regs[0] |= DS1337_BIT_INTCN | chip->bbsqi_bit;
+ regs[0] &= ~(DS1337_BIT_A2IE | DS1337_BIT_A1IE);
+ }
+
+ regmap_write(ds1307->regmap, DS1337_REG_CONTROL,
+ regs[0]);
+
+ /* oscillator fault? clear flag, and warn */
+ if (regs[1] & DS1337_BIT_OSF) {
+ regmap_write(ds1307->regmap, DS1337_REG_STATUS,
+ regs[1] & ~DS1337_BIT_OSF);
+ dev_warn(ds1307->dev, "SET TIME!\n");
+ }
+ break;
+
+ case rx_8025:
+ err = regmap_bulk_read(ds1307->regmap,
+ RX8025_REG_CTRL1 << 4 | 0x08, regs, 2);
+ if (err) {
+ dev_dbg(ds1307->dev, "read error %d\n", err);
+ goto exit;
+ }
+
+ /* oscillator off? turn it on, so clock can tick. */
+ if (!(regs[1] & RX8025_BIT_XST)) {
+ regs[1] |= RX8025_BIT_XST;
+ regmap_write(ds1307->regmap,
+ RX8025_REG_CTRL2 << 4 | 0x08,
+ regs[1]);
+ dev_warn(ds1307->dev,
+ "oscillator stop detected - SET TIME!\n");
+ }
+
+ if (regs[1] & RX8025_BIT_PON) {
+ regs[1] &= ~RX8025_BIT_PON;
+ regmap_write(ds1307->regmap,
+ RX8025_REG_CTRL2 << 4 | 0x08,
+ regs[1]);
+ dev_warn(ds1307->dev, "power-on detected\n");
+ }
+
+ if (regs[1] & RX8025_BIT_VDET) {
+ regs[1] &= ~RX8025_BIT_VDET;
+ regmap_write(ds1307->regmap,
+ RX8025_REG_CTRL2 << 4 | 0x08,
+ regs[1]);
+ dev_warn(ds1307->dev, "voltage drop detected\n");
+ }
+
+ /* make sure we are running in 24hour mode */
+ if (!(regs[0] & RX8025_BIT_2412)) {
+ u8 hour;
+
+ /* switch to 24 hour mode */
+ regmap_write(ds1307->regmap,
+ RX8025_REG_CTRL1 << 4 | 0x08,
+ regs[0] | RX8025_BIT_2412);
+
+ err = regmap_bulk_read(ds1307->regmap,
+ RX8025_REG_CTRL1 << 4 | 0x08,
+ regs, 2);
+ if (err) {
+ dev_dbg(ds1307->dev, "read error %d\n", err);
+ goto exit;
+ }
+
+ /* correct hour */
+ hour = bcd2bin(regs[DS1307_REG_HOUR]);
+ if (hour == 12)
+ hour = 0;
+ if (regs[DS1307_REG_HOUR] & DS1307_BIT_PM)
+ hour += 12;
+
+ regmap_write(ds1307->regmap,
+ DS1307_REG_HOUR << 4 | 0x08, hour);
+ }
+ break;
+ case ds_1388:
+ err = regmap_read(ds1307->regmap, DS1388_REG_CONTROL, &tmp);
+ if (err) {
+ dev_dbg(ds1307->dev, "read error %d\n", err);
+ goto exit;
+ }
+
+ /* oscillator off? turn it on, so clock can tick. */
+ if (tmp & DS1388_BIT_nEOSC) {
+ tmp &= ~DS1388_BIT_nEOSC;
+ regmap_write(ds1307->regmap, DS1388_REG_CONTROL, tmp);
+ }
+ break;
+ default:
+ break;
+ }
+
+ /* read RTC registers */
+ err = regmap_bulk_read(ds1307->regmap, chip->offset, regs,
+ sizeof(regs));
+ if (err) {
+ dev_dbg(ds1307->dev, "read error %d\n", err);
+ goto exit;
+ }
+
+ if (ds1307->type == mcp794xx &&
+ !(regs[DS1307_REG_WDAY] & MCP794XX_BIT_VBATEN)) {
+ regmap_write(ds1307->regmap, DS1307_REG_WDAY,
+ regs[DS1307_REG_WDAY] |
+ MCP794XX_BIT_VBATEN);
+ }
+
+ tmp = regs[DS1307_REG_HOUR];
+ switch (ds1307->type) {
+ case ds_1340:
+ case m41t0:
+ case m41t00:
+ case m41t11:
+ /*
+ * NOTE: ignores century bits; fix before deploying
+ * systems that will run through year 2100.
+ */
+ break;
+ case rx_8025:
+ break;
+ default:
+ if (!(tmp & DS1307_BIT_12HR))
+ break;
+
+ /*
+ * Be sure we're in 24 hour mode. Multi-master systems
+ * take note...
+ */
+ tmp = bcd2bin(tmp & 0x1f);
+ if (tmp == 12)
+ tmp = 0;
+ if (regs[DS1307_REG_HOUR] & DS1307_BIT_PM)
+ tmp += 12;
+ regmap_write(ds1307->regmap, chip->offset + DS1307_REG_HOUR,
+ bin2bcd(tmp));
+ }
+
+ if (want_irq || ds1307_can_wakeup_device) {
+ device_set_wakeup_capable(ds1307->dev, true);
+ set_bit(HAS_ALARM, &ds1307->flags);
+ }
+
+ ds1307->rtc = devm_rtc_allocate_device(ds1307->dev);
+ if (IS_ERR(ds1307->rtc))
+ return PTR_ERR(ds1307->rtc);
+
+ if (ds1307_can_wakeup_device && !want_irq) {
+ dev_info(ds1307->dev,
+ "'wakeup-source' is set, request for an IRQ is disabled!\n");
+ /* We cannot support UIE mode if we do not have an IRQ line */
+ ds1307->rtc->uie_unsupported = 1;
+ }
+
+ if (want_irq) {
+ err = devm_request_threaded_irq(ds1307->dev, client->irq, NULL,
+ chip->irq_handler ?: ds1307_irq,
+ IRQF_SHARED | IRQF_ONESHOT,
+ ds1307->name, ds1307);
+ if (err) {
+ client->irq = 0;
+ device_set_wakeup_capable(ds1307->dev, false);
+ clear_bit(HAS_ALARM, &ds1307->flags);
+ dev_err(ds1307->dev, "unable to request IRQ!\n");
+ } else {
+ dev_dbg(ds1307->dev, "got IRQ %d\n", client->irq);
+ }
+ }
+
+ ds1307->rtc->ops = chip->rtc_ops ?: &ds13xx_rtc_ops;
+ err = ds1307_add_frequency_test(ds1307);
+ if (err)
+ return err;
+
+ err = rtc_register_device(ds1307->rtc);
+ if (err)
+ return err;
+
+ if (chip->nvram_size) {
+ struct nvmem_config nvmem_cfg = {
+ .name = "ds1307_nvram",
+ .word_size = 1,
+ .stride = 1,
+ .size = chip->nvram_size,
+ .reg_read = ds1307_nvram_read,
+ .reg_write = ds1307_nvram_write,
+ .priv = ds1307,
+ };
+
+ ds1307->rtc->nvram_old_abi = true;
+ rtc_nvmem_register(ds1307->rtc, &nvmem_cfg);
+ }
+
+ ds1307_hwmon_register(ds1307);
+ ds1307_clks_register(ds1307);
+ ds1307_wdt_register(ds1307);
+
+ return 0;
+
+exit:
+ return err;
+}
+
+static struct i2c_driver ds1307_driver = {
+ .driver = {
+ .name = "rtc-ds1307",
+ .of_match_table = of_match_ptr(ds1307_of_match),
+ .acpi_match_table = ACPI_PTR(ds1307_acpi_ids),
+ },
+ .probe = ds1307_probe,
+ .id_table = ds1307_id,
+};
+
+module_i2c_driver(ds1307_driver);
+
+MODULE_DESCRIPTION("RTC driver for DS1307 and similar chips");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-ds1343.c b/drivers/rtc/rtc-ds1343.c
new file mode 100644
index 000000000..ba1434238
--- /dev/null
+++ b/drivers/rtc/rtc-ds1343.c
@@ -0,0 +1,486 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* rtc-ds1343.c
+ *
+ * Driver for Dallas Semiconductor DS1343 Low Current, SPI Compatible
+ * Real Time Clock
+ *
+ * Author : Raghavendra Chandra Ganiga <ravi23ganiga@gmail.com>
+ * Ankur Srivastava <sankurece@gmail.com> : DS1343 Nvram Support
+ */
+
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/device.h>
+#include <linux/spi/spi.h>
+#include <linux/regmap.h>
+#include <linux/rtc.h>
+#include <linux/bcd.h>
+#include <linux/pm.h>
+#include <linux/pm_wakeirq.h>
+#include <linux/slab.h>
+
+#define DALLAS_MAXIM_DS1343 0
+#define DALLAS_MAXIM_DS1344 1
+
+/* RTC DS1343 Registers */
+#define DS1343_SECONDS_REG 0x00
+#define DS1343_MINUTES_REG 0x01
+#define DS1343_HOURS_REG 0x02
+#define DS1343_DAY_REG 0x03
+#define DS1343_DATE_REG 0x04
+#define DS1343_MONTH_REG 0x05
+#define DS1343_YEAR_REG 0x06
+#define DS1343_ALM0_SEC_REG 0x07
+#define DS1343_ALM0_MIN_REG 0x08
+#define DS1343_ALM0_HOUR_REG 0x09
+#define DS1343_ALM0_DAY_REG 0x0A
+#define DS1343_ALM1_SEC_REG 0x0B
+#define DS1343_ALM1_MIN_REG 0x0C
+#define DS1343_ALM1_HOUR_REG 0x0D
+#define DS1343_ALM1_DAY_REG 0x0E
+#define DS1343_CONTROL_REG 0x0F
+#define DS1343_STATUS_REG 0x10
+#define DS1343_TRICKLE_REG 0x11
+#define DS1343_NVRAM 0x20
+
+#define DS1343_NVRAM_LEN 96
+
+/* DS1343 Control Registers bits */
+#define DS1343_EOSC 0x80
+#define DS1343_DOSF 0x20
+#define DS1343_EGFIL 0x10
+#define DS1343_SQW 0x08
+#define DS1343_INTCN 0x04
+#define DS1343_A1IE 0x02
+#define DS1343_A0IE 0x01
+
+/* DS1343 Status Registers bits */
+#define DS1343_OSF 0x80
+#define DS1343_IRQF1 0x02
+#define DS1343_IRQF0 0x01
+
+/* DS1343 Trickle Charger Registers bits */
+#define DS1343_TRICKLE_MAGIC 0xa0
+#define DS1343_TRICKLE_DS1 0x08
+#define DS1343_TRICKLE_1K 0x01
+#define DS1343_TRICKLE_2K 0x02
+#define DS1343_TRICKLE_4K 0x03
+
+static const struct spi_device_id ds1343_id[] = {
+ { "ds1343", DALLAS_MAXIM_DS1343 },
+ { "ds1344", DALLAS_MAXIM_DS1344 },
+ { }
+};
+MODULE_DEVICE_TABLE(spi, ds1343_id);
+
+struct ds1343_priv {
+ struct rtc_device *rtc;
+ struct regmap *map;
+ int irq;
+};
+
+static ssize_t ds1343_show_glitchfilter(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct ds1343_priv *priv = dev_get_drvdata(dev->parent);
+ int glitch_filt_status, data;
+ int res;
+
+ res = regmap_read(priv->map, DS1343_CONTROL_REG, &data);
+ if (res)
+ return res;
+
+ glitch_filt_status = !!(data & DS1343_EGFIL);
+
+ if (glitch_filt_status)
+ return sprintf(buf, "enabled\n");
+ else
+ return sprintf(buf, "disabled\n");
+}
+
+static ssize_t ds1343_store_glitchfilter(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ struct ds1343_priv *priv = dev_get_drvdata(dev->parent);
+ int data = 0;
+ int res;
+
+ if (strncmp(buf, "enabled", 7) == 0)
+ data = DS1343_EGFIL;
+ else if (strncmp(buf, "disabled", 8))
+ return -EINVAL;
+
+ res = regmap_update_bits(priv->map, DS1343_CONTROL_REG,
+ DS1343_EGFIL, data);
+ if (res)
+ return res;
+
+ return count;
+}
+
+static DEVICE_ATTR(glitch_filter, S_IRUGO | S_IWUSR, ds1343_show_glitchfilter,
+ ds1343_store_glitchfilter);
+
+static int ds1343_nvram_write(void *priv, unsigned int off, void *val,
+ size_t bytes)
+{
+ struct ds1343_priv *ds1343 = priv;
+
+ return regmap_bulk_write(ds1343->map, DS1343_NVRAM + off, val, bytes);
+}
+
+static int ds1343_nvram_read(void *priv, unsigned int off, void *val,
+ size_t bytes)
+{
+ struct ds1343_priv *ds1343 = priv;
+
+ return regmap_bulk_read(ds1343->map, DS1343_NVRAM + off, val, bytes);
+}
+
+static ssize_t ds1343_show_tricklecharger(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct ds1343_priv *priv = dev_get_drvdata(dev->parent);
+ int res, data;
+ char *diodes = "disabled", *resistors = " ";
+
+ res = regmap_read(priv->map, DS1343_TRICKLE_REG, &data);
+ if (res)
+ return res;
+
+ if ((data & 0xf0) == DS1343_TRICKLE_MAGIC) {
+ switch (data & 0x0c) {
+ case DS1343_TRICKLE_DS1:
+ diodes = "one diode,";
+ break;
+
+ default:
+ diodes = "no diode,";
+ break;
+ }
+
+ switch (data & 0x03) {
+ case DS1343_TRICKLE_1K:
+ resistors = "1k Ohm";
+ break;
+
+ case DS1343_TRICKLE_2K:
+ resistors = "2k Ohm";
+ break;
+
+ case DS1343_TRICKLE_4K:
+ resistors = "4k Ohm";
+ break;
+
+ default:
+ diodes = "disabled";
+ break;
+ }
+ }
+
+ return sprintf(buf, "%s %s\n", diodes, resistors);
+}
+
+static DEVICE_ATTR(trickle_charger, S_IRUGO, ds1343_show_tricklecharger, NULL);
+
+static struct attribute *ds1343_attrs[] = {
+ &dev_attr_glitch_filter.attr,
+ &dev_attr_trickle_charger.attr,
+ NULL
+};
+
+static const struct attribute_group ds1343_attr_group = {
+ .attrs = ds1343_attrs,
+};
+
+static int ds1343_read_time(struct device *dev, struct rtc_time *dt)
+{
+ struct ds1343_priv *priv = dev_get_drvdata(dev);
+ unsigned char buf[7];
+ int res;
+
+ res = regmap_bulk_read(priv->map, DS1343_SECONDS_REG, buf, 7);
+ if (res)
+ return res;
+
+ dt->tm_sec = bcd2bin(buf[0]);
+ dt->tm_min = bcd2bin(buf[1]);
+ dt->tm_hour = bcd2bin(buf[2] & 0x3F);
+ dt->tm_wday = bcd2bin(buf[3]) - 1;
+ dt->tm_mday = bcd2bin(buf[4]);
+ dt->tm_mon = bcd2bin(buf[5] & 0x1F) - 1;
+ dt->tm_year = bcd2bin(buf[6]) + 100; /* year offset from 1900 */
+
+ return 0;
+}
+
+static int ds1343_set_time(struct device *dev, struct rtc_time *dt)
+{
+ struct ds1343_priv *priv = dev_get_drvdata(dev);
+ u8 buf[7];
+
+ buf[0] = bin2bcd(dt->tm_sec);
+ buf[1] = bin2bcd(dt->tm_min);
+ buf[2] = bin2bcd(dt->tm_hour) & 0x3F;
+ buf[3] = bin2bcd(dt->tm_wday + 1);
+ buf[4] = bin2bcd(dt->tm_mday);
+ buf[5] = bin2bcd(dt->tm_mon + 1);
+ buf[6] = bin2bcd(dt->tm_year - 100);
+
+ return regmap_bulk_write(priv->map, DS1343_SECONDS_REG,
+ buf, sizeof(buf));
+}
+
+static int ds1343_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct ds1343_priv *priv = dev_get_drvdata(dev);
+ unsigned char buf[4];
+ unsigned int val;
+ int res;
+
+ if (priv->irq <= 0)
+ return -EINVAL;
+
+ res = regmap_read(priv->map, DS1343_STATUS_REG, &val);
+ if (res)
+ return res;
+
+ alarm->pending = !!(val & DS1343_IRQF0);
+
+ res = regmap_read(priv->map, DS1343_CONTROL_REG, &val);
+ if (res)
+ return res;
+ alarm->enabled = !!(val & DS1343_A0IE);
+
+ res = regmap_bulk_read(priv->map, DS1343_ALM0_SEC_REG, buf, 4);
+ if (res)
+ return res;
+
+ alarm->time.tm_sec = bcd2bin(buf[0]) & 0x7f;
+ alarm->time.tm_min = bcd2bin(buf[1]) & 0x7f;
+ alarm->time.tm_hour = bcd2bin(buf[2]) & 0x3f;
+ alarm->time.tm_mday = bcd2bin(buf[3]) & 0x3f;
+
+ return 0;
+}
+
+static int ds1343_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct ds1343_priv *priv = dev_get_drvdata(dev);
+ unsigned char buf[4];
+ int res = 0;
+
+ if (priv->irq <= 0)
+ return -EINVAL;
+
+ res = regmap_update_bits(priv->map, DS1343_CONTROL_REG, DS1343_A0IE, 0);
+ if (res)
+ return res;
+
+ buf[0] = bin2bcd(alarm->time.tm_sec);
+ buf[1] = bin2bcd(alarm->time.tm_min);
+ buf[2] = bin2bcd(alarm->time.tm_hour);
+ buf[3] = bin2bcd(alarm->time.tm_mday);
+
+ res = regmap_bulk_write(priv->map, DS1343_ALM0_SEC_REG, buf, 4);
+ if (res)
+ return res;
+
+ if (alarm->enabled)
+ res = regmap_update_bits(priv->map, DS1343_CONTROL_REG,
+ DS1343_A0IE, DS1343_A0IE);
+
+ return res;
+}
+
+static int ds1343_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct ds1343_priv *priv = dev_get_drvdata(dev);
+
+ if (priv->irq <= 0)
+ return -EINVAL;
+
+ return regmap_update_bits(priv->map, DS1343_CONTROL_REG,
+ DS1343_A0IE, enabled ? DS1343_A0IE : 0);
+}
+
+static irqreturn_t ds1343_thread(int irq, void *dev_id)
+{
+ struct ds1343_priv *priv = dev_id;
+ unsigned int stat;
+ int res = 0;
+
+ rtc_lock(priv->rtc);
+
+ res = regmap_read(priv->map, DS1343_STATUS_REG, &stat);
+ if (res)
+ goto out;
+
+ if (stat & DS1343_IRQF0) {
+ stat &= ~DS1343_IRQF0;
+ regmap_write(priv->map, DS1343_STATUS_REG, stat);
+
+ rtc_update_irq(priv->rtc, 1, RTC_AF | RTC_IRQF);
+
+ regmap_update_bits(priv->map, DS1343_CONTROL_REG,
+ DS1343_A0IE, 0);
+ }
+
+out:
+ rtc_unlock(priv->rtc);
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops ds1343_rtc_ops = {
+ .read_time = ds1343_read_time,
+ .set_time = ds1343_set_time,
+ .read_alarm = ds1343_read_alarm,
+ .set_alarm = ds1343_set_alarm,
+ .alarm_irq_enable = ds1343_alarm_irq_enable,
+};
+
+static int ds1343_probe(struct spi_device *spi)
+{
+ struct ds1343_priv *priv;
+ struct regmap_config config = { .reg_bits = 8, .val_bits = 8,
+ .write_flag_mask = 0x80, };
+ unsigned int data;
+ int res;
+ struct nvmem_config nvmem_cfg = {
+ .name = "ds1343-",
+ .word_size = 1,
+ .stride = 1,
+ .size = DS1343_NVRAM_LEN,
+ .reg_read = ds1343_nvram_read,
+ .reg_write = ds1343_nvram_write,
+ };
+
+ priv = devm_kzalloc(&spi->dev, sizeof(struct ds1343_priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ /* RTC DS1347 works in spi mode 3 and
+ * its chip select is active high. Active high should be defined as
+ * "inverse polarity" as GPIO-based chip selects can be logically
+ * active high but inverted by the GPIO library.
+ */
+ spi->mode |= SPI_MODE_3;
+ spi->mode ^= SPI_CS_HIGH;
+ spi->bits_per_word = 8;
+ res = spi_setup(spi);
+ if (res)
+ return res;
+
+ spi_set_drvdata(spi, priv);
+
+ priv->map = devm_regmap_init_spi(spi, &config);
+
+ if (IS_ERR(priv->map)) {
+ dev_err(&spi->dev, "spi regmap init failed for rtc ds1343\n");
+ return PTR_ERR(priv->map);
+ }
+
+ res = regmap_read(priv->map, DS1343_SECONDS_REG, &data);
+ if (res)
+ return res;
+
+ regmap_read(priv->map, DS1343_CONTROL_REG, &data);
+ data |= DS1343_INTCN;
+ data &= ~(DS1343_EOSC | DS1343_A1IE | DS1343_A0IE);
+ regmap_write(priv->map, DS1343_CONTROL_REG, data);
+
+ regmap_read(priv->map, DS1343_STATUS_REG, &data);
+ data &= ~(DS1343_OSF | DS1343_IRQF1 | DS1343_IRQF0);
+ regmap_write(priv->map, DS1343_STATUS_REG, data);
+
+ priv->rtc = devm_rtc_allocate_device(&spi->dev);
+ if (IS_ERR(priv->rtc))
+ return PTR_ERR(priv->rtc);
+
+ priv->rtc->nvram_old_abi = true;
+ priv->rtc->ops = &ds1343_rtc_ops;
+ priv->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ priv->rtc->range_max = RTC_TIMESTAMP_END_2099;
+
+ res = rtc_add_group(priv->rtc, &ds1343_attr_group);
+ if (res)
+ dev_err(&spi->dev,
+ "unable to create sysfs entries for rtc ds1343\n");
+
+ res = rtc_register_device(priv->rtc);
+ if (res)
+ return res;
+
+ nvmem_cfg.priv = priv;
+ rtc_nvmem_register(priv->rtc, &nvmem_cfg);
+
+ priv->irq = spi->irq;
+
+ if (priv->irq >= 0) {
+ res = devm_request_threaded_irq(&spi->dev, spi->irq, NULL,
+ ds1343_thread, IRQF_ONESHOT,
+ "ds1343", priv);
+ if (res) {
+ priv->irq = -1;
+ dev_err(&spi->dev,
+ "unable to request irq for rtc ds1343\n");
+ } else {
+ device_init_wakeup(&spi->dev, true);
+ dev_pm_set_wake_irq(&spi->dev, spi->irq);
+ }
+ }
+
+ return 0;
+}
+
+static int ds1343_remove(struct spi_device *spi)
+{
+ dev_pm_clear_wake_irq(&spi->dev);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+
+static int ds1343_suspend(struct device *dev)
+{
+ struct spi_device *spi = to_spi_device(dev);
+
+ if (spi->irq >= 0 && device_may_wakeup(dev))
+ enable_irq_wake(spi->irq);
+
+ return 0;
+}
+
+static int ds1343_resume(struct device *dev)
+{
+ struct spi_device *spi = to_spi_device(dev);
+
+ if (spi->irq >= 0 && device_may_wakeup(dev))
+ disable_irq_wake(spi->irq);
+
+ return 0;
+}
+
+#endif
+
+static SIMPLE_DEV_PM_OPS(ds1343_pm, ds1343_suspend, ds1343_resume);
+
+static struct spi_driver ds1343_driver = {
+ .driver = {
+ .name = "ds1343",
+ .pm = &ds1343_pm,
+ },
+ .probe = ds1343_probe,
+ .remove = ds1343_remove,
+ .id_table = ds1343_id,
+};
+
+module_spi_driver(ds1343_driver);
+
+MODULE_DESCRIPTION("DS1343 RTC SPI Driver");
+MODULE_AUTHOR("Raghavendra Chandra Ganiga <ravi23ganiga@gmail.com>,"
+ "Ankur Srivastava <sankurece@gmail.com>");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-ds1347.c b/drivers/rtc/rtc-ds1347.c
new file mode 100644
index 000000000..03267ac65
--- /dev/null
+++ b/drivers/rtc/rtc-ds1347.c
@@ -0,0 +1,183 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* rtc-ds1347.c
+ *
+ * Driver for Dallas Semiconductor DS1347 Low Current, SPI Compatible
+ * Real Time Clock
+ *
+ * Author : Raghavendra Chandra Ganiga <ravi23ganiga@gmail.com>
+ */
+
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/device.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/spi/spi.h>
+#include <linux/bcd.h>
+#include <linux/regmap.h>
+
+/* Registers in ds1347 rtc */
+
+#define DS1347_SECONDS_REG 0x01
+#define DS1347_MINUTES_REG 0x03
+#define DS1347_HOURS_REG 0x05
+#define DS1347_DATE_REG 0x07
+#define DS1347_MONTH_REG 0x09
+#define DS1347_DAY_REG 0x0B
+#define DS1347_YEAR_REG 0x0D
+#define DS1347_CONTROL_REG 0x0F
+#define DS1347_CENTURY_REG 0x13
+#define DS1347_STATUS_REG 0x17
+#define DS1347_CLOCK_BURST 0x3F
+
+#define DS1347_WP_BIT BIT(7)
+
+#define DS1347_NEOSC_BIT BIT(7)
+#define DS1347_OSF_BIT BIT(2)
+
+static const struct regmap_range ds1347_ranges[] = {
+ {
+ .range_min = DS1347_SECONDS_REG,
+ .range_max = DS1347_STATUS_REG,
+ },
+};
+
+static const struct regmap_access_table ds1347_access_table = {
+ .yes_ranges = ds1347_ranges,
+ .n_yes_ranges = ARRAY_SIZE(ds1347_ranges),
+};
+
+static int ds1347_read_time(struct device *dev, struct rtc_time *dt)
+{
+ struct regmap *map = dev_get_drvdata(dev);
+ unsigned int status, century, secs;
+ unsigned char buf[8];
+ int err;
+
+ err = regmap_read(map, DS1347_STATUS_REG, &status);
+ if (err)
+ return err;
+
+ if (status & DS1347_OSF_BIT)
+ return -EINVAL;
+
+ do {
+ err = regmap_bulk_read(map, DS1347_CLOCK_BURST, buf, 8);
+ if (err)
+ return err;
+
+ err = regmap_read(map, DS1347_CENTURY_REG, &century);
+ if (err)
+ return err;
+
+ err = regmap_read(map, DS1347_SECONDS_REG, &secs);
+ if (err)
+ return err;
+ } while (buf[0] != secs);
+
+ dt->tm_sec = bcd2bin(buf[0]);
+ dt->tm_min = bcd2bin(buf[1] & 0x7f);
+ dt->tm_hour = bcd2bin(buf[2] & 0x3F);
+ dt->tm_mday = bcd2bin(buf[3]);
+ dt->tm_mon = bcd2bin(buf[4]) - 1;
+ dt->tm_wday = bcd2bin(buf[5]) - 1;
+ dt->tm_year = (bcd2bin(century) * 100) + bcd2bin(buf[6]) - 1900;
+
+ return 0;
+}
+
+static int ds1347_set_time(struct device *dev, struct rtc_time *dt)
+{
+ struct regmap *map = dev_get_drvdata(dev);
+ unsigned int century;
+ unsigned char buf[8];
+ int err;
+
+ err = regmap_update_bits(map, DS1347_STATUS_REG,
+ DS1347_NEOSC_BIT, DS1347_NEOSC_BIT);
+ if (err)
+ return err;
+
+ buf[0] = bin2bcd(dt->tm_sec);
+ buf[1] = bin2bcd(dt->tm_min);
+ buf[2] = (bin2bcd(dt->tm_hour) & 0x3F);
+ buf[3] = bin2bcd(dt->tm_mday);
+ buf[4] = bin2bcd(dt->tm_mon + 1);
+ buf[5] = bin2bcd(dt->tm_wday + 1);
+ buf[6] = bin2bcd(dt->tm_year % 100);
+ buf[7] = bin2bcd(0x00);
+
+ err = regmap_bulk_write(map, DS1347_CLOCK_BURST, buf, 8);
+ if (err)
+ return err;
+
+ century = (dt->tm_year / 100) + 19;
+ err = regmap_write(map, DS1347_CENTURY_REG, bin2bcd(century));
+ if (err)
+ return err;
+
+ return regmap_update_bits(map, DS1347_STATUS_REG,
+ DS1347_NEOSC_BIT | DS1347_OSF_BIT, 0);
+}
+
+static const struct rtc_class_ops ds1347_rtc_ops = {
+ .read_time = ds1347_read_time,
+ .set_time = ds1347_set_time,
+};
+
+static int ds1347_probe(struct spi_device *spi)
+{
+ struct rtc_device *rtc;
+ struct regmap_config config;
+ struct regmap *map;
+ int err;
+
+ memset(&config, 0, sizeof(config));
+ config.reg_bits = 8;
+ config.val_bits = 8;
+ config.read_flag_mask = 0x80;
+ config.max_register = 0x3F;
+ config.wr_table = &ds1347_access_table;
+
+ /* spi setup with ds1347 in mode 3 and bits per word as 8 */
+ spi->mode = SPI_MODE_3;
+ spi->bits_per_word = 8;
+ spi_setup(spi);
+
+ map = devm_regmap_init_spi(spi, &config);
+
+ if (IS_ERR(map)) {
+ dev_err(&spi->dev, "ds1347 regmap init spi failed\n");
+ return PTR_ERR(map);
+ }
+
+ spi_set_drvdata(spi, map);
+
+ /* Disable the write protect of rtc */
+ err = regmap_update_bits(map, DS1347_CONTROL_REG, DS1347_WP_BIT, 0);
+ if (err)
+ return err;
+
+ rtc = devm_rtc_allocate_device(&spi->dev);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ rtc->ops = &ds1347_rtc_ops;
+ rtc->range_min = RTC_TIMESTAMP_BEGIN_0000;
+ rtc->range_max = RTC_TIMESTAMP_END_9999;
+
+ return rtc_register_device(rtc);
+}
+
+static struct spi_driver ds1347_driver = {
+ .driver = {
+ .name = "ds1347",
+ },
+ .probe = ds1347_probe,
+};
+
+module_spi_driver(ds1347_driver);
+
+MODULE_DESCRIPTION("DS1347 SPI RTC DRIVER");
+MODULE_AUTHOR("Raghavendra C Ganiga <ravi23ganiga@gmail.com>");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-ds1374.c b/drivers/rtc/rtc-ds1374.c
new file mode 100644
index 000000000..177d870bd
--- /dev/null
+++ b/drivers/rtc/rtc-ds1374.c
@@ -0,0 +1,590 @@
+/*
+ * RTC client/driver for the Maxim/Dallas DS1374 Real-Time Clock over I2C
+ *
+ * Based on code by Randy Vinson <rvinson@mvista.com>,
+ * which was based on the m41t00.c by Mark Greer <mgreer@mvista.com>.
+ *
+ * Copyright (C) 2014 Rose Technology
+ * Copyright (C) 2006-2007 Freescale Semiconductor
+ *
+ * 2005 (c) MontaVista Software, Inc. This file is licensed under
+ * the terms of the GNU General Public License version 2. This program
+ * is licensed "as is" without any warranty of any kind, whether express
+ * or implied.
+ */
+/*
+ * It would be more efficient to use i2c msgs/i2c_transfer directly but, as
+ * recommended in .../Documentation/i2c/writing-clients.rst section
+ * "Sending and receiving", using SMBus level communication is preferred.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/i2c.h>
+#include <linux/rtc.h>
+#include <linux/bcd.h>
+#include <linux/workqueue.h>
+#include <linux/slab.h>
+#include <linux/pm.h>
+#ifdef CONFIG_RTC_DRV_DS1374_WDT
+#include <linux/fs.h>
+#include <linux/ioctl.h>
+#include <linux/miscdevice.h>
+#include <linux/reboot.h>
+#include <linux/watchdog.h>
+#endif
+
+#define DS1374_REG_TOD0 0x00 /* Time of Day */
+#define DS1374_REG_TOD1 0x01
+#define DS1374_REG_TOD2 0x02
+#define DS1374_REG_TOD3 0x03
+#define DS1374_REG_WDALM0 0x04 /* Watchdog/Alarm */
+#define DS1374_REG_WDALM1 0x05
+#define DS1374_REG_WDALM2 0x06
+#define DS1374_REG_CR 0x07 /* Control */
+#define DS1374_REG_CR_AIE 0x01 /* Alarm Int. Enable */
+#define DS1374_REG_CR_WDSTR 0x08 /* 1=INT, 0=RST */
+#define DS1374_REG_CR_WDALM 0x20 /* 1=Watchdog, 0=Alarm */
+#define DS1374_REG_CR_WACE 0x40 /* WD/Alarm counter enable */
+#define DS1374_REG_SR 0x08 /* Status */
+#define DS1374_REG_SR_OSF 0x80 /* Oscillator Stop Flag */
+#define DS1374_REG_SR_AF 0x01 /* Alarm Flag */
+#define DS1374_REG_TCR 0x09 /* Trickle Charge */
+
+static const struct i2c_device_id ds1374_id[] = {
+ { "ds1374", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, ds1374_id);
+
+#ifdef CONFIG_OF
+static const struct of_device_id ds1374_of_match[] = {
+ { .compatible = "dallas,ds1374" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, ds1374_of_match);
+#endif
+
+struct ds1374 {
+ struct i2c_client *client;
+ struct rtc_device *rtc;
+ struct work_struct work;
+#ifdef CONFIG_RTC_DRV_DS1374_WDT
+ struct watchdog_device wdt;
+#endif
+ /* The mutex protects alarm operations, and prevents a race
+ * between the enable_irq() in the workqueue and the free_irq()
+ * in the remove function.
+ */
+ struct mutex mutex;
+ int exiting;
+};
+
+static struct i2c_driver ds1374_driver;
+
+static int ds1374_read_rtc(struct i2c_client *client, u32 *time,
+ int reg, int nbytes)
+{
+ u8 buf[4];
+ int ret;
+ int i;
+
+ if (WARN_ON(nbytes > 4))
+ return -EINVAL;
+
+ ret = i2c_smbus_read_i2c_block_data(client, reg, nbytes, buf);
+
+ if (ret < 0)
+ return ret;
+ if (ret < nbytes)
+ return -EIO;
+
+ for (i = nbytes - 1, *time = 0; i >= 0; i--)
+ *time = (*time << 8) | buf[i];
+
+ return 0;
+}
+
+static int ds1374_write_rtc(struct i2c_client *client, u32 time,
+ int reg, int nbytes)
+{
+ u8 buf[4];
+ int i;
+
+ if (nbytes > 4) {
+ WARN_ON(1);
+ return -EINVAL;
+ }
+
+ for (i = 0; i < nbytes; i++) {
+ buf[i] = time & 0xff;
+ time >>= 8;
+ }
+
+ return i2c_smbus_write_i2c_block_data(client, reg, nbytes, buf);
+}
+
+static int ds1374_check_rtc_status(struct i2c_client *client)
+{
+ int ret = 0;
+ int control, stat;
+
+ stat = i2c_smbus_read_byte_data(client, DS1374_REG_SR);
+ if (stat < 0)
+ return stat;
+
+ if (stat & DS1374_REG_SR_OSF)
+ dev_warn(&client->dev,
+ "oscillator discontinuity flagged, time unreliable\n");
+
+ stat &= ~(DS1374_REG_SR_OSF | DS1374_REG_SR_AF);
+
+ ret = i2c_smbus_write_byte_data(client, DS1374_REG_SR, stat);
+ if (ret < 0)
+ return ret;
+
+ /* If the alarm is pending, clear it before requesting
+ * the interrupt, so an interrupt event isn't reported
+ * before everything is initialized.
+ */
+
+ control = i2c_smbus_read_byte_data(client, DS1374_REG_CR);
+ if (control < 0)
+ return control;
+
+ control &= ~(DS1374_REG_CR_WACE | DS1374_REG_CR_AIE);
+ return i2c_smbus_write_byte_data(client, DS1374_REG_CR, control);
+}
+
+static int ds1374_read_time(struct device *dev, struct rtc_time *time)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ u32 itime;
+ int ret;
+
+ ret = ds1374_read_rtc(client, &itime, DS1374_REG_TOD0, 4);
+ if (!ret)
+ rtc_time64_to_tm(itime, time);
+
+ return ret;
+}
+
+static int ds1374_set_time(struct device *dev, struct rtc_time *time)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ unsigned long itime = rtc_tm_to_time64(time);
+
+ return ds1374_write_rtc(client, itime, DS1374_REG_TOD0, 4);
+}
+
+#ifndef CONFIG_RTC_DRV_DS1374_WDT
+/* The ds1374 has a decrementer for an alarm, rather than a comparator.
+ * If the time of day is changed, then the alarm will need to be
+ * reset.
+ */
+static int ds1374_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct ds1374 *ds1374 = i2c_get_clientdata(client);
+ u32 now, cur_alarm;
+ int cr, sr;
+ int ret = 0;
+
+ if (client->irq <= 0)
+ return -EINVAL;
+
+ mutex_lock(&ds1374->mutex);
+
+ cr = ret = i2c_smbus_read_byte_data(client, DS1374_REG_CR);
+ if (ret < 0)
+ goto out;
+
+ sr = ret = i2c_smbus_read_byte_data(client, DS1374_REG_SR);
+ if (ret < 0)
+ goto out;
+
+ ret = ds1374_read_rtc(client, &now, DS1374_REG_TOD0, 4);
+ if (ret)
+ goto out;
+
+ ret = ds1374_read_rtc(client, &cur_alarm, DS1374_REG_WDALM0, 3);
+ if (ret)
+ goto out;
+
+ rtc_time64_to_tm(now + cur_alarm, &alarm->time);
+ alarm->enabled = !!(cr & DS1374_REG_CR_WACE);
+ alarm->pending = !!(sr & DS1374_REG_SR_AF);
+
+out:
+ mutex_unlock(&ds1374->mutex);
+ return ret;
+}
+
+static int ds1374_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct ds1374 *ds1374 = i2c_get_clientdata(client);
+ struct rtc_time now;
+ unsigned long new_alarm, itime;
+ int cr;
+ int ret = 0;
+
+ if (client->irq <= 0)
+ return -EINVAL;
+
+ ret = ds1374_read_time(dev, &now);
+ if (ret < 0)
+ return ret;
+
+ new_alarm = rtc_tm_to_time64(&alarm->time);
+ itime = rtc_tm_to_time64(&now);
+
+ /* This can happen due to races, in addition to dates that are
+ * truly in the past. To avoid requiring the caller to check for
+ * races, dates in the past are assumed to be in the recent past
+ * (i.e. not something that we'd rather the caller know about via
+ * an error), and the alarm is set to go off as soon as possible.
+ */
+ if (time_before_eq(new_alarm, itime))
+ new_alarm = 1;
+ else
+ new_alarm -= itime;
+
+ mutex_lock(&ds1374->mutex);
+
+ ret = cr = i2c_smbus_read_byte_data(client, DS1374_REG_CR);
+ if (ret < 0)
+ goto out;
+
+ /* Disable any existing alarm before setting the new one
+ * (or lack thereof). */
+ cr &= ~DS1374_REG_CR_WACE;
+
+ ret = i2c_smbus_write_byte_data(client, DS1374_REG_CR, cr);
+ if (ret < 0)
+ goto out;
+
+ ret = ds1374_write_rtc(client, new_alarm, DS1374_REG_WDALM0, 3);
+ if (ret)
+ goto out;
+
+ if (alarm->enabled) {
+ cr |= DS1374_REG_CR_WACE | DS1374_REG_CR_AIE;
+ cr &= ~DS1374_REG_CR_WDALM;
+
+ ret = i2c_smbus_write_byte_data(client, DS1374_REG_CR, cr);
+ }
+
+out:
+ mutex_unlock(&ds1374->mutex);
+ return ret;
+}
+#endif
+
+static irqreturn_t ds1374_irq(int irq, void *dev_id)
+{
+ struct i2c_client *client = dev_id;
+ struct ds1374 *ds1374 = i2c_get_clientdata(client);
+
+ disable_irq_nosync(irq);
+ schedule_work(&ds1374->work);
+ return IRQ_HANDLED;
+}
+
+static void ds1374_work(struct work_struct *work)
+{
+ struct ds1374 *ds1374 = container_of(work, struct ds1374, work);
+ struct i2c_client *client = ds1374->client;
+ int stat, control;
+
+ mutex_lock(&ds1374->mutex);
+
+ stat = i2c_smbus_read_byte_data(client, DS1374_REG_SR);
+ if (stat < 0)
+ goto unlock;
+
+ if (stat & DS1374_REG_SR_AF) {
+ stat &= ~DS1374_REG_SR_AF;
+ i2c_smbus_write_byte_data(client, DS1374_REG_SR, stat);
+
+ control = i2c_smbus_read_byte_data(client, DS1374_REG_CR);
+ if (control < 0)
+ goto out;
+
+ control &= ~(DS1374_REG_CR_WACE | DS1374_REG_CR_AIE);
+ i2c_smbus_write_byte_data(client, DS1374_REG_CR, control);
+
+ rtc_update_irq(ds1374->rtc, 1, RTC_AF | RTC_IRQF);
+ }
+
+out:
+ if (!ds1374->exiting)
+ enable_irq(client->irq);
+unlock:
+ mutex_unlock(&ds1374->mutex);
+}
+
+#ifndef CONFIG_RTC_DRV_DS1374_WDT
+static int ds1374_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct ds1374 *ds1374 = i2c_get_clientdata(client);
+ int ret;
+
+ mutex_lock(&ds1374->mutex);
+
+ ret = i2c_smbus_read_byte_data(client, DS1374_REG_CR);
+ if (ret < 0)
+ goto out;
+
+ if (enabled) {
+ ret |= DS1374_REG_CR_WACE | DS1374_REG_CR_AIE;
+ ret &= ~DS1374_REG_CR_WDALM;
+ } else {
+ ret &= ~DS1374_REG_CR_WACE;
+ }
+ ret = i2c_smbus_write_byte_data(client, DS1374_REG_CR, ret);
+
+out:
+ mutex_unlock(&ds1374->mutex);
+ return ret;
+}
+#endif
+
+static const struct rtc_class_ops ds1374_rtc_ops = {
+ .read_time = ds1374_read_time,
+ .set_time = ds1374_set_time,
+#ifndef CONFIG_RTC_DRV_DS1374_WDT
+ .read_alarm = ds1374_read_alarm,
+ .set_alarm = ds1374_set_alarm,
+ .alarm_irq_enable = ds1374_alarm_irq_enable,
+#endif
+};
+
+#ifdef CONFIG_RTC_DRV_DS1374_WDT
+/*
+ *****************************************************************************
+ *
+ * Watchdog Driver
+ *
+ *****************************************************************************
+ */
+/* Default margin */
+#define TIMER_MARGIN_DEFAULT 32
+#define TIMER_MARGIN_MIN 1
+#define TIMER_MARGIN_MAX 4095 /* 24-bit value */
+
+static int wdt_margin;
+module_param(wdt_margin, int, 0);
+MODULE_PARM_DESC(wdt_margin, "Watchdog timeout in seconds (default 32s)");
+
+static bool nowayout = WATCHDOG_NOWAYOUT;
+module_param(nowayout, bool, 0);
+MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default ="
+ __MODULE_STRING(WATCHDOG_NOWAYOUT)")");
+
+static const struct watchdog_info ds1374_wdt_info = {
+ .identity = "DS1374 Watchdog",
+ .options = WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING |
+ WDIOF_MAGICCLOSE,
+};
+
+static int ds1374_wdt_settimeout(struct watchdog_device *wdt, unsigned int timeout)
+{
+ struct ds1374 *ds1374 = watchdog_get_drvdata(wdt);
+ struct i2c_client *client = ds1374->client;
+ int ret, cr;
+
+ wdt->timeout = timeout;
+
+ cr = i2c_smbus_read_byte_data(client, DS1374_REG_CR);
+ if (cr < 0)
+ return cr;
+
+ /* Disable any existing watchdog/alarm before setting the new one */
+ cr &= ~DS1374_REG_CR_WACE;
+
+ ret = i2c_smbus_write_byte_data(client, DS1374_REG_CR, cr);
+ if (ret < 0)
+ return ret;
+
+ /* Set new watchdog time */
+ timeout = timeout * 4096;
+ ret = ds1374_write_rtc(client, timeout, DS1374_REG_WDALM0, 3);
+ if (ret)
+ return ret;
+
+ /* Enable watchdog timer */
+ cr |= DS1374_REG_CR_WACE | DS1374_REG_CR_WDALM;
+ cr &= ~DS1374_REG_CR_WDSTR;/* for RST PIN */
+ cr &= ~DS1374_REG_CR_AIE;
+
+ ret = i2c_smbus_write_byte_data(client, DS1374_REG_CR, cr);
+ if (ret < 0)
+ return ret;
+
+ return 0;
+}
+
+/*
+ * Reload the watchdog timer. (ie, pat the watchdog)
+ */
+static int ds1374_wdt_start(struct watchdog_device *wdt)
+{
+ struct ds1374 *ds1374 = watchdog_get_drvdata(wdt);
+ u32 val;
+
+ return ds1374_read_rtc(ds1374->client, &val, DS1374_REG_WDALM0, 3);
+}
+
+static int ds1374_wdt_stop(struct watchdog_device *wdt)
+{
+ struct ds1374 *ds1374 = watchdog_get_drvdata(wdt);
+ struct i2c_client *client = ds1374->client;
+ int cr;
+
+ cr = i2c_smbus_read_byte_data(client, DS1374_REG_CR);
+ if (cr < 0)
+ return cr;
+
+ /* Disable watchdog timer */
+ cr &= ~DS1374_REG_CR_WACE;
+
+ return i2c_smbus_write_byte_data(client, DS1374_REG_CR, cr);
+}
+
+static const struct watchdog_ops ds1374_wdt_ops = {
+ .owner = THIS_MODULE,
+ .start = ds1374_wdt_start,
+ .stop = ds1374_wdt_stop,
+ .set_timeout = ds1374_wdt_settimeout,
+};
+#endif /*CONFIG_RTC_DRV_DS1374_WDT*/
+/*
+ *****************************************************************************
+ *
+ * Driver Interface
+ *
+ *****************************************************************************
+ */
+static int ds1374_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct ds1374 *ds1374;
+ int ret;
+
+ ds1374 = devm_kzalloc(&client->dev, sizeof(struct ds1374), GFP_KERNEL);
+ if (!ds1374)
+ return -ENOMEM;
+
+ ds1374->rtc = devm_rtc_allocate_device(&client->dev);
+ if (IS_ERR(ds1374->rtc))
+ return PTR_ERR(ds1374->rtc);
+
+ ds1374->client = client;
+ i2c_set_clientdata(client, ds1374);
+
+ INIT_WORK(&ds1374->work, ds1374_work);
+ mutex_init(&ds1374->mutex);
+
+ ret = ds1374_check_rtc_status(client);
+ if (ret)
+ return ret;
+
+ if (client->irq > 0) {
+ ret = devm_request_irq(&client->dev, client->irq, ds1374_irq, 0,
+ "ds1374", client);
+ if (ret) {
+ dev_err(&client->dev, "unable to request IRQ\n");
+ return ret;
+ }
+
+ device_set_wakeup_capable(&client->dev, 1);
+ }
+
+ ds1374->rtc->ops = &ds1374_rtc_ops;
+ ds1374->rtc->range_max = U32_MAX;
+
+ ret = rtc_register_device(ds1374->rtc);
+ if (ret)
+ return ret;
+
+#ifdef CONFIG_RTC_DRV_DS1374_WDT
+ ds1374->wdt.info = &ds1374_wdt_info;
+ ds1374->wdt.ops = &ds1374_wdt_ops;
+ ds1374->wdt.timeout = TIMER_MARGIN_DEFAULT;
+ ds1374->wdt.min_timeout = TIMER_MARGIN_MIN;
+ ds1374->wdt.max_timeout = TIMER_MARGIN_MAX;
+
+ watchdog_init_timeout(&ds1374->wdt, wdt_margin, &client->dev);
+ watchdog_set_nowayout(&ds1374->wdt, nowayout);
+ watchdog_stop_on_reboot(&ds1374->wdt);
+ watchdog_stop_on_unregister(&ds1374->wdt);
+ watchdog_set_drvdata(&ds1374->wdt, ds1374);
+ ds1374_wdt_settimeout(&ds1374->wdt, ds1374->wdt.timeout);
+
+ ret = devm_watchdog_register_device(&client->dev, &ds1374->wdt);
+ if (ret)
+ return ret;
+#endif
+
+ return 0;
+}
+
+static int ds1374_remove(struct i2c_client *client)
+{
+ struct ds1374 *ds1374 = i2c_get_clientdata(client);
+
+ if (client->irq > 0) {
+ mutex_lock(&ds1374->mutex);
+ ds1374->exiting = 1;
+ mutex_unlock(&ds1374->mutex);
+
+ devm_free_irq(&client->dev, client->irq, client);
+ cancel_work_sync(&ds1374->work);
+ }
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int ds1374_suspend(struct device *dev)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+
+ if (client->irq > 0 && device_may_wakeup(&client->dev))
+ enable_irq_wake(client->irq);
+ return 0;
+}
+
+static int ds1374_resume(struct device *dev)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+
+ if (client->irq > 0 && device_may_wakeup(&client->dev))
+ disable_irq_wake(client->irq);
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(ds1374_pm, ds1374_suspend, ds1374_resume);
+
+static struct i2c_driver ds1374_driver = {
+ .driver = {
+ .name = "rtc-ds1374",
+ .of_match_table = of_match_ptr(ds1374_of_match),
+ .pm = &ds1374_pm,
+ },
+ .probe = ds1374_probe,
+ .remove = ds1374_remove,
+ .id_table = ds1374_id,
+};
+
+module_i2c_driver(ds1374_driver);
+
+MODULE_AUTHOR("Scott Wood <scottwood@freescale.com>");
+MODULE_DESCRIPTION("Maxim/Dallas DS1374 RTC Driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-ds1390.c b/drivers/rtc/rtc-ds1390.c
new file mode 100644
index 000000000..66fc8617d
--- /dev/null
+++ b/drivers/rtc/rtc-ds1390.c
@@ -0,0 +1,235 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * rtc-ds1390.c -- driver for the Dallas/Maxim DS1390/93/94 SPI RTC
+ *
+ * Copyright (C) 2008 Mercury IMC Ltd
+ * Written by Mark Jackson <mpfj@mimc.co.uk>
+ *
+ * NOTE: Currently this driver only supports the bare minimum for read
+ * and write the RTC. The extra features provided by the chip family
+ * (alarms, trickle charger, different control registers) are unavailable.
+ */
+
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/spi/spi.h>
+#include <linux/bcd.h>
+#include <linux/slab.h>
+#include <linux/of.h>
+
+#define DS1390_REG_100THS 0x00
+#define DS1390_REG_SECONDS 0x01
+#define DS1390_REG_MINUTES 0x02
+#define DS1390_REG_HOURS 0x03
+#define DS1390_REG_DAY 0x04
+#define DS1390_REG_DATE 0x05
+#define DS1390_REG_MONTH_CENT 0x06
+#define DS1390_REG_YEAR 0x07
+
+#define DS1390_REG_ALARM_100THS 0x08
+#define DS1390_REG_ALARM_SECONDS 0x09
+#define DS1390_REG_ALARM_MINUTES 0x0A
+#define DS1390_REG_ALARM_HOURS 0x0B
+#define DS1390_REG_ALARM_DAY_DATE 0x0C
+
+#define DS1390_REG_CONTROL 0x0D
+#define DS1390_REG_STATUS 0x0E
+#define DS1390_REG_TRICKLE 0x0F
+
+#define DS1390_TRICKLE_CHARGER_ENABLE 0xA0
+#define DS1390_TRICKLE_CHARGER_250_OHM 0x01
+#define DS1390_TRICKLE_CHARGER_2K_OHM 0x02
+#define DS1390_TRICKLE_CHARGER_4K_OHM 0x03
+#define DS1390_TRICKLE_CHARGER_NO_DIODE 0x04
+#define DS1390_TRICKLE_CHARGER_DIODE 0x08
+
+struct ds1390 {
+ struct rtc_device *rtc;
+ u8 txrx_buf[9]; /* cmd + 8 registers */
+};
+
+static void ds1390_set_reg(struct device *dev, unsigned char address,
+ unsigned char data)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ unsigned char buf[2];
+
+ /* MSB must be '1' to write */
+ buf[0] = address | 0x80;
+ buf[1] = data;
+
+ spi_write(spi, buf, 2);
+}
+
+static int ds1390_get_reg(struct device *dev, unsigned char address,
+ unsigned char *data)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ struct ds1390 *chip = dev_get_drvdata(dev);
+ int status;
+
+ if (!data)
+ return -EINVAL;
+
+ /* Clear MSB to indicate read */
+ chip->txrx_buf[0] = address & 0x7f;
+ /* do the i/o */
+ status = spi_write_then_read(spi, chip->txrx_buf, 1, chip->txrx_buf, 1);
+ if (status != 0)
+ return status;
+
+ *data = chip->txrx_buf[0];
+
+ return 0;
+}
+
+static void ds1390_trickle_of_init(struct spi_device *spi)
+{
+ u32 ohms = 0;
+ u8 value;
+
+ if (of_property_read_u32(spi->dev.of_node, "trickle-resistor-ohms",
+ &ohms))
+ goto out;
+
+ /* Enable charger */
+ value = DS1390_TRICKLE_CHARGER_ENABLE;
+ if (of_property_read_bool(spi->dev.of_node, "trickle-diode-disable"))
+ value |= DS1390_TRICKLE_CHARGER_NO_DIODE;
+ else
+ value |= DS1390_TRICKLE_CHARGER_DIODE;
+
+ /* Resistor select */
+ switch (ohms) {
+ case 250:
+ value |= DS1390_TRICKLE_CHARGER_250_OHM;
+ break;
+ case 2000:
+ value |= DS1390_TRICKLE_CHARGER_2K_OHM;
+ break;
+ case 4000:
+ value |= DS1390_TRICKLE_CHARGER_4K_OHM;
+ break;
+ default:
+ dev_warn(&spi->dev,
+ "Unsupported ohm value %02ux in dt\n", ohms);
+ return;
+ }
+
+ ds1390_set_reg(&spi->dev, DS1390_REG_TRICKLE, value);
+
+out:
+ return;
+}
+
+static int ds1390_read_time(struct device *dev, struct rtc_time *dt)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ struct ds1390 *chip = dev_get_drvdata(dev);
+ int status;
+
+ /* build the message */
+ chip->txrx_buf[0] = DS1390_REG_SECONDS;
+
+ /* do the i/o */
+ status = spi_write_then_read(spi, chip->txrx_buf, 1, chip->txrx_buf, 8);
+ if (status != 0)
+ return status;
+
+ /* The chip sends data in this order:
+ * Seconds, Minutes, Hours, Day, Date, Month / Century, Year */
+ dt->tm_sec = bcd2bin(chip->txrx_buf[0]);
+ dt->tm_min = bcd2bin(chip->txrx_buf[1]);
+ dt->tm_hour = bcd2bin(chip->txrx_buf[2]);
+ dt->tm_wday = bcd2bin(chip->txrx_buf[3]);
+ dt->tm_mday = bcd2bin(chip->txrx_buf[4]);
+ /* mask off century bit */
+ dt->tm_mon = bcd2bin(chip->txrx_buf[5] & 0x7f) - 1;
+ /* adjust for century bit */
+ dt->tm_year = bcd2bin(chip->txrx_buf[6]) + ((chip->txrx_buf[5] & 0x80) ? 100 : 0);
+
+ return 0;
+}
+
+static int ds1390_set_time(struct device *dev, struct rtc_time *dt)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ struct ds1390 *chip = dev_get_drvdata(dev);
+
+ /* build the message */
+ chip->txrx_buf[0] = DS1390_REG_SECONDS | 0x80;
+ chip->txrx_buf[1] = bin2bcd(dt->tm_sec);
+ chip->txrx_buf[2] = bin2bcd(dt->tm_min);
+ chip->txrx_buf[3] = bin2bcd(dt->tm_hour);
+ chip->txrx_buf[4] = bin2bcd(dt->tm_wday);
+ chip->txrx_buf[5] = bin2bcd(dt->tm_mday);
+ chip->txrx_buf[6] = bin2bcd(dt->tm_mon + 1) |
+ ((dt->tm_year > 99) ? 0x80 : 0x00);
+ chip->txrx_buf[7] = bin2bcd(dt->tm_year % 100);
+
+ /* do the i/o */
+ return spi_write_then_read(spi, chip->txrx_buf, 8, NULL, 0);
+}
+
+static const struct rtc_class_ops ds1390_rtc_ops = {
+ .read_time = ds1390_read_time,
+ .set_time = ds1390_set_time,
+};
+
+static int ds1390_probe(struct spi_device *spi)
+{
+ unsigned char tmp;
+ struct ds1390 *chip;
+ int res;
+
+ spi->mode = SPI_MODE_3;
+ spi->bits_per_word = 8;
+ spi_setup(spi);
+
+ chip = devm_kzalloc(&spi->dev, sizeof(*chip), GFP_KERNEL);
+ if (!chip)
+ return -ENOMEM;
+
+ spi_set_drvdata(spi, chip);
+
+ res = ds1390_get_reg(&spi->dev, DS1390_REG_SECONDS, &tmp);
+ if (res != 0) {
+ dev_err(&spi->dev, "unable to read device\n");
+ return res;
+ }
+
+ if (spi->dev.of_node)
+ ds1390_trickle_of_init(spi);
+
+ chip->rtc = devm_rtc_device_register(&spi->dev, "ds1390",
+ &ds1390_rtc_ops, THIS_MODULE);
+ if (IS_ERR(chip->rtc)) {
+ dev_err(&spi->dev, "unable to register device\n");
+ res = PTR_ERR(chip->rtc);
+ }
+
+ return res;
+}
+
+static const struct of_device_id ds1390_of_match[] = {
+ { .compatible = "dallas,ds1390" },
+ {}
+};
+MODULE_DEVICE_TABLE(of, ds1390_of_match);
+
+static struct spi_driver ds1390_driver = {
+ .driver = {
+ .name = "rtc-ds1390",
+ .of_match_table = of_match_ptr(ds1390_of_match),
+ },
+ .probe = ds1390_probe,
+};
+
+module_spi_driver(ds1390_driver);
+
+MODULE_DESCRIPTION("Dallas/Maxim DS1390/93/94 SPI RTC driver");
+MODULE_AUTHOR("Mark Jackson <mpfj@mimc.co.uk>");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("spi:rtc-ds1390");
diff --git a/drivers/rtc/rtc-ds1511.c b/drivers/rtc/rtc-ds1511.c
new file mode 100644
index 000000000..a63872c4c
--- /dev/null
+++ b/drivers/rtc/rtc-ds1511.c
@@ -0,0 +1,508 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * An rtc driver for the Dallas DS1511
+ *
+ * Copyright (C) 2006 Atsushi Nemoto <anemo@mba.ocn.ne.jp>
+ * Copyright (C) 2007 Andrew Sharp <andy.sharp@lsi.com>
+ *
+ * Real time clock driver for the Dallas 1511 chip, which also
+ * contains a watchdog timer. There is a tiny amount of code that
+ * platform code could use to mess with the watchdog device a little
+ * bit, but not a full watchdog driver.
+ */
+
+#include <linux/bcd.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/gfp.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+#include <linux/io.h>
+#include <linux/module.h>
+
+enum ds1511reg {
+ DS1511_SEC = 0x0,
+ DS1511_MIN = 0x1,
+ DS1511_HOUR = 0x2,
+ DS1511_DOW = 0x3,
+ DS1511_DOM = 0x4,
+ DS1511_MONTH = 0x5,
+ DS1511_YEAR = 0x6,
+ DS1511_CENTURY = 0x7,
+ DS1511_AM1_SEC = 0x8,
+ DS1511_AM2_MIN = 0x9,
+ DS1511_AM3_HOUR = 0xa,
+ DS1511_AM4_DATE = 0xb,
+ DS1511_WD_MSEC = 0xc,
+ DS1511_WD_SEC = 0xd,
+ DS1511_CONTROL_A = 0xe,
+ DS1511_CONTROL_B = 0xf,
+ DS1511_RAMADDR_LSB = 0x10,
+ DS1511_RAMDATA = 0x13
+};
+
+#define DS1511_BLF1 0x80
+#define DS1511_BLF2 0x40
+#define DS1511_PRS 0x20
+#define DS1511_PAB 0x10
+#define DS1511_TDF 0x08
+#define DS1511_KSF 0x04
+#define DS1511_WDF 0x02
+#define DS1511_IRQF 0x01
+#define DS1511_TE 0x80
+#define DS1511_CS 0x40
+#define DS1511_BME 0x20
+#define DS1511_TPE 0x10
+#define DS1511_TIE 0x08
+#define DS1511_KIE 0x04
+#define DS1511_WDE 0x02
+#define DS1511_WDS 0x01
+#define DS1511_RAM_MAX 0x100
+
+#define RTC_CMD DS1511_CONTROL_B
+#define RTC_CMD1 DS1511_CONTROL_A
+
+#define RTC_ALARM_SEC DS1511_AM1_SEC
+#define RTC_ALARM_MIN DS1511_AM2_MIN
+#define RTC_ALARM_HOUR DS1511_AM3_HOUR
+#define RTC_ALARM_DATE DS1511_AM4_DATE
+
+#define RTC_SEC DS1511_SEC
+#define RTC_MIN DS1511_MIN
+#define RTC_HOUR DS1511_HOUR
+#define RTC_DOW DS1511_DOW
+#define RTC_DOM DS1511_DOM
+#define RTC_MON DS1511_MONTH
+#define RTC_YEAR DS1511_YEAR
+#define RTC_CENTURY DS1511_CENTURY
+
+#define RTC_TIE DS1511_TIE
+#define RTC_TE DS1511_TE
+
+struct rtc_plat_data {
+ struct rtc_device *rtc;
+ void __iomem *ioaddr; /* virtual base address */
+ int irq;
+ unsigned int irqen;
+ int alrm_sec;
+ int alrm_min;
+ int alrm_hour;
+ int alrm_mday;
+ spinlock_t lock;
+};
+
+static DEFINE_SPINLOCK(ds1511_lock);
+
+static __iomem char *ds1511_base;
+static u32 reg_spacing = 1;
+
+static noinline void
+rtc_write(uint8_t val, uint32_t reg)
+{
+ writeb(val, ds1511_base + (reg * reg_spacing));
+}
+
+static inline void
+rtc_write_alarm(uint8_t val, enum ds1511reg reg)
+{
+ rtc_write((val | 0x80), reg);
+}
+
+static noinline uint8_t
+rtc_read(enum ds1511reg reg)
+{
+ return readb(ds1511_base + (reg * reg_spacing));
+}
+
+static inline void
+rtc_disable_update(void)
+{
+ rtc_write((rtc_read(RTC_CMD) & ~RTC_TE), RTC_CMD);
+}
+
+static void
+rtc_enable_update(void)
+{
+ rtc_write((rtc_read(RTC_CMD) | RTC_TE), RTC_CMD);
+}
+
+/*
+ * #define DS1511_WDOG_RESET_SUPPORT
+ *
+ * Uncomment this if you want to use these routines in
+ * some platform code.
+ */
+#ifdef DS1511_WDOG_RESET_SUPPORT
+/*
+ * just enough code to set the watchdog timer so that it
+ * will reboot the system
+ */
+void
+ds1511_wdog_set(unsigned long deciseconds)
+{
+ /*
+ * the wdog timer can take 99.99 seconds
+ */
+ deciseconds %= 10000;
+ /*
+ * set the wdog values in the wdog registers
+ */
+ rtc_write(bin2bcd(deciseconds % 100), DS1511_WD_MSEC);
+ rtc_write(bin2bcd(deciseconds / 100), DS1511_WD_SEC);
+ /*
+ * set wdog enable and wdog 'steering' bit to issue a reset
+ */
+ rtc_write(rtc_read(RTC_CMD) | DS1511_WDE | DS1511_WDS, RTC_CMD);
+}
+
+void
+ds1511_wdog_disable(void)
+{
+ /*
+ * clear wdog enable and wdog 'steering' bits
+ */
+ rtc_write(rtc_read(RTC_CMD) & ~(DS1511_WDE | DS1511_WDS), RTC_CMD);
+ /*
+ * clear the wdog counter
+ */
+ rtc_write(0, DS1511_WD_MSEC);
+ rtc_write(0, DS1511_WD_SEC);
+}
+#endif
+
+/*
+ * set the rtc chip's idea of the time.
+ * stupidly, some callers call with year unmolested;
+ * and some call with year = year - 1900. thanks.
+ */
+static int ds1511_rtc_set_time(struct device *dev, struct rtc_time *rtc_tm)
+{
+ u8 mon, day, dow, hrs, min, sec, yrs, cen;
+ unsigned long flags;
+
+ /*
+ * won't have to change this for a while
+ */
+ if (rtc_tm->tm_year < 1900)
+ rtc_tm->tm_year += 1900;
+
+ if (rtc_tm->tm_year < 1970)
+ return -EINVAL;
+
+ yrs = rtc_tm->tm_year % 100;
+ cen = rtc_tm->tm_year / 100;
+ mon = rtc_tm->tm_mon + 1; /* tm_mon starts at zero */
+ day = rtc_tm->tm_mday;
+ dow = rtc_tm->tm_wday & 0x7; /* automatic BCD */
+ hrs = rtc_tm->tm_hour;
+ min = rtc_tm->tm_min;
+ sec = rtc_tm->tm_sec;
+
+ if ((mon > 12) || (day == 0))
+ return -EINVAL;
+
+ if (day > rtc_month_days(rtc_tm->tm_mon, rtc_tm->tm_year))
+ return -EINVAL;
+
+ if ((hrs >= 24) || (min >= 60) || (sec >= 60))
+ return -EINVAL;
+
+ /*
+ * each register is a different number of valid bits
+ */
+ sec = bin2bcd(sec) & 0x7f;
+ min = bin2bcd(min) & 0x7f;
+ hrs = bin2bcd(hrs) & 0x3f;
+ day = bin2bcd(day) & 0x3f;
+ mon = bin2bcd(mon) & 0x1f;
+ yrs = bin2bcd(yrs) & 0xff;
+ cen = bin2bcd(cen) & 0xff;
+
+ spin_lock_irqsave(&ds1511_lock, flags);
+ rtc_disable_update();
+ rtc_write(cen, RTC_CENTURY);
+ rtc_write(yrs, RTC_YEAR);
+ rtc_write((rtc_read(RTC_MON) & 0xe0) | mon, RTC_MON);
+ rtc_write(day, RTC_DOM);
+ rtc_write(hrs, RTC_HOUR);
+ rtc_write(min, RTC_MIN);
+ rtc_write(sec, RTC_SEC);
+ rtc_write(dow, RTC_DOW);
+ rtc_enable_update();
+ spin_unlock_irqrestore(&ds1511_lock, flags);
+
+ return 0;
+}
+
+static int ds1511_rtc_read_time(struct device *dev, struct rtc_time *rtc_tm)
+{
+ unsigned int century;
+ unsigned long flags;
+
+ spin_lock_irqsave(&ds1511_lock, flags);
+ rtc_disable_update();
+
+ rtc_tm->tm_sec = rtc_read(RTC_SEC) & 0x7f;
+ rtc_tm->tm_min = rtc_read(RTC_MIN) & 0x7f;
+ rtc_tm->tm_hour = rtc_read(RTC_HOUR) & 0x3f;
+ rtc_tm->tm_mday = rtc_read(RTC_DOM) & 0x3f;
+ rtc_tm->tm_wday = rtc_read(RTC_DOW) & 0x7;
+ rtc_tm->tm_mon = rtc_read(RTC_MON) & 0x1f;
+ rtc_tm->tm_year = rtc_read(RTC_YEAR) & 0x7f;
+ century = rtc_read(RTC_CENTURY);
+
+ rtc_enable_update();
+ spin_unlock_irqrestore(&ds1511_lock, flags);
+
+ rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
+ rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
+ rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
+ rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
+ rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
+ rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
+ rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
+ century = bcd2bin(century) * 100;
+
+ /*
+ * Account for differences between how the RTC uses the values
+ * and how they are defined in a struct rtc_time;
+ */
+ century += rtc_tm->tm_year;
+ rtc_tm->tm_year = century - 1900;
+
+ rtc_tm->tm_mon--;
+
+ return 0;
+}
+
+/*
+ * write the alarm register settings
+ *
+ * we only have the use to interrupt every second, otherwise
+ * known as the update interrupt, or the interrupt if the whole
+ * date/hours/mins/secs matches. the ds1511 has many more
+ * permutations, but the kernel doesn't.
+ */
+static void
+ds1511_rtc_update_alarm(struct rtc_plat_data *pdata)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&pdata->lock, flags);
+ rtc_write(pdata->alrm_mday < 0 || (pdata->irqen & RTC_UF) ?
+ 0x80 : bin2bcd(pdata->alrm_mday) & 0x3f,
+ RTC_ALARM_DATE);
+ rtc_write(pdata->alrm_hour < 0 || (pdata->irqen & RTC_UF) ?
+ 0x80 : bin2bcd(pdata->alrm_hour) & 0x3f,
+ RTC_ALARM_HOUR);
+ rtc_write(pdata->alrm_min < 0 || (pdata->irqen & RTC_UF) ?
+ 0x80 : bin2bcd(pdata->alrm_min) & 0x7f,
+ RTC_ALARM_MIN);
+ rtc_write(pdata->alrm_sec < 0 || (pdata->irqen & RTC_UF) ?
+ 0x80 : bin2bcd(pdata->alrm_sec) & 0x7f,
+ RTC_ALARM_SEC);
+ rtc_write(rtc_read(RTC_CMD) | (pdata->irqen ? RTC_TIE : 0), RTC_CMD);
+ rtc_read(RTC_CMD1); /* clear interrupts */
+ spin_unlock_irqrestore(&pdata->lock, flags);
+}
+
+static int
+ds1511_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+
+ if (pdata->irq <= 0)
+ return -EINVAL;
+
+ pdata->alrm_mday = alrm->time.tm_mday;
+ pdata->alrm_hour = alrm->time.tm_hour;
+ pdata->alrm_min = alrm->time.tm_min;
+ pdata->alrm_sec = alrm->time.tm_sec;
+ if (alrm->enabled)
+ pdata->irqen |= RTC_AF;
+
+ ds1511_rtc_update_alarm(pdata);
+ return 0;
+}
+
+static int
+ds1511_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+
+ if (pdata->irq <= 0)
+ return -EINVAL;
+
+ alrm->time.tm_mday = pdata->alrm_mday < 0 ? 0 : pdata->alrm_mday;
+ alrm->time.tm_hour = pdata->alrm_hour < 0 ? 0 : pdata->alrm_hour;
+ alrm->time.tm_min = pdata->alrm_min < 0 ? 0 : pdata->alrm_min;
+ alrm->time.tm_sec = pdata->alrm_sec < 0 ? 0 : pdata->alrm_sec;
+ alrm->enabled = (pdata->irqen & RTC_AF) ? 1 : 0;
+ return 0;
+}
+
+static irqreturn_t
+ds1511_interrupt(int irq, void *dev_id)
+{
+ struct platform_device *pdev = dev_id;
+ struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
+ unsigned long events = 0;
+
+ spin_lock(&pdata->lock);
+ /*
+ * read and clear interrupt
+ */
+ if (rtc_read(RTC_CMD1) & DS1511_IRQF) {
+ events = RTC_IRQF;
+ if (rtc_read(RTC_ALARM_SEC) & 0x80)
+ events |= RTC_UF;
+ else
+ events |= RTC_AF;
+ rtc_update_irq(pdata->rtc, 1, events);
+ }
+ spin_unlock(&pdata->lock);
+ return events ? IRQ_HANDLED : IRQ_NONE;
+}
+
+static int ds1511_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+
+ if (pdata->irq <= 0)
+ return -EINVAL;
+ if (enabled)
+ pdata->irqen |= RTC_AF;
+ else
+ pdata->irqen &= ~RTC_AF;
+ ds1511_rtc_update_alarm(pdata);
+ return 0;
+}
+
+static const struct rtc_class_ops ds1511_rtc_ops = {
+ .read_time = ds1511_rtc_read_time,
+ .set_time = ds1511_rtc_set_time,
+ .read_alarm = ds1511_rtc_read_alarm,
+ .set_alarm = ds1511_rtc_set_alarm,
+ .alarm_irq_enable = ds1511_rtc_alarm_irq_enable,
+};
+
+static int ds1511_nvram_read(void *priv, unsigned int pos, void *buf,
+ size_t size)
+{
+ int i;
+
+ rtc_write(pos, DS1511_RAMADDR_LSB);
+ for (i = 0; i < size; i++)
+ *(char *)buf++ = rtc_read(DS1511_RAMDATA);
+
+ return 0;
+}
+
+static int ds1511_nvram_write(void *priv, unsigned int pos, void *buf,
+ size_t size)
+{
+ int i;
+
+ rtc_write(pos, DS1511_RAMADDR_LSB);
+ for (i = 0; i < size; i++)
+ rtc_write(*(char *)buf++, DS1511_RAMDATA);
+
+ return 0;
+}
+
+static int ds1511_rtc_probe(struct platform_device *pdev)
+{
+ struct rtc_plat_data *pdata;
+ int ret = 0;
+ struct nvmem_config ds1511_nvmem_cfg = {
+ .name = "ds1511_nvram",
+ .word_size = 1,
+ .stride = 1,
+ .size = DS1511_RAM_MAX,
+ .reg_read = ds1511_nvram_read,
+ .reg_write = ds1511_nvram_write,
+ .priv = &pdev->dev,
+ };
+
+ pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
+ if (!pdata)
+ return -ENOMEM;
+
+ ds1511_base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(ds1511_base))
+ return PTR_ERR(ds1511_base);
+ pdata->ioaddr = ds1511_base;
+ pdata->irq = platform_get_irq(pdev, 0);
+
+ /*
+ * turn on the clock and the crystal, etc.
+ */
+ rtc_write(DS1511_BME, RTC_CMD);
+ rtc_write(0, RTC_CMD1);
+ /*
+ * clear the wdog counter
+ */
+ rtc_write(0, DS1511_WD_MSEC);
+ rtc_write(0, DS1511_WD_SEC);
+ /*
+ * start the clock
+ */
+ rtc_enable_update();
+
+ /*
+ * check for a dying bat-tree
+ */
+ if (rtc_read(RTC_CMD1) & DS1511_BLF1)
+ dev_warn(&pdev->dev, "voltage-low detected.\n");
+
+ spin_lock_init(&pdata->lock);
+ platform_set_drvdata(pdev, pdata);
+
+ pdata->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(pdata->rtc))
+ return PTR_ERR(pdata->rtc);
+
+ pdata->rtc->ops = &ds1511_rtc_ops;
+
+ pdata->rtc->nvram_old_abi = true;
+
+ ret = rtc_register_device(pdata->rtc);
+ if (ret)
+ return ret;
+
+ rtc_nvmem_register(pdata->rtc, &ds1511_nvmem_cfg);
+
+ /*
+ * if the platform has an interrupt in mind for this device,
+ * then by all means, set it
+ */
+ if (pdata->irq > 0) {
+ rtc_read(RTC_CMD1);
+ if (devm_request_irq(&pdev->dev, pdata->irq, ds1511_interrupt,
+ IRQF_SHARED, pdev->name, pdev) < 0) {
+
+ dev_warn(&pdev->dev, "interrupt not available.\n");
+ pdata->irq = 0;
+ }
+ }
+
+ return 0;
+}
+
+/* work with hotplug and coldplug */
+MODULE_ALIAS("platform:ds1511");
+
+static struct platform_driver ds1511_rtc_driver = {
+ .probe = ds1511_rtc_probe,
+ .driver = {
+ .name = "ds1511",
+ },
+};
+
+module_platform_driver(ds1511_rtc_driver);
+
+MODULE_AUTHOR("Andrew Sharp <andy.sharp@lsi.com>");
+MODULE_DESCRIPTION("Dallas DS1511 RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-ds1553.c b/drivers/rtc/rtc-ds1553.c
new file mode 100644
index 000000000..cdf5e05b9
--- /dev/null
+++ b/drivers/rtc/rtc-ds1553.c
@@ -0,0 +1,333 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * An rtc driver for the Dallas DS1553
+ *
+ * Copyright (C) 2006 Atsushi Nemoto <anemo@mba.ocn.ne.jp>
+ */
+
+#include <linux/bcd.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/gfp.h>
+#include <linux/delay.h>
+#include <linux/jiffies.h>
+#include <linux/interrupt.h>
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+#include <linux/io.h>
+#include <linux/module.h>
+
+#define RTC_REG_SIZE 0x2000
+#define RTC_OFFSET 0x1ff0
+
+#define RTC_FLAGS (RTC_OFFSET + 0)
+#define RTC_SECONDS_ALARM (RTC_OFFSET + 2)
+#define RTC_MINUTES_ALARM (RTC_OFFSET + 3)
+#define RTC_HOURS_ALARM (RTC_OFFSET + 4)
+#define RTC_DATE_ALARM (RTC_OFFSET + 5)
+#define RTC_INTERRUPTS (RTC_OFFSET + 6)
+#define RTC_WATCHDOG (RTC_OFFSET + 7)
+#define RTC_CONTROL (RTC_OFFSET + 8)
+#define RTC_CENTURY (RTC_OFFSET + 8)
+#define RTC_SECONDS (RTC_OFFSET + 9)
+#define RTC_MINUTES (RTC_OFFSET + 10)
+#define RTC_HOURS (RTC_OFFSET + 11)
+#define RTC_DAY (RTC_OFFSET + 12)
+#define RTC_DATE (RTC_OFFSET + 13)
+#define RTC_MONTH (RTC_OFFSET + 14)
+#define RTC_YEAR (RTC_OFFSET + 15)
+
+#define RTC_CENTURY_MASK 0x3f
+#define RTC_SECONDS_MASK 0x7f
+#define RTC_DAY_MASK 0x07
+
+/* Bits in the Control/Century register */
+#define RTC_WRITE 0x80
+#define RTC_READ 0x40
+
+/* Bits in the Seconds register */
+#define RTC_STOP 0x80
+
+/* Bits in the Flags register */
+#define RTC_FLAGS_AF 0x40
+#define RTC_FLAGS_BLF 0x10
+
+/* Bits in the Interrupts register */
+#define RTC_INTS_AE 0x80
+
+struct rtc_plat_data {
+ struct rtc_device *rtc;
+ void __iomem *ioaddr;
+ unsigned long last_jiffies;
+ int irq;
+ unsigned int irqen;
+ int alrm_sec;
+ int alrm_min;
+ int alrm_hour;
+ int alrm_mday;
+ spinlock_t lock;
+};
+
+static int ds1553_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+ void __iomem *ioaddr = pdata->ioaddr;
+ u8 century;
+
+ century = bin2bcd((tm->tm_year + 1900) / 100);
+
+ writeb(RTC_WRITE, pdata->ioaddr + RTC_CONTROL);
+
+ writeb(bin2bcd(tm->tm_year % 100), ioaddr + RTC_YEAR);
+ writeb(bin2bcd(tm->tm_mon + 1), ioaddr + RTC_MONTH);
+ writeb(bin2bcd(tm->tm_wday) & RTC_DAY_MASK, ioaddr + RTC_DAY);
+ writeb(bin2bcd(tm->tm_mday), ioaddr + RTC_DATE);
+ writeb(bin2bcd(tm->tm_hour), ioaddr + RTC_HOURS);
+ writeb(bin2bcd(tm->tm_min), ioaddr + RTC_MINUTES);
+ writeb(bin2bcd(tm->tm_sec) & RTC_SECONDS_MASK, ioaddr + RTC_SECONDS);
+
+ /* RTC_CENTURY and RTC_CONTROL share same register */
+ writeb(RTC_WRITE | (century & RTC_CENTURY_MASK), ioaddr + RTC_CENTURY);
+ writeb(century & RTC_CENTURY_MASK, ioaddr + RTC_CONTROL);
+ return 0;
+}
+
+static int ds1553_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+ void __iomem *ioaddr = pdata->ioaddr;
+ unsigned int year, month, day, hour, minute, second, week;
+ unsigned int century;
+
+ /* give enough time to update RTC in case of continuous read */
+ if (pdata->last_jiffies == jiffies)
+ msleep(1);
+ pdata->last_jiffies = jiffies;
+ writeb(RTC_READ, ioaddr + RTC_CONTROL);
+ second = readb(ioaddr + RTC_SECONDS) & RTC_SECONDS_MASK;
+ minute = readb(ioaddr + RTC_MINUTES);
+ hour = readb(ioaddr + RTC_HOURS);
+ day = readb(ioaddr + RTC_DATE);
+ week = readb(ioaddr + RTC_DAY) & RTC_DAY_MASK;
+ month = readb(ioaddr + RTC_MONTH);
+ year = readb(ioaddr + RTC_YEAR);
+ century = readb(ioaddr + RTC_CENTURY) & RTC_CENTURY_MASK;
+ writeb(0, ioaddr + RTC_CONTROL);
+ tm->tm_sec = bcd2bin(second);
+ tm->tm_min = bcd2bin(minute);
+ tm->tm_hour = bcd2bin(hour);
+ tm->tm_mday = bcd2bin(day);
+ tm->tm_wday = bcd2bin(week);
+ tm->tm_mon = bcd2bin(month) - 1;
+ /* year is 1900 + tm->tm_year */
+ tm->tm_year = bcd2bin(year) + bcd2bin(century) * 100 - 1900;
+
+ return 0;
+}
+
+static void ds1553_rtc_update_alarm(struct rtc_plat_data *pdata)
+{
+ void __iomem *ioaddr = pdata->ioaddr;
+ unsigned long flags;
+
+ spin_lock_irqsave(&pdata->lock, flags);
+ writeb(pdata->alrm_mday < 0 || (pdata->irqen & RTC_UF) ?
+ 0x80 : bin2bcd(pdata->alrm_mday),
+ ioaddr + RTC_DATE_ALARM);
+ writeb(pdata->alrm_hour < 0 || (pdata->irqen & RTC_UF) ?
+ 0x80 : bin2bcd(pdata->alrm_hour),
+ ioaddr + RTC_HOURS_ALARM);
+ writeb(pdata->alrm_min < 0 || (pdata->irqen & RTC_UF) ?
+ 0x80 : bin2bcd(pdata->alrm_min),
+ ioaddr + RTC_MINUTES_ALARM);
+ writeb(pdata->alrm_sec < 0 || (pdata->irqen & RTC_UF) ?
+ 0x80 : bin2bcd(pdata->alrm_sec),
+ ioaddr + RTC_SECONDS_ALARM);
+ writeb(pdata->irqen ? RTC_INTS_AE : 0, ioaddr + RTC_INTERRUPTS);
+ readb(ioaddr + RTC_FLAGS); /* clear interrupts */
+ spin_unlock_irqrestore(&pdata->lock, flags);
+}
+
+static int ds1553_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+
+ if (pdata->irq <= 0)
+ return -EINVAL;
+ pdata->alrm_mday = alrm->time.tm_mday;
+ pdata->alrm_hour = alrm->time.tm_hour;
+ pdata->alrm_min = alrm->time.tm_min;
+ pdata->alrm_sec = alrm->time.tm_sec;
+ if (alrm->enabled)
+ pdata->irqen |= RTC_AF;
+ ds1553_rtc_update_alarm(pdata);
+ return 0;
+}
+
+static int ds1553_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+
+ if (pdata->irq <= 0)
+ return -EINVAL;
+ alrm->time.tm_mday = pdata->alrm_mday < 0 ? 0 : pdata->alrm_mday;
+ alrm->time.tm_hour = pdata->alrm_hour < 0 ? 0 : pdata->alrm_hour;
+ alrm->time.tm_min = pdata->alrm_min < 0 ? 0 : pdata->alrm_min;
+ alrm->time.tm_sec = pdata->alrm_sec < 0 ? 0 : pdata->alrm_sec;
+ alrm->enabled = (pdata->irqen & RTC_AF) ? 1 : 0;
+ return 0;
+}
+
+static irqreturn_t ds1553_rtc_interrupt(int irq, void *dev_id)
+{
+ struct platform_device *pdev = dev_id;
+ struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
+ void __iomem *ioaddr = pdata->ioaddr;
+ unsigned long events = 0;
+
+ spin_lock(&pdata->lock);
+ /* read and clear interrupt */
+ if (readb(ioaddr + RTC_FLAGS) & RTC_FLAGS_AF) {
+ events = RTC_IRQF;
+ if (readb(ioaddr + RTC_SECONDS_ALARM) & 0x80)
+ events |= RTC_UF;
+ else
+ events |= RTC_AF;
+ rtc_update_irq(pdata->rtc, 1, events);
+ }
+ spin_unlock(&pdata->lock);
+ return events ? IRQ_HANDLED : IRQ_NONE;
+}
+
+static int ds1553_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+
+ if (pdata->irq <= 0)
+ return -EINVAL;
+ if (enabled)
+ pdata->irqen |= RTC_AF;
+ else
+ pdata->irqen &= ~RTC_AF;
+ ds1553_rtc_update_alarm(pdata);
+ return 0;
+}
+
+static const struct rtc_class_ops ds1553_rtc_ops = {
+ .read_time = ds1553_rtc_read_time,
+ .set_time = ds1553_rtc_set_time,
+ .read_alarm = ds1553_rtc_read_alarm,
+ .set_alarm = ds1553_rtc_set_alarm,
+ .alarm_irq_enable = ds1553_rtc_alarm_irq_enable,
+};
+
+static int ds1553_nvram_read(void *priv, unsigned int pos, void *val,
+ size_t bytes)
+{
+ struct platform_device *pdev = priv;
+ struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
+ void __iomem *ioaddr = pdata->ioaddr;
+ u8 *buf = val;
+
+ for (; bytes; bytes--)
+ *buf++ = readb(ioaddr + pos++);
+ return 0;
+}
+
+static int ds1553_nvram_write(void *priv, unsigned int pos, void *val,
+ size_t bytes)
+{
+ struct platform_device *pdev = priv;
+ struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
+ void __iomem *ioaddr = pdata->ioaddr;
+ u8 *buf = val;
+
+ for (; bytes; bytes--)
+ writeb(*buf++, ioaddr + pos++);
+ return 0;
+}
+
+static int ds1553_rtc_probe(struct platform_device *pdev)
+{
+ unsigned int cen, sec;
+ struct rtc_plat_data *pdata;
+ void __iomem *ioaddr;
+ int ret = 0;
+ struct nvmem_config nvmem_cfg = {
+ .name = "ds1553_nvram",
+ .word_size = 1,
+ .stride = 1,
+ .size = RTC_OFFSET,
+ .reg_read = ds1553_nvram_read,
+ .reg_write = ds1553_nvram_write,
+ .priv = pdev,
+ };
+
+ pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
+ if (!pdata)
+ return -ENOMEM;
+
+ ioaddr = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(ioaddr))
+ return PTR_ERR(ioaddr);
+ pdata->ioaddr = ioaddr;
+ pdata->irq = platform_get_irq(pdev, 0);
+
+ /* turn RTC on if it was not on */
+ sec = readb(ioaddr + RTC_SECONDS);
+ if (sec & RTC_STOP) {
+ sec &= RTC_SECONDS_MASK;
+ cen = readb(ioaddr + RTC_CENTURY) & RTC_CENTURY_MASK;
+ writeb(RTC_WRITE, ioaddr + RTC_CONTROL);
+ writeb(sec, ioaddr + RTC_SECONDS);
+ writeb(cen & RTC_CENTURY_MASK, ioaddr + RTC_CONTROL);
+ }
+ if (readb(ioaddr + RTC_FLAGS) & RTC_FLAGS_BLF)
+ dev_warn(&pdev->dev, "voltage-low detected.\n");
+
+ spin_lock_init(&pdata->lock);
+ pdata->last_jiffies = jiffies;
+ platform_set_drvdata(pdev, pdata);
+
+ pdata->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(pdata->rtc))
+ return PTR_ERR(pdata->rtc);
+
+ pdata->rtc->ops = &ds1553_rtc_ops;
+ pdata->rtc->nvram_old_abi = true;
+
+ ret = rtc_register_device(pdata->rtc);
+ if (ret)
+ return ret;
+
+ if (pdata->irq > 0) {
+ writeb(0, ioaddr + RTC_INTERRUPTS);
+ if (devm_request_irq(&pdev->dev, pdata->irq,
+ ds1553_rtc_interrupt,
+ 0, pdev->name, pdev) < 0) {
+ dev_warn(&pdev->dev, "interrupt not available.\n");
+ pdata->irq = 0;
+ }
+ }
+
+ if (rtc_nvmem_register(pdata->rtc, &nvmem_cfg))
+ dev_err(&pdev->dev, "unable to register nvmem\n");
+
+ return 0;
+}
+
+/* work with hotplug and coldplug */
+MODULE_ALIAS("platform:rtc-ds1553");
+
+static struct platform_driver ds1553_rtc_driver = {
+ .probe = ds1553_rtc_probe,
+ .driver = {
+ .name = "rtc-ds1553",
+ },
+};
+
+module_platform_driver(ds1553_rtc_driver);
+
+MODULE_AUTHOR("Atsushi Nemoto <anemo@mba.ocn.ne.jp>");
+MODULE_DESCRIPTION("Dallas DS1553 RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-ds1672.c b/drivers/rtc/rtc-ds1672.c
new file mode 100644
index 000000000..9da84df9f
--- /dev/null
+++ b/drivers/rtc/rtc-ds1672.c
@@ -0,0 +1,161 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * An rtc/i2c driver for the Dallas DS1672
+ * Copyright 2005-06 Tower Technologies
+ *
+ * Author: Alessandro Zummo <a.zummo@towertech.it>
+ */
+
+#include <linux/i2c.h>
+#include <linux/rtc.h>
+#include <linux/module.h>
+
+/* Registers */
+
+#define DS1672_REG_CNT_BASE 0
+#define DS1672_REG_CONTROL 4
+#define DS1672_REG_TRICKLE 5
+
+#define DS1672_REG_CONTROL_EOSC 0x80
+
+/*
+ * In the routines that deal directly with the ds1672 hardware, we use
+ * rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch
+ * Time is set to UTC.
+ */
+static int ds1672_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ unsigned long time;
+ unsigned char addr = DS1672_REG_CONTROL;
+ unsigned char buf[4];
+
+ struct i2c_msg msgs[] = {
+ {/* setup read ptr */
+ .addr = client->addr,
+ .len = 1,
+ .buf = &addr
+ },
+ {/* read date */
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = 1,
+ .buf = buf
+ },
+ };
+
+ /* read control register */
+ if ((i2c_transfer(client->adapter, &msgs[0], 2)) != 2) {
+ dev_warn(&client->dev, "Unable to read the control register\n");
+ return -EIO;
+ }
+
+ if (buf[0] & DS1672_REG_CONTROL_EOSC) {
+ dev_warn(&client->dev, "Oscillator not enabled. Set time to enable.\n");
+ return -EINVAL;
+ }
+
+ addr = DS1672_REG_CNT_BASE;
+ msgs[1].len = 4;
+
+ /* read date registers */
+ if ((i2c_transfer(client->adapter, &msgs[0], 2)) != 2) {
+ dev_err(&client->dev, "%s: read error\n", __func__);
+ return -EIO;
+ }
+
+ dev_dbg(&client->dev,
+ "%s: raw read data - counters=%02x,%02x,%02x,%02x\n",
+ __func__, buf[0], buf[1], buf[2], buf[3]);
+
+ time = ((unsigned long)buf[3] << 24) | (buf[2] << 16) |
+ (buf[1] << 8) | buf[0];
+
+ rtc_time64_to_tm(time, tm);
+
+ dev_dbg(&client->dev, "%s: tm is %ptR\n", __func__, tm);
+
+ return 0;
+}
+
+static int ds1672_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ int xfer;
+ unsigned char buf[6];
+ unsigned long secs = rtc_tm_to_time64(tm);
+
+ buf[0] = DS1672_REG_CNT_BASE;
+ buf[1] = secs & 0x000000FF;
+ buf[2] = (secs & 0x0000FF00) >> 8;
+ buf[3] = (secs & 0x00FF0000) >> 16;
+ buf[4] = (secs & 0xFF000000) >> 24;
+ buf[5] = 0; /* set control reg to enable counting */
+
+ xfer = i2c_master_send(client, buf, 6);
+ if (xfer != 6) {
+ dev_err(&client->dev, "%s: send: %d\n", __func__, xfer);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static const struct rtc_class_ops ds1672_rtc_ops = {
+ .read_time = ds1672_read_time,
+ .set_time = ds1672_set_time,
+};
+
+static int ds1672_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ int err = 0;
+ struct rtc_device *rtc;
+
+ dev_dbg(&client->dev, "%s\n", __func__);
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
+ return -ENODEV;
+
+ rtc = devm_rtc_allocate_device(&client->dev);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ rtc->ops = &ds1672_rtc_ops;
+ rtc->range_max = U32_MAX;
+
+ err = rtc_register_device(rtc);
+ if (err)
+ return err;
+
+ i2c_set_clientdata(client, rtc);
+
+ return 0;
+}
+
+static const struct i2c_device_id ds1672_id[] = {
+ { "ds1672", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, ds1672_id);
+
+static const struct of_device_id ds1672_of_match[] = {
+ { .compatible = "dallas,ds1672" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, ds1672_of_match);
+
+static struct i2c_driver ds1672_driver = {
+ .driver = {
+ .name = "rtc-ds1672",
+ .of_match_table = of_match_ptr(ds1672_of_match),
+ },
+ .probe = &ds1672_probe,
+ .id_table = ds1672_id,
+};
+
+module_i2c_driver(ds1672_driver);
+
+MODULE_AUTHOR("Alessandro Zummo <a.zummo@towertech.it>");
+MODULE_DESCRIPTION("Dallas/Maxim DS1672 timekeeper driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-ds1685.c b/drivers/rtc/rtc-ds1685.c
new file mode 100644
index 000000000..98932ab0f
--- /dev/null
+++ b/drivers/rtc/rtc-ds1685.c
@@ -0,0 +1,1452 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * An rtc driver for the Dallas/Maxim DS1685/DS1687 and related real-time
+ * chips.
+ *
+ * Copyright (C) 2011-2014 Joshua Kinard <kumba@gentoo.org>.
+ * Copyright (C) 2009 Matthias Fuchs <matthias.fuchs@esd-electronics.com>.
+ *
+ * References:
+ * DS1685/DS1687 3V/5V Real-Time Clocks, 19-5215, Rev 4/10.
+ * DS17x85/DS17x87 3V/5V Real-Time Clocks, 19-5222, Rev 4/10.
+ * DS1689/DS1693 3V/5V Serialized Real-Time Clocks, Rev 112105.
+ * Application Note 90, Using the Multiplex Bus RTC Extended Features.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/bcd.h>
+#include <linux/delay.h>
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/workqueue.h>
+
+#include <linux/rtc/ds1685.h>
+
+#ifdef CONFIG_PROC_FS
+#include <linux/proc_fs.h>
+#endif
+
+
+/* ----------------------------------------------------------------------- */
+/*
+ * Standard read/write
+ * all registers are mapped in CPU address space
+ */
+
+/**
+ * ds1685_read - read a value from an rtc register.
+ * @rtc: pointer to the ds1685 rtc structure.
+ * @reg: the register address to read.
+ */
+static u8
+ds1685_read(struct ds1685_priv *rtc, int reg)
+{
+ return readb((u8 __iomem *)rtc->regs +
+ (reg * rtc->regstep));
+}
+
+/**
+ * ds1685_write - write a value to an rtc register.
+ * @rtc: pointer to the ds1685 rtc structure.
+ * @reg: the register address to write.
+ * @value: value to write to the register.
+ */
+static void
+ds1685_write(struct ds1685_priv *rtc, int reg, u8 value)
+{
+ writeb(value, ((u8 __iomem *)rtc->regs +
+ (reg * rtc->regstep)));
+}
+/* ----------------------------------------------------------------------- */
+
+/*
+ * Indirect read/write functions
+ * access happens via address and data register mapped in CPU address space
+ */
+
+/**
+ * ds1685_indirect_read - read a value from an rtc register.
+ * @rtc: pointer to the ds1685 rtc structure.
+ * @reg: the register address to read.
+ */
+static u8
+ds1685_indirect_read(struct ds1685_priv *rtc, int reg)
+{
+ writeb(reg, rtc->regs);
+ return readb(rtc->data);
+}
+
+/**
+ * ds1685_indirect_write - write a value to an rtc register.
+ * @rtc: pointer to the ds1685 rtc structure.
+ * @reg: the register address to write.
+ * @value: value to write to the register.
+ */
+static void
+ds1685_indirect_write(struct ds1685_priv *rtc, int reg, u8 value)
+{
+ writeb(reg, rtc->regs);
+ writeb(value, rtc->data);
+}
+
+/* ----------------------------------------------------------------------- */
+/* Inlined functions */
+
+/**
+ * ds1685_rtc_bcd2bin - bcd2bin wrapper in case platform doesn't support BCD.
+ * @rtc: pointer to the ds1685 rtc structure.
+ * @val: u8 time value to consider converting.
+ * @bcd_mask: u8 mask value if BCD mode is used.
+ * @bin_mask: u8 mask value if BIN mode is used.
+ *
+ * Returns the value, converted to BIN if originally in BCD and bcd_mode TRUE.
+ */
+static inline u8
+ds1685_rtc_bcd2bin(struct ds1685_priv *rtc, u8 val, u8 bcd_mask, u8 bin_mask)
+{
+ if (rtc->bcd_mode)
+ return (bcd2bin(val) & bcd_mask);
+
+ return (val & bin_mask);
+}
+
+/**
+ * ds1685_rtc_bin2bcd - bin2bcd wrapper in case platform doesn't support BCD.
+ * @rtc: pointer to the ds1685 rtc structure.
+ * @val: u8 time value to consider converting.
+ * @bin_mask: u8 mask value if BIN mode is used.
+ * @bcd_mask: u8 mask value if BCD mode is used.
+ *
+ * Returns the value, converted to BCD if originally in BIN and bcd_mode TRUE.
+ */
+static inline u8
+ds1685_rtc_bin2bcd(struct ds1685_priv *rtc, u8 val, u8 bin_mask, u8 bcd_mask)
+{
+ if (rtc->bcd_mode)
+ return (bin2bcd(val) & bcd_mask);
+
+ return (val & bin_mask);
+}
+
+/**
+ * s1685_rtc_check_mday - check validity of the day of month.
+ * @rtc: pointer to the ds1685 rtc structure.
+ * @mday: day of month.
+ *
+ * Returns -EDOM if the day of month is not within 1..31 range.
+ */
+static inline int
+ds1685_rtc_check_mday(struct ds1685_priv *rtc, u8 mday)
+{
+ if (rtc->bcd_mode) {
+ if (mday < 0x01 || mday > 0x31 || (mday & 0x0f) > 0x09)
+ return -EDOM;
+ } else {
+ if (mday < 1 || mday > 31)
+ return -EDOM;
+ }
+ return 0;
+}
+
+/**
+ * ds1685_rtc_switch_to_bank0 - switch the rtc to bank 0.
+ * @rtc: pointer to the ds1685 rtc structure.
+ */
+static inline void
+ds1685_rtc_switch_to_bank0(struct ds1685_priv *rtc)
+{
+ rtc->write(rtc, RTC_CTRL_A,
+ (rtc->read(rtc, RTC_CTRL_A) & ~(RTC_CTRL_A_DV0)));
+}
+
+/**
+ * ds1685_rtc_switch_to_bank1 - switch the rtc to bank 1.
+ * @rtc: pointer to the ds1685 rtc structure.
+ */
+static inline void
+ds1685_rtc_switch_to_bank1(struct ds1685_priv *rtc)
+{
+ rtc->write(rtc, RTC_CTRL_A,
+ (rtc->read(rtc, RTC_CTRL_A) | RTC_CTRL_A_DV0));
+}
+
+/**
+ * ds1685_rtc_begin_data_access - prepare the rtc for data access.
+ * @rtc: pointer to the ds1685 rtc structure.
+ *
+ * This takes several steps to prepare the rtc for access to get/set time
+ * and alarm values from the rtc registers:
+ * - Sets the SET bit in Control Register B.
+ * - Reads Ext Control Register 4A and checks the INCR bit.
+ * - If INCR is active, a short delay is added before Ext Control Register 4A
+ * is read again in a loop until INCR is inactive.
+ * - Switches the rtc to bank 1. This allows access to all relevant
+ * data for normal rtc operation, as bank 0 contains only the nvram.
+ */
+static inline void
+ds1685_rtc_begin_data_access(struct ds1685_priv *rtc)
+{
+ /* Set the SET bit in Ctrl B */
+ rtc->write(rtc, RTC_CTRL_B,
+ (rtc->read(rtc, RTC_CTRL_B) | RTC_CTRL_B_SET));
+
+ /* Switch to Bank 1 */
+ ds1685_rtc_switch_to_bank1(rtc);
+
+ /* Read Ext Ctrl 4A and check the INCR bit to avoid a lockout. */
+ while (rtc->read(rtc, RTC_EXT_CTRL_4A) & RTC_CTRL_4A_INCR)
+ cpu_relax();
+}
+
+/**
+ * ds1685_rtc_end_data_access - end data access on the rtc.
+ * @rtc: pointer to the ds1685 rtc structure.
+ *
+ * This ends what was started by ds1685_rtc_begin_data_access:
+ * - Switches the rtc back to bank 0.
+ * - Clears the SET bit in Control Register B.
+ */
+static inline void
+ds1685_rtc_end_data_access(struct ds1685_priv *rtc)
+{
+ /* Switch back to Bank 0 */
+ ds1685_rtc_switch_to_bank0(rtc);
+
+ /* Clear the SET bit in Ctrl B */
+ rtc->write(rtc, RTC_CTRL_B,
+ (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_SET)));
+}
+
+/**
+ * ds1685_rtc_get_ssn - retrieve the silicon serial number.
+ * @rtc: pointer to the ds1685 rtc structure.
+ * @ssn: u8 array to hold the bits of the silicon serial number.
+ *
+ * This number starts at 0x40, and is 8-bytes long, ending at 0x47. The
+ * first byte is the model number, the next six bytes are the serial number
+ * digits, and the final byte is a CRC check byte. Together, they form the
+ * silicon serial number.
+ *
+ * These values are stored in bank1, so ds1685_rtc_switch_to_bank1 must be
+ * called first before calling this function, else data will be read out of
+ * the bank0 NVRAM. Be sure to call ds1685_rtc_switch_to_bank0 when done.
+ */
+static inline void
+ds1685_rtc_get_ssn(struct ds1685_priv *rtc, u8 *ssn)
+{
+ ssn[0] = rtc->read(rtc, RTC_BANK1_SSN_MODEL);
+ ssn[1] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_1);
+ ssn[2] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_2);
+ ssn[3] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_3);
+ ssn[4] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_4);
+ ssn[5] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_5);
+ ssn[6] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_6);
+ ssn[7] = rtc->read(rtc, RTC_BANK1_SSN_CRC);
+}
+/* ----------------------------------------------------------------------- */
+
+
+/* ----------------------------------------------------------------------- */
+/* Read/Set Time & Alarm functions */
+
+/**
+ * ds1685_rtc_read_time - reads the time registers.
+ * @dev: pointer to device structure.
+ * @tm: pointer to rtc_time structure.
+ */
+static int
+ds1685_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct ds1685_priv *rtc = dev_get_drvdata(dev);
+ u8 century;
+ u8 seconds, minutes, hours, wday, mday, month, years;
+
+ /* Fetch the time info from the RTC registers. */
+ ds1685_rtc_begin_data_access(rtc);
+ seconds = rtc->read(rtc, RTC_SECS);
+ minutes = rtc->read(rtc, RTC_MINS);
+ hours = rtc->read(rtc, RTC_HRS);
+ wday = rtc->read(rtc, RTC_WDAY);
+ mday = rtc->read(rtc, RTC_MDAY);
+ month = rtc->read(rtc, RTC_MONTH);
+ years = rtc->read(rtc, RTC_YEAR);
+ century = rtc->read(rtc, RTC_CENTURY);
+ ds1685_rtc_end_data_access(rtc);
+
+ /* bcd2bin if needed, perform fixups, and store to rtc_time. */
+ years = ds1685_rtc_bcd2bin(rtc, years, RTC_YEAR_BCD_MASK,
+ RTC_YEAR_BIN_MASK);
+ century = ds1685_rtc_bcd2bin(rtc, century, RTC_CENTURY_MASK,
+ RTC_CENTURY_MASK);
+ tm->tm_sec = ds1685_rtc_bcd2bin(rtc, seconds, RTC_SECS_BCD_MASK,
+ RTC_SECS_BIN_MASK);
+ tm->tm_min = ds1685_rtc_bcd2bin(rtc, minutes, RTC_MINS_BCD_MASK,
+ RTC_MINS_BIN_MASK);
+ tm->tm_hour = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_24_BCD_MASK,
+ RTC_HRS_24_BIN_MASK);
+ tm->tm_wday = (ds1685_rtc_bcd2bin(rtc, wday, RTC_WDAY_MASK,
+ RTC_WDAY_MASK) - 1);
+ tm->tm_mday = ds1685_rtc_bcd2bin(rtc, mday, RTC_MDAY_BCD_MASK,
+ RTC_MDAY_BIN_MASK);
+ tm->tm_mon = (ds1685_rtc_bcd2bin(rtc, month, RTC_MONTH_BCD_MASK,
+ RTC_MONTH_BIN_MASK) - 1);
+ tm->tm_year = ((years + (century * 100)) - 1900);
+ tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
+ tm->tm_isdst = 0; /* RTC has hardcoded timezone, so don't use. */
+
+ return 0;
+}
+
+/**
+ * ds1685_rtc_set_time - sets the time registers.
+ * @dev: pointer to device structure.
+ * @tm: pointer to rtc_time structure.
+ */
+static int
+ds1685_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct ds1685_priv *rtc = dev_get_drvdata(dev);
+ u8 ctrlb, seconds, minutes, hours, wday, mday, month, years, century;
+
+ /* Fetch the time info from rtc_time. */
+ seconds = ds1685_rtc_bin2bcd(rtc, tm->tm_sec, RTC_SECS_BIN_MASK,
+ RTC_SECS_BCD_MASK);
+ minutes = ds1685_rtc_bin2bcd(rtc, tm->tm_min, RTC_MINS_BIN_MASK,
+ RTC_MINS_BCD_MASK);
+ hours = ds1685_rtc_bin2bcd(rtc, tm->tm_hour, RTC_HRS_24_BIN_MASK,
+ RTC_HRS_24_BCD_MASK);
+ wday = ds1685_rtc_bin2bcd(rtc, (tm->tm_wday + 1), RTC_WDAY_MASK,
+ RTC_WDAY_MASK);
+ mday = ds1685_rtc_bin2bcd(rtc, tm->tm_mday, RTC_MDAY_BIN_MASK,
+ RTC_MDAY_BCD_MASK);
+ month = ds1685_rtc_bin2bcd(rtc, (tm->tm_mon + 1), RTC_MONTH_BIN_MASK,
+ RTC_MONTH_BCD_MASK);
+ years = ds1685_rtc_bin2bcd(rtc, (tm->tm_year % 100),
+ RTC_YEAR_BIN_MASK, RTC_YEAR_BCD_MASK);
+ century = ds1685_rtc_bin2bcd(rtc, ((tm->tm_year + 1900) / 100),
+ RTC_CENTURY_MASK, RTC_CENTURY_MASK);
+
+ /*
+ * Perform Sanity Checks:
+ * - Months: !> 12, Month Day != 0.
+ * - Month Day !> Max days in current month.
+ * - Hours !>= 24, Mins !>= 60, Secs !>= 60, & Weekday !> 7.
+ */
+ if ((tm->tm_mon > 11) || (mday == 0))
+ return -EDOM;
+
+ if (tm->tm_mday > rtc_month_days(tm->tm_mon, tm->tm_year))
+ return -EDOM;
+
+ if ((tm->tm_hour >= 24) || (tm->tm_min >= 60) ||
+ (tm->tm_sec >= 60) || (wday > 7))
+ return -EDOM;
+
+ /*
+ * Set the data mode to use and store the time values in the
+ * RTC registers.
+ */
+ ds1685_rtc_begin_data_access(rtc);
+ ctrlb = rtc->read(rtc, RTC_CTRL_B);
+ if (rtc->bcd_mode)
+ ctrlb &= ~(RTC_CTRL_B_DM);
+ else
+ ctrlb |= RTC_CTRL_B_DM;
+ rtc->write(rtc, RTC_CTRL_B, ctrlb);
+ rtc->write(rtc, RTC_SECS, seconds);
+ rtc->write(rtc, RTC_MINS, minutes);
+ rtc->write(rtc, RTC_HRS, hours);
+ rtc->write(rtc, RTC_WDAY, wday);
+ rtc->write(rtc, RTC_MDAY, mday);
+ rtc->write(rtc, RTC_MONTH, month);
+ rtc->write(rtc, RTC_YEAR, years);
+ rtc->write(rtc, RTC_CENTURY, century);
+ ds1685_rtc_end_data_access(rtc);
+
+ return 0;
+}
+
+/**
+ * ds1685_rtc_read_alarm - reads the alarm registers.
+ * @dev: pointer to device structure.
+ * @alrm: pointer to rtc_wkalrm structure.
+ *
+ * There are three primary alarm registers: seconds, minutes, and hours.
+ * A fourth alarm register for the month date is also available in bank1 for
+ * kickstart/wakeup features. The DS1685/DS1687 manual states that a
+ * "don't care" value ranging from 0xc0 to 0xff may be written into one or
+ * more of the three alarm bytes to act as a wildcard value. The fourth
+ * byte doesn't support a "don't care" value.
+ */
+static int
+ds1685_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct ds1685_priv *rtc = dev_get_drvdata(dev);
+ u8 seconds, minutes, hours, mday, ctrlb, ctrlc;
+ int ret;
+
+ /* Fetch the alarm info from the RTC alarm registers. */
+ ds1685_rtc_begin_data_access(rtc);
+ seconds = rtc->read(rtc, RTC_SECS_ALARM);
+ minutes = rtc->read(rtc, RTC_MINS_ALARM);
+ hours = rtc->read(rtc, RTC_HRS_ALARM);
+ mday = rtc->read(rtc, RTC_MDAY_ALARM);
+ ctrlb = rtc->read(rtc, RTC_CTRL_B);
+ ctrlc = rtc->read(rtc, RTC_CTRL_C);
+ ds1685_rtc_end_data_access(rtc);
+
+ /* Check the month date for validity. */
+ ret = ds1685_rtc_check_mday(rtc, mday);
+ if (ret)
+ return ret;
+
+ /*
+ * Check the three alarm bytes.
+ *
+ * The Linux RTC system doesn't support the "don't care" capability
+ * of this RTC chip. We check for it anyways in case support is
+ * added in the future and only assign when we care.
+ */
+ if (likely(seconds < 0xc0))
+ alrm->time.tm_sec = ds1685_rtc_bcd2bin(rtc, seconds,
+ RTC_SECS_BCD_MASK,
+ RTC_SECS_BIN_MASK);
+
+ if (likely(minutes < 0xc0))
+ alrm->time.tm_min = ds1685_rtc_bcd2bin(rtc, minutes,
+ RTC_MINS_BCD_MASK,
+ RTC_MINS_BIN_MASK);
+
+ if (likely(hours < 0xc0))
+ alrm->time.tm_hour = ds1685_rtc_bcd2bin(rtc, hours,
+ RTC_HRS_24_BCD_MASK,
+ RTC_HRS_24_BIN_MASK);
+
+ /* Write the data to rtc_wkalrm. */
+ alrm->time.tm_mday = ds1685_rtc_bcd2bin(rtc, mday, RTC_MDAY_BCD_MASK,
+ RTC_MDAY_BIN_MASK);
+ alrm->enabled = !!(ctrlb & RTC_CTRL_B_AIE);
+ alrm->pending = !!(ctrlc & RTC_CTRL_C_AF);
+
+ return 0;
+}
+
+/**
+ * ds1685_rtc_set_alarm - sets the alarm in registers.
+ * @dev: pointer to device structure.
+ * @alrm: pointer to rtc_wkalrm structure.
+ */
+static int
+ds1685_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct ds1685_priv *rtc = dev_get_drvdata(dev);
+ u8 ctrlb, seconds, minutes, hours, mday;
+ int ret;
+
+ /* Fetch the alarm info and convert to BCD. */
+ seconds = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_sec,
+ RTC_SECS_BIN_MASK,
+ RTC_SECS_BCD_MASK);
+ minutes = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_min,
+ RTC_MINS_BIN_MASK,
+ RTC_MINS_BCD_MASK);
+ hours = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_hour,
+ RTC_HRS_24_BIN_MASK,
+ RTC_HRS_24_BCD_MASK);
+ mday = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_mday,
+ RTC_MDAY_BIN_MASK,
+ RTC_MDAY_BCD_MASK);
+
+ /* Check the month date for validity. */
+ ret = ds1685_rtc_check_mday(rtc, mday);
+ if (ret)
+ return ret;
+
+ /*
+ * Check the three alarm bytes.
+ *
+ * The Linux RTC system doesn't support the "don't care" capability
+ * of this RTC chip because rtc_valid_tm tries to validate every
+ * field, and we only support four fields. We put the support
+ * here anyways for the future.
+ */
+ if (unlikely(seconds >= 0xc0))
+ seconds = 0xff;
+
+ if (unlikely(minutes >= 0xc0))
+ minutes = 0xff;
+
+ if (unlikely(hours >= 0xc0))
+ hours = 0xff;
+
+ alrm->time.tm_mon = -1;
+ alrm->time.tm_year = -1;
+ alrm->time.tm_wday = -1;
+ alrm->time.tm_yday = -1;
+ alrm->time.tm_isdst = -1;
+
+ /* Disable the alarm interrupt first. */
+ ds1685_rtc_begin_data_access(rtc);
+ ctrlb = rtc->read(rtc, RTC_CTRL_B);
+ rtc->write(rtc, RTC_CTRL_B, (ctrlb & ~(RTC_CTRL_B_AIE)));
+
+ /* Read ctrlc to clear RTC_CTRL_C_AF. */
+ rtc->read(rtc, RTC_CTRL_C);
+
+ /*
+ * Set the data mode to use and store the time values in the
+ * RTC registers.
+ */
+ ctrlb = rtc->read(rtc, RTC_CTRL_B);
+ if (rtc->bcd_mode)
+ ctrlb &= ~(RTC_CTRL_B_DM);
+ else
+ ctrlb |= RTC_CTRL_B_DM;
+ rtc->write(rtc, RTC_CTRL_B, ctrlb);
+ rtc->write(rtc, RTC_SECS_ALARM, seconds);
+ rtc->write(rtc, RTC_MINS_ALARM, minutes);
+ rtc->write(rtc, RTC_HRS_ALARM, hours);
+ rtc->write(rtc, RTC_MDAY_ALARM, mday);
+
+ /* Re-enable the alarm if needed. */
+ if (alrm->enabled) {
+ ctrlb = rtc->read(rtc, RTC_CTRL_B);
+ ctrlb |= RTC_CTRL_B_AIE;
+ rtc->write(rtc, RTC_CTRL_B, ctrlb);
+ }
+
+ /* Done! */
+ ds1685_rtc_end_data_access(rtc);
+
+ return 0;
+}
+/* ----------------------------------------------------------------------- */
+
+
+/* ----------------------------------------------------------------------- */
+/* /dev/rtcX Interface functions */
+
+/**
+ * ds1685_rtc_alarm_irq_enable - replaces ioctl() RTC_AIE on/off.
+ * @dev: pointer to device structure.
+ * @enabled: flag indicating whether to enable or disable.
+ */
+static int
+ds1685_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct ds1685_priv *rtc = dev_get_drvdata(dev);
+
+ /* Flip the requisite interrupt-enable bit. */
+ if (enabled)
+ rtc->write(rtc, RTC_CTRL_B, (rtc->read(rtc, RTC_CTRL_B) |
+ RTC_CTRL_B_AIE));
+ else
+ rtc->write(rtc, RTC_CTRL_B, (rtc->read(rtc, RTC_CTRL_B) &
+ ~(RTC_CTRL_B_AIE)));
+
+ /* Read Control C to clear all the flag bits. */
+ rtc->read(rtc, RTC_CTRL_C);
+
+ return 0;
+}
+/* ----------------------------------------------------------------------- */
+
+
+/* ----------------------------------------------------------------------- */
+/* IRQ handler */
+
+/**
+ * ds1685_rtc_extended_irq - take care of extended interrupts
+ * @rtc: pointer to the ds1685 rtc structure.
+ * @pdev: platform device pointer.
+ */
+static void
+ds1685_rtc_extended_irq(struct ds1685_priv *rtc, struct platform_device *pdev)
+{
+ u8 ctrl4a, ctrl4b;
+
+ ds1685_rtc_switch_to_bank1(rtc);
+ ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A);
+ ctrl4b = rtc->read(rtc, RTC_EXT_CTRL_4B);
+
+ /*
+ * Check for a kickstart interrupt. With Vcc applied, this
+ * typically means that the power button was pressed, so we
+ * begin the shutdown sequence.
+ */
+ if ((ctrl4b & RTC_CTRL_4B_KSE) && (ctrl4a & RTC_CTRL_4A_KF)) {
+ /* Briefly disable kickstarts to debounce button presses. */
+ rtc->write(rtc, RTC_EXT_CTRL_4B,
+ (rtc->read(rtc, RTC_EXT_CTRL_4B) &
+ ~(RTC_CTRL_4B_KSE)));
+
+ /* Clear the kickstart flag. */
+ rtc->write(rtc, RTC_EXT_CTRL_4A,
+ (ctrl4a & ~(RTC_CTRL_4A_KF)));
+
+
+ /*
+ * Sleep 500ms before re-enabling kickstarts. This allows
+ * adequate time to avoid reading signal jitter as additional
+ * button presses.
+ */
+ msleep(500);
+ rtc->write(rtc, RTC_EXT_CTRL_4B,
+ (rtc->read(rtc, RTC_EXT_CTRL_4B) |
+ RTC_CTRL_4B_KSE));
+
+ /* Call the platform pre-poweroff function. Else, shutdown. */
+ if (rtc->prepare_poweroff != NULL)
+ rtc->prepare_poweroff();
+ else
+ ds1685_rtc_poweroff(pdev);
+ }
+
+ /*
+ * Check for a wake-up interrupt. With Vcc applied, this is
+ * essentially a second alarm interrupt, except it takes into
+ * account the 'date' register in bank1 in addition to the
+ * standard three alarm registers.
+ */
+ if ((ctrl4b & RTC_CTRL_4B_WIE) && (ctrl4a & RTC_CTRL_4A_WF)) {
+ rtc->write(rtc, RTC_EXT_CTRL_4A,
+ (ctrl4a & ~(RTC_CTRL_4A_WF)));
+
+ /* Call the platform wake_alarm function if defined. */
+ if (rtc->wake_alarm != NULL)
+ rtc->wake_alarm();
+ else
+ dev_warn(&pdev->dev,
+ "Wake Alarm IRQ just occurred!\n");
+ }
+
+ /*
+ * Check for a ram-clear interrupt. This happens if RIE=1 and RF=0
+ * when RCE=1 in 4B. This clears all NVRAM bytes in bank0 by setting
+ * each byte to a logic 1. This has no effect on any extended
+ * NV-SRAM that might be present, nor on the time/calendar/alarm
+ * registers. After a ram-clear is completed, there is a minimum
+ * recovery time of ~150ms in which all reads/writes are locked out.
+ * NOTE: A ram-clear can still occur if RCE=1 and RIE=0. We cannot
+ * catch this scenario.
+ */
+ if ((ctrl4b & RTC_CTRL_4B_RIE) && (ctrl4a & RTC_CTRL_4A_RF)) {
+ rtc->write(rtc, RTC_EXT_CTRL_4A,
+ (ctrl4a & ~(RTC_CTRL_4A_RF)));
+ msleep(150);
+
+ /* Call the platform post_ram_clear function if defined. */
+ if (rtc->post_ram_clear != NULL)
+ rtc->post_ram_clear();
+ else
+ dev_warn(&pdev->dev,
+ "RAM-Clear IRQ just occurred!\n");
+ }
+ ds1685_rtc_switch_to_bank0(rtc);
+}
+
+/**
+ * ds1685_rtc_irq_handler - IRQ handler.
+ * @irq: IRQ number.
+ * @dev_id: platform device pointer.
+ */
+static irqreturn_t
+ds1685_rtc_irq_handler(int irq, void *dev_id)
+{
+ struct platform_device *pdev = dev_id;
+ struct ds1685_priv *rtc = platform_get_drvdata(pdev);
+ struct mutex *rtc_mutex;
+ u8 ctrlb, ctrlc;
+ unsigned long events = 0;
+ u8 num_irqs = 0;
+
+ /* Abort early if the device isn't ready yet (i.e., DEBUG_SHIRQ). */
+ if (unlikely(!rtc))
+ return IRQ_HANDLED;
+
+ rtc_mutex = &rtc->dev->ops_lock;
+ mutex_lock(rtc_mutex);
+
+ /* Ctrlb holds the interrupt-enable bits and ctrlc the flag bits. */
+ ctrlb = rtc->read(rtc, RTC_CTRL_B);
+ ctrlc = rtc->read(rtc, RTC_CTRL_C);
+
+ /* Is the IRQF bit set? */
+ if (likely(ctrlc & RTC_CTRL_C_IRQF)) {
+ /*
+ * We need to determine if it was one of the standard
+ * events: PF, AF, or UF. If so, we handle them and
+ * update the RTC core.
+ */
+ if (likely(ctrlc & RTC_CTRL_B_PAU_MASK)) {
+ events = RTC_IRQF;
+
+ /* Check for a periodic interrupt. */
+ if ((ctrlb & RTC_CTRL_B_PIE) &&
+ (ctrlc & RTC_CTRL_C_PF)) {
+ events |= RTC_PF;
+ num_irqs++;
+ }
+
+ /* Check for an alarm interrupt. */
+ if ((ctrlb & RTC_CTRL_B_AIE) &&
+ (ctrlc & RTC_CTRL_C_AF)) {
+ events |= RTC_AF;
+ num_irqs++;
+ }
+
+ /* Check for an update interrupt. */
+ if ((ctrlb & RTC_CTRL_B_UIE) &&
+ (ctrlc & RTC_CTRL_C_UF)) {
+ events |= RTC_UF;
+ num_irqs++;
+ }
+ } else {
+ /*
+ * One of the "extended" interrupts was received that
+ * is not recognized by the RTC core.
+ */
+ ds1685_rtc_extended_irq(rtc, pdev);
+ }
+ }
+ rtc_update_irq(rtc->dev, num_irqs, events);
+ mutex_unlock(rtc_mutex);
+
+ return events ? IRQ_HANDLED : IRQ_NONE;
+}
+/* ----------------------------------------------------------------------- */
+
+
+/* ----------------------------------------------------------------------- */
+/* ProcFS interface */
+
+#ifdef CONFIG_PROC_FS
+#define NUM_REGS 6 /* Num of control registers. */
+#define NUM_BITS 8 /* Num bits per register. */
+#define NUM_SPACES 4 /* Num spaces between each bit. */
+
+/*
+ * Periodic Interrupt Rates.
+ */
+static const char *ds1685_rtc_pirq_rate[16] = {
+ "none", "3.90625ms", "7.8125ms", "0.122070ms", "0.244141ms",
+ "0.488281ms", "0.9765625ms", "1.953125ms", "3.90625ms", "7.8125ms",
+ "15.625ms", "31.25ms", "62.5ms", "125ms", "250ms", "500ms"
+};
+
+/*
+ * Square-Wave Output Frequencies.
+ */
+static const char *ds1685_rtc_sqw_freq[16] = {
+ "none", "256Hz", "128Hz", "8192Hz", "4096Hz", "2048Hz", "1024Hz",
+ "512Hz", "256Hz", "128Hz", "64Hz", "32Hz", "16Hz", "8Hz", "4Hz", "2Hz"
+};
+
+/**
+ * ds1685_rtc_proc - procfs access function.
+ * @dev: pointer to device structure.
+ * @seq: pointer to seq_file structure.
+ */
+static int
+ds1685_rtc_proc(struct device *dev, struct seq_file *seq)
+{
+ struct ds1685_priv *rtc = dev_get_drvdata(dev);
+ u8 ctrla, ctrlb, ctrld, ctrl4a, ctrl4b, ssn[8];
+ char *model;
+
+ /* Read all the relevant data from the control registers. */
+ ds1685_rtc_switch_to_bank1(rtc);
+ ds1685_rtc_get_ssn(rtc, ssn);
+ ctrla = rtc->read(rtc, RTC_CTRL_A);
+ ctrlb = rtc->read(rtc, RTC_CTRL_B);
+ ctrld = rtc->read(rtc, RTC_CTRL_D);
+ ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A);
+ ctrl4b = rtc->read(rtc, RTC_EXT_CTRL_4B);
+ ds1685_rtc_switch_to_bank0(rtc);
+
+ /* Determine the RTC model. */
+ switch (ssn[0]) {
+ case RTC_MODEL_DS1685:
+ model = "DS1685/DS1687\0";
+ break;
+ case RTC_MODEL_DS1689:
+ model = "DS1689/DS1693\0";
+ break;
+ case RTC_MODEL_DS17285:
+ model = "DS17285/DS17287\0";
+ break;
+ case RTC_MODEL_DS17485:
+ model = "DS17485/DS17487\0";
+ break;
+ case RTC_MODEL_DS17885:
+ model = "DS17885/DS17887\0";
+ break;
+ default:
+ model = "Unknown\0";
+ break;
+ }
+
+ /* Print out the information. */
+ seq_printf(seq,
+ "Model\t\t: %s\n"
+ "Oscillator\t: %s\n"
+ "12/24hr\t\t: %s\n"
+ "DST\t\t: %s\n"
+ "Data mode\t: %s\n"
+ "Battery\t\t: %s\n"
+ "Aux batt\t: %s\n"
+ "Update IRQ\t: %s\n"
+ "Periodic IRQ\t: %s\n"
+ "Periodic Rate\t: %s\n"
+ "SQW Freq\t: %s\n"
+ "Serial #\t: %8phC\n",
+ model,
+ ((ctrla & RTC_CTRL_A_DV1) ? "enabled" : "disabled"),
+ ((ctrlb & RTC_CTRL_B_2412) ? "24-hour" : "12-hour"),
+ ((ctrlb & RTC_CTRL_B_DSE) ? "enabled" : "disabled"),
+ ((ctrlb & RTC_CTRL_B_DM) ? "binary" : "BCD"),
+ ((ctrld & RTC_CTRL_D_VRT) ? "ok" : "exhausted or n/a"),
+ ((ctrl4a & RTC_CTRL_4A_VRT2) ? "ok" : "exhausted or n/a"),
+ ((ctrlb & RTC_CTRL_B_UIE) ? "yes" : "no"),
+ ((ctrlb & RTC_CTRL_B_PIE) ? "yes" : "no"),
+ (!(ctrl4b & RTC_CTRL_4B_E32K) ?
+ ds1685_rtc_pirq_rate[(ctrla & RTC_CTRL_A_RS_MASK)] : "none"),
+ (!((ctrl4b & RTC_CTRL_4B_E32K)) ?
+ ds1685_rtc_sqw_freq[(ctrla & RTC_CTRL_A_RS_MASK)] : "32768Hz"),
+ ssn);
+ return 0;
+}
+#else
+#define ds1685_rtc_proc NULL
+#endif /* CONFIG_PROC_FS */
+/* ----------------------------------------------------------------------- */
+
+
+/* ----------------------------------------------------------------------- */
+/* RTC Class operations */
+
+static const struct rtc_class_ops
+ds1685_rtc_ops = {
+ .proc = ds1685_rtc_proc,
+ .read_time = ds1685_rtc_read_time,
+ .set_time = ds1685_rtc_set_time,
+ .read_alarm = ds1685_rtc_read_alarm,
+ .set_alarm = ds1685_rtc_set_alarm,
+ .alarm_irq_enable = ds1685_rtc_alarm_irq_enable,
+};
+/* ----------------------------------------------------------------------- */
+
+static int ds1685_nvram_read(void *priv, unsigned int pos, void *val,
+ size_t size)
+{
+ struct ds1685_priv *rtc = priv;
+ struct mutex *rtc_mutex = &rtc->dev->ops_lock;
+ ssize_t count;
+ u8 *buf = val;
+ int err;
+
+ err = mutex_lock_interruptible(rtc_mutex);
+ if (err)
+ return err;
+
+ ds1685_rtc_switch_to_bank0(rtc);
+
+ /* Read NVRAM in time and bank0 registers. */
+ for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ_BANK0;
+ count++, size--) {
+ if (count < NVRAM_SZ_TIME)
+ *buf++ = rtc->read(rtc, (NVRAM_TIME_BASE + pos++));
+ else
+ *buf++ = rtc->read(rtc, (NVRAM_BANK0_BASE + pos++));
+ }
+
+#ifndef CONFIG_RTC_DRV_DS1689
+ if (size > 0) {
+ ds1685_rtc_switch_to_bank1(rtc);
+
+#ifndef CONFIG_RTC_DRV_DS1685
+ /* Enable burst-mode on DS17x85/DS17x87 */
+ rtc->write(rtc, RTC_EXT_CTRL_4A,
+ (rtc->read(rtc, RTC_EXT_CTRL_4A) |
+ RTC_CTRL_4A_BME));
+
+ /* We need one write to RTC_BANK1_RAM_ADDR_LSB to start
+ * reading with burst-mode */
+ rtc->write(rtc, RTC_BANK1_RAM_ADDR_LSB,
+ (pos - NVRAM_TOTAL_SZ_BANK0));
+#endif
+
+ /* Read NVRAM in bank1 registers. */
+ for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ;
+ count++, size--) {
+#ifdef CONFIG_RTC_DRV_DS1685
+ /* DS1685/DS1687 has to write to RTC_BANK1_RAM_ADDR
+ * before each read. */
+ rtc->write(rtc, RTC_BANK1_RAM_ADDR,
+ (pos - NVRAM_TOTAL_SZ_BANK0));
+#endif
+ *buf++ = rtc->read(rtc, RTC_BANK1_RAM_DATA_PORT);
+ pos++;
+ }
+
+#ifndef CONFIG_RTC_DRV_DS1685
+ /* Disable burst-mode on DS17x85/DS17x87 */
+ rtc->write(rtc, RTC_EXT_CTRL_4A,
+ (rtc->read(rtc, RTC_EXT_CTRL_4A) &
+ ~(RTC_CTRL_4A_BME)));
+#endif
+ ds1685_rtc_switch_to_bank0(rtc);
+ }
+#endif /* !CONFIG_RTC_DRV_DS1689 */
+ mutex_unlock(rtc_mutex);
+
+ return 0;
+}
+
+static int ds1685_nvram_write(void *priv, unsigned int pos, void *val,
+ size_t size)
+{
+ struct ds1685_priv *rtc = priv;
+ struct mutex *rtc_mutex = &rtc->dev->ops_lock;
+ ssize_t count;
+ u8 *buf = val;
+ int err;
+
+ err = mutex_lock_interruptible(rtc_mutex);
+ if (err)
+ return err;
+
+ ds1685_rtc_switch_to_bank0(rtc);
+
+ /* Write NVRAM in time and bank0 registers. */
+ for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ_BANK0;
+ count++, size--)
+ if (count < NVRAM_SZ_TIME)
+ rtc->write(rtc, (NVRAM_TIME_BASE + pos++),
+ *buf++);
+ else
+ rtc->write(rtc, (NVRAM_BANK0_BASE), *buf++);
+
+#ifndef CONFIG_RTC_DRV_DS1689
+ if (size > 0) {
+ ds1685_rtc_switch_to_bank1(rtc);
+
+#ifndef CONFIG_RTC_DRV_DS1685
+ /* Enable burst-mode on DS17x85/DS17x87 */
+ rtc->write(rtc, RTC_EXT_CTRL_4A,
+ (rtc->read(rtc, RTC_EXT_CTRL_4A) |
+ RTC_CTRL_4A_BME));
+
+ /* We need one write to RTC_BANK1_RAM_ADDR_LSB to start
+ * writing with burst-mode */
+ rtc->write(rtc, RTC_BANK1_RAM_ADDR_LSB,
+ (pos - NVRAM_TOTAL_SZ_BANK0));
+#endif
+
+ /* Write NVRAM in bank1 registers. */
+ for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ;
+ count++, size--) {
+#ifdef CONFIG_RTC_DRV_DS1685
+ /* DS1685/DS1687 has to write to RTC_BANK1_RAM_ADDR
+ * before each read. */
+ rtc->write(rtc, RTC_BANK1_RAM_ADDR,
+ (pos - NVRAM_TOTAL_SZ_BANK0));
+#endif
+ rtc->write(rtc, RTC_BANK1_RAM_DATA_PORT, *buf++);
+ pos++;
+ }
+
+#ifndef CONFIG_RTC_DRV_DS1685
+ /* Disable burst-mode on DS17x85/DS17x87 */
+ rtc->write(rtc, RTC_EXT_CTRL_4A,
+ (rtc->read(rtc, RTC_EXT_CTRL_4A) &
+ ~(RTC_CTRL_4A_BME)));
+#endif
+ ds1685_rtc_switch_to_bank0(rtc);
+ }
+#endif /* !CONFIG_RTC_DRV_DS1689 */
+ mutex_unlock(rtc_mutex);
+
+ return 0;
+}
+
+/* ----------------------------------------------------------------------- */
+/* SysFS interface */
+
+/**
+ * ds1685_rtc_sysfs_battery_show - sysfs file for main battery status.
+ * @dev: pointer to device structure.
+ * @attr: pointer to device_attribute structure.
+ * @buf: pointer to char array to hold the output.
+ */
+static ssize_t
+ds1685_rtc_sysfs_battery_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct ds1685_priv *rtc = dev_get_drvdata(dev->parent);
+ u8 ctrld;
+
+ ctrld = rtc->read(rtc, RTC_CTRL_D);
+
+ return sprintf(buf, "%s\n",
+ (ctrld & RTC_CTRL_D_VRT) ? "ok" : "not ok or N/A");
+}
+static DEVICE_ATTR(battery, S_IRUGO, ds1685_rtc_sysfs_battery_show, NULL);
+
+/**
+ * ds1685_rtc_sysfs_auxbatt_show - sysfs file for aux battery status.
+ * @dev: pointer to device structure.
+ * @attr: pointer to device_attribute structure.
+ * @buf: pointer to char array to hold the output.
+ */
+static ssize_t
+ds1685_rtc_sysfs_auxbatt_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct ds1685_priv *rtc = dev_get_drvdata(dev->parent);
+ u8 ctrl4a;
+
+ ds1685_rtc_switch_to_bank1(rtc);
+ ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A);
+ ds1685_rtc_switch_to_bank0(rtc);
+
+ return sprintf(buf, "%s\n",
+ (ctrl4a & RTC_CTRL_4A_VRT2) ? "ok" : "not ok or N/A");
+}
+static DEVICE_ATTR(auxbatt, S_IRUGO, ds1685_rtc_sysfs_auxbatt_show, NULL);
+
+/**
+ * ds1685_rtc_sysfs_serial_show - sysfs file for silicon serial number.
+ * @dev: pointer to device structure.
+ * @attr: pointer to device_attribute structure.
+ * @buf: pointer to char array to hold the output.
+ */
+static ssize_t
+ds1685_rtc_sysfs_serial_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct ds1685_priv *rtc = dev_get_drvdata(dev->parent);
+ u8 ssn[8];
+
+ ds1685_rtc_switch_to_bank1(rtc);
+ ds1685_rtc_get_ssn(rtc, ssn);
+ ds1685_rtc_switch_to_bank0(rtc);
+
+ return sprintf(buf, "%8phC\n", ssn);
+}
+static DEVICE_ATTR(serial, S_IRUGO, ds1685_rtc_sysfs_serial_show, NULL);
+
+/*
+ * struct ds1685_rtc_sysfs_misc_attrs - list for misc RTC features.
+ */
+static struct attribute*
+ds1685_rtc_sysfs_misc_attrs[] = {
+ &dev_attr_battery.attr,
+ &dev_attr_auxbatt.attr,
+ &dev_attr_serial.attr,
+ NULL,
+};
+
+/*
+ * struct ds1685_rtc_sysfs_misc_grp - attr group for misc RTC features.
+ */
+static const struct attribute_group
+ds1685_rtc_sysfs_misc_grp = {
+ .name = "misc",
+ .attrs = ds1685_rtc_sysfs_misc_attrs,
+};
+
+/* ----------------------------------------------------------------------- */
+/* Driver Probe/Removal */
+
+/**
+ * ds1685_rtc_probe - initializes rtc driver.
+ * @pdev: pointer to platform_device structure.
+ */
+static int
+ds1685_rtc_probe(struct platform_device *pdev)
+{
+ struct rtc_device *rtc_dev;
+ struct ds1685_priv *rtc;
+ struct ds1685_rtc_platform_data *pdata;
+ u8 ctrla, ctrlb, hours;
+ unsigned char am_pm;
+ int ret = 0;
+ struct nvmem_config nvmem_cfg = {
+ .name = "ds1685_nvram",
+ .size = NVRAM_TOTAL_SZ,
+ .reg_read = ds1685_nvram_read,
+ .reg_write = ds1685_nvram_write,
+ };
+
+ /* Get the platform data. */
+ pdata = (struct ds1685_rtc_platform_data *) pdev->dev.platform_data;
+ if (!pdata)
+ return -ENODEV;
+
+ /* Allocate memory for the rtc device. */
+ rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ /* Setup resources and access functions */
+ switch (pdata->access_type) {
+ case ds1685_reg_direct:
+ rtc->regs = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(rtc->regs))
+ return PTR_ERR(rtc->regs);
+ rtc->read = ds1685_read;
+ rtc->write = ds1685_write;
+ break;
+ case ds1685_reg_indirect:
+ rtc->regs = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(rtc->regs))
+ return PTR_ERR(rtc->regs);
+ rtc->data = devm_platform_ioremap_resource(pdev, 1);
+ if (IS_ERR(rtc->data))
+ return PTR_ERR(rtc->data);
+ rtc->read = ds1685_indirect_read;
+ rtc->write = ds1685_indirect_write;
+ break;
+ }
+
+ if (!rtc->read || !rtc->write)
+ return -ENXIO;
+
+ /* Get the register step size. */
+ if (pdata->regstep > 0)
+ rtc->regstep = pdata->regstep;
+ else
+ rtc->regstep = 1;
+
+ /* Platform pre-shutdown function, if defined. */
+ if (pdata->plat_prepare_poweroff)
+ rtc->prepare_poweroff = pdata->plat_prepare_poweroff;
+
+ /* Platform wake_alarm function, if defined. */
+ if (pdata->plat_wake_alarm)
+ rtc->wake_alarm = pdata->plat_wake_alarm;
+
+ /* Platform post_ram_clear function, if defined. */
+ if (pdata->plat_post_ram_clear)
+ rtc->post_ram_clear = pdata->plat_post_ram_clear;
+
+ /* set the driver data. */
+ platform_set_drvdata(pdev, rtc);
+
+ /* Turn the oscillator on if is not already on (DV1 = 1). */
+ ctrla = rtc->read(rtc, RTC_CTRL_A);
+ if (!(ctrla & RTC_CTRL_A_DV1))
+ ctrla |= RTC_CTRL_A_DV1;
+
+ /* Enable the countdown chain (DV2 = 0) */
+ ctrla &= ~(RTC_CTRL_A_DV2);
+
+ /* Clear RS3-RS0 in Control A. */
+ ctrla &= ~(RTC_CTRL_A_RS_MASK);
+
+ /*
+ * All done with Control A. Switch to Bank 1 for the remainder of
+ * the RTC setup so we have access to the extended functions.
+ */
+ ctrla |= RTC_CTRL_A_DV0;
+ rtc->write(rtc, RTC_CTRL_A, ctrla);
+
+ /* Default to 32768kHz output. */
+ rtc->write(rtc, RTC_EXT_CTRL_4B,
+ (rtc->read(rtc, RTC_EXT_CTRL_4B) | RTC_CTRL_4B_E32K));
+
+ /* Set the SET bit in Control B so we can do some housekeeping. */
+ rtc->write(rtc, RTC_CTRL_B,
+ (rtc->read(rtc, RTC_CTRL_B) | RTC_CTRL_B_SET));
+
+ /* Read Ext Ctrl 4A and check the INCR bit to avoid a lockout. */
+ while (rtc->read(rtc, RTC_EXT_CTRL_4A) & RTC_CTRL_4A_INCR)
+ cpu_relax();
+
+ /*
+ * If the platform supports BCD mode, then set DM=0 in Control B.
+ * Otherwise, set DM=1 for BIN mode.
+ */
+ ctrlb = rtc->read(rtc, RTC_CTRL_B);
+ if (pdata->bcd_mode)
+ ctrlb &= ~(RTC_CTRL_B_DM);
+ else
+ ctrlb |= RTC_CTRL_B_DM;
+ rtc->bcd_mode = pdata->bcd_mode;
+
+ /*
+ * Disable Daylight Savings Time (DSE = 0).
+ * The RTC has hardcoded timezone information that is rendered
+ * obselete. We'll let the OS deal with DST settings instead.
+ */
+ if (ctrlb & RTC_CTRL_B_DSE)
+ ctrlb &= ~(RTC_CTRL_B_DSE);
+
+ /* Force 24-hour mode (2412 = 1). */
+ if (!(ctrlb & RTC_CTRL_B_2412)) {
+ /* Reinitialize the time hours. */
+ hours = rtc->read(rtc, RTC_HRS);
+ am_pm = hours & RTC_HRS_AMPM_MASK;
+ hours = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_12_BCD_MASK,
+ RTC_HRS_12_BIN_MASK);
+ hours = ((hours == 12) ? 0 : ((am_pm) ? hours + 12 : hours));
+
+ /* Enable 24-hour mode. */
+ ctrlb |= RTC_CTRL_B_2412;
+
+ /* Write back to Control B, including DM & DSE bits. */
+ rtc->write(rtc, RTC_CTRL_B, ctrlb);
+
+ /* Write the time hours back. */
+ rtc->write(rtc, RTC_HRS,
+ ds1685_rtc_bin2bcd(rtc, hours,
+ RTC_HRS_24_BIN_MASK,
+ RTC_HRS_24_BCD_MASK));
+
+ /* Reinitialize the alarm hours. */
+ hours = rtc->read(rtc, RTC_HRS_ALARM);
+ am_pm = hours & RTC_HRS_AMPM_MASK;
+ hours = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_12_BCD_MASK,
+ RTC_HRS_12_BIN_MASK);
+ hours = ((hours == 12) ? 0 : ((am_pm) ? hours + 12 : hours));
+
+ /* Write the alarm hours back. */
+ rtc->write(rtc, RTC_HRS_ALARM,
+ ds1685_rtc_bin2bcd(rtc, hours,
+ RTC_HRS_24_BIN_MASK,
+ RTC_HRS_24_BCD_MASK));
+ } else {
+ /* 24-hour mode is already set, so write Control B back. */
+ rtc->write(rtc, RTC_CTRL_B, ctrlb);
+ }
+
+ /* Unset the SET bit in Control B so the RTC can update. */
+ rtc->write(rtc, RTC_CTRL_B,
+ (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_SET)));
+
+ /* Check the main battery. */
+ if (!(rtc->read(rtc, RTC_CTRL_D) & RTC_CTRL_D_VRT))
+ dev_warn(&pdev->dev,
+ "Main battery is exhausted! RTC may be invalid!\n");
+
+ /* Check the auxillary battery. It is optional. */
+ if (!(rtc->read(rtc, RTC_EXT_CTRL_4A) & RTC_CTRL_4A_VRT2))
+ dev_warn(&pdev->dev,
+ "Aux battery is exhausted or not available.\n");
+
+ /* Read Ctrl B and clear PIE/AIE/UIE. */
+ rtc->write(rtc, RTC_CTRL_B,
+ (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_PAU_MASK)));
+
+ /* Reading Ctrl C auto-clears PF/AF/UF. */
+ rtc->read(rtc, RTC_CTRL_C);
+
+ /* Read Ctrl 4B and clear RIE/WIE/KSE. */
+ rtc->write(rtc, RTC_EXT_CTRL_4B,
+ (rtc->read(rtc, RTC_EXT_CTRL_4B) & ~(RTC_CTRL_4B_RWK_MASK)));
+
+ /* Clear RF/WF/KF in Ctrl 4A. */
+ rtc->write(rtc, RTC_EXT_CTRL_4A,
+ (rtc->read(rtc, RTC_EXT_CTRL_4A) & ~(RTC_CTRL_4A_RWK_MASK)));
+
+ /*
+ * Re-enable KSE to handle power button events. We do not enable
+ * WIE or RIE by default.
+ */
+ rtc->write(rtc, RTC_EXT_CTRL_4B,
+ (rtc->read(rtc, RTC_EXT_CTRL_4B) | RTC_CTRL_4B_KSE));
+
+ rtc_dev = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc_dev))
+ return PTR_ERR(rtc_dev);
+
+ rtc_dev->ops = &ds1685_rtc_ops;
+
+ /* Century bit is useless because leap year fails in 1900 and 2100 */
+ rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ rtc_dev->range_max = RTC_TIMESTAMP_END_2099;
+
+ /* Maximum periodic rate is 8192Hz (0.122070ms). */
+ rtc_dev->max_user_freq = RTC_MAX_USER_FREQ;
+
+ /* See if the platform doesn't support UIE. */
+ if (pdata->uie_unsupported)
+ rtc_dev->uie_unsupported = 1;
+
+ rtc->dev = rtc_dev;
+
+ /*
+ * Fetch the IRQ and setup the interrupt handler.
+ *
+ * Not all platforms have the IRQF pin tied to something. If not, the
+ * RTC will still set the *IE / *F flags and raise IRQF in ctrlc, but
+ * there won't be an automatic way of notifying the kernel about it,
+ * unless ctrlc is explicitly polled.
+ */
+ if (!pdata->no_irq) {
+ ret = platform_get_irq(pdev, 0);
+ if (ret <= 0)
+ return ret;
+
+ rtc->irq_num = ret;
+
+ /* Request an IRQ. */
+ ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_num,
+ NULL, ds1685_rtc_irq_handler,
+ IRQF_SHARED | IRQF_ONESHOT,
+ pdev->name, pdev);
+
+ /* Check to see if something came back. */
+ if (unlikely(ret)) {
+ dev_warn(&pdev->dev,
+ "RTC interrupt not available\n");
+ rtc->irq_num = 0;
+ }
+ }
+ rtc->no_irq = pdata->no_irq;
+
+ /* Setup complete. */
+ ds1685_rtc_switch_to_bank0(rtc);
+
+ ret = rtc_add_group(rtc_dev, &ds1685_rtc_sysfs_misc_grp);
+ if (ret)
+ return ret;
+
+ rtc_dev->nvram_old_abi = true;
+ nvmem_cfg.priv = rtc;
+ ret = rtc_nvmem_register(rtc_dev, &nvmem_cfg);
+ if (ret)
+ return ret;
+
+ return rtc_register_device(rtc_dev);
+}
+
+/**
+ * ds1685_rtc_remove - removes rtc driver.
+ * @pdev: pointer to platform_device structure.
+ */
+static int
+ds1685_rtc_remove(struct platform_device *pdev)
+{
+ struct ds1685_priv *rtc = platform_get_drvdata(pdev);
+
+ /* Read Ctrl B and clear PIE/AIE/UIE. */
+ rtc->write(rtc, RTC_CTRL_B,
+ (rtc->read(rtc, RTC_CTRL_B) &
+ ~(RTC_CTRL_B_PAU_MASK)));
+
+ /* Reading Ctrl C auto-clears PF/AF/UF. */
+ rtc->read(rtc, RTC_CTRL_C);
+
+ /* Read Ctrl 4B and clear RIE/WIE/KSE. */
+ rtc->write(rtc, RTC_EXT_CTRL_4B,
+ (rtc->read(rtc, RTC_EXT_CTRL_4B) &
+ ~(RTC_CTRL_4B_RWK_MASK)));
+
+ /* Manually clear RF/WF/KF in Ctrl 4A. */
+ rtc->write(rtc, RTC_EXT_CTRL_4A,
+ (rtc->read(rtc, RTC_EXT_CTRL_4A) &
+ ~(RTC_CTRL_4A_RWK_MASK)));
+
+ return 0;
+}
+
+/*
+ * ds1685_rtc_driver - rtc driver properties.
+ */
+static struct platform_driver ds1685_rtc_driver = {
+ .driver = {
+ .name = "rtc-ds1685",
+ },
+ .probe = ds1685_rtc_probe,
+ .remove = ds1685_rtc_remove,
+};
+module_platform_driver(ds1685_rtc_driver);
+/* ----------------------------------------------------------------------- */
+
+
+/* ----------------------------------------------------------------------- */
+/* Poweroff function */
+
+/**
+ * ds1685_rtc_poweroff - uses the RTC chip to power the system off.
+ * @pdev: pointer to platform_device structure.
+ */
+void __noreturn
+ds1685_rtc_poweroff(struct platform_device *pdev)
+{
+ u8 ctrla, ctrl4a, ctrl4b;
+ struct ds1685_priv *rtc;
+
+ /* Check for valid RTC data, else, spin forever. */
+ if (unlikely(!pdev)) {
+ pr_emerg("platform device data not available, spinning forever ...\n");
+ while(1);
+ unreachable();
+ } else {
+ /* Get the rtc data. */
+ rtc = platform_get_drvdata(pdev);
+
+ /*
+ * Disable our IRQ. We're powering down, so we're not
+ * going to worry about cleaning up. Most of that should
+ * have been taken care of by the shutdown scripts and this
+ * is the final function call.
+ */
+ if (!rtc->no_irq)
+ disable_irq_nosync(rtc->irq_num);
+
+ /* Oscillator must be on and the countdown chain enabled. */
+ ctrla = rtc->read(rtc, RTC_CTRL_A);
+ ctrla |= RTC_CTRL_A_DV1;
+ ctrla &= ~(RTC_CTRL_A_DV2);
+ rtc->write(rtc, RTC_CTRL_A, ctrla);
+
+ /*
+ * Read Control 4A and check the status of the auxillary
+ * battery. This must be present and working (VRT2 = 1)
+ * for wakeup and kickstart functionality to be useful.
+ */
+ ds1685_rtc_switch_to_bank1(rtc);
+ ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A);
+ if (ctrl4a & RTC_CTRL_4A_VRT2) {
+ /* Clear all of the interrupt flags on Control 4A. */
+ ctrl4a &= ~(RTC_CTRL_4A_RWK_MASK);
+ rtc->write(rtc, RTC_EXT_CTRL_4A, ctrl4a);
+
+ /*
+ * The auxillary battery is present and working.
+ * Enable extended functions (ABE=1), enable
+ * wake-up (WIE=1), and enable kickstart (KSE=1)
+ * in Control 4B.
+ */
+ ctrl4b = rtc->read(rtc, RTC_EXT_CTRL_4B);
+ ctrl4b |= (RTC_CTRL_4B_ABE | RTC_CTRL_4B_WIE |
+ RTC_CTRL_4B_KSE);
+ rtc->write(rtc, RTC_EXT_CTRL_4B, ctrl4b);
+ }
+
+ /* Set PAB to 1 in Control 4A to power the system down. */
+ dev_warn(&pdev->dev, "Powerdown.\n");
+ msleep(20);
+ rtc->write(rtc, RTC_EXT_CTRL_4A,
+ (ctrl4a | RTC_CTRL_4A_PAB));
+
+ /* Spin ... we do not switch back to bank0. */
+ while(1);
+ unreachable();
+ }
+}
+EXPORT_SYMBOL_GPL(ds1685_rtc_poweroff);
+/* ----------------------------------------------------------------------- */
+
+
+MODULE_AUTHOR("Joshua Kinard <kumba@gentoo.org>");
+MODULE_AUTHOR("Matthias Fuchs <matthias.fuchs@esd-electronics.com>");
+MODULE_DESCRIPTION("Dallas/Maxim DS1685/DS1687-series RTC driver");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:rtc-ds1685");
diff --git a/drivers/rtc/rtc-ds1742.c b/drivers/rtc/rtc-ds1742.c
new file mode 100644
index 000000000..2b949f0db
--- /dev/null
+++ b/drivers/rtc/rtc-ds1742.c
@@ -0,0 +1,224 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * An rtc driver for the Dallas DS1742
+ *
+ * Copyright (C) 2006 Atsushi Nemoto <anemo@mba.ocn.ne.jp>
+ *
+ * Copyright (C) 2006 Torsten Ertbjerg Rasmussen <tr@newtec.dk>
+ * - nvram size determined from resource
+ * - this ds1742 driver now supports ds1743.
+ */
+
+#include <linux/bcd.h>
+#include <linux/kernel.h>
+#include <linux/gfp.h>
+#include <linux/delay.h>
+#include <linux/jiffies.h>
+#include <linux/rtc.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/io.h>
+#include <linux/module.h>
+
+#define RTC_SIZE 8
+
+#define RTC_CONTROL 0
+#define RTC_CENTURY 0
+#define RTC_SECONDS 1
+#define RTC_MINUTES 2
+#define RTC_HOURS 3
+#define RTC_DAY 4
+#define RTC_DATE 5
+#define RTC_MONTH 6
+#define RTC_YEAR 7
+
+#define RTC_CENTURY_MASK 0x3f
+#define RTC_SECONDS_MASK 0x7f
+#define RTC_DAY_MASK 0x07
+
+/* Bits in the Control/Century register */
+#define RTC_WRITE 0x80
+#define RTC_READ 0x40
+
+/* Bits in the Seconds register */
+#define RTC_STOP 0x80
+
+/* Bits in the Day register */
+#define RTC_BATT_FLAG 0x80
+
+struct rtc_plat_data {
+ void __iomem *ioaddr_nvram;
+ void __iomem *ioaddr_rtc;
+ unsigned long last_jiffies;
+};
+
+static int ds1742_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+ void __iomem *ioaddr = pdata->ioaddr_rtc;
+ u8 century;
+
+ century = bin2bcd((tm->tm_year + 1900) / 100);
+
+ writeb(RTC_WRITE, ioaddr + RTC_CONTROL);
+
+ writeb(bin2bcd(tm->tm_year % 100), ioaddr + RTC_YEAR);
+ writeb(bin2bcd(tm->tm_mon + 1), ioaddr + RTC_MONTH);
+ writeb(bin2bcd(tm->tm_wday) & RTC_DAY_MASK, ioaddr + RTC_DAY);
+ writeb(bin2bcd(tm->tm_mday), ioaddr + RTC_DATE);
+ writeb(bin2bcd(tm->tm_hour), ioaddr + RTC_HOURS);
+ writeb(bin2bcd(tm->tm_min), ioaddr + RTC_MINUTES);
+ writeb(bin2bcd(tm->tm_sec) & RTC_SECONDS_MASK, ioaddr + RTC_SECONDS);
+
+ /* RTC_CENTURY and RTC_CONTROL share same register */
+ writeb(RTC_WRITE | (century & RTC_CENTURY_MASK), ioaddr + RTC_CENTURY);
+ writeb(century & RTC_CENTURY_MASK, ioaddr + RTC_CONTROL);
+ return 0;
+}
+
+static int ds1742_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+ void __iomem *ioaddr = pdata->ioaddr_rtc;
+ unsigned int year, month, day, hour, minute, second, week;
+ unsigned int century;
+
+ /* give enough time to update RTC in case of continuous read */
+ if (pdata->last_jiffies == jiffies)
+ msleep(1);
+ pdata->last_jiffies = jiffies;
+ writeb(RTC_READ, ioaddr + RTC_CONTROL);
+ second = readb(ioaddr + RTC_SECONDS) & RTC_SECONDS_MASK;
+ minute = readb(ioaddr + RTC_MINUTES);
+ hour = readb(ioaddr + RTC_HOURS);
+ day = readb(ioaddr + RTC_DATE);
+ week = readb(ioaddr + RTC_DAY) & RTC_DAY_MASK;
+ month = readb(ioaddr + RTC_MONTH);
+ year = readb(ioaddr + RTC_YEAR);
+ century = readb(ioaddr + RTC_CENTURY) & RTC_CENTURY_MASK;
+ writeb(0, ioaddr + RTC_CONTROL);
+ tm->tm_sec = bcd2bin(second);
+ tm->tm_min = bcd2bin(minute);
+ tm->tm_hour = bcd2bin(hour);
+ tm->tm_mday = bcd2bin(day);
+ tm->tm_wday = bcd2bin(week);
+ tm->tm_mon = bcd2bin(month) - 1;
+ /* year is 1900 + tm->tm_year */
+ tm->tm_year = bcd2bin(year) + bcd2bin(century) * 100 - 1900;
+
+ return 0;
+}
+
+static const struct rtc_class_ops ds1742_rtc_ops = {
+ .read_time = ds1742_rtc_read_time,
+ .set_time = ds1742_rtc_set_time,
+};
+
+static int ds1742_nvram_read(void *priv, unsigned int pos, void *val,
+ size_t bytes)
+{
+ struct rtc_plat_data *pdata = priv;
+ void __iomem *ioaddr = pdata->ioaddr_nvram;
+ u8 *buf = val;
+
+ for (; bytes; bytes--)
+ *buf++ = readb(ioaddr + pos++);
+ return 0;
+}
+
+static int ds1742_nvram_write(void *priv, unsigned int pos, void *val,
+ size_t bytes)
+{
+ struct rtc_plat_data *pdata = priv;
+ void __iomem *ioaddr = pdata->ioaddr_nvram;
+ u8 *buf = val;
+
+ for (; bytes; bytes--)
+ writeb(*buf++, ioaddr + pos++);
+ return 0;
+}
+
+static int ds1742_rtc_probe(struct platform_device *pdev)
+{
+ struct rtc_device *rtc;
+ struct resource *res;
+ unsigned int cen, sec;
+ struct rtc_plat_data *pdata;
+ void __iomem *ioaddr;
+ int ret = 0;
+ struct nvmem_config nvmem_cfg = {
+ .name = "ds1742_nvram",
+ .reg_read = ds1742_nvram_read,
+ .reg_write = ds1742_nvram_write,
+ };
+
+
+ pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
+ if (!pdata)
+ return -ENOMEM;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ ioaddr = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(ioaddr))
+ return PTR_ERR(ioaddr);
+
+ pdata->ioaddr_nvram = ioaddr;
+ pdata->ioaddr_rtc = ioaddr + resource_size(res) - RTC_SIZE;
+
+ nvmem_cfg.size = resource_size(res) - RTC_SIZE;
+ nvmem_cfg.priv = pdata;
+
+ /* turn RTC on if it was not on */
+ ioaddr = pdata->ioaddr_rtc;
+ sec = readb(ioaddr + RTC_SECONDS);
+ if (sec & RTC_STOP) {
+ sec &= RTC_SECONDS_MASK;
+ cen = readb(ioaddr + RTC_CENTURY) & RTC_CENTURY_MASK;
+ writeb(RTC_WRITE, ioaddr + RTC_CONTROL);
+ writeb(sec, ioaddr + RTC_SECONDS);
+ writeb(cen & RTC_CENTURY_MASK, ioaddr + RTC_CONTROL);
+ }
+ if (!(readb(ioaddr + RTC_DAY) & RTC_BATT_FLAG))
+ dev_warn(&pdev->dev, "voltage-low detected.\n");
+
+ pdata->last_jiffies = jiffies;
+ platform_set_drvdata(pdev, pdata);
+
+ rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ rtc->ops = &ds1742_rtc_ops;
+ rtc->nvram_old_abi = true;
+
+ ret = rtc_register_device(rtc);
+ if (ret)
+ return ret;
+
+ if (rtc_nvmem_register(rtc, &nvmem_cfg))
+ dev_err(&pdev->dev, "Unable to register nvmem\n");
+
+ return 0;
+}
+
+static const struct of_device_id __maybe_unused ds1742_rtc_of_match[] = {
+ { .compatible = "maxim,ds1742", },
+ { }
+};
+MODULE_DEVICE_TABLE(of, ds1742_rtc_of_match);
+
+static struct platform_driver ds1742_rtc_driver = {
+ .probe = ds1742_rtc_probe,
+ .driver = {
+ .name = "rtc-ds1742",
+ .of_match_table = of_match_ptr(ds1742_rtc_of_match),
+ },
+};
+
+module_platform_driver(ds1742_rtc_driver);
+
+MODULE_AUTHOR("Atsushi Nemoto <anemo@mba.ocn.ne.jp>");
+MODULE_DESCRIPTION("Dallas DS1742 RTC driver");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:rtc-ds1742");
diff --git a/drivers/rtc/rtc-ds2404.c b/drivers/rtc/rtc-ds2404.c
new file mode 100644
index 000000000..9df0c4451
--- /dev/null
+++ b/drivers/rtc/rtc-ds2404.c
@@ -0,0 +1,256 @@
+// SPDX-License-Identifier: GPL-2.0
+// Copyright (C) 2012 Sven Schnelle <svens@stackframe.org>
+
+#include <linux/platform_device.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/rtc.h>
+#include <linux/types.h>
+#include <linux/bcd.h>
+#include <linux/platform_data/rtc-ds2404.h>
+#include <linux/delay.h>
+#include <linux/gpio.h>
+#include <linux/slab.h>
+
+#include <linux/io.h>
+
+#define DS2404_STATUS_REG 0x200
+#define DS2404_CONTROL_REG 0x201
+#define DS2404_RTC_REG 0x202
+
+#define DS2404_WRITE_SCRATCHPAD_CMD 0x0f
+#define DS2404_READ_SCRATCHPAD_CMD 0xaa
+#define DS2404_COPY_SCRATCHPAD_CMD 0x55
+#define DS2404_READ_MEMORY_CMD 0xf0
+
+#define DS2404_RST 0
+#define DS2404_CLK 1
+#define DS2404_DQ 2
+
+struct ds2404_gpio {
+ const char *name;
+ unsigned int gpio;
+};
+
+struct ds2404 {
+ struct ds2404_gpio *gpio;
+ struct rtc_device *rtc;
+};
+
+static struct ds2404_gpio ds2404_gpio[] = {
+ { "RTC RST", 0 },
+ { "RTC CLK", 0 },
+ { "RTC DQ", 0 },
+};
+
+static int ds2404_gpio_map(struct ds2404 *chip, struct platform_device *pdev,
+ struct ds2404_platform_data *pdata)
+{
+ int i, err;
+
+ ds2404_gpio[DS2404_RST].gpio = pdata->gpio_rst;
+ ds2404_gpio[DS2404_CLK].gpio = pdata->gpio_clk;
+ ds2404_gpio[DS2404_DQ].gpio = pdata->gpio_dq;
+
+ for (i = 0; i < ARRAY_SIZE(ds2404_gpio); i++) {
+ err = gpio_request(ds2404_gpio[i].gpio, ds2404_gpio[i].name);
+ if (err) {
+ dev_err(&pdev->dev, "error mapping gpio %s: %d\n",
+ ds2404_gpio[i].name, err);
+ goto err_request;
+ }
+ if (i != DS2404_DQ)
+ gpio_direction_output(ds2404_gpio[i].gpio, 1);
+ }
+
+ chip->gpio = ds2404_gpio;
+ return 0;
+
+err_request:
+ while (--i >= 0)
+ gpio_free(ds2404_gpio[i].gpio);
+ return err;
+}
+
+static void ds2404_gpio_unmap(void *data)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(ds2404_gpio); i++)
+ gpio_free(ds2404_gpio[i].gpio);
+}
+
+static void ds2404_reset(struct device *dev)
+{
+ gpio_set_value(ds2404_gpio[DS2404_RST].gpio, 0);
+ udelay(1000);
+ gpio_set_value(ds2404_gpio[DS2404_RST].gpio, 1);
+ gpio_set_value(ds2404_gpio[DS2404_CLK].gpio, 0);
+ gpio_direction_output(ds2404_gpio[DS2404_DQ].gpio, 0);
+ udelay(10);
+}
+
+static void ds2404_write_byte(struct device *dev, u8 byte)
+{
+ int i;
+
+ gpio_direction_output(ds2404_gpio[DS2404_DQ].gpio, 1);
+ for (i = 0; i < 8; i++) {
+ gpio_set_value(ds2404_gpio[DS2404_DQ].gpio, byte & (1 << i));
+ udelay(10);
+ gpio_set_value(ds2404_gpio[DS2404_CLK].gpio, 1);
+ udelay(10);
+ gpio_set_value(ds2404_gpio[DS2404_CLK].gpio, 0);
+ udelay(10);
+ }
+}
+
+static u8 ds2404_read_byte(struct device *dev)
+{
+ int i;
+ u8 ret = 0;
+
+ gpio_direction_input(ds2404_gpio[DS2404_DQ].gpio);
+
+ for (i = 0; i < 8; i++) {
+ gpio_set_value(ds2404_gpio[DS2404_CLK].gpio, 0);
+ udelay(10);
+ if (gpio_get_value(ds2404_gpio[DS2404_DQ].gpio))
+ ret |= 1 << i;
+ gpio_set_value(ds2404_gpio[DS2404_CLK].gpio, 1);
+ udelay(10);
+ }
+ return ret;
+}
+
+static void ds2404_read_memory(struct device *dev, u16 offset,
+ int length, u8 *out)
+{
+ ds2404_reset(dev);
+ ds2404_write_byte(dev, DS2404_READ_MEMORY_CMD);
+ ds2404_write_byte(dev, offset & 0xff);
+ ds2404_write_byte(dev, (offset >> 8) & 0xff);
+ while (length--)
+ *out++ = ds2404_read_byte(dev);
+}
+
+static void ds2404_write_memory(struct device *dev, u16 offset,
+ int length, u8 *out)
+{
+ int i;
+ u8 ta01, ta02, es;
+
+ ds2404_reset(dev);
+ ds2404_write_byte(dev, DS2404_WRITE_SCRATCHPAD_CMD);
+ ds2404_write_byte(dev, offset & 0xff);
+ ds2404_write_byte(dev, (offset >> 8) & 0xff);
+
+ for (i = 0; i < length; i++)
+ ds2404_write_byte(dev, out[i]);
+
+ ds2404_reset(dev);
+ ds2404_write_byte(dev, DS2404_READ_SCRATCHPAD_CMD);
+
+ ta01 = ds2404_read_byte(dev);
+ ta02 = ds2404_read_byte(dev);
+ es = ds2404_read_byte(dev);
+
+ for (i = 0; i < length; i++) {
+ if (out[i] != ds2404_read_byte(dev)) {
+ dev_err(dev, "read invalid data\n");
+ return;
+ }
+ }
+
+ ds2404_reset(dev);
+ ds2404_write_byte(dev, DS2404_COPY_SCRATCHPAD_CMD);
+ ds2404_write_byte(dev, ta01);
+ ds2404_write_byte(dev, ta02);
+ ds2404_write_byte(dev, es);
+
+ gpio_direction_input(ds2404_gpio[DS2404_DQ].gpio);
+ while (gpio_get_value(ds2404_gpio[DS2404_DQ].gpio))
+ ;
+}
+
+static void ds2404_enable_osc(struct device *dev)
+{
+ u8 in[1] = { 0x10 }; /* enable oscillator */
+ ds2404_write_memory(dev, 0x201, 1, in);
+}
+
+static int ds2404_read_time(struct device *dev, struct rtc_time *dt)
+{
+ unsigned long time = 0;
+ __le32 hw_time = 0;
+
+ ds2404_read_memory(dev, 0x203, 4, (u8 *)&hw_time);
+ time = le32_to_cpu(hw_time);
+
+ rtc_time64_to_tm(time, dt);
+ return 0;
+}
+
+static int ds2404_set_time(struct device *dev, struct rtc_time *dt)
+{
+ u32 time = cpu_to_le32(rtc_tm_to_time64(dt));
+ ds2404_write_memory(dev, 0x203, 4, (u8 *)&time);
+ return 0;
+}
+
+static const struct rtc_class_ops ds2404_rtc_ops = {
+ .read_time = ds2404_read_time,
+ .set_time = ds2404_set_time,
+};
+
+static int rtc_probe(struct platform_device *pdev)
+{
+ struct ds2404_platform_data *pdata = dev_get_platdata(&pdev->dev);
+ struct ds2404 *chip;
+ int retval = -EBUSY;
+
+ chip = devm_kzalloc(&pdev->dev, sizeof(struct ds2404), GFP_KERNEL);
+ if (!chip)
+ return -ENOMEM;
+
+ chip->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(chip->rtc))
+ return PTR_ERR(chip->rtc);
+
+ retval = ds2404_gpio_map(chip, pdev, pdata);
+ if (retval)
+ return retval;
+
+ retval = devm_add_action_or_reset(&pdev->dev, ds2404_gpio_unmap, chip);
+ if (retval)
+ return retval;
+
+ dev_info(&pdev->dev, "using GPIOs RST:%d, CLK:%d, DQ:%d\n",
+ chip->gpio[DS2404_RST].gpio, chip->gpio[DS2404_CLK].gpio,
+ chip->gpio[DS2404_DQ].gpio);
+
+ platform_set_drvdata(pdev, chip);
+
+ chip->rtc->ops = &ds2404_rtc_ops;
+ chip->rtc->range_max = U32_MAX;
+
+ retval = rtc_register_device(chip->rtc);
+ if (retval)
+ return retval;
+
+ ds2404_enable_osc(&pdev->dev);
+ return 0;
+}
+
+static struct platform_driver rtc_device_driver = {
+ .probe = rtc_probe,
+ .driver = {
+ .name = "ds2404",
+ },
+};
+module_platform_driver(rtc_device_driver);
+
+MODULE_DESCRIPTION("DS2404 RTC");
+MODULE_AUTHOR("Sven Schnelle");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:ds2404");
diff --git a/drivers/rtc/rtc-ds3232.c b/drivers/rtc/rtc-ds3232.c
new file mode 100644
index 000000000..69c37ab64
--- /dev/null
+++ b/drivers/rtc/rtc-ds3232.c
@@ -0,0 +1,767 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * RTC client/driver for the Maxim/Dallas DS3232/DS3234 Real-Time Clock
+ *
+ * Copyright (C) 2009-2011 Freescale Semiconductor.
+ * Author: Jack Lan <jack.lan@freescale.com>
+ * Copyright (C) 2008 MIMOMax Wireless Ltd.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/i2c.h>
+#include <linux/spi/spi.h>
+#include <linux/rtc.h>
+#include <linux/bcd.h>
+#include <linux/slab.h>
+#include <linux/regmap.h>
+#include <linux/hwmon.h>
+
+#define DS3232_REG_SECONDS 0x00
+#define DS3232_REG_MINUTES 0x01
+#define DS3232_REG_HOURS 0x02
+#define DS3232_REG_AMPM 0x02
+#define DS3232_REG_DAY 0x03
+#define DS3232_REG_DATE 0x04
+#define DS3232_REG_MONTH 0x05
+#define DS3232_REG_CENTURY 0x05
+#define DS3232_REG_YEAR 0x06
+#define DS3232_REG_ALARM1 0x07 /* Alarm 1 BASE */
+#define DS3232_REG_ALARM2 0x0B /* Alarm 2 BASE */
+#define DS3232_REG_CR 0x0E /* Control register */
+# define DS3232_REG_CR_nEOSC 0x80
+# define DS3232_REG_CR_INTCN 0x04
+# define DS3232_REG_CR_A2IE 0x02
+# define DS3232_REG_CR_A1IE 0x01
+
+#define DS3232_REG_SR 0x0F /* control/status register */
+# define DS3232_REG_SR_OSF 0x80
+# define DS3232_REG_SR_BSY 0x04
+# define DS3232_REG_SR_A2F 0x02
+# define DS3232_REG_SR_A1F 0x01
+
+#define DS3232_REG_TEMPERATURE 0x11
+#define DS3232_REG_SRAM_START 0x14
+#define DS3232_REG_SRAM_END 0xFF
+
+#define DS3232_REG_SRAM_SIZE 236
+
+struct ds3232 {
+ struct device *dev;
+ struct regmap *regmap;
+ int irq;
+ struct rtc_device *rtc;
+
+ bool suspended;
+};
+
+static int ds3232_check_rtc_status(struct device *dev)
+{
+ struct ds3232 *ds3232 = dev_get_drvdata(dev);
+ int ret = 0;
+ int control, stat;
+
+ ret = regmap_read(ds3232->regmap, DS3232_REG_SR, &stat);
+ if (ret)
+ return ret;
+
+ if (stat & DS3232_REG_SR_OSF)
+ dev_warn(dev,
+ "oscillator discontinuity flagged, "
+ "time unreliable\n");
+
+ stat &= ~(DS3232_REG_SR_OSF | DS3232_REG_SR_A1F | DS3232_REG_SR_A2F);
+
+ ret = regmap_write(ds3232->regmap, DS3232_REG_SR, stat);
+ if (ret)
+ return ret;
+
+ /* If the alarm is pending, clear it before requesting
+ * the interrupt, so an interrupt event isn't reported
+ * before everything is initialized.
+ */
+
+ ret = regmap_read(ds3232->regmap, DS3232_REG_CR, &control);
+ if (ret)
+ return ret;
+
+ control &= ~(DS3232_REG_CR_A1IE | DS3232_REG_CR_A2IE);
+ control |= DS3232_REG_CR_INTCN;
+
+ return regmap_write(ds3232->regmap, DS3232_REG_CR, control);
+}
+
+static int ds3232_read_time(struct device *dev, struct rtc_time *time)
+{
+ struct ds3232 *ds3232 = dev_get_drvdata(dev);
+ int ret;
+ u8 buf[7];
+ unsigned int year, month, day, hour, minute, second;
+ unsigned int week, twelve_hr, am_pm;
+ unsigned int century, add_century = 0;
+
+ ret = regmap_bulk_read(ds3232->regmap, DS3232_REG_SECONDS, buf, 7);
+ if (ret)
+ return ret;
+
+ second = buf[0];
+ minute = buf[1];
+ hour = buf[2];
+ week = buf[3];
+ day = buf[4];
+ month = buf[5];
+ year = buf[6];
+
+ /* Extract additional information for AM/PM and century */
+
+ twelve_hr = hour & 0x40;
+ am_pm = hour & 0x20;
+ century = month & 0x80;
+
+ /* Write to rtc_time structure */
+
+ time->tm_sec = bcd2bin(second);
+ time->tm_min = bcd2bin(minute);
+ if (twelve_hr) {
+ /* Convert to 24 hr */
+ if (am_pm)
+ time->tm_hour = bcd2bin(hour & 0x1F) + 12;
+ else
+ time->tm_hour = bcd2bin(hour & 0x1F);
+ } else {
+ time->tm_hour = bcd2bin(hour);
+ }
+
+ /* Day of the week in linux range is 0~6 while 1~7 in RTC chip */
+ time->tm_wday = bcd2bin(week) - 1;
+ time->tm_mday = bcd2bin(day);
+ /* linux tm_mon range:0~11, while month range is 1~12 in RTC chip */
+ time->tm_mon = bcd2bin(month & 0x7F) - 1;
+ if (century)
+ add_century = 100;
+
+ time->tm_year = bcd2bin(year) + add_century;
+
+ return 0;
+}
+
+static int ds3232_set_time(struct device *dev, struct rtc_time *time)
+{
+ struct ds3232 *ds3232 = dev_get_drvdata(dev);
+ u8 buf[7];
+
+ /* Extract time from rtc_time and load into ds3232*/
+
+ buf[0] = bin2bcd(time->tm_sec);
+ buf[1] = bin2bcd(time->tm_min);
+ buf[2] = bin2bcd(time->tm_hour);
+ /* Day of the week in linux range is 0~6 while 1~7 in RTC chip */
+ buf[3] = bin2bcd(time->tm_wday + 1);
+ buf[4] = bin2bcd(time->tm_mday); /* Date */
+ /* linux tm_mon range:0~11, while month range is 1~12 in RTC chip */
+ buf[5] = bin2bcd(time->tm_mon + 1);
+ if (time->tm_year >= 100) {
+ buf[5] |= 0x80;
+ buf[6] = bin2bcd(time->tm_year - 100);
+ } else {
+ buf[6] = bin2bcd(time->tm_year);
+ }
+
+ return regmap_bulk_write(ds3232->regmap, DS3232_REG_SECONDS, buf, 7);
+}
+
+/*
+ * DS3232 has two alarm, we only use alarm1
+ * According to linux specification, only support one-shot alarm
+ * no periodic alarm mode
+ */
+static int ds3232_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct ds3232 *ds3232 = dev_get_drvdata(dev);
+ int control, stat;
+ int ret;
+ u8 buf[4];
+
+ ret = regmap_read(ds3232->regmap, DS3232_REG_SR, &stat);
+ if (ret)
+ goto out;
+ ret = regmap_read(ds3232->regmap, DS3232_REG_CR, &control);
+ if (ret)
+ goto out;
+ ret = regmap_bulk_read(ds3232->regmap, DS3232_REG_ALARM1, buf, 4);
+ if (ret)
+ goto out;
+
+ alarm->time.tm_sec = bcd2bin(buf[0] & 0x7F);
+ alarm->time.tm_min = bcd2bin(buf[1] & 0x7F);
+ alarm->time.tm_hour = bcd2bin(buf[2] & 0x7F);
+ alarm->time.tm_mday = bcd2bin(buf[3] & 0x7F);
+
+ alarm->enabled = !!(control & DS3232_REG_CR_A1IE);
+ alarm->pending = !!(stat & DS3232_REG_SR_A1F);
+
+ ret = 0;
+out:
+ return ret;
+}
+
+/*
+ * linux rtc-module does not support wday alarm
+ * and only 24h time mode supported indeed
+ */
+static int ds3232_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct ds3232 *ds3232 = dev_get_drvdata(dev);
+ int control, stat;
+ int ret;
+ u8 buf[4];
+
+ if (ds3232->irq <= 0)
+ return -EINVAL;
+
+ buf[0] = bin2bcd(alarm->time.tm_sec);
+ buf[1] = bin2bcd(alarm->time.tm_min);
+ buf[2] = bin2bcd(alarm->time.tm_hour);
+ buf[3] = bin2bcd(alarm->time.tm_mday);
+
+ /* clear alarm interrupt enable bit */
+ ret = regmap_read(ds3232->regmap, DS3232_REG_CR, &control);
+ if (ret)
+ goto out;
+ control &= ~(DS3232_REG_CR_A1IE | DS3232_REG_CR_A2IE);
+ ret = regmap_write(ds3232->regmap, DS3232_REG_CR, control);
+ if (ret)
+ goto out;
+
+ /* clear any pending alarm flag */
+ ret = regmap_read(ds3232->regmap, DS3232_REG_SR, &stat);
+ if (ret)
+ goto out;
+ stat &= ~(DS3232_REG_SR_A1F | DS3232_REG_SR_A2F);
+ ret = regmap_write(ds3232->regmap, DS3232_REG_SR, stat);
+ if (ret)
+ goto out;
+
+ ret = regmap_bulk_write(ds3232->regmap, DS3232_REG_ALARM1, buf, 4);
+ if (ret)
+ goto out;
+
+ if (alarm->enabled) {
+ control |= DS3232_REG_CR_A1IE;
+ ret = regmap_write(ds3232->regmap, DS3232_REG_CR, control);
+ }
+out:
+ return ret;
+}
+
+static int ds3232_update_alarm(struct device *dev, unsigned int enabled)
+{
+ struct ds3232 *ds3232 = dev_get_drvdata(dev);
+ int control;
+ int ret;
+
+ ret = regmap_read(ds3232->regmap, DS3232_REG_CR, &control);
+ if (ret)
+ return ret;
+
+ if (enabled)
+ /* enable alarm1 interrupt */
+ control |= DS3232_REG_CR_A1IE;
+ else
+ /* disable alarm1 interrupt */
+ control &= ~(DS3232_REG_CR_A1IE);
+ ret = regmap_write(ds3232->regmap, DS3232_REG_CR, control);
+
+ return ret;
+}
+
+/*
+ * Temperature sensor support for ds3232/ds3234 devices.
+ * A user-initiated temperature conversion is not started by this function,
+ * so the temperature is updated once every 64 seconds.
+ */
+static int ds3232_hwmon_read_temp(struct device *dev, long int *mC)
+{
+ struct ds3232 *ds3232 = dev_get_drvdata(dev);
+ u8 temp_buf[2];
+ s16 temp;
+ int ret;
+
+ ret = regmap_bulk_read(ds3232->regmap, DS3232_REG_TEMPERATURE, temp_buf,
+ sizeof(temp_buf));
+ if (ret < 0)
+ return ret;
+
+ /*
+ * Temperature is represented as a 10-bit code with a resolution of
+ * 0.25 degree celsius and encoded in two's complement format.
+ */
+ temp = (temp_buf[0] << 8) | temp_buf[1];
+ temp >>= 6;
+ *mC = temp * 250;
+
+ return 0;
+}
+
+static umode_t ds3232_hwmon_is_visible(const void *data,
+ enum hwmon_sensor_types type,
+ u32 attr, int channel)
+{
+ if (type != hwmon_temp)
+ return 0;
+
+ switch (attr) {
+ case hwmon_temp_input:
+ return 0444;
+ default:
+ return 0;
+ }
+}
+
+static int ds3232_hwmon_read(struct device *dev,
+ enum hwmon_sensor_types type,
+ u32 attr, int channel, long *temp)
+{
+ int err;
+
+ switch (attr) {
+ case hwmon_temp_input:
+ err = ds3232_hwmon_read_temp(dev, temp);
+ break;
+ default:
+ err = -EOPNOTSUPP;
+ break;
+ }
+
+ return err;
+}
+
+static u32 ds3232_hwmon_chip_config[] = {
+ HWMON_C_REGISTER_TZ,
+ 0
+};
+
+static const struct hwmon_channel_info ds3232_hwmon_chip = {
+ .type = hwmon_chip,
+ .config = ds3232_hwmon_chip_config,
+};
+
+static u32 ds3232_hwmon_temp_config[] = {
+ HWMON_T_INPUT,
+ 0
+};
+
+static const struct hwmon_channel_info ds3232_hwmon_temp = {
+ .type = hwmon_temp,
+ .config = ds3232_hwmon_temp_config,
+};
+
+static const struct hwmon_channel_info *ds3232_hwmon_info[] = {
+ &ds3232_hwmon_chip,
+ &ds3232_hwmon_temp,
+ NULL
+};
+
+static const struct hwmon_ops ds3232_hwmon_hwmon_ops = {
+ .is_visible = ds3232_hwmon_is_visible,
+ .read = ds3232_hwmon_read,
+};
+
+static const struct hwmon_chip_info ds3232_hwmon_chip_info = {
+ .ops = &ds3232_hwmon_hwmon_ops,
+ .info = ds3232_hwmon_info,
+};
+
+static void ds3232_hwmon_register(struct device *dev, const char *name)
+{
+ struct ds3232 *ds3232 = dev_get_drvdata(dev);
+ struct device *hwmon_dev;
+
+ if (!IS_ENABLED(CONFIG_RTC_DRV_DS3232_HWMON))
+ return;
+
+ hwmon_dev = devm_hwmon_device_register_with_info(dev, name, ds3232,
+ &ds3232_hwmon_chip_info,
+ NULL);
+ if (IS_ERR(hwmon_dev)) {
+ dev_err(dev, "unable to register hwmon device %ld\n",
+ PTR_ERR(hwmon_dev));
+ }
+}
+
+static int ds3232_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct ds3232 *ds3232 = dev_get_drvdata(dev);
+
+ if (ds3232->irq <= 0)
+ return -EINVAL;
+
+ return ds3232_update_alarm(dev, enabled);
+}
+
+static irqreturn_t ds3232_irq(int irq, void *dev_id)
+{
+ struct device *dev = dev_id;
+ struct ds3232 *ds3232 = dev_get_drvdata(dev);
+ struct mutex *lock = &ds3232->rtc->ops_lock;
+ int ret;
+ int stat, control;
+
+ mutex_lock(lock);
+
+ ret = regmap_read(ds3232->regmap, DS3232_REG_SR, &stat);
+ if (ret)
+ goto unlock;
+
+ if (stat & DS3232_REG_SR_A1F) {
+ ret = regmap_read(ds3232->regmap, DS3232_REG_CR, &control);
+ if (ret) {
+ dev_warn(ds3232->dev,
+ "Read Control Register error %d\n", ret);
+ } else {
+ /* disable alarm1 interrupt */
+ control &= ~(DS3232_REG_CR_A1IE);
+ ret = regmap_write(ds3232->regmap, DS3232_REG_CR,
+ control);
+ if (ret) {
+ dev_warn(ds3232->dev,
+ "Write Control Register error %d\n",
+ ret);
+ goto unlock;
+ }
+
+ /* clear the alarm pend flag */
+ stat &= ~DS3232_REG_SR_A1F;
+ ret = regmap_write(ds3232->regmap, DS3232_REG_SR, stat);
+ if (ret) {
+ dev_warn(ds3232->dev,
+ "Write Status Register error %d\n",
+ ret);
+ goto unlock;
+ }
+
+ rtc_update_irq(ds3232->rtc, 1, RTC_AF | RTC_IRQF);
+ }
+ }
+
+unlock:
+ mutex_unlock(lock);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops ds3232_rtc_ops = {
+ .read_time = ds3232_read_time,
+ .set_time = ds3232_set_time,
+ .read_alarm = ds3232_read_alarm,
+ .set_alarm = ds3232_set_alarm,
+ .alarm_irq_enable = ds3232_alarm_irq_enable,
+};
+
+static int ds3232_nvmem_read(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ struct regmap *ds3232_regmap = (struct regmap *)priv;
+
+ return regmap_bulk_read(ds3232_regmap, DS3232_REG_SRAM_START + offset,
+ val, bytes);
+}
+
+static int ds3232_nvmem_write(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ struct regmap *ds3232_regmap = (struct regmap *)priv;
+
+ return regmap_bulk_write(ds3232_regmap, DS3232_REG_SRAM_START + offset,
+ val, bytes);
+}
+
+static int ds3232_probe(struct device *dev, struct regmap *regmap, int irq,
+ const char *name)
+{
+ struct ds3232 *ds3232;
+ int ret;
+ struct nvmem_config nvmem_cfg = {
+ .name = "ds3232_sram",
+ .stride = 1,
+ .size = DS3232_REG_SRAM_SIZE,
+ .word_size = 1,
+ .reg_read = ds3232_nvmem_read,
+ .reg_write = ds3232_nvmem_write,
+ .priv = regmap,
+ .type = NVMEM_TYPE_BATTERY_BACKED
+ };
+
+ ds3232 = devm_kzalloc(dev, sizeof(*ds3232), GFP_KERNEL);
+ if (!ds3232)
+ return -ENOMEM;
+
+ ds3232->regmap = regmap;
+ ds3232->irq = irq;
+ ds3232->dev = dev;
+ dev_set_drvdata(dev, ds3232);
+
+ ret = ds3232_check_rtc_status(dev);
+ if (ret)
+ return ret;
+
+ if (ds3232->irq > 0)
+ device_init_wakeup(dev, 1);
+
+ ds3232_hwmon_register(dev, name);
+
+ ds3232->rtc = devm_rtc_device_register(dev, name, &ds3232_rtc_ops,
+ THIS_MODULE);
+ if (IS_ERR(ds3232->rtc))
+ return PTR_ERR(ds3232->rtc);
+
+ ret = rtc_nvmem_register(ds3232->rtc, &nvmem_cfg);
+ if(ret)
+ return ret;
+
+ if (ds3232->irq > 0) {
+ ret = devm_request_threaded_irq(dev, ds3232->irq, NULL,
+ ds3232_irq,
+ IRQF_SHARED | IRQF_ONESHOT,
+ name, dev);
+ if (ret) {
+ device_set_wakeup_capable(dev, 0);
+ ds3232->irq = 0;
+ dev_err(dev, "unable to request IRQ\n");
+ }
+ }
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int ds3232_suspend(struct device *dev)
+{
+ struct ds3232 *ds3232 = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev)) {
+ if (enable_irq_wake(ds3232->irq))
+ dev_warn_once(dev, "Cannot set wakeup source\n");
+ }
+
+ return 0;
+}
+
+static int ds3232_resume(struct device *dev)
+{
+ struct ds3232 *ds3232 = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ disable_irq_wake(ds3232->irq);
+
+ return 0;
+}
+#endif
+
+static const struct dev_pm_ops ds3232_pm_ops = {
+ SET_SYSTEM_SLEEP_PM_OPS(ds3232_suspend, ds3232_resume)
+};
+
+#if IS_ENABLED(CONFIG_I2C)
+
+static int ds3232_i2c_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct regmap *regmap;
+ static const struct regmap_config config = {
+ .reg_bits = 8,
+ .val_bits = 8,
+ .max_register = DS3232_REG_SRAM_END,
+ };
+
+ regmap = devm_regmap_init_i2c(client, &config);
+ if (IS_ERR(regmap)) {
+ dev_err(&client->dev, "%s: regmap allocation failed: %ld\n",
+ __func__, PTR_ERR(regmap));
+ return PTR_ERR(regmap);
+ }
+
+ return ds3232_probe(&client->dev, regmap, client->irq, client->name);
+}
+
+static const struct i2c_device_id ds3232_id[] = {
+ { "ds3232", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, ds3232_id);
+
+static const struct of_device_id ds3232_of_match[] = {
+ { .compatible = "dallas,ds3232" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, ds3232_of_match);
+
+static struct i2c_driver ds3232_driver = {
+ .driver = {
+ .name = "rtc-ds3232",
+ .of_match_table = of_match_ptr(ds3232_of_match),
+ .pm = &ds3232_pm_ops,
+ },
+ .probe = ds3232_i2c_probe,
+ .id_table = ds3232_id,
+};
+
+static int ds3232_register_driver(void)
+{
+ return i2c_add_driver(&ds3232_driver);
+}
+
+static void ds3232_unregister_driver(void)
+{
+ i2c_del_driver(&ds3232_driver);
+}
+
+#else
+
+static int ds3232_register_driver(void)
+{
+ return 0;
+}
+
+static void ds3232_unregister_driver(void)
+{
+}
+
+#endif
+
+#if IS_ENABLED(CONFIG_SPI_MASTER)
+
+static int ds3234_probe(struct spi_device *spi)
+{
+ int res;
+ unsigned int tmp;
+ static const struct regmap_config config = {
+ .reg_bits = 8,
+ .val_bits = 8,
+ .max_register = DS3232_REG_SRAM_END,
+ .write_flag_mask = 0x80,
+ };
+ struct regmap *regmap;
+
+ regmap = devm_regmap_init_spi(spi, &config);
+ if (IS_ERR(regmap)) {
+ dev_err(&spi->dev, "%s: regmap allocation failed: %ld\n",
+ __func__, PTR_ERR(regmap));
+ return PTR_ERR(regmap);
+ }
+
+ spi->mode = SPI_MODE_3;
+ spi->bits_per_word = 8;
+ spi_setup(spi);
+
+ res = regmap_read(regmap, DS3232_REG_SECONDS, &tmp);
+ if (res)
+ return res;
+
+ /* Control settings
+ *
+ * CONTROL_REG
+ * BIT 7 6 5 4 3 2 1 0
+ * EOSC BBSQW CONV RS2 RS1 INTCN A2IE A1IE
+ *
+ * 0 0 0 1 1 1 0 0
+ *
+ * CONTROL_STAT_REG
+ * BIT 7 6 5 4 3 2 1 0
+ * OSF BB32kHz CRATE1 CRATE0 EN32kHz BSY A2F A1F
+ *
+ * 1 0 0 0 1 0 0 0
+ */
+ res = regmap_read(regmap, DS3232_REG_CR, &tmp);
+ if (res)
+ return res;
+ res = regmap_write(regmap, DS3232_REG_CR, tmp & 0x1c);
+ if (res)
+ return res;
+
+ res = regmap_read(regmap, DS3232_REG_SR, &tmp);
+ if (res)
+ return res;
+ res = regmap_write(regmap, DS3232_REG_SR, tmp & 0x88);
+ if (res)
+ return res;
+
+ /* Print our settings */
+ res = regmap_read(regmap, DS3232_REG_CR, &tmp);
+ if (res)
+ return res;
+ dev_info(&spi->dev, "Control Reg: 0x%02x\n", tmp);
+
+ res = regmap_read(regmap, DS3232_REG_SR, &tmp);
+ if (res)
+ return res;
+ dev_info(&spi->dev, "Ctrl/Stat Reg: 0x%02x\n", tmp);
+
+ return ds3232_probe(&spi->dev, regmap, spi->irq, "ds3234");
+}
+
+static struct spi_driver ds3234_driver = {
+ .driver = {
+ .name = "ds3234",
+ },
+ .probe = ds3234_probe,
+};
+
+static int ds3234_register_driver(void)
+{
+ return spi_register_driver(&ds3234_driver);
+}
+
+static void ds3234_unregister_driver(void)
+{
+ spi_unregister_driver(&ds3234_driver);
+}
+
+#else
+
+static int ds3234_register_driver(void)
+{
+ return 0;
+}
+
+static void ds3234_unregister_driver(void)
+{
+}
+
+#endif
+
+static int __init ds323x_init(void)
+{
+ int ret;
+
+ ret = ds3232_register_driver();
+ if (ret) {
+ pr_err("Failed to register ds3232 driver: %d\n", ret);
+ return ret;
+ }
+
+ ret = ds3234_register_driver();
+ if (ret) {
+ pr_err("Failed to register ds3234 driver: %d\n", ret);
+ ds3232_unregister_driver();
+ }
+
+ return ret;
+}
+module_init(ds323x_init)
+
+static void __exit ds323x_exit(void)
+{
+ ds3234_unregister_driver();
+ ds3232_unregister_driver();
+}
+module_exit(ds323x_exit)
+
+MODULE_AUTHOR("Srikanth Srinivasan <srikanth.srinivasan@freescale.com>");
+MODULE_AUTHOR("Dennis Aberilla <denzzzhome@yahoo.com>");
+MODULE_DESCRIPTION("Maxim/Dallas DS3232/DS3234 RTC Driver");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("spi:ds3234");
diff --git a/drivers/rtc/rtc-efi.c b/drivers/rtc/rtc-efi.c
new file mode 100644
index 000000000..edb64debd
--- /dev/null
+++ b/drivers/rtc/rtc-efi.c
@@ -0,0 +1,287 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * rtc-efi: RTC Class Driver for EFI-based systems
+ *
+ * Copyright (C) 2009 Hewlett-Packard Development Company, L.P.
+ *
+ * Author: dann frazier <dannf@dannf.org>
+ * Based on efirtc.c by Stephane Eranian
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/stringify.h>
+#include <linux/time.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/efi.h>
+
+#define EFI_ISDST (EFI_TIME_ADJUST_DAYLIGHT|EFI_TIME_IN_DAYLIGHT)
+
+/*
+ * returns day of the year [0-365]
+ */
+static inline int
+compute_yday(efi_time_t *eft)
+{
+ /* efi_time_t.month is in the [1-12] so, we need -1 */
+ return rtc_year_days(eft->day, eft->month - 1, eft->year);
+}
+
+/*
+ * returns day of the week [0-6] 0=Sunday
+ */
+static int
+compute_wday(efi_time_t *eft, int yday)
+{
+ int ndays = eft->year * (365 % 7)
+ + (eft->year - 1) / 4
+ - (eft->year - 1) / 100
+ + (eft->year - 1) / 400
+ + yday;
+
+ /*
+ * 1/1/0000 may or may not have been a Sunday (if it ever existed at
+ * all) but assuming it was makes this calculation work correctly.
+ */
+ return ndays % 7;
+}
+
+static void
+convert_to_efi_time(struct rtc_time *wtime, efi_time_t *eft)
+{
+ eft->year = wtime->tm_year + 1900;
+ eft->month = wtime->tm_mon + 1;
+ eft->day = wtime->tm_mday;
+ eft->hour = wtime->tm_hour;
+ eft->minute = wtime->tm_min;
+ eft->second = wtime->tm_sec;
+ eft->nanosecond = 0;
+ eft->daylight = wtime->tm_isdst ? EFI_ISDST : 0;
+ eft->timezone = EFI_UNSPECIFIED_TIMEZONE;
+}
+
+static bool
+convert_from_efi_time(efi_time_t *eft, struct rtc_time *wtime)
+{
+ memset(wtime, 0, sizeof(*wtime));
+
+ if (eft->second >= 60)
+ return false;
+ wtime->tm_sec = eft->second;
+
+ if (eft->minute >= 60)
+ return false;
+ wtime->tm_min = eft->minute;
+
+ if (eft->hour >= 24)
+ return false;
+ wtime->tm_hour = eft->hour;
+
+ if (!eft->day || eft->day > 31)
+ return false;
+ wtime->tm_mday = eft->day;
+
+ if (!eft->month || eft->month > 12)
+ return false;
+ wtime->tm_mon = eft->month - 1;
+
+ if (eft->year < 1900 || eft->year > 9999)
+ return false;
+ wtime->tm_year = eft->year - 1900;
+
+ /* day in the year [1-365]*/
+ wtime->tm_yday = compute_yday(eft);
+
+ /* day of the week [0-6], Sunday=0 */
+ wtime->tm_wday = compute_wday(eft, wtime->tm_yday);
+
+ switch (eft->daylight & EFI_ISDST) {
+ case EFI_ISDST:
+ wtime->tm_isdst = 1;
+ break;
+ case EFI_TIME_ADJUST_DAYLIGHT:
+ wtime->tm_isdst = 0;
+ break;
+ default:
+ wtime->tm_isdst = -1;
+ }
+
+ return true;
+}
+
+static int efi_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
+{
+ efi_time_t eft;
+ efi_status_t status;
+
+ /*
+ * As of EFI v1.10, this call always returns an unsupported status
+ */
+ status = efi.get_wakeup_time((efi_bool_t *)&wkalrm->enabled,
+ (efi_bool_t *)&wkalrm->pending, &eft);
+
+ if (status != EFI_SUCCESS)
+ return -EINVAL;
+
+ if (!convert_from_efi_time(&eft, &wkalrm->time))
+ return -EIO;
+
+ return rtc_valid_tm(&wkalrm->time);
+}
+
+static int efi_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
+{
+ efi_time_t eft;
+ efi_status_t status;
+
+ convert_to_efi_time(&wkalrm->time, &eft);
+
+ /*
+ * XXX Fixme:
+ * As of EFI 0.92 with the firmware I have on my
+ * machine this call does not seem to work quite
+ * right
+ *
+ * As of v1.10, this call always returns an unsupported status
+ */
+ status = efi.set_wakeup_time((efi_bool_t)wkalrm->enabled, &eft);
+
+ dev_warn(dev, "write status is %d\n", (int)status);
+
+ return status == EFI_SUCCESS ? 0 : -EINVAL;
+}
+
+static int efi_read_time(struct device *dev, struct rtc_time *tm)
+{
+ efi_status_t status;
+ efi_time_t eft;
+ efi_time_cap_t cap;
+
+ status = efi.get_time(&eft, &cap);
+
+ if (status != EFI_SUCCESS) {
+ /* should never happen */
+ dev_err(dev, "can't read time\n");
+ return -EINVAL;
+ }
+
+ if (!convert_from_efi_time(&eft, tm))
+ return -EIO;
+
+ return 0;
+}
+
+static int efi_set_time(struct device *dev, struct rtc_time *tm)
+{
+ efi_status_t status;
+ efi_time_t eft;
+
+ convert_to_efi_time(tm, &eft);
+
+ status = efi.set_time(&eft);
+
+ return status == EFI_SUCCESS ? 0 : -EINVAL;
+}
+
+static int efi_procfs(struct device *dev, struct seq_file *seq)
+{
+ efi_time_t eft, alm;
+ efi_time_cap_t cap;
+ efi_bool_t enabled, pending;
+
+ memset(&eft, 0, sizeof(eft));
+ memset(&alm, 0, sizeof(alm));
+ memset(&cap, 0, sizeof(cap));
+
+ efi.get_time(&eft, &cap);
+ efi.get_wakeup_time(&enabled, &pending, &alm);
+
+ seq_printf(seq,
+ "Time\t\t: %u:%u:%u.%09u\n"
+ "Date\t\t: %u-%u-%u\n"
+ "Daylight\t: %u\n",
+ eft.hour, eft.minute, eft.second, eft.nanosecond,
+ eft.year, eft.month, eft.day,
+ eft.daylight);
+
+ if (eft.timezone == EFI_UNSPECIFIED_TIMEZONE)
+ seq_puts(seq, "Timezone\t: unspecified\n");
+ else
+ /* XXX fixme: convert to string? */
+ seq_printf(seq, "Timezone\t: %u\n", eft.timezone);
+
+ seq_printf(seq,
+ "Alarm Time\t: %u:%u:%u.%09u\n"
+ "Alarm Date\t: %u-%u-%u\n"
+ "Alarm Daylight\t: %u\n"
+ "Enabled\t\t: %s\n"
+ "Pending\t\t: %s\n",
+ alm.hour, alm.minute, alm.second, alm.nanosecond,
+ alm.year, alm.month, alm.day,
+ alm.daylight,
+ enabled == 1 ? "yes" : "no",
+ pending == 1 ? "yes" : "no");
+
+ if (eft.timezone == EFI_UNSPECIFIED_TIMEZONE)
+ seq_puts(seq, "Timezone\t: unspecified\n");
+ else
+ /* XXX fixme: convert to string? */
+ seq_printf(seq, "Timezone\t: %u\n", alm.timezone);
+
+ /*
+ * now prints the capabilities
+ */
+ seq_printf(seq,
+ "Resolution\t: %u\n"
+ "Accuracy\t: %u\n"
+ "SetstoZero\t: %u\n",
+ cap.resolution, cap.accuracy, cap.sets_to_zero);
+
+ return 0;
+}
+
+static const struct rtc_class_ops efi_rtc_ops = {
+ .read_time = efi_read_time,
+ .set_time = efi_set_time,
+ .read_alarm = efi_read_alarm,
+ .set_alarm = efi_set_alarm,
+ .proc = efi_procfs,
+};
+
+static int __init efi_rtc_probe(struct platform_device *dev)
+{
+ struct rtc_device *rtc;
+ efi_time_t eft;
+ efi_time_cap_t cap;
+
+ /* First check if the RTC is usable */
+ if (efi.get_time(&eft, &cap) != EFI_SUCCESS)
+ return -ENODEV;
+
+ rtc = devm_rtc_device_register(&dev->dev, "rtc-efi", &efi_rtc_ops,
+ THIS_MODULE);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ rtc->uie_unsupported = 1;
+ platform_set_drvdata(dev, rtc);
+
+ return 0;
+}
+
+static struct platform_driver efi_rtc_driver = {
+ .driver = {
+ .name = "rtc-efi",
+ },
+};
+
+module_platform_driver_probe(efi_rtc_driver, efi_rtc_probe);
+
+MODULE_ALIAS("platform:rtc-efi");
+MODULE_AUTHOR("dann frazier <dannf@dannf.org>");
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("EFI RTC driver");
+MODULE_ALIAS("platform:rtc-efi");
diff --git a/drivers/rtc/rtc-em3027.c b/drivers/rtc/rtc-em3027.c
new file mode 100644
index 000000000..9f176bce4
--- /dev/null
+++ b/drivers/rtc/rtc-em3027.c
@@ -0,0 +1,159 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * An rtc/i2c driver for the EM Microelectronic EM3027
+ * Copyright 2011 CompuLab, Ltd.
+ *
+ * Author: Mike Rapoport <mike@compulab.co.il>
+ *
+ * Based on rtc-ds1672.c by Alessandro Zummo <a.zummo@towertech.it>
+ */
+
+#include <linux/i2c.h>
+#include <linux/rtc.h>
+#include <linux/bcd.h>
+#include <linux/module.h>
+#include <linux/of.h>
+
+/* Registers */
+#define EM3027_REG_ON_OFF_CTRL 0x00
+#define EM3027_REG_IRQ_CTRL 0x01
+#define EM3027_REG_IRQ_FLAGS 0x02
+#define EM3027_REG_STATUS 0x03
+#define EM3027_REG_RST_CTRL 0x04
+
+#define EM3027_REG_WATCH_SEC 0x08
+#define EM3027_REG_WATCH_MIN 0x09
+#define EM3027_REG_WATCH_HOUR 0x0a
+#define EM3027_REG_WATCH_DATE 0x0b
+#define EM3027_REG_WATCH_DAY 0x0c
+#define EM3027_REG_WATCH_MON 0x0d
+#define EM3027_REG_WATCH_YEAR 0x0e
+
+#define EM3027_REG_ALARM_SEC 0x10
+#define EM3027_REG_ALARM_MIN 0x11
+#define EM3027_REG_ALARM_HOUR 0x12
+#define EM3027_REG_ALARM_DATE 0x13
+#define EM3027_REG_ALARM_DAY 0x14
+#define EM3027_REG_ALARM_MON 0x15
+#define EM3027_REG_ALARM_YEAR 0x16
+
+static struct i2c_driver em3027_driver;
+
+static int em3027_get_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+
+ unsigned char addr = EM3027_REG_WATCH_SEC;
+ unsigned char buf[7];
+
+ struct i2c_msg msgs[] = {
+ {/* setup read addr */
+ .addr = client->addr,
+ .len = 1,
+ .buf = &addr
+ },
+ {/* read time/date */
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = 7,
+ .buf = buf
+ },
+ };
+
+ /* read time/date registers */
+ if ((i2c_transfer(client->adapter, &msgs[0], 2)) != 2) {
+ dev_err(&client->dev, "%s: read error\n", __func__);
+ return -EIO;
+ }
+
+ tm->tm_sec = bcd2bin(buf[0]);
+ tm->tm_min = bcd2bin(buf[1]);
+ tm->tm_hour = bcd2bin(buf[2]);
+ tm->tm_mday = bcd2bin(buf[3]);
+ tm->tm_wday = bcd2bin(buf[4]);
+ tm->tm_mon = bcd2bin(buf[5]) - 1;
+ tm->tm_year = bcd2bin(buf[6]) + 100;
+
+ return 0;
+}
+
+static int em3027_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ unsigned char buf[8];
+
+ struct i2c_msg msg = {
+ .addr = client->addr,
+ .len = 8,
+ .buf = buf, /* write time/date */
+ };
+
+ buf[0] = EM3027_REG_WATCH_SEC;
+ buf[1] = bin2bcd(tm->tm_sec);
+ buf[2] = bin2bcd(tm->tm_min);
+ buf[3] = bin2bcd(tm->tm_hour);
+ buf[4] = bin2bcd(tm->tm_mday);
+ buf[5] = bin2bcd(tm->tm_wday);
+ buf[6] = bin2bcd(tm->tm_mon + 1);
+ buf[7] = bin2bcd(tm->tm_year % 100);
+
+ /* write time/date registers */
+ if ((i2c_transfer(client->adapter, &msg, 1)) != 1) {
+ dev_err(&client->dev, "%s: write error\n", __func__);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static const struct rtc_class_ops em3027_rtc_ops = {
+ .read_time = em3027_get_time,
+ .set_time = em3027_set_time,
+};
+
+static int em3027_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct rtc_device *rtc;
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
+ return -ENODEV;
+
+ rtc = devm_rtc_device_register(&client->dev, em3027_driver.driver.name,
+ &em3027_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ i2c_set_clientdata(client, rtc);
+
+ return 0;
+}
+
+static const struct i2c_device_id em3027_id[] = {
+ { "em3027", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, em3027_id);
+
+#ifdef CONFIG_OF
+static const struct of_device_id em3027_of_match[] = {
+ { .compatible = "emmicro,em3027", },
+ {}
+};
+MODULE_DEVICE_TABLE(of, em3027_of_match);
+#endif
+
+static struct i2c_driver em3027_driver = {
+ .driver = {
+ .name = "rtc-em3027",
+ .of_match_table = of_match_ptr(em3027_of_match),
+ },
+ .probe = &em3027_probe,
+ .id_table = em3027_id,
+};
+
+module_i2c_driver(em3027_driver);
+
+MODULE_AUTHOR("Mike Rapoport <mike@compulab.co.il>");
+MODULE_DESCRIPTION("EM Microelectronic EM3027 RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-ep93xx.c b/drivers/rtc/rtc-ep93xx.c
new file mode 100644
index 000000000..6f90b85a5
--- /dev/null
+++ b/drivers/rtc/rtc-ep93xx.c
@@ -0,0 +1,163 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * A driver for the RTC embedded in the Cirrus Logic EP93XX processors
+ * Copyright (c) 2006 Tower Technologies
+ *
+ * Author: Alessandro Zummo <a.zummo@towertech.it>
+ */
+
+#include <linux/module.h>
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+#include <linux/io.h>
+#include <linux/gfp.h>
+
+#define EP93XX_RTC_DATA 0x000
+#define EP93XX_RTC_MATCH 0x004
+#define EP93XX_RTC_STATUS 0x008
+#define EP93XX_RTC_STATUS_INTR BIT(0)
+#define EP93XX_RTC_LOAD 0x00C
+#define EP93XX_RTC_CONTROL 0x010
+#define EP93XX_RTC_CONTROL_MIE BIT(0)
+#define EP93XX_RTC_SWCOMP 0x108
+#define EP93XX_RTC_SWCOMP_DEL_MASK 0x001f0000
+#define EP93XX_RTC_SWCOMP_DEL_SHIFT 16
+#define EP93XX_RTC_SWCOMP_INT_MASK 0x0000ffff
+#define EP93XX_RTC_SWCOMP_INT_SHIFT 0
+
+struct ep93xx_rtc {
+ void __iomem *mmio_base;
+ struct rtc_device *rtc;
+};
+
+static int ep93xx_rtc_get_swcomp(struct device *dev, unsigned short *preload,
+ unsigned short *delete)
+{
+ struct ep93xx_rtc *ep93xx_rtc = dev_get_drvdata(dev);
+ unsigned long comp;
+
+ comp = readl(ep93xx_rtc->mmio_base + EP93XX_RTC_SWCOMP);
+
+ if (preload)
+ *preload = (comp & EP93XX_RTC_SWCOMP_INT_MASK)
+ >> EP93XX_RTC_SWCOMP_INT_SHIFT;
+
+ if (delete)
+ *delete = (comp & EP93XX_RTC_SWCOMP_DEL_MASK)
+ >> EP93XX_RTC_SWCOMP_DEL_SHIFT;
+
+ return 0;
+}
+
+static int ep93xx_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct ep93xx_rtc *ep93xx_rtc = dev_get_drvdata(dev);
+ unsigned long time;
+
+ time = readl(ep93xx_rtc->mmio_base + EP93XX_RTC_DATA);
+
+ rtc_time64_to_tm(time, tm);
+ return 0;
+}
+
+static int ep93xx_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct ep93xx_rtc *ep93xx_rtc = dev_get_drvdata(dev);
+ unsigned long secs = rtc_tm_to_time64(tm);
+
+ writel(secs + 1, ep93xx_rtc->mmio_base + EP93XX_RTC_LOAD);
+ return 0;
+}
+
+static int ep93xx_rtc_proc(struct device *dev, struct seq_file *seq)
+{
+ unsigned short preload, delete;
+
+ ep93xx_rtc_get_swcomp(dev, &preload, &delete);
+
+ seq_printf(seq, "preload\t\t: %d\n", preload);
+ seq_printf(seq, "delete\t\t: %d\n", delete);
+
+ return 0;
+}
+
+static const struct rtc_class_ops ep93xx_rtc_ops = {
+ .read_time = ep93xx_rtc_read_time,
+ .set_time = ep93xx_rtc_set_time,
+ .proc = ep93xx_rtc_proc,
+};
+
+static ssize_t comp_preload_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ unsigned short preload;
+
+ ep93xx_rtc_get_swcomp(dev->parent, &preload, NULL);
+
+ return sprintf(buf, "%d\n", preload);
+}
+static DEVICE_ATTR_RO(comp_preload);
+
+static ssize_t comp_delete_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ unsigned short delete;
+
+ ep93xx_rtc_get_swcomp(dev->parent, NULL, &delete);
+
+ return sprintf(buf, "%d\n", delete);
+}
+static DEVICE_ATTR_RO(comp_delete);
+
+static struct attribute *ep93xx_rtc_attrs[] = {
+ &dev_attr_comp_preload.attr,
+ &dev_attr_comp_delete.attr,
+ NULL
+};
+
+static const struct attribute_group ep93xx_rtc_sysfs_files = {
+ .attrs = ep93xx_rtc_attrs,
+};
+
+static int ep93xx_rtc_probe(struct platform_device *pdev)
+{
+ struct ep93xx_rtc *ep93xx_rtc;
+ int err;
+
+ ep93xx_rtc = devm_kzalloc(&pdev->dev, sizeof(*ep93xx_rtc), GFP_KERNEL);
+ if (!ep93xx_rtc)
+ return -ENOMEM;
+
+ ep93xx_rtc->mmio_base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(ep93xx_rtc->mmio_base))
+ return PTR_ERR(ep93xx_rtc->mmio_base);
+
+ platform_set_drvdata(pdev, ep93xx_rtc);
+
+ ep93xx_rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(ep93xx_rtc->rtc))
+ return PTR_ERR(ep93xx_rtc->rtc);
+
+ ep93xx_rtc->rtc->ops = &ep93xx_rtc_ops;
+ ep93xx_rtc->rtc->range_max = U32_MAX;
+
+ err = rtc_add_group(ep93xx_rtc->rtc, &ep93xx_rtc_sysfs_files);
+ if (err)
+ return err;
+
+ return rtc_register_device(ep93xx_rtc->rtc);
+}
+
+static struct platform_driver ep93xx_rtc_driver = {
+ .driver = {
+ .name = "ep93xx-rtc",
+ },
+ .probe = ep93xx_rtc_probe,
+};
+
+module_platform_driver(ep93xx_rtc_driver);
+
+MODULE_AUTHOR("Alessandro Zummo <a.zummo@towertech.it>");
+MODULE_DESCRIPTION("EP93XX RTC driver");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:ep93xx-rtc");
diff --git a/drivers/rtc/rtc-fm3130.c b/drivers/rtc/rtc-fm3130.c
new file mode 100644
index 000000000..677ec2da1
--- /dev/null
+++ b/drivers/rtc/rtc-fm3130.c
@@ -0,0 +1,530 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * rtc-fm3130.c - RTC driver for Ramtron FM3130 I2C chip.
+ *
+ * Copyright (C) 2008 Sergey Lapin
+ * Based on ds1307 driver by James Chapman and David Brownell
+ */
+
+#include <linux/module.h>
+#include <linux/i2c.h>
+#include <linux/rtc.h>
+#include <linux/bcd.h>
+#include <linux/slab.h>
+
+#define FM3130_RTC_CONTROL (0x0)
+#define FM3130_CAL_CONTROL (0x1)
+#define FM3130_RTC_SECONDS (0x2)
+#define FM3130_RTC_MINUTES (0x3)
+#define FM3130_RTC_HOURS (0x4)
+#define FM3130_RTC_DAY (0x5)
+#define FM3130_RTC_DATE (0x6)
+#define FM3130_RTC_MONTHS (0x7)
+#define FM3130_RTC_YEARS (0x8)
+
+#define FM3130_ALARM_SECONDS (0x9)
+#define FM3130_ALARM_MINUTES (0xa)
+#define FM3130_ALARM_HOURS (0xb)
+#define FM3130_ALARM_DATE (0xc)
+#define FM3130_ALARM_MONTHS (0xd)
+#define FM3130_ALARM_WP_CONTROL (0xe)
+
+#define FM3130_CAL_CONTROL_BIT_nOSCEN (1 << 7) /* Osciallator enabled */
+#define FM3130_RTC_CONTROL_BIT_LB (1 << 7) /* Low battery */
+#define FM3130_RTC_CONTROL_BIT_AF (1 << 6) /* Alarm flag */
+#define FM3130_RTC_CONTROL_BIT_CF (1 << 5) /* Century overflow */
+#define FM3130_RTC_CONTROL_BIT_POR (1 << 4) /* Power on reset */
+#define FM3130_RTC_CONTROL_BIT_AEN (1 << 3) /* Alarm enable */
+#define FM3130_RTC_CONTROL_BIT_CAL (1 << 2) /* Calibration mode */
+#define FM3130_RTC_CONTROL_BIT_WRITE (1 << 1) /* W=1 -> write mode W=0 normal */
+#define FM3130_RTC_CONTROL_BIT_READ (1 << 0) /* R=1 -> read mode R=0 normal */
+
+#define FM3130_CLOCK_REGS 7
+#define FM3130_ALARM_REGS 5
+
+struct fm3130 {
+ u8 reg_addr_time;
+ u8 reg_addr_alarm;
+ u8 regs[15];
+ struct i2c_msg msg[4];
+ struct i2c_client *client;
+ struct rtc_device *rtc;
+ int alarm_valid;
+ int data_valid;
+};
+static const struct i2c_device_id fm3130_id[] = {
+ { "fm3130", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, fm3130_id);
+
+#define FM3130_MODE_NORMAL 0
+#define FM3130_MODE_WRITE 1
+#define FM3130_MODE_READ 2
+
+static void fm3130_rtc_mode(struct device *dev, int mode)
+{
+ struct fm3130 *fm3130 = dev_get_drvdata(dev);
+
+ fm3130->regs[FM3130_RTC_CONTROL] =
+ i2c_smbus_read_byte_data(fm3130->client, FM3130_RTC_CONTROL);
+ switch (mode) {
+ case FM3130_MODE_NORMAL:
+ fm3130->regs[FM3130_RTC_CONTROL] &=
+ ~(FM3130_RTC_CONTROL_BIT_WRITE |
+ FM3130_RTC_CONTROL_BIT_READ);
+ break;
+ case FM3130_MODE_WRITE:
+ fm3130->regs[FM3130_RTC_CONTROL] |= FM3130_RTC_CONTROL_BIT_WRITE;
+ break;
+ case FM3130_MODE_READ:
+ fm3130->regs[FM3130_RTC_CONTROL] |= FM3130_RTC_CONTROL_BIT_READ;
+ break;
+ default:
+ dev_dbg(dev, "invalid mode %d\n", mode);
+ break;
+ }
+
+ i2c_smbus_write_byte_data(fm3130->client,
+ FM3130_RTC_CONTROL, fm3130->regs[FM3130_RTC_CONTROL]);
+}
+
+static int fm3130_get_time(struct device *dev, struct rtc_time *t)
+{
+ struct fm3130 *fm3130 = dev_get_drvdata(dev);
+ int tmp;
+
+ if (!fm3130->data_valid) {
+ /* We have invalid data in RTC, probably due
+ to battery faults or other problems. Return EIO
+ for now, it will allow us to set data later instead
+ of error during probing which disables device */
+ return -EIO;
+ }
+ fm3130_rtc_mode(dev, FM3130_MODE_READ);
+
+ /* read the RTC date and time registers all at once */
+ tmp = i2c_transfer(fm3130->client->adapter, fm3130->msg, 2);
+ if (tmp != 2) {
+ dev_err(dev, "%s error %d\n", "read", tmp);
+ return -EIO;
+ }
+
+ fm3130_rtc_mode(dev, FM3130_MODE_NORMAL);
+
+ dev_dbg(dev, "%s: %15ph\n", "read", fm3130->regs);
+
+ t->tm_sec = bcd2bin(fm3130->regs[FM3130_RTC_SECONDS] & 0x7f);
+ t->tm_min = bcd2bin(fm3130->regs[FM3130_RTC_MINUTES] & 0x7f);
+ tmp = fm3130->regs[FM3130_RTC_HOURS] & 0x3f;
+ t->tm_hour = bcd2bin(tmp);
+ t->tm_wday = bcd2bin(fm3130->regs[FM3130_RTC_DAY] & 0x07) - 1;
+ t->tm_mday = bcd2bin(fm3130->regs[FM3130_RTC_DATE] & 0x3f);
+ tmp = fm3130->regs[FM3130_RTC_MONTHS] & 0x1f;
+ t->tm_mon = bcd2bin(tmp) - 1;
+
+ /* assume 20YY not 19YY, and ignore CF bit */
+ t->tm_year = bcd2bin(fm3130->regs[FM3130_RTC_YEARS]) + 100;
+
+ dev_dbg(dev, "%s secs=%d, mins=%d, "
+ "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
+ "read", t->tm_sec, t->tm_min,
+ t->tm_hour, t->tm_mday,
+ t->tm_mon, t->tm_year, t->tm_wday);
+
+ return 0;
+}
+
+
+static int fm3130_set_time(struct device *dev, struct rtc_time *t)
+{
+ struct fm3130 *fm3130 = dev_get_drvdata(dev);
+ int tmp, i;
+ u8 *buf = fm3130->regs;
+
+ dev_dbg(dev, "%s secs=%d, mins=%d, "
+ "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
+ "write", t->tm_sec, t->tm_min,
+ t->tm_hour, t->tm_mday,
+ t->tm_mon, t->tm_year, t->tm_wday);
+
+ /* first register addr */
+ buf[FM3130_RTC_SECONDS] = bin2bcd(t->tm_sec);
+ buf[FM3130_RTC_MINUTES] = bin2bcd(t->tm_min);
+ buf[FM3130_RTC_HOURS] = bin2bcd(t->tm_hour);
+ buf[FM3130_RTC_DAY] = bin2bcd(t->tm_wday + 1);
+ buf[FM3130_RTC_DATE] = bin2bcd(t->tm_mday);
+ buf[FM3130_RTC_MONTHS] = bin2bcd(t->tm_mon + 1);
+
+ /* assume 20YY not 19YY */
+ tmp = t->tm_year - 100;
+ buf[FM3130_RTC_YEARS] = bin2bcd(tmp);
+
+ dev_dbg(dev, "%s: %15ph\n", "write", buf);
+
+ fm3130_rtc_mode(dev, FM3130_MODE_WRITE);
+
+ /* Writing time registers, we don't support multibyte transfers */
+ for (i = 0; i < FM3130_CLOCK_REGS; i++) {
+ i2c_smbus_write_byte_data(fm3130->client,
+ FM3130_RTC_SECONDS + i,
+ fm3130->regs[FM3130_RTC_SECONDS + i]);
+ }
+
+ fm3130_rtc_mode(dev, FM3130_MODE_NORMAL);
+
+ /* We assume here that data are valid once written */
+ if (!fm3130->data_valid)
+ fm3130->data_valid = 1;
+ return 0;
+}
+
+static int fm3130_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct fm3130 *fm3130 = dev_get_drvdata(dev);
+ int tmp;
+ struct rtc_time *tm = &alrm->time;
+
+ if (!fm3130->alarm_valid) {
+ /*
+ * We have invalid alarm in RTC, probably due to battery faults
+ * or other problems. Return EIO for now, it will allow us to
+ * set alarm value later instead of error during probing which
+ * disables device
+ */
+ return -EIO;
+ }
+
+ /* read the RTC alarm registers all at once */
+ tmp = i2c_transfer(fm3130->client->adapter, &fm3130->msg[2], 2);
+ if (tmp != 2) {
+ dev_err(dev, "%s error %d\n", "read", tmp);
+ return -EIO;
+ }
+ dev_dbg(dev, "alarm read %02x %02x %02x %02x %02x\n",
+ fm3130->regs[FM3130_ALARM_SECONDS],
+ fm3130->regs[FM3130_ALARM_MINUTES],
+ fm3130->regs[FM3130_ALARM_HOURS],
+ fm3130->regs[FM3130_ALARM_DATE],
+ fm3130->regs[FM3130_ALARM_MONTHS]);
+
+ tm->tm_sec = bcd2bin(fm3130->regs[FM3130_ALARM_SECONDS] & 0x7F);
+ tm->tm_min = bcd2bin(fm3130->regs[FM3130_ALARM_MINUTES] & 0x7F);
+ tm->tm_hour = bcd2bin(fm3130->regs[FM3130_ALARM_HOURS] & 0x3F);
+ tm->tm_mday = bcd2bin(fm3130->regs[FM3130_ALARM_DATE] & 0x3F);
+ tm->tm_mon = bcd2bin(fm3130->regs[FM3130_ALARM_MONTHS] & 0x1F);
+
+ if (tm->tm_mon > 0)
+ tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
+
+ dev_dbg(dev, "%s secs=%d, mins=%d, "
+ "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
+ "read alarm", tm->tm_sec, tm->tm_min,
+ tm->tm_hour, tm->tm_mday,
+ tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ /* check if alarm enabled */
+ fm3130->regs[FM3130_RTC_CONTROL] =
+ i2c_smbus_read_byte_data(fm3130->client, FM3130_RTC_CONTROL);
+
+ if ((fm3130->regs[FM3130_RTC_CONTROL] & FM3130_RTC_CONTROL_BIT_AEN) &&
+ (~fm3130->regs[FM3130_RTC_CONTROL] &
+ FM3130_RTC_CONTROL_BIT_CAL)) {
+ alrm->enabled = 1;
+ }
+
+ return 0;
+}
+
+static int fm3130_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct fm3130 *fm3130 = dev_get_drvdata(dev);
+ struct rtc_time *tm = &alrm->time;
+ int i;
+
+ dev_dbg(dev, "%s secs=%d, mins=%d, "
+ "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
+ "write alarm", tm->tm_sec, tm->tm_min,
+ tm->tm_hour, tm->tm_mday,
+ tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ fm3130->regs[FM3130_ALARM_SECONDS] =
+ (tm->tm_sec != -1) ? bin2bcd(tm->tm_sec) : 0x80;
+
+ fm3130->regs[FM3130_ALARM_MINUTES] =
+ (tm->tm_min != -1) ? bin2bcd(tm->tm_min) : 0x80;
+
+ fm3130->regs[FM3130_ALARM_HOURS] =
+ (tm->tm_hour != -1) ? bin2bcd(tm->tm_hour) : 0x80;
+
+ fm3130->regs[FM3130_ALARM_DATE] =
+ (tm->tm_mday != -1) ? bin2bcd(tm->tm_mday) : 0x80;
+
+ fm3130->regs[FM3130_ALARM_MONTHS] =
+ (tm->tm_mon != -1) ? bin2bcd(tm->tm_mon + 1) : 0x80;
+
+ dev_dbg(dev, "alarm write %02x %02x %02x %02x %02x\n",
+ fm3130->regs[FM3130_ALARM_SECONDS],
+ fm3130->regs[FM3130_ALARM_MINUTES],
+ fm3130->regs[FM3130_ALARM_HOURS],
+ fm3130->regs[FM3130_ALARM_DATE],
+ fm3130->regs[FM3130_ALARM_MONTHS]);
+ /* Writing time registers, we don't support multibyte transfers */
+ for (i = 0; i < FM3130_ALARM_REGS; i++) {
+ i2c_smbus_write_byte_data(fm3130->client,
+ FM3130_ALARM_SECONDS + i,
+ fm3130->regs[FM3130_ALARM_SECONDS + i]);
+ }
+ fm3130->regs[FM3130_RTC_CONTROL] =
+ i2c_smbus_read_byte_data(fm3130->client, FM3130_RTC_CONTROL);
+
+ /* enable or disable alarm */
+ if (alrm->enabled) {
+ i2c_smbus_write_byte_data(fm3130->client, FM3130_RTC_CONTROL,
+ (fm3130->regs[FM3130_RTC_CONTROL] &
+ ~(FM3130_RTC_CONTROL_BIT_CAL)) |
+ FM3130_RTC_CONTROL_BIT_AEN);
+ } else {
+ i2c_smbus_write_byte_data(fm3130->client, FM3130_RTC_CONTROL,
+ fm3130->regs[FM3130_RTC_CONTROL] &
+ ~(FM3130_RTC_CONTROL_BIT_CAL) &
+ ~(FM3130_RTC_CONTROL_BIT_AEN));
+ }
+
+ /* We assume here that data is valid once written */
+ if (!fm3130->alarm_valid)
+ fm3130->alarm_valid = 1;
+
+ return 0;
+}
+
+static int fm3130_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct fm3130 *fm3130 = dev_get_drvdata(dev);
+ int ret = 0;
+
+ fm3130->regs[FM3130_RTC_CONTROL] =
+ i2c_smbus_read_byte_data(fm3130->client, FM3130_RTC_CONTROL);
+
+ dev_dbg(dev, "alarm_irq_enable: enable=%d, FM3130_RTC_CONTROL=%02x\n",
+ enabled, fm3130->regs[FM3130_RTC_CONTROL]);
+
+ switch (enabled) {
+ case 0: /* alarm off */
+ ret = i2c_smbus_write_byte_data(fm3130->client,
+ FM3130_RTC_CONTROL, fm3130->regs[FM3130_RTC_CONTROL] &
+ ~(FM3130_RTC_CONTROL_BIT_CAL) &
+ ~(FM3130_RTC_CONTROL_BIT_AEN));
+ break;
+ case 1: /* alarm on */
+ ret = i2c_smbus_write_byte_data(fm3130->client,
+ FM3130_RTC_CONTROL, (fm3130->regs[FM3130_RTC_CONTROL] &
+ ~(FM3130_RTC_CONTROL_BIT_CAL)) |
+ FM3130_RTC_CONTROL_BIT_AEN);
+ break;
+ default:
+ ret = -EINVAL;
+ break;
+ }
+
+ return ret;
+}
+
+static const struct rtc_class_ops fm3130_rtc_ops = {
+ .read_time = fm3130_get_time,
+ .set_time = fm3130_set_time,
+ .read_alarm = fm3130_read_alarm,
+ .set_alarm = fm3130_set_alarm,
+ .alarm_irq_enable = fm3130_alarm_irq_enable,
+};
+
+static struct i2c_driver fm3130_driver;
+
+static int fm3130_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct fm3130 *fm3130;
+ int err = -ENODEV;
+ int tmp;
+ struct i2c_adapter *adapter = client->adapter;
+
+ if (!i2c_check_functionality(adapter,
+ I2C_FUNC_I2C | I2C_FUNC_SMBUS_WRITE_BYTE_DATA))
+ return -EIO;
+
+ fm3130 = devm_kzalloc(&client->dev, sizeof(struct fm3130), GFP_KERNEL);
+
+ if (!fm3130)
+ return -ENOMEM;
+
+ fm3130->client = client;
+ i2c_set_clientdata(client, fm3130);
+ fm3130->reg_addr_time = FM3130_RTC_SECONDS;
+ fm3130->reg_addr_alarm = FM3130_ALARM_SECONDS;
+
+ /* Messages to read time */
+ fm3130->msg[0].addr = client->addr;
+ fm3130->msg[0].flags = 0;
+ fm3130->msg[0].len = 1;
+ fm3130->msg[0].buf = &fm3130->reg_addr_time;
+
+ fm3130->msg[1].addr = client->addr;
+ fm3130->msg[1].flags = I2C_M_RD;
+ fm3130->msg[1].len = FM3130_CLOCK_REGS;
+ fm3130->msg[1].buf = &fm3130->regs[FM3130_RTC_SECONDS];
+
+ /* Messages to read alarm */
+ fm3130->msg[2].addr = client->addr;
+ fm3130->msg[2].flags = 0;
+ fm3130->msg[2].len = 1;
+ fm3130->msg[2].buf = &fm3130->reg_addr_alarm;
+
+ fm3130->msg[3].addr = client->addr;
+ fm3130->msg[3].flags = I2C_M_RD;
+ fm3130->msg[3].len = FM3130_ALARM_REGS;
+ fm3130->msg[3].buf = &fm3130->regs[FM3130_ALARM_SECONDS];
+
+ fm3130->alarm_valid = 0;
+ fm3130->data_valid = 0;
+
+ tmp = i2c_transfer(adapter, fm3130->msg, 4);
+ if (tmp != 4) {
+ dev_dbg(&client->dev, "read error %d\n", tmp);
+ err = -EIO;
+ goto exit_free;
+ }
+
+ fm3130->regs[FM3130_RTC_CONTROL] =
+ i2c_smbus_read_byte_data(client, FM3130_RTC_CONTROL);
+ fm3130->regs[FM3130_CAL_CONTROL] =
+ i2c_smbus_read_byte_data(client, FM3130_CAL_CONTROL);
+
+ /* Disabling calibration mode */
+ if (fm3130->regs[FM3130_RTC_CONTROL] & FM3130_RTC_CONTROL_BIT_CAL) {
+ i2c_smbus_write_byte_data(client, FM3130_RTC_CONTROL,
+ fm3130->regs[FM3130_RTC_CONTROL] &
+ ~(FM3130_RTC_CONTROL_BIT_CAL));
+ dev_warn(&client->dev, "Disabling calibration mode!\n");
+ }
+
+ /* Disabling read and write modes */
+ if (fm3130->regs[FM3130_RTC_CONTROL] & FM3130_RTC_CONTROL_BIT_WRITE ||
+ fm3130->regs[FM3130_RTC_CONTROL] & FM3130_RTC_CONTROL_BIT_READ) {
+ i2c_smbus_write_byte_data(client, FM3130_RTC_CONTROL,
+ fm3130->regs[FM3130_RTC_CONTROL] &
+ ~(FM3130_RTC_CONTROL_BIT_READ |
+ FM3130_RTC_CONTROL_BIT_WRITE));
+ dev_warn(&client->dev, "Disabling READ or WRITE mode!\n");
+ }
+
+ /* oscillator off? turn it on, so clock can tick. */
+ if (fm3130->regs[FM3130_CAL_CONTROL] & FM3130_CAL_CONTROL_BIT_nOSCEN)
+ i2c_smbus_write_byte_data(client, FM3130_CAL_CONTROL,
+ fm3130->regs[FM3130_CAL_CONTROL] &
+ ~(FM3130_CAL_CONTROL_BIT_nOSCEN));
+
+ /* low battery? clear flag, and warn */
+ if (fm3130->regs[FM3130_RTC_CONTROL] & FM3130_RTC_CONTROL_BIT_LB) {
+ i2c_smbus_write_byte_data(client, FM3130_RTC_CONTROL,
+ fm3130->regs[FM3130_RTC_CONTROL] &
+ ~(FM3130_RTC_CONTROL_BIT_LB));
+ dev_warn(&client->dev, "Low battery!\n");
+ }
+
+ /* check if Power On Reset bit is set */
+ if (fm3130->regs[FM3130_RTC_CONTROL] & FM3130_RTC_CONTROL_BIT_POR) {
+ i2c_smbus_write_byte_data(client, FM3130_RTC_CONTROL,
+ fm3130->regs[FM3130_RTC_CONTROL] &
+ ~FM3130_RTC_CONTROL_BIT_POR);
+ dev_dbg(&client->dev, "POR bit is set\n");
+ }
+ /* ACS is controlled by alarm */
+ i2c_smbus_write_byte_data(client, FM3130_ALARM_WP_CONTROL, 0x80);
+
+ /* alarm registers sanity check */
+ tmp = bcd2bin(fm3130->regs[FM3130_RTC_SECONDS] & 0x7f);
+ if (tmp > 59)
+ goto bad_alarm;
+
+ tmp = bcd2bin(fm3130->regs[FM3130_RTC_MINUTES] & 0x7f);
+ if (tmp > 59)
+ goto bad_alarm;
+
+ tmp = bcd2bin(fm3130->regs[FM3130_RTC_HOURS] & 0x3f);
+ if (tmp > 23)
+ goto bad_alarm;
+
+ tmp = bcd2bin(fm3130->regs[FM3130_RTC_DATE] & 0x3f);
+ if (tmp == 0 || tmp > 31)
+ goto bad_alarm;
+
+ tmp = bcd2bin(fm3130->regs[FM3130_RTC_MONTHS] & 0x1f);
+ if (tmp == 0 || tmp > 12)
+ goto bad_alarm;
+
+ fm3130->alarm_valid = 1;
+
+bad_alarm:
+
+ /* clock registers sanity chek */
+ tmp = bcd2bin(fm3130->regs[FM3130_RTC_SECONDS] & 0x7f);
+ if (tmp > 59)
+ goto bad_clock;
+
+ tmp = bcd2bin(fm3130->regs[FM3130_RTC_MINUTES] & 0x7f);
+ if (tmp > 59)
+ goto bad_clock;
+
+ tmp = bcd2bin(fm3130->regs[FM3130_RTC_HOURS] & 0x3f);
+ if (tmp > 23)
+ goto bad_clock;
+
+ tmp = bcd2bin(fm3130->regs[FM3130_RTC_DAY] & 0x7);
+ if (tmp == 0 || tmp > 7)
+ goto bad_clock;
+
+ tmp = bcd2bin(fm3130->regs[FM3130_RTC_DATE] & 0x3f);
+ if (tmp == 0 || tmp > 31)
+ goto bad_clock;
+
+ tmp = bcd2bin(fm3130->regs[FM3130_RTC_MONTHS] & 0x1f);
+ if (tmp == 0 || tmp > 12)
+ goto bad_clock;
+
+ fm3130->data_valid = 1;
+
+bad_clock:
+
+ if (!fm3130->data_valid || !fm3130->alarm_valid)
+ dev_dbg(&client->dev, "%s: %15ph\n", "bogus registers",
+ fm3130->regs);
+
+ /* We won't bail out here because we just got invalid data.
+ Time setting from u-boot doesn't work anyway */
+ fm3130->rtc = devm_rtc_device_register(&client->dev, client->name,
+ &fm3130_rtc_ops, THIS_MODULE);
+ if (IS_ERR(fm3130->rtc)) {
+ err = PTR_ERR(fm3130->rtc);
+ dev_err(&client->dev,
+ "unable to register the class device\n");
+ goto exit_free;
+ }
+ return 0;
+exit_free:
+ return err;
+}
+
+static struct i2c_driver fm3130_driver = {
+ .driver = {
+ .name = "rtc-fm3130",
+ },
+ .probe = fm3130_probe,
+ .id_table = fm3130_id,
+};
+
+module_i2c_driver(fm3130_driver);
+
+MODULE_DESCRIPTION("RTC driver for FM3130");
+MODULE_AUTHOR("Sergey Lapin <slapin@ossfans.org>");
+MODULE_LICENSE("GPL");
+
diff --git a/drivers/rtc/rtc-fsl-ftm-alarm.c b/drivers/rtc/rtc-fsl-ftm-alarm.c
new file mode 100644
index 000000000..e08672e26
--- /dev/null
+++ b/drivers/rtc/rtc-fsl-ftm-alarm.c
@@ -0,0 +1,339 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Freescale FlexTimer Module (FTM) alarm device driver.
+ *
+ * Copyright 2014 Freescale Semiconductor, Inc.
+ * Copyright 2019-2020 NXP
+ *
+ */
+
+#include <linux/device.h>
+#include <linux/err.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/of_address.h>
+#include <linux/of_irq.h>
+#include <linux/platform_device.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/module.h>
+#include <linux/fsl/ftm.h>
+#include <linux/rtc.h>
+#include <linux/time.h>
+#include <linux/acpi.h>
+#include <linux/pm_wakeirq.h>
+
+#define FTM_SC_CLK(c) ((c) << FTM_SC_CLK_MASK_SHIFT)
+
+/*
+ * Select Fixed frequency clock (32KHz) as clock source
+ * of FlexTimer Module
+ */
+#define FTM_SC_CLKS_FIXED_FREQ 0x02
+#define FIXED_FREQ_CLK 32000
+
+/* Select 128 (2^7) as divider factor */
+#define MAX_FREQ_DIV (1 << FTM_SC_PS_MASK)
+
+/* Maximum counter value in FlexTimer's CNT registers */
+#define MAX_COUNT_VAL 0xffff
+
+struct ftm_rtc {
+ struct rtc_device *rtc_dev;
+ void __iomem *base;
+ bool big_endian;
+ u32 alarm_freq;
+};
+
+static inline u32 rtc_readl(struct ftm_rtc *dev, u32 reg)
+{
+ if (dev->big_endian)
+ return ioread32be(dev->base + reg);
+ else
+ return ioread32(dev->base + reg);
+}
+
+static inline void rtc_writel(struct ftm_rtc *dev, u32 reg, u32 val)
+{
+ if (dev->big_endian)
+ iowrite32be(val, dev->base + reg);
+ else
+ iowrite32(val, dev->base + reg);
+}
+
+static inline void ftm_counter_enable(struct ftm_rtc *rtc)
+{
+ u32 val;
+
+ /* select and enable counter clock source */
+ val = rtc_readl(rtc, FTM_SC);
+ val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
+ val |= (FTM_SC_PS_MASK | FTM_SC_CLK(FTM_SC_CLKS_FIXED_FREQ));
+ rtc_writel(rtc, FTM_SC, val);
+}
+
+static inline void ftm_counter_disable(struct ftm_rtc *rtc)
+{
+ u32 val;
+
+ /* disable counter clock source */
+ val = rtc_readl(rtc, FTM_SC);
+ val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
+ rtc_writel(rtc, FTM_SC, val);
+}
+
+static inline void ftm_irq_acknowledge(struct ftm_rtc *rtc)
+{
+ unsigned int timeout = 100;
+
+ /*
+ *Fix errata A-007728 for flextimer
+ * If the FTM counter reaches the FTM_MOD value between
+ * the reading of the TOF bit and the writing of 0 to
+ * the TOF bit, the process of clearing the TOF bit
+ * does not work as expected when FTMx_CONF[NUMTOF] != 0
+ * and the current TOF count is less than FTMx_CONF[NUMTOF].
+ * If the above condition is met, the TOF bit remains set.
+ * If the TOF interrupt is enabled (FTMx_SC[TOIE] = 1),the
+ * TOF interrupt also remains asserted.
+ *
+ * Above is the errata discription
+ *
+ * In one word: software clearing TOF bit not works when
+ * FTMx_CONF[NUMTOF] was seted as nonzero and FTM counter
+ * reaches the FTM_MOD value.
+ *
+ * The workaround is clearing TOF bit until it works
+ * (FTM counter doesn't always reache the FTM_MOD anyway),
+ * which may cost some cycles.
+ */
+ while ((FTM_SC_TOF & rtc_readl(rtc, FTM_SC)) && timeout--)
+ rtc_writel(rtc, FTM_SC, rtc_readl(rtc, FTM_SC) & (~FTM_SC_TOF));
+}
+
+static inline void ftm_irq_enable(struct ftm_rtc *rtc)
+{
+ u32 val;
+
+ val = rtc_readl(rtc, FTM_SC);
+ val |= FTM_SC_TOIE;
+ rtc_writel(rtc, FTM_SC, val);
+}
+
+static inline void ftm_irq_disable(struct ftm_rtc *rtc)
+{
+ u32 val;
+
+ val = rtc_readl(rtc, FTM_SC);
+ val &= ~FTM_SC_TOIE;
+ rtc_writel(rtc, FTM_SC, val);
+}
+
+static inline void ftm_reset_counter(struct ftm_rtc *rtc)
+{
+ /*
+ * The CNT register contains the FTM counter value.
+ * Reset clears the CNT register. Writing any value to COUNT
+ * updates the counter with its initial value, CNTIN.
+ */
+ rtc_writel(rtc, FTM_CNT, 0x00);
+}
+
+static void ftm_clean_alarm(struct ftm_rtc *rtc)
+{
+ ftm_counter_disable(rtc);
+
+ rtc_writel(rtc, FTM_CNTIN, 0x00);
+ rtc_writel(rtc, FTM_MOD, ~0U);
+
+ ftm_reset_counter(rtc);
+}
+
+static irqreturn_t ftm_rtc_alarm_interrupt(int irq, void *dev)
+{
+ struct ftm_rtc *rtc = dev;
+
+ rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
+
+ ftm_irq_acknowledge(rtc);
+ ftm_irq_disable(rtc);
+ ftm_clean_alarm(rtc);
+
+ return IRQ_HANDLED;
+}
+
+static int ftm_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct ftm_rtc *rtc = dev_get_drvdata(dev);
+
+ if (enabled)
+ ftm_irq_enable(rtc);
+ else
+ ftm_irq_disable(rtc);
+
+ return 0;
+}
+
+/*
+ * Note:
+ * The function is not really getting time from the RTC
+ * since FlexTimer is not a RTC device, but we need to
+ * get time to setup alarm, so we are using system time
+ * for now.
+ */
+static int ftm_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ rtc_time64_to_tm(ktime_get_real_seconds(), tm);
+
+ return 0;
+}
+
+static int ftm_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ return 0;
+}
+
+/*
+ * 1. Select fixed frequency clock (32KHz) as clock source;
+ * 2. Select 128 (2^7) as divider factor;
+ * So clock is 250 Hz (32KHz/128).
+ *
+ * 3. FlexTimer's CNT register is a 32bit register,
+ * but the register's 16 bit as counter value,it's other 16 bit
+ * is reserved.So minimum counter value is 0x0,maximum counter
+ * value is 0xffff.
+ * So max alarm value is 262 (65536 / 250) seconds
+ */
+static int ftm_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ time64_t alm_time;
+ unsigned long long cycle;
+ struct ftm_rtc *rtc = dev_get_drvdata(dev);
+
+ alm_time = rtc_tm_to_time64(&alm->time);
+
+ ftm_clean_alarm(rtc);
+ cycle = (alm_time - ktime_get_real_seconds()) * rtc->alarm_freq;
+ if (cycle > MAX_COUNT_VAL) {
+ pr_err("Out of alarm range {0~262} seconds.\n");
+ return -ERANGE;
+ }
+
+ ftm_irq_disable(rtc);
+
+ /*
+ * The counter increments until the value of MOD is reached,
+ * at which point the counter is reloaded with the value of CNTIN.
+ * The TOF (the overflow flag) bit is set when the FTM counter
+ * changes from MOD to CNTIN. So we should using the cycle - 1.
+ */
+ rtc_writel(rtc, FTM_MOD, cycle - 1);
+
+ ftm_counter_enable(rtc);
+ ftm_irq_enable(rtc);
+
+ return 0;
+
+}
+
+static const struct rtc_class_ops ftm_rtc_ops = {
+ .read_time = ftm_rtc_read_time,
+ .read_alarm = ftm_rtc_read_alarm,
+ .set_alarm = ftm_rtc_set_alarm,
+ .alarm_irq_enable = ftm_rtc_alarm_irq_enable,
+};
+
+static int ftm_rtc_probe(struct platform_device *pdev)
+{
+ int irq;
+ int ret;
+ struct ftm_rtc *rtc;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
+ if (unlikely(!rtc)) {
+ dev_err(&pdev->dev, "cannot alloc memory for rtc\n");
+ return -ENOMEM;
+ }
+
+ platform_set_drvdata(pdev, rtc);
+
+ rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc->rtc_dev))
+ return PTR_ERR(rtc->rtc_dev);
+
+ rtc->base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(rtc->base)) {
+ dev_err(&pdev->dev, "cannot ioremap resource for rtc\n");
+ return PTR_ERR(rtc->base);
+ }
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return irq;
+
+ ret = devm_request_irq(&pdev->dev, irq, ftm_rtc_alarm_interrupt,
+ 0, dev_name(&pdev->dev), rtc);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "failed to request irq\n");
+ return ret;
+ }
+
+ rtc->big_endian =
+ device_property_read_bool(&pdev->dev, "big-endian");
+
+ rtc->alarm_freq = (u32)FIXED_FREQ_CLK / (u32)MAX_FREQ_DIV;
+ rtc->rtc_dev->ops = &ftm_rtc_ops;
+
+ device_init_wakeup(&pdev->dev, true);
+ ret = dev_pm_set_wake_irq(&pdev->dev, irq);
+ if (ret)
+ dev_err(&pdev->dev, "failed to enable irq wake\n");
+
+ ret = rtc_register_device(rtc->rtc_dev);
+ if (ret) {
+ dev_err(&pdev->dev, "can't register rtc device\n");
+ return ret;
+ }
+
+ return 0;
+}
+
+static const struct of_device_id ftm_rtc_match[] = {
+ { .compatible = "fsl,ls1012a-ftm-alarm", },
+ { .compatible = "fsl,ls1021a-ftm-alarm", },
+ { .compatible = "fsl,ls1028a-ftm-alarm", },
+ { .compatible = "fsl,ls1043a-ftm-alarm", },
+ { .compatible = "fsl,ls1046a-ftm-alarm", },
+ { .compatible = "fsl,ls1088a-ftm-alarm", },
+ { .compatible = "fsl,ls208xa-ftm-alarm", },
+ { .compatible = "fsl,lx2160a-ftm-alarm", },
+ { },
+};
+MODULE_DEVICE_TABLE(of, ftm_rtc_match);
+
+static const struct acpi_device_id ftm_imx_acpi_ids[] = {
+ {"NXP0014",},
+ { }
+};
+MODULE_DEVICE_TABLE(acpi, ftm_imx_acpi_ids);
+
+static struct platform_driver ftm_rtc_driver = {
+ .probe = ftm_rtc_probe,
+ .driver = {
+ .name = "ftm-alarm",
+ .of_match_table = ftm_rtc_match,
+ .acpi_match_table = ACPI_PTR(ftm_imx_acpi_ids),
+ },
+};
+
+static int __init ftm_alarm_init(void)
+{
+ return platform_driver_register(&ftm_rtc_driver);
+}
+
+device_initcall(ftm_alarm_init);
+
+MODULE_DESCRIPTION("NXP/Freescale FlexTimer alarm driver");
+MODULE_AUTHOR("Biwen Li <biwen.li@nxp.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-ftrtc010.c b/drivers/rtc/rtc-ftrtc010.c
new file mode 100644
index 000000000..0919f7dc9
--- /dev/null
+++ b/drivers/rtc/rtc-ftrtc010.c
@@ -0,0 +1,210 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Faraday Technology FTRTC010 driver
+ *
+ * Copyright (C) 2009 Janos Laube <janos.dev@gmail.com>
+ *
+ * Original code for older kernel 2.6.15 are from Stormlinksemi
+ * first update from Janos Laube for > 2.6.29 kernels
+ *
+ * checkpatch fixes and usage of rtc-lib code
+ * Hans Ulli Kroll <ulli.kroll@googlemail.com>
+ */
+
+#include <linux/rtc.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+#include <linux/platform_device.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/mod_devicetable.h>
+#include <linux/clk.h>
+
+#define DRV_NAME "rtc-ftrtc010"
+
+MODULE_AUTHOR("Hans Ulli Kroll <ulli.kroll@googlemail.com>");
+MODULE_DESCRIPTION("RTC driver for Gemini SoC");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:" DRV_NAME);
+
+struct ftrtc010_rtc {
+ struct rtc_device *rtc_dev;
+ void __iomem *rtc_base;
+ int rtc_irq;
+ struct clk *pclk;
+ struct clk *extclk;
+};
+
+enum ftrtc010_rtc_offsets {
+ FTRTC010_RTC_SECOND = 0x00,
+ FTRTC010_RTC_MINUTE = 0x04,
+ FTRTC010_RTC_HOUR = 0x08,
+ FTRTC010_RTC_DAYS = 0x0C,
+ FTRTC010_RTC_ALARM_SECOND = 0x10,
+ FTRTC010_RTC_ALARM_MINUTE = 0x14,
+ FTRTC010_RTC_ALARM_HOUR = 0x18,
+ FTRTC010_RTC_RECORD = 0x1C,
+ FTRTC010_RTC_CR = 0x20,
+};
+
+static irqreturn_t ftrtc010_rtc_interrupt(int irq, void *dev)
+{
+ return IRQ_HANDLED;
+}
+
+/*
+ * Looks like the RTC in the Gemini SoC is (totaly) broken
+ * We can't read/write directly the time from RTC registers.
+ * We must do some "offset" calculation to get the real time
+ *
+ * This FIX works pretty fine and Stormlinksemi aka Cortina-Networks does
+ * the same thing, without the rtc-lib.c calls.
+ */
+
+static int ftrtc010_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct ftrtc010_rtc *rtc = dev_get_drvdata(dev);
+
+ u32 days, hour, min, sec, offset;
+ timeu64_t time;
+
+ sec = readl(rtc->rtc_base + FTRTC010_RTC_SECOND);
+ min = readl(rtc->rtc_base + FTRTC010_RTC_MINUTE);
+ hour = readl(rtc->rtc_base + FTRTC010_RTC_HOUR);
+ days = readl(rtc->rtc_base + FTRTC010_RTC_DAYS);
+ offset = readl(rtc->rtc_base + FTRTC010_RTC_RECORD);
+
+ time = offset + days * 86400 + hour * 3600 + min * 60 + sec;
+
+ rtc_time64_to_tm(time, tm);
+
+ return 0;
+}
+
+static int ftrtc010_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct ftrtc010_rtc *rtc = dev_get_drvdata(dev);
+ u32 sec, min, hour, day, offset;
+ timeu64_t time;
+
+ time = rtc_tm_to_time64(tm);
+
+ sec = readl(rtc->rtc_base + FTRTC010_RTC_SECOND);
+ min = readl(rtc->rtc_base + FTRTC010_RTC_MINUTE);
+ hour = readl(rtc->rtc_base + FTRTC010_RTC_HOUR);
+ day = readl(rtc->rtc_base + FTRTC010_RTC_DAYS);
+
+ offset = time - (day * 86400 + hour * 3600 + min * 60 + sec);
+
+ writel(offset, rtc->rtc_base + FTRTC010_RTC_RECORD);
+ writel(0x01, rtc->rtc_base + FTRTC010_RTC_CR);
+
+ return 0;
+}
+
+static const struct rtc_class_ops ftrtc010_rtc_ops = {
+ .read_time = ftrtc010_rtc_read_time,
+ .set_time = ftrtc010_rtc_set_time,
+};
+
+static int ftrtc010_rtc_probe(struct platform_device *pdev)
+{
+ u32 days, hour, min, sec;
+ struct ftrtc010_rtc *rtc;
+ struct device *dev = &pdev->dev;
+ struct resource *res;
+ int ret;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
+ if (unlikely(!rtc))
+ return -ENOMEM;
+ platform_set_drvdata(pdev, rtc);
+
+ rtc->pclk = devm_clk_get(dev, "PCLK");
+ if (IS_ERR(rtc->pclk)) {
+ dev_err(dev, "could not get PCLK\n");
+ } else {
+ ret = clk_prepare_enable(rtc->pclk);
+ if (ret) {
+ dev_err(dev, "failed to enable PCLK\n");
+ return ret;
+ }
+ }
+ rtc->extclk = devm_clk_get(dev, "EXTCLK");
+ if (IS_ERR(rtc->extclk)) {
+ dev_err(dev, "could not get EXTCLK\n");
+ } else {
+ ret = clk_prepare_enable(rtc->extclk);
+ if (ret) {
+ dev_err(dev, "failed to enable EXTCLK\n");
+ return ret;
+ }
+ }
+
+ res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
+ if (!res)
+ return -ENODEV;
+
+ rtc->rtc_irq = res->start;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!res)
+ return -ENODEV;
+
+ rtc->rtc_base = devm_ioremap(dev, res->start,
+ resource_size(res));
+ if (!rtc->rtc_base)
+ return -ENOMEM;
+
+ rtc->rtc_dev = devm_rtc_allocate_device(dev);
+ if (IS_ERR(rtc->rtc_dev))
+ return PTR_ERR(rtc->rtc_dev);
+
+ rtc->rtc_dev->ops = &ftrtc010_rtc_ops;
+
+ sec = readl(rtc->rtc_base + FTRTC010_RTC_SECOND);
+ min = readl(rtc->rtc_base + FTRTC010_RTC_MINUTE);
+ hour = readl(rtc->rtc_base + FTRTC010_RTC_HOUR);
+ days = readl(rtc->rtc_base + FTRTC010_RTC_DAYS);
+
+ rtc->rtc_dev->range_min = (u64)days * 86400 + hour * 3600 +
+ min * 60 + sec;
+ rtc->rtc_dev->range_max = U32_MAX + rtc->rtc_dev->range_min;
+
+ ret = devm_request_irq(dev, rtc->rtc_irq, ftrtc010_rtc_interrupt,
+ IRQF_SHARED, pdev->name, dev);
+ if (unlikely(ret))
+ return ret;
+
+ return rtc_register_device(rtc->rtc_dev);
+}
+
+static int ftrtc010_rtc_remove(struct platform_device *pdev)
+{
+ struct ftrtc010_rtc *rtc = platform_get_drvdata(pdev);
+
+ if (!IS_ERR(rtc->extclk))
+ clk_disable_unprepare(rtc->extclk);
+ if (!IS_ERR(rtc->pclk))
+ clk_disable_unprepare(rtc->pclk);
+
+ return 0;
+}
+
+static const struct of_device_id ftrtc010_rtc_dt_match[] = {
+ { .compatible = "cortina,gemini-rtc" },
+ { .compatible = "faraday,ftrtc010" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, ftrtc010_rtc_dt_match);
+
+static struct platform_driver ftrtc010_rtc_driver = {
+ .driver = {
+ .name = DRV_NAME,
+ .of_match_table = ftrtc010_rtc_dt_match,
+ },
+ .probe = ftrtc010_rtc_probe,
+ .remove = ftrtc010_rtc_remove,
+};
+
+module_platform_driver_probe(ftrtc010_rtc_driver, ftrtc010_rtc_probe);
diff --git a/drivers/rtc/rtc-generic.c b/drivers/rtc/rtc-generic.c
new file mode 100644
index 000000000..89ae78e93
--- /dev/null
+++ b/drivers/rtc/rtc-generic.c
@@ -0,0 +1,39 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* rtc-generic: RTC driver using the generic RTC abstraction
+ *
+ * Copyright (C) 2008 Kyle McMartin <kyle@mcmartin.ca>
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/time.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+
+static int __init generic_rtc_probe(struct platform_device *dev)
+{
+ struct rtc_device *rtc;
+ const struct rtc_class_ops *ops = dev_get_platdata(&dev->dev);
+
+ rtc = devm_rtc_device_register(&dev->dev, "rtc-generic",
+ ops, THIS_MODULE);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ platform_set_drvdata(dev, rtc);
+
+ return 0;
+}
+
+static struct platform_driver generic_rtc_driver = {
+ .driver = {
+ .name = "rtc-generic",
+ },
+};
+
+module_platform_driver_probe(generic_rtc_driver, generic_rtc_probe);
+
+MODULE_AUTHOR("Kyle McMartin <kyle@mcmartin.ca>");
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Generic RTC driver");
+MODULE_ALIAS("platform:rtc-generic");
diff --git a/drivers/rtc/rtc-goldfish.c b/drivers/rtc/rtc-goldfish.c
new file mode 100644
index 000000000..6349d2cd3
--- /dev/null
+++ b/drivers/rtc/rtc-goldfish.c
@@ -0,0 +1,216 @@
+// SPDX-License-Identifier: GPL-2.0
+/* drivers/rtc/rtc-goldfish.c
+ *
+ * Copyright (C) 2007 Google, Inc.
+ * Copyright (C) 2017 Imagination Technologies Ltd.
+ */
+
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+
+#define TIMER_TIME_LOW 0x00 /* get low bits of current time */
+ /* and update TIMER_TIME_HIGH */
+#define TIMER_TIME_HIGH 0x04 /* get high bits of time at last */
+ /* TIMER_TIME_LOW read */
+#define TIMER_ALARM_LOW 0x08 /* set low bits of alarm and */
+ /* activate it */
+#define TIMER_ALARM_HIGH 0x0c /* set high bits of next alarm */
+#define TIMER_IRQ_ENABLED 0x10
+#define TIMER_CLEAR_ALARM 0x14
+#define TIMER_ALARM_STATUS 0x18
+#define TIMER_CLEAR_INTERRUPT 0x1c
+
+struct goldfish_rtc {
+ void __iomem *base;
+ int irq;
+ struct rtc_device *rtc;
+};
+
+static int goldfish_rtc_read_alarm(struct device *dev,
+ struct rtc_wkalrm *alrm)
+{
+ u64 rtc_alarm;
+ u64 rtc_alarm_low;
+ u64 rtc_alarm_high;
+ void __iomem *base;
+ struct goldfish_rtc *rtcdrv;
+
+ rtcdrv = dev_get_drvdata(dev);
+ base = rtcdrv->base;
+
+ rtc_alarm_low = readl(base + TIMER_ALARM_LOW);
+ rtc_alarm_high = readl(base + TIMER_ALARM_HIGH);
+ rtc_alarm = (rtc_alarm_high << 32) | rtc_alarm_low;
+
+ do_div(rtc_alarm, NSEC_PER_SEC);
+ memset(alrm, 0, sizeof(struct rtc_wkalrm));
+
+ rtc_time64_to_tm(rtc_alarm, &alrm->time);
+
+ if (readl(base + TIMER_ALARM_STATUS))
+ alrm->enabled = 1;
+ else
+ alrm->enabled = 0;
+
+ return 0;
+}
+
+static int goldfish_rtc_set_alarm(struct device *dev,
+ struct rtc_wkalrm *alrm)
+{
+ struct goldfish_rtc *rtcdrv;
+ u64 rtc_alarm64;
+ u64 rtc_status_reg;
+ void __iomem *base;
+
+ rtcdrv = dev_get_drvdata(dev);
+ base = rtcdrv->base;
+
+ if (alrm->enabled) {
+ rtc_alarm64 = rtc_tm_to_time64(&alrm->time) * NSEC_PER_SEC;
+ writel((rtc_alarm64 >> 32), base + TIMER_ALARM_HIGH);
+ writel(rtc_alarm64, base + TIMER_ALARM_LOW);
+ writel(1, base + TIMER_IRQ_ENABLED);
+ } else {
+ /*
+ * if this function was called with enabled=0
+ * then it could mean that the application is
+ * trying to cancel an ongoing alarm
+ */
+ rtc_status_reg = readl(base + TIMER_ALARM_STATUS);
+ if (rtc_status_reg)
+ writel(1, base + TIMER_CLEAR_ALARM);
+ }
+
+ return 0;
+}
+
+static int goldfish_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ void __iomem *base;
+ struct goldfish_rtc *rtcdrv;
+
+ rtcdrv = dev_get_drvdata(dev);
+ base = rtcdrv->base;
+
+ if (enabled)
+ writel(1, base + TIMER_IRQ_ENABLED);
+ else
+ writel(0, base + TIMER_IRQ_ENABLED);
+
+ return 0;
+}
+
+static irqreturn_t goldfish_rtc_interrupt(int irq, void *dev_id)
+{
+ struct goldfish_rtc *rtcdrv = dev_id;
+ void __iomem *base = rtcdrv->base;
+
+ writel(1, base + TIMER_CLEAR_INTERRUPT);
+
+ rtc_update_irq(rtcdrv->rtc, 1, RTC_IRQF | RTC_AF);
+
+ return IRQ_HANDLED;
+}
+
+static int goldfish_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct goldfish_rtc *rtcdrv;
+ void __iomem *base;
+ u64 time_high;
+ u64 time_low;
+ u64 time;
+
+ rtcdrv = dev_get_drvdata(dev);
+ base = rtcdrv->base;
+
+ time_low = readl(base + TIMER_TIME_LOW);
+ time_high = readl(base + TIMER_TIME_HIGH);
+ time = (time_high << 32) | time_low;
+
+ do_div(time, NSEC_PER_SEC);
+
+ rtc_time64_to_tm(time, tm);
+
+ return 0;
+}
+
+static int goldfish_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct goldfish_rtc *rtcdrv;
+ void __iomem *base;
+ u64 now64;
+
+ rtcdrv = dev_get_drvdata(dev);
+ base = rtcdrv->base;
+
+ now64 = rtc_tm_to_time64(tm) * NSEC_PER_SEC;
+ writel((now64 >> 32), base + TIMER_TIME_HIGH);
+ writel(now64, base + TIMER_TIME_LOW);
+
+ return 0;
+}
+
+static const struct rtc_class_ops goldfish_rtc_ops = {
+ .read_time = goldfish_rtc_read_time,
+ .set_time = goldfish_rtc_set_time,
+ .read_alarm = goldfish_rtc_read_alarm,
+ .set_alarm = goldfish_rtc_set_alarm,
+ .alarm_irq_enable = goldfish_rtc_alarm_irq_enable
+};
+
+static int goldfish_rtc_probe(struct platform_device *pdev)
+{
+ struct goldfish_rtc *rtcdrv;
+ int err;
+
+ rtcdrv = devm_kzalloc(&pdev->dev, sizeof(*rtcdrv), GFP_KERNEL);
+ if (!rtcdrv)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, rtcdrv);
+ rtcdrv->base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(rtcdrv->base))
+ return PTR_ERR(rtcdrv->base);
+
+ rtcdrv->irq = platform_get_irq(pdev, 0);
+ if (rtcdrv->irq < 0)
+ return -ENODEV;
+
+ rtcdrv->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtcdrv->rtc))
+ return PTR_ERR(rtcdrv->rtc);
+
+ rtcdrv->rtc->ops = &goldfish_rtc_ops;
+ rtcdrv->rtc->range_max = U64_MAX / NSEC_PER_SEC;
+
+ err = devm_request_irq(&pdev->dev, rtcdrv->irq,
+ goldfish_rtc_interrupt,
+ 0, pdev->name, rtcdrv);
+ if (err)
+ return err;
+
+ return rtc_register_device(rtcdrv->rtc);
+}
+
+static const struct of_device_id goldfish_rtc_of_match[] = {
+ { .compatible = "google,goldfish-rtc", },
+ {},
+};
+MODULE_DEVICE_TABLE(of, goldfish_rtc_of_match);
+
+static struct platform_driver goldfish_rtc = {
+ .probe = goldfish_rtc_probe,
+ .driver = {
+ .name = "goldfish_rtc",
+ .of_match_table = goldfish_rtc_of_match,
+ }
+};
+
+module_platform_driver(goldfish_rtc);
+
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-hid-sensor-time.c b/drivers/rtc/rtc-hid-sensor-time.c
new file mode 100644
index 000000000..1b42ee075
--- /dev/null
+++ b/drivers/rtc/rtc-hid-sensor-time.c
@@ -0,0 +1,328 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * HID Sensor Time Driver
+ * Copyright (c) 2012, Alexander Holler.
+ */
+#include <linux/device.h>
+#include <linux/platform_device.h>
+#include <linux/module.h>
+#include <linux/hid-sensor-hub.h>
+#include <linux/iio/iio.h>
+#include <linux/rtc.h>
+
+enum hid_time_channel {
+ CHANNEL_SCAN_INDEX_YEAR,
+ CHANNEL_SCAN_INDEX_MONTH,
+ CHANNEL_SCAN_INDEX_DAY,
+ CHANNEL_SCAN_INDEX_HOUR,
+ CHANNEL_SCAN_INDEX_MINUTE,
+ CHANNEL_SCAN_INDEX_SECOND,
+ TIME_RTC_CHANNEL_MAX,
+};
+
+struct hid_time_state {
+ struct hid_sensor_hub_callbacks callbacks;
+ struct hid_sensor_common common_attributes;
+ struct hid_sensor_hub_attribute_info info[TIME_RTC_CHANNEL_MAX];
+ struct rtc_time last_time;
+ spinlock_t lock_last_time;
+ struct completion comp_last_time;
+ struct rtc_time time_buf;
+ struct rtc_device *rtc;
+};
+
+static const u32 hid_time_addresses[TIME_RTC_CHANNEL_MAX] = {
+ HID_USAGE_SENSOR_TIME_YEAR,
+ HID_USAGE_SENSOR_TIME_MONTH,
+ HID_USAGE_SENSOR_TIME_DAY,
+ HID_USAGE_SENSOR_TIME_HOUR,
+ HID_USAGE_SENSOR_TIME_MINUTE,
+ HID_USAGE_SENSOR_TIME_SECOND,
+};
+
+/* Channel names for verbose error messages */
+static const char * const hid_time_channel_names[TIME_RTC_CHANNEL_MAX] = {
+ "year", "month", "day", "hour", "minute", "second",
+};
+
+/* Callback handler to send event after all samples are received and captured */
+static int hid_time_proc_event(struct hid_sensor_hub_device *hsdev,
+ unsigned usage_id, void *priv)
+{
+ unsigned long flags;
+ struct hid_time_state *time_state = platform_get_drvdata(priv);
+
+ spin_lock_irqsave(&time_state->lock_last_time, flags);
+ time_state->last_time = time_state->time_buf;
+ spin_unlock_irqrestore(&time_state->lock_last_time, flags);
+ complete(&time_state->comp_last_time);
+ return 0;
+}
+
+static u32 hid_time_value(size_t raw_len, char *raw_data)
+{
+ switch (raw_len) {
+ case 1:
+ return *(u8 *)raw_data;
+ case 2:
+ return *(u16 *)raw_data;
+ case 4:
+ return *(u32 *)raw_data;
+ default:
+ return (u32)(~0U); /* 0xff... or -1 to denote an error */
+ }
+}
+
+static int hid_time_capture_sample(struct hid_sensor_hub_device *hsdev,
+ unsigned usage_id, size_t raw_len,
+ char *raw_data, void *priv)
+{
+ struct hid_time_state *time_state = platform_get_drvdata(priv);
+ struct rtc_time *time_buf = &time_state->time_buf;
+
+ switch (usage_id) {
+ case HID_USAGE_SENSOR_TIME_YEAR:
+ /*
+ * The draft for HID-sensors (HUTRR39) currently doesn't define
+ * the range for the year attribute. Therefor we support
+ * 8 bit (0-99) and 16 or 32 bits (full) as size for the year.
+ */
+ if (raw_len == 1) {
+ time_buf->tm_year = *(u8 *)raw_data;
+ if (time_buf->tm_year < 70)
+ /* assume we are in 1970...2069 */
+ time_buf->tm_year += 100;
+ } else
+ time_buf->tm_year =
+ (int)hid_time_value(raw_len, raw_data)-1900;
+ break;
+ case HID_USAGE_SENSOR_TIME_MONTH:
+ /* sensors are sending the month as 1-12, we need 0-11 */
+ time_buf->tm_mon = (int)hid_time_value(raw_len, raw_data)-1;
+ break;
+ case HID_USAGE_SENSOR_TIME_DAY:
+ time_buf->tm_mday = (int)hid_time_value(raw_len, raw_data);
+ break;
+ case HID_USAGE_SENSOR_TIME_HOUR:
+ time_buf->tm_hour = (int)hid_time_value(raw_len, raw_data);
+ break;
+ case HID_USAGE_SENSOR_TIME_MINUTE:
+ time_buf->tm_min = (int)hid_time_value(raw_len, raw_data);
+ break;
+ case HID_USAGE_SENSOR_TIME_SECOND:
+ time_buf->tm_sec = (int)hid_time_value(raw_len, raw_data);
+ break;
+ default:
+ return -EINVAL;
+ }
+ return 0;
+}
+
+/* small helper, haven't found any other way */
+static const char *hid_time_attrib_name(u32 attrib_id)
+{
+ static const char unknown[] = "unknown";
+ unsigned i;
+
+ for (i = 0; i < TIME_RTC_CHANNEL_MAX; ++i) {
+ if (hid_time_addresses[i] == attrib_id)
+ return hid_time_channel_names[i];
+ }
+ return unknown; /* should never happen */
+}
+
+static int hid_time_parse_report(struct platform_device *pdev,
+ struct hid_sensor_hub_device *hsdev,
+ unsigned usage_id,
+ struct hid_time_state *time_state)
+{
+ int report_id, i;
+
+ for (i = 0; i < TIME_RTC_CHANNEL_MAX; ++i)
+ if (sensor_hub_input_get_attribute_info(hsdev,
+ HID_INPUT_REPORT, usage_id,
+ hid_time_addresses[i],
+ &time_state->info[i]) < 0)
+ return -EINVAL;
+ /* Check the (needed) attributes for sanity */
+ report_id = time_state->info[0].report_id;
+ if (report_id < 0) {
+ dev_err(&pdev->dev, "bad report ID!\n");
+ return -EINVAL;
+ }
+ for (i = 0; i < TIME_RTC_CHANNEL_MAX; ++i) {
+ if (time_state->info[i].report_id != report_id) {
+ dev_err(&pdev->dev,
+ "not all needed attributes inside the same report!\n");
+ return -EINVAL;
+ }
+ if (time_state->info[i].size == 3 ||
+ time_state->info[i].size > 4) {
+ dev_err(&pdev->dev,
+ "attribute '%s' not 8, 16 or 32 bits wide!\n",
+ hid_time_attrib_name(
+ time_state->info[i].attrib_id));
+ return -EINVAL;
+ }
+ if (time_state->info[i].units !=
+ HID_USAGE_SENSOR_UNITS_NOT_SPECIFIED &&
+ /* allow attribute seconds with unit seconds */
+ !(time_state->info[i].attrib_id ==
+ HID_USAGE_SENSOR_TIME_SECOND &&
+ time_state->info[i].units ==
+ HID_USAGE_SENSOR_UNITS_SECOND)) {
+ dev_err(&pdev->dev,
+ "attribute '%s' hasn't a unit of type 'none'!\n",
+ hid_time_attrib_name(
+ time_state->info[i].attrib_id));
+ return -EINVAL;
+ }
+ if (time_state->info[i].unit_expo) {
+ dev_err(&pdev->dev,
+ "attribute '%s' hasn't a unit exponent of 1!\n",
+ hid_time_attrib_name(
+ time_state->info[i].attrib_id));
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+static int hid_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ unsigned long flags;
+ struct hid_time_state *time_state = dev_get_drvdata(dev);
+ int ret;
+
+ reinit_completion(&time_state->comp_last_time);
+ /* get a report with all values through requesting one value */
+ sensor_hub_input_attr_get_raw_value(time_state->common_attributes.hsdev,
+ HID_USAGE_SENSOR_TIME, hid_time_addresses[0],
+ time_state->info[0].report_id, SENSOR_HUB_SYNC, false);
+ /* wait for all values (event) */
+ ret = wait_for_completion_killable_timeout(
+ &time_state->comp_last_time, HZ*6);
+ if (ret > 0) {
+ /* no error */
+ spin_lock_irqsave(&time_state->lock_last_time, flags);
+ *tm = time_state->last_time;
+ spin_unlock_irqrestore(&time_state->lock_last_time, flags);
+ return 0;
+ }
+ if (!ret)
+ return -EIO; /* timeouted */
+ return ret; /* killed (-ERESTARTSYS) */
+}
+
+static const struct rtc_class_ops hid_time_rtc_ops = {
+ .read_time = hid_rtc_read_time,
+};
+
+static int hid_time_probe(struct platform_device *pdev)
+{
+ int ret = 0;
+ struct hid_sensor_hub_device *hsdev = dev_get_platdata(&pdev->dev);
+ struct hid_time_state *time_state = devm_kzalloc(&pdev->dev,
+ sizeof(struct hid_time_state), GFP_KERNEL);
+
+ if (time_state == NULL)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, time_state);
+
+ spin_lock_init(&time_state->lock_last_time);
+ init_completion(&time_state->comp_last_time);
+ time_state->common_attributes.hsdev = hsdev;
+ time_state->common_attributes.pdev = pdev;
+
+ ret = hid_sensor_parse_common_attributes(hsdev,
+ HID_USAGE_SENSOR_TIME,
+ &time_state->common_attributes);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to setup common attributes!\n");
+ return ret;
+ }
+
+ ret = hid_time_parse_report(pdev, hsdev, HID_USAGE_SENSOR_TIME,
+ time_state);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to setup attributes!\n");
+ return ret;
+ }
+
+ time_state->callbacks.send_event = hid_time_proc_event;
+ time_state->callbacks.capture_sample = hid_time_capture_sample;
+ time_state->callbacks.pdev = pdev;
+ ret = sensor_hub_register_callback(hsdev, HID_USAGE_SENSOR_TIME,
+ &time_state->callbacks);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "register callback failed!\n");
+ return ret;
+ }
+
+ ret = sensor_hub_device_open(hsdev);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to open sensor hub device!\n");
+ goto err_open;
+ }
+
+ /*
+ * Enable HID input processing early in order to be able to read the
+ * clock already in devm_rtc_device_register().
+ */
+ hid_device_io_start(hsdev->hdev);
+
+ time_state->rtc = devm_rtc_device_register(&pdev->dev,
+ "hid-sensor-time", &hid_time_rtc_ops,
+ THIS_MODULE);
+
+ if (IS_ERR(time_state->rtc)) {
+ hid_device_io_stop(hsdev->hdev);
+ ret = PTR_ERR(time_state->rtc);
+ time_state->rtc = NULL;
+ dev_err(&pdev->dev, "rtc device register failed!\n");
+ goto err_rtc;
+ }
+
+ return ret;
+
+err_rtc:
+ sensor_hub_device_close(hsdev);
+err_open:
+ sensor_hub_remove_callback(hsdev, HID_USAGE_SENSOR_TIME);
+ return ret;
+}
+
+static int hid_time_remove(struct platform_device *pdev)
+{
+ struct hid_sensor_hub_device *hsdev = dev_get_platdata(&pdev->dev);
+
+ sensor_hub_device_close(hsdev);
+ sensor_hub_remove_callback(hsdev, HID_USAGE_SENSOR_TIME);
+
+ return 0;
+}
+
+static const struct platform_device_id hid_time_ids[] = {
+ {
+ /* Format: HID-SENSOR-usage_id_in_hex_lowercase */
+ .name = "HID-SENSOR-2000a0",
+ },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(platform, hid_time_ids);
+
+static struct platform_driver hid_time_platform_driver = {
+ .id_table = hid_time_ids,
+ .driver = {
+ .name = KBUILD_MODNAME,
+ },
+ .probe = hid_time_probe,
+ .remove = hid_time_remove,
+};
+module_platform_driver(hid_time_platform_driver);
+
+MODULE_DESCRIPTION("HID Sensor Time");
+MODULE_AUTHOR("Alexander Holler <holler@ahsoftware.de>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-hym8563.c b/drivers/rtc/rtc-hym8563.c
new file mode 100644
index 000000000..0fb79c4af
--- /dev/null
+++ b/drivers/rtc/rtc-hym8563.c
@@ -0,0 +1,599 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Haoyu HYM8563 RTC driver
+ *
+ * Copyright (C) 2013 MundoReader S.L.
+ * Author: Heiko Stuebner <heiko@sntech.de>
+ *
+ * based on rtc-HYM8563
+ * Copyright (C) 2010 ROCKCHIP, Inc.
+ */
+
+#include <linux/module.h>
+#include <linux/clk-provider.h>
+#include <linux/i2c.h>
+#include <linux/bcd.h>
+#include <linux/rtc.h>
+
+#define HYM8563_CTL1 0x00
+#define HYM8563_CTL1_TEST BIT(7)
+#define HYM8563_CTL1_STOP BIT(5)
+#define HYM8563_CTL1_TESTC BIT(3)
+
+#define HYM8563_CTL2 0x01
+#define HYM8563_CTL2_TI_TP BIT(4)
+#define HYM8563_CTL2_AF BIT(3)
+#define HYM8563_CTL2_TF BIT(2)
+#define HYM8563_CTL2_AIE BIT(1)
+#define HYM8563_CTL2_TIE BIT(0)
+
+#define HYM8563_SEC 0x02
+#define HYM8563_SEC_VL BIT(7)
+#define HYM8563_SEC_MASK 0x7f
+
+#define HYM8563_MIN 0x03
+#define HYM8563_MIN_MASK 0x7f
+
+#define HYM8563_HOUR 0x04
+#define HYM8563_HOUR_MASK 0x3f
+
+#define HYM8563_DAY 0x05
+#define HYM8563_DAY_MASK 0x3f
+
+#define HYM8563_WEEKDAY 0x06
+#define HYM8563_WEEKDAY_MASK 0x07
+
+#define HYM8563_MONTH 0x07
+#define HYM8563_MONTH_CENTURY BIT(7)
+#define HYM8563_MONTH_MASK 0x1f
+
+#define HYM8563_YEAR 0x08
+
+#define HYM8563_ALM_MIN 0x09
+#define HYM8563_ALM_HOUR 0x0a
+#define HYM8563_ALM_DAY 0x0b
+#define HYM8563_ALM_WEEK 0x0c
+
+/* Each alarm check can be disabled by setting this bit in the register */
+#define HYM8563_ALM_BIT_DISABLE BIT(7)
+
+#define HYM8563_CLKOUT 0x0d
+#define HYM8563_CLKOUT_ENABLE BIT(7)
+#define HYM8563_CLKOUT_32768 0
+#define HYM8563_CLKOUT_1024 1
+#define HYM8563_CLKOUT_32 2
+#define HYM8563_CLKOUT_1 3
+#define HYM8563_CLKOUT_MASK 3
+
+#define HYM8563_TMR_CTL 0x0e
+#define HYM8563_TMR_CTL_ENABLE BIT(7)
+#define HYM8563_TMR_CTL_4096 0
+#define HYM8563_TMR_CTL_64 1
+#define HYM8563_TMR_CTL_1 2
+#define HYM8563_TMR_CTL_1_60 3
+#define HYM8563_TMR_CTL_MASK 3
+
+#define HYM8563_TMR_CNT 0x0f
+
+struct hym8563 {
+ struct i2c_client *client;
+ struct rtc_device *rtc;
+#ifdef CONFIG_COMMON_CLK
+ struct clk_hw clkout_hw;
+#endif
+};
+
+/*
+ * RTC handling
+ */
+
+static int hym8563_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ u8 buf[7];
+ int ret;
+
+ ret = i2c_smbus_read_i2c_block_data(client, HYM8563_SEC, 7, buf);
+ if (ret < 0)
+ return ret;
+
+ if (buf[0] & HYM8563_SEC_VL) {
+ dev_warn(&client->dev,
+ "no valid clock/calendar values available\n");
+ return -EINVAL;
+ }
+
+ tm->tm_sec = bcd2bin(buf[0] & HYM8563_SEC_MASK);
+ tm->tm_min = bcd2bin(buf[1] & HYM8563_MIN_MASK);
+ tm->tm_hour = bcd2bin(buf[2] & HYM8563_HOUR_MASK);
+ tm->tm_mday = bcd2bin(buf[3] & HYM8563_DAY_MASK);
+ tm->tm_wday = bcd2bin(buf[4] & HYM8563_WEEKDAY_MASK); /* 0 = Sun */
+ tm->tm_mon = bcd2bin(buf[5] & HYM8563_MONTH_MASK) - 1; /* 0 = Jan */
+ tm->tm_year = bcd2bin(buf[6]) + 100;
+
+ return 0;
+}
+
+static int hym8563_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ u8 buf[7];
+ int ret;
+
+ /* Years >= 2100 are to far in the future, 19XX is to early */
+ if (tm->tm_year < 100 || tm->tm_year >= 200)
+ return -EINVAL;
+
+ buf[0] = bin2bcd(tm->tm_sec);
+ buf[1] = bin2bcd(tm->tm_min);
+ buf[2] = bin2bcd(tm->tm_hour);
+ buf[3] = bin2bcd(tm->tm_mday);
+ buf[4] = bin2bcd(tm->tm_wday);
+ buf[5] = bin2bcd(tm->tm_mon + 1);
+
+ /*
+ * While the HYM8563 has a century flag in the month register,
+ * it does not seem to carry it over a subsequent write/read.
+ * So we'll limit ourself to 100 years, starting at 2000 for now.
+ */
+ buf[6] = bin2bcd(tm->tm_year - 100);
+
+ /*
+ * CTL1 only contains TEST-mode bits apart from stop,
+ * so no need to read the value first
+ */
+ ret = i2c_smbus_write_byte_data(client, HYM8563_CTL1,
+ HYM8563_CTL1_STOP);
+ if (ret < 0)
+ return ret;
+
+ ret = i2c_smbus_write_i2c_block_data(client, HYM8563_SEC, 7, buf);
+ if (ret < 0)
+ return ret;
+
+ ret = i2c_smbus_write_byte_data(client, HYM8563_CTL1, 0);
+ if (ret < 0)
+ return ret;
+
+ return 0;
+}
+
+static int hym8563_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ int data;
+
+ data = i2c_smbus_read_byte_data(client, HYM8563_CTL2);
+ if (data < 0)
+ return data;
+
+ if (enabled)
+ data |= HYM8563_CTL2_AIE;
+ else
+ data &= ~HYM8563_CTL2_AIE;
+
+ return i2c_smbus_write_byte_data(client, HYM8563_CTL2, data);
+};
+
+static int hym8563_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct rtc_time *alm_tm = &alm->time;
+ u8 buf[4];
+ int ret;
+
+ ret = i2c_smbus_read_i2c_block_data(client, HYM8563_ALM_MIN, 4, buf);
+ if (ret < 0)
+ return ret;
+
+ /* The alarm only has a minute accuracy */
+ alm_tm->tm_sec = 0;
+
+ alm_tm->tm_min = (buf[0] & HYM8563_ALM_BIT_DISABLE) ?
+ -1 :
+ bcd2bin(buf[0] & HYM8563_MIN_MASK);
+ alm_tm->tm_hour = (buf[1] & HYM8563_ALM_BIT_DISABLE) ?
+ -1 :
+ bcd2bin(buf[1] & HYM8563_HOUR_MASK);
+ alm_tm->tm_mday = (buf[2] & HYM8563_ALM_BIT_DISABLE) ?
+ -1 :
+ bcd2bin(buf[2] & HYM8563_DAY_MASK);
+ alm_tm->tm_wday = (buf[3] & HYM8563_ALM_BIT_DISABLE) ?
+ -1 :
+ bcd2bin(buf[3] & HYM8563_WEEKDAY_MASK);
+
+ ret = i2c_smbus_read_byte_data(client, HYM8563_CTL2);
+ if (ret < 0)
+ return ret;
+
+ if (ret & HYM8563_CTL2_AIE)
+ alm->enabled = 1;
+
+ return 0;
+}
+
+static int hym8563_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct rtc_time *alm_tm = &alm->time;
+ u8 buf[4];
+ int ret;
+
+ /*
+ * The alarm has no seconds so deal with it
+ */
+ if (alm_tm->tm_sec) {
+ alm_tm->tm_sec = 0;
+ alm_tm->tm_min++;
+ if (alm_tm->tm_min >= 60) {
+ alm_tm->tm_min = 0;
+ alm_tm->tm_hour++;
+ if (alm_tm->tm_hour >= 24) {
+ alm_tm->tm_hour = 0;
+ alm_tm->tm_mday++;
+ if (alm_tm->tm_mday > 31)
+ alm_tm->tm_mday = 0;
+ }
+ }
+ }
+
+ ret = i2c_smbus_read_byte_data(client, HYM8563_CTL2);
+ if (ret < 0)
+ return ret;
+
+ ret &= ~HYM8563_CTL2_AIE;
+
+ ret = i2c_smbus_write_byte_data(client, HYM8563_CTL2, ret);
+ if (ret < 0)
+ return ret;
+
+ buf[0] = (alm_tm->tm_min < 60 && alm_tm->tm_min >= 0) ?
+ bin2bcd(alm_tm->tm_min) : HYM8563_ALM_BIT_DISABLE;
+
+ buf[1] = (alm_tm->tm_hour < 24 && alm_tm->tm_hour >= 0) ?
+ bin2bcd(alm_tm->tm_hour) : HYM8563_ALM_BIT_DISABLE;
+
+ buf[2] = (alm_tm->tm_mday <= 31 && alm_tm->tm_mday >= 1) ?
+ bin2bcd(alm_tm->tm_mday) : HYM8563_ALM_BIT_DISABLE;
+
+ buf[3] = (alm_tm->tm_wday < 7 && alm_tm->tm_wday >= 0) ?
+ bin2bcd(alm_tm->tm_wday) : HYM8563_ALM_BIT_DISABLE;
+
+ ret = i2c_smbus_write_i2c_block_data(client, HYM8563_ALM_MIN, 4, buf);
+ if (ret < 0)
+ return ret;
+
+ return hym8563_rtc_alarm_irq_enable(dev, alm->enabled);
+}
+
+static const struct rtc_class_ops hym8563_rtc_ops = {
+ .read_time = hym8563_rtc_read_time,
+ .set_time = hym8563_rtc_set_time,
+ .alarm_irq_enable = hym8563_rtc_alarm_irq_enable,
+ .read_alarm = hym8563_rtc_read_alarm,
+ .set_alarm = hym8563_rtc_set_alarm,
+};
+
+/*
+ * Handling of the clkout
+ */
+
+#ifdef CONFIG_COMMON_CLK
+#define clkout_hw_to_hym8563(_hw) container_of(_hw, struct hym8563, clkout_hw)
+
+static int clkout_rates[] = {
+ 32768,
+ 1024,
+ 32,
+ 1,
+};
+
+static unsigned long hym8563_clkout_recalc_rate(struct clk_hw *hw,
+ unsigned long parent_rate)
+{
+ struct hym8563 *hym8563 = clkout_hw_to_hym8563(hw);
+ struct i2c_client *client = hym8563->client;
+ int ret = i2c_smbus_read_byte_data(client, HYM8563_CLKOUT);
+
+ if (ret < 0)
+ return 0;
+
+ ret &= HYM8563_CLKOUT_MASK;
+ return clkout_rates[ret];
+}
+
+static long hym8563_clkout_round_rate(struct clk_hw *hw, unsigned long rate,
+ unsigned long *prate)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(clkout_rates); i++)
+ if (clkout_rates[i] <= rate)
+ return clkout_rates[i];
+
+ return 0;
+}
+
+static int hym8563_clkout_set_rate(struct clk_hw *hw, unsigned long rate,
+ unsigned long parent_rate)
+{
+ struct hym8563 *hym8563 = clkout_hw_to_hym8563(hw);
+ struct i2c_client *client = hym8563->client;
+ int ret = i2c_smbus_read_byte_data(client, HYM8563_CLKOUT);
+ int i;
+
+ if (ret < 0)
+ return ret;
+
+ for (i = 0; i < ARRAY_SIZE(clkout_rates); i++)
+ if (clkout_rates[i] == rate) {
+ ret &= ~HYM8563_CLKOUT_MASK;
+ ret |= i;
+ return i2c_smbus_write_byte_data(client,
+ HYM8563_CLKOUT, ret);
+ }
+
+ return -EINVAL;
+}
+
+static int hym8563_clkout_control(struct clk_hw *hw, bool enable)
+{
+ struct hym8563 *hym8563 = clkout_hw_to_hym8563(hw);
+ struct i2c_client *client = hym8563->client;
+ int ret = i2c_smbus_read_byte_data(client, HYM8563_CLKOUT);
+
+ if (ret < 0)
+ return ret;
+
+ if (enable)
+ ret |= HYM8563_CLKOUT_ENABLE;
+ else
+ ret &= ~HYM8563_CLKOUT_ENABLE;
+
+ return i2c_smbus_write_byte_data(client, HYM8563_CLKOUT, ret);
+}
+
+static int hym8563_clkout_prepare(struct clk_hw *hw)
+{
+ return hym8563_clkout_control(hw, 1);
+}
+
+static void hym8563_clkout_unprepare(struct clk_hw *hw)
+{
+ hym8563_clkout_control(hw, 0);
+}
+
+static int hym8563_clkout_is_prepared(struct clk_hw *hw)
+{
+ struct hym8563 *hym8563 = clkout_hw_to_hym8563(hw);
+ struct i2c_client *client = hym8563->client;
+ int ret = i2c_smbus_read_byte_data(client, HYM8563_CLKOUT);
+
+ if (ret < 0)
+ return ret;
+
+ return !!(ret & HYM8563_CLKOUT_ENABLE);
+}
+
+static const struct clk_ops hym8563_clkout_ops = {
+ .prepare = hym8563_clkout_prepare,
+ .unprepare = hym8563_clkout_unprepare,
+ .is_prepared = hym8563_clkout_is_prepared,
+ .recalc_rate = hym8563_clkout_recalc_rate,
+ .round_rate = hym8563_clkout_round_rate,
+ .set_rate = hym8563_clkout_set_rate,
+};
+
+static struct clk *hym8563_clkout_register_clk(struct hym8563 *hym8563)
+{
+ struct i2c_client *client = hym8563->client;
+ struct device_node *node = client->dev.of_node;
+ struct clk *clk;
+ struct clk_init_data init;
+ int ret;
+
+ ret = i2c_smbus_write_byte_data(client, HYM8563_CLKOUT,
+ 0);
+ if (ret < 0)
+ return ERR_PTR(ret);
+
+ init.name = "hym8563-clkout";
+ init.ops = &hym8563_clkout_ops;
+ init.flags = 0;
+ init.parent_names = NULL;
+ init.num_parents = 0;
+ hym8563->clkout_hw.init = &init;
+
+ /* optional override of the clockname */
+ of_property_read_string(node, "clock-output-names", &init.name);
+
+ /* register the clock */
+ clk = clk_register(&client->dev, &hym8563->clkout_hw);
+
+ if (!IS_ERR(clk))
+ of_clk_add_provider(node, of_clk_src_simple_get, clk);
+
+ return clk;
+}
+#endif
+
+/*
+ * The alarm interrupt is implemented as a level-low interrupt in the
+ * hym8563, while the timer interrupt uses a falling edge.
+ * We don't use the timer at all, so the interrupt is requested to
+ * use the level-low trigger.
+ */
+static irqreturn_t hym8563_irq(int irq, void *dev_id)
+{
+ struct hym8563 *hym8563 = (struct hym8563 *)dev_id;
+ struct i2c_client *client = hym8563->client;
+ struct mutex *lock = &hym8563->rtc->ops_lock;
+ int data, ret;
+
+ mutex_lock(lock);
+
+ /* Clear the alarm flag */
+
+ data = i2c_smbus_read_byte_data(client, HYM8563_CTL2);
+ if (data < 0) {
+ dev_err(&client->dev, "%s: error reading i2c data %d\n",
+ __func__, data);
+ goto out;
+ }
+
+ data &= ~HYM8563_CTL2_AF;
+
+ ret = i2c_smbus_write_byte_data(client, HYM8563_CTL2, data);
+ if (ret < 0) {
+ dev_err(&client->dev, "%s: error writing i2c data %d\n",
+ __func__, ret);
+ }
+
+out:
+ mutex_unlock(lock);
+ return IRQ_HANDLED;
+}
+
+static int hym8563_init_device(struct i2c_client *client)
+{
+ int ret;
+
+ /* Clear stop flag if present */
+ ret = i2c_smbus_write_byte_data(client, HYM8563_CTL1, 0);
+ if (ret < 0)
+ return ret;
+
+ ret = i2c_smbus_read_byte_data(client, HYM8563_CTL2);
+ if (ret < 0)
+ return ret;
+
+ /* Disable alarm and timer interrupts */
+ ret &= ~HYM8563_CTL2_AIE;
+ ret &= ~HYM8563_CTL2_TIE;
+
+ /* Clear any pending alarm and timer flags */
+ if (ret & HYM8563_CTL2_AF)
+ ret &= ~HYM8563_CTL2_AF;
+
+ if (ret & HYM8563_CTL2_TF)
+ ret &= ~HYM8563_CTL2_TF;
+
+ ret &= ~HYM8563_CTL2_TI_TP;
+
+ return i2c_smbus_write_byte_data(client, HYM8563_CTL2, ret);
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int hym8563_suspend(struct device *dev)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ int ret;
+
+ if (device_may_wakeup(dev)) {
+ ret = enable_irq_wake(client->irq);
+ if (ret) {
+ dev_err(dev, "enable_irq_wake failed, %d\n", ret);
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+static int hym8563_resume(struct device *dev)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+
+ if (device_may_wakeup(dev))
+ disable_irq_wake(client->irq);
+
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(hym8563_pm_ops, hym8563_suspend, hym8563_resume);
+
+static int hym8563_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct hym8563 *hym8563;
+ int ret;
+
+ hym8563 = devm_kzalloc(&client->dev, sizeof(*hym8563), GFP_KERNEL);
+ if (!hym8563)
+ return -ENOMEM;
+
+ hym8563->client = client;
+ i2c_set_clientdata(client, hym8563);
+
+ device_set_wakeup_capable(&client->dev, true);
+
+ ret = hym8563_init_device(client);
+ if (ret) {
+ dev_err(&client->dev, "could not init device, %d\n", ret);
+ return ret;
+ }
+
+ if (client->irq > 0) {
+ ret = devm_request_threaded_irq(&client->dev, client->irq,
+ NULL, hym8563_irq,
+ IRQF_TRIGGER_LOW | IRQF_ONESHOT,
+ client->name, hym8563);
+ if (ret < 0) {
+ dev_err(&client->dev, "irq %d request failed, %d\n",
+ client->irq, ret);
+ return ret;
+ }
+ }
+
+ /* check state of calendar information */
+ ret = i2c_smbus_read_byte_data(client, HYM8563_SEC);
+ if (ret < 0)
+ return ret;
+
+ dev_dbg(&client->dev, "rtc information is %s\n",
+ (ret & HYM8563_SEC_VL) ? "invalid" : "valid");
+
+ hym8563->rtc = devm_rtc_device_register(&client->dev, client->name,
+ &hym8563_rtc_ops, THIS_MODULE);
+ if (IS_ERR(hym8563->rtc))
+ return PTR_ERR(hym8563->rtc);
+
+ /* the hym8563 alarm only supports a minute accuracy */
+ hym8563->rtc->uie_unsupported = 1;
+
+#ifdef CONFIG_COMMON_CLK
+ hym8563_clkout_register_clk(hym8563);
+#endif
+
+ return 0;
+}
+
+static const struct i2c_device_id hym8563_id[] = {
+ { "hym8563", 0 },
+ {},
+};
+MODULE_DEVICE_TABLE(i2c, hym8563_id);
+
+static const struct of_device_id hym8563_dt_idtable[] = {
+ { .compatible = "haoyu,hym8563" },
+ {},
+};
+MODULE_DEVICE_TABLE(of, hym8563_dt_idtable);
+
+static struct i2c_driver hym8563_driver = {
+ .driver = {
+ .name = "rtc-hym8563",
+ .pm = &hym8563_pm_ops,
+ .of_match_table = hym8563_dt_idtable,
+ },
+ .probe = hym8563_probe,
+ .id_table = hym8563_id,
+};
+
+module_i2c_driver(hym8563_driver);
+
+MODULE_AUTHOR("Heiko Stuebner <heiko@sntech.de>");
+MODULE_DESCRIPTION("HYM8563 RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-imx-sc.c b/drivers/rtc/rtc-imx-sc.c
new file mode 100644
index 000000000..a5f59e6f8
--- /dev/null
+++ b/drivers/rtc/rtc-imx-sc.c
@@ -0,0 +1,195 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright 2018 NXP.
+ */
+
+#include <dt-bindings/firmware/imx/rsrc.h>
+#include <linux/arm-smccc.h>
+#include <linux/firmware/imx/sci.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+
+#define IMX_SC_TIMER_FUNC_GET_RTC_SEC1970 9
+#define IMX_SC_TIMER_FUNC_SET_RTC_ALARM 8
+#define IMX_SC_TIMER_FUNC_SET_RTC_TIME 6
+
+#define IMX_SIP_SRTC 0xC2000002
+#define IMX_SIP_SRTC_SET_TIME 0x0
+
+#define SC_IRQ_GROUP_RTC 2
+#define SC_IRQ_RTC 1
+
+static struct imx_sc_ipc *rtc_ipc_handle;
+static struct rtc_device *imx_sc_rtc;
+
+struct imx_sc_msg_timer_get_rtc_time {
+ struct imx_sc_rpc_msg hdr;
+ u32 time;
+} __packed;
+
+struct imx_sc_msg_timer_rtc_set_alarm {
+ struct imx_sc_rpc_msg hdr;
+ u16 year;
+ u8 mon;
+ u8 day;
+ u8 hour;
+ u8 min;
+ u8 sec;
+} __packed __aligned(4);
+
+static int imx_sc_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct imx_sc_msg_timer_get_rtc_time msg;
+ struct imx_sc_rpc_msg *hdr = &msg.hdr;
+ int ret;
+
+ hdr->ver = IMX_SC_RPC_VERSION;
+ hdr->svc = IMX_SC_RPC_SVC_TIMER;
+ hdr->func = IMX_SC_TIMER_FUNC_GET_RTC_SEC1970;
+ hdr->size = 1;
+
+ ret = imx_scu_call_rpc(rtc_ipc_handle, &msg, true);
+ if (ret) {
+ dev_err(dev, "read rtc time failed, ret %d\n", ret);
+ return ret;
+ }
+
+ rtc_time64_to_tm(msg.time, tm);
+
+ return 0;
+}
+
+static int imx_sc_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct arm_smccc_res res;
+
+ /* pack 2 time parameters into 1 register, 16 bits for each */
+ arm_smccc_smc(IMX_SIP_SRTC, IMX_SIP_SRTC_SET_TIME,
+ ((tm->tm_year + 1900) << 16) | (tm->tm_mon + 1),
+ (tm->tm_mday << 16) | tm->tm_hour,
+ (tm->tm_min << 16) | tm->tm_sec,
+ 0, 0, 0, &res);
+
+ return res.a0;
+}
+
+static int imx_sc_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
+{
+ return imx_scu_irq_group_enable(SC_IRQ_GROUP_RTC, SC_IRQ_RTC, enable);
+}
+
+static int imx_sc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ /*
+ * SCU firmware does NOT provide read alarm API, but .read_alarm
+ * callback is required by RTC framework to support alarm function,
+ * so just return here.
+ */
+ return 0;
+}
+
+static int imx_sc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct imx_sc_msg_timer_rtc_set_alarm msg;
+ struct imx_sc_rpc_msg *hdr = &msg.hdr;
+ int ret;
+ struct rtc_time *alrm_tm = &alrm->time;
+
+ hdr->ver = IMX_SC_RPC_VERSION;
+ hdr->svc = IMX_SC_RPC_SVC_TIMER;
+ hdr->func = IMX_SC_TIMER_FUNC_SET_RTC_ALARM;
+ hdr->size = 3;
+
+ msg.year = alrm_tm->tm_year + 1900;
+ msg.mon = alrm_tm->tm_mon + 1;
+ msg.day = alrm_tm->tm_mday;
+ msg.hour = alrm_tm->tm_hour;
+ msg.min = alrm_tm->tm_min;
+ msg.sec = alrm_tm->tm_sec;
+
+ ret = imx_scu_call_rpc(rtc_ipc_handle, &msg, true);
+ if (ret) {
+ dev_err(dev, "set rtc alarm failed, ret %d\n", ret);
+ return ret;
+ }
+
+ ret = imx_sc_rtc_alarm_irq_enable(dev, alrm->enabled);
+ if (ret) {
+ dev_err(dev, "enable rtc alarm failed, ret %d\n", ret);
+ return ret;
+ }
+
+ return 0;
+}
+
+static const struct rtc_class_ops imx_sc_rtc_ops = {
+ .read_time = imx_sc_rtc_read_time,
+ .set_time = imx_sc_rtc_set_time,
+ .read_alarm = imx_sc_rtc_read_alarm,
+ .set_alarm = imx_sc_rtc_set_alarm,
+ .alarm_irq_enable = imx_sc_rtc_alarm_irq_enable,
+};
+
+static int imx_sc_rtc_alarm_notify(struct notifier_block *nb,
+ unsigned long event, void *group)
+{
+ /* ignore non-rtc irq */
+ if (!((event & SC_IRQ_RTC) && (*(u8 *)group == SC_IRQ_GROUP_RTC)))
+ return 0;
+
+ rtc_update_irq(imx_sc_rtc, 1, RTC_IRQF | RTC_AF);
+
+ return 0;
+}
+
+static struct notifier_block imx_sc_rtc_alarm_sc_notifier = {
+ .notifier_call = imx_sc_rtc_alarm_notify,
+};
+
+static int imx_sc_rtc_probe(struct platform_device *pdev)
+{
+ int ret;
+
+ ret = imx_scu_get_handle(&rtc_ipc_handle);
+ if (ret)
+ return ret;
+
+ device_init_wakeup(&pdev->dev, true);
+
+ imx_sc_rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(imx_sc_rtc))
+ return PTR_ERR(imx_sc_rtc);
+
+ imx_sc_rtc->ops = &imx_sc_rtc_ops;
+ imx_sc_rtc->range_min = 0;
+ imx_sc_rtc->range_max = U32_MAX;
+
+ ret = rtc_register_device(imx_sc_rtc);
+ if (ret)
+ return ret;
+
+ imx_scu_irq_register_notifier(&imx_sc_rtc_alarm_sc_notifier);
+
+ return 0;
+}
+
+static const struct of_device_id imx_sc_dt_ids[] = {
+ { .compatible = "fsl,imx8qxp-sc-rtc", },
+ {}
+};
+MODULE_DEVICE_TABLE(of, imx_sc_dt_ids);
+
+static struct platform_driver imx_sc_rtc_driver = {
+ .driver = {
+ .name = "imx-sc-rtc",
+ .of_match_table = imx_sc_dt_ids,
+ },
+ .probe = imx_sc_rtc_probe,
+};
+module_platform_driver(imx_sc_rtc_driver);
+
+MODULE_AUTHOR("Anson Huang <Anson.Huang@nxp.com>");
+MODULE_DESCRIPTION("NXP i.MX System Controller RTC Driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-imxdi.c b/drivers/rtc/rtc-imxdi.c
new file mode 100644
index 000000000..8d141d8a5
--- /dev/null
+++ b/drivers/rtc/rtc-imxdi.c
@@ -0,0 +1,865 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
+ * Copyright 2010 Orex Computed Radiography
+ */
+
+/*
+ * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block
+ * to implement a Linux RTC. Times and alarms are truncated to seconds.
+ * Since the RTC framework performs API locking via rtc->ops_lock the
+ * only simultaneous accesses we need to deal with is updating DryIce
+ * registers while servicing an alarm.
+ *
+ * Note that reading the DSR (DryIce Status Register) automatically clears
+ * the WCF (Write Complete Flag). All DryIce writes are synchronized to the
+ * LP (Low Power) domain and set the WCF upon completion. Writes to the
+ * DIER (DryIce Interrupt Enable Register) are the only exception. These
+ * occur at normal bus speeds and do not set WCF. Periodic interrupts are
+ * not supported by the hardware.
+ */
+
+#include <linux/io.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/sched.h>
+#include <linux/spinlock.h>
+#include <linux/workqueue.h>
+#include <linux/of.h>
+
+/* DryIce Register Definitions */
+
+#define DTCMR 0x00 /* Time Counter MSB Reg */
+#define DTCLR 0x04 /* Time Counter LSB Reg */
+
+#define DCAMR 0x08 /* Clock Alarm MSB Reg */
+#define DCALR 0x0c /* Clock Alarm LSB Reg */
+#define DCAMR_UNSET 0xFFFFFFFF /* doomsday - 1 sec */
+
+#define DCR 0x10 /* Control Reg */
+#define DCR_TDCHL (1 << 30) /* Tamper-detect configuration hard lock */
+#define DCR_TDCSL (1 << 29) /* Tamper-detect configuration soft lock */
+#define DCR_KSSL (1 << 27) /* Key-select soft lock */
+#define DCR_MCHL (1 << 20) /* Monotonic-counter hard lock */
+#define DCR_MCSL (1 << 19) /* Monotonic-counter soft lock */
+#define DCR_TCHL (1 << 18) /* Timer-counter hard lock */
+#define DCR_TCSL (1 << 17) /* Timer-counter soft lock */
+#define DCR_FSHL (1 << 16) /* Failure state hard lock */
+#define DCR_TCE (1 << 3) /* Time Counter Enable */
+#define DCR_MCE (1 << 2) /* Monotonic Counter Enable */
+
+#define DSR 0x14 /* Status Reg */
+#define DSR_WTD (1 << 23) /* Wire-mesh tamper detected */
+#define DSR_ETBD (1 << 22) /* External tamper B detected */
+#define DSR_ETAD (1 << 21) /* External tamper A detected */
+#define DSR_EBD (1 << 20) /* External boot detected */
+#define DSR_SAD (1 << 19) /* SCC alarm detected */
+#define DSR_TTD (1 << 18) /* Temperature tamper detected */
+#define DSR_CTD (1 << 17) /* Clock tamper detected */
+#define DSR_VTD (1 << 16) /* Voltage tamper detected */
+#define DSR_WBF (1 << 10) /* Write Busy Flag (synchronous) */
+#define DSR_WNF (1 << 9) /* Write Next Flag (synchronous) */
+#define DSR_WCF (1 << 8) /* Write Complete Flag (synchronous)*/
+#define DSR_WEF (1 << 7) /* Write Error Flag */
+#define DSR_CAF (1 << 4) /* Clock Alarm Flag */
+#define DSR_MCO (1 << 3) /* monotonic counter overflow */
+#define DSR_TCO (1 << 2) /* time counter overflow */
+#define DSR_NVF (1 << 1) /* Non-Valid Flag */
+#define DSR_SVF (1 << 0) /* Security Violation Flag */
+
+#define DIER 0x18 /* Interrupt Enable Reg (synchronous) */
+#define DIER_WNIE (1 << 9) /* Write Next Interrupt Enable */
+#define DIER_WCIE (1 << 8) /* Write Complete Interrupt Enable */
+#define DIER_WEIE (1 << 7) /* Write Error Interrupt Enable */
+#define DIER_CAIE (1 << 4) /* Clock Alarm Interrupt Enable */
+#define DIER_SVIE (1 << 0) /* Security-violation Interrupt Enable */
+
+#define DMCR 0x1c /* DryIce Monotonic Counter Reg */
+
+#define DTCR 0x28 /* DryIce Tamper Configuration Reg */
+#define DTCR_MOE (1 << 9) /* monotonic overflow enabled */
+#define DTCR_TOE (1 << 8) /* time overflow enabled */
+#define DTCR_WTE (1 << 7) /* wire-mesh tamper enabled */
+#define DTCR_ETBE (1 << 6) /* external B tamper enabled */
+#define DTCR_ETAE (1 << 5) /* external A tamper enabled */
+#define DTCR_EBE (1 << 4) /* external boot tamper enabled */
+#define DTCR_SAIE (1 << 3) /* SCC enabled */
+#define DTCR_TTE (1 << 2) /* temperature tamper enabled */
+#define DTCR_CTE (1 << 1) /* clock tamper enabled */
+#define DTCR_VTE (1 << 0) /* voltage tamper enabled */
+
+#define DGPR 0x3c /* DryIce General Purpose Reg */
+
+/**
+ * struct imxdi_dev - private imxdi rtc data
+ * @pdev: pointer to platform dev
+ * @rtc: pointer to rtc struct
+ * @ioaddr: IO registers pointer
+ * @clk: input reference clock
+ * @dsr: copy of the DSR register
+ * @irq_lock: interrupt enable register (DIER) lock
+ * @write_wait: registers write complete queue
+ * @write_mutex: serialize registers write
+ * @work: schedule alarm work
+ */
+struct imxdi_dev {
+ struct platform_device *pdev;
+ struct rtc_device *rtc;
+ void __iomem *ioaddr;
+ struct clk *clk;
+ u32 dsr;
+ spinlock_t irq_lock;
+ wait_queue_head_t write_wait;
+ struct mutex write_mutex;
+ struct work_struct work;
+};
+
+/* Some background:
+ *
+ * The DryIce unit is a complex security/tamper monitor device. To be able do
+ * its job in a useful manner it runs a bigger statemachine to bring it into
+ * security/tamper failure state and once again to bring it out of this state.
+ *
+ * This unit can be in one of three states:
+ *
+ * - "NON-VALID STATE"
+ * always after the battery power was removed
+ * - "FAILURE STATE"
+ * if one of the enabled security events has happened
+ * - "VALID STATE"
+ * if the unit works as expected
+ *
+ * Everything stops when the unit enters the failure state including the RTC
+ * counter (to be able to detect the time the security event happened).
+ *
+ * The following events (when enabled) let the DryIce unit enter the failure
+ * state:
+ *
+ * - wire-mesh-tamper detect
+ * - external tamper B detect
+ * - external tamper A detect
+ * - temperature tamper detect
+ * - clock tamper detect
+ * - voltage tamper detect
+ * - RTC counter overflow
+ * - monotonic counter overflow
+ * - external boot
+ *
+ * If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we
+ * can only detect this state. In this case the unit is completely locked and
+ * must force a second "SYSTEM POR" to bring the DryIce into the
+ * "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible.
+ * If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case
+ * a battery power cycle is required.
+ *
+ * In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE"
+ * and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last
+ * task, we bring back this unit into life.
+ */
+
+/*
+ * Do a write into the unit without interrupt support.
+ * We do not need to check the WEF here, because the only reason this kind of
+ * write error can happen is if we write to the unit twice within the 122 us
+ * interval. This cannot happen, since we are using this function only while
+ * setting up the unit.
+ */
+static void di_write_busy_wait(const struct imxdi_dev *imxdi, u32 val,
+ unsigned reg)
+{
+ /* do the register write */
+ writel(val, imxdi->ioaddr + reg);
+
+ /*
+ * now it takes four 32,768 kHz clock cycles to take
+ * the change into effect = 122 us
+ */
+ usleep_range(130, 200);
+}
+
+static void di_report_tamper_info(struct imxdi_dev *imxdi, u32 dsr)
+{
+ u32 dtcr;
+
+ dtcr = readl(imxdi->ioaddr + DTCR);
+
+ dev_emerg(&imxdi->pdev->dev, "DryIce tamper event detected\n");
+ /* the following flags force a transition into the "FAILURE STATE" */
+ if (dsr & DSR_VTD)
+ dev_emerg(&imxdi->pdev->dev, "%sVoltage Tamper Event\n",
+ dtcr & DTCR_VTE ? "" : "Spurious ");
+
+ if (dsr & DSR_CTD)
+ dev_emerg(&imxdi->pdev->dev, "%s32768 Hz Clock Tamper Event\n",
+ dtcr & DTCR_CTE ? "" : "Spurious ");
+
+ if (dsr & DSR_TTD)
+ dev_emerg(&imxdi->pdev->dev, "%sTemperature Tamper Event\n",
+ dtcr & DTCR_TTE ? "" : "Spurious ");
+
+ if (dsr & DSR_SAD)
+ dev_emerg(&imxdi->pdev->dev,
+ "%sSecure Controller Alarm Event\n",
+ dtcr & DTCR_SAIE ? "" : "Spurious ");
+
+ if (dsr & DSR_EBD)
+ dev_emerg(&imxdi->pdev->dev, "%sExternal Boot Tamper Event\n",
+ dtcr & DTCR_EBE ? "" : "Spurious ");
+
+ if (dsr & DSR_ETAD)
+ dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper A Event\n",
+ dtcr & DTCR_ETAE ? "" : "Spurious ");
+
+ if (dsr & DSR_ETBD)
+ dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper B Event\n",
+ dtcr & DTCR_ETBE ? "" : "Spurious ");
+
+ if (dsr & DSR_WTD)
+ dev_emerg(&imxdi->pdev->dev, "%sWire-mesh Tamper Event\n",
+ dtcr & DTCR_WTE ? "" : "Spurious ");
+
+ if (dsr & DSR_MCO)
+ dev_emerg(&imxdi->pdev->dev,
+ "%sMonotonic-counter Overflow Event\n",
+ dtcr & DTCR_MOE ? "" : "Spurious ");
+
+ if (dsr & DSR_TCO)
+ dev_emerg(&imxdi->pdev->dev, "%sTimer-counter Overflow Event\n",
+ dtcr & DTCR_TOE ? "" : "Spurious ");
+}
+
+static void di_what_is_to_be_done(struct imxdi_dev *imxdi,
+ const char *power_supply)
+{
+ dev_emerg(&imxdi->pdev->dev, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n",
+ power_supply);
+}
+
+static int di_handle_failure_state(struct imxdi_dev *imxdi, u32 dsr)
+{
+ u32 dcr;
+
+ dev_dbg(&imxdi->pdev->dev, "DSR register reports: %08X\n", dsr);
+
+ /* report the cause */
+ di_report_tamper_info(imxdi, dsr);
+
+ dcr = readl(imxdi->ioaddr + DCR);
+
+ if (dcr & DCR_FSHL) {
+ /* we are out of luck */
+ di_what_is_to_be_done(imxdi, "battery");
+ return -ENODEV;
+ }
+ /*
+ * with the next SYSTEM POR we will transit from the "FAILURE STATE"
+ * into the "NON-VALID STATE" + "FAILURE STATE"
+ */
+ di_what_is_to_be_done(imxdi, "main");
+
+ return -ENODEV;
+}
+
+static int di_handle_valid_state(struct imxdi_dev *imxdi, u32 dsr)
+{
+ /* initialize alarm */
+ di_write_busy_wait(imxdi, DCAMR_UNSET, DCAMR);
+ di_write_busy_wait(imxdi, 0, DCALR);
+
+ /* clear alarm flag */
+ if (dsr & DSR_CAF)
+ di_write_busy_wait(imxdi, DSR_CAF, DSR);
+
+ return 0;
+}
+
+static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr)
+{
+ u32 dcr, sec;
+
+ /*
+ * lets disable all sources which can force the DryIce unit into
+ * the "FAILURE STATE" for now
+ */
+ di_write_busy_wait(imxdi, 0x00000000, DTCR);
+ /* and lets protect them at runtime from any change */
+ di_write_busy_wait(imxdi, DCR_TDCSL, DCR);
+
+ sec = readl(imxdi->ioaddr + DTCMR);
+ if (sec != 0)
+ dev_warn(&imxdi->pdev->dev,
+ "The security violation has happened at %u seconds\n",
+ sec);
+ /*
+ * the timer cannot be set/modified if
+ * - the TCHL or TCSL bit is set in DCR
+ */
+ dcr = readl(imxdi->ioaddr + DCR);
+ if (!(dcr & DCR_TCE)) {
+ if (dcr & DCR_TCHL) {
+ /* we are out of luck */
+ di_what_is_to_be_done(imxdi, "battery");
+ return -ENODEV;
+ }
+ if (dcr & DCR_TCSL) {
+ di_what_is_to_be_done(imxdi, "main");
+ return -ENODEV;
+ }
+ }
+ /*
+ * - the timer counter stops/is stopped if
+ * - its overflow flag is set (TCO in DSR)
+ * -> clear overflow bit to make it count again
+ * - NVF is set in DSR
+ * -> clear non-valid bit to make it count again
+ * - its TCE (DCR) is cleared
+ * -> set TCE to make it count
+ * - it was never set before
+ * -> write a time into it (required again if the NVF was set)
+ */
+ /* state handled */
+ di_write_busy_wait(imxdi, DSR_NVF, DSR);
+ /* clear overflow flag */
+ di_write_busy_wait(imxdi, DSR_TCO, DSR);
+ /* enable the counter */
+ di_write_busy_wait(imxdi, dcr | DCR_TCE, DCR);
+ /* set and trigger it to make it count */
+ di_write_busy_wait(imxdi, sec, DTCMR);
+
+ /* now prepare for the valid state */
+ return di_handle_valid_state(imxdi, __raw_readl(imxdi->ioaddr + DSR));
+}
+
+static int di_handle_invalid_and_failure_state(struct imxdi_dev *imxdi, u32 dsr)
+{
+ u32 dcr;
+
+ /*
+ * now we must first remove the tamper sources in order to get the
+ * device out of the "FAILURE STATE"
+ * To disable any of the following sources we need to modify the DTCR
+ */
+ if (dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD | DSR_EBD | DSR_SAD |
+ DSR_TTD | DSR_CTD | DSR_VTD | DSR_MCO | DSR_TCO)) {
+ dcr = __raw_readl(imxdi->ioaddr + DCR);
+ if (dcr & DCR_TDCHL) {
+ /*
+ * the tamper register is locked. We cannot disable the
+ * tamper detection. The TDCHL can only be reset by a
+ * DRYICE POR, but we cannot force a DRYICE POR in
+ * software because we are still in "FAILURE STATE".
+ * We need a DRYICE POR via battery power cycling....
+ */
+ /*
+ * out of luck!
+ * we cannot disable them without a DRYICE POR
+ */
+ di_what_is_to_be_done(imxdi, "battery");
+ return -ENODEV;
+ }
+ if (dcr & DCR_TDCSL) {
+ /* a soft lock can be removed by a SYSTEM POR */
+ di_what_is_to_be_done(imxdi, "main");
+ return -ENODEV;
+ }
+ }
+
+ /* disable all sources */
+ di_write_busy_wait(imxdi, 0x00000000, DTCR);
+
+ /* clear the status bits now */
+ di_write_busy_wait(imxdi, dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD |
+ DSR_EBD | DSR_SAD | DSR_TTD | DSR_CTD | DSR_VTD |
+ DSR_MCO | DSR_TCO), DSR);
+
+ dsr = readl(imxdi->ioaddr + DSR);
+ if ((dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
+ DSR_WCF | DSR_WEF)) != 0)
+ dev_warn(&imxdi->pdev->dev,
+ "There are still some sources of pain in DSR: %08x!\n",
+ dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
+ DSR_WCF | DSR_WEF));
+
+ /*
+ * now we are trying to clear the "Security-violation flag" to
+ * get the DryIce out of this state
+ */
+ di_write_busy_wait(imxdi, DSR_SVF, DSR);
+
+ /* success? */
+ dsr = readl(imxdi->ioaddr + DSR);
+ if (dsr & DSR_SVF) {
+ dev_crit(&imxdi->pdev->dev,
+ "Cannot clear the security violation flag. We are ending up in an endless loop!\n");
+ /* last resort */
+ di_what_is_to_be_done(imxdi, "battery");
+ return -ENODEV;
+ }
+
+ /*
+ * now we have left the "FAILURE STATE" and ending up in the
+ * "NON-VALID STATE" time to recover everything
+ */
+ return di_handle_invalid_state(imxdi, dsr);
+}
+
+static int di_handle_state(struct imxdi_dev *imxdi)
+{
+ int rc;
+ u32 dsr;
+
+ dsr = readl(imxdi->ioaddr + DSR);
+
+ switch (dsr & (DSR_NVF | DSR_SVF)) {
+ case DSR_NVF:
+ dev_warn(&imxdi->pdev->dev, "Invalid stated unit detected\n");
+ rc = di_handle_invalid_state(imxdi, dsr);
+ break;
+ case DSR_SVF:
+ dev_warn(&imxdi->pdev->dev, "Failure stated unit detected\n");
+ rc = di_handle_failure_state(imxdi, dsr);
+ break;
+ case DSR_NVF | DSR_SVF:
+ dev_warn(&imxdi->pdev->dev,
+ "Failure+Invalid stated unit detected\n");
+ rc = di_handle_invalid_and_failure_state(imxdi, dsr);
+ break;
+ default:
+ dev_notice(&imxdi->pdev->dev, "Unlocked unit detected\n");
+ rc = di_handle_valid_state(imxdi, dsr);
+ }
+
+ return rc;
+}
+
+/*
+ * enable a dryice interrupt
+ */
+static void di_int_enable(struct imxdi_dev *imxdi, u32 intr)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&imxdi->irq_lock, flags);
+ writel(readl(imxdi->ioaddr + DIER) | intr,
+ imxdi->ioaddr + DIER);
+ spin_unlock_irqrestore(&imxdi->irq_lock, flags);
+}
+
+/*
+ * disable a dryice interrupt
+ */
+static void di_int_disable(struct imxdi_dev *imxdi, u32 intr)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&imxdi->irq_lock, flags);
+ writel(readl(imxdi->ioaddr + DIER) & ~intr,
+ imxdi->ioaddr + DIER);
+ spin_unlock_irqrestore(&imxdi->irq_lock, flags);
+}
+
+/*
+ * This function attempts to clear the dryice write-error flag.
+ *
+ * A dryice write error is similar to a bus fault and should not occur in
+ * normal operation. Clearing the flag requires another write, so the root
+ * cause of the problem may need to be fixed before the flag can be cleared.
+ */
+static void clear_write_error(struct imxdi_dev *imxdi)
+{
+ int cnt;
+
+ dev_warn(&imxdi->pdev->dev, "WARNING: Register write error!\n");
+
+ /* clear the write error flag */
+ writel(DSR_WEF, imxdi->ioaddr + DSR);
+
+ /* wait for it to take effect */
+ for (cnt = 0; cnt < 1000; cnt++) {
+ if ((readl(imxdi->ioaddr + DSR) & DSR_WEF) == 0)
+ return;
+ udelay(10);
+ }
+ dev_err(&imxdi->pdev->dev,
+ "ERROR: Cannot clear write-error flag!\n");
+}
+
+/*
+ * Write a dryice register and wait until it completes.
+ *
+ * This function uses interrupts to determine when the
+ * write has completed.
+ */
+static int di_write_wait(struct imxdi_dev *imxdi, u32 val, int reg)
+{
+ int ret;
+ int rc = 0;
+
+ /* serialize register writes */
+ mutex_lock(&imxdi->write_mutex);
+
+ /* enable the write-complete interrupt */
+ di_int_enable(imxdi, DIER_WCIE);
+
+ imxdi->dsr = 0;
+
+ /* do the register write */
+ writel(val, imxdi->ioaddr + reg);
+
+ /* wait for the write to finish */
+ ret = wait_event_interruptible_timeout(imxdi->write_wait,
+ imxdi->dsr & (DSR_WCF | DSR_WEF), msecs_to_jiffies(1));
+ if (ret < 0) {
+ rc = ret;
+ goto out;
+ } else if (ret == 0) {
+ dev_warn(&imxdi->pdev->dev,
+ "Write-wait timeout "
+ "val = 0x%08x reg = 0x%08x\n", val, reg);
+ }
+
+ /* check for write error */
+ if (imxdi->dsr & DSR_WEF) {
+ clear_write_error(imxdi);
+ rc = -EIO;
+ }
+
+out:
+ mutex_unlock(&imxdi->write_mutex);
+
+ return rc;
+}
+
+/*
+ * read the seconds portion of the current time from the dryice time counter
+ */
+static int dryice_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct imxdi_dev *imxdi = dev_get_drvdata(dev);
+ unsigned long now;
+
+ now = readl(imxdi->ioaddr + DTCMR);
+ rtc_time64_to_tm(now, tm);
+
+ return 0;
+}
+
+/*
+ * set the seconds portion of dryice time counter and clear the
+ * fractional part.
+ */
+static int dryice_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct imxdi_dev *imxdi = dev_get_drvdata(dev);
+ u32 dcr, dsr;
+ int rc;
+
+ dcr = readl(imxdi->ioaddr + DCR);
+ dsr = readl(imxdi->ioaddr + DSR);
+
+ if (!(dcr & DCR_TCE) || (dsr & DSR_SVF)) {
+ if (dcr & DCR_TCHL) {
+ /* we are even more out of luck */
+ di_what_is_to_be_done(imxdi, "battery");
+ return -EPERM;
+ }
+ if ((dcr & DCR_TCSL) || (dsr & DSR_SVF)) {
+ /* we are out of luck for now */
+ di_what_is_to_be_done(imxdi, "main");
+ return -EPERM;
+ }
+ }
+
+ /* zero the fractional part first */
+ rc = di_write_wait(imxdi, 0, DTCLR);
+ if (rc != 0)
+ return rc;
+
+ rc = di_write_wait(imxdi, rtc_tm_to_time64(tm), DTCMR);
+ if (rc != 0)
+ return rc;
+
+ return di_write_wait(imxdi, readl(imxdi->ioaddr + DCR) | DCR_TCE, DCR);
+}
+
+static int dryice_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct imxdi_dev *imxdi = dev_get_drvdata(dev);
+
+ if (enabled)
+ di_int_enable(imxdi, DIER_CAIE);
+ else
+ di_int_disable(imxdi, DIER_CAIE);
+
+ return 0;
+}
+
+/*
+ * read the seconds portion of the alarm register.
+ * the fractional part of the alarm register is always zero.
+ */
+static int dryice_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct imxdi_dev *imxdi = dev_get_drvdata(dev);
+ u32 dcamr;
+
+ dcamr = readl(imxdi->ioaddr + DCAMR);
+ rtc_time64_to_tm(dcamr, &alarm->time);
+
+ /* alarm is enabled if the interrupt is enabled */
+ alarm->enabled = (readl(imxdi->ioaddr + DIER) & DIER_CAIE) != 0;
+
+ /* don't allow the DSR read to mess up DSR_WCF */
+ mutex_lock(&imxdi->write_mutex);
+
+ /* alarm is pending if the alarm flag is set */
+ alarm->pending = (readl(imxdi->ioaddr + DSR) & DSR_CAF) != 0;
+
+ mutex_unlock(&imxdi->write_mutex);
+
+ return 0;
+}
+
+/*
+ * set the seconds portion of dryice alarm register
+ */
+static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct imxdi_dev *imxdi = dev_get_drvdata(dev);
+ int rc;
+
+ /* write the new alarm time */
+ rc = di_write_wait(imxdi, rtc_tm_to_time64(&alarm->time), DCAMR);
+ if (rc)
+ return rc;
+
+ if (alarm->enabled)
+ di_int_enable(imxdi, DIER_CAIE); /* enable alarm intr */
+ else
+ di_int_disable(imxdi, DIER_CAIE); /* disable alarm intr */
+
+ return 0;
+}
+
+static const struct rtc_class_ops dryice_rtc_ops = {
+ .read_time = dryice_rtc_read_time,
+ .set_time = dryice_rtc_set_time,
+ .alarm_irq_enable = dryice_rtc_alarm_irq_enable,
+ .read_alarm = dryice_rtc_read_alarm,
+ .set_alarm = dryice_rtc_set_alarm,
+};
+
+/*
+ * interrupt handler for dryice "normal" and security violation interrupt
+ */
+static irqreturn_t dryice_irq(int irq, void *dev_id)
+{
+ struct imxdi_dev *imxdi = dev_id;
+ u32 dsr, dier;
+ irqreturn_t rc = IRQ_NONE;
+
+ dier = readl(imxdi->ioaddr + DIER);
+ dsr = readl(imxdi->ioaddr + DSR);
+
+ /* handle the security violation event */
+ if (dier & DIER_SVIE) {
+ if (dsr & DSR_SVF) {
+ /*
+ * Disable the interrupt when this kind of event has
+ * happened.
+ * There cannot be more than one event of this type,
+ * because it needs a complex state change
+ * including a main power cycle to get again out of
+ * this state.
+ */
+ di_int_disable(imxdi, DIER_SVIE);
+ /* report the violation */
+ di_report_tamper_info(imxdi, dsr);
+ rc = IRQ_HANDLED;
+ }
+ }
+
+ /* handle write complete and write error cases */
+ if (dier & DIER_WCIE) {
+ /*If the write wait queue is empty then there is no pending
+ operations. It means the interrupt is for DryIce -Security.
+ IRQ must be returned as none.*/
+ if (list_empty_careful(&imxdi->write_wait.head))
+ return rc;
+
+ /* DSR_WCF clears itself on DSR read */
+ if (dsr & (DSR_WCF | DSR_WEF)) {
+ /* mask the interrupt */
+ di_int_disable(imxdi, DIER_WCIE);
+
+ /* save the dsr value for the wait queue */
+ imxdi->dsr |= dsr;
+
+ wake_up_interruptible(&imxdi->write_wait);
+ rc = IRQ_HANDLED;
+ }
+ }
+
+ /* handle the alarm case */
+ if (dier & DIER_CAIE) {
+ /* DSR_WCF clears itself on DSR read */
+ if (dsr & DSR_CAF) {
+ /* mask the interrupt */
+ di_int_disable(imxdi, DIER_CAIE);
+
+ /* finish alarm in user context */
+ schedule_work(&imxdi->work);
+ rc = IRQ_HANDLED;
+ }
+ }
+ return rc;
+}
+
+/*
+ * post the alarm event from user context so it can sleep
+ * on the write completion.
+ */
+static void dryice_work(struct work_struct *work)
+{
+ struct imxdi_dev *imxdi = container_of(work,
+ struct imxdi_dev, work);
+
+ /* dismiss the interrupt (ignore error) */
+ di_write_wait(imxdi, DSR_CAF, DSR);
+
+ /* pass the alarm event to the rtc framework. */
+ rtc_update_irq(imxdi->rtc, 1, RTC_AF | RTC_IRQF);
+}
+
+/*
+ * probe for dryice rtc device
+ */
+static int __init dryice_rtc_probe(struct platform_device *pdev)
+{
+ struct imxdi_dev *imxdi;
+ int norm_irq, sec_irq;
+ int rc;
+
+ imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL);
+ if (!imxdi)
+ return -ENOMEM;
+
+ imxdi->pdev = pdev;
+
+ imxdi->ioaddr = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(imxdi->ioaddr))
+ return PTR_ERR(imxdi->ioaddr);
+
+ spin_lock_init(&imxdi->irq_lock);
+
+ norm_irq = platform_get_irq(pdev, 0);
+ if (norm_irq < 0)
+ return norm_irq;
+
+ /* the 2nd irq is the security violation irq
+ * make this optional, don't break the device tree ABI
+ */
+ sec_irq = platform_get_irq(pdev, 1);
+ if (sec_irq <= 0)
+ sec_irq = IRQ_NOTCONNECTED;
+
+ init_waitqueue_head(&imxdi->write_wait);
+
+ INIT_WORK(&imxdi->work, dryice_work);
+
+ mutex_init(&imxdi->write_mutex);
+
+ imxdi->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(imxdi->rtc))
+ return PTR_ERR(imxdi->rtc);
+
+ imxdi->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(imxdi->clk))
+ return PTR_ERR(imxdi->clk);
+ rc = clk_prepare_enable(imxdi->clk);
+ if (rc)
+ return rc;
+
+ /*
+ * Initialize dryice hardware
+ */
+
+ /* mask all interrupts */
+ writel(0, imxdi->ioaddr + DIER);
+
+ rc = di_handle_state(imxdi);
+ if (rc != 0)
+ goto err;
+
+ rc = devm_request_irq(&pdev->dev, norm_irq, dryice_irq,
+ IRQF_SHARED, pdev->name, imxdi);
+ if (rc) {
+ dev_warn(&pdev->dev, "interrupt not available.\n");
+ goto err;
+ }
+
+ rc = devm_request_irq(&pdev->dev, sec_irq, dryice_irq,
+ IRQF_SHARED, pdev->name, imxdi);
+ if (rc) {
+ dev_warn(&pdev->dev, "security violation interrupt not available.\n");
+ /* this is not an error, see above */
+ }
+
+ platform_set_drvdata(pdev, imxdi);
+
+ imxdi->rtc->ops = &dryice_rtc_ops;
+ imxdi->rtc->range_max = U32_MAX;
+
+ rc = rtc_register_device(imxdi->rtc);
+ if (rc)
+ goto err;
+
+ return 0;
+
+err:
+ clk_disable_unprepare(imxdi->clk);
+
+ return rc;
+}
+
+static int __exit dryice_rtc_remove(struct platform_device *pdev)
+{
+ struct imxdi_dev *imxdi = platform_get_drvdata(pdev);
+
+ flush_work(&imxdi->work);
+
+ /* mask all interrupts */
+ writel(0, imxdi->ioaddr + DIER);
+
+ clk_disable_unprepare(imxdi->clk);
+
+ return 0;
+}
+
+#ifdef CONFIG_OF
+static const struct of_device_id dryice_dt_ids[] = {
+ { .compatible = "fsl,imx25-rtc" },
+ { /* sentinel */ }
+};
+
+MODULE_DEVICE_TABLE(of, dryice_dt_ids);
+#endif
+
+static struct platform_driver dryice_rtc_driver = {
+ .driver = {
+ .name = "imxdi_rtc",
+ .of_match_table = of_match_ptr(dryice_dt_ids),
+ },
+ .remove = __exit_p(dryice_rtc_remove),
+};
+
+module_platform_driver_probe(dryice_rtc_driver, dryice_rtc_probe);
+
+MODULE_AUTHOR("Freescale Semiconductor, Inc.");
+MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
+MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-isl12022.c b/drivers/rtc/rtc-isl12022.c
new file mode 100644
index 000000000..961bd5d1d
--- /dev/null
+++ b/drivers/rtc/rtc-isl12022.c
@@ -0,0 +1,286 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * An I2C driver for the Intersil ISL 12022
+ *
+ * Author: Roman Fietze <roman.fietze@telemotive.de>
+ *
+ * Based on the Philips PCF8563 RTC
+ * by Alessandro Zummo <a.zummo@towertech.it>.
+ */
+
+#include <linux/i2c.h>
+#include <linux/bcd.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/err.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+
+/* ISL register offsets */
+#define ISL12022_REG_SC 0x00
+#define ISL12022_REG_MN 0x01
+#define ISL12022_REG_HR 0x02
+#define ISL12022_REG_DT 0x03
+#define ISL12022_REG_MO 0x04
+#define ISL12022_REG_YR 0x05
+#define ISL12022_REG_DW 0x06
+
+#define ISL12022_REG_SR 0x07
+#define ISL12022_REG_INT 0x08
+
+/* ISL register bits */
+#define ISL12022_HR_MIL (1 << 7) /* military or 24 hour time */
+
+#define ISL12022_SR_LBAT85 (1 << 2)
+#define ISL12022_SR_LBAT75 (1 << 1)
+
+#define ISL12022_INT_WRTC (1 << 6)
+
+
+static struct i2c_driver isl12022_driver;
+
+struct isl12022 {
+ struct rtc_device *rtc;
+
+ bool write_enabled; /* true if write enable is set */
+};
+
+
+static int isl12022_read_regs(struct i2c_client *client, uint8_t reg,
+ uint8_t *data, size_t n)
+{
+ struct i2c_msg msgs[] = {
+ {
+ .addr = client->addr,
+ .flags = 0,
+ .len = 1,
+ .buf = data
+ }, /* setup read ptr */
+ {
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = n,
+ .buf = data
+ }
+ };
+
+ int ret;
+
+ data[0] = reg;
+ ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
+ if (ret != ARRAY_SIZE(msgs)) {
+ dev_err(&client->dev, "%s: read error, ret=%d\n",
+ __func__, ret);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+
+static int isl12022_write_reg(struct i2c_client *client,
+ uint8_t reg, uint8_t val)
+{
+ uint8_t data[2] = { reg, val };
+ int err;
+
+ err = i2c_master_send(client, data, sizeof(data));
+ if (err != sizeof(data)) {
+ dev_err(&client->dev,
+ "%s: err=%d addr=%02x, data=%02x\n",
+ __func__, err, data[0], data[1]);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+
+/*
+ * In the routines that deal directly with the isl12022 hardware, we use
+ * rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch.
+ */
+static int isl12022_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ uint8_t buf[ISL12022_REG_INT + 1];
+ int ret;
+
+ ret = isl12022_read_regs(client, ISL12022_REG_SC, buf, sizeof(buf));
+ if (ret)
+ return ret;
+
+ if (buf[ISL12022_REG_SR] & (ISL12022_SR_LBAT85 | ISL12022_SR_LBAT75)) {
+ dev_warn(&client->dev,
+ "voltage dropped below %u%%, "
+ "date and time is not reliable.\n",
+ buf[ISL12022_REG_SR] & ISL12022_SR_LBAT85 ? 85 : 75);
+ }
+
+ dev_dbg(&client->dev,
+ "%s: raw data is sec=%02x, min=%02x, hr=%02x, "
+ "mday=%02x, mon=%02x, year=%02x, wday=%02x, "
+ "sr=%02x, int=%02x",
+ __func__,
+ buf[ISL12022_REG_SC],
+ buf[ISL12022_REG_MN],
+ buf[ISL12022_REG_HR],
+ buf[ISL12022_REG_DT],
+ buf[ISL12022_REG_MO],
+ buf[ISL12022_REG_YR],
+ buf[ISL12022_REG_DW],
+ buf[ISL12022_REG_SR],
+ buf[ISL12022_REG_INT]);
+
+ tm->tm_sec = bcd2bin(buf[ISL12022_REG_SC] & 0x7F);
+ tm->tm_min = bcd2bin(buf[ISL12022_REG_MN] & 0x7F);
+ tm->tm_hour = bcd2bin(buf[ISL12022_REG_HR] & 0x3F);
+ tm->tm_mday = bcd2bin(buf[ISL12022_REG_DT] & 0x3F);
+ tm->tm_wday = buf[ISL12022_REG_DW] & 0x07;
+ tm->tm_mon = bcd2bin(buf[ISL12022_REG_MO] & 0x1F) - 1;
+ tm->tm_year = bcd2bin(buf[ISL12022_REG_YR]) + 100;
+
+ dev_dbg(&client->dev, "%s: secs=%d, mins=%d, hours=%d, "
+ "mday=%d, mon=%d, year=%d, wday=%d\n",
+ __func__,
+ tm->tm_sec, tm->tm_min, tm->tm_hour,
+ tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ return 0;
+}
+
+static int isl12022_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct isl12022 *isl12022 = i2c_get_clientdata(client);
+ size_t i;
+ int ret;
+ uint8_t buf[ISL12022_REG_DW + 1];
+
+ dev_dbg(&client->dev, "%s: secs=%d, mins=%d, hours=%d, "
+ "mday=%d, mon=%d, year=%d, wday=%d\n",
+ __func__,
+ tm->tm_sec, tm->tm_min, tm->tm_hour,
+ tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ if (!isl12022->write_enabled) {
+
+ ret = isl12022_read_regs(client, ISL12022_REG_INT, buf, 1);
+ if (ret)
+ return ret;
+
+ /* Check if WRTC (write rtc enable) is set factory default is
+ * 0 (not set) */
+ if (!(buf[0] & ISL12022_INT_WRTC)) {
+ dev_info(&client->dev,
+ "init write enable and 24 hour format\n");
+
+ /* Set the write enable bit. */
+ ret = isl12022_write_reg(client,
+ ISL12022_REG_INT,
+ buf[0] | ISL12022_INT_WRTC);
+ if (ret)
+ return ret;
+
+ /* Write to any RTC register to start RTC, we use the
+ * HR register, setting the MIL bit to use the 24 hour
+ * format. */
+ ret = isl12022_read_regs(client, ISL12022_REG_HR,
+ buf, 1);
+ if (ret)
+ return ret;
+
+ ret = isl12022_write_reg(client,
+ ISL12022_REG_HR,
+ buf[0] | ISL12022_HR_MIL);
+ if (ret)
+ return ret;
+ }
+
+ isl12022->write_enabled = true;
+ }
+
+ /* hours, minutes and seconds */
+ buf[ISL12022_REG_SC] = bin2bcd(tm->tm_sec);
+ buf[ISL12022_REG_MN] = bin2bcd(tm->tm_min);
+ buf[ISL12022_REG_HR] = bin2bcd(tm->tm_hour) | ISL12022_HR_MIL;
+
+ buf[ISL12022_REG_DT] = bin2bcd(tm->tm_mday);
+
+ /* month, 1 - 12 */
+ buf[ISL12022_REG_MO] = bin2bcd(tm->tm_mon + 1);
+
+ /* year and century */
+ buf[ISL12022_REG_YR] = bin2bcd(tm->tm_year % 100);
+
+ buf[ISL12022_REG_DW] = tm->tm_wday & 0x07;
+
+ /* write register's data */
+ for (i = 0; i < ARRAY_SIZE(buf); i++) {
+ ret = isl12022_write_reg(client, ISL12022_REG_SC + i,
+ buf[ISL12022_REG_SC + i]);
+ if (ret)
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static const struct rtc_class_ops isl12022_rtc_ops = {
+ .read_time = isl12022_rtc_read_time,
+ .set_time = isl12022_rtc_set_time,
+};
+
+static int isl12022_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct isl12022 *isl12022;
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
+ return -ENODEV;
+
+ isl12022 = devm_kzalloc(&client->dev, sizeof(struct isl12022),
+ GFP_KERNEL);
+ if (!isl12022)
+ return -ENOMEM;
+
+ i2c_set_clientdata(client, isl12022);
+
+ isl12022->rtc = devm_rtc_device_register(&client->dev,
+ isl12022_driver.driver.name,
+ &isl12022_rtc_ops, THIS_MODULE);
+ return PTR_ERR_OR_ZERO(isl12022->rtc);
+}
+
+#ifdef CONFIG_OF
+static const struct of_device_id isl12022_dt_match[] = {
+ { .compatible = "isl,isl12022" }, /* for backward compat., don't use */
+ { .compatible = "isil,isl12022" },
+ { },
+};
+MODULE_DEVICE_TABLE(of, isl12022_dt_match);
+#endif
+
+static const struct i2c_device_id isl12022_id[] = {
+ { "isl12022", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, isl12022_id);
+
+static struct i2c_driver isl12022_driver = {
+ .driver = {
+ .name = "rtc-isl12022",
+#ifdef CONFIG_OF
+ .of_match_table = of_match_ptr(isl12022_dt_match),
+#endif
+ },
+ .probe = isl12022_probe,
+ .id_table = isl12022_id,
+};
+
+module_i2c_driver(isl12022_driver);
+
+MODULE_AUTHOR("roman.fietze@telemotive.de");
+MODULE_DESCRIPTION("ISL 12022 RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-isl12026.c b/drivers/rtc/rtc-isl12026.c
new file mode 100644
index 000000000..5b6b17fb6
--- /dev/null
+++ b/drivers/rtc/rtc-isl12026.c
@@ -0,0 +1,501 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * An I2C driver for the Intersil ISL 12026
+ *
+ * Copyright (c) 2018 Cavium, Inc.
+ */
+#include <linux/bcd.h>
+#include <linux/delay.h>
+#include <linux/i2c.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/nvmem-provider.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+
+/* register offsets */
+#define ISL12026_REG_PWR 0x14
+# define ISL12026_REG_PWR_BSW BIT(6)
+# define ISL12026_REG_PWR_SBIB BIT(7)
+#define ISL12026_REG_SC 0x30
+#define ISL12026_REG_HR 0x32
+# define ISL12026_REG_HR_MIL BIT(7) /* military or 24 hour time */
+#define ISL12026_REG_SR 0x3f
+# define ISL12026_REG_SR_RTCF BIT(0)
+# define ISL12026_REG_SR_WEL BIT(1)
+# define ISL12026_REG_SR_RWEL BIT(2)
+# define ISL12026_REG_SR_MBZ BIT(3)
+# define ISL12026_REG_SR_OSCF BIT(4)
+
+/* The EEPROM array responds at i2c address 0x57 */
+#define ISL12026_EEPROM_ADDR 0x57
+
+#define ISL12026_PAGESIZE 16
+#define ISL12026_NVMEM_WRITE_TIME 20
+
+struct isl12026 {
+ struct rtc_device *rtc;
+ struct i2c_client *nvm_client;
+};
+
+static int isl12026_read_reg(struct i2c_client *client, int reg)
+{
+ u8 addr[] = {0, reg};
+ u8 val;
+ int ret;
+
+ struct i2c_msg msgs[] = {
+ {
+ .addr = client->addr,
+ .flags = 0,
+ .len = sizeof(addr),
+ .buf = addr
+ }, {
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = 1,
+ .buf = &val
+ }
+ };
+
+ ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
+ if (ret != ARRAY_SIZE(msgs)) {
+ dev_err(&client->dev, "read reg error, ret=%d\n", ret);
+ ret = ret < 0 ? ret : -EIO;
+ } else {
+ ret = val;
+ }
+
+ return ret;
+}
+
+static int isl12026_arm_write(struct i2c_client *client)
+{
+ int ret;
+ u8 op[3];
+ struct i2c_msg msg = {
+ .addr = client->addr,
+ .flags = 0,
+ .len = 1,
+ .buf = op
+ };
+
+ /* Set SR.WEL */
+ op[0] = 0;
+ op[1] = ISL12026_REG_SR;
+ op[2] = ISL12026_REG_SR_WEL;
+ msg.len = 3;
+ ret = i2c_transfer(client->adapter, &msg, 1);
+ if (ret != 1) {
+ dev_err(&client->dev, "write error SR.WEL, ret=%d\n", ret);
+ ret = ret < 0 ? ret : -EIO;
+ goto out;
+ }
+
+ /* Set SR.WEL and SR.RWEL */
+ op[2] = ISL12026_REG_SR_WEL | ISL12026_REG_SR_RWEL;
+ msg.len = 3;
+ ret = i2c_transfer(client->adapter, &msg, 1);
+ if (ret != 1) {
+ dev_err(&client->dev,
+ "write error SR.WEL|SR.RWEL, ret=%d\n", ret);
+ ret = ret < 0 ? ret : -EIO;
+ goto out;
+ } else {
+ ret = 0;
+ }
+out:
+ return ret;
+}
+
+static int isl12026_disarm_write(struct i2c_client *client)
+{
+ int ret;
+ u8 op[3] = {0, ISL12026_REG_SR, 0};
+ struct i2c_msg msg = {
+ .addr = client->addr,
+ .flags = 0,
+ .len = sizeof(op),
+ .buf = op
+ };
+
+ ret = i2c_transfer(client->adapter, &msg, 1);
+ if (ret != 1) {
+ dev_err(&client->dev,
+ "write error SR, ret=%d\n", ret);
+ ret = ret < 0 ? ret : -EIO;
+ } else {
+ ret = 0;
+ }
+
+ return ret;
+}
+
+static int isl12026_write_reg(struct i2c_client *client, int reg, u8 val)
+{
+ int ret;
+ u8 op[3] = {0, reg, val};
+ struct i2c_msg msg = {
+ .addr = client->addr,
+ .flags = 0,
+ .len = sizeof(op),
+ .buf = op
+ };
+
+ ret = isl12026_arm_write(client);
+ if (ret)
+ return ret;
+
+ ret = i2c_transfer(client->adapter, &msg, 1);
+ if (ret != 1) {
+ dev_err(&client->dev, "write error CCR, ret=%d\n", ret);
+ ret = ret < 0 ? ret : -EIO;
+ goto out;
+ }
+
+ msleep(ISL12026_NVMEM_WRITE_TIME);
+
+ ret = isl12026_disarm_write(client);
+out:
+ return ret;
+}
+
+static int isl12026_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ int ret;
+ u8 op[10];
+ struct i2c_msg msg = {
+ .addr = client->addr,
+ .flags = 0,
+ .len = sizeof(op),
+ .buf = op
+ };
+
+ ret = isl12026_arm_write(client);
+ if (ret)
+ return ret;
+
+ /* Set the CCR registers */
+ op[0] = 0;
+ op[1] = ISL12026_REG_SC;
+ op[2] = bin2bcd(tm->tm_sec); /* SC */
+ op[3] = bin2bcd(tm->tm_min); /* MN */
+ op[4] = bin2bcd(tm->tm_hour) | ISL12026_REG_HR_MIL; /* HR */
+ op[5] = bin2bcd(tm->tm_mday); /* DT */
+ op[6] = bin2bcd(tm->tm_mon + 1); /* MO */
+ op[7] = bin2bcd(tm->tm_year % 100); /* YR */
+ op[8] = bin2bcd(tm->tm_wday & 7); /* DW */
+ op[9] = bin2bcd(tm->tm_year >= 100 ? 20 : 19); /* Y2K */
+ ret = i2c_transfer(client->adapter, &msg, 1);
+ if (ret != 1) {
+ dev_err(&client->dev, "write error CCR, ret=%d\n", ret);
+ ret = ret < 0 ? ret : -EIO;
+ goto out;
+ }
+
+ ret = isl12026_disarm_write(client);
+out:
+ return ret;
+}
+
+static int isl12026_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ u8 ccr[8];
+ u8 addr[2];
+ u8 sr;
+ int ret;
+ struct i2c_msg msgs[] = {
+ {
+ .addr = client->addr,
+ .flags = 0,
+ .len = sizeof(addr),
+ .buf = addr
+ }, {
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ }
+ };
+
+ /* First, read SR */
+ addr[0] = 0;
+ addr[1] = ISL12026_REG_SR;
+ msgs[1].len = 1;
+ msgs[1].buf = &sr;
+
+ ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
+ if (ret != ARRAY_SIZE(msgs)) {
+ dev_err(&client->dev, "read error, ret=%d\n", ret);
+ ret = ret < 0 ? ret : -EIO;
+ goto out;
+ }
+
+ if (sr & ISL12026_REG_SR_RTCF)
+ dev_warn(&client->dev, "Real-Time Clock Failure on read\n");
+ if (sr & ISL12026_REG_SR_OSCF)
+ dev_warn(&client->dev, "Oscillator Failure on read\n");
+
+ /* Second, CCR regs */
+ addr[0] = 0;
+ addr[1] = ISL12026_REG_SC;
+ msgs[1].len = sizeof(ccr);
+ msgs[1].buf = ccr;
+
+ ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
+ if (ret != ARRAY_SIZE(msgs)) {
+ dev_err(&client->dev, "read error, ret=%d\n", ret);
+ ret = ret < 0 ? ret : -EIO;
+ goto out;
+ }
+
+ tm->tm_sec = bcd2bin(ccr[0] & 0x7F);
+ tm->tm_min = bcd2bin(ccr[1] & 0x7F);
+ if (ccr[2] & ISL12026_REG_HR_MIL)
+ tm->tm_hour = bcd2bin(ccr[2] & 0x3F);
+ else
+ tm->tm_hour = bcd2bin(ccr[2] & 0x1F) +
+ ((ccr[2] & 0x20) ? 12 : 0);
+ tm->tm_mday = bcd2bin(ccr[3] & 0x3F);
+ tm->tm_mon = bcd2bin(ccr[4] & 0x1F) - 1;
+ tm->tm_year = bcd2bin(ccr[5]);
+ if (bcd2bin(ccr[7]) == 20)
+ tm->tm_year += 100;
+ tm->tm_wday = ccr[6] & 0x07;
+
+ ret = 0;
+out:
+ return ret;
+}
+
+static const struct rtc_class_ops isl12026_rtc_ops = {
+ .read_time = isl12026_rtc_read_time,
+ .set_time = isl12026_rtc_set_time,
+};
+
+static int isl12026_nvm_read(void *p, unsigned int offset,
+ void *val, size_t bytes)
+{
+ struct isl12026 *priv = p;
+ int ret;
+ u8 addr[2];
+ struct i2c_msg msgs[] = {
+ {
+ .addr = priv->nvm_client->addr,
+ .flags = 0,
+ .len = sizeof(addr),
+ .buf = addr
+ }, {
+ .addr = priv->nvm_client->addr,
+ .flags = I2C_M_RD,
+ .buf = val
+ }
+ };
+
+ /*
+ * offset and bytes checked and limited by nvmem core, so
+ * proceed without further checks.
+ */
+ ret = mutex_lock_interruptible(&priv->rtc->ops_lock);
+ if (ret)
+ return ret;
+
+ /* 2 bytes of address, most significant first */
+ addr[0] = offset >> 8;
+ addr[1] = offset;
+ msgs[1].len = bytes;
+ ret = i2c_transfer(priv->nvm_client->adapter, msgs, ARRAY_SIZE(msgs));
+
+ mutex_unlock(&priv->rtc->ops_lock);
+
+ if (ret != ARRAY_SIZE(msgs)) {
+ dev_err(&priv->nvm_client->dev,
+ "nvmem read error, ret=%d\n", ret);
+ return ret < 0 ? ret : -EIO;
+ }
+
+ return 0;
+}
+
+static int isl12026_nvm_write(void *p, unsigned int offset,
+ void *val, size_t bytes)
+{
+ struct isl12026 *priv = p;
+ int ret;
+ u8 *v = val;
+ size_t chunk_size, num_written;
+ u8 payload[ISL12026_PAGESIZE + 2]; /* page + 2 address bytes */
+ struct i2c_msg msgs[] = {
+ {
+ .addr = priv->nvm_client->addr,
+ .flags = 0,
+ .buf = payload
+ }
+ };
+
+ /*
+ * offset and bytes checked and limited by nvmem core, so
+ * proceed without further checks.
+ */
+ ret = mutex_lock_interruptible(&priv->rtc->ops_lock);
+ if (ret)
+ return ret;
+
+ num_written = 0;
+ while (bytes) {
+ chunk_size = round_down(offset, ISL12026_PAGESIZE) +
+ ISL12026_PAGESIZE - offset;
+ chunk_size = min(bytes, chunk_size);
+ /*
+ * 2 bytes of address, most significant first, followed
+ * by page data bytes
+ */
+ memcpy(payload + 2, v + num_written, chunk_size);
+ payload[0] = offset >> 8;
+ payload[1] = offset;
+ msgs[0].len = chunk_size + 2;
+ ret = i2c_transfer(priv->nvm_client->adapter,
+ msgs, ARRAY_SIZE(msgs));
+ if (ret != ARRAY_SIZE(msgs)) {
+ dev_err(&priv->nvm_client->dev,
+ "nvmem write error, ret=%d\n", ret);
+ ret = ret < 0 ? ret : -EIO;
+ break;
+ }
+ ret = 0;
+ bytes -= chunk_size;
+ offset += chunk_size;
+ num_written += chunk_size;
+ msleep(ISL12026_NVMEM_WRITE_TIME);
+ }
+
+ mutex_unlock(&priv->rtc->ops_lock);
+
+ return ret;
+}
+
+static void isl12026_force_power_modes(struct i2c_client *client)
+{
+ int ret;
+ int pwr, requested_pwr;
+ u32 bsw_val, sbib_val;
+ bool set_bsw, set_sbib;
+
+ /*
+ * If we can read the of_property, set the specified value.
+ * If there is an error reading the of_property (likely
+ * because it does not exist), keep the current value.
+ */
+ ret = of_property_read_u32(client->dev.of_node,
+ "isil,pwr-bsw", &bsw_val);
+ set_bsw = (ret == 0);
+
+ ret = of_property_read_u32(client->dev.of_node,
+ "isil,pwr-sbib", &sbib_val);
+ set_sbib = (ret == 0);
+
+ /* Check if PWR.BSW and/or PWR.SBIB need specified values */
+ if (!set_bsw && !set_sbib)
+ return;
+
+ pwr = isl12026_read_reg(client, ISL12026_REG_PWR);
+ if (pwr < 0) {
+ dev_warn(&client->dev, "Error: Failed to read PWR %d\n", pwr);
+ return;
+ }
+
+ requested_pwr = pwr;
+
+ if (set_bsw) {
+ if (bsw_val)
+ requested_pwr |= ISL12026_REG_PWR_BSW;
+ else
+ requested_pwr &= ~ISL12026_REG_PWR_BSW;
+ } /* else keep current BSW */
+
+ if (set_sbib) {
+ if (sbib_val)
+ requested_pwr |= ISL12026_REG_PWR_SBIB;
+ else
+ requested_pwr &= ~ISL12026_REG_PWR_SBIB;
+ } /* else keep current SBIB */
+
+ if (pwr >= 0 && pwr != requested_pwr) {
+ dev_dbg(&client->dev, "PWR: %02x\n", pwr);
+ dev_dbg(&client->dev, "Updating PWR to: %02x\n", requested_pwr);
+ isl12026_write_reg(client, ISL12026_REG_PWR, requested_pwr);
+ }
+}
+
+static int isl12026_probe_new(struct i2c_client *client)
+{
+ struct isl12026 *priv;
+ int ret;
+ struct nvmem_config nvm_cfg = {
+ .name = "isl12026-",
+ .base_dev = &client->dev,
+ .stride = 1,
+ .word_size = 1,
+ .size = 512,
+ .reg_read = isl12026_nvm_read,
+ .reg_write = isl12026_nvm_write,
+ };
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
+ return -ENODEV;
+
+ priv = devm_kzalloc(&client->dev, sizeof(*priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ i2c_set_clientdata(client, priv);
+
+ isl12026_force_power_modes(client);
+
+ priv->nvm_client = i2c_new_dummy_device(client->adapter, ISL12026_EEPROM_ADDR);
+ if (IS_ERR(priv->nvm_client))
+ return PTR_ERR(priv->nvm_client);
+
+ priv->rtc = devm_rtc_allocate_device(&client->dev);
+ ret = PTR_ERR_OR_ZERO(priv->rtc);
+ if (ret)
+ return ret;
+
+ priv->rtc->ops = &isl12026_rtc_ops;
+ nvm_cfg.priv = priv;
+ ret = rtc_nvmem_register(priv->rtc, &nvm_cfg);
+ if (ret)
+ return ret;
+
+ return rtc_register_device(priv->rtc);
+}
+
+static int isl12026_remove(struct i2c_client *client)
+{
+ struct isl12026 *priv = i2c_get_clientdata(client);
+
+ i2c_unregister_device(priv->nvm_client);
+ return 0;
+}
+
+static const struct of_device_id isl12026_dt_match[] = {
+ { .compatible = "isil,isl12026" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, isl12026_dt_match);
+
+static struct i2c_driver isl12026_driver = {
+ .driver = {
+ .name = "rtc-isl12026",
+ .of_match_table = isl12026_dt_match,
+ },
+ .probe_new = isl12026_probe_new,
+ .remove = isl12026_remove,
+};
+
+module_i2c_driver(isl12026_driver);
+
+MODULE_DESCRIPTION("ISL 12026 RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-isl1208.c b/drivers/rtc/rtc-isl1208.c
new file mode 100644
index 000000000..ebb691fa4
--- /dev/null
+++ b/drivers/rtc/rtc-isl1208.c
@@ -0,0 +1,913 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Intersil ISL1208 rtc class driver
+ *
+ * Copyright 2005,2006 Hebert Valerio Riedel <hvr@gnu.org>
+ */
+
+#include <linux/bcd.h>
+#include <linux/i2c.h>
+#include <linux/module.h>
+#include <linux/of_device.h>
+#include <linux/of_irq.h>
+#include <linux/rtc.h>
+
+/* Register map */
+/* rtc section */
+#define ISL1208_REG_SC 0x00
+#define ISL1208_REG_MN 0x01
+#define ISL1208_REG_HR 0x02
+#define ISL1208_REG_HR_MIL (1<<7) /* 24h/12h mode */
+#define ISL1208_REG_HR_PM (1<<5) /* PM/AM bit in 12h mode */
+#define ISL1208_REG_DT 0x03
+#define ISL1208_REG_MO 0x04
+#define ISL1208_REG_YR 0x05
+#define ISL1208_REG_DW 0x06
+#define ISL1208_RTC_SECTION_LEN 7
+
+/* control/status section */
+#define ISL1208_REG_SR 0x07
+#define ISL1208_REG_SR_ARST (1<<7) /* auto reset */
+#define ISL1208_REG_SR_XTOSCB (1<<6) /* crystal oscillator */
+#define ISL1208_REG_SR_WRTC (1<<4) /* write rtc */
+#define ISL1208_REG_SR_EVT (1<<3) /* event */
+#define ISL1208_REG_SR_ALM (1<<2) /* alarm */
+#define ISL1208_REG_SR_BAT (1<<1) /* battery */
+#define ISL1208_REG_SR_RTCF (1<<0) /* rtc fail */
+#define ISL1208_REG_INT 0x08
+#define ISL1208_REG_INT_ALME (1<<6) /* alarm enable */
+#define ISL1208_REG_INT_IM (1<<7) /* interrupt/alarm mode */
+#define ISL1219_REG_EV 0x09
+#define ISL1219_REG_EV_EVEN (1<<4) /* event detection enable */
+#define ISL1219_REG_EV_EVIENB (1<<7) /* event in pull-up disable */
+#define ISL1208_REG_ATR 0x0a
+#define ISL1208_REG_DTR 0x0b
+
+/* alarm section */
+#define ISL1208_REG_SCA 0x0c
+#define ISL1208_REG_MNA 0x0d
+#define ISL1208_REG_HRA 0x0e
+#define ISL1208_REG_DTA 0x0f
+#define ISL1208_REG_MOA 0x10
+#define ISL1208_REG_DWA 0x11
+#define ISL1208_ALARM_SECTION_LEN 6
+
+/* user section */
+#define ISL1208_REG_USR1 0x12
+#define ISL1208_REG_USR2 0x13
+#define ISL1208_USR_SECTION_LEN 2
+
+/* event section */
+#define ISL1219_REG_SCT 0x14
+#define ISL1219_REG_MNT 0x15
+#define ISL1219_REG_HRT 0x16
+#define ISL1219_REG_DTT 0x17
+#define ISL1219_REG_MOT 0x18
+#define ISL1219_REG_YRT 0x19
+#define ISL1219_EVT_SECTION_LEN 6
+
+static struct i2c_driver isl1208_driver;
+
+/* ISL1208 various variants */
+enum isl1208_id {
+ TYPE_ISL1208 = 0,
+ TYPE_ISL1209,
+ TYPE_ISL1218,
+ TYPE_ISL1219,
+ ISL_LAST_ID
+};
+
+/* Chip capabilities table */
+static const struct isl1208_config {
+ const char name[8];
+ unsigned int nvmem_length;
+ unsigned has_tamper:1;
+ unsigned has_timestamp:1;
+} isl1208_configs[] = {
+ [TYPE_ISL1208] = { "isl1208", 2, false, false },
+ [TYPE_ISL1209] = { "isl1209", 2, true, false },
+ [TYPE_ISL1218] = { "isl1218", 8, false, false },
+ [TYPE_ISL1219] = { "isl1219", 2, true, true },
+};
+
+static const struct i2c_device_id isl1208_id[] = {
+ { "isl1208", TYPE_ISL1208 },
+ { "isl1209", TYPE_ISL1209 },
+ { "isl1218", TYPE_ISL1218 },
+ { "isl1219", TYPE_ISL1219 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, isl1208_id);
+
+static const struct of_device_id isl1208_of_match[] = {
+ { .compatible = "isil,isl1208", .data = &isl1208_configs[TYPE_ISL1208] },
+ { .compatible = "isil,isl1209", .data = &isl1208_configs[TYPE_ISL1209] },
+ { .compatible = "isil,isl1218", .data = &isl1208_configs[TYPE_ISL1218] },
+ { .compatible = "isil,isl1219", .data = &isl1208_configs[TYPE_ISL1219] },
+ { }
+};
+MODULE_DEVICE_TABLE(of, isl1208_of_match);
+
+/* Device state */
+struct isl1208_state {
+ struct nvmem_config nvmem_config;
+ struct rtc_device *rtc;
+ const struct isl1208_config *config;
+};
+
+/* block read */
+static int
+isl1208_i2c_read_regs(struct i2c_client *client, u8 reg, u8 buf[],
+ unsigned len)
+{
+ int ret;
+
+ WARN_ON(reg > ISL1219_REG_YRT);
+ WARN_ON(reg + len > ISL1219_REG_YRT + 1);
+
+ ret = i2c_smbus_read_i2c_block_data(client, reg, len, buf);
+ return (ret < 0) ? ret : 0;
+}
+
+/* block write */
+static int
+isl1208_i2c_set_regs(struct i2c_client *client, u8 reg, u8 const buf[],
+ unsigned len)
+{
+ int ret;
+
+ WARN_ON(reg > ISL1219_REG_YRT);
+ WARN_ON(reg + len > ISL1219_REG_YRT + 1);
+
+ ret = i2c_smbus_write_i2c_block_data(client, reg, len, buf);
+ return (ret < 0) ? ret : 0;
+}
+
+/* simple check to see whether we have a isl1208 */
+static int
+isl1208_i2c_validate_client(struct i2c_client *client)
+{
+ u8 regs[ISL1208_RTC_SECTION_LEN] = { 0, };
+ u8 zero_mask[ISL1208_RTC_SECTION_LEN] = {
+ 0x80, 0x80, 0x40, 0xc0, 0xe0, 0x00, 0xf8
+ };
+ int i;
+ int ret;
+
+ ret = isl1208_i2c_read_regs(client, 0, regs, ISL1208_RTC_SECTION_LEN);
+ if (ret < 0)
+ return ret;
+
+ for (i = 0; i < ISL1208_RTC_SECTION_LEN; ++i) {
+ if (regs[i] & zero_mask[i]) /* check if bits are cleared */
+ return -ENODEV;
+ }
+
+ return 0;
+}
+
+static int
+isl1208_i2c_get_sr(struct i2c_client *client)
+{
+ return i2c_smbus_read_byte_data(client, ISL1208_REG_SR);
+}
+
+static int
+isl1208_i2c_get_atr(struct i2c_client *client)
+{
+ int atr = i2c_smbus_read_byte_data(client, ISL1208_REG_ATR);
+ if (atr < 0)
+ return atr;
+
+ /* The 6bit value in the ATR register controls the load
+ * capacitance C_load * in steps of 0.25pF
+ *
+ * bit (1<<5) of the ATR register is inverted
+ *
+ * C_load(ATR=0x20) = 4.50pF
+ * C_load(ATR=0x00) = 12.50pF
+ * C_load(ATR=0x1f) = 20.25pF
+ *
+ */
+
+ atr &= 0x3f; /* mask out lsb */
+ atr ^= 1 << 5; /* invert 6th bit */
+ atr += 2 * 9; /* add offset of 4.5pF; unit[atr] = 0.25pF */
+
+ return atr;
+}
+
+/* returns adjustment value + 100 */
+static int
+isl1208_i2c_get_dtr(struct i2c_client *client)
+{
+ int dtr = i2c_smbus_read_byte_data(client, ISL1208_REG_DTR);
+ if (dtr < 0)
+ return -EIO;
+
+ /* dtr encodes adjustments of {-60,-40,-20,0,20,40,60} ppm */
+ dtr = ((dtr & 0x3) * 20) * (dtr & (1 << 2) ? -1 : 1);
+
+ return dtr + 100;
+}
+
+static int
+isl1208_i2c_get_usr(struct i2c_client *client)
+{
+ u8 buf[ISL1208_USR_SECTION_LEN] = { 0, };
+ int ret;
+
+ ret = isl1208_i2c_read_regs(client, ISL1208_REG_USR1, buf,
+ ISL1208_USR_SECTION_LEN);
+ if (ret < 0)
+ return ret;
+
+ return (buf[1] << 8) | buf[0];
+}
+
+static int
+isl1208_i2c_set_usr(struct i2c_client *client, u16 usr)
+{
+ u8 buf[ISL1208_USR_SECTION_LEN];
+
+ buf[0] = usr & 0xff;
+ buf[1] = (usr >> 8) & 0xff;
+
+ return isl1208_i2c_set_regs(client, ISL1208_REG_USR1, buf,
+ ISL1208_USR_SECTION_LEN);
+}
+
+static int
+isl1208_rtc_toggle_alarm(struct i2c_client *client, int enable)
+{
+ int icr = i2c_smbus_read_byte_data(client, ISL1208_REG_INT);
+
+ if (icr < 0) {
+ dev_err(&client->dev, "%s: reading INT failed\n", __func__);
+ return icr;
+ }
+
+ if (enable)
+ icr |= ISL1208_REG_INT_ALME | ISL1208_REG_INT_IM;
+ else
+ icr &= ~(ISL1208_REG_INT_ALME | ISL1208_REG_INT_IM);
+
+ icr = i2c_smbus_write_byte_data(client, ISL1208_REG_INT, icr);
+ if (icr < 0) {
+ dev_err(&client->dev, "%s: writing INT failed\n", __func__);
+ return icr;
+ }
+
+ return 0;
+}
+
+static int
+isl1208_rtc_proc(struct device *dev, struct seq_file *seq)
+{
+ struct i2c_client *const client = to_i2c_client(dev);
+ int sr, dtr, atr, usr;
+
+ sr = isl1208_i2c_get_sr(client);
+ if (sr < 0) {
+ dev_err(&client->dev, "%s: reading SR failed\n", __func__);
+ return sr;
+ }
+
+ seq_printf(seq, "status_reg\t:%s%s%s%s%s%s (0x%.2x)\n",
+ (sr & ISL1208_REG_SR_RTCF) ? " RTCF" : "",
+ (sr & ISL1208_REG_SR_BAT) ? " BAT" : "",
+ (sr & ISL1208_REG_SR_ALM) ? " ALM" : "",
+ (sr & ISL1208_REG_SR_WRTC) ? " WRTC" : "",
+ (sr & ISL1208_REG_SR_XTOSCB) ? " XTOSCB" : "",
+ (sr & ISL1208_REG_SR_ARST) ? " ARST" : "", sr);
+
+ seq_printf(seq, "batt_status\t: %s\n",
+ (sr & ISL1208_REG_SR_RTCF) ? "bad" : "okay");
+
+ dtr = isl1208_i2c_get_dtr(client);
+ if (dtr >= 0)
+ seq_printf(seq, "digital_trim\t: %d ppm\n", dtr - 100);
+
+ atr = isl1208_i2c_get_atr(client);
+ if (atr >= 0)
+ seq_printf(seq, "analog_trim\t: %d.%.2d pF\n",
+ atr >> 2, (atr & 0x3) * 25);
+
+ usr = isl1208_i2c_get_usr(client);
+ if (usr >= 0)
+ seq_printf(seq, "user_data\t: 0x%.4x\n", usr);
+
+ return 0;
+}
+
+static int
+isl1208_i2c_read_time(struct i2c_client *client, struct rtc_time *tm)
+{
+ int sr;
+ u8 regs[ISL1208_RTC_SECTION_LEN] = { 0, };
+
+ sr = isl1208_i2c_get_sr(client);
+ if (sr < 0) {
+ dev_err(&client->dev, "%s: reading SR failed\n", __func__);
+ return -EIO;
+ }
+
+ sr = isl1208_i2c_read_regs(client, 0, regs, ISL1208_RTC_SECTION_LEN);
+ if (sr < 0) {
+ dev_err(&client->dev, "%s: reading RTC section failed\n",
+ __func__);
+ return sr;
+ }
+
+ tm->tm_sec = bcd2bin(regs[ISL1208_REG_SC]);
+ tm->tm_min = bcd2bin(regs[ISL1208_REG_MN]);
+
+ /* HR field has a more complex interpretation */
+ {
+ const u8 _hr = regs[ISL1208_REG_HR];
+ if (_hr & ISL1208_REG_HR_MIL) /* 24h format */
+ tm->tm_hour = bcd2bin(_hr & 0x3f);
+ else {
+ /* 12h format */
+ tm->tm_hour = bcd2bin(_hr & 0x1f);
+ if (_hr & ISL1208_REG_HR_PM) /* PM flag set */
+ tm->tm_hour += 12;
+ }
+ }
+
+ tm->tm_mday = bcd2bin(regs[ISL1208_REG_DT]);
+ tm->tm_mon = bcd2bin(regs[ISL1208_REG_MO]) - 1; /* rtc starts at 1 */
+ tm->tm_year = bcd2bin(regs[ISL1208_REG_YR]) + 100;
+ tm->tm_wday = bcd2bin(regs[ISL1208_REG_DW]);
+
+ return 0;
+}
+
+static int
+isl1208_i2c_read_alarm(struct i2c_client *client, struct rtc_wkalrm *alarm)
+{
+ struct rtc_time *const tm = &alarm->time;
+ u8 regs[ISL1208_ALARM_SECTION_LEN] = { 0, };
+ int icr, yr, sr = isl1208_i2c_get_sr(client);
+
+ if (sr < 0) {
+ dev_err(&client->dev, "%s: reading SR failed\n", __func__);
+ return sr;
+ }
+
+ sr = isl1208_i2c_read_regs(client, ISL1208_REG_SCA, regs,
+ ISL1208_ALARM_SECTION_LEN);
+ if (sr < 0) {
+ dev_err(&client->dev, "%s: reading alarm section failed\n",
+ __func__);
+ return sr;
+ }
+
+ /* MSB of each alarm register is an enable bit */
+ tm->tm_sec = bcd2bin(regs[ISL1208_REG_SCA - ISL1208_REG_SCA] & 0x7f);
+ tm->tm_min = bcd2bin(regs[ISL1208_REG_MNA - ISL1208_REG_SCA] & 0x7f);
+ tm->tm_hour = bcd2bin(regs[ISL1208_REG_HRA - ISL1208_REG_SCA] & 0x3f);
+ tm->tm_mday = bcd2bin(regs[ISL1208_REG_DTA - ISL1208_REG_SCA] & 0x3f);
+ tm->tm_mon =
+ bcd2bin(regs[ISL1208_REG_MOA - ISL1208_REG_SCA] & 0x1f) - 1;
+ tm->tm_wday = bcd2bin(regs[ISL1208_REG_DWA - ISL1208_REG_SCA] & 0x03);
+
+ /* The alarm doesn't store the year so get it from the rtc section */
+ yr = i2c_smbus_read_byte_data(client, ISL1208_REG_YR);
+ if (yr < 0) {
+ dev_err(&client->dev, "%s: reading RTC YR failed\n", __func__);
+ return yr;
+ }
+ tm->tm_year = bcd2bin(yr) + 100;
+
+ icr = i2c_smbus_read_byte_data(client, ISL1208_REG_INT);
+ if (icr < 0) {
+ dev_err(&client->dev, "%s: reading INT failed\n", __func__);
+ return icr;
+ }
+ alarm->enabled = !!(icr & ISL1208_REG_INT_ALME);
+
+ return 0;
+}
+
+static int
+isl1208_i2c_set_alarm(struct i2c_client *client, struct rtc_wkalrm *alarm)
+{
+ struct rtc_time *alarm_tm = &alarm->time;
+ u8 regs[ISL1208_ALARM_SECTION_LEN] = { 0, };
+ const int offs = ISL1208_REG_SCA;
+ struct rtc_time rtc_tm;
+ int err, enable;
+
+ err = isl1208_i2c_read_time(client, &rtc_tm);
+ if (err)
+ return err;
+
+ /* If the alarm time is before the current time disable the alarm */
+ if (!alarm->enabled || rtc_tm_sub(alarm_tm, &rtc_tm) <= 0)
+ enable = 0x00;
+ else
+ enable = 0x80;
+
+ /* Program the alarm and enable it for each setting */
+ regs[ISL1208_REG_SCA - offs] = bin2bcd(alarm_tm->tm_sec) | enable;
+ regs[ISL1208_REG_MNA - offs] = bin2bcd(alarm_tm->tm_min) | enable;
+ regs[ISL1208_REG_HRA - offs] = bin2bcd(alarm_tm->tm_hour) |
+ ISL1208_REG_HR_MIL | enable;
+
+ regs[ISL1208_REG_DTA - offs] = bin2bcd(alarm_tm->tm_mday) | enable;
+ regs[ISL1208_REG_MOA - offs] = bin2bcd(alarm_tm->tm_mon + 1) | enable;
+ regs[ISL1208_REG_DWA - offs] = bin2bcd(alarm_tm->tm_wday & 7) | enable;
+
+ /* write ALARM registers */
+ err = isl1208_i2c_set_regs(client, offs, regs,
+ ISL1208_ALARM_SECTION_LEN);
+ if (err < 0) {
+ dev_err(&client->dev, "%s: writing ALARM section failed\n",
+ __func__);
+ return err;
+ }
+
+ err = isl1208_rtc_toggle_alarm(client, enable);
+ if (err)
+ return err;
+
+ return 0;
+}
+
+static int
+isl1208_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ return isl1208_i2c_read_time(to_i2c_client(dev), tm);
+}
+
+static int
+isl1208_i2c_set_time(struct i2c_client *client, struct rtc_time const *tm)
+{
+ int sr;
+ u8 regs[ISL1208_RTC_SECTION_LEN] = { 0, };
+
+ /* The clock has an 8 bit wide bcd-coded register (they never learn)
+ * for the year. tm_year is an offset from 1900 and we are interested
+ * in the 2000-2099 range, so any value less than 100 is invalid.
+ */
+ if (tm->tm_year < 100)
+ return -EINVAL;
+
+ regs[ISL1208_REG_SC] = bin2bcd(tm->tm_sec);
+ regs[ISL1208_REG_MN] = bin2bcd(tm->tm_min);
+ regs[ISL1208_REG_HR] = bin2bcd(tm->tm_hour) | ISL1208_REG_HR_MIL;
+
+ regs[ISL1208_REG_DT] = bin2bcd(tm->tm_mday);
+ regs[ISL1208_REG_MO] = bin2bcd(tm->tm_mon + 1);
+ regs[ISL1208_REG_YR] = bin2bcd(tm->tm_year - 100);
+
+ regs[ISL1208_REG_DW] = bin2bcd(tm->tm_wday & 7);
+
+ sr = isl1208_i2c_get_sr(client);
+ if (sr < 0) {
+ dev_err(&client->dev, "%s: reading SR failed\n", __func__);
+ return sr;
+ }
+
+ /* set WRTC */
+ sr = i2c_smbus_write_byte_data(client, ISL1208_REG_SR,
+ sr | ISL1208_REG_SR_WRTC);
+ if (sr < 0) {
+ dev_err(&client->dev, "%s: writing SR failed\n", __func__);
+ return sr;
+ }
+
+ /* write RTC registers */
+ sr = isl1208_i2c_set_regs(client, 0, regs, ISL1208_RTC_SECTION_LEN);
+ if (sr < 0) {
+ dev_err(&client->dev, "%s: writing RTC section failed\n",
+ __func__);
+ return sr;
+ }
+
+ /* clear WRTC again */
+ sr = isl1208_i2c_get_sr(client);
+ if (sr < 0) {
+ dev_err(&client->dev, "%s: reading SR failed\n", __func__);
+ return sr;
+ }
+ sr = i2c_smbus_write_byte_data(client, ISL1208_REG_SR,
+ sr & ~ISL1208_REG_SR_WRTC);
+ if (sr < 0) {
+ dev_err(&client->dev, "%s: writing SR failed\n", __func__);
+ return sr;
+ }
+
+ return 0;
+}
+
+
+static int
+isl1208_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ return isl1208_i2c_set_time(to_i2c_client(dev), tm);
+}
+
+static int
+isl1208_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ return isl1208_i2c_read_alarm(to_i2c_client(dev), alarm);
+}
+
+static int
+isl1208_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ return isl1208_i2c_set_alarm(to_i2c_client(dev), alarm);
+}
+
+static ssize_t timestamp0_store(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ struct i2c_client *client = to_i2c_client(dev->parent);
+ int sr;
+
+ sr = isl1208_i2c_get_sr(client);
+ if (sr < 0) {
+ dev_err(dev, "%s: reading SR failed\n", __func__);
+ return sr;
+ }
+
+ sr &= ~ISL1208_REG_SR_EVT;
+
+ sr = i2c_smbus_write_byte_data(client, ISL1208_REG_SR, sr);
+ if (sr < 0)
+ dev_err(dev, "%s: writing SR failed\n",
+ __func__);
+
+ return count;
+};
+
+static ssize_t timestamp0_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct i2c_client *client = to_i2c_client(dev->parent);
+ u8 regs[ISL1219_EVT_SECTION_LEN] = { 0, };
+ struct rtc_time tm;
+ int sr;
+
+ sr = isl1208_i2c_get_sr(client);
+ if (sr < 0) {
+ dev_err(dev, "%s: reading SR failed\n", __func__);
+ return sr;
+ }
+
+ if (!(sr & ISL1208_REG_SR_EVT))
+ return 0;
+
+ sr = isl1208_i2c_read_regs(client, ISL1219_REG_SCT, regs,
+ ISL1219_EVT_SECTION_LEN);
+ if (sr < 0) {
+ dev_err(dev, "%s: reading event section failed\n",
+ __func__);
+ return 0;
+ }
+
+ /* MSB of each alarm register is an enable bit */
+ tm.tm_sec = bcd2bin(regs[ISL1219_REG_SCT - ISL1219_REG_SCT] & 0x7f);
+ tm.tm_min = bcd2bin(regs[ISL1219_REG_MNT - ISL1219_REG_SCT] & 0x7f);
+ tm.tm_hour = bcd2bin(regs[ISL1219_REG_HRT - ISL1219_REG_SCT] & 0x3f);
+ tm.tm_mday = bcd2bin(regs[ISL1219_REG_DTT - ISL1219_REG_SCT] & 0x3f);
+ tm.tm_mon =
+ bcd2bin(regs[ISL1219_REG_MOT - ISL1219_REG_SCT] & 0x1f) - 1;
+ tm.tm_year = bcd2bin(regs[ISL1219_REG_YRT - ISL1219_REG_SCT]) + 100;
+
+ sr = rtc_valid_tm(&tm);
+ if (sr)
+ return sr;
+
+ return sprintf(buf, "%llu\n",
+ (unsigned long long)rtc_tm_to_time64(&tm));
+};
+
+static DEVICE_ATTR_RW(timestamp0);
+
+static irqreturn_t
+isl1208_rtc_interrupt(int irq, void *data)
+{
+ unsigned long timeout = jiffies + msecs_to_jiffies(1000);
+ struct i2c_client *client = data;
+ struct isl1208_state *isl1208 = i2c_get_clientdata(client);
+ int handled = 0, sr, err;
+
+ /*
+ * I2C reads get NAK'ed if we read straight away after an interrupt?
+ * Using a mdelay/msleep didn't seem to help either, so we work around
+ * this by continually trying to read the register for a short time.
+ */
+ while (1) {
+ sr = isl1208_i2c_get_sr(client);
+ if (sr >= 0)
+ break;
+
+ if (time_after(jiffies, timeout)) {
+ dev_err(&client->dev, "%s: reading SR failed\n",
+ __func__);
+ return sr;
+ }
+ }
+
+ if (sr & ISL1208_REG_SR_ALM) {
+ dev_dbg(&client->dev, "alarm!\n");
+
+ rtc_update_irq(isl1208->rtc, 1, RTC_IRQF | RTC_AF);
+
+ /* Clear the alarm */
+ sr &= ~ISL1208_REG_SR_ALM;
+ sr = i2c_smbus_write_byte_data(client, ISL1208_REG_SR, sr);
+ if (sr < 0)
+ dev_err(&client->dev, "%s: writing SR failed\n",
+ __func__);
+ else
+ handled = 1;
+
+ /* Disable the alarm */
+ err = isl1208_rtc_toggle_alarm(client, 0);
+ if (err)
+ return err;
+ }
+
+ if (isl1208->config->has_tamper && (sr & ISL1208_REG_SR_EVT)) {
+ dev_warn(&client->dev, "event detected");
+ handled = 1;
+ if (isl1208->config->has_timestamp)
+ sysfs_notify(&isl1208->rtc->dev.kobj, NULL,
+ dev_attr_timestamp0.attr.name);
+ }
+
+ return handled ? IRQ_HANDLED : IRQ_NONE;
+}
+
+static const struct rtc_class_ops isl1208_rtc_ops = {
+ .proc = isl1208_rtc_proc,
+ .read_time = isl1208_rtc_read_time,
+ .set_time = isl1208_rtc_set_time,
+ .read_alarm = isl1208_rtc_read_alarm,
+ .set_alarm = isl1208_rtc_set_alarm,
+};
+
+/* sysfs interface */
+
+static ssize_t
+isl1208_sysfs_show_atrim(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ int atr = isl1208_i2c_get_atr(to_i2c_client(dev->parent));
+ if (atr < 0)
+ return atr;
+
+ return sprintf(buf, "%d.%.2d pF\n", atr >> 2, (atr & 0x3) * 25);
+}
+
+static DEVICE_ATTR(atrim, S_IRUGO, isl1208_sysfs_show_atrim, NULL);
+
+static ssize_t
+isl1208_sysfs_show_dtrim(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ int dtr = isl1208_i2c_get_dtr(to_i2c_client(dev->parent));
+ if (dtr < 0)
+ return dtr;
+
+ return sprintf(buf, "%d ppm\n", dtr - 100);
+}
+
+static DEVICE_ATTR(dtrim, S_IRUGO, isl1208_sysfs_show_dtrim, NULL);
+
+static ssize_t
+isl1208_sysfs_show_usr(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ int usr = isl1208_i2c_get_usr(to_i2c_client(dev->parent));
+ if (usr < 0)
+ return usr;
+
+ return sprintf(buf, "0x%.4x\n", usr);
+}
+
+static ssize_t
+isl1208_sysfs_store_usr(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ int usr = -1;
+
+ if (buf[0] == '0' && (buf[1] == 'x' || buf[1] == 'X')) {
+ if (sscanf(buf, "%x", &usr) != 1)
+ return -EINVAL;
+ } else {
+ if (sscanf(buf, "%d", &usr) != 1)
+ return -EINVAL;
+ }
+
+ if (usr < 0 || usr > 0xffff)
+ return -EINVAL;
+
+ if (isl1208_i2c_set_usr(to_i2c_client(dev->parent), usr))
+ return -EIO;
+
+ return count;
+}
+
+static DEVICE_ATTR(usr, S_IRUGO | S_IWUSR, isl1208_sysfs_show_usr,
+ isl1208_sysfs_store_usr);
+
+static struct attribute *isl1208_rtc_attrs[] = {
+ &dev_attr_atrim.attr,
+ &dev_attr_dtrim.attr,
+ &dev_attr_usr.attr,
+ NULL
+};
+
+static const struct attribute_group isl1208_rtc_sysfs_files = {
+ .attrs = isl1208_rtc_attrs,
+};
+
+static struct attribute *isl1219_rtc_attrs[] = {
+ &dev_attr_timestamp0.attr,
+ NULL
+};
+
+static const struct attribute_group isl1219_rtc_sysfs_files = {
+ .attrs = isl1219_rtc_attrs,
+};
+
+static int isl1208_nvmem_read(void *priv, unsigned int off, void *buf,
+ size_t count)
+{
+ struct isl1208_state *isl1208 = priv;
+ struct i2c_client *client = to_i2c_client(isl1208->rtc->dev.parent);
+ int ret;
+
+ /* nvmem sanitizes offset/count for us, but count==0 is possible */
+ if (!count)
+ return count;
+ ret = isl1208_i2c_read_regs(client, ISL1208_REG_USR1 + off, buf,
+ count);
+ return ret == 0 ? count : ret;
+}
+
+static int isl1208_nvmem_write(void *priv, unsigned int off, void *buf,
+ size_t count)
+{
+ struct isl1208_state *isl1208 = priv;
+ struct i2c_client *client = to_i2c_client(isl1208->rtc->dev.parent);
+ int ret;
+
+ /* nvmem sanitizes off/count for us, but count==0 is possible */
+ if (!count)
+ return count;
+ ret = isl1208_i2c_set_regs(client, ISL1208_REG_USR1 + off, buf,
+ count);
+
+ return ret == 0 ? count : ret;
+}
+
+static const struct nvmem_config isl1208_nvmem_config = {
+ .name = "isl1208_nvram",
+ .word_size = 1,
+ .stride = 1,
+ /* .size from chip specific config */
+ .reg_read = isl1208_nvmem_read,
+ .reg_write = isl1208_nvmem_write,
+};
+
+static int isl1208_setup_irq(struct i2c_client *client, int irq)
+{
+ int rc = devm_request_threaded_irq(&client->dev, irq, NULL,
+ isl1208_rtc_interrupt,
+ IRQF_SHARED | IRQF_ONESHOT,
+ isl1208_driver.driver.name,
+ client);
+ if (!rc) {
+ device_init_wakeup(&client->dev, 1);
+ enable_irq_wake(irq);
+ } else {
+ dev_err(&client->dev,
+ "Unable to request irq %d, no alarm support\n",
+ irq);
+ }
+ return rc;
+}
+
+static int
+isl1208_probe(struct i2c_client *client, const struct i2c_device_id *id)
+{
+ int rc = 0;
+ struct isl1208_state *isl1208;
+ int evdet_irq = -1;
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
+ return -ENODEV;
+
+ if (isl1208_i2c_validate_client(client) < 0)
+ return -ENODEV;
+
+ /* Allocate driver state, point i2c client data to it */
+ isl1208 = devm_kzalloc(&client->dev, sizeof(*isl1208), GFP_KERNEL);
+ if (!isl1208)
+ return -ENOMEM;
+ i2c_set_clientdata(client, isl1208);
+
+ /* Determine which chip we have */
+ if (client->dev.of_node) {
+ isl1208->config = of_device_get_match_data(&client->dev);
+ if (!isl1208->config)
+ return -ENODEV;
+ } else {
+ if (id->driver_data >= ISL_LAST_ID)
+ return -ENODEV;
+ isl1208->config = &isl1208_configs[id->driver_data];
+ }
+
+ isl1208->rtc = devm_rtc_allocate_device(&client->dev);
+ if (IS_ERR(isl1208->rtc))
+ return PTR_ERR(isl1208->rtc);
+
+ isl1208->rtc->ops = &isl1208_rtc_ops;
+
+ /* Setup nvmem configuration in driver state struct */
+ isl1208->nvmem_config = isl1208_nvmem_config;
+ isl1208->nvmem_config.size = isl1208->config->nvmem_length;
+ isl1208->nvmem_config.priv = isl1208;
+
+ rc = isl1208_i2c_get_sr(client);
+ if (rc < 0) {
+ dev_err(&client->dev, "reading status failed\n");
+ return rc;
+ }
+
+ if (rc & ISL1208_REG_SR_RTCF)
+ dev_warn(&client->dev, "rtc power failure detected, "
+ "please set clock.\n");
+
+ if (isl1208->config->has_tamper) {
+ struct device_node *np = client->dev.of_node;
+ u32 evienb;
+
+ rc = i2c_smbus_read_byte_data(client, ISL1219_REG_EV);
+ if (rc < 0) {
+ dev_err(&client->dev, "failed to read EV reg\n");
+ return rc;
+ }
+ rc |= ISL1219_REG_EV_EVEN;
+ if (!of_property_read_u32(np, "isil,ev-evienb", &evienb)) {
+ if (evienb)
+ rc |= ISL1219_REG_EV_EVIENB;
+ else
+ rc &= ~ISL1219_REG_EV_EVIENB;
+ }
+ rc = i2c_smbus_write_byte_data(client, ISL1219_REG_EV, rc);
+ if (rc < 0) {
+ dev_err(&client->dev, "could not enable tamper detection\n");
+ return rc;
+ }
+ evdet_irq = of_irq_get_byname(np, "evdet");
+ }
+ if (isl1208->config->has_timestamp) {
+ rc = rtc_add_group(isl1208->rtc, &isl1219_rtc_sysfs_files);
+ if (rc)
+ return rc;
+ }
+
+ rc = rtc_add_group(isl1208->rtc, &isl1208_rtc_sysfs_files);
+ if (rc)
+ return rc;
+
+ if (client->irq > 0)
+ rc = isl1208_setup_irq(client, client->irq);
+ if (rc)
+ return rc;
+
+ if (evdet_irq > 0 && evdet_irq != client->irq)
+ rc = isl1208_setup_irq(client, evdet_irq);
+ if (rc)
+ return rc;
+
+ rc = rtc_nvmem_register(isl1208->rtc, &isl1208->nvmem_config);
+ if (rc)
+ return rc;
+
+ return rtc_register_device(isl1208->rtc);
+}
+
+static struct i2c_driver isl1208_driver = {
+ .driver = {
+ .name = "rtc-isl1208",
+ .of_match_table = of_match_ptr(isl1208_of_match),
+ },
+ .probe = isl1208_probe,
+ .id_table = isl1208_id,
+};
+
+module_i2c_driver(isl1208_driver);
+
+MODULE_AUTHOR("Herbert Valerio Riedel <hvr@gnu.org>");
+MODULE_DESCRIPTION("Intersil ISL1208 RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-jz4740.c b/drivers/rtc/rtc-jz4740.c
new file mode 100644
index 000000000..9607e6b6e
--- /dev/null
+++ b/drivers/rtc/rtc-jz4740.c
@@ -0,0 +1,414 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright (C) 2009-2010, Lars-Peter Clausen <lars@metafoo.de>
+ * Copyright (C) 2010, Paul Cercueil <paul@crapouillou.net>
+ * JZ4740 SoC RTC driver
+ */
+
+#include <linux/clk.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_wakeirq.h>
+#include <linux/reboot.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+
+#define JZ_REG_RTC_CTRL 0x00
+#define JZ_REG_RTC_SEC 0x04
+#define JZ_REG_RTC_SEC_ALARM 0x08
+#define JZ_REG_RTC_REGULATOR 0x0C
+#define JZ_REG_RTC_HIBERNATE 0x20
+#define JZ_REG_RTC_WAKEUP_FILTER 0x24
+#define JZ_REG_RTC_RESET_COUNTER 0x28
+#define JZ_REG_RTC_SCRATCHPAD 0x34
+
+/* The following are present on the jz4780 */
+#define JZ_REG_RTC_WENR 0x3C
+#define JZ_RTC_WENR_WEN BIT(31)
+
+#define JZ_RTC_CTRL_WRDY BIT(7)
+#define JZ_RTC_CTRL_1HZ BIT(6)
+#define JZ_RTC_CTRL_1HZ_IRQ BIT(5)
+#define JZ_RTC_CTRL_AF BIT(4)
+#define JZ_RTC_CTRL_AF_IRQ BIT(3)
+#define JZ_RTC_CTRL_AE BIT(2)
+#define JZ_RTC_CTRL_ENABLE BIT(0)
+
+/* Magic value to enable writes on jz4780 */
+#define JZ_RTC_WENR_MAGIC 0xA55A
+
+#define JZ_RTC_WAKEUP_FILTER_MASK 0x0000FFE0
+#define JZ_RTC_RESET_COUNTER_MASK 0x00000FE0
+
+enum jz4740_rtc_type {
+ ID_JZ4740,
+ ID_JZ4760,
+ ID_JZ4780,
+};
+
+struct jz4740_rtc {
+ void __iomem *base;
+ enum jz4740_rtc_type type;
+
+ struct rtc_device *rtc;
+
+ spinlock_t lock;
+};
+
+static struct device *dev_for_power_off;
+
+static inline uint32_t jz4740_rtc_reg_read(struct jz4740_rtc *rtc, size_t reg)
+{
+ return readl(rtc->base + reg);
+}
+
+static int jz4740_rtc_wait_write_ready(struct jz4740_rtc *rtc)
+{
+ uint32_t ctrl;
+ int timeout = 10000;
+
+ do {
+ ctrl = jz4740_rtc_reg_read(rtc, JZ_REG_RTC_CTRL);
+ } while (!(ctrl & JZ_RTC_CTRL_WRDY) && --timeout);
+
+ return timeout ? 0 : -EIO;
+}
+
+static inline int jz4780_rtc_enable_write(struct jz4740_rtc *rtc)
+{
+ uint32_t ctrl;
+ int ret, timeout = 10000;
+
+ ret = jz4740_rtc_wait_write_ready(rtc);
+ if (ret != 0)
+ return ret;
+
+ writel(JZ_RTC_WENR_MAGIC, rtc->base + JZ_REG_RTC_WENR);
+
+ do {
+ ctrl = readl(rtc->base + JZ_REG_RTC_WENR);
+ } while (!(ctrl & JZ_RTC_WENR_WEN) && --timeout);
+
+ return timeout ? 0 : -EIO;
+}
+
+static inline int jz4740_rtc_reg_write(struct jz4740_rtc *rtc, size_t reg,
+ uint32_t val)
+{
+ int ret = 0;
+
+ if (rtc->type >= ID_JZ4760)
+ ret = jz4780_rtc_enable_write(rtc);
+ if (ret == 0)
+ ret = jz4740_rtc_wait_write_ready(rtc);
+ if (ret == 0)
+ writel(val, rtc->base + reg);
+
+ return ret;
+}
+
+static int jz4740_rtc_ctrl_set_bits(struct jz4740_rtc *rtc, uint32_t mask,
+ bool set)
+{
+ int ret;
+ unsigned long flags;
+ uint32_t ctrl;
+
+ spin_lock_irqsave(&rtc->lock, flags);
+
+ ctrl = jz4740_rtc_reg_read(rtc, JZ_REG_RTC_CTRL);
+
+ /* Don't clear interrupt flags by accident */
+ ctrl |= JZ_RTC_CTRL_1HZ | JZ_RTC_CTRL_AF;
+
+ if (set)
+ ctrl |= mask;
+ else
+ ctrl &= ~mask;
+
+ ret = jz4740_rtc_reg_write(rtc, JZ_REG_RTC_CTRL, ctrl);
+
+ spin_unlock_irqrestore(&rtc->lock, flags);
+
+ return ret;
+}
+
+static int jz4740_rtc_read_time(struct device *dev, struct rtc_time *time)
+{
+ struct jz4740_rtc *rtc = dev_get_drvdata(dev);
+ uint32_t secs, secs2;
+ int timeout = 5;
+
+ if (jz4740_rtc_reg_read(rtc, JZ_REG_RTC_SCRATCHPAD) != 0x12345678)
+ return -EINVAL;
+
+ /* If the seconds register is read while it is updated, it can contain a
+ * bogus value. This can be avoided by making sure that two consecutive
+ * reads have the same value.
+ */
+ secs = jz4740_rtc_reg_read(rtc, JZ_REG_RTC_SEC);
+ secs2 = jz4740_rtc_reg_read(rtc, JZ_REG_RTC_SEC);
+
+ while (secs != secs2 && --timeout) {
+ secs = secs2;
+ secs2 = jz4740_rtc_reg_read(rtc, JZ_REG_RTC_SEC);
+ }
+
+ if (timeout == 0)
+ return -EIO;
+
+ rtc_time64_to_tm(secs, time);
+
+ return 0;
+}
+
+static int jz4740_rtc_set_time(struct device *dev, struct rtc_time *time)
+{
+ struct jz4740_rtc *rtc = dev_get_drvdata(dev);
+ int ret;
+
+ ret = jz4740_rtc_reg_write(rtc, JZ_REG_RTC_SEC, rtc_tm_to_time64(time));
+ if (ret)
+ return ret;
+
+ return jz4740_rtc_reg_write(rtc, JZ_REG_RTC_SCRATCHPAD, 0x12345678);
+}
+
+static int jz4740_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct jz4740_rtc *rtc = dev_get_drvdata(dev);
+ uint32_t secs;
+ uint32_t ctrl;
+
+ secs = jz4740_rtc_reg_read(rtc, JZ_REG_RTC_SEC_ALARM);
+
+ ctrl = jz4740_rtc_reg_read(rtc, JZ_REG_RTC_CTRL);
+
+ alrm->enabled = !!(ctrl & JZ_RTC_CTRL_AE);
+ alrm->pending = !!(ctrl & JZ_RTC_CTRL_AF);
+
+ rtc_time64_to_tm(secs, &alrm->time);
+
+ return 0;
+}
+
+static int jz4740_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ int ret;
+ struct jz4740_rtc *rtc = dev_get_drvdata(dev);
+ uint32_t secs = lower_32_bits(rtc_tm_to_time64(&alrm->time));
+
+ ret = jz4740_rtc_reg_write(rtc, JZ_REG_RTC_SEC_ALARM, secs);
+ if (!ret)
+ ret = jz4740_rtc_ctrl_set_bits(rtc,
+ JZ_RTC_CTRL_AE | JZ_RTC_CTRL_AF_IRQ, alrm->enabled);
+
+ return ret;
+}
+
+static int jz4740_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
+{
+ struct jz4740_rtc *rtc = dev_get_drvdata(dev);
+ return jz4740_rtc_ctrl_set_bits(rtc, JZ_RTC_CTRL_AF_IRQ, enable);
+}
+
+static const struct rtc_class_ops jz4740_rtc_ops = {
+ .read_time = jz4740_rtc_read_time,
+ .set_time = jz4740_rtc_set_time,
+ .read_alarm = jz4740_rtc_read_alarm,
+ .set_alarm = jz4740_rtc_set_alarm,
+ .alarm_irq_enable = jz4740_rtc_alarm_irq_enable,
+};
+
+static irqreturn_t jz4740_rtc_irq(int irq, void *data)
+{
+ struct jz4740_rtc *rtc = data;
+ uint32_t ctrl;
+ unsigned long events = 0;
+
+ ctrl = jz4740_rtc_reg_read(rtc, JZ_REG_RTC_CTRL);
+
+ if (ctrl & JZ_RTC_CTRL_1HZ)
+ events |= (RTC_UF | RTC_IRQF);
+
+ if (ctrl & JZ_RTC_CTRL_AF)
+ events |= (RTC_AF | RTC_IRQF);
+
+ rtc_update_irq(rtc->rtc, 1, events);
+
+ jz4740_rtc_ctrl_set_bits(rtc, JZ_RTC_CTRL_1HZ | JZ_RTC_CTRL_AF, false);
+
+ return IRQ_HANDLED;
+}
+
+static void jz4740_rtc_poweroff(struct device *dev)
+{
+ struct jz4740_rtc *rtc = dev_get_drvdata(dev);
+ jz4740_rtc_reg_write(rtc, JZ_REG_RTC_HIBERNATE, 1);
+}
+
+static void jz4740_rtc_power_off(void)
+{
+ jz4740_rtc_poweroff(dev_for_power_off);
+ kernel_halt();
+}
+
+static void jz4740_rtc_clk_disable(void *data)
+{
+ clk_disable_unprepare(data);
+}
+
+static const struct of_device_id jz4740_rtc_of_match[] = {
+ { .compatible = "ingenic,jz4740-rtc", .data = (void *)ID_JZ4740 },
+ { .compatible = "ingenic,jz4760-rtc", .data = (void *)ID_JZ4760 },
+ { .compatible = "ingenic,jz4780-rtc", .data = (void *)ID_JZ4780 },
+ {},
+};
+MODULE_DEVICE_TABLE(of, jz4740_rtc_of_match);
+
+static void jz4740_rtc_set_wakeup_params(struct jz4740_rtc *rtc,
+ struct device_node *np,
+ unsigned long rate)
+{
+ unsigned long wakeup_ticks, reset_ticks;
+ unsigned int min_wakeup_pin_assert_time = 60; /* Default: 60ms */
+ unsigned int reset_pin_assert_time = 100; /* Default: 100ms */
+
+ of_property_read_u32(np, "ingenic,reset-pin-assert-time-ms",
+ &reset_pin_assert_time);
+ of_property_read_u32(np, "ingenic,min-wakeup-pin-assert-time-ms",
+ &min_wakeup_pin_assert_time);
+
+ /*
+ * Set minimum wakeup pin assertion time: 100 ms.
+ * Range is 0 to 2 sec if RTC is clocked at 32 kHz.
+ */
+ wakeup_ticks = (min_wakeup_pin_assert_time * rate) / 1000;
+ if (wakeup_ticks < JZ_RTC_WAKEUP_FILTER_MASK)
+ wakeup_ticks &= JZ_RTC_WAKEUP_FILTER_MASK;
+ else
+ wakeup_ticks = JZ_RTC_WAKEUP_FILTER_MASK;
+ jz4740_rtc_reg_write(rtc, JZ_REG_RTC_WAKEUP_FILTER, wakeup_ticks);
+
+ /*
+ * Set reset pin low-level assertion time after wakeup: 60 ms.
+ * Range is 0 to 125 ms if RTC is clocked at 32 kHz.
+ */
+ reset_ticks = (reset_pin_assert_time * rate) / 1000;
+ if (reset_ticks < JZ_RTC_RESET_COUNTER_MASK)
+ reset_ticks &= JZ_RTC_RESET_COUNTER_MASK;
+ else
+ reset_ticks = JZ_RTC_RESET_COUNTER_MASK;
+ jz4740_rtc_reg_write(rtc, JZ_REG_RTC_RESET_COUNTER, reset_ticks);
+}
+
+static int jz4740_rtc_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct device_node *np = dev->of_node;
+ struct jz4740_rtc *rtc;
+ unsigned long rate;
+ struct clk *clk;
+ int ret, irq;
+
+ rtc = devm_kzalloc(dev, sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->type = (enum jz4740_rtc_type)device_get_match_data(dev);
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return irq;
+
+ rtc->base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(rtc->base))
+ return PTR_ERR(rtc->base);
+
+ clk = devm_clk_get(dev, "rtc");
+ if (IS_ERR(clk)) {
+ dev_err(dev, "Failed to get RTC clock\n");
+ return PTR_ERR(clk);
+ }
+
+ ret = clk_prepare_enable(clk);
+ if (ret) {
+ dev_err(dev, "Failed to enable clock\n");
+ return ret;
+ }
+
+ ret = devm_add_action_or_reset(dev, jz4740_rtc_clk_disable, clk);
+ if (ret) {
+ dev_err(dev, "Failed to register devm action\n");
+ return ret;
+ }
+
+ spin_lock_init(&rtc->lock);
+
+ platform_set_drvdata(pdev, rtc);
+
+ device_init_wakeup(dev, 1);
+
+ ret = dev_pm_set_wake_irq(dev, irq);
+ if (ret) {
+ dev_err(dev, "Failed to set wake irq: %d\n", ret);
+ return ret;
+ }
+
+ rtc->rtc = devm_rtc_allocate_device(dev);
+ if (IS_ERR(rtc->rtc)) {
+ ret = PTR_ERR(rtc->rtc);
+ dev_err(dev, "Failed to allocate rtc device: %d\n", ret);
+ return ret;
+ }
+
+ rtc->rtc->ops = &jz4740_rtc_ops;
+ rtc->rtc->range_max = U32_MAX;
+
+ rate = clk_get_rate(clk);
+ jz4740_rtc_set_wakeup_params(rtc, np, rate);
+
+ /* Each 1 Hz pulse should happen after (rate) ticks */
+ jz4740_rtc_reg_write(rtc, JZ_REG_RTC_REGULATOR, rate - 1);
+
+ ret = rtc_register_device(rtc->rtc);
+ if (ret)
+ return ret;
+
+ ret = devm_request_irq(dev, irq, jz4740_rtc_irq, 0,
+ pdev->name, rtc);
+ if (ret) {
+ dev_err(dev, "Failed to request rtc irq: %d\n", ret);
+ return ret;
+ }
+
+ if (of_device_is_system_power_controller(np)) {
+ dev_for_power_off = dev;
+
+ if (!pm_power_off)
+ pm_power_off = jz4740_rtc_power_off;
+ else
+ dev_warn(dev, "Poweroff handler already present!\n");
+ }
+
+ return 0;
+}
+
+static struct platform_driver jz4740_rtc_driver = {
+ .probe = jz4740_rtc_probe,
+ .driver = {
+ .name = "jz4740-rtc",
+ .of_match_table = jz4740_rtc_of_match,
+ },
+};
+
+module_platform_driver(jz4740_rtc_driver);
+
+MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("RTC driver for the JZ4740 SoC\n");
+MODULE_ALIAS("platform:jz4740-rtc");
diff --git a/drivers/rtc/rtc-lp8788.c b/drivers/rtc/rtc-lp8788.c
new file mode 100644
index 000000000..c0b8fbce1
--- /dev/null
+++ b/drivers/rtc/rtc-lp8788.c
@@ -0,0 +1,322 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * TI LP8788 MFD - rtc driver
+ *
+ * Copyright 2012 Texas Instruments
+ *
+ * Author: Milo(Woogyom) Kim <milo.kim@ti.com>
+ */
+
+#include <linux/err.h>
+#include <linux/irqdomain.h>
+#include <linux/mfd/lp8788.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+
+/* register address */
+#define LP8788_INTEN_3 0x05
+#define LP8788_RTC_UNLOCK 0x64
+#define LP8788_RTC_SEC 0x70
+#define LP8788_ALM1_SEC 0x77
+#define LP8788_ALM1_EN 0x7D
+#define LP8788_ALM2_SEC 0x7E
+#define LP8788_ALM2_EN 0x84
+
+/* mask/shift bits */
+#define LP8788_INT_RTC_ALM1_M BIT(1) /* Addr 05h */
+#define LP8788_INT_RTC_ALM1_S 1
+#define LP8788_INT_RTC_ALM2_M BIT(2) /* Addr 05h */
+#define LP8788_INT_RTC_ALM2_S 2
+#define LP8788_ALM_EN_M BIT(7) /* Addr 7Dh or 84h */
+#define LP8788_ALM_EN_S 7
+
+#define DEFAULT_ALARM_SEL LP8788_ALARM_1
+#define LP8788_MONTH_OFFSET 1
+#define LP8788_BASE_YEAR 2000
+#define MAX_WDAY_BITS 7
+#define LP8788_WDAY_SET 1
+#define RTC_UNLOCK 0x1
+#define RTC_LATCH 0x2
+#define ALARM_IRQ_FLAG (RTC_IRQF | RTC_AF)
+
+enum lp8788_time {
+ LPTIME_SEC,
+ LPTIME_MIN,
+ LPTIME_HOUR,
+ LPTIME_MDAY,
+ LPTIME_MON,
+ LPTIME_YEAR,
+ LPTIME_WDAY,
+ LPTIME_MAX,
+};
+
+struct lp8788_rtc {
+ struct lp8788 *lp;
+ struct rtc_device *rdev;
+ enum lp8788_alarm_sel alarm;
+ int irq;
+};
+
+static const u8 addr_alarm_sec[LP8788_ALARM_MAX] = {
+ LP8788_ALM1_SEC,
+ LP8788_ALM2_SEC,
+};
+
+static const u8 addr_alarm_en[LP8788_ALARM_MAX] = {
+ LP8788_ALM1_EN,
+ LP8788_ALM2_EN,
+};
+
+static const u8 mask_alarm_en[LP8788_ALARM_MAX] = {
+ LP8788_INT_RTC_ALM1_M,
+ LP8788_INT_RTC_ALM2_M,
+};
+
+static const u8 shift_alarm_en[LP8788_ALARM_MAX] = {
+ LP8788_INT_RTC_ALM1_S,
+ LP8788_INT_RTC_ALM2_S,
+};
+
+static int _to_tm_wday(u8 lp8788_wday)
+{
+ int i;
+
+ if (lp8788_wday == 0)
+ return 0;
+
+ /* lookup defined weekday from read register value */
+ for (i = 0; i < MAX_WDAY_BITS; i++) {
+ if ((lp8788_wday >> i) == LP8788_WDAY_SET)
+ break;
+ }
+
+ return i + 1;
+}
+
+static inline int _to_lp8788_wday(int tm_wday)
+{
+ return LP8788_WDAY_SET << (tm_wday - 1);
+}
+
+static void lp8788_rtc_unlock(struct lp8788 *lp)
+{
+ lp8788_write_byte(lp, LP8788_RTC_UNLOCK, RTC_UNLOCK);
+ lp8788_write_byte(lp, LP8788_RTC_UNLOCK, RTC_LATCH);
+}
+
+static int lp8788_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct lp8788_rtc *rtc = dev_get_drvdata(dev);
+ struct lp8788 *lp = rtc->lp;
+ u8 data[LPTIME_MAX];
+ int ret;
+
+ lp8788_rtc_unlock(lp);
+
+ ret = lp8788_read_multi_bytes(lp, LP8788_RTC_SEC, data, LPTIME_MAX);
+ if (ret)
+ return ret;
+
+ tm->tm_sec = data[LPTIME_SEC];
+ tm->tm_min = data[LPTIME_MIN];
+ tm->tm_hour = data[LPTIME_HOUR];
+ tm->tm_mday = data[LPTIME_MDAY];
+ tm->tm_mon = data[LPTIME_MON] - LP8788_MONTH_OFFSET;
+ tm->tm_year = data[LPTIME_YEAR] + LP8788_BASE_YEAR - 1900;
+ tm->tm_wday = _to_tm_wday(data[LPTIME_WDAY]);
+
+ return 0;
+}
+
+static int lp8788_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct lp8788_rtc *rtc = dev_get_drvdata(dev);
+ struct lp8788 *lp = rtc->lp;
+ u8 data[LPTIME_MAX - 1];
+ int ret, i, year;
+
+ year = tm->tm_year + 1900 - LP8788_BASE_YEAR;
+ if (year < 0) {
+ dev_err(lp->dev, "invalid year: %d\n", year);
+ return -EINVAL;
+ }
+
+ /* because rtc weekday is a readonly register, do not update */
+ data[LPTIME_SEC] = tm->tm_sec;
+ data[LPTIME_MIN] = tm->tm_min;
+ data[LPTIME_HOUR] = tm->tm_hour;
+ data[LPTIME_MDAY] = tm->tm_mday;
+ data[LPTIME_MON] = tm->tm_mon + LP8788_MONTH_OFFSET;
+ data[LPTIME_YEAR] = year;
+
+ for (i = 0; i < ARRAY_SIZE(data); i++) {
+ ret = lp8788_write_byte(lp, LP8788_RTC_SEC + i, data[i]);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+static int lp8788_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct lp8788_rtc *rtc = dev_get_drvdata(dev);
+ struct lp8788 *lp = rtc->lp;
+ struct rtc_time *tm = &alarm->time;
+ u8 addr, data[LPTIME_MAX];
+ int ret;
+
+ addr = addr_alarm_sec[rtc->alarm];
+ ret = lp8788_read_multi_bytes(lp, addr, data, LPTIME_MAX);
+ if (ret)
+ return ret;
+
+ tm->tm_sec = data[LPTIME_SEC];
+ tm->tm_min = data[LPTIME_MIN];
+ tm->tm_hour = data[LPTIME_HOUR];
+ tm->tm_mday = data[LPTIME_MDAY];
+ tm->tm_mon = data[LPTIME_MON] - LP8788_MONTH_OFFSET;
+ tm->tm_year = data[LPTIME_YEAR] + LP8788_BASE_YEAR - 1900;
+ tm->tm_wday = _to_tm_wday(data[LPTIME_WDAY]);
+ alarm->enabled = data[LPTIME_WDAY] & LP8788_ALM_EN_M;
+
+ return 0;
+}
+
+static int lp8788_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct lp8788_rtc *rtc = dev_get_drvdata(dev);
+ struct lp8788 *lp = rtc->lp;
+ struct rtc_time *tm = &alarm->time;
+ u8 addr, data[LPTIME_MAX];
+ int ret, i, year;
+
+ year = tm->tm_year + 1900 - LP8788_BASE_YEAR;
+ if (year < 0) {
+ dev_err(lp->dev, "invalid year: %d\n", year);
+ return -EINVAL;
+ }
+
+ data[LPTIME_SEC] = tm->tm_sec;
+ data[LPTIME_MIN] = tm->tm_min;
+ data[LPTIME_HOUR] = tm->tm_hour;
+ data[LPTIME_MDAY] = tm->tm_mday;
+ data[LPTIME_MON] = tm->tm_mon + LP8788_MONTH_OFFSET;
+ data[LPTIME_YEAR] = year;
+ data[LPTIME_WDAY] = _to_lp8788_wday(tm->tm_wday);
+
+ for (i = 0; i < ARRAY_SIZE(data); i++) {
+ addr = addr_alarm_sec[rtc->alarm] + i;
+ ret = lp8788_write_byte(lp, addr, data[i]);
+ if (ret)
+ return ret;
+ }
+
+ alarm->enabled = 1;
+ addr = addr_alarm_en[rtc->alarm];
+
+ return lp8788_update_bits(lp, addr, LP8788_ALM_EN_M,
+ alarm->enabled << LP8788_ALM_EN_S);
+}
+
+static int lp8788_alarm_irq_enable(struct device *dev, unsigned int enable)
+{
+ struct lp8788_rtc *rtc = dev_get_drvdata(dev);
+ struct lp8788 *lp = rtc->lp;
+ u8 mask, shift;
+
+ if (!rtc->irq)
+ return -EIO;
+
+ mask = mask_alarm_en[rtc->alarm];
+ shift = shift_alarm_en[rtc->alarm];
+
+ return lp8788_update_bits(lp, LP8788_INTEN_3, mask, enable << shift);
+}
+
+static const struct rtc_class_ops lp8788_rtc_ops = {
+ .read_time = lp8788_rtc_read_time,
+ .set_time = lp8788_rtc_set_time,
+ .read_alarm = lp8788_read_alarm,
+ .set_alarm = lp8788_set_alarm,
+ .alarm_irq_enable = lp8788_alarm_irq_enable,
+};
+
+static irqreturn_t lp8788_alarm_irq_handler(int irq, void *ptr)
+{
+ struct lp8788_rtc *rtc = ptr;
+
+ rtc_update_irq(rtc->rdev, 1, ALARM_IRQ_FLAG);
+ return IRQ_HANDLED;
+}
+
+static int lp8788_alarm_irq_register(struct platform_device *pdev,
+ struct lp8788_rtc *rtc)
+{
+ struct resource *r;
+ struct lp8788 *lp = rtc->lp;
+ struct irq_domain *irqdm = lp->irqdm;
+ int irq;
+
+ rtc->irq = 0;
+
+ /* even the alarm IRQ number is not specified, rtc time should work */
+ r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, LP8788_ALM_IRQ);
+ if (!r)
+ return 0;
+
+ if (rtc->alarm == LP8788_ALARM_1)
+ irq = r->start;
+ else
+ irq = r->end;
+
+ rtc->irq = irq_create_mapping(irqdm, irq);
+
+ return devm_request_threaded_irq(&pdev->dev, rtc->irq, NULL,
+ lp8788_alarm_irq_handler,
+ 0, LP8788_ALM_IRQ, rtc);
+}
+
+static int lp8788_rtc_probe(struct platform_device *pdev)
+{
+ struct lp8788 *lp = dev_get_drvdata(pdev->dev.parent);
+ struct lp8788_rtc *rtc;
+ struct device *dev = &pdev->dev;
+
+ rtc = devm_kzalloc(dev, sizeof(struct lp8788_rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->lp = lp;
+ rtc->alarm = lp->pdata ? lp->pdata->alarm_sel : DEFAULT_ALARM_SEL;
+ platform_set_drvdata(pdev, rtc);
+
+ device_init_wakeup(dev, 1);
+
+ rtc->rdev = devm_rtc_device_register(dev, "lp8788_rtc",
+ &lp8788_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rtc->rdev)) {
+ dev_err(dev, "can not register rtc device\n");
+ return PTR_ERR(rtc->rdev);
+ }
+
+ if (lp8788_alarm_irq_register(pdev, rtc))
+ dev_warn(lp->dev, "no rtc irq handler\n");
+
+ return 0;
+}
+
+static struct platform_driver lp8788_rtc_driver = {
+ .probe = lp8788_rtc_probe,
+ .driver = {
+ .name = LP8788_DEV_RTC,
+ },
+};
+module_platform_driver(lp8788_rtc_driver);
+
+MODULE_DESCRIPTION("Texas Instruments LP8788 RTC Driver");
+MODULE_AUTHOR("Milo Kim");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:lp8788-rtc");
diff --git a/drivers/rtc/rtc-lpc24xx.c b/drivers/rtc/rtc-lpc24xx.c
new file mode 100644
index 000000000..eec881a81
--- /dev/null
+++ b/drivers/rtc/rtc-lpc24xx.c
@@ -0,0 +1,301 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * RTC driver for NXP LPC178x/18xx/43xx Real-Time Clock (RTC)
+ *
+ * Copyright (C) 2011 NXP Semiconductors
+ * Copyright (C) 2015 Joachim Eastwood <manabian@gmail.com>
+ */
+
+#include <linux/clk.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+
+/* LPC24xx RTC register offsets and bits */
+#define LPC24XX_ILR 0x00
+#define LPC24XX_RTCCIF BIT(0)
+#define LPC24XX_RTCALF BIT(1)
+#define LPC24XX_CTC 0x04
+#define LPC24XX_CCR 0x08
+#define LPC24XX_CLKEN BIT(0)
+#define LPC178X_CCALEN BIT(4)
+#define LPC24XX_CIIR 0x0c
+#define LPC24XX_AMR 0x10
+#define LPC24XX_ALARM_DISABLE 0xff
+#define LPC24XX_CTIME0 0x14
+#define LPC24XX_CTIME1 0x18
+#define LPC24XX_CTIME2 0x1c
+#define LPC24XX_SEC 0x20
+#define LPC24XX_MIN 0x24
+#define LPC24XX_HOUR 0x28
+#define LPC24XX_DOM 0x2c
+#define LPC24XX_DOW 0x30
+#define LPC24XX_DOY 0x34
+#define LPC24XX_MONTH 0x38
+#define LPC24XX_YEAR 0x3c
+#define LPC24XX_ALSEC 0x60
+#define LPC24XX_ALMIN 0x64
+#define LPC24XX_ALHOUR 0x68
+#define LPC24XX_ALDOM 0x6c
+#define LPC24XX_ALDOW 0x70
+#define LPC24XX_ALDOY 0x74
+#define LPC24XX_ALMON 0x78
+#define LPC24XX_ALYEAR 0x7c
+
+/* Macros to read fields in consolidated time (CT) registers */
+#define CT0_SECS(x) (((x) >> 0) & 0x3f)
+#define CT0_MINS(x) (((x) >> 8) & 0x3f)
+#define CT0_HOURS(x) (((x) >> 16) & 0x1f)
+#define CT0_DOW(x) (((x) >> 24) & 0x07)
+#define CT1_DOM(x) (((x) >> 0) & 0x1f)
+#define CT1_MONTH(x) (((x) >> 8) & 0x0f)
+#define CT1_YEAR(x) (((x) >> 16) & 0xfff)
+#define CT2_DOY(x) (((x) >> 0) & 0xfff)
+
+#define rtc_readl(dev, reg) readl((dev)->rtc_base + (reg))
+#define rtc_writel(dev, reg, val) writel((val), (dev)->rtc_base + (reg))
+
+struct lpc24xx_rtc {
+ void __iomem *rtc_base;
+ struct rtc_device *rtc;
+ struct clk *clk_rtc;
+ struct clk *clk_reg;
+};
+
+static int lpc24xx_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct lpc24xx_rtc *rtc = dev_get_drvdata(dev);
+
+ /* Disable RTC during update */
+ rtc_writel(rtc, LPC24XX_CCR, LPC178X_CCALEN);
+
+ rtc_writel(rtc, LPC24XX_SEC, tm->tm_sec);
+ rtc_writel(rtc, LPC24XX_MIN, tm->tm_min);
+ rtc_writel(rtc, LPC24XX_HOUR, tm->tm_hour);
+ rtc_writel(rtc, LPC24XX_DOW, tm->tm_wday);
+ rtc_writel(rtc, LPC24XX_DOM, tm->tm_mday);
+ rtc_writel(rtc, LPC24XX_DOY, tm->tm_yday);
+ rtc_writel(rtc, LPC24XX_MONTH, tm->tm_mon);
+ rtc_writel(rtc, LPC24XX_YEAR, tm->tm_year);
+
+ rtc_writel(rtc, LPC24XX_CCR, LPC24XX_CLKEN | LPC178X_CCALEN);
+
+ return 0;
+}
+
+static int lpc24xx_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct lpc24xx_rtc *rtc = dev_get_drvdata(dev);
+ u32 ct0, ct1, ct2;
+
+ ct0 = rtc_readl(rtc, LPC24XX_CTIME0);
+ ct1 = rtc_readl(rtc, LPC24XX_CTIME1);
+ ct2 = rtc_readl(rtc, LPC24XX_CTIME2);
+
+ tm->tm_sec = CT0_SECS(ct0);
+ tm->tm_min = CT0_MINS(ct0);
+ tm->tm_hour = CT0_HOURS(ct0);
+ tm->tm_wday = CT0_DOW(ct0);
+ tm->tm_mon = CT1_MONTH(ct1);
+ tm->tm_mday = CT1_DOM(ct1);
+ tm->tm_year = CT1_YEAR(ct1);
+ tm->tm_yday = CT2_DOY(ct2);
+
+ return 0;
+}
+
+static int lpc24xx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
+{
+ struct lpc24xx_rtc *rtc = dev_get_drvdata(dev);
+ struct rtc_time *tm = &wkalrm->time;
+
+ tm->tm_sec = rtc_readl(rtc, LPC24XX_ALSEC);
+ tm->tm_min = rtc_readl(rtc, LPC24XX_ALMIN);
+ tm->tm_hour = rtc_readl(rtc, LPC24XX_ALHOUR);
+ tm->tm_mday = rtc_readl(rtc, LPC24XX_ALDOM);
+ tm->tm_wday = rtc_readl(rtc, LPC24XX_ALDOW);
+ tm->tm_yday = rtc_readl(rtc, LPC24XX_ALDOY);
+ tm->tm_mon = rtc_readl(rtc, LPC24XX_ALMON);
+ tm->tm_year = rtc_readl(rtc, LPC24XX_ALYEAR);
+
+ wkalrm->enabled = rtc_readl(rtc, LPC24XX_AMR) == 0;
+ wkalrm->pending = !!(rtc_readl(rtc, LPC24XX_ILR) & LPC24XX_RTCCIF);
+
+ return rtc_valid_tm(&wkalrm->time);
+}
+
+static int lpc24xx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
+{
+ struct lpc24xx_rtc *rtc = dev_get_drvdata(dev);
+ struct rtc_time *tm = &wkalrm->time;
+
+ /* Disable alarm irq during update */
+ rtc_writel(rtc, LPC24XX_AMR, LPC24XX_ALARM_DISABLE);
+
+ rtc_writel(rtc, LPC24XX_ALSEC, tm->tm_sec);
+ rtc_writel(rtc, LPC24XX_ALMIN, tm->tm_min);
+ rtc_writel(rtc, LPC24XX_ALHOUR, tm->tm_hour);
+ rtc_writel(rtc, LPC24XX_ALDOM, tm->tm_mday);
+ rtc_writel(rtc, LPC24XX_ALDOW, tm->tm_wday);
+ rtc_writel(rtc, LPC24XX_ALDOY, tm->tm_yday);
+ rtc_writel(rtc, LPC24XX_ALMON, tm->tm_mon);
+ rtc_writel(rtc, LPC24XX_ALYEAR, tm->tm_year);
+
+ if (wkalrm->enabled)
+ rtc_writel(rtc, LPC24XX_AMR, 0);
+
+ return 0;
+}
+
+static int lpc24xx_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
+{
+ struct lpc24xx_rtc *rtc = dev_get_drvdata(dev);
+
+ if (enable)
+ rtc_writel(rtc, LPC24XX_AMR, 0);
+ else
+ rtc_writel(rtc, LPC24XX_AMR, LPC24XX_ALARM_DISABLE);
+
+ return 0;
+}
+
+static irqreturn_t lpc24xx_rtc_interrupt(int irq, void *data)
+{
+ unsigned long events = RTC_IRQF;
+ struct lpc24xx_rtc *rtc = data;
+ u32 rtc_iir;
+
+ /* Check interrupt cause */
+ rtc_iir = rtc_readl(rtc, LPC24XX_ILR);
+ if (rtc_iir & LPC24XX_RTCALF) {
+ events |= RTC_AF;
+ rtc_writel(rtc, LPC24XX_AMR, LPC24XX_ALARM_DISABLE);
+ }
+
+ /* Clear interrupt status and report event */
+ rtc_writel(rtc, LPC24XX_ILR, rtc_iir);
+ rtc_update_irq(rtc->rtc, 1, events);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops lpc24xx_rtc_ops = {
+ .read_time = lpc24xx_rtc_read_time,
+ .set_time = lpc24xx_rtc_set_time,
+ .read_alarm = lpc24xx_rtc_read_alarm,
+ .set_alarm = lpc24xx_rtc_set_alarm,
+ .alarm_irq_enable = lpc24xx_rtc_alarm_irq_enable,
+};
+
+static int lpc24xx_rtc_probe(struct platform_device *pdev)
+{
+ struct lpc24xx_rtc *rtc;
+ int irq, ret;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->rtc_base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(rtc->rtc_base))
+ return PTR_ERR(rtc->rtc_base);
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return irq;
+
+ rtc->clk_rtc = devm_clk_get(&pdev->dev, "rtc");
+ if (IS_ERR(rtc->clk_rtc)) {
+ dev_err(&pdev->dev, "error getting rtc clock\n");
+ return PTR_ERR(rtc->clk_rtc);
+ }
+
+ rtc->clk_reg = devm_clk_get(&pdev->dev, "reg");
+ if (IS_ERR(rtc->clk_reg)) {
+ dev_err(&pdev->dev, "error getting reg clock\n");
+ return PTR_ERR(rtc->clk_reg);
+ }
+
+ ret = clk_prepare_enable(rtc->clk_rtc);
+ if (ret) {
+ dev_err(&pdev->dev, "unable to enable rtc clock\n");
+ return ret;
+ }
+
+ ret = clk_prepare_enable(rtc->clk_reg);
+ if (ret) {
+ dev_err(&pdev->dev, "unable to enable reg clock\n");
+ goto disable_rtc_clk;
+ }
+
+ platform_set_drvdata(pdev, rtc);
+
+ /* Clear any pending interrupts */
+ rtc_writel(rtc, LPC24XX_ILR, LPC24XX_RTCCIF | LPC24XX_RTCALF);
+
+ /* Enable RTC count */
+ rtc_writel(rtc, LPC24XX_CCR, LPC24XX_CLKEN | LPC178X_CCALEN);
+
+ ret = devm_request_irq(&pdev->dev, irq, lpc24xx_rtc_interrupt, 0,
+ pdev->name, rtc);
+ if (ret < 0) {
+ dev_warn(&pdev->dev, "can't request interrupt\n");
+ goto disable_clks;
+ }
+
+ rtc->rtc = devm_rtc_device_register(&pdev->dev, "lpc24xx-rtc",
+ &lpc24xx_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rtc->rtc)) {
+ dev_err(&pdev->dev, "can't register rtc device\n");
+ ret = PTR_ERR(rtc->rtc);
+ goto disable_clks;
+ }
+
+ return 0;
+
+disable_clks:
+ clk_disable_unprepare(rtc->clk_reg);
+disable_rtc_clk:
+ clk_disable_unprepare(rtc->clk_rtc);
+ return ret;
+}
+
+static int lpc24xx_rtc_remove(struct platform_device *pdev)
+{
+ struct lpc24xx_rtc *rtc = platform_get_drvdata(pdev);
+
+ /* Ensure all interrupt sources are masked */
+ rtc_writel(rtc, LPC24XX_AMR, LPC24XX_ALARM_DISABLE);
+ rtc_writel(rtc, LPC24XX_CIIR, 0);
+
+ rtc_writel(rtc, LPC24XX_CCR, LPC178X_CCALEN);
+
+ clk_disable_unprepare(rtc->clk_rtc);
+ clk_disable_unprepare(rtc->clk_reg);
+
+ return 0;
+}
+
+static const struct of_device_id lpc24xx_rtc_match[] = {
+ { .compatible = "nxp,lpc1788-rtc" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, lpc24xx_rtc_match);
+
+static struct platform_driver lpc24xx_rtc_driver = {
+ .probe = lpc24xx_rtc_probe,
+ .remove = lpc24xx_rtc_remove,
+ .driver = {
+ .name = "lpc24xx-rtc",
+ .of_match_table = lpc24xx_rtc_match,
+ },
+};
+module_platform_driver(lpc24xx_rtc_driver);
+
+MODULE_AUTHOR("Kevin Wells <wellsk40@gmail.com>");
+MODULE_DESCRIPTION("RTC driver for the LPC178x/18xx/408x/43xx SoCs");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-lpc32xx.c b/drivers/rtc/rtc-lpc32xx.c
new file mode 100644
index 000000000..15d8abda8
--- /dev/null
+++ b/drivers/rtc/rtc-lpc32xx.c
@@ -0,0 +1,360 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright (C) 2010 NXP Semiconductors
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/platform_device.h>
+#include <linux/spinlock.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+#include <linux/io.h>
+#include <linux/of.h>
+
+/*
+ * Clock and Power control register offsets
+ */
+#define LPC32XX_RTC_UCOUNT 0x00
+#define LPC32XX_RTC_DCOUNT 0x04
+#define LPC32XX_RTC_MATCH0 0x08
+#define LPC32XX_RTC_MATCH1 0x0C
+#define LPC32XX_RTC_CTRL 0x10
+#define LPC32XX_RTC_INTSTAT 0x14
+#define LPC32XX_RTC_KEY 0x18
+#define LPC32XX_RTC_SRAM 0x80
+
+#define LPC32XX_RTC_CTRL_MATCH0 (1 << 0)
+#define LPC32XX_RTC_CTRL_MATCH1 (1 << 1)
+#define LPC32XX_RTC_CTRL_ONSW_MATCH0 (1 << 2)
+#define LPC32XX_RTC_CTRL_ONSW_MATCH1 (1 << 3)
+#define LPC32XX_RTC_CTRL_SW_RESET (1 << 4)
+#define LPC32XX_RTC_CTRL_CNTR_DIS (1 << 6)
+#define LPC32XX_RTC_CTRL_ONSW_FORCE_HI (1 << 7)
+
+#define LPC32XX_RTC_INTSTAT_MATCH0 (1 << 0)
+#define LPC32XX_RTC_INTSTAT_MATCH1 (1 << 1)
+#define LPC32XX_RTC_INTSTAT_ONSW (1 << 2)
+
+#define LPC32XX_RTC_KEY_ONSW_LOADVAL 0xB5C13F27
+
+#define rtc_readl(dev, reg) \
+ __raw_readl((dev)->rtc_base + (reg))
+#define rtc_writel(dev, reg, val) \
+ __raw_writel((val), (dev)->rtc_base + (reg))
+
+struct lpc32xx_rtc {
+ void __iomem *rtc_base;
+ int irq;
+ unsigned char alarm_enabled;
+ struct rtc_device *rtc;
+ spinlock_t lock;
+};
+
+static int lpc32xx_rtc_read_time(struct device *dev, struct rtc_time *time)
+{
+ unsigned long elapsed_sec;
+ struct lpc32xx_rtc *rtc = dev_get_drvdata(dev);
+
+ elapsed_sec = rtc_readl(rtc, LPC32XX_RTC_UCOUNT);
+ rtc_time64_to_tm(elapsed_sec, time);
+
+ return 0;
+}
+
+static int lpc32xx_rtc_set_time(struct device *dev, struct rtc_time *time)
+{
+ struct lpc32xx_rtc *rtc = dev_get_drvdata(dev);
+ u32 secs = rtc_tm_to_time64(time);
+ u32 tmp;
+
+ spin_lock_irq(&rtc->lock);
+
+ /* RTC must be disabled during count update */
+ tmp = rtc_readl(rtc, LPC32XX_RTC_CTRL);
+ rtc_writel(rtc, LPC32XX_RTC_CTRL, tmp | LPC32XX_RTC_CTRL_CNTR_DIS);
+ rtc_writel(rtc, LPC32XX_RTC_UCOUNT, secs);
+ rtc_writel(rtc, LPC32XX_RTC_DCOUNT, 0xFFFFFFFF - secs);
+ rtc_writel(rtc, LPC32XX_RTC_CTRL, tmp &= ~LPC32XX_RTC_CTRL_CNTR_DIS);
+
+ spin_unlock_irq(&rtc->lock);
+
+ return 0;
+}
+
+static int lpc32xx_rtc_read_alarm(struct device *dev,
+ struct rtc_wkalrm *wkalrm)
+{
+ struct lpc32xx_rtc *rtc = dev_get_drvdata(dev);
+
+ rtc_time64_to_tm(rtc_readl(rtc, LPC32XX_RTC_MATCH0), &wkalrm->time);
+ wkalrm->enabled = rtc->alarm_enabled;
+ wkalrm->pending = !!(rtc_readl(rtc, LPC32XX_RTC_INTSTAT) &
+ LPC32XX_RTC_INTSTAT_MATCH0);
+
+ return rtc_valid_tm(&wkalrm->time);
+}
+
+static int lpc32xx_rtc_set_alarm(struct device *dev,
+ struct rtc_wkalrm *wkalrm)
+{
+ struct lpc32xx_rtc *rtc = dev_get_drvdata(dev);
+ unsigned long alarmsecs;
+ u32 tmp;
+
+ alarmsecs = rtc_tm_to_time64(&wkalrm->time);
+
+ spin_lock_irq(&rtc->lock);
+
+ /* Disable alarm during update */
+ tmp = rtc_readl(rtc, LPC32XX_RTC_CTRL);
+ rtc_writel(rtc, LPC32XX_RTC_CTRL, tmp & ~LPC32XX_RTC_CTRL_MATCH0);
+
+ rtc_writel(rtc, LPC32XX_RTC_MATCH0, alarmsecs);
+
+ rtc->alarm_enabled = wkalrm->enabled;
+ if (wkalrm->enabled) {
+ rtc_writel(rtc, LPC32XX_RTC_INTSTAT,
+ LPC32XX_RTC_INTSTAT_MATCH0);
+ rtc_writel(rtc, LPC32XX_RTC_CTRL, tmp |
+ LPC32XX_RTC_CTRL_MATCH0);
+ }
+
+ spin_unlock_irq(&rtc->lock);
+
+ return 0;
+}
+
+static int lpc32xx_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct lpc32xx_rtc *rtc = dev_get_drvdata(dev);
+ u32 tmp;
+
+ spin_lock_irq(&rtc->lock);
+ tmp = rtc_readl(rtc, LPC32XX_RTC_CTRL);
+
+ if (enabled) {
+ rtc->alarm_enabled = 1;
+ tmp |= LPC32XX_RTC_CTRL_MATCH0;
+ } else {
+ rtc->alarm_enabled = 0;
+ tmp &= ~LPC32XX_RTC_CTRL_MATCH0;
+ }
+
+ rtc_writel(rtc, LPC32XX_RTC_CTRL, tmp);
+ spin_unlock_irq(&rtc->lock);
+
+ return 0;
+}
+
+static irqreturn_t lpc32xx_rtc_alarm_interrupt(int irq, void *dev)
+{
+ struct lpc32xx_rtc *rtc = dev;
+
+ spin_lock(&rtc->lock);
+
+ /* Disable alarm interrupt */
+ rtc_writel(rtc, LPC32XX_RTC_CTRL,
+ rtc_readl(rtc, LPC32XX_RTC_CTRL) &
+ ~LPC32XX_RTC_CTRL_MATCH0);
+ rtc->alarm_enabled = 0;
+
+ /*
+ * Write a large value to the match value so the RTC won't
+ * keep firing the match status
+ */
+ rtc_writel(rtc, LPC32XX_RTC_MATCH0, 0xFFFFFFFF);
+ rtc_writel(rtc, LPC32XX_RTC_INTSTAT, LPC32XX_RTC_INTSTAT_MATCH0);
+
+ spin_unlock(&rtc->lock);
+
+ rtc_update_irq(rtc->rtc, 1, RTC_IRQF | RTC_AF);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops lpc32xx_rtc_ops = {
+ .read_time = lpc32xx_rtc_read_time,
+ .set_time = lpc32xx_rtc_set_time,
+ .read_alarm = lpc32xx_rtc_read_alarm,
+ .set_alarm = lpc32xx_rtc_set_alarm,
+ .alarm_irq_enable = lpc32xx_rtc_alarm_irq_enable,
+};
+
+static int lpc32xx_rtc_probe(struct platform_device *pdev)
+{
+ struct lpc32xx_rtc *rtc;
+ int err;
+ u32 tmp;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
+ if (unlikely(!rtc))
+ return -ENOMEM;
+
+ rtc->rtc_base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(rtc->rtc_base))
+ return PTR_ERR(rtc->rtc_base);
+
+ spin_lock_init(&rtc->lock);
+
+ /*
+ * The RTC is on a separate power domain and can keep it's state
+ * across a chip power cycle. If the RTC has never been previously
+ * setup, then set it up now for the first time.
+ */
+ tmp = rtc_readl(rtc, LPC32XX_RTC_CTRL);
+ if (rtc_readl(rtc, LPC32XX_RTC_KEY) != LPC32XX_RTC_KEY_ONSW_LOADVAL) {
+ tmp &= ~(LPC32XX_RTC_CTRL_SW_RESET |
+ LPC32XX_RTC_CTRL_CNTR_DIS |
+ LPC32XX_RTC_CTRL_MATCH0 |
+ LPC32XX_RTC_CTRL_MATCH1 |
+ LPC32XX_RTC_CTRL_ONSW_MATCH0 |
+ LPC32XX_RTC_CTRL_ONSW_MATCH1 |
+ LPC32XX_RTC_CTRL_ONSW_FORCE_HI);
+ rtc_writel(rtc, LPC32XX_RTC_CTRL, tmp);
+
+ /* Clear latched interrupt states */
+ rtc_writel(rtc, LPC32XX_RTC_MATCH0, 0xFFFFFFFF);
+ rtc_writel(rtc, LPC32XX_RTC_INTSTAT,
+ LPC32XX_RTC_INTSTAT_MATCH0 |
+ LPC32XX_RTC_INTSTAT_MATCH1 |
+ LPC32XX_RTC_INTSTAT_ONSW);
+
+ /* Write key value to RTC so it won't reload on reset */
+ rtc_writel(rtc, LPC32XX_RTC_KEY,
+ LPC32XX_RTC_KEY_ONSW_LOADVAL);
+ } else {
+ rtc_writel(rtc, LPC32XX_RTC_CTRL,
+ tmp & ~LPC32XX_RTC_CTRL_MATCH0);
+ }
+
+ platform_set_drvdata(pdev, rtc);
+
+ rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc->rtc))
+ return PTR_ERR(rtc->rtc);
+
+ rtc->rtc->ops = &lpc32xx_rtc_ops;
+ rtc->rtc->range_max = U32_MAX;
+
+ err = rtc_register_device(rtc->rtc);
+ if (err)
+ return err;
+
+ /*
+ * IRQ is enabled after device registration in case alarm IRQ
+ * is pending upon suspend exit.
+ */
+ rtc->irq = platform_get_irq(pdev, 0);
+ if (rtc->irq < 0) {
+ dev_warn(&pdev->dev, "Can't get interrupt resource\n");
+ } else {
+ if (devm_request_irq(&pdev->dev, rtc->irq,
+ lpc32xx_rtc_alarm_interrupt,
+ 0, pdev->name, rtc) < 0) {
+ dev_warn(&pdev->dev, "Can't request interrupt.\n");
+ rtc->irq = -1;
+ } else {
+ device_init_wakeup(&pdev->dev, 1);
+ }
+ }
+
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int lpc32xx_rtc_suspend(struct device *dev)
+{
+ struct lpc32xx_rtc *rtc = dev_get_drvdata(dev);
+
+ if (rtc->irq >= 0) {
+ if (device_may_wakeup(dev))
+ enable_irq_wake(rtc->irq);
+ else
+ disable_irq_wake(rtc->irq);
+ }
+
+ return 0;
+}
+
+static int lpc32xx_rtc_resume(struct device *dev)
+{
+ struct lpc32xx_rtc *rtc = dev_get_drvdata(dev);
+
+ if (rtc->irq >= 0 && device_may_wakeup(dev))
+ disable_irq_wake(rtc->irq);
+
+ return 0;
+}
+
+/* Unconditionally disable the alarm */
+static int lpc32xx_rtc_freeze(struct device *dev)
+{
+ struct lpc32xx_rtc *rtc = dev_get_drvdata(dev);
+
+ spin_lock_irq(&rtc->lock);
+
+ rtc_writel(rtc, LPC32XX_RTC_CTRL,
+ rtc_readl(rtc, LPC32XX_RTC_CTRL) &
+ ~LPC32XX_RTC_CTRL_MATCH0);
+
+ spin_unlock_irq(&rtc->lock);
+
+ return 0;
+}
+
+static int lpc32xx_rtc_thaw(struct device *dev)
+{
+ struct lpc32xx_rtc *rtc = dev_get_drvdata(dev);
+
+ if (rtc->alarm_enabled) {
+ spin_lock_irq(&rtc->lock);
+
+ rtc_writel(rtc, LPC32XX_RTC_CTRL,
+ rtc_readl(rtc, LPC32XX_RTC_CTRL) |
+ LPC32XX_RTC_CTRL_MATCH0);
+
+ spin_unlock_irq(&rtc->lock);
+ }
+
+ return 0;
+}
+
+static const struct dev_pm_ops lpc32xx_rtc_pm_ops = {
+ .suspend = lpc32xx_rtc_suspend,
+ .resume = lpc32xx_rtc_resume,
+ .freeze = lpc32xx_rtc_freeze,
+ .thaw = lpc32xx_rtc_thaw,
+ .restore = lpc32xx_rtc_resume
+};
+
+#define LPC32XX_RTC_PM_OPS (&lpc32xx_rtc_pm_ops)
+#else
+#define LPC32XX_RTC_PM_OPS NULL
+#endif
+
+#ifdef CONFIG_OF
+static const struct of_device_id lpc32xx_rtc_match[] = {
+ { .compatible = "nxp,lpc3220-rtc" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, lpc32xx_rtc_match);
+#endif
+
+static struct platform_driver lpc32xx_rtc_driver = {
+ .probe = lpc32xx_rtc_probe,
+ .driver = {
+ .name = "rtc-lpc32xx",
+ .pm = LPC32XX_RTC_PM_OPS,
+ .of_match_table = of_match_ptr(lpc32xx_rtc_match),
+ },
+};
+
+module_platform_driver(lpc32xx_rtc_driver);
+
+MODULE_AUTHOR("Kevin Wells <wellsk40@gmail.com");
+MODULE_DESCRIPTION("RTC driver for the LPC32xx SoC");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:rtc-lpc32xx");
diff --git a/drivers/rtc/rtc-ls1x.c b/drivers/rtc/rtc-ls1x.c
new file mode 100644
index 000000000..8bd34056f
--- /dev/null
+++ b/drivers/rtc/rtc-ls1x.c
@@ -0,0 +1,192 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Copyright (c) 2011 Zhao Zhang <zhzhl555@gmail.com>
+ *
+ * Derived from driver/rtc/rtc-au1xxx.c
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/rtc.h>
+#include <linux/init.h>
+#include <linux/platform_device.h>
+#include <linux/delay.h>
+#include <linux/types.h>
+#include <linux/io.h>
+#include <loongson1.h>
+
+#define LS1X_RTC_REG_OFFSET (LS1X_RTC_BASE + 0x20)
+#define LS1X_RTC_REGS(x) \
+ ((void __iomem *)KSEG1ADDR(LS1X_RTC_REG_OFFSET + (x)))
+
+/*RTC programmable counters 0 and 1*/
+#define SYS_COUNTER_CNTRL (LS1X_RTC_REGS(0x20))
+#define SYS_CNTRL_ERS (1 << 23)
+#define SYS_CNTRL_RTS (1 << 20)
+#define SYS_CNTRL_RM2 (1 << 19)
+#define SYS_CNTRL_RM1 (1 << 18)
+#define SYS_CNTRL_RM0 (1 << 17)
+#define SYS_CNTRL_RS (1 << 16)
+#define SYS_CNTRL_BP (1 << 14)
+#define SYS_CNTRL_REN (1 << 13)
+#define SYS_CNTRL_BRT (1 << 12)
+#define SYS_CNTRL_TEN (1 << 11)
+#define SYS_CNTRL_BTT (1 << 10)
+#define SYS_CNTRL_E0 (1 << 8)
+#define SYS_CNTRL_ETS (1 << 7)
+#define SYS_CNTRL_32S (1 << 5)
+#define SYS_CNTRL_TTS (1 << 4)
+#define SYS_CNTRL_TM2 (1 << 3)
+#define SYS_CNTRL_TM1 (1 << 2)
+#define SYS_CNTRL_TM0 (1 << 1)
+#define SYS_CNTRL_TS (1 << 0)
+
+/* Programmable Counter 0 Registers */
+#define SYS_TOYTRIM (LS1X_RTC_REGS(0))
+#define SYS_TOYWRITE0 (LS1X_RTC_REGS(4))
+#define SYS_TOYWRITE1 (LS1X_RTC_REGS(8))
+#define SYS_TOYREAD0 (LS1X_RTC_REGS(0xC))
+#define SYS_TOYREAD1 (LS1X_RTC_REGS(0x10))
+#define SYS_TOYMATCH0 (LS1X_RTC_REGS(0x14))
+#define SYS_TOYMATCH1 (LS1X_RTC_REGS(0x18))
+#define SYS_TOYMATCH2 (LS1X_RTC_REGS(0x1C))
+
+/* Programmable Counter 1 Registers */
+#define SYS_RTCTRIM (LS1X_RTC_REGS(0x40))
+#define SYS_RTCWRITE0 (LS1X_RTC_REGS(0x44))
+#define SYS_RTCREAD0 (LS1X_RTC_REGS(0x48))
+#define SYS_RTCMATCH0 (LS1X_RTC_REGS(0x4C))
+#define SYS_RTCMATCH1 (LS1X_RTC_REGS(0x50))
+#define SYS_RTCMATCH2 (LS1X_RTC_REGS(0x54))
+
+#define LS1X_SEC_OFFSET (4)
+#define LS1X_MIN_OFFSET (10)
+#define LS1X_HOUR_OFFSET (16)
+#define LS1X_DAY_OFFSET (21)
+#define LS1X_MONTH_OFFSET (26)
+
+
+#define LS1X_SEC_MASK (0x3f)
+#define LS1X_MIN_MASK (0x3f)
+#define LS1X_HOUR_MASK (0x1f)
+#define LS1X_DAY_MASK (0x1f)
+#define LS1X_MONTH_MASK (0x3f)
+#define LS1X_YEAR_MASK (0xffffffff)
+
+#define ls1x_get_sec(t) (((t) >> LS1X_SEC_OFFSET) & LS1X_SEC_MASK)
+#define ls1x_get_min(t) (((t) >> LS1X_MIN_OFFSET) & LS1X_MIN_MASK)
+#define ls1x_get_hour(t) (((t) >> LS1X_HOUR_OFFSET) & LS1X_HOUR_MASK)
+#define ls1x_get_day(t) (((t) >> LS1X_DAY_OFFSET) & LS1X_DAY_MASK)
+#define ls1x_get_month(t) (((t) >> LS1X_MONTH_OFFSET) & LS1X_MONTH_MASK)
+
+#define RTC_CNTR_OK (SYS_CNTRL_E0 | SYS_CNTRL_32S)
+
+static int ls1x_rtc_read_time(struct device *dev, struct rtc_time *rtm)
+{
+ unsigned long v;
+ time64_t t;
+
+ v = readl(SYS_TOYREAD0);
+ t = readl(SYS_TOYREAD1);
+
+ memset(rtm, 0, sizeof(struct rtc_time));
+ t = mktime64((t & LS1X_YEAR_MASK), ls1x_get_month(v),
+ ls1x_get_day(v), ls1x_get_hour(v),
+ ls1x_get_min(v), ls1x_get_sec(v));
+ rtc_time64_to_tm(t, rtm);
+
+ return 0;
+}
+
+static int ls1x_rtc_set_time(struct device *dev, struct rtc_time *rtm)
+{
+ unsigned long v, t, c;
+ int ret = -ETIMEDOUT;
+
+ v = ((rtm->tm_mon + 1) << LS1X_MONTH_OFFSET)
+ | (rtm->tm_mday << LS1X_DAY_OFFSET)
+ | (rtm->tm_hour << LS1X_HOUR_OFFSET)
+ | (rtm->tm_min << LS1X_MIN_OFFSET)
+ | (rtm->tm_sec << LS1X_SEC_OFFSET);
+
+ writel(v, SYS_TOYWRITE0);
+ c = 0x10000;
+ /* add timeout check counter, for more safe */
+ while ((readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_TS) && --c)
+ usleep_range(1000, 3000);
+
+ if (!c) {
+ dev_err(dev, "set time timeout!\n");
+ goto err;
+ }
+
+ t = rtm->tm_year + 1900;
+ writel(t, SYS_TOYWRITE1);
+ c = 0x10000;
+ while ((readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_TS) && --c)
+ usleep_range(1000, 3000);
+
+ if (!c) {
+ dev_err(dev, "set time timeout!\n");
+ goto err;
+ }
+ return 0;
+err:
+ return ret;
+}
+
+static const struct rtc_class_ops ls1x_rtc_ops = {
+ .read_time = ls1x_rtc_read_time,
+ .set_time = ls1x_rtc_set_time,
+};
+
+static int ls1x_rtc_probe(struct platform_device *pdev)
+{
+ struct rtc_device *rtcdev;
+ unsigned long v;
+
+ v = readl(SYS_COUNTER_CNTRL);
+ if (!(v & RTC_CNTR_OK)) {
+ dev_err(&pdev->dev, "rtc counters not working\n");
+ return -ENODEV;
+ }
+
+ /* set to 1 HZ if needed */
+ if (readl(SYS_TOYTRIM) != 32767) {
+ v = 0x100000;
+ while ((readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_TTS) && --v)
+ usleep_range(1000, 3000);
+
+ if (!v) {
+ dev_err(&pdev->dev, "time out\n");
+ return -ETIMEDOUT;
+ }
+ writel(32767, SYS_TOYTRIM);
+ }
+ /* this loop coundn't be endless */
+ while (readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_TTS)
+ usleep_range(1000, 3000);
+
+ rtcdev = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtcdev))
+ return PTR_ERR(rtcdev);
+
+ platform_set_drvdata(pdev, rtcdev);
+ rtcdev->ops = &ls1x_rtc_ops;
+ rtcdev->range_min = RTC_TIMESTAMP_BEGIN_1900;
+ rtcdev->range_max = RTC_TIMESTAMP_END_2099;
+
+ return rtc_register_device(rtcdev);
+}
+
+static struct platform_driver ls1x_rtc_driver = {
+ .driver = {
+ .name = "ls1x-rtc",
+ },
+ .probe = ls1x_rtc_probe,
+};
+
+module_platform_driver(ls1x_rtc_driver);
+
+MODULE_AUTHOR("zhao zhang <zhzhl555@gmail.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-m41t80.c b/drivers/rtc/rtc-m41t80.c
new file mode 100644
index 000000000..8a89bc52b
--- /dev/null
+++ b/drivers/rtc/rtc-m41t80.c
@@ -0,0 +1,1016 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * I2C client/driver for the ST M41T80 family of i2c rtc chips.
+ *
+ * Author: Alexander Bigga <ab@mycable.de>
+ *
+ * Based on m41t00.c by Mark A. Greer <mgreer@mvista.com>
+ *
+ * 2006 (c) mycable GmbH
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/bcd.h>
+#include <linux/clk-provider.h>
+#include <linux/i2c.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of_device.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+#include <linux/mutex.h>
+#include <linux/string.h>
+#ifdef CONFIG_RTC_DRV_M41T80_WDT
+#include <linux/fs.h>
+#include <linux/ioctl.h>
+#include <linux/miscdevice.h>
+#include <linux/reboot.h>
+#include <linux/watchdog.h>
+#endif
+
+#define M41T80_REG_SSEC 0x00
+#define M41T80_REG_SEC 0x01
+#define M41T80_REG_MIN 0x02
+#define M41T80_REG_HOUR 0x03
+#define M41T80_REG_WDAY 0x04
+#define M41T80_REG_DAY 0x05
+#define M41T80_REG_MON 0x06
+#define M41T80_REG_YEAR 0x07
+#define M41T80_REG_ALARM_MON 0x0a
+#define M41T80_REG_ALARM_DAY 0x0b
+#define M41T80_REG_ALARM_HOUR 0x0c
+#define M41T80_REG_ALARM_MIN 0x0d
+#define M41T80_REG_ALARM_SEC 0x0e
+#define M41T80_REG_FLAGS 0x0f
+#define M41T80_REG_SQW 0x13
+
+#define M41T80_DATETIME_REG_SIZE (M41T80_REG_YEAR + 1)
+#define M41T80_ALARM_REG_SIZE \
+ (M41T80_REG_ALARM_SEC + 1 - M41T80_REG_ALARM_MON)
+
+#define M41T80_SQW_MAX_FREQ 32768
+
+#define M41T80_SEC_ST BIT(7) /* ST: Stop Bit */
+#define M41T80_ALMON_AFE BIT(7) /* AFE: AF Enable Bit */
+#define M41T80_ALMON_SQWE BIT(6) /* SQWE: SQW Enable Bit */
+#define M41T80_ALHOUR_HT BIT(6) /* HT: Halt Update Bit */
+#define M41T80_FLAGS_OF BIT(2) /* OF: Oscillator Failure Bit */
+#define M41T80_FLAGS_AF BIT(6) /* AF: Alarm Flag Bit */
+#define M41T80_FLAGS_BATT_LOW BIT(4) /* BL: Battery Low Bit */
+#define M41T80_WATCHDOG_RB2 BIT(7) /* RB: Watchdog resolution */
+#define M41T80_WATCHDOG_RB1 BIT(1) /* RB: Watchdog resolution */
+#define M41T80_WATCHDOG_RB0 BIT(0) /* RB: Watchdog resolution */
+
+#define M41T80_FEATURE_HT BIT(0) /* Halt feature */
+#define M41T80_FEATURE_BL BIT(1) /* Battery low indicator */
+#define M41T80_FEATURE_SQ BIT(2) /* Squarewave feature */
+#define M41T80_FEATURE_WD BIT(3) /* Extra watchdog resolution */
+#define M41T80_FEATURE_SQ_ALT BIT(4) /* RSx bits are in reg 4 */
+
+static const struct i2c_device_id m41t80_id[] = {
+ { "m41t62", M41T80_FEATURE_SQ | M41T80_FEATURE_SQ_ALT },
+ { "m41t65", M41T80_FEATURE_HT | M41T80_FEATURE_WD },
+ { "m41t80", M41T80_FEATURE_SQ },
+ { "m41t81", M41T80_FEATURE_HT | M41T80_FEATURE_SQ},
+ { "m41t81s", M41T80_FEATURE_HT | M41T80_FEATURE_BL | M41T80_FEATURE_SQ },
+ { "m41t82", M41T80_FEATURE_HT | M41T80_FEATURE_BL | M41T80_FEATURE_SQ },
+ { "m41t83", M41T80_FEATURE_HT | M41T80_FEATURE_BL | M41T80_FEATURE_SQ },
+ { "m41st84", M41T80_FEATURE_HT | M41T80_FEATURE_BL | M41T80_FEATURE_SQ },
+ { "m41st85", M41T80_FEATURE_HT | M41T80_FEATURE_BL | M41T80_FEATURE_SQ },
+ { "m41st87", M41T80_FEATURE_HT | M41T80_FEATURE_BL | M41T80_FEATURE_SQ },
+ { "rv4162", M41T80_FEATURE_SQ | M41T80_FEATURE_WD | M41T80_FEATURE_SQ_ALT },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, m41t80_id);
+
+static const struct of_device_id m41t80_of_match[] = {
+ {
+ .compatible = "st,m41t62",
+ .data = (void *)(M41T80_FEATURE_SQ | M41T80_FEATURE_SQ_ALT)
+ },
+ {
+ .compatible = "st,m41t65",
+ .data = (void *)(M41T80_FEATURE_HT | M41T80_FEATURE_WD)
+ },
+ {
+ .compatible = "st,m41t80",
+ .data = (void *)(M41T80_FEATURE_SQ)
+ },
+ {
+ .compatible = "st,m41t81",
+ .data = (void *)(M41T80_FEATURE_HT | M41T80_FEATURE_SQ)
+ },
+ {
+ .compatible = "st,m41t81s",
+ .data = (void *)(M41T80_FEATURE_HT | M41T80_FEATURE_BL | M41T80_FEATURE_SQ)
+ },
+ {
+ .compatible = "st,m41t82",
+ .data = (void *)(M41T80_FEATURE_HT | M41T80_FEATURE_BL | M41T80_FEATURE_SQ)
+ },
+ {
+ .compatible = "st,m41t83",
+ .data = (void *)(M41T80_FEATURE_HT | M41T80_FEATURE_BL | M41T80_FEATURE_SQ)
+ },
+ {
+ .compatible = "st,m41t84",
+ .data = (void *)(M41T80_FEATURE_HT | M41T80_FEATURE_BL | M41T80_FEATURE_SQ)
+ },
+ {
+ .compatible = "st,m41t85",
+ .data = (void *)(M41T80_FEATURE_HT | M41T80_FEATURE_BL | M41T80_FEATURE_SQ)
+ },
+ {
+ .compatible = "st,m41t87",
+ .data = (void *)(M41T80_FEATURE_HT | M41T80_FEATURE_BL | M41T80_FEATURE_SQ)
+ },
+ {
+ .compatible = "microcrystal,rv4162",
+ .data = (void *)(M41T80_FEATURE_SQ | M41T80_FEATURE_WD | M41T80_FEATURE_SQ_ALT)
+ },
+ /* DT compatibility only, do not use compatibles below: */
+ {
+ .compatible = "st,rv4162",
+ .data = (void *)(M41T80_FEATURE_SQ | M41T80_FEATURE_WD | M41T80_FEATURE_SQ_ALT)
+ },
+ {
+ .compatible = "rv4162",
+ .data = (void *)(M41T80_FEATURE_SQ | M41T80_FEATURE_WD | M41T80_FEATURE_SQ_ALT)
+ },
+ { }
+};
+MODULE_DEVICE_TABLE(of, m41t80_of_match);
+
+struct m41t80_data {
+ unsigned long features;
+ struct i2c_client *client;
+ struct rtc_device *rtc;
+#ifdef CONFIG_COMMON_CLK
+ struct clk_hw sqw;
+ unsigned long freq;
+ unsigned int sqwe;
+#endif
+};
+
+static irqreturn_t m41t80_handle_irq(int irq, void *dev_id)
+{
+ struct i2c_client *client = dev_id;
+ struct m41t80_data *m41t80 = i2c_get_clientdata(client);
+ struct mutex *lock = &m41t80->rtc->ops_lock;
+ unsigned long events = 0;
+ int flags, flags_afe;
+
+ mutex_lock(lock);
+
+ flags_afe = i2c_smbus_read_byte_data(client, M41T80_REG_ALARM_MON);
+ if (flags_afe < 0) {
+ mutex_unlock(lock);
+ return IRQ_NONE;
+ }
+
+ flags = i2c_smbus_read_byte_data(client, M41T80_REG_FLAGS);
+ if (flags <= 0) {
+ mutex_unlock(lock);
+ return IRQ_NONE;
+ }
+
+ if (flags & M41T80_FLAGS_AF) {
+ flags &= ~M41T80_FLAGS_AF;
+ flags_afe &= ~M41T80_ALMON_AFE;
+ events |= RTC_AF;
+ }
+
+ if (events) {
+ rtc_update_irq(m41t80->rtc, 1, events);
+ i2c_smbus_write_byte_data(client, M41T80_REG_FLAGS, flags);
+ i2c_smbus_write_byte_data(client, M41T80_REG_ALARM_MON,
+ flags_afe);
+ }
+
+ mutex_unlock(lock);
+
+ return IRQ_HANDLED;
+}
+
+static int m41t80_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ unsigned char buf[8];
+ int err, flags;
+
+ flags = i2c_smbus_read_byte_data(client, M41T80_REG_FLAGS);
+ if (flags < 0)
+ return flags;
+
+ if (flags & M41T80_FLAGS_OF) {
+ dev_err(&client->dev, "Oscillator failure, data is invalid.\n");
+ return -EINVAL;
+ }
+
+ err = i2c_smbus_read_i2c_block_data(client, M41T80_REG_SSEC,
+ sizeof(buf), buf);
+ if (err < 0) {
+ dev_err(&client->dev, "Unable to read date\n");
+ return err;
+ }
+
+ tm->tm_sec = bcd2bin(buf[M41T80_REG_SEC] & 0x7f);
+ tm->tm_min = bcd2bin(buf[M41T80_REG_MIN] & 0x7f);
+ tm->tm_hour = bcd2bin(buf[M41T80_REG_HOUR] & 0x3f);
+ tm->tm_mday = bcd2bin(buf[M41T80_REG_DAY] & 0x3f);
+ tm->tm_wday = buf[M41T80_REG_WDAY] & 0x07;
+ tm->tm_mon = bcd2bin(buf[M41T80_REG_MON] & 0x1f) - 1;
+
+ /* assume 20YY not 19YY, and ignore the Century Bit */
+ tm->tm_year = bcd2bin(buf[M41T80_REG_YEAR]) + 100;
+ return 0;
+}
+
+static int m41t80_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct m41t80_data *clientdata = i2c_get_clientdata(client);
+ unsigned char buf[8];
+ int err, flags;
+
+ buf[M41T80_REG_SSEC] = 0;
+ buf[M41T80_REG_SEC] = bin2bcd(tm->tm_sec);
+ buf[M41T80_REG_MIN] = bin2bcd(tm->tm_min);
+ buf[M41T80_REG_HOUR] = bin2bcd(tm->tm_hour);
+ buf[M41T80_REG_DAY] = bin2bcd(tm->tm_mday);
+ buf[M41T80_REG_MON] = bin2bcd(tm->tm_mon + 1);
+ buf[M41T80_REG_YEAR] = bin2bcd(tm->tm_year - 100);
+ buf[M41T80_REG_WDAY] = tm->tm_wday;
+
+ /* If the square wave output is controlled in the weekday register */
+ if (clientdata->features & M41T80_FEATURE_SQ_ALT) {
+ int val;
+
+ val = i2c_smbus_read_byte_data(client, M41T80_REG_WDAY);
+ if (val < 0)
+ return val;
+
+ buf[M41T80_REG_WDAY] |= (val & 0xf0);
+ }
+
+ err = i2c_smbus_write_i2c_block_data(client, M41T80_REG_SSEC,
+ sizeof(buf), buf);
+ if (err < 0) {
+ dev_err(&client->dev, "Unable to write to date registers\n");
+ return err;
+ }
+
+ /* Clear the OF bit of Flags Register */
+ flags = i2c_smbus_read_byte_data(client, M41T80_REG_FLAGS);
+ if (flags < 0)
+ return flags;
+
+ err = i2c_smbus_write_byte_data(client, M41T80_REG_FLAGS,
+ flags & ~M41T80_FLAGS_OF);
+ if (err < 0) {
+ dev_err(&client->dev, "Unable to write flags register\n");
+ return err;
+ }
+
+ return err;
+}
+
+static int m41t80_rtc_proc(struct device *dev, struct seq_file *seq)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct m41t80_data *clientdata = i2c_get_clientdata(client);
+ int reg;
+
+ if (clientdata->features & M41T80_FEATURE_BL) {
+ reg = i2c_smbus_read_byte_data(client, M41T80_REG_FLAGS);
+ if (reg < 0)
+ return reg;
+ seq_printf(seq, "battery\t\t: %s\n",
+ (reg & M41T80_FLAGS_BATT_LOW) ? "exhausted" : "ok");
+ }
+ return 0;
+}
+
+static int m41t80_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ int flags, retval;
+
+ flags = i2c_smbus_read_byte_data(client, M41T80_REG_ALARM_MON);
+ if (flags < 0)
+ return flags;
+
+ if (enabled)
+ flags |= M41T80_ALMON_AFE;
+ else
+ flags &= ~M41T80_ALMON_AFE;
+
+ retval = i2c_smbus_write_byte_data(client, M41T80_REG_ALARM_MON, flags);
+ if (retval < 0) {
+ dev_err(dev, "Unable to enable alarm IRQ %d\n", retval);
+ return retval;
+ }
+ return 0;
+}
+
+static int m41t80_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ u8 alarmvals[5];
+ int ret, err;
+
+ alarmvals[0] = bin2bcd(alrm->time.tm_mon + 1);
+ alarmvals[1] = bin2bcd(alrm->time.tm_mday);
+ alarmvals[2] = bin2bcd(alrm->time.tm_hour);
+ alarmvals[3] = bin2bcd(alrm->time.tm_min);
+ alarmvals[4] = bin2bcd(alrm->time.tm_sec);
+
+ /* Clear AF and AFE flags */
+ ret = i2c_smbus_read_byte_data(client, M41T80_REG_ALARM_MON);
+ if (ret < 0)
+ return ret;
+ err = i2c_smbus_write_byte_data(client, M41T80_REG_ALARM_MON,
+ ret & ~(M41T80_ALMON_AFE));
+ if (err < 0) {
+ dev_err(dev, "Unable to clear AFE bit\n");
+ return err;
+ }
+
+ /* Keep SQWE bit value */
+ alarmvals[0] |= (ret & M41T80_ALMON_SQWE);
+
+ ret = i2c_smbus_read_byte_data(client, M41T80_REG_FLAGS);
+ if (ret < 0)
+ return ret;
+
+ err = i2c_smbus_write_byte_data(client, M41T80_REG_FLAGS,
+ ret & ~(M41T80_FLAGS_AF));
+ if (err < 0) {
+ dev_err(dev, "Unable to clear AF bit\n");
+ return err;
+ }
+
+ /* Write the alarm */
+ err = i2c_smbus_write_i2c_block_data(client, M41T80_REG_ALARM_MON,
+ 5, alarmvals);
+ if (err)
+ return err;
+
+ /* Enable the alarm interrupt */
+ if (alrm->enabled) {
+ alarmvals[0] |= M41T80_ALMON_AFE;
+ err = i2c_smbus_write_byte_data(client, M41T80_REG_ALARM_MON,
+ alarmvals[0]);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+static int m41t80_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ u8 alarmvals[5];
+ int flags, ret;
+
+ ret = i2c_smbus_read_i2c_block_data(client, M41T80_REG_ALARM_MON,
+ 5, alarmvals);
+ if (ret != 5)
+ return ret < 0 ? ret : -EIO;
+
+ flags = i2c_smbus_read_byte_data(client, M41T80_REG_FLAGS);
+ if (flags < 0)
+ return flags;
+
+ alrm->time.tm_sec = bcd2bin(alarmvals[4] & 0x7f);
+ alrm->time.tm_min = bcd2bin(alarmvals[3] & 0x7f);
+ alrm->time.tm_hour = bcd2bin(alarmvals[2] & 0x3f);
+ alrm->time.tm_mday = bcd2bin(alarmvals[1] & 0x3f);
+ alrm->time.tm_mon = bcd2bin(alarmvals[0] & 0x3f) - 1;
+
+ alrm->enabled = !!(alarmvals[0] & M41T80_ALMON_AFE);
+ alrm->pending = (flags & M41T80_FLAGS_AF) && alrm->enabled;
+
+ return 0;
+}
+
+static struct rtc_class_ops m41t80_rtc_ops = {
+ .read_time = m41t80_rtc_read_time,
+ .set_time = m41t80_rtc_set_time,
+ .proc = m41t80_rtc_proc,
+};
+
+#ifdef CONFIG_PM_SLEEP
+static int m41t80_suspend(struct device *dev)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+
+ if (client->irq >= 0 && device_may_wakeup(dev))
+ enable_irq_wake(client->irq);
+
+ return 0;
+}
+
+static int m41t80_resume(struct device *dev)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+
+ if (client->irq >= 0 && device_may_wakeup(dev))
+ disable_irq_wake(client->irq);
+
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(m41t80_pm, m41t80_suspend, m41t80_resume);
+
+#ifdef CONFIG_COMMON_CLK
+#define sqw_to_m41t80_data(_hw) container_of(_hw, struct m41t80_data, sqw)
+
+static unsigned long m41t80_decode_freq(int setting)
+{
+ return (setting == 0) ? 0 : (setting == 1) ? M41T80_SQW_MAX_FREQ :
+ M41T80_SQW_MAX_FREQ >> setting;
+}
+
+static unsigned long m41t80_get_freq(struct m41t80_data *m41t80)
+{
+ struct i2c_client *client = m41t80->client;
+ int reg_sqw = (m41t80->features & M41T80_FEATURE_SQ_ALT) ?
+ M41T80_REG_WDAY : M41T80_REG_SQW;
+ int ret = i2c_smbus_read_byte_data(client, reg_sqw);
+
+ if (ret < 0)
+ return 0;
+ return m41t80_decode_freq(ret >> 4);
+}
+
+static unsigned long m41t80_sqw_recalc_rate(struct clk_hw *hw,
+ unsigned long parent_rate)
+{
+ return sqw_to_m41t80_data(hw)->freq;
+}
+
+static long m41t80_sqw_round_rate(struct clk_hw *hw, unsigned long rate,
+ unsigned long *prate)
+{
+ if (rate >= M41T80_SQW_MAX_FREQ)
+ return M41T80_SQW_MAX_FREQ;
+ if (rate >= M41T80_SQW_MAX_FREQ / 4)
+ return M41T80_SQW_MAX_FREQ / 4;
+ if (!rate)
+ return 0;
+ return 1 << ilog2(rate);
+}
+
+static int m41t80_sqw_set_rate(struct clk_hw *hw, unsigned long rate,
+ unsigned long parent_rate)
+{
+ struct m41t80_data *m41t80 = sqw_to_m41t80_data(hw);
+ struct i2c_client *client = m41t80->client;
+ int reg_sqw = (m41t80->features & M41T80_FEATURE_SQ_ALT) ?
+ M41T80_REG_WDAY : M41T80_REG_SQW;
+ int reg, ret, val = 0;
+
+ if (rate >= M41T80_SQW_MAX_FREQ)
+ val = 1;
+ else if (rate >= M41T80_SQW_MAX_FREQ / 4)
+ val = 2;
+ else if (rate)
+ val = 15 - ilog2(rate);
+
+ reg = i2c_smbus_read_byte_data(client, reg_sqw);
+ if (reg < 0)
+ return reg;
+
+ reg = (reg & 0x0f) | (val << 4);
+
+ ret = i2c_smbus_write_byte_data(client, reg_sqw, reg);
+ if (!ret)
+ m41t80->freq = m41t80_decode_freq(val);
+ return ret;
+}
+
+static int m41t80_sqw_control(struct clk_hw *hw, bool enable)
+{
+ struct m41t80_data *m41t80 = sqw_to_m41t80_data(hw);
+ struct i2c_client *client = m41t80->client;
+ int ret = i2c_smbus_read_byte_data(client, M41T80_REG_ALARM_MON);
+
+ if (ret < 0)
+ return ret;
+
+ if (enable)
+ ret |= M41T80_ALMON_SQWE;
+ else
+ ret &= ~M41T80_ALMON_SQWE;
+
+ ret = i2c_smbus_write_byte_data(client, M41T80_REG_ALARM_MON, ret);
+ if (!ret)
+ m41t80->sqwe = enable;
+ return ret;
+}
+
+static int m41t80_sqw_prepare(struct clk_hw *hw)
+{
+ return m41t80_sqw_control(hw, 1);
+}
+
+static void m41t80_sqw_unprepare(struct clk_hw *hw)
+{
+ m41t80_sqw_control(hw, 0);
+}
+
+static int m41t80_sqw_is_prepared(struct clk_hw *hw)
+{
+ return sqw_to_m41t80_data(hw)->sqwe;
+}
+
+static const struct clk_ops m41t80_sqw_ops = {
+ .prepare = m41t80_sqw_prepare,
+ .unprepare = m41t80_sqw_unprepare,
+ .is_prepared = m41t80_sqw_is_prepared,
+ .recalc_rate = m41t80_sqw_recalc_rate,
+ .round_rate = m41t80_sqw_round_rate,
+ .set_rate = m41t80_sqw_set_rate,
+};
+
+static struct clk *m41t80_sqw_register_clk(struct m41t80_data *m41t80)
+{
+ struct i2c_client *client = m41t80->client;
+ struct device_node *node = client->dev.of_node;
+ struct clk *clk;
+ struct clk_init_data init;
+ int ret;
+
+ /* First disable the clock */
+ ret = i2c_smbus_read_byte_data(client, M41T80_REG_ALARM_MON);
+ if (ret < 0)
+ return ERR_PTR(ret);
+ ret = i2c_smbus_write_byte_data(client, M41T80_REG_ALARM_MON,
+ ret & ~(M41T80_ALMON_SQWE));
+ if (ret < 0)
+ return ERR_PTR(ret);
+
+ init.name = "m41t80-sqw";
+ init.ops = &m41t80_sqw_ops;
+ init.flags = 0;
+ init.parent_names = NULL;
+ init.num_parents = 0;
+ m41t80->sqw.init = &init;
+ m41t80->freq = m41t80_get_freq(m41t80);
+
+ /* optional override of the clockname */
+ of_property_read_string(node, "clock-output-names", &init.name);
+
+ /* register the clock */
+ clk = clk_register(&client->dev, &m41t80->sqw);
+ if (!IS_ERR(clk))
+ of_clk_add_provider(node, of_clk_src_simple_get, clk);
+
+ return clk;
+}
+#endif
+
+#ifdef CONFIG_RTC_DRV_M41T80_WDT
+/*
+ *****************************************************************************
+ *
+ * Watchdog Driver
+ *
+ *****************************************************************************
+ */
+static DEFINE_MUTEX(m41t80_rtc_mutex);
+static struct i2c_client *save_client;
+
+/* Default margin */
+#define WD_TIMO 60 /* 1..31 seconds */
+
+static int wdt_margin = WD_TIMO;
+module_param(wdt_margin, int, 0);
+MODULE_PARM_DESC(wdt_margin, "Watchdog timeout in seconds (default 60s)");
+
+static unsigned long wdt_is_open;
+static int boot_flag;
+
+/**
+ * wdt_ping:
+ *
+ * Reload counter one with the watchdog timeout. We don't bother reloading
+ * the cascade counter.
+ */
+static void wdt_ping(void)
+{
+ unsigned char i2c_data[2];
+ struct i2c_msg msgs1[1] = {
+ {
+ .addr = save_client->addr,
+ .flags = 0,
+ .len = 2,
+ .buf = i2c_data,
+ },
+ };
+ struct m41t80_data *clientdata = i2c_get_clientdata(save_client);
+
+ i2c_data[0] = 0x09; /* watchdog register */
+
+ if (wdt_margin > 31)
+ i2c_data[1] = (wdt_margin & 0xFC) | 0x83; /* resolution = 4s */
+ else
+ /*
+ * WDS = 1 (0x80), mulitplier = WD_TIMO, resolution = 1s (0x02)
+ */
+ i2c_data[1] = wdt_margin << 2 | 0x82;
+
+ /*
+ * M41T65 has three bits for watchdog resolution. Don't set bit 7, as
+ * that would be an invalid resolution.
+ */
+ if (clientdata->features & M41T80_FEATURE_WD)
+ i2c_data[1] &= ~M41T80_WATCHDOG_RB2;
+
+ i2c_transfer(save_client->adapter, msgs1, 1);
+}
+
+/**
+ * wdt_disable:
+ *
+ * disables watchdog.
+ */
+static void wdt_disable(void)
+{
+ unsigned char i2c_data[2], i2c_buf[0x10];
+ struct i2c_msg msgs0[2] = {
+ {
+ .addr = save_client->addr,
+ .flags = 0,
+ .len = 1,
+ .buf = i2c_data,
+ },
+ {
+ .addr = save_client->addr,
+ .flags = I2C_M_RD,
+ .len = 1,
+ .buf = i2c_buf,
+ },
+ };
+ struct i2c_msg msgs1[1] = {
+ {
+ .addr = save_client->addr,
+ .flags = 0,
+ .len = 2,
+ .buf = i2c_data,
+ },
+ };
+
+ i2c_data[0] = 0x09;
+ i2c_transfer(save_client->adapter, msgs0, 2);
+
+ i2c_data[0] = 0x09;
+ i2c_data[1] = 0x00;
+ i2c_transfer(save_client->adapter, msgs1, 1);
+}
+
+/**
+ * wdt_write:
+ * @file: file handle to the watchdog
+ * @buf: buffer to write (unused as data does not matter here
+ * @count: count of bytes
+ * @ppos: pointer to the position to write. No seeks allowed
+ *
+ * A write to a watchdog device is defined as a keepalive signal. Any
+ * write of data will do, as we we don't define content meaning.
+ */
+static ssize_t wdt_write(struct file *file, const char __user *buf,
+ size_t count, loff_t *ppos)
+{
+ if (count) {
+ wdt_ping();
+ return 1;
+ }
+ return 0;
+}
+
+static ssize_t wdt_read(struct file *file, char __user *buf,
+ size_t count, loff_t *ppos)
+{
+ return 0;
+}
+
+/**
+ * wdt_ioctl:
+ * @file: file handle to the device
+ * @cmd: watchdog command
+ * @arg: argument pointer
+ *
+ * The watchdog API defines a common set of functions for all watchdogs
+ * according to their available features. We only actually usefully support
+ * querying capabilities and current status.
+ */
+static int wdt_ioctl(struct file *file, unsigned int cmd,
+ unsigned long arg)
+{
+ int new_margin, rv;
+ static struct watchdog_info ident = {
+ .options = WDIOF_POWERUNDER | WDIOF_KEEPALIVEPING |
+ WDIOF_SETTIMEOUT,
+ .firmware_version = 1,
+ .identity = "M41T80 WTD"
+ };
+
+ switch (cmd) {
+ case WDIOC_GETSUPPORT:
+ return copy_to_user((struct watchdog_info __user *)arg, &ident,
+ sizeof(ident)) ? -EFAULT : 0;
+
+ case WDIOC_GETSTATUS:
+ case WDIOC_GETBOOTSTATUS:
+ return put_user(boot_flag, (int __user *)arg);
+ case WDIOC_KEEPALIVE:
+ wdt_ping();
+ return 0;
+ case WDIOC_SETTIMEOUT:
+ if (get_user(new_margin, (int __user *)arg))
+ return -EFAULT;
+ /* Arbitrary, can't find the card's limits */
+ if (new_margin < 1 || new_margin > 124)
+ return -EINVAL;
+ wdt_margin = new_margin;
+ wdt_ping();
+ fallthrough;
+ case WDIOC_GETTIMEOUT:
+ return put_user(wdt_margin, (int __user *)arg);
+
+ case WDIOC_SETOPTIONS:
+ if (copy_from_user(&rv, (int __user *)arg, sizeof(int)))
+ return -EFAULT;
+
+ if (rv & WDIOS_DISABLECARD) {
+ pr_info("disable watchdog\n");
+ wdt_disable();
+ }
+
+ if (rv & WDIOS_ENABLECARD) {
+ pr_info("enable watchdog\n");
+ wdt_ping();
+ }
+
+ return -EINVAL;
+ }
+ return -ENOTTY;
+}
+
+static long wdt_unlocked_ioctl(struct file *file, unsigned int cmd,
+ unsigned long arg)
+{
+ int ret;
+
+ mutex_lock(&m41t80_rtc_mutex);
+ ret = wdt_ioctl(file, cmd, arg);
+ mutex_unlock(&m41t80_rtc_mutex);
+
+ return ret;
+}
+
+/**
+ * wdt_open:
+ * @inode: inode of device
+ * @file: file handle to device
+ *
+ */
+static int wdt_open(struct inode *inode, struct file *file)
+{
+ if (MINOR(inode->i_rdev) == WATCHDOG_MINOR) {
+ mutex_lock(&m41t80_rtc_mutex);
+ if (test_and_set_bit(0, &wdt_is_open)) {
+ mutex_unlock(&m41t80_rtc_mutex);
+ return -EBUSY;
+ }
+ /*
+ * Activate
+ */
+ wdt_is_open = 1;
+ mutex_unlock(&m41t80_rtc_mutex);
+ return stream_open(inode, file);
+ }
+ return -ENODEV;
+}
+
+/**
+ * wdt_close:
+ * @inode: inode to board
+ * @file: file handle to board
+ *
+ */
+static int wdt_release(struct inode *inode, struct file *file)
+{
+ if (MINOR(inode->i_rdev) == WATCHDOG_MINOR)
+ clear_bit(0, &wdt_is_open);
+ return 0;
+}
+
+/**
+ * notify_sys:
+ * @this: our notifier block
+ * @code: the event being reported
+ * @unused: unused
+ *
+ * Our notifier is called on system shutdowns. We want to turn the card
+ * off at reboot otherwise the machine will reboot again during memory
+ * test or worse yet during the following fsck. This would suck, in fact
+ * trust me - if it happens it does suck.
+ */
+static int wdt_notify_sys(struct notifier_block *this, unsigned long code,
+ void *unused)
+{
+ if (code == SYS_DOWN || code == SYS_HALT)
+ /* Disable Watchdog */
+ wdt_disable();
+ return NOTIFY_DONE;
+}
+
+static const struct file_operations wdt_fops = {
+ .owner = THIS_MODULE,
+ .read = wdt_read,
+ .unlocked_ioctl = wdt_unlocked_ioctl,
+ .compat_ioctl = compat_ptr_ioctl,
+ .write = wdt_write,
+ .open = wdt_open,
+ .release = wdt_release,
+ .llseek = no_llseek,
+};
+
+static struct miscdevice wdt_dev = {
+ .minor = WATCHDOG_MINOR,
+ .name = "watchdog",
+ .fops = &wdt_fops,
+};
+
+/*
+ * The WDT card needs to learn about soft shutdowns in order to
+ * turn the timebomb registers off.
+ */
+static struct notifier_block wdt_notifier = {
+ .notifier_call = wdt_notify_sys,
+};
+#endif /* CONFIG_RTC_DRV_M41T80_WDT */
+
+/*
+ *****************************************************************************
+ *
+ * Driver Interface
+ *
+ *****************************************************************************
+ */
+
+static int m41t80_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct i2c_adapter *adapter = client->adapter;
+ int rc = 0;
+ struct rtc_time tm;
+ struct m41t80_data *m41t80_data = NULL;
+ bool wakeup_source = false;
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_I2C_BLOCK |
+ I2C_FUNC_SMBUS_BYTE_DATA)) {
+ dev_err(&adapter->dev, "doesn't support I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_I2C_BLOCK\n");
+ return -ENODEV;
+ }
+
+ m41t80_data = devm_kzalloc(&client->dev, sizeof(*m41t80_data),
+ GFP_KERNEL);
+ if (!m41t80_data)
+ return -ENOMEM;
+
+ m41t80_data->client = client;
+ if (client->dev.of_node)
+ m41t80_data->features = (unsigned long)
+ of_device_get_match_data(&client->dev);
+ else
+ m41t80_data->features = id->driver_data;
+ i2c_set_clientdata(client, m41t80_data);
+
+ m41t80_data->rtc = devm_rtc_allocate_device(&client->dev);
+ if (IS_ERR(m41t80_data->rtc))
+ return PTR_ERR(m41t80_data->rtc);
+
+#ifdef CONFIG_OF
+ wakeup_source = of_property_read_bool(client->dev.of_node,
+ "wakeup-source");
+#endif
+ if (client->irq > 0) {
+ rc = devm_request_threaded_irq(&client->dev, client->irq,
+ NULL, m41t80_handle_irq,
+ IRQF_TRIGGER_LOW | IRQF_ONESHOT,
+ "m41t80", client);
+ if (rc) {
+ dev_warn(&client->dev, "unable to request IRQ, alarms disabled\n");
+ client->irq = 0;
+ wakeup_source = false;
+ }
+ }
+ if (client->irq > 0 || wakeup_source) {
+ m41t80_rtc_ops.read_alarm = m41t80_read_alarm;
+ m41t80_rtc_ops.set_alarm = m41t80_set_alarm;
+ m41t80_rtc_ops.alarm_irq_enable = m41t80_alarm_irq_enable;
+ /* Enable the wakealarm */
+ device_init_wakeup(&client->dev, true);
+ }
+
+ m41t80_data->rtc->ops = &m41t80_rtc_ops;
+ m41t80_data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ m41t80_data->rtc->range_max = RTC_TIMESTAMP_END_2099;
+
+ if (client->irq <= 0) {
+ /* We cannot support UIE mode if we do not have an IRQ line */
+ m41t80_data->rtc->uie_unsupported = 1;
+ }
+
+ /* Make sure HT (Halt Update) bit is cleared */
+ rc = i2c_smbus_read_byte_data(client, M41T80_REG_ALARM_HOUR);
+
+ if (rc >= 0 && rc & M41T80_ALHOUR_HT) {
+ if (m41t80_data->features & M41T80_FEATURE_HT) {
+ m41t80_rtc_read_time(&client->dev, &tm);
+ dev_info(&client->dev, "HT bit was set!\n");
+ dev_info(&client->dev, "Power Down at %ptR\n", &tm);
+ }
+ rc = i2c_smbus_write_byte_data(client, M41T80_REG_ALARM_HOUR,
+ rc & ~M41T80_ALHOUR_HT);
+ }
+
+ if (rc < 0) {
+ dev_err(&client->dev, "Can't clear HT bit\n");
+ return rc;
+ }
+
+ /* Make sure ST (stop) bit is cleared */
+ rc = i2c_smbus_read_byte_data(client, M41T80_REG_SEC);
+
+ if (rc >= 0 && rc & M41T80_SEC_ST)
+ rc = i2c_smbus_write_byte_data(client, M41T80_REG_SEC,
+ rc & ~M41T80_SEC_ST);
+ if (rc < 0) {
+ dev_err(&client->dev, "Can't clear ST bit\n");
+ return rc;
+ }
+
+#ifdef CONFIG_RTC_DRV_M41T80_WDT
+ if (m41t80_data->features & M41T80_FEATURE_HT) {
+ save_client = client;
+ rc = misc_register(&wdt_dev);
+ if (rc)
+ return rc;
+ rc = register_reboot_notifier(&wdt_notifier);
+ if (rc) {
+ misc_deregister(&wdt_dev);
+ return rc;
+ }
+ }
+#endif
+#ifdef CONFIG_COMMON_CLK
+ if (m41t80_data->features & M41T80_FEATURE_SQ)
+ m41t80_sqw_register_clk(m41t80_data);
+#endif
+
+ rc = rtc_register_device(m41t80_data->rtc);
+ if (rc)
+ return rc;
+
+ return 0;
+}
+
+static int m41t80_remove(struct i2c_client *client)
+{
+#ifdef CONFIG_RTC_DRV_M41T80_WDT
+ struct m41t80_data *clientdata = i2c_get_clientdata(client);
+
+ if (clientdata->features & M41T80_FEATURE_HT) {
+ misc_deregister(&wdt_dev);
+ unregister_reboot_notifier(&wdt_notifier);
+ }
+#endif
+
+ return 0;
+}
+
+static struct i2c_driver m41t80_driver = {
+ .driver = {
+ .name = "rtc-m41t80",
+ .of_match_table = of_match_ptr(m41t80_of_match),
+ .pm = &m41t80_pm,
+ },
+ .probe = m41t80_probe,
+ .remove = m41t80_remove,
+ .id_table = m41t80_id,
+};
+
+module_i2c_driver(m41t80_driver);
+
+MODULE_AUTHOR("Alexander Bigga <ab@mycable.de>");
+MODULE_DESCRIPTION("ST Microelectronics M41T80 series RTC I2C Client Driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-m41t93.c b/drivers/rtc/rtc-m41t93.c
new file mode 100644
index 000000000..9444cb5f5
--- /dev/null
+++ b/drivers/rtc/rtc-m41t93.c
@@ -0,0 +1,206 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ *
+ * Driver for ST M41T93 SPI RTC
+ *
+ * (c) 2010 Nikolaus Voss, Weinmann Medical GmbH
+ */
+
+#include <linux/bcd.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/spi/spi.h>
+
+#define M41T93_REG_SSEC 0
+#define M41T93_REG_ST_SEC 1
+#define M41T93_REG_MIN 2
+#define M41T93_REG_CENT_HOUR 3
+#define M41T93_REG_WDAY 4
+#define M41T93_REG_DAY 5
+#define M41T93_REG_MON 6
+#define M41T93_REG_YEAR 7
+
+
+#define M41T93_REG_ALM_HOUR_HT 0xc
+#define M41T93_REG_FLAGS 0xf
+
+#define M41T93_FLAG_ST (1 << 7)
+#define M41T93_FLAG_OF (1 << 2)
+#define M41T93_FLAG_BL (1 << 4)
+#define M41T93_FLAG_HT (1 << 6)
+
+static inline int m41t93_set_reg(struct spi_device *spi, u8 addr, u8 data)
+{
+ u8 buf[2];
+
+ /* MSB must be '1' to write */
+ buf[0] = addr | 0x80;
+ buf[1] = data;
+
+ return spi_write(spi, buf, sizeof(buf));
+}
+
+static int m41t93_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ int tmp;
+ u8 buf[9] = {0x80}; /* write cmd + 8 data bytes */
+ u8 * const data = &buf[1]; /* ptr to first data byte */
+
+ dev_dbg(dev, "%s secs=%d, mins=%d, "
+ "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
+ "write", tm->tm_sec, tm->tm_min,
+ tm->tm_hour, tm->tm_mday,
+ tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ if (tm->tm_year < 100) {
+ dev_warn(&spi->dev, "unsupported date (before 2000-01-01).\n");
+ return -EINVAL;
+ }
+
+ tmp = spi_w8r8(spi, M41T93_REG_FLAGS);
+ if (tmp < 0)
+ return tmp;
+
+ if (tmp & M41T93_FLAG_OF) {
+ dev_warn(&spi->dev, "OF bit is set, resetting.\n");
+ m41t93_set_reg(spi, M41T93_REG_FLAGS, tmp & ~M41T93_FLAG_OF);
+
+ tmp = spi_w8r8(spi, M41T93_REG_FLAGS);
+ if (tmp < 0) {
+ return tmp;
+ } else if (tmp & M41T93_FLAG_OF) {
+ /* OF cannot be immediately reset: oscillator has to be
+ * restarted. */
+ u8 reset_osc = buf[M41T93_REG_ST_SEC] | M41T93_FLAG_ST;
+
+ dev_warn(&spi->dev,
+ "OF bit is still set, kickstarting clock.\n");
+ m41t93_set_reg(spi, M41T93_REG_ST_SEC, reset_osc);
+ reset_osc &= ~M41T93_FLAG_ST;
+ m41t93_set_reg(spi, M41T93_REG_ST_SEC, reset_osc);
+ }
+ }
+
+ data[M41T93_REG_SSEC] = 0;
+ data[M41T93_REG_ST_SEC] = bin2bcd(tm->tm_sec);
+ data[M41T93_REG_MIN] = bin2bcd(tm->tm_min);
+ data[M41T93_REG_CENT_HOUR] = bin2bcd(tm->tm_hour) |
+ ((tm->tm_year/100-1) << 6);
+ data[M41T93_REG_DAY] = bin2bcd(tm->tm_mday);
+ data[M41T93_REG_WDAY] = bin2bcd(tm->tm_wday + 1);
+ data[M41T93_REG_MON] = bin2bcd(tm->tm_mon + 1);
+ data[M41T93_REG_YEAR] = bin2bcd(tm->tm_year % 100);
+
+ return spi_write(spi, buf, sizeof(buf));
+}
+
+
+static int m41t93_get_time(struct device *dev, struct rtc_time *tm)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ const u8 start_addr = 0;
+ u8 buf[8];
+ int century_after_1900;
+ int tmp;
+ int ret = 0;
+
+ /* Check status of clock. Two states must be considered:
+ 1. halt bit (HT) is set: the clock is running but update of readout
+ registers has been disabled due to power failure. This is normal
+ case after poweron. Time is valid after resetting HT bit.
+ 2. oscillator fail bit (OF) is set: time is invalid.
+ */
+ tmp = spi_w8r8(spi, M41T93_REG_ALM_HOUR_HT);
+ if (tmp < 0)
+ return tmp;
+
+ if (tmp & M41T93_FLAG_HT) {
+ dev_dbg(&spi->dev, "HT bit is set, reenable clock update.\n");
+ m41t93_set_reg(spi, M41T93_REG_ALM_HOUR_HT,
+ tmp & ~M41T93_FLAG_HT);
+ }
+
+ tmp = spi_w8r8(spi, M41T93_REG_FLAGS);
+ if (tmp < 0)
+ return tmp;
+
+ if (tmp & M41T93_FLAG_OF) {
+ ret = -EINVAL;
+ dev_warn(&spi->dev, "OF bit is set, write time to restart.\n");
+ }
+
+ if (tmp & M41T93_FLAG_BL)
+ dev_warn(&spi->dev, "BL bit is set, replace battery.\n");
+
+ /* read actual time/date */
+ tmp = spi_write_then_read(spi, &start_addr, 1, buf, sizeof(buf));
+ if (tmp < 0)
+ return tmp;
+
+ tm->tm_sec = bcd2bin(buf[M41T93_REG_ST_SEC]);
+ tm->tm_min = bcd2bin(buf[M41T93_REG_MIN]);
+ tm->tm_hour = bcd2bin(buf[M41T93_REG_CENT_HOUR] & 0x3f);
+ tm->tm_mday = bcd2bin(buf[M41T93_REG_DAY]);
+ tm->tm_mon = bcd2bin(buf[M41T93_REG_MON]) - 1;
+ tm->tm_wday = bcd2bin(buf[M41T93_REG_WDAY] & 0x0f) - 1;
+
+ century_after_1900 = (buf[M41T93_REG_CENT_HOUR] >> 6) + 1;
+ tm->tm_year = bcd2bin(buf[M41T93_REG_YEAR]) + century_after_1900 * 100;
+
+ dev_dbg(dev, "%s secs=%d, mins=%d, "
+ "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
+ "read", tm->tm_sec, tm->tm_min,
+ tm->tm_hour, tm->tm_mday,
+ tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ return ret;
+}
+
+
+static const struct rtc_class_ops m41t93_rtc_ops = {
+ .read_time = m41t93_get_time,
+ .set_time = m41t93_set_time,
+};
+
+static struct spi_driver m41t93_driver;
+
+static int m41t93_probe(struct spi_device *spi)
+{
+ struct rtc_device *rtc;
+ int res;
+
+ spi->bits_per_word = 8;
+ spi_setup(spi);
+
+ res = spi_w8r8(spi, M41T93_REG_WDAY);
+ if (res < 0 || (res & 0xf8) != 0) {
+ dev_err(&spi->dev, "not found 0x%x.\n", res);
+ return -ENODEV;
+ }
+
+ rtc = devm_rtc_device_register(&spi->dev, m41t93_driver.driver.name,
+ &m41t93_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ spi_set_drvdata(spi, rtc);
+
+ return 0;
+}
+
+static struct spi_driver m41t93_driver = {
+ .driver = {
+ .name = "rtc-m41t93",
+ },
+ .probe = m41t93_probe,
+};
+
+module_spi_driver(m41t93_driver);
+
+MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
+MODULE_DESCRIPTION("Driver for ST M41T93 SPI RTC");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("spi:rtc-m41t93");
diff --git a/drivers/rtc/rtc-m41t94.c b/drivers/rtc/rtc-m41t94.c
new file mode 100644
index 000000000..6803b0273
--- /dev/null
+++ b/drivers/rtc/rtc-m41t94.c
@@ -0,0 +1,145 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Driver for ST M41T94 SPI RTC
+ *
+ * Copyright (C) 2008 Kim B. Heino
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/spi/spi.h>
+#include <linux/bcd.h>
+
+#define M41T94_REG_SECONDS 0x01
+#define M41T94_REG_MINUTES 0x02
+#define M41T94_REG_HOURS 0x03
+#define M41T94_REG_WDAY 0x04
+#define M41T94_REG_DAY 0x05
+#define M41T94_REG_MONTH 0x06
+#define M41T94_REG_YEAR 0x07
+#define M41T94_REG_HT 0x0c
+
+#define M41T94_BIT_HALT 0x40
+#define M41T94_BIT_STOP 0x80
+#define M41T94_BIT_CB 0x40
+#define M41T94_BIT_CEB 0x80
+
+static int m41t94_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ u8 buf[8]; /* write cmd + 7 registers */
+
+ dev_dbg(dev, "%s secs=%d, mins=%d, "
+ "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
+ "write", tm->tm_sec, tm->tm_min,
+ tm->tm_hour, tm->tm_mday,
+ tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ buf[0] = 0x80 | M41T94_REG_SECONDS; /* write time + date */
+ buf[M41T94_REG_SECONDS] = bin2bcd(tm->tm_sec);
+ buf[M41T94_REG_MINUTES] = bin2bcd(tm->tm_min);
+ buf[M41T94_REG_HOURS] = bin2bcd(tm->tm_hour);
+ buf[M41T94_REG_WDAY] = bin2bcd(tm->tm_wday + 1);
+ buf[M41T94_REG_DAY] = bin2bcd(tm->tm_mday);
+ buf[M41T94_REG_MONTH] = bin2bcd(tm->tm_mon + 1);
+
+ buf[M41T94_REG_HOURS] |= M41T94_BIT_CEB;
+ if (tm->tm_year >= 100)
+ buf[M41T94_REG_HOURS] |= M41T94_BIT_CB;
+ buf[M41T94_REG_YEAR] = bin2bcd(tm->tm_year % 100);
+
+ return spi_write(spi, buf, 8);
+}
+
+static int m41t94_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ u8 buf[2];
+ int ret, hour;
+
+ /* clear halt update bit */
+ ret = spi_w8r8(spi, M41T94_REG_HT);
+ if (ret < 0)
+ return ret;
+ if (ret & M41T94_BIT_HALT) {
+ buf[0] = 0x80 | M41T94_REG_HT;
+ buf[1] = ret & ~M41T94_BIT_HALT;
+ spi_write(spi, buf, 2);
+ }
+
+ /* clear stop bit */
+ ret = spi_w8r8(spi, M41T94_REG_SECONDS);
+ if (ret < 0)
+ return ret;
+ if (ret & M41T94_BIT_STOP) {
+ buf[0] = 0x80 | M41T94_REG_SECONDS;
+ buf[1] = ret & ~M41T94_BIT_STOP;
+ spi_write(spi, buf, 2);
+ }
+
+ tm->tm_sec = bcd2bin(spi_w8r8(spi, M41T94_REG_SECONDS));
+ tm->tm_min = bcd2bin(spi_w8r8(spi, M41T94_REG_MINUTES));
+ hour = spi_w8r8(spi, M41T94_REG_HOURS);
+ tm->tm_hour = bcd2bin(hour & 0x3f);
+ tm->tm_wday = bcd2bin(spi_w8r8(spi, M41T94_REG_WDAY)) - 1;
+ tm->tm_mday = bcd2bin(spi_w8r8(spi, M41T94_REG_DAY));
+ tm->tm_mon = bcd2bin(spi_w8r8(spi, M41T94_REG_MONTH)) - 1;
+ tm->tm_year = bcd2bin(spi_w8r8(spi, M41T94_REG_YEAR));
+ if ((hour & M41T94_BIT_CB) || !(hour & M41T94_BIT_CEB))
+ tm->tm_year += 100;
+
+ dev_dbg(dev, "%s secs=%d, mins=%d, "
+ "hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
+ "read", tm->tm_sec, tm->tm_min,
+ tm->tm_hour, tm->tm_mday,
+ tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ return 0;
+}
+
+static const struct rtc_class_ops m41t94_rtc_ops = {
+ .read_time = m41t94_read_time,
+ .set_time = m41t94_set_time,
+};
+
+static struct spi_driver m41t94_driver;
+
+static int m41t94_probe(struct spi_device *spi)
+{
+ struct rtc_device *rtc;
+ int res;
+
+ spi->bits_per_word = 8;
+ spi_setup(spi);
+
+ res = spi_w8r8(spi, M41T94_REG_SECONDS);
+ if (res < 0) {
+ dev_err(&spi->dev, "not found.\n");
+ return res;
+ }
+
+ rtc = devm_rtc_device_register(&spi->dev, m41t94_driver.driver.name,
+ &m41t94_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ spi_set_drvdata(spi, rtc);
+
+ return 0;
+}
+
+static struct spi_driver m41t94_driver = {
+ .driver = {
+ .name = "rtc-m41t94",
+ },
+ .probe = m41t94_probe,
+};
+
+module_spi_driver(m41t94_driver);
+
+MODULE_AUTHOR("Kim B. Heino <Kim.Heino@bluegiga.com>");
+MODULE_DESCRIPTION("Driver for ST M41T94 SPI RTC");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("spi:rtc-m41t94");
diff --git a/drivers/rtc/rtc-m48t35.c b/drivers/rtc/rtc-m48t35.c
new file mode 100644
index 000000000..92f19bf99
--- /dev/null
+++ b/drivers/rtc/rtc-m48t35.c
@@ -0,0 +1,193 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Driver for the SGS-Thomson M48T35 Timekeeper RAM chip
+ *
+ * Copyright (C) 2000 Silicon Graphics, Inc.
+ * Written by Ulf Carlsson (ulfc@engr.sgi.com)
+ *
+ * Copyright (C) 2008 Thomas Bogendoerfer
+ *
+ * Based on code written by Paul Gortmaker.
+ */
+
+#include <linux/module.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+#include <linux/platform_device.h>
+#include <linux/bcd.h>
+#include <linux/io.h>
+#include <linux/err.h>
+
+struct m48t35_rtc {
+ u8 pad[0x7ff8]; /* starts at 0x7ff8 */
+#ifdef CONFIG_SGI_IP27
+ u8 hour;
+ u8 min;
+ u8 sec;
+ u8 control;
+ u8 year;
+ u8 month;
+ u8 date;
+ u8 day;
+#else
+ u8 control;
+ u8 sec;
+ u8 min;
+ u8 hour;
+ u8 day;
+ u8 date;
+ u8 month;
+ u8 year;
+#endif
+};
+
+#define M48T35_RTC_SET 0x80
+#define M48T35_RTC_READ 0x40
+
+struct m48t35_priv {
+ struct rtc_device *rtc;
+ struct m48t35_rtc __iomem *reg;
+ size_t size;
+ unsigned long baseaddr;
+ spinlock_t lock;
+};
+
+static int m48t35_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct m48t35_priv *priv = dev_get_drvdata(dev);
+ u8 control;
+
+ /*
+ * Only the values that we read from the RTC are set. We leave
+ * tm_wday, tm_yday and tm_isdst untouched. Even though the
+ * RTC has RTC_DAY_OF_WEEK, we ignore it, as it is only updated
+ * by the RTC when initially set to a non-zero value.
+ */
+ spin_lock_irq(&priv->lock);
+ control = readb(&priv->reg->control);
+ writeb(control | M48T35_RTC_READ, &priv->reg->control);
+ tm->tm_sec = readb(&priv->reg->sec);
+ tm->tm_min = readb(&priv->reg->min);
+ tm->tm_hour = readb(&priv->reg->hour);
+ tm->tm_mday = readb(&priv->reg->date);
+ tm->tm_mon = readb(&priv->reg->month);
+ tm->tm_year = readb(&priv->reg->year);
+ writeb(control, &priv->reg->control);
+ spin_unlock_irq(&priv->lock);
+
+ tm->tm_sec = bcd2bin(tm->tm_sec);
+ tm->tm_min = bcd2bin(tm->tm_min);
+ tm->tm_hour = bcd2bin(tm->tm_hour);
+ tm->tm_mday = bcd2bin(tm->tm_mday);
+ tm->tm_mon = bcd2bin(tm->tm_mon);
+ tm->tm_year = bcd2bin(tm->tm_year);
+
+ /*
+ * Account for differences between how the RTC uses the values
+ * and how they are defined in a struct rtc_time;
+ */
+ tm->tm_year += 70;
+ if (tm->tm_year <= 69)
+ tm->tm_year += 100;
+
+ tm->tm_mon--;
+ return 0;
+}
+
+static int m48t35_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct m48t35_priv *priv = dev_get_drvdata(dev);
+ unsigned char mon, day, hrs, min, sec;
+ unsigned int yrs;
+ u8 control;
+
+ yrs = tm->tm_year + 1900;
+ mon = tm->tm_mon + 1; /* tm_mon starts at zero */
+ day = tm->tm_mday;
+ hrs = tm->tm_hour;
+ min = tm->tm_min;
+ sec = tm->tm_sec;
+
+ if (yrs < 1970)
+ return -EINVAL;
+
+ yrs -= 1970;
+ if (yrs > 255) /* They are unsigned */
+ return -EINVAL;
+
+ if (yrs > 169)
+ return -EINVAL;
+
+ if (yrs >= 100)
+ yrs -= 100;
+
+ sec = bin2bcd(sec);
+ min = bin2bcd(min);
+ hrs = bin2bcd(hrs);
+ day = bin2bcd(day);
+ mon = bin2bcd(mon);
+ yrs = bin2bcd(yrs);
+
+ spin_lock_irq(&priv->lock);
+ control = readb(&priv->reg->control);
+ writeb(control | M48T35_RTC_SET, &priv->reg->control);
+ writeb(yrs, &priv->reg->year);
+ writeb(mon, &priv->reg->month);
+ writeb(day, &priv->reg->date);
+ writeb(hrs, &priv->reg->hour);
+ writeb(min, &priv->reg->min);
+ writeb(sec, &priv->reg->sec);
+ writeb(control, &priv->reg->control);
+ spin_unlock_irq(&priv->lock);
+ return 0;
+}
+
+static const struct rtc_class_ops m48t35_ops = {
+ .read_time = m48t35_read_time,
+ .set_time = m48t35_set_time,
+};
+
+static int m48t35_probe(struct platform_device *pdev)
+{
+ struct resource *res;
+ struct m48t35_priv *priv;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!res)
+ return -ENODEV;
+ priv = devm_kzalloc(&pdev->dev, sizeof(struct m48t35_priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ priv->size = resource_size(res);
+ if (!devm_request_mem_region(&pdev->dev, res->start, priv->size,
+ pdev->name))
+ return -EBUSY;
+
+ priv->baseaddr = res->start;
+ priv->reg = devm_ioremap(&pdev->dev, priv->baseaddr, priv->size);
+ if (!priv->reg)
+ return -ENOMEM;
+
+ spin_lock_init(&priv->lock);
+
+ platform_set_drvdata(pdev, priv);
+
+ priv->rtc = devm_rtc_device_register(&pdev->dev, "m48t35",
+ &m48t35_ops, THIS_MODULE);
+ return PTR_ERR_OR_ZERO(priv->rtc);
+}
+
+static struct platform_driver m48t35_platform_driver = {
+ .driver = {
+ .name = "rtc-m48t35",
+ },
+ .probe = m48t35_probe,
+};
+
+module_platform_driver(m48t35_platform_driver);
+
+MODULE_AUTHOR("Thomas Bogendoerfer <tsbogend@alpha.franken.de>");
+MODULE_DESCRIPTION("M48T35 RTC driver");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:rtc-m48t35");
diff --git a/drivers/rtc/rtc-m48t59.c b/drivers/rtc/rtc-m48t59.c
new file mode 100644
index 000000000..67e218758
--- /dev/null
+++ b/drivers/rtc/rtc-m48t59.c
@@ -0,0 +1,495 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * ST M48T59 RTC driver
+ *
+ * Copyright (c) 2007 Wind River Systems, Inc.
+ *
+ * Author: Mark Zhan <rongkai.zhan@windriver.com>
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/device.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/rtc/m48t59.h>
+#include <linux/bcd.h>
+#include <linux/slab.h>
+
+#ifndef NO_IRQ
+#define NO_IRQ (-1)
+#endif
+
+#define M48T59_READ(reg) (pdata->read_byte(dev, pdata->offset + reg))
+#define M48T59_WRITE(val, reg) \
+ (pdata->write_byte(dev, pdata->offset + reg, val))
+
+#define M48T59_SET_BITS(mask, reg) \
+ M48T59_WRITE((M48T59_READ(reg) | (mask)), (reg))
+#define M48T59_CLEAR_BITS(mask, reg) \
+ M48T59_WRITE((M48T59_READ(reg) & ~(mask)), (reg))
+
+struct m48t59_private {
+ void __iomem *ioaddr;
+ int irq;
+ struct rtc_device *rtc;
+ spinlock_t lock; /* serialize the NVRAM and RTC access */
+};
+
+/*
+ * This is the generic access method when the chip is memory-mapped
+ */
+static void
+m48t59_mem_writeb(struct device *dev, u32 ofs, u8 val)
+{
+ struct m48t59_private *m48t59 = dev_get_drvdata(dev);
+
+ writeb(val, m48t59->ioaddr+ofs);
+}
+
+static u8
+m48t59_mem_readb(struct device *dev, u32 ofs)
+{
+ struct m48t59_private *m48t59 = dev_get_drvdata(dev);
+
+ return readb(m48t59->ioaddr+ofs);
+}
+
+/*
+ * NOTE: M48T59 only uses BCD mode
+ */
+static int m48t59_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct m48t59_plat_data *pdata = dev_get_platdata(dev);
+ struct m48t59_private *m48t59 = dev_get_drvdata(dev);
+ unsigned long flags;
+ u8 val;
+
+ spin_lock_irqsave(&m48t59->lock, flags);
+ /* Issue the READ command */
+ M48T59_SET_BITS(M48T59_CNTL_READ, M48T59_CNTL);
+
+ tm->tm_year = bcd2bin(M48T59_READ(M48T59_YEAR));
+ /* tm_mon is 0-11 */
+ tm->tm_mon = bcd2bin(M48T59_READ(M48T59_MONTH)) - 1;
+ tm->tm_mday = bcd2bin(M48T59_READ(M48T59_MDAY));
+
+ val = M48T59_READ(M48T59_WDAY);
+ if ((pdata->type == M48T59RTC_TYPE_M48T59) &&
+ (val & M48T59_WDAY_CEB) && (val & M48T59_WDAY_CB)) {
+ dev_dbg(dev, "Century bit is enabled\n");
+ tm->tm_year += 100; /* one century */
+ }
+#ifdef CONFIG_SPARC
+ /* Sun SPARC machines count years since 1968 */
+ tm->tm_year += 68;
+#endif
+
+ tm->tm_wday = bcd2bin(val & 0x07);
+ tm->tm_hour = bcd2bin(M48T59_READ(M48T59_HOUR) & 0x3F);
+ tm->tm_min = bcd2bin(M48T59_READ(M48T59_MIN) & 0x7F);
+ tm->tm_sec = bcd2bin(M48T59_READ(M48T59_SEC) & 0x7F);
+
+ /* Clear the READ bit */
+ M48T59_CLEAR_BITS(M48T59_CNTL_READ, M48T59_CNTL);
+ spin_unlock_irqrestore(&m48t59->lock, flags);
+
+ dev_dbg(dev, "RTC read time %ptR\n", tm);
+ return 0;
+}
+
+static int m48t59_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct m48t59_plat_data *pdata = dev_get_platdata(dev);
+ struct m48t59_private *m48t59 = dev_get_drvdata(dev);
+ unsigned long flags;
+ u8 val = 0;
+ int year = tm->tm_year;
+
+#ifdef CONFIG_SPARC
+ /* Sun SPARC machines count years since 1968 */
+ year -= 68;
+#endif
+
+ dev_dbg(dev, "RTC set time %04d-%02d-%02d %02d/%02d/%02d\n",
+ year + 1900, tm->tm_mon, tm->tm_mday,
+ tm->tm_hour, tm->tm_min, tm->tm_sec);
+
+ if (year < 0)
+ return -EINVAL;
+
+ spin_lock_irqsave(&m48t59->lock, flags);
+ /* Issue the WRITE command */
+ M48T59_SET_BITS(M48T59_CNTL_WRITE, M48T59_CNTL);
+
+ M48T59_WRITE((bin2bcd(tm->tm_sec) & 0x7F), M48T59_SEC);
+ M48T59_WRITE((bin2bcd(tm->tm_min) & 0x7F), M48T59_MIN);
+ M48T59_WRITE((bin2bcd(tm->tm_hour) & 0x3F), M48T59_HOUR);
+ M48T59_WRITE((bin2bcd(tm->tm_mday) & 0x3F), M48T59_MDAY);
+ /* tm_mon is 0-11 */
+ M48T59_WRITE((bin2bcd(tm->tm_mon + 1) & 0x1F), M48T59_MONTH);
+ M48T59_WRITE(bin2bcd(year % 100), M48T59_YEAR);
+
+ if (pdata->type == M48T59RTC_TYPE_M48T59 && (year / 100))
+ val = (M48T59_WDAY_CEB | M48T59_WDAY_CB);
+ val |= (bin2bcd(tm->tm_wday) & 0x07);
+ M48T59_WRITE(val, M48T59_WDAY);
+
+ /* Clear the WRITE bit */
+ M48T59_CLEAR_BITS(M48T59_CNTL_WRITE, M48T59_CNTL);
+ spin_unlock_irqrestore(&m48t59->lock, flags);
+ return 0;
+}
+
+/*
+ * Read alarm time and date in RTC
+ */
+static int m48t59_rtc_readalarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct m48t59_plat_data *pdata = dev_get_platdata(dev);
+ struct m48t59_private *m48t59 = dev_get_drvdata(dev);
+ struct rtc_time *tm = &alrm->time;
+ unsigned long flags;
+ u8 val;
+
+ /* If no irq, we don't support ALARM */
+ if (m48t59->irq == NO_IRQ)
+ return -EIO;
+
+ spin_lock_irqsave(&m48t59->lock, flags);
+ /* Issue the READ command */
+ M48T59_SET_BITS(M48T59_CNTL_READ, M48T59_CNTL);
+
+ tm->tm_year = bcd2bin(M48T59_READ(M48T59_YEAR));
+#ifdef CONFIG_SPARC
+ /* Sun SPARC machines count years since 1968 */
+ tm->tm_year += 68;
+#endif
+ /* tm_mon is 0-11 */
+ tm->tm_mon = bcd2bin(M48T59_READ(M48T59_MONTH)) - 1;
+
+ val = M48T59_READ(M48T59_WDAY);
+ if ((val & M48T59_WDAY_CEB) && (val & M48T59_WDAY_CB))
+ tm->tm_year += 100; /* one century */
+
+ tm->tm_mday = bcd2bin(M48T59_READ(M48T59_ALARM_DATE));
+ tm->tm_hour = bcd2bin(M48T59_READ(M48T59_ALARM_HOUR));
+ tm->tm_min = bcd2bin(M48T59_READ(M48T59_ALARM_MIN));
+ tm->tm_sec = bcd2bin(M48T59_READ(M48T59_ALARM_SEC));
+
+ /* Clear the READ bit */
+ M48T59_CLEAR_BITS(M48T59_CNTL_READ, M48T59_CNTL);
+ spin_unlock_irqrestore(&m48t59->lock, flags);
+
+ dev_dbg(dev, "RTC read alarm time %ptR\n", tm);
+ return rtc_valid_tm(tm);
+}
+
+/*
+ * Set alarm time and date in RTC
+ */
+static int m48t59_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct m48t59_plat_data *pdata = dev_get_platdata(dev);
+ struct m48t59_private *m48t59 = dev_get_drvdata(dev);
+ struct rtc_time *tm = &alrm->time;
+ u8 mday, hour, min, sec;
+ unsigned long flags;
+ int year = tm->tm_year;
+
+#ifdef CONFIG_SPARC
+ /* Sun SPARC machines count years since 1968 */
+ year -= 68;
+#endif
+
+ /* If no irq, we don't support ALARM */
+ if (m48t59->irq == NO_IRQ)
+ return -EIO;
+
+ if (year < 0)
+ return -EINVAL;
+
+ /*
+ * 0xff means "always match"
+ */
+ mday = tm->tm_mday;
+ mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
+ if (mday == 0xff)
+ mday = M48T59_READ(M48T59_MDAY);
+
+ hour = tm->tm_hour;
+ hour = (hour < 24) ? bin2bcd(hour) : 0x00;
+
+ min = tm->tm_min;
+ min = (min < 60) ? bin2bcd(min) : 0x00;
+
+ sec = tm->tm_sec;
+ sec = (sec < 60) ? bin2bcd(sec) : 0x00;
+
+ spin_lock_irqsave(&m48t59->lock, flags);
+ /* Issue the WRITE command */
+ M48T59_SET_BITS(M48T59_CNTL_WRITE, M48T59_CNTL);
+
+ M48T59_WRITE(mday, M48T59_ALARM_DATE);
+ M48T59_WRITE(hour, M48T59_ALARM_HOUR);
+ M48T59_WRITE(min, M48T59_ALARM_MIN);
+ M48T59_WRITE(sec, M48T59_ALARM_SEC);
+
+ /* Clear the WRITE bit */
+ M48T59_CLEAR_BITS(M48T59_CNTL_WRITE, M48T59_CNTL);
+ spin_unlock_irqrestore(&m48t59->lock, flags);
+
+ dev_dbg(dev, "RTC set alarm time %04d-%02d-%02d %02d/%02d/%02d\n",
+ year + 1900, tm->tm_mon, tm->tm_mday,
+ tm->tm_hour, tm->tm_min, tm->tm_sec);
+ return 0;
+}
+
+/*
+ * Handle commands from user-space
+ */
+static int m48t59_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct m48t59_plat_data *pdata = dev_get_platdata(dev);
+ struct m48t59_private *m48t59 = dev_get_drvdata(dev);
+ unsigned long flags;
+
+ spin_lock_irqsave(&m48t59->lock, flags);
+ if (enabled)
+ M48T59_WRITE(M48T59_INTR_AFE, M48T59_INTR);
+ else
+ M48T59_WRITE(0x00, M48T59_INTR);
+ spin_unlock_irqrestore(&m48t59->lock, flags);
+
+ return 0;
+}
+
+static int m48t59_rtc_proc(struct device *dev, struct seq_file *seq)
+{
+ struct m48t59_plat_data *pdata = dev_get_platdata(dev);
+ struct m48t59_private *m48t59 = dev_get_drvdata(dev);
+ unsigned long flags;
+ u8 val;
+
+ spin_lock_irqsave(&m48t59->lock, flags);
+ val = M48T59_READ(M48T59_FLAGS);
+ spin_unlock_irqrestore(&m48t59->lock, flags);
+
+ seq_printf(seq, "battery\t\t: %s\n",
+ (val & M48T59_FLAGS_BF) ? "low" : "normal");
+ return 0;
+}
+
+/*
+ * IRQ handler for the RTC
+ */
+static irqreturn_t m48t59_rtc_interrupt(int irq, void *dev_id)
+{
+ struct device *dev = (struct device *)dev_id;
+ struct m48t59_plat_data *pdata = dev_get_platdata(dev);
+ struct m48t59_private *m48t59 = dev_get_drvdata(dev);
+ u8 event;
+
+ spin_lock(&m48t59->lock);
+ event = M48T59_READ(M48T59_FLAGS);
+ spin_unlock(&m48t59->lock);
+
+ if (event & M48T59_FLAGS_AF) {
+ rtc_update_irq(m48t59->rtc, 1, (RTC_AF | RTC_IRQF));
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+static const struct rtc_class_ops m48t59_rtc_ops = {
+ .read_time = m48t59_rtc_read_time,
+ .set_time = m48t59_rtc_set_time,
+ .read_alarm = m48t59_rtc_readalarm,
+ .set_alarm = m48t59_rtc_setalarm,
+ .proc = m48t59_rtc_proc,
+ .alarm_irq_enable = m48t59_rtc_alarm_irq_enable,
+};
+
+static const struct rtc_class_ops m48t02_rtc_ops = {
+ .read_time = m48t59_rtc_read_time,
+ .set_time = m48t59_rtc_set_time,
+};
+
+static int m48t59_nvram_read(void *priv, unsigned int offset, void *val,
+ size_t size)
+{
+ struct platform_device *pdev = priv;
+ struct device *dev = &pdev->dev;
+ struct m48t59_plat_data *pdata = dev_get_platdata(&pdev->dev);
+ struct m48t59_private *m48t59 = platform_get_drvdata(pdev);
+ ssize_t cnt = 0;
+ unsigned long flags;
+ u8 *buf = val;
+
+ spin_lock_irqsave(&m48t59->lock, flags);
+
+ for (; cnt < size; cnt++)
+ *buf++ = M48T59_READ(cnt);
+
+ spin_unlock_irqrestore(&m48t59->lock, flags);
+
+ return 0;
+}
+
+static int m48t59_nvram_write(void *priv, unsigned int offset, void *val,
+ size_t size)
+{
+ struct platform_device *pdev = priv;
+ struct device *dev = &pdev->dev;
+ struct m48t59_plat_data *pdata = dev_get_platdata(&pdev->dev);
+ struct m48t59_private *m48t59 = platform_get_drvdata(pdev);
+ ssize_t cnt = 0;
+ unsigned long flags;
+ u8 *buf = val;
+
+ spin_lock_irqsave(&m48t59->lock, flags);
+
+ for (; cnt < size; cnt++)
+ M48T59_WRITE(*buf++, cnt);
+
+ spin_unlock_irqrestore(&m48t59->lock, flags);
+
+ return 0;
+}
+
+static int m48t59_rtc_probe(struct platform_device *pdev)
+{
+ struct m48t59_plat_data *pdata = dev_get_platdata(&pdev->dev);
+ struct m48t59_private *m48t59 = NULL;
+ struct resource *res;
+ int ret = -ENOMEM;
+ const struct rtc_class_ops *ops;
+ struct nvmem_config nvmem_cfg = {
+ .name = "m48t59-",
+ .word_size = 1,
+ .stride = 1,
+ .reg_read = m48t59_nvram_read,
+ .reg_write = m48t59_nvram_write,
+ .priv = pdev,
+ };
+
+ /* This chip could be memory-mapped or I/O-mapped */
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!res) {
+ res = platform_get_resource(pdev, IORESOURCE_IO, 0);
+ if (!res)
+ return -EINVAL;
+ }
+
+ if (res->flags & IORESOURCE_IO) {
+ /* If we are I/O-mapped, the platform should provide
+ * the operations accessing chip registers.
+ */
+ if (!pdata || !pdata->write_byte || !pdata->read_byte)
+ return -EINVAL;
+ } else if (res->flags & IORESOURCE_MEM) {
+ /* we are memory-mapped */
+ if (!pdata) {
+ pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata),
+ GFP_KERNEL);
+ if (!pdata)
+ return -ENOMEM;
+ /* Ensure we only kmalloc platform data once */
+ pdev->dev.platform_data = pdata;
+ }
+ if (!pdata->type)
+ pdata->type = M48T59RTC_TYPE_M48T59;
+
+ /* Try to use the generic memory read/write ops */
+ if (!pdata->write_byte)
+ pdata->write_byte = m48t59_mem_writeb;
+ if (!pdata->read_byte)
+ pdata->read_byte = m48t59_mem_readb;
+ }
+
+ m48t59 = devm_kzalloc(&pdev->dev, sizeof(*m48t59), GFP_KERNEL);
+ if (!m48t59)
+ return -ENOMEM;
+
+ m48t59->ioaddr = pdata->ioaddr;
+
+ if (!m48t59->ioaddr) {
+ /* ioaddr not mapped externally */
+ m48t59->ioaddr = devm_ioremap(&pdev->dev, res->start,
+ resource_size(res));
+ if (!m48t59->ioaddr)
+ return ret;
+ }
+
+ /* Try to get irq number. We also can work in
+ * the mode without IRQ.
+ */
+ m48t59->irq = platform_get_irq(pdev, 0);
+ if (m48t59->irq <= 0)
+ m48t59->irq = NO_IRQ;
+
+ if (m48t59->irq != NO_IRQ) {
+ ret = devm_request_irq(&pdev->dev, m48t59->irq,
+ m48t59_rtc_interrupt, IRQF_SHARED,
+ "rtc-m48t59", &pdev->dev);
+ if (ret)
+ return ret;
+ }
+ switch (pdata->type) {
+ case M48T59RTC_TYPE_M48T59:
+ ops = &m48t59_rtc_ops;
+ pdata->offset = 0x1ff0;
+ break;
+ case M48T59RTC_TYPE_M48T02:
+ ops = &m48t02_rtc_ops;
+ pdata->offset = 0x7f0;
+ break;
+ case M48T59RTC_TYPE_M48T08:
+ ops = &m48t02_rtc_ops;
+ pdata->offset = 0x1ff0;
+ break;
+ default:
+ dev_err(&pdev->dev, "Unknown RTC type\n");
+ return -ENODEV;
+ }
+
+ spin_lock_init(&m48t59->lock);
+ platform_set_drvdata(pdev, m48t59);
+
+ m48t59->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(m48t59->rtc))
+ return PTR_ERR(m48t59->rtc);
+
+ m48t59->rtc->nvram_old_abi = true;
+ m48t59->rtc->ops = ops;
+
+ nvmem_cfg.size = pdata->offset;
+ ret = rtc_nvmem_register(m48t59->rtc, &nvmem_cfg);
+ if (ret)
+ return ret;
+
+ ret = rtc_register_device(m48t59->rtc);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+/* work with hotplug and coldplug */
+MODULE_ALIAS("platform:rtc-m48t59");
+
+static struct platform_driver m48t59_rtc_driver = {
+ .driver = {
+ .name = "rtc-m48t59",
+ },
+ .probe = m48t59_rtc_probe,
+};
+
+module_platform_driver(m48t59_rtc_driver);
+
+MODULE_AUTHOR("Mark Zhan <rongkai.zhan@windriver.com>");
+MODULE_DESCRIPTION("M48T59/M48T02/M48T08 RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-m48t86.c b/drivers/rtc/rtc-m48t86.c
new file mode 100644
index 000000000..75a0e7307
--- /dev/null
+++ b/drivers/rtc/rtc-m48t86.c
@@ -0,0 +1,285 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * ST M48T86 / Dallas DS12887 RTC driver
+ * Copyright (c) 2006 Tower Technologies
+ *
+ * Author: Alessandro Zummo <a.zummo@towertech.it>
+ *
+ * This drivers only supports the clock running in BCD and 24H mode.
+ * If it will be ever adapted to binary and 12H mode, care must be taken
+ * to not introduce bugs.
+ */
+
+#include <linux/module.h>
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+#include <linux/bcd.h>
+#include <linux/io.h>
+
+#define M48T86_SEC 0x00
+#define M48T86_SECALRM 0x01
+#define M48T86_MIN 0x02
+#define M48T86_MINALRM 0x03
+#define M48T86_HOUR 0x04
+#define M48T86_HOURALRM 0x05
+#define M48T86_DOW 0x06 /* 1 = sunday */
+#define M48T86_DOM 0x07
+#define M48T86_MONTH 0x08 /* 1 - 12 */
+#define M48T86_YEAR 0x09 /* 0 - 99 */
+#define M48T86_A 0x0a
+#define M48T86_B 0x0b
+#define M48T86_B_SET BIT(7)
+#define M48T86_B_DM BIT(2)
+#define M48T86_B_H24 BIT(1)
+#define M48T86_C 0x0c
+#define M48T86_D 0x0d
+#define M48T86_D_VRT BIT(7)
+#define M48T86_NVRAM(x) (0x0e + (x))
+#define M48T86_NVRAM_LEN 114
+
+struct m48t86_rtc_info {
+ void __iomem *index_reg;
+ void __iomem *data_reg;
+ struct rtc_device *rtc;
+};
+
+static unsigned char m48t86_readb(struct device *dev, unsigned long addr)
+{
+ struct m48t86_rtc_info *info = dev_get_drvdata(dev);
+ unsigned char value;
+
+ writeb(addr, info->index_reg);
+ value = readb(info->data_reg);
+
+ return value;
+}
+
+static void m48t86_writeb(struct device *dev,
+ unsigned char value, unsigned long addr)
+{
+ struct m48t86_rtc_info *info = dev_get_drvdata(dev);
+
+ writeb(addr, info->index_reg);
+ writeb(value, info->data_reg);
+}
+
+static int m48t86_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ unsigned char reg;
+
+ reg = m48t86_readb(dev, M48T86_B);
+
+ if (reg & M48T86_B_DM) {
+ /* data (binary) mode */
+ tm->tm_sec = m48t86_readb(dev, M48T86_SEC);
+ tm->tm_min = m48t86_readb(dev, M48T86_MIN);
+ tm->tm_hour = m48t86_readb(dev, M48T86_HOUR) & 0x3f;
+ tm->tm_mday = m48t86_readb(dev, M48T86_DOM);
+ /* tm_mon is 0-11 */
+ tm->tm_mon = m48t86_readb(dev, M48T86_MONTH) - 1;
+ tm->tm_year = m48t86_readb(dev, M48T86_YEAR) + 100;
+ tm->tm_wday = m48t86_readb(dev, M48T86_DOW);
+ } else {
+ /* bcd mode */
+ tm->tm_sec = bcd2bin(m48t86_readb(dev, M48T86_SEC));
+ tm->tm_min = bcd2bin(m48t86_readb(dev, M48T86_MIN));
+ tm->tm_hour = bcd2bin(m48t86_readb(dev, M48T86_HOUR) &
+ 0x3f);
+ tm->tm_mday = bcd2bin(m48t86_readb(dev, M48T86_DOM));
+ /* tm_mon is 0-11 */
+ tm->tm_mon = bcd2bin(m48t86_readb(dev, M48T86_MONTH)) - 1;
+ tm->tm_year = bcd2bin(m48t86_readb(dev, M48T86_YEAR)) + 100;
+ tm->tm_wday = bcd2bin(m48t86_readb(dev, M48T86_DOW));
+ }
+
+ /* correct the hour if the clock is in 12h mode */
+ if (!(reg & M48T86_B_H24))
+ if (m48t86_readb(dev, M48T86_HOUR) & 0x80)
+ tm->tm_hour += 12;
+
+ return 0;
+}
+
+static int m48t86_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ unsigned char reg;
+
+ reg = m48t86_readb(dev, M48T86_B);
+
+ /* update flag and 24h mode */
+ reg |= M48T86_B_SET | M48T86_B_H24;
+ m48t86_writeb(dev, reg, M48T86_B);
+
+ if (reg & M48T86_B_DM) {
+ /* data (binary) mode */
+ m48t86_writeb(dev, tm->tm_sec, M48T86_SEC);
+ m48t86_writeb(dev, tm->tm_min, M48T86_MIN);
+ m48t86_writeb(dev, tm->tm_hour, M48T86_HOUR);
+ m48t86_writeb(dev, tm->tm_mday, M48T86_DOM);
+ m48t86_writeb(dev, tm->tm_mon + 1, M48T86_MONTH);
+ m48t86_writeb(dev, tm->tm_year % 100, M48T86_YEAR);
+ m48t86_writeb(dev, tm->tm_wday, M48T86_DOW);
+ } else {
+ /* bcd mode */
+ m48t86_writeb(dev, bin2bcd(tm->tm_sec), M48T86_SEC);
+ m48t86_writeb(dev, bin2bcd(tm->tm_min), M48T86_MIN);
+ m48t86_writeb(dev, bin2bcd(tm->tm_hour), M48T86_HOUR);
+ m48t86_writeb(dev, bin2bcd(tm->tm_mday), M48T86_DOM);
+ m48t86_writeb(dev, bin2bcd(tm->tm_mon + 1), M48T86_MONTH);
+ m48t86_writeb(dev, bin2bcd(tm->tm_year % 100), M48T86_YEAR);
+ m48t86_writeb(dev, bin2bcd(tm->tm_wday), M48T86_DOW);
+ }
+
+ /* update ended */
+ reg &= ~M48T86_B_SET;
+ m48t86_writeb(dev, reg, M48T86_B);
+
+ return 0;
+}
+
+static int m48t86_rtc_proc(struct device *dev, struct seq_file *seq)
+{
+ unsigned char reg;
+
+ reg = m48t86_readb(dev, M48T86_B);
+
+ seq_printf(seq, "mode\t\t: %s\n",
+ (reg & M48T86_B_DM) ? "binary" : "bcd");
+
+ reg = m48t86_readb(dev, M48T86_D);
+
+ seq_printf(seq, "battery\t\t: %s\n",
+ (reg & M48T86_D_VRT) ? "ok" : "exhausted");
+
+ return 0;
+}
+
+static const struct rtc_class_ops m48t86_rtc_ops = {
+ .read_time = m48t86_rtc_read_time,
+ .set_time = m48t86_rtc_set_time,
+ .proc = m48t86_rtc_proc,
+};
+
+static int m48t86_nvram_read(void *priv, unsigned int off, void *buf,
+ size_t count)
+{
+ struct device *dev = priv;
+ unsigned int i;
+
+ for (i = 0; i < count; i++)
+ ((u8 *)buf)[i] = m48t86_readb(dev, M48T86_NVRAM(off + i));
+
+ return 0;
+}
+
+static int m48t86_nvram_write(void *priv, unsigned int off, void *buf,
+ size_t count)
+{
+ struct device *dev = priv;
+ unsigned int i;
+
+ for (i = 0; i < count; i++)
+ m48t86_writeb(dev, ((u8 *)buf)[i], M48T86_NVRAM(off + i));
+
+ return 0;
+}
+
+/*
+ * The RTC is an optional feature at purchase time on some Technologic Systems
+ * boards. Verify that it actually exists by checking if the last two bytes
+ * of the NVRAM can be changed.
+ *
+ * This is based on the method used in their rtc7800.c example.
+ */
+static bool m48t86_verify_chip(struct platform_device *pdev)
+{
+ unsigned int offset0 = M48T86_NVRAM(M48T86_NVRAM_LEN - 2);
+ unsigned int offset1 = M48T86_NVRAM(M48T86_NVRAM_LEN - 1);
+ unsigned char tmp0, tmp1;
+
+ tmp0 = m48t86_readb(&pdev->dev, offset0);
+ tmp1 = m48t86_readb(&pdev->dev, offset1);
+
+ m48t86_writeb(&pdev->dev, 0x00, offset0);
+ m48t86_writeb(&pdev->dev, 0x55, offset1);
+ if (m48t86_readb(&pdev->dev, offset1) == 0x55) {
+ m48t86_writeb(&pdev->dev, 0xaa, offset1);
+ if (m48t86_readb(&pdev->dev, offset1) == 0xaa &&
+ m48t86_readb(&pdev->dev, offset0) == 0x00) {
+ m48t86_writeb(&pdev->dev, tmp0, offset0);
+ m48t86_writeb(&pdev->dev, tmp1, offset1);
+
+ return true;
+ }
+ }
+ return false;
+}
+
+static int m48t86_rtc_probe(struct platform_device *pdev)
+{
+ struct m48t86_rtc_info *info;
+ unsigned char reg;
+ int err;
+ struct nvmem_config m48t86_nvmem_cfg = {
+ .name = "m48t86_nvram",
+ .word_size = 1,
+ .stride = 1,
+ .size = M48T86_NVRAM_LEN,
+ .reg_read = m48t86_nvram_read,
+ .reg_write = m48t86_nvram_write,
+ .priv = &pdev->dev,
+ };
+
+ info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ info->index_reg = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(info->index_reg))
+ return PTR_ERR(info->index_reg);
+
+ info->data_reg = devm_platform_ioremap_resource(pdev, 1);
+ if (IS_ERR(info->data_reg))
+ return PTR_ERR(info->data_reg);
+
+ dev_set_drvdata(&pdev->dev, info);
+
+ if (!m48t86_verify_chip(pdev)) {
+ dev_info(&pdev->dev, "RTC not present\n");
+ return -ENODEV;
+ }
+
+ info->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(info->rtc))
+ return PTR_ERR(info->rtc);
+
+ info->rtc->ops = &m48t86_rtc_ops;
+ info->rtc->nvram_old_abi = true;
+
+ err = rtc_register_device(info->rtc);
+ if (err)
+ return err;
+
+ rtc_nvmem_register(info->rtc, &m48t86_nvmem_cfg);
+
+ /* read battery status */
+ reg = m48t86_readb(&pdev->dev, M48T86_D);
+ dev_info(&pdev->dev, "battery %s\n",
+ (reg & M48T86_D_VRT) ? "ok" : "exhausted");
+
+ return 0;
+}
+
+static struct platform_driver m48t86_rtc_platform_driver = {
+ .driver = {
+ .name = "rtc-m48t86",
+ },
+ .probe = m48t86_rtc_probe,
+};
+
+module_platform_driver(m48t86_rtc_platform_driver);
+
+MODULE_AUTHOR("Alessandro Zummo <a.zummo@towertech.it>");
+MODULE_DESCRIPTION("M48T86 RTC driver");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:rtc-m48t86");
diff --git a/drivers/rtc/rtc-max6900.c b/drivers/rtc/rtc-max6900.c
new file mode 100644
index 000000000..ab60f13fa
--- /dev/null
+++ b/drivers/rtc/rtc-max6900.c
@@ -0,0 +1,238 @@
+/*
+ * rtc class driver for the Maxim MAX6900 chip
+ *
+ * Author: Dale Farnsworth <dale@farnsworth.org>
+ *
+ * based on previously existing rtc class drivers
+ *
+ * 2007 (c) MontaVista, Software, Inc. This file is licensed under
+ * the terms of the GNU General Public License version 2. This program
+ * is licensed "as is" without any warranty of any kind, whether express
+ * or implied.
+ */
+
+#include <linux/module.h>
+#include <linux/i2c.h>
+#include <linux/bcd.h>
+#include <linux/rtc.h>
+#include <linux/delay.h>
+
+/*
+ * register indices
+ */
+#define MAX6900_REG_SC 0 /* seconds 00-59 */
+#define MAX6900_REG_MN 1 /* minutes 00-59 */
+#define MAX6900_REG_HR 2 /* hours 00-23 */
+#define MAX6900_REG_DT 3 /* day of month 00-31 */
+#define MAX6900_REG_MO 4 /* month 01-12 */
+#define MAX6900_REG_DW 5 /* day of week 1-7 */
+#define MAX6900_REG_YR 6 /* year 00-99 */
+#define MAX6900_REG_CT 7 /* control */
+ /* register 8 is undocumented */
+#define MAX6900_REG_CENTURY 9 /* century */
+#define MAX6900_REG_LEN 10
+
+#define MAX6900_BURST_LEN 8 /* can burst r/w first 8 regs */
+
+#define MAX6900_REG_CT_WP (1 << 7) /* Write Protect */
+
+/*
+ * register read/write commands
+ */
+#define MAX6900_REG_CONTROL_WRITE 0x8e
+#define MAX6900_REG_CENTURY_WRITE 0x92
+#define MAX6900_REG_CENTURY_READ 0x93
+#define MAX6900_REG_RESERVED_READ 0x96
+#define MAX6900_REG_BURST_WRITE 0xbe
+#define MAX6900_REG_BURST_READ 0xbf
+
+#define MAX6900_IDLE_TIME_AFTER_WRITE 3 /* specification says 2.5 mS */
+
+static struct i2c_driver max6900_driver;
+
+static int max6900_i2c_read_regs(struct i2c_client *client, u8 *buf)
+{
+ u8 reg_burst_read[1] = { MAX6900_REG_BURST_READ };
+ u8 reg_century_read[1] = { MAX6900_REG_CENTURY_READ };
+ struct i2c_msg msgs[4] = {
+ {
+ .addr = client->addr,
+ .flags = 0, /* write */
+ .len = sizeof(reg_burst_read),
+ .buf = reg_burst_read}
+ ,
+ {
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = MAX6900_BURST_LEN,
+ .buf = buf}
+ ,
+ {
+ .addr = client->addr,
+ .flags = 0, /* write */
+ .len = sizeof(reg_century_read),
+ .buf = reg_century_read}
+ ,
+ {
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = sizeof(buf[MAX6900_REG_CENTURY]),
+ .buf = &buf[MAX6900_REG_CENTURY]
+ }
+ };
+ int rc;
+
+ rc = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
+ if (rc != ARRAY_SIZE(msgs)) {
+ dev_err(&client->dev, "%s: register read failed\n", __func__);
+ return -EIO;
+ }
+ return 0;
+}
+
+static int max6900_i2c_write_regs(struct i2c_client *client, u8 const *buf)
+{
+ u8 i2c_century_buf[1 + 1] = { MAX6900_REG_CENTURY_WRITE };
+ struct i2c_msg century_msgs[1] = {
+ {
+ .addr = client->addr,
+ .flags = 0, /* write */
+ .len = sizeof(i2c_century_buf),
+ .buf = i2c_century_buf}
+ };
+ u8 i2c_burst_buf[MAX6900_BURST_LEN + 1] = { MAX6900_REG_BURST_WRITE };
+ struct i2c_msg burst_msgs[1] = {
+ {
+ .addr = client->addr,
+ .flags = 0, /* write */
+ .len = sizeof(i2c_burst_buf),
+ .buf = i2c_burst_buf}
+ };
+ int rc;
+
+ /*
+ * We have to make separate calls to i2c_transfer because of
+ * the need to delay after each write to the chip. Also,
+ * we write the century byte first, since we set the write-protect
+ * bit as part of the burst write.
+ */
+ i2c_century_buf[1] = buf[MAX6900_REG_CENTURY];
+
+ rc = i2c_transfer(client->adapter, century_msgs,
+ ARRAY_SIZE(century_msgs));
+ if (rc != ARRAY_SIZE(century_msgs))
+ goto write_failed;
+
+ msleep(MAX6900_IDLE_TIME_AFTER_WRITE);
+
+ memcpy(&i2c_burst_buf[1], buf, MAX6900_BURST_LEN);
+
+ rc = i2c_transfer(client->adapter, burst_msgs, ARRAY_SIZE(burst_msgs));
+ if (rc != ARRAY_SIZE(burst_msgs))
+ goto write_failed;
+ msleep(MAX6900_IDLE_TIME_AFTER_WRITE);
+
+ return 0;
+
+ write_failed:
+ dev_err(&client->dev, "%s: register write failed\n", __func__);
+ return -EIO;
+}
+
+static int max6900_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ int rc;
+ u8 regs[MAX6900_REG_LEN];
+
+ rc = max6900_i2c_read_regs(client, regs);
+ if (rc < 0)
+ return rc;
+
+ tm->tm_sec = bcd2bin(regs[MAX6900_REG_SC]);
+ tm->tm_min = bcd2bin(regs[MAX6900_REG_MN]);
+ tm->tm_hour = bcd2bin(regs[MAX6900_REG_HR] & 0x3f);
+ tm->tm_mday = bcd2bin(regs[MAX6900_REG_DT]);
+ tm->tm_mon = bcd2bin(regs[MAX6900_REG_MO]) - 1;
+ tm->tm_year = bcd2bin(regs[MAX6900_REG_YR]) +
+ bcd2bin(regs[MAX6900_REG_CENTURY]) * 100 - 1900;
+ tm->tm_wday = bcd2bin(regs[MAX6900_REG_DW]);
+
+ return 0;
+}
+
+static int max6900_i2c_clear_write_protect(struct i2c_client *client)
+{
+ return i2c_smbus_write_byte_data(client, MAX6900_REG_CONTROL_WRITE, 0);
+}
+
+static int max6900_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ u8 regs[MAX6900_REG_LEN];
+ int rc;
+
+ rc = max6900_i2c_clear_write_protect(client);
+ if (rc < 0)
+ return rc;
+
+ regs[MAX6900_REG_SC] = bin2bcd(tm->tm_sec);
+ regs[MAX6900_REG_MN] = bin2bcd(tm->tm_min);
+ regs[MAX6900_REG_HR] = bin2bcd(tm->tm_hour);
+ regs[MAX6900_REG_DT] = bin2bcd(tm->tm_mday);
+ regs[MAX6900_REG_MO] = bin2bcd(tm->tm_mon + 1);
+ regs[MAX6900_REG_DW] = bin2bcd(tm->tm_wday);
+ regs[MAX6900_REG_YR] = bin2bcd(tm->tm_year % 100);
+ regs[MAX6900_REG_CENTURY] = bin2bcd((tm->tm_year + 1900) / 100);
+ /* set write protect */
+ regs[MAX6900_REG_CT] = MAX6900_REG_CT_WP;
+
+ rc = max6900_i2c_write_regs(client, regs);
+ if (rc < 0)
+ return rc;
+
+ return 0;
+}
+
+static const struct rtc_class_ops max6900_rtc_ops = {
+ .read_time = max6900_rtc_read_time,
+ .set_time = max6900_rtc_set_time,
+};
+
+static int
+max6900_probe(struct i2c_client *client, const struct i2c_device_id *id)
+{
+ struct rtc_device *rtc;
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
+ return -ENODEV;
+
+ rtc = devm_rtc_device_register(&client->dev, max6900_driver.driver.name,
+ &max6900_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ i2c_set_clientdata(client, rtc);
+
+ return 0;
+}
+
+static const struct i2c_device_id max6900_id[] = {
+ { "max6900", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, max6900_id);
+
+static struct i2c_driver max6900_driver = {
+ .driver = {
+ .name = "rtc-max6900",
+ },
+ .probe = max6900_probe,
+ .id_table = max6900_id,
+};
+
+module_i2c_driver(max6900_driver);
+
+MODULE_DESCRIPTION("Maxim MAX6900 RTC driver");
+MODULE_AUTHOR("Dale Farnsworth <dale@farnsworth.org>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-max6902.c b/drivers/rtc/rtc-max6902.c
new file mode 100644
index 000000000..daaeb6fb6
--- /dev/null
+++ b/drivers/rtc/rtc-max6902.c
@@ -0,0 +1,154 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* drivers/rtc/rtc-max6902.c
+ *
+ * Copyright (C) 2006 8D Technologies inc.
+ * Copyright (C) 2004 Compulab Ltd.
+ *
+ * Driver for MAX6902 spi RTC
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/platform_device.h>
+#include <linux/init.h>
+#include <linux/rtc.h>
+#include <linux/spi/spi.h>
+#include <linux/bcd.h>
+
+#define MAX6902_REG_SECONDS 0x01
+#define MAX6902_REG_MINUTES 0x03
+#define MAX6902_REG_HOURS 0x05
+#define MAX6902_REG_DATE 0x07
+#define MAX6902_REG_MONTH 0x09
+#define MAX6902_REG_DAY 0x0B
+#define MAX6902_REG_YEAR 0x0D
+#define MAX6902_REG_CONTROL 0x0F
+#define MAX6902_REG_CENTURY 0x13
+
+static int max6902_set_reg(struct device *dev, unsigned char address,
+ unsigned char data)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ unsigned char buf[2];
+
+ /* MSB must be '0' to write */
+ buf[0] = address & 0x7f;
+ buf[1] = data;
+
+ return spi_write_then_read(spi, buf, 2, NULL, 0);
+}
+
+static int max6902_get_reg(struct device *dev, unsigned char address,
+ unsigned char *data)
+{
+ struct spi_device *spi = to_spi_device(dev);
+
+ /* Set MSB to indicate read */
+ *data = address | 0x80;
+
+ return spi_write_then_read(spi, data, 1, data, 1);
+}
+
+static int max6902_read_time(struct device *dev, struct rtc_time *dt)
+{
+ int err, century;
+ struct spi_device *spi = to_spi_device(dev);
+ unsigned char buf[8];
+
+ buf[0] = 0xbf; /* Burst read */
+
+ err = spi_write_then_read(spi, buf, 1, buf, 8);
+ if (err != 0)
+ return err;
+
+ /* The chip sends data in this order:
+ * Seconds, Minutes, Hours, Date, Month, Day, Year */
+ dt->tm_sec = bcd2bin(buf[0]);
+ dt->tm_min = bcd2bin(buf[1]);
+ dt->tm_hour = bcd2bin(buf[2]);
+ dt->tm_mday = bcd2bin(buf[3]);
+ dt->tm_mon = bcd2bin(buf[4]) - 1;
+ dt->tm_wday = bcd2bin(buf[5]);
+ dt->tm_year = bcd2bin(buf[6]);
+
+ /* Read century */
+ err = max6902_get_reg(dev, MAX6902_REG_CENTURY, &buf[0]);
+ if (err != 0)
+ return err;
+
+ century = bcd2bin(buf[0]) * 100;
+
+ dt->tm_year += century;
+ dt->tm_year -= 1900;
+
+ return 0;
+}
+
+static int max6902_set_time(struct device *dev, struct rtc_time *dt)
+{
+ dt->tm_year = dt->tm_year + 1900;
+
+ /* Remove write protection */
+ max6902_set_reg(dev, MAX6902_REG_CONTROL, 0);
+
+ max6902_set_reg(dev, MAX6902_REG_SECONDS, bin2bcd(dt->tm_sec));
+ max6902_set_reg(dev, MAX6902_REG_MINUTES, bin2bcd(dt->tm_min));
+ max6902_set_reg(dev, MAX6902_REG_HOURS, bin2bcd(dt->tm_hour));
+
+ max6902_set_reg(dev, MAX6902_REG_DATE, bin2bcd(dt->tm_mday));
+ max6902_set_reg(dev, MAX6902_REG_MONTH, bin2bcd(dt->tm_mon + 1));
+ max6902_set_reg(dev, MAX6902_REG_DAY, bin2bcd(dt->tm_wday));
+ max6902_set_reg(dev, MAX6902_REG_YEAR, bin2bcd(dt->tm_year % 100));
+ max6902_set_reg(dev, MAX6902_REG_CENTURY, bin2bcd(dt->tm_year / 100));
+
+ /* Compulab used a delay here. However, the datasheet
+ * does not mention a delay being required anywhere... */
+ /* delay(2000); */
+
+ /* Write protect */
+ max6902_set_reg(dev, MAX6902_REG_CONTROL, 0x80);
+
+ return 0;
+}
+
+static const struct rtc_class_ops max6902_rtc_ops = {
+ .read_time = max6902_read_time,
+ .set_time = max6902_set_time,
+};
+
+static int max6902_probe(struct spi_device *spi)
+{
+ struct rtc_device *rtc;
+ unsigned char tmp;
+ int res;
+
+ spi->mode = SPI_MODE_3;
+ spi->bits_per_word = 8;
+ spi_setup(spi);
+
+ res = max6902_get_reg(&spi->dev, MAX6902_REG_SECONDS, &tmp);
+ if (res != 0)
+ return res;
+
+ rtc = devm_rtc_device_register(&spi->dev, "max6902",
+ &max6902_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ spi_set_drvdata(spi, rtc);
+ return 0;
+}
+
+static struct spi_driver max6902_driver = {
+ .driver = {
+ .name = "rtc-max6902",
+ },
+ .probe = max6902_probe,
+};
+
+module_spi_driver(max6902_driver);
+
+MODULE_DESCRIPTION("max6902 spi RTC driver");
+MODULE_AUTHOR("Raphael Assenat");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("spi:rtc-max6902");
diff --git a/drivers/rtc/rtc-max6916.c b/drivers/rtc/rtc-max6916.c
new file mode 100644
index 000000000..e72e768ab
--- /dev/null
+++ b/drivers/rtc/rtc-max6916.c
@@ -0,0 +1,160 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* rtc-max6916.c
+ *
+ * Driver for MAXIM max6916 Low Current, SPI Compatible
+ * Real Time Clock
+ *
+ * Author : Venkat Prashanth B U <venkat.prashanth2498@gmail.com>
+ */
+
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/device.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/spi/spi.h>
+#include <linux/bcd.h>
+
+/* Registers in max6916 rtc */
+
+#define MAX6916_SECONDS_REG 0x01
+#define MAX6916_MINUTES_REG 0x02
+#define MAX6916_HOURS_REG 0x03
+#define MAX6916_DATE_REG 0x04
+#define MAX6916_MONTH_REG 0x05
+#define MAX6916_DAY_REG 0x06
+#define MAX6916_YEAR_REG 0x07
+#define MAX6916_CONTROL_REG 0x08
+#define MAX6916_STATUS_REG 0x0C
+#define MAX6916_CLOCK_BURST 0x3F
+
+static int max6916_read_reg(struct device *dev, unsigned char address,
+ unsigned char *data)
+{
+ struct spi_device *spi = to_spi_device(dev);
+
+ *data = address | 0x80;
+
+ return spi_write_then_read(spi, data, 1, data, 1);
+}
+
+static int max6916_write_reg(struct device *dev, unsigned char address,
+ unsigned char data)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ unsigned char buf[2];
+
+ buf[0] = address & 0x7F;
+ buf[1] = data;
+
+ return spi_write_then_read(spi, buf, 2, NULL, 0);
+}
+
+static int max6916_read_time(struct device *dev, struct rtc_time *dt)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ int err;
+ unsigned char buf[8];
+
+ buf[0] = MAX6916_CLOCK_BURST | 0x80;
+
+ err = spi_write_then_read(spi, buf, 1, buf, 8);
+
+ if (err)
+ return err;
+
+ dt->tm_sec = bcd2bin(buf[0]);
+ dt->tm_min = bcd2bin(buf[1]);
+ dt->tm_hour = bcd2bin(buf[2] & 0x3F);
+ dt->tm_mday = bcd2bin(buf[3]);
+ dt->tm_mon = bcd2bin(buf[4]) - 1;
+ dt->tm_wday = bcd2bin(buf[5]) - 1;
+ dt->tm_year = bcd2bin(buf[6]) + 100;
+
+ return 0;
+}
+
+static int max6916_set_time(struct device *dev, struct rtc_time *dt)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ unsigned char buf[9];
+
+ if (dt->tm_year < 100 || dt->tm_year > 199) {
+ dev_err(&spi->dev, "Year must be between 2000 and 2099. It's %d.\n",
+ dt->tm_year + 1900);
+ return -EINVAL;
+ }
+
+ buf[0] = MAX6916_CLOCK_BURST & 0x7F;
+ buf[1] = bin2bcd(dt->tm_sec);
+ buf[2] = bin2bcd(dt->tm_min);
+ buf[3] = (bin2bcd(dt->tm_hour) & 0X3F);
+ buf[4] = bin2bcd(dt->tm_mday);
+ buf[5] = bin2bcd(dt->tm_mon + 1);
+ buf[6] = bin2bcd(dt->tm_wday + 1);
+ buf[7] = bin2bcd(dt->tm_year % 100);
+ buf[8] = bin2bcd(0x00);
+
+ /* write the rtc settings */
+ return spi_write_then_read(spi, buf, 9, NULL, 0);
+}
+
+static const struct rtc_class_ops max6916_rtc_ops = {
+ .read_time = max6916_read_time,
+ .set_time = max6916_set_time,
+};
+
+static int max6916_probe(struct spi_device *spi)
+{
+ struct rtc_device *rtc;
+ unsigned char data;
+ int res;
+
+ /* spi setup with max6916 in mode 3 and bits per word as 8 */
+ spi->mode = SPI_MODE_3;
+ spi->bits_per_word = 8;
+ spi_setup(spi);
+
+ /* RTC Settings */
+ res = max6916_read_reg(&spi->dev, MAX6916_SECONDS_REG, &data);
+ if (res)
+ return res;
+
+ /* Disable the write protect of rtc */
+ max6916_read_reg(&spi->dev, MAX6916_CONTROL_REG, &data);
+ data = data & ~(1 << 7);
+ max6916_write_reg(&spi->dev, MAX6916_CONTROL_REG, data);
+
+ /*Enable oscillator,disable oscillator stop flag, glitch filter*/
+ max6916_read_reg(&spi->dev, MAX6916_STATUS_REG, &data);
+ data = data & 0x1B;
+ max6916_write_reg(&spi->dev, MAX6916_STATUS_REG, data);
+
+ /* display the settings */
+ max6916_read_reg(&spi->dev, MAX6916_CONTROL_REG, &data);
+ dev_info(&spi->dev, "MAX6916 RTC CTRL Reg = 0x%02x\n", data);
+
+ max6916_read_reg(&spi->dev, MAX6916_STATUS_REG, &data);
+ dev_info(&spi->dev, "MAX6916 RTC Status Reg = 0x%02x\n", data);
+
+ rtc = devm_rtc_device_register(&spi->dev, "max6916",
+ &max6916_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ spi_set_drvdata(spi, rtc);
+
+ return 0;
+}
+
+static struct spi_driver max6916_driver = {
+ .driver = {
+ .name = "max6916",
+ },
+ .probe = max6916_probe,
+};
+module_spi_driver(max6916_driver);
+
+MODULE_DESCRIPTION("MAX6916 SPI RTC DRIVER");
+MODULE_AUTHOR("Venkat Prashanth B U <venkat.prashanth2498@gmail.com>");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-max77686.c b/drivers/rtc/rtc-max77686.c
new file mode 100644
index 000000000..eae7cb9fa
--- /dev/null
+++ b/drivers/rtc/rtc-max77686.c
@@ -0,0 +1,873 @@
+// SPDX-License-Identifier: GPL-2.0+
+//
+// RTC driver for Maxim MAX77686 and MAX77802
+//
+// Copyright (C) 2012 Samsung Electronics Co.Ltd
+//
+// based on rtc-max8997.c
+
+#include <linux/i2c.h>
+#include <linux/slab.h>
+#include <linux/rtc.h>
+#include <linux/delay.h>
+#include <linux/mutex.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/mfd/max77686-private.h>
+#include <linux/irqdomain.h>
+#include <linux/regmap.h>
+
+#define MAX77686_I2C_ADDR_RTC (0x0C >> 1)
+#define MAX77620_I2C_ADDR_RTC 0x68
+#define MAX77686_INVALID_I2C_ADDR (-1)
+
+/* Define non existing register */
+#define MAX77686_INVALID_REG (-1)
+
+/* RTC Control Register */
+#define BCD_EN_SHIFT 0
+#define BCD_EN_MASK BIT(BCD_EN_SHIFT)
+#define MODEL24_SHIFT 1
+#define MODEL24_MASK BIT(MODEL24_SHIFT)
+/* RTC Update Register1 */
+#define RTC_UDR_SHIFT 0
+#define RTC_UDR_MASK BIT(RTC_UDR_SHIFT)
+#define RTC_RBUDR_SHIFT 4
+#define RTC_RBUDR_MASK BIT(RTC_RBUDR_SHIFT)
+/* RTC Hour register */
+#define HOUR_PM_SHIFT 6
+#define HOUR_PM_MASK BIT(HOUR_PM_SHIFT)
+/* RTC Alarm Enable */
+#define ALARM_ENABLE_SHIFT 7
+#define ALARM_ENABLE_MASK BIT(ALARM_ENABLE_SHIFT)
+
+#define REG_RTC_NONE 0xdeadbeef
+
+/*
+ * MAX77802 has separate register (RTCAE1) for alarm enable instead
+ * using 1 bit from registers RTC{SEC,MIN,HOUR,DAY,MONTH,YEAR,DATE}
+ * as in done in MAX77686.
+ */
+#define MAX77802_ALARM_ENABLE_VALUE 0x77
+
+enum {
+ RTC_SEC = 0,
+ RTC_MIN,
+ RTC_HOUR,
+ RTC_WEEKDAY,
+ RTC_MONTH,
+ RTC_YEAR,
+ RTC_DATE,
+ RTC_NR_TIME
+};
+
+struct max77686_rtc_driver_data {
+ /* Minimum usecs needed for a RTC update */
+ unsigned long delay;
+ /* Mask used to read RTC registers value */
+ u8 mask;
+ /* Registers offset to I2C addresses map */
+ const unsigned int *map;
+ /* Has a separate alarm enable register? */
+ bool alarm_enable_reg;
+ /* I2C address for RTC block */
+ int rtc_i2c_addr;
+ /* RTC interrupt via platform resource */
+ bool rtc_irq_from_platform;
+ /* Pending alarm status register */
+ int alarm_pending_status_reg;
+ /* RTC IRQ CHIP for regmap */
+ const struct regmap_irq_chip *rtc_irq_chip;
+ /* regmap configuration for the chip */
+ const struct regmap_config *regmap_config;
+};
+
+struct max77686_rtc_info {
+ struct device *dev;
+ struct i2c_client *rtc;
+ struct rtc_device *rtc_dev;
+ struct mutex lock;
+
+ struct regmap *regmap;
+ struct regmap *rtc_regmap;
+
+ const struct max77686_rtc_driver_data *drv_data;
+ struct regmap_irq_chip_data *rtc_irq_data;
+
+ int rtc_irq;
+ int virq;
+ int rtc_24hr_mode;
+};
+
+enum MAX77686_RTC_OP {
+ MAX77686_RTC_WRITE,
+ MAX77686_RTC_READ,
+};
+
+/* These are not registers but just offsets that are mapped to addresses */
+enum max77686_rtc_reg_offset {
+ REG_RTC_CONTROLM = 0,
+ REG_RTC_CONTROL,
+ REG_RTC_UPDATE0,
+ REG_WTSR_SMPL_CNTL,
+ REG_RTC_SEC,
+ REG_RTC_MIN,
+ REG_RTC_HOUR,
+ REG_RTC_WEEKDAY,
+ REG_RTC_MONTH,
+ REG_RTC_YEAR,
+ REG_RTC_DATE,
+ REG_ALARM1_SEC,
+ REG_ALARM1_MIN,
+ REG_ALARM1_HOUR,
+ REG_ALARM1_WEEKDAY,
+ REG_ALARM1_MONTH,
+ REG_ALARM1_YEAR,
+ REG_ALARM1_DATE,
+ REG_ALARM2_SEC,
+ REG_ALARM2_MIN,
+ REG_ALARM2_HOUR,
+ REG_ALARM2_WEEKDAY,
+ REG_ALARM2_MONTH,
+ REG_ALARM2_YEAR,
+ REG_ALARM2_DATE,
+ REG_RTC_AE1,
+ REG_RTC_END,
+};
+
+/* Maps RTC registers offset to the MAX77686 register addresses */
+static const unsigned int max77686_map[REG_RTC_END] = {
+ [REG_RTC_CONTROLM] = MAX77686_RTC_CONTROLM,
+ [REG_RTC_CONTROL] = MAX77686_RTC_CONTROL,
+ [REG_RTC_UPDATE0] = MAX77686_RTC_UPDATE0,
+ [REG_WTSR_SMPL_CNTL] = MAX77686_WTSR_SMPL_CNTL,
+ [REG_RTC_SEC] = MAX77686_RTC_SEC,
+ [REG_RTC_MIN] = MAX77686_RTC_MIN,
+ [REG_RTC_HOUR] = MAX77686_RTC_HOUR,
+ [REG_RTC_WEEKDAY] = MAX77686_RTC_WEEKDAY,
+ [REG_RTC_MONTH] = MAX77686_RTC_MONTH,
+ [REG_RTC_YEAR] = MAX77686_RTC_YEAR,
+ [REG_RTC_DATE] = MAX77686_RTC_DATE,
+ [REG_ALARM1_SEC] = MAX77686_ALARM1_SEC,
+ [REG_ALARM1_MIN] = MAX77686_ALARM1_MIN,
+ [REG_ALARM1_HOUR] = MAX77686_ALARM1_HOUR,
+ [REG_ALARM1_WEEKDAY] = MAX77686_ALARM1_WEEKDAY,
+ [REG_ALARM1_MONTH] = MAX77686_ALARM1_MONTH,
+ [REG_ALARM1_YEAR] = MAX77686_ALARM1_YEAR,
+ [REG_ALARM1_DATE] = MAX77686_ALARM1_DATE,
+ [REG_ALARM2_SEC] = MAX77686_ALARM2_SEC,
+ [REG_ALARM2_MIN] = MAX77686_ALARM2_MIN,
+ [REG_ALARM2_HOUR] = MAX77686_ALARM2_HOUR,
+ [REG_ALARM2_WEEKDAY] = MAX77686_ALARM2_WEEKDAY,
+ [REG_ALARM2_MONTH] = MAX77686_ALARM2_MONTH,
+ [REG_ALARM2_YEAR] = MAX77686_ALARM2_YEAR,
+ [REG_ALARM2_DATE] = MAX77686_ALARM2_DATE,
+ [REG_RTC_AE1] = REG_RTC_NONE,
+};
+
+static const struct regmap_irq max77686_rtc_irqs[] = {
+ /* RTC interrupts */
+ REGMAP_IRQ_REG(0, 0, MAX77686_RTCINT_RTC60S_MSK),
+ REGMAP_IRQ_REG(1, 0, MAX77686_RTCINT_RTCA1_MSK),
+ REGMAP_IRQ_REG(2, 0, MAX77686_RTCINT_RTCA2_MSK),
+ REGMAP_IRQ_REG(3, 0, MAX77686_RTCINT_SMPL_MSK),
+ REGMAP_IRQ_REG(4, 0, MAX77686_RTCINT_RTC1S_MSK),
+ REGMAP_IRQ_REG(5, 0, MAX77686_RTCINT_WTSR_MSK),
+};
+
+static const struct regmap_irq_chip max77686_rtc_irq_chip = {
+ .name = "max77686-rtc",
+ .status_base = MAX77686_RTC_INT,
+ .mask_base = MAX77686_RTC_INTM,
+ .num_regs = 1,
+ .irqs = max77686_rtc_irqs,
+ .num_irqs = ARRAY_SIZE(max77686_rtc_irqs),
+};
+
+static const struct regmap_config max77686_rtc_regmap_config = {
+ .reg_bits = 8,
+ .val_bits = 8,
+};
+
+static const struct max77686_rtc_driver_data max77686_drv_data = {
+ .delay = 16000,
+ .mask = 0x7f,
+ .map = max77686_map,
+ .alarm_enable_reg = false,
+ .rtc_irq_from_platform = false,
+ .alarm_pending_status_reg = MAX77686_REG_STATUS2,
+ .rtc_i2c_addr = MAX77686_I2C_ADDR_RTC,
+ .rtc_irq_chip = &max77686_rtc_irq_chip,
+ .regmap_config = &max77686_rtc_regmap_config,
+};
+
+static const struct regmap_config max77620_rtc_regmap_config = {
+ .reg_bits = 8,
+ .val_bits = 8,
+ .use_single_write = true,
+};
+
+static const struct max77686_rtc_driver_data max77620_drv_data = {
+ .delay = 16000,
+ .mask = 0x7f,
+ .map = max77686_map,
+ .alarm_enable_reg = false,
+ .rtc_irq_from_platform = true,
+ .alarm_pending_status_reg = MAX77686_INVALID_REG,
+ .rtc_i2c_addr = MAX77620_I2C_ADDR_RTC,
+ .rtc_irq_chip = &max77686_rtc_irq_chip,
+ .regmap_config = &max77620_rtc_regmap_config,
+};
+
+static const unsigned int max77802_map[REG_RTC_END] = {
+ [REG_RTC_CONTROLM] = MAX77802_RTC_CONTROLM,
+ [REG_RTC_CONTROL] = MAX77802_RTC_CONTROL,
+ [REG_RTC_UPDATE0] = MAX77802_RTC_UPDATE0,
+ [REG_WTSR_SMPL_CNTL] = MAX77802_WTSR_SMPL_CNTL,
+ [REG_RTC_SEC] = MAX77802_RTC_SEC,
+ [REG_RTC_MIN] = MAX77802_RTC_MIN,
+ [REG_RTC_HOUR] = MAX77802_RTC_HOUR,
+ [REG_RTC_WEEKDAY] = MAX77802_RTC_WEEKDAY,
+ [REG_RTC_MONTH] = MAX77802_RTC_MONTH,
+ [REG_RTC_YEAR] = MAX77802_RTC_YEAR,
+ [REG_RTC_DATE] = MAX77802_RTC_DATE,
+ [REG_ALARM1_SEC] = MAX77802_ALARM1_SEC,
+ [REG_ALARM1_MIN] = MAX77802_ALARM1_MIN,
+ [REG_ALARM1_HOUR] = MAX77802_ALARM1_HOUR,
+ [REG_ALARM1_WEEKDAY] = MAX77802_ALARM1_WEEKDAY,
+ [REG_ALARM1_MONTH] = MAX77802_ALARM1_MONTH,
+ [REG_ALARM1_YEAR] = MAX77802_ALARM1_YEAR,
+ [REG_ALARM1_DATE] = MAX77802_ALARM1_DATE,
+ [REG_ALARM2_SEC] = MAX77802_ALARM2_SEC,
+ [REG_ALARM2_MIN] = MAX77802_ALARM2_MIN,
+ [REG_ALARM2_HOUR] = MAX77802_ALARM2_HOUR,
+ [REG_ALARM2_WEEKDAY] = MAX77802_ALARM2_WEEKDAY,
+ [REG_ALARM2_MONTH] = MAX77802_ALARM2_MONTH,
+ [REG_ALARM2_YEAR] = MAX77802_ALARM2_YEAR,
+ [REG_ALARM2_DATE] = MAX77802_ALARM2_DATE,
+ [REG_RTC_AE1] = MAX77802_RTC_AE1,
+};
+
+static const struct regmap_irq_chip max77802_rtc_irq_chip = {
+ .name = "max77802-rtc",
+ .status_base = MAX77802_RTC_INT,
+ .mask_base = MAX77802_RTC_INTM,
+ .num_regs = 1,
+ .irqs = max77686_rtc_irqs, /* same masks as 77686 */
+ .num_irqs = ARRAY_SIZE(max77686_rtc_irqs),
+};
+
+static const struct max77686_rtc_driver_data max77802_drv_data = {
+ .delay = 200,
+ .mask = 0xff,
+ .map = max77802_map,
+ .alarm_enable_reg = true,
+ .rtc_irq_from_platform = false,
+ .alarm_pending_status_reg = MAX77686_REG_STATUS2,
+ .rtc_i2c_addr = MAX77686_INVALID_I2C_ADDR,
+ .rtc_irq_chip = &max77802_rtc_irq_chip,
+};
+
+static void max77686_rtc_data_to_tm(u8 *data, struct rtc_time *tm,
+ struct max77686_rtc_info *info)
+{
+ u8 mask = info->drv_data->mask;
+
+ tm->tm_sec = data[RTC_SEC] & mask;
+ tm->tm_min = data[RTC_MIN] & mask;
+ if (info->rtc_24hr_mode) {
+ tm->tm_hour = data[RTC_HOUR] & 0x1f;
+ } else {
+ tm->tm_hour = data[RTC_HOUR] & 0x0f;
+ if (data[RTC_HOUR] & HOUR_PM_MASK)
+ tm->tm_hour += 12;
+ }
+
+ /* Only a single bit is set in data[], so fls() would be equivalent */
+ tm->tm_wday = ffs(data[RTC_WEEKDAY] & mask) - 1;
+ tm->tm_mday = data[RTC_DATE] & 0x1f;
+ tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
+ tm->tm_year = data[RTC_YEAR] & mask;
+ tm->tm_yday = 0;
+ tm->tm_isdst = 0;
+
+ /*
+ * MAX77686 uses 1 bit from sec/min/hour/etc RTC registers and the
+ * year values are just 0..99 so add 100 to support up to 2099.
+ */
+ if (!info->drv_data->alarm_enable_reg)
+ tm->tm_year += 100;
+}
+
+static int max77686_rtc_tm_to_data(struct rtc_time *tm, u8 *data,
+ struct max77686_rtc_info *info)
+{
+ data[RTC_SEC] = tm->tm_sec;
+ data[RTC_MIN] = tm->tm_min;
+ data[RTC_HOUR] = tm->tm_hour;
+ data[RTC_WEEKDAY] = 1 << tm->tm_wday;
+ data[RTC_DATE] = tm->tm_mday;
+ data[RTC_MONTH] = tm->tm_mon + 1;
+
+ if (info->drv_data->alarm_enable_reg) {
+ data[RTC_YEAR] = tm->tm_year;
+ return 0;
+ }
+
+ data[RTC_YEAR] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0;
+
+ if (tm->tm_year < 100) {
+ dev_err(info->dev, "RTC cannot handle the year %d.\n",
+ 1900 + tm->tm_year);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int max77686_rtc_update(struct max77686_rtc_info *info,
+ enum MAX77686_RTC_OP op)
+{
+ int ret;
+ unsigned int data;
+ unsigned long delay = info->drv_data->delay;
+
+ if (op == MAX77686_RTC_WRITE)
+ data = 1 << RTC_UDR_SHIFT;
+ else
+ data = 1 << RTC_RBUDR_SHIFT;
+
+ ret = regmap_update_bits(info->rtc_regmap,
+ info->drv_data->map[REG_RTC_UPDATE0],
+ data, data);
+ if (ret < 0)
+ dev_err(info->dev, "Fail to write update reg(ret=%d, data=0x%x)\n",
+ ret, data);
+ else {
+ /* Minimum delay required before RTC update. */
+ usleep_range(delay, delay * 2);
+ }
+
+ return ret;
+}
+
+static int max77686_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct max77686_rtc_info *info = dev_get_drvdata(dev);
+ u8 data[RTC_NR_TIME];
+ int ret;
+
+ mutex_lock(&info->lock);
+
+ ret = max77686_rtc_update(info, MAX77686_RTC_READ);
+ if (ret < 0)
+ goto out;
+
+ ret = regmap_bulk_read(info->rtc_regmap,
+ info->drv_data->map[REG_RTC_SEC],
+ data, ARRAY_SIZE(data));
+ if (ret < 0) {
+ dev_err(info->dev, "Fail to read time reg(%d)\n", ret);
+ goto out;
+ }
+
+ max77686_rtc_data_to_tm(data, tm, info);
+
+out:
+ mutex_unlock(&info->lock);
+ return ret;
+}
+
+static int max77686_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct max77686_rtc_info *info = dev_get_drvdata(dev);
+ u8 data[RTC_NR_TIME];
+ int ret;
+
+ ret = max77686_rtc_tm_to_data(tm, data, info);
+ if (ret < 0)
+ return ret;
+
+ mutex_lock(&info->lock);
+
+ ret = regmap_bulk_write(info->rtc_regmap,
+ info->drv_data->map[REG_RTC_SEC],
+ data, ARRAY_SIZE(data));
+ if (ret < 0) {
+ dev_err(info->dev, "Fail to write time reg(%d)\n", ret);
+ goto out;
+ }
+
+ ret = max77686_rtc_update(info, MAX77686_RTC_WRITE);
+
+out:
+ mutex_unlock(&info->lock);
+ return ret;
+}
+
+static int max77686_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct max77686_rtc_info *info = dev_get_drvdata(dev);
+ u8 data[RTC_NR_TIME];
+ unsigned int val;
+ const unsigned int *map = info->drv_data->map;
+ int i, ret;
+
+ mutex_lock(&info->lock);
+
+ ret = max77686_rtc_update(info, MAX77686_RTC_READ);
+ if (ret < 0)
+ goto out;
+
+ ret = regmap_bulk_read(info->rtc_regmap, map[REG_ALARM1_SEC],
+ data, ARRAY_SIZE(data));
+ if (ret < 0) {
+ dev_err(info->dev, "Fail to read alarm reg(%d)\n", ret);
+ goto out;
+ }
+
+ max77686_rtc_data_to_tm(data, &alrm->time, info);
+
+ alrm->enabled = 0;
+
+ if (info->drv_data->alarm_enable_reg) {
+ if (map[REG_RTC_AE1] == REG_RTC_NONE) {
+ ret = -EINVAL;
+ dev_err(info->dev,
+ "alarm enable register not set(%d)\n", ret);
+ goto out;
+ }
+
+ ret = regmap_read(info->rtc_regmap, map[REG_RTC_AE1], &val);
+ if (ret < 0) {
+ dev_err(info->dev,
+ "fail to read alarm enable(%d)\n", ret);
+ goto out;
+ }
+
+ if (val)
+ alrm->enabled = 1;
+ } else {
+ for (i = 0; i < ARRAY_SIZE(data); i++) {
+ if (data[i] & ALARM_ENABLE_MASK) {
+ alrm->enabled = 1;
+ break;
+ }
+ }
+ }
+
+ alrm->pending = 0;
+
+ if (info->drv_data->alarm_pending_status_reg == MAX77686_INVALID_REG)
+ goto out;
+
+ ret = regmap_read(info->regmap,
+ info->drv_data->alarm_pending_status_reg, &val);
+ if (ret < 0) {
+ dev_err(info->dev,
+ "Fail to read alarm pending status reg(%d)\n", ret);
+ goto out;
+ }
+
+ if (val & (1 << 4)) /* RTCA1 */
+ alrm->pending = 1;
+
+out:
+ mutex_unlock(&info->lock);
+ return ret;
+}
+
+static int max77686_rtc_stop_alarm(struct max77686_rtc_info *info)
+{
+ u8 data[RTC_NR_TIME];
+ int ret, i;
+ struct rtc_time tm;
+ const unsigned int *map = info->drv_data->map;
+
+ if (!mutex_is_locked(&info->lock))
+ dev_warn(info->dev, "%s: should have mutex locked\n", __func__);
+
+ ret = max77686_rtc_update(info, MAX77686_RTC_READ);
+ if (ret < 0)
+ goto out;
+
+ if (info->drv_data->alarm_enable_reg) {
+ if (map[REG_RTC_AE1] == REG_RTC_NONE) {
+ ret = -EINVAL;
+ dev_err(info->dev,
+ "alarm enable register not set(%d)\n", ret);
+ goto out;
+ }
+
+ ret = regmap_write(info->rtc_regmap, map[REG_RTC_AE1], 0);
+ } else {
+ ret = regmap_bulk_read(info->rtc_regmap, map[REG_ALARM1_SEC],
+ data, ARRAY_SIZE(data));
+ if (ret < 0) {
+ dev_err(info->dev, "Fail to read alarm reg(%d)\n", ret);
+ goto out;
+ }
+
+ max77686_rtc_data_to_tm(data, &tm, info);
+
+ for (i = 0; i < ARRAY_SIZE(data); i++)
+ data[i] &= ~ALARM_ENABLE_MASK;
+
+ ret = regmap_bulk_write(info->rtc_regmap, map[REG_ALARM1_SEC],
+ data, ARRAY_SIZE(data));
+ }
+
+ if (ret < 0) {
+ dev_err(info->dev, "Fail to write alarm reg(%d)\n", ret);
+ goto out;
+ }
+
+ ret = max77686_rtc_update(info, MAX77686_RTC_WRITE);
+out:
+ return ret;
+}
+
+static int max77686_rtc_start_alarm(struct max77686_rtc_info *info)
+{
+ u8 data[RTC_NR_TIME];
+ int ret;
+ struct rtc_time tm;
+ const unsigned int *map = info->drv_data->map;
+
+ if (!mutex_is_locked(&info->lock))
+ dev_warn(info->dev, "%s: should have mutex locked\n", __func__);
+
+ ret = max77686_rtc_update(info, MAX77686_RTC_READ);
+ if (ret < 0)
+ goto out;
+
+ if (info->drv_data->alarm_enable_reg) {
+ ret = regmap_write(info->rtc_regmap, map[REG_RTC_AE1],
+ MAX77802_ALARM_ENABLE_VALUE);
+ } else {
+ ret = regmap_bulk_read(info->rtc_regmap, map[REG_ALARM1_SEC],
+ data, ARRAY_SIZE(data));
+ if (ret < 0) {
+ dev_err(info->dev, "Fail to read alarm reg(%d)\n", ret);
+ goto out;
+ }
+
+ max77686_rtc_data_to_tm(data, &tm, info);
+
+ data[RTC_SEC] |= (1 << ALARM_ENABLE_SHIFT);
+ data[RTC_MIN] |= (1 << ALARM_ENABLE_SHIFT);
+ data[RTC_HOUR] |= (1 << ALARM_ENABLE_SHIFT);
+ data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
+ if (data[RTC_MONTH] & 0xf)
+ data[RTC_MONTH] |= (1 << ALARM_ENABLE_SHIFT);
+ if (data[RTC_YEAR] & info->drv_data->mask)
+ data[RTC_YEAR] |= (1 << ALARM_ENABLE_SHIFT);
+ if (data[RTC_DATE] & 0x1f)
+ data[RTC_DATE] |= (1 << ALARM_ENABLE_SHIFT);
+
+ ret = regmap_bulk_write(info->rtc_regmap, map[REG_ALARM1_SEC],
+ data, ARRAY_SIZE(data));
+ }
+
+ if (ret < 0) {
+ dev_err(info->dev, "Fail to write alarm reg(%d)\n", ret);
+ goto out;
+ }
+
+ ret = max77686_rtc_update(info, MAX77686_RTC_WRITE);
+out:
+ return ret;
+}
+
+static int max77686_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct max77686_rtc_info *info = dev_get_drvdata(dev);
+ u8 data[RTC_NR_TIME];
+ int ret;
+
+ ret = max77686_rtc_tm_to_data(&alrm->time, data, info);
+ if (ret < 0)
+ return ret;
+
+ mutex_lock(&info->lock);
+
+ ret = max77686_rtc_stop_alarm(info);
+ if (ret < 0)
+ goto out;
+
+ ret = regmap_bulk_write(info->rtc_regmap,
+ info->drv_data->map[REG_ALARM1_SEC],
+ data, ARRAY_SIZE(data));
+
+ if (ret < 0) {
+ dev_err(info->dev, "Fail to write alarm reg(%d)\n", ret);
+ goto out;
+ }
+
+ ret = max77686_rtc_update(info, MAX77686_RTC_WRITE);
+ if (ret < 0)
+ goto out;
+
+ if (alrm->enabled)
+ ret = max77686_rtc_start_alarm(info);
+out:
+ mutex_unlock(&info->lock);
+ return ret;
+}
+
+static int max77686_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct max77686_rtc_info *info = dev_get_drvdata(dev);
+ int ret;
+
+ mutex_lock(&info->lock);
+ if (enabled)
+ ret = max77686_rtc_start_alarm(info);
+ else
+ ret = max77686_rtc_stop_alarm(info);
+ mutex_unlock(&info->lock);
+
+ return ret;
+}
+
+static irqreturn_t max77686_rtc_alarm_irq(int irq, void *data)
+{
+ struct max77686_rtc_info *info = data;
+
+ dev_dbg(info->dev, "RTC alarm IRQ: %d\n", irq);
+
+ rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops max77686_rtc_ops = {
+ .read_time = max77686_rtc_read_time,
+ .set_time = max77686_rtc_set_time,
+ .read_alarm = max77686_rtc_read_alarm,
+ .set_alarm = max77686_rtc_set_alarm,
+ .alarm_irq_enable = max77686_rtc_alarm_irq_enable,
+};
+
+static int max77686_rtc_init_reg(struct max77686_rtc_info *info)
+{
+ u8 data[2];
+ int ret;
+
+ /* Set RTC control register : Binary mode, 24hour mdoe */
+ data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
+ data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
+
+ info->rtc_24hr_mode = 1;
+
+ ret = regmap_bulk_write(info->rtc_regmap,
+ info->drv_data->map[REG_RTC_CONTROLM],
+ data, ARRAY_SIZE(data));
+ if (ret < 0) {
+ dev_err(info->dev, "Fail to write controlm reg(%d)\n", ret);
+ return ret;
+ }
+
+ ret = max77686_rtc_update(info, MAX77686_RTC_WRITE);
+ return ret;
+}
+
+static int max77686_init_rtc_regmap(struct max77686_rtc_info *info)
+{
+ struct device *parent = info->dev->parent;
+ struct i2c_client *parent_i2c = to_i2c_client(parent);
+ int ret;
+
+ if (info->drv_data->rtc_irq_from_platform) {
+ struct platform_device *pdev = to_platform_device(info->dev);
+
+ info->rtc_irq = platform_get_irq(pdev, 0);
+ if (info->rtc_irq < 0)
+ return info->rtc_irq;
+ } else {
+ info->rtc_irq = parent_i2c->irq;
+ }
+
+ info->regmap = dev_get_regmap(parent, NULL);
+ if (!info->regmap) {
+ dev_err(info->dev, "Failed to get rtc regmap\n");
+ return -ENODEV;
+ }
+
+ if (info->drv_data->rtc_i2c_addr == MAX77686_INVALID_I2C_ADDR) {
+ info->rtc_regmap = info->regmap;
+ goto add_rtc_irq;
+ }
+
+ info->rtc = devm_i2c_new_dummy_device(info->dev, parent_i2c->adapter,
+ info->drv_data->rtc_i2c_addr);
+ if (IS_ERR(info->rtc)) {
+ dev_err(info->dev, "Failed to allocate I2C device for RTC\n");
+ return PTR_ERR(info->rtc);
+ }
+
+ info->rtc_regmap = devm_regmap_init_i2c(info->rtc,
+ info->drv_data->regmap_config);
+ if (IS_ERR(info->rtc_regmap)) {
+ ret = PTR_ERR(info->rtc_regmap);
+ dev_err(info->dev, "Failed to allocate RTC regmap: %d\n", ret);
+ return ret;
+ }
+
+add_rtc_irq:
+ ret = regmap_add_irq_chip(info->rtc_regmap, info->rtc_irq,
+ IRQF_ONESHOT | IRQF_SHARED,
+ 0, info->drv_data->rtc_irq_chip,
+ &info->rtc_irq_data);
+ if (ret < 0) {
+ dev_err(info->dev, "Failed to add RTC irq chip: %d\n", ret);
+ return ret;
+ }
+
+ return 0;
+}
+
+static int max77686_rtc_probe(struct platform_device *pdev)
+{
+ struct max77686_rtc_info *info;
+ const struct platform_device_id *id = platform_get_device_id(pdev);
+ int ret;
+
+ info = devm_kzalloc(&pdev->dev, sizeof(struct max77686_rtc_info),
+ GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ mutex_init(&info->lock);
+ info->dev = &pdev->dev;
+ info->drv_data = (const struct max77686_rtc_driver_data *)
+ id->driver_data;
+
+ ret = max77686_init_rtc_regmap(info);
+ if (ret < 0)
+ return ret;
+
+ platform_set_drvdata(pdev, info);
+
+ ret = max77686_rtc_init_reg(info);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "Failed to initialize RTC reg:%d\n", ret);
+ goto err_rtc;
+ }
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ info->rtc_dev = devm_rtc_device_register(&pdev->dev, id->name,
+ &max77686_rtc_ops, THIS_MODULE);
+
+ if (IS_ERR(info->rtc_dev)) {
+ ret = PTR_ERR(info->rtc_dev);
+ dev_err(&pdev->dev, "Failed to register RTC device: %d\n", ret);
+ if (ret == 0)
+ ret = -EINVAL;
+ goto err_rtc;
+ }
+
+ info->virq = regmap_irq_get_virq(info->rtc_irq_data,
+ MAX77686_RTCIRQ_RTCA1);
+ if (info->virq <= 0) {
+ ret = -ENXIO;
+ goto err_rtc;
+ }
+
+ ret = request_threaded_irq(info->virq, NULL, max77686_rtc_alarm_irq, 0,
+ "rtc-alarm1", info);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
+ info->virq, ret);
+ goto err_rtc;
+ }
+
+ return 0;
+
+err_rtc:
+ regmap_del_irq_chip(info->rtc_irq, info->rtc_irq_data);
+
+ return ret;
+}
+
+static int max77686_rtc_remove(struct platform_device *pdev)
+{
+ struct max77686_rtc_info *info = platform_get_drvdata(pdev);
+
+ free_irq(info->virq, info);
+ regmap_del_irq_chip(info->rtc_irq, info->rtc_irq_data);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int max77686_rtc_suspend(struct device *dev)
+{
+ struct max77686_rtc_info *info = dev_get_drvdata(dev);
+ int ret = 0;
+
+ if (device_may_wakeup(dev)) {
+ struct max77686_rtc_info *info = dev_get_drvdata(dev);
+
+ ret = enable_irq_wake(info->virq);
+ }
+
+ /*
+ * If the main IRQ (not virtual) is the parent IRQ, then it must be
+ * disabled during suspend because if it happens while suspended it
+ * will be handled before resuming I2C.
+ *
+ * Since Main IRQ is shared, all its users should disable it to be sure
+ * it won't fire while one of them is still suspended.
+ */
+ if (!info->drv_data->rtc_irq_from_platform)
+ disable_irq(info->rtc_irq);
+
+ return ret;
+}
+
+static int max77686_rtc_resume(struct device *dev)
+{
+ struct max77686_rtc_info *info = dev_get_drvdata(dev);
+
+ if (!info->drv_data->rtc_irq_from_platform)
+ enable_irq(info->rtc_irq);
+
+ if (device_may_wakeup(dev)) {
+ struct max77686_rtc_info *info = dev_get_drvdata(dev);
+
+ return disable_irq_wake(info->virq);
+ }
+
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(max77686_rtc_pm_ops,
+ max77686_rtc_suspend, max77686_rtc_resume);
+
+static const struct platform_device_id rtc_id[] = {
+ { "max77686-rtc", .driver_data = (kernel_ulong_t)&max77686_drv_data, },
+ { "max77802-rtc", .driver_data = (kernel_ulong_t)&max77802_drv_data, },
+ { "max77620-rtc", .driver_data = (kernel_ulong_t)&max77620_drv_data, },
+ {},
+};
+MODULE_DEVICE_TABLE(platform, rtc_id);
+
+static struct platform_driver max77686_rtc_driver = {
+ .driver = {
+ .name = "max77686-rtc",
+ .pm = &max77686_rtc_pm_ops,
+ },
+ .probe = max77686_rtc_probe,
+ .remove = max77686_rtc_remove,
+ .id_table = rtc_id,
+};
+
+module_platform_driver(max77686_rtc_driver);
+
+MODULE_DESCRIPTION("Maxim MAX77686 RTC driver");
+MODULE_AUTHOR("Chiwoong Byun <woong.byun@samsung.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-max8907.c b/drivers/rtc/rtc-max8907.c
new file mode 100644
index 000000000..db3495d10
--- /dev/null
+++ b/drivers/rtc/rtc-max8907.c
@@ -0,0 +1,221 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * RTC driver for Maxim MAX8907
+ *
+ * Copyright (c) 2011-2012, NVIDIA Corporation.
+ *
+ * Based on drivers/rtc/rtc-max8925.c,
+ * Copyright (C) 2009-2010 Marvell International Ltd.
+ */
+
+#include <linux/bcd.h>
+#include <linux/i2c.h>
+#include <linux/mfd/max8907.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/regmap.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+
+enum {
+ RTC_SEC = 0,
+ RTC_MIN,
+ RTC_HOUR,
+ RTC_WEEKDAY,
+ RTC_DATE,
+ RTC_MONTH,
+ RTC_YEAR1,
+ RTC_YEAR2,
+};
+
+#define TIME_NUM 8
+#define ALARM_1SEC (1 << 7)
+#define HOUR_12 (1 << 7)
+#define HOUR_AM_PM (1 << 5)
+#define ALARM0_IRQ (1 << 3)
+#define ALARM1_IRQ (1 << 2)
+#define ALARM0_STATUS (1 << 2)
+#define ALARM1_STATUS (1 << 1)
+
+struct max8907_rtc {
+ struct max8907 *max8907;
+ struct regmap *regmap;
+ struct rtc_device *rtc_dev;
+ int irq;
+};
+
+static irqreturn_t max8907_irq_handler(int irq, void *data)
+{
+ struct max8907_rtc *rtc = data;
+
+ regmap_write(rtc->regmap, MAX8907_REG_ALARM0_CNTL, 0);
+
+ rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
+
+ return IRQ_HANDLED;
+}
+
+static void regs_to_tm(u8 *regs, struct rtc_time *tm)
+{
+ tm->tm_year = bcd2bin(regs[RTC_YEAR2]) * 100 +
+ bcd2bin(regs[RTC_YEAR1]) - 1900;
+ tm->tm_mon = bcd2bin(regs[RTC_MONTH] & 0x1f) - 1;
+ tm->tm_mday = bcd2bin(regs[RTC_DATE] & 0x3f);
+ tm->tm_wday = (regs[RTC_WEEKDAY] & 0x07);
+ if (regs[RTC_HOUR] & HOUR_12) {
+ tm->tm_hour = bcd2bin(regs[RTC_HOUR] & 0x01f);
+ if (tm->tm_hour == 12)
+ tm->tm_hour = 0;
+ if (regs[RTC_HOUR] & HOUR_AM_PM)
+ tm->tm_hour += 12;
+ } else {
+ tm->tm_hour = bcd2bin(regs[RTC_HOUR] & 0x03f);
+ }
+ tm->tm_min = bcd2bin(regs[RTC_MIN] & 0x7f);
+ tm->tm_sec = bcd2bin(regs[RTC_SEC] & 0x7f);
+}
+
+static void tm_to_regs(struct rtc_time *tm, u8 *regs)
+{
+ u8 high, low;
+
+ high = (tm->tm_year + 1900) / 100;
+ low = tm->tm_year % 100;
+ regs[RTC_YEAR2] = bin2bcd(high);
+ regs[RTC_YEAR1] = bin2bcd(low);
+ regs[RTC_MONTH] = bin2bcd(tm->tm_mon + 1);
+ regs[RTC_DATE] = bin2bcd(tm->tm_mday);
+ regs[RTC_WEEKDAY] = tm->tm_wday;
+ regs[RTC_HOUR] = bin2bcd(tm->tm_hour);
+ regs[RTC_MIN] = bin2bcd(tm->tm_min);
+ regs[RTC_SEC] = bin2bcd(tm->tm_sec);
+}
+
+static int max8907_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct max8907_rtc *rtc = dev_get_drvdata(dev);
+ u8 regs[TIME_NUM];
+ int ret;
+
+ ret = regmap_bulk_read(rtc->regmap, MAX8907_REG_RTC_SEC, regs,
+ TIME_NUM);
+ if (ret < 0)
+ return ret;
+
+ regs_to_tm(regs, tm);
+
+ return 0;
+}
+
+static int max8907_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct max8907_rtc *rtc = dev_get_drvdata(dev);
+ u8 regs[TIME_NUM];
+
+ tm_to_regs(tm, regs);
+
+ return regmap_bulk_write(rtc->regmap, MAX8907_REG_RTC_SEC, regs,
+ TIME_NUM);
+}
+
+static int max8907_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct max8907_rtc *rtc = dev_get_drvdata(dev);
+ u8 regs[TIME_NUM];
+ unsigned int val;
+ int ret;
+
+ ret = regmap_bulk_read(rtc->regmap, MAX8907_REG_ALARM0_SEC, regs,
+ TIME_NUM);
+ if (ret < 0)
+ return ret;
+
+ regs_to_tm(regs, &alrm->time);
+
+ ret = regmap_read(rtc->regmap, MAX8907_REG_ALARM0_CNTL, &val);
+ if (ret < 0)
+ return ret;
+
+ alrm->enabled = !!(val & 0x7f);
+
+ return 0;
+}
+
+static int max8907_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct max8907_rtc *rtc = dev_get_drvdata(dev);
+ u8 regs[TIME_NUM];
+ int ret;
+
+ tm_to_regs(&alrm->time, regs);
+
+ /* Disable alarm while we update the target time */
+ ret = regmap_write(rtc->regmap, MAX8907_REG_ALARM0_CNTL, 0);
+ if (ret < 0)
+ return ret;
+
+ ret = regmap_bulk_write(rtc->regmap, MAX8907_REG_ALARM0_SEC, regs,
+ TIME_NUM);
+ if (ret < 0)
+ return ret;
+
+ if (alrm->enabled)
+ ret = regmap_write(rtc->regmap, MAX8907_REG_ALARM0_CNTL, 0x77);
+
+ return ret;
+}
+
+static const struct rtc_class_ops max8907_rtc_ops = {
+ .read_time = max8907_rtc_read_time,
+ .set_time = max8907_rtc_set_time,
+ .read_alarm = max8907_rtc_read_alarm,
+ .set_alarm = max8907_rtc_set_alarm,
+};
+
+static int max8907_rtc_probe(struct platform_device *pdev)
+{
+ struct max8907 *max8907 = dev_get_drvdata(pdev->dev.parent);
+ struct max8907_rtc *rtc;
+ int ret;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+ platform_set_drvdata(pdev, rtc);
+
+ rtc->max8907 = max8907;
+ rtc->regmap = max8907->regmap_rtc;
+
+ rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, "max8907-rtc",
+ &max8907_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rtc->rtc_dev)) {
+ ret = PTR_ERR(rtc->rtc_dev);
+ dev_err(&pdev->dev, "Failed to register RTC device: %d\n", ret);
+ return ret;
+ }
+
+ rtc->irq = regmap_irq_get_virq(max8907->irqc_rtc,
+ MAX8907_IRQ_RTC_ALARM0);
+ if (rtc->irq < 0)
+ return rtc->irq;
+
+ ret = devm_request_threaded_irq(&pdev->dev, rtc->irq, NULL,
+ max8907_irq_handler,
+ IRQF_ONESHOT, "max8907-alarm0", rtc);
+ if (ret < 0)
+ dev_err(&pdev->dev, "Failed to request IRQ%d: %d\n",
+ rtc->irq, ret);
+
+ return ret;
+}
+
+static struct platform_driver max8907_rtc_driver = {
+ .driver = {
+ .name = "max8907-rtc",
+ },
+ .probe = max8907_rtc_probe,
+};
+module_platform_driver(max8907_rtc_driver);
+
+MODULE_DESCRIPTION("Maxim MAX8907 RTC driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-max8925.c b/drivers/rtc/rtc-max8925.c
new file mode 100644
index 000000000..64bb8ac6e
--- /dev/null
+++ b/drivers/rtc/rtc-max8925.c
@@ -0,0 +1,322 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * RTC driver for Maxim MAX8925
+ *
+ * Copyright (C) 2009-2010 Marvell International Ltd.
+ * Haojian Zhuang <haojian.zhuang@marvell.com>
+ */
+
+#include <linux/module.h>
+#include <linux/i2c.h>
+#include <linux/slab.h>
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+#include <linux/mfd/max8925.h>
+
+enum {
+ RTC_SEC = 0,
+ RTC_MIN,
+ RTC_HOUR,
+ RTC_WEEKDAY,
+ RTC_DATE,
+ RTC_MONTH,
+ RTC_YEAR1,
+ RTC_YEAR2,
+};
+
+#define MAX8925_RTC_SEC 0x00
+#define MAX8925_RTC_MIN 0x01
+#define MAX8925_RTC_HOUR 0x02
+#define MAX8925_RTC_WEEKDAY 0x03
+#define MAX8925_RTC_DATE 0x04
+#define MAX8925_RTC_MONTH 0x05
+#define MAX8925_RTC_YEAR1 0x06
+#define MAX8925_RTC_YEAR2 0x07
+#define MAX8925_ALARM0_SEC 0x08
+#define MAX8925_ALARM0_MIN 0x09
+#define MAX8925_ALARM0_HOUR 0x0a
+#define MAX8925_ALARM0_WEEKDAY 0x0b
+#define MAX8925_ALARM0_DATE 0x0c
+#define MAX8925_ALARM0_MON 0x0d
+#define MAX8925_ALARM0_YEAR1 0x0e
+#define MAX8925_ALARM0_YEAR2 0x0f
+#define MAX8925_ALARM1_SEC 0x10
+#define MAX8925_ALARM1_MIN 0x11
+#define MAX8925_ALARM1_HOUR 0x12
+#define MAX8925_ALARM1_WEEKDAY 0x13
+#define MAX8925_ALARM1_DATE 0x14
+#define MAX8925_ALARM1_MON 0x15
+#define MAX8925_ALARM1_YEAR1 0x16
+#define MAX8925_ALARM1_YEAR2 0x17
+#define MAX8925_RTC_CNTL 0x1b
+#define MAX8925_RTC_STATUS 0x20
+
+#define TIME_NUM 8
+#define ALARM_1SEC (1 << 7)
+#define HOUR_12 (1 << 7)
+#define HOUR_AM_PM (1 << 5)
+#define ALARM0_IRQ (1 << 3)
+#define ALARM1_IRQ (1 << 2)
+#define ALARM0_STATUS (1 << 2)
+#define ALARM1_STATUS (1 << 1)
+
+
+struct max8925_rtc_info {
+ struct rtc_device *rtc_dev;
+ struct max8925_chip *chip;
+ struct i2c_client *rtc;
+ struct device *dev;
+ int irq;
+};
+
+static irqreturn_t rtc_update_handler(int irq, void *data)
+{
+ struct max8925_rtc_info *info = (struct max8925_rtc_info *)data;
+
+ /* disable ALARM0 except for 1SEC alarm */
+ max8925_set_bits(info->rtc, MAX8925_ALARM0_CNTL, 0x7f, 0);
+ rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
+ return IRQ_HANDLED;
+}
+
+static int tm_calc(struct rtc_time *tm, unsigned char *buf, int len)
+{
+ if (len < TIME_NUM)
+ return -EINVAL;
+ tm->tm_year = (buf[RTC_YEAR2] >> 4) * 1000
+ + (buf[RTC_YEAR2] & 0xf) * 100
+ + (buf[RTC_YEAR1] >> 4) * 10
+ + (buf[RTC_YEAR1] & 0xf);
+ tm->tm_year -= 1900;
+ tm->tm_mon = ((buf[RTC_MONTH] >> 4) & 0x01) * 10
+ + (buf[RTC_MONTH] & 0x0f);
+ tm->tm_mday = ((buf[RTC_DATE] >> 4) & 0x03) * 10
+ + (buf[RTC_DATE] & 0x0f);
+ tm->tm_wday = buf[RTC_WEEKDAY] & 0x07;
+ if (buf[RTC_HOUR] & HOUR_12) {
+ tm->tm_hour = ((buf[RTC_HOUR] >> 4) & 0x1) * 10
+ + (buf[RTC_HOUR] & 0x0f);
+ if (buf[RTC_HOUR] & HOUR_AM_PM)
+ tm->tm_hour += 12;
+ } else
+ tm->tm_hour = ((buf[RTC_HOUR] >> 4) & 0x03) * 10
+ + (buf[RTC_HOUR] & 0x0f);
+ tm->tm_min = ((buf[RTC_MIN] >> 4) & 0x7) * 10
+ + (buf[RTC_MIN] & 0x0f);
+ tm->tm_sec = ((buf[RTC_SEC] >> 4) & 0x7) * 10
+ + (buf[RTC_SEC] & 0x0f);
+ return 0;
+}
+
+static int data_calc(unsigned char *buf, struct rtc_time *tm, int len)
+{
+ unsigned char high, low;
+
+ if (len < TIME_NUM)
+ return -EINVAL;
+
+ high = (tm->tm_year + 1900) / 1000;
+ low = (tm->tm_year + 1900) / 100;
+ low = low - high * 10;
+ buf[RTC_YEAR2] = (high << 4) + low;
+ high = (tm->tm_year + 1900) / 10;
+ low = tm->tm_year + 1900;
+ low = low - high * 10;
+ high = high - (high / 10) * 10;
+ buf[RTC_YEAR1] = (high << 4) + low;
+ high = tm->tm_mon / 10;
+ low = tm->tm_mon;
+ low = low - high * 10;
+ buf[RTC_MONTH] = (high << 4) + low;
+ high = tm->tm_mday / 10;
+ low = tm->tm_mday;
+ low = low - high * 10;
+ buf[RTC_DATE] = (high << 4) + low;
+ buf[RTC_WEEKDAY] = tm->tm_wday;
+ high = tm->tm_hour / 10;
+ low = tm->tm_hour;
+ low = low - high * 10;
+ buf[RTC_HOUR] = (high << 4) + low;
+ high = tm->tm_min / 10;
+ low = tm->tm_min;
+ low = low - high * 10;
+ buf[RTC_MIN] = (high << 4) + low;
+ high = tm->tm_sec / 10;
+ low = tm->tm_sec;
+ low = low - high * 10;
+ buf[RTC_SEC] = (high << 4) + low;
+ return 0;
+}
+
+static int max8925_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct max8925_rtc_info *info = dev_get_drvdata(dev);
+ unsigned char buf[TIME_NUM];
+ int ret;
+
+ ret = max8925_bulk_read(info->rtc, MAX8925_RTC_SEC, TIME_NUM, buf);
+ if (ret < 0)
+ goto out;
+ ret = tm_calc(tm, buf, TIME_NUM);
+out:
+ return ret;
+}
+
+static int max8925_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct max8925_rtc_info *info = dev_get_drvdata(dev);
+ unsigned char buf[TIME_NUM];
+ int ret;
+
+ ret = data_calc(buf, tm, TIME_NUM);
+ if (ret < 0)
+ goto out;
+ ret = max8925_bulk_write(info->rtc, MAX8925_RTC_SEC, TIME_NUM, buf);
+out:
+ return ret;
+}
+
+static int max8925_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct max8925_rtc_info *info = dev_get_drvdata(dev);
+ unsigned char buf[TIME_NUM];
+ int ret;
+
+ ret = max8925_bulk_read(info->rtc, MAX8925_ALARM0_SEC, TIME_NUM, buf);
+ if (ret < 0)
+ goto out;
+ ret = tm_calc(&alrm->time, buf, TIME_NUM);
+ if (ret < 0)
+ goto out;
+ ret = max8925_reg_read(info->rtc, MAX8925_RTC_IRQ_MASK);
+ if (ret < 0)
+ goto out;
+ if (ret & ALARM0_IRQ) {
+ alrm->enabled = 0;
+ } else {
+ ret = max8925_reg_read(info->rtc, MAX8925_ALARM0_CNTL);
+ if (ret < 0)
+ goto out;
+ if (!ret)
+ alrm->enabled = 0;
+ else
+ alrm->enabled = 1;
+ }
+ ret = max8925_reg_read(info->rtc, MAX8925_RTC_STATUS);
+ if (ret < 0)
+ goto out;
+ if (ret & ALARM0_STATUS)
+ alrm->pending = 1;
+ else
+ alrm->pending = 0;
+ return 0;
+out:
+ return ret;
+}
+
+static int max8925_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct max8925_rtc_info *info = dev_get_drvdata(dev);
+ unsigned char buf[TIME_NUM];
+ int ret;
+
+ ret = data_calc(buf, &alrm->time, TIME_NUM);
+ if (ret < 0)
+ goto out;
+ ret = max8925_bulk_write(info->rtc, MAX8925_ALARM0_SEC, TIME_NUM, buf);
+ if (ret < 0)
+ goto out;
+ if (alrm->enabled)
+ /* only enable alarm on year/month/day/hour/min/sec */
+ ret = max8925_reg_write(info->rtc, MAX8925_ALARM0_CNTL, 0x77);
+ else
+ ret = max8925_reg_write(info->rtc, MAX8925_ALARM0_CNTL, 0x0);
+out:
+ return ret;
+}
+
+static const struct rtc_class_ops max8925_rtc_ops = {
+ .read_time = max8925_rtc_read_time,
+ .set_time = max8925_rtc_set_time,
+ .read_alarm = max8925_rtc_read_alarm,
+ .set_alarm = max8925_rtc_set_alarm,
+};
+
+static int max8925_rtc_probe(struct platform_device *pdev)
+{
+ struct max8925_chip *chip = dev_get_drvdata(pdev->dev.parent);
+ struct max8925_rtc_info *info;
+ int ret;
+
+ info = devm_kzalloc(&pdev->dev, sizeof(struct max8925_rtc_info),
+ GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+ info->chip = chip;
+ info->rtc = chip->rtc;
+ info->dev = &pdev->dev;
+ info->irq = platform_get_irq(pdev, 0);
+
+ ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
+ rtc_update_handler, IRQF_ONESHOT,
+ "rtc-alarm0", info);
+ if (ret < 0) {
+ dev_err(chip->dev, "Failed to request IRQ: #%d: %d\n",
+ info->irq, ret);
+ return ret;
+ }
+
+ dev_set_drvdata(&pdev->dev, info);
+ /* XXX - isn't this redundant? */
+ platform_set_drvdata(pdev, info);
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ info->rtc_dev = devm_rtc_device_register(&pdev->dev, "max8925-rtc",
+ &max8925_rtc_ops, THIS_MODULE);
+ ret = PTR_ERR(info->rtc_dev);
+ if (IS_ERR(info->rtc_dev)) {
+ dev_err(&pdev->dev, "Failed to register RTC device: %d\n", ret);
+ return ret;
+ }
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int max8925_rtc_suspend(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct max8925_chip *chip = dev_get_drvdata(pdev->dev.parent);
+
+ if (device_may_wakeup(dev))
+ chip->wakeup_flag |= 1 << MAX8925_IRQ_RTC_ALARM0;
+ return 0;
+}
+static int max8925_rtc_resume(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct max8925_chip *chip = dev_get_drvdata(pdev->dev.parent);
+
+ if (device_may_wakeup(dev))
+ chip->wakeup_flag &= ~(1 << MAX8925_IRQ_RTC_ALARM0);
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(max8925_rtc_pm_ops, max8925_rtc_suspend, max8925_rtc_resume);
+
+static struct platform_driver max8925_rtc_driver = {
+ .driver = {
+ .name = "max8925-rtc",
+ .pm = &max8925_rtc_pm_ops,
+ },
+ .probe = max8925_rtc_probe,
+};
+
+module_platform_driver(max8925_rtc_driver);
+
+MODULE_DESCRIPTION("Maxim MAX8925 RTC driver");
+MODULE_AUTHOR("Haojian Zhuang <haojian.zhuang@marvell.com>");
+MODULE_LICENSE("GPL");
+
diff --git a/drivers/rtc/rtc-max8997.c b/drivers/rtc/rtc-max8997.c
new file mode 100644
index 000000000..20e50d9fd
--- /dev/null
+++ b/drivers/rtc/rtc-max8997.c
@@ -0,0 +1,533 @@
+// SPDX-License-Identifier: GPL-2.0+
+//
+// RTC driver for Maxim MAX8997
+//
+// Copyright (C) 2013 Samsung Electronics Co.Ltd
+//
+// based on rtc-max8998.c
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/slab.h>
+#include <linux/rtc.h>
+#include <linux/delay.h>
+#include <linux/mutex.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/mfd/max8997-private.h>
+#include <linux/irqdomain.h>
+
+/* Module parameter for WTSR function control */
+static int wtsr_en = 1;
+module_param(wtsr_en, int, 0444);
+MODULE_PARM_DESC(wtsr_en, "Watchdog Timeout & Software Reset (default=on)");
+/* Module parameter for SMPL function control */
+static int smpl_en = 1;
+module_param(smpl_en, int, 0444);
+MODULE_PARM_DESC(smpl_en, "Sudden Momentary Power Loss (default=on)");
+
+/* RTC Control Register */
+#define BCD_EN_SHIFT 0
+#define BCD_EN_MASK (1 << BCD_EN_SHIFT)
+#define MODEL24_SHIFT 1
+#define MODEL24_MASK (1 << MODEL24_SHIFT)
+/* RTC Update Register1 */
+#define RTC_UDR_SHIFT 0
+#define RTC_UDR_MASK (1 << RTC_UDR_SHIFT)
+/* WTSR and SMPL Register */
+#define WTSRT_SHIFT 0
+#define SMPLT_SHIFT 2
+#define WTSR_EN_SHIFT 6
+#define SMPL_EN_SHIFT 7
+#define WTSRT_MASK (3 << WTSRT_SHIFT)
+#define SMPLT_MASK (3 << SMPLT_SHIFT)
+#define WTSR_EN_MASK (1 << WTSR_EN_SHIFT)
+#define SMPL_EN_MASK (1 << SMPL_EN_SHIFT)
+/* RTC Hour register */
+#define HOUR_PM_SHIFT 6
+#define HOUR_PM_MASK (1 << HOUR_PM_SHIFT)
+/* RTC Alarm Enable */
+#define ALARM_ENABLE_SHIFT 7
+#define ALARM_ENABLE_MASK (1 << ALARM_ENABLE_SHIFT)
+
+enum {
+ RTC_SEC = 0,
+ RTC_MIN,
+ RTC_HOUR,
+ RTC_WEEKDAY,
+ RTC_MONTH,
+ RTC_YEAR,
+ RTC_DATE,
+ RTC_NR_TIME
+};
+
+struct max8997_rtc_info {
+ struct device *dev;
+ struct max8997_dev *max8997;
+ struct i2c_client *rtc;
+ struct rtc_device *rtc_dev;
+ struct mutex lock;
+ int virq;
+ int rtc_24hr_mode;
+};
+
+static void max8997_rtc_data_to_tm(u8 *data, struct rtc_time *tm,
+ int rtc_24hr_mode)
+{
+ tm->tm_sec = data[RTC_SEC] & 0x7f;
+ tm->tm_min = data[RTC_MIN] & 0x7f;
+ if (rtc_24hr_mode)
+ tm->tm_hour = data[RTC_HOUR] & 0x1f;
+ else {
+ tm->tm_hour = data[RTC_HOUR] & 0x0f;
+ if (data[RTC_HOUR] & HOUR_PM_MASK)
+ tm->tm_hour += 12;
+ }
+
+ tm->tm_wday = fls(data[RTC_WEEKDAY] & 0x7f) - 1;
+ tm->tm_mday = data[RTC_DATE] & 0x1f;
+ tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
+ tm->tm_year = (data[RTC_YEAR] & 0x7f) + 100;
+ tm->tm_yday = 0;
+ tm->tm_isdst = 0;
+}
+
+static int max8997_rtc_tm_to_data(struct rtc_time *tm, u8 *data)
+{
+ data[RTC_SEC] = tm->tm_sec;
+ data[RTC_MIN] = tm->tm_min;
+ data[RTC_HOUR] = tm->tm_hour;
+ data[RTC_WEEKDAY] = 1 << tm->tm_wday;
+ data[RTC_DATE] = tm->tm_mday;
+ data[RTC_MONTH] = tm->tm_mon + 1;
+ data[RTC_YEAR] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0;
+
+ if (tm->tm_year < 100) {
+ pr_warn("RTC cannot handle the year %d. Assume it's 2000.\n",
+ 1900 + tm->tm_year);
+ return -EINVAL;
+ }
+ return 0;
+}
+
+static inline int max8997_rtc_set_update_reg(struct max8997_rtc_info *info)
+{
+ int ret;
+
+ ret = max8997_write_reg(info->rtc, MAX8997_RTC_UPDATE1,
+ RTC_UDR_MASK);
+ if (ret < 0)
+ dev_err(info->dev, "%s: fail to write update reg(%d)\n",
+ __func__, ret);
+ else {
+ /* Minimum 16ms delay required before RTC update.
+ * Otherwise, we may read and update based on out-of-date
+ * value */
+ msleep(20);
+ }
+
+ return ret;
+}
+
+static int max8997_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct max8997_rtc_info *info = dev_get_drvdata(dev);
+ u8 data[RTC_NR_TIME];
+ int ret;
+
+ mutex_lock(&info->lock);
+ ret = max8997_bulk_read(info->rtc, MAX8997_RTC_SEC, RTC_NR_TIME, data);
+ mutex_unlock(&info->lock);
+
+ if (ret < 0) {
+ dev_err(info->dev, "%s: fail to read time reg(%d)\n", __func__,
+ ret);
+ return ret;
+ }
+
+ max8997_rtc_data_to_tm(data, tm, info->rtc_24hr_mode);
+
+ return 0;
+}
+
+static int max8997_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct max8997_rtc_info *info = dev_get_drvdata(dev);
+ u8 data[RTC_NR_TIME];
+ int ret;
+
+ ret = max8997_rtc_tm_to_data(tm, data);
+ if (ret < 0)
+ return ret;
+
+ mutex_lock(&info->lock);
+
+ ret = max8997_bulk_write(info->rtc, MAX8997_RTC_SEC, RTC_NR_TIME, data);
+ if (ret < 0) {
+ dev_err(info->dev, "%s: fail to write time reg(%d)\n", __func__,
+ ret);
+ goto out;
+ }
+
+ ret = max8997_rtc_set_update_reg(info);
+out:
+ mutex_unlock(&info->lock);
+ return ret;
+}
+
+static int max8997_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct max8997_rtc_info *info = dev_get_drvdata(dev);
+ u8 data[RTC_NR_TIME];
+ u8 val;
+ int i, ret;
+
+ mutex_lock(&info->lock);
+
+ ret = max8997_bulk_read(info->rtc, MAX8997_RTC_ALARM1_SEC, RTC_NR_TIME,
+ data);
+ if (ret < 0) {
+ dev_err(info->dev, "%s:%d fail to read alarm reg(%d)\n",
+ __func__, __LINE__, ret);
+ goto out;
+ }
+
+ max8997_rtc_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
+
+ alrm->enabled = 0;
+ for (i = 0; i < RTC_NR_TIME; i++) {
+ if (data[i] & ALARM_ENABLE_MASK) {
+ alrm->enabled = 1;
+ break;
+ }
+ }
+
+ alrm->pending = 0;
+ ret = max8997_read_reg(info->max8997->i2c, MAX8997_REG_STATUS1, &val);
+ if (ret < 0) {
+ dev_err(info->dev, "%s:%d fail to read status1 reg(%d)\n",
+ __func__, __LINE__, ret);
+ goto out;
+ }
+
+ if (val & (1 << 4)) /* RTCA1 */
+ alrm->pending = 1;
+
+out:
+ mutex_unlock(&info->lock);
+ return ret;
+}
+
+static int max8997_rtc_stop_alarm(struct max8997_rtc_info *info)
+{
+ u8 data[RTC_NR_TIME];
+ int ret, i;
+
+ if (!mutex_is_locked(&info->lock))
+ dev_warn(info->dev, "%s: should have mutex locked\n", __func__);
+
+ ret = max8997_bulk_read(info->rtc, MAX8997_RTC_ALARM1_SEC, RTC_NR_TIME,
+ data);
+ if (ret < 0) {
+ dev_err(info->dev, "%s: fail to read alarm reg(%d)\n",
+ __func__, ret);
+ goto out;
+ }
+
+ for (i = 0; i < RTC_NR_TIME; i++)
+ data[i] &= ~ALARM_ENABLE_MASK;
+
+ ret = max8997_bulk_write(info->rtc, MAX8997_RTC_ALARM1_SEC, RTC_NR_TIME,
+ data);
+ if (ret < 0) {
+ dev_err(info->dev, "%s: fail to write alarm reg(%d)\n",
+ __func__, ret);
+ goto out;
+ }
+
+ ret = max8997_rtc_set_update_reg(info);
+out:
+ return ret;
+}
+
+static int max8997_rtc_start_alarm(struct max8997_rtc_info *info)
+{
+ u8 data[RTC_NR_TIME];
+ int ret;
+
+ if (!mutex_is_locked(&info->lock))
+ dev_warn(info->dev, "%s: should have mutex locked\n", __func__);
+
+ ret = max8997_bulk_read(info->rtc, MAX8997_RTC_ALARM1_SEC, RTC_NR_TIME,
+ data);
+ if (ret < 0) {
+ dev_err(info->dev, "%s: fail to read alarm reg(%d)\n",
+ __func__, ret);
+ goto out;
+ }
+
+ data[RTC_SEC] |= (1 << ALARM_ENABLE_SHIFT);
+ data[RTC_MIN] |= (1 << ALARM_ENABLE_SHIFT);
+ data[RTC_HOUR] |= (1 << ALARM_ENABLE_SHIFT);
+ data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
+ if (data[RTC_MONTH] & 0xf)
+ data[RTC_MONTH] |= (1 << ALARM_ENABLE_SHIFT);
+ if (data[RTC_YEAR] & 0x7f)
+ data[RTC_YEAR] |= (1 << ALARM_ENABLE_SHIFT);
+ if (data[RTC_DATE] & 0x1f)
+ data[RTC_DATE] |= (1 << ALARM_ENABLE_SHIFT);
+
+ ret = max8997_bulk_write(info->rtc, MAX8997_RTC_ALARM1_SEC, RTC_NR_TIME,
+ data);
+ if (ret < 0) {
+ dev_err(info->dev, "%s: fail to write alarm reg(%d)\n",
+ __func__, ret);
+ goto out;
+ }
+
+ ret = max8997_rtc_set_update_reg(info);
+out:
+ return ret;
+}
+static int max8997_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct max8997_rtc_info *info = dev_get_drvdata(dev);
+ u8 data[RTC_NR_TIME];
+ int ret;
+
+ ret = max8997_rtc_tm_to_data(&alrm->time, data);
+ if (ret < 0)
+ return ret;
+
+ dev_info(info->dev, "%s: %d-%02d-%02d %02d:%02d:%02d\n", __func__,
+ data[RTC_YEAR] + 2000, data[RTC_MONTH], data[RTC_DATE],
+ data[RTC_HOUR], data[RTC_MIN], data[RTC_SEC]);
+
+ mutex_lock(&info->lock);
+
+ ret = max8997_rtc_stop_alarm(info);
+ if (ret < 0)
+ goto out;
+
+ ret = max8997_bulk_write(info->rtc, MAX8997_RTC_ALARM1_SEC, RTC_NR_TIME,
+ data);
+ if (ret < 0) {
+ dev_err(info->dev, "%s: fail to write alarm reg(%d)\n",
+ __func__, ret);
+ goto out;
+ }
+
+ ret = max8997_rtc_set_update_reg(info);
+ if (ret < 0)
+ goto out;
+
+ if (alrm->enabled)
+ ret = max8997_rtc_start_alarm(info);
+out:
+ mutex_unlock(&info->lock);
+ return ret;
+}
+
+static int max8997_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct max8997_rtc_info *info = dev_get_drvdata(dev);
+ int ret;
+
+ mutex_lock(&info->lock);
+ if (enabled)
+ ret = max8997_rtc_start_alarm(info);
+ else
+ ret = max8997_rtc_stop_alarm(info);
+ mutex_unlock(&info->lock);
+
+ return ret;
+}
+
+static irqreturn_t max8997_rtc_alarm_irq(int irq, void *data)
+{
+ struct max8997_rtc_info *info = data;
+
+ dev_info(info->dev, "%s:irq(%d)\n", __func__, irq);
+
+ rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops max8997_rtc_ops = {
+ .read_time = max8997_rtc_read_time,
+ .set_time = max8997_rtc_set_time,
+ .read_alarm = max8997_rtc_read_alarm,
+ .set_alarm = max8997_rtc_set_alarm,
+ .alarm_irq_enable = max8997_rtc_alarm_irq_enable,
+};
+
+static void max8997_rtc_enable_wtsr(struct max8997_rtc_info *info, bool enable)
+{
+ int ret;
+ u8 val, mask;
+
+ if (!wtsr_en)
+ return;
+
+ if (enable)
+ val = (1 << WTSR_EN_SHIFT) | (3 << WTSRT_SHIFT);
+ else
+ val = 0;
+
+ mask = WTSR_EN_MASK | WTSRT_MASK;
+
+ dev_info(info->dev, "%s: %s WTSR\n", __func__,
+ enable ? "enable" : "disable");
+
+ ret = max8997_update_reg(info->rtc, MAX8997_RTC_WTSR_SMPL, val, mask);
+ if (ret < 0) {
+ dev_err(info->dev, "%s: fail to update WTSR reg(%d)\n",
+ __func__, ret);
+ return;
+ }
+
+ max8997_rtc_set_update_reg(info);
+}
+
+static void max8997_rtc_enable_smpl(struct max8997_rtc_info *info, bool enable)
+{
+ int ret;
+ u8 val, mask;
+
+ if (!smpl_en)
+ return;
+
+ if (enable)
+ val = (1 << SMPL_EN_SHIFT) | (0 << SMPLT_SHIFT);
+ else
+ val = 0;
+
+ mask = SMPL_EN_MASK | SMPLT_MASK;
+
+ dev_info(info->dev, "%s: %s SMPL\n", __func__,
+ enable ? "enable" : "disable");
+
+ ret = max8997_update_reg(info->rtc, MAX8997_RTC_WTSR_SMPL, val, mask);
+ if (ret < 0) {
+ dev_err(info->dev, "%s: fail to update SMPL reg(%d)\n",
+ __func__, ret);
+ return;
+ }
+
+ max8997_rtc_set_update_reg(info);
+
+ val = 0;
+ max8997_read_reg(info->rtc, MAX8997_RTC_WTSR_SMPL, &val);
+ pr_info("WTSR_SMPL(0x%02x)\n", val);
+}
+
+static int max8997_rtc_init_reg(struct max8997_rtc_info *info)
+{
+ u8 data[2];
+ int ret;
+
+ /* Set RTC control register : Binary mode, 24hour mdoe */
+ data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
+ data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
+
+ info->rtc_24hr_mode = 1;
+
+ ret = max8997_bulk_write(info->rtc, MAX8997_RTC_CTRLMASK, 2, data);
+ if (ret < 0) {
+ dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
+ __func__, ret);
+ return ret;
+ }
+
+ ret = max8997_rtc_set_update_reg(info);
+ return ret;
+}
+
+static int max8997_rtc_probe(struct platform_device *pdev)
+{
+ struct max8997_dev *max8997 = dev_get_drvdata(pdev->dev.parent);
+ struct max8997_rtc_info *info;
+ int ret, virq;
+
+ info = devm_kzalloc(&pdev->dev, sizeof(struct max8997_rtc_info),
+ GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ mutex_init(&info->lock);
+ info->dev = &pdev->dev;
+ info->max8997 = max8997;
+ info->rtc = max8997->rtc;
+
+ platform_set_drvdata(pdev, info);
+
+ ret = max8997_rtc_init_reg(info);
+
+ if (ret < 0) {
+ dev_err(&pdev->dev, "Failed to initialize RTC reg:%d\n", ret);
+ return ret;
+ }
+
+ max8997_rtc_enable_wtsr(info, true);
+ max8997_rtc_enable_smpl(info, true);
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ info->rtc_dev = devm_rtc_device_register(&pdev->dev, "max8997-rtc",
+ &max8997_rtc_ops, THIS_MODULE);
+
+ if (IS_ERR(info->rtc_dev)) {
+ ret = PTR_ERR(info->rtc_dev);
+ dev_err(&pdev->dev, "Failed to register RTC device: %d\n", ret);
+ return ret;
+ }
+
+ virq = irq_create_mapping(max8997->irq_domain, MAX8997_PMICIRQ_RTCA1);
+ if (!virq) {
+ dev_err(&pdev->dev, "Failed to create mapping alarm IRQ\n");
+ ret = -ENXIO;
+ goto err_out;
+ }
+ info->virq = virq;
+
+ ret = devm_request_threaded_irq(&pdev->dev, virq, NULL,
+ max8997_rtc_alarm_irq, 0,
+ "rtc-alarm0", info);
+ if (ret < 0)
+ dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
+ info->virq, ret);
+
+err_out:
+ return ret;
+}
+
+static void max8997_rtc_shutdown(struct platform_device *pdev)
+{
+ struct max8997_rtc_info *info = platform_get_drvdata(pdev);
+
+ max8997_rtc_enable_wtsr(info, false);
+ max8997_rtc_enable_smpl(info, false);
+}
+
+static const struct platform_device_id rtc_id[] = {
+ { "max8997-rtc", 0 },
+ {},
+};
+MODULE_DEVICE_TABLE(platform, rtc_id);
+
+static struct platform_driver max8997_rtc_driver = {
+ .driver = {
+ .name = "max8997-rtc",
+ },
+ .probe = max8997_rtc_probe,
+ .shutdown = max8997_rtc_shutdown,
+ .id_table = rtc_id,
+};
+
+module_platform_driver(max8997_rtc_driver);
+
+MODULE_DESCRIPTION("Maxim MAX8997 RTC driver");
+MODULE_AUTHOR("<ms925.kim@samsung.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-max8998.c b/drivers/rtc/rtc-max8998.c
new file mode 100644
index 000000000..c873b4509
--- /dev/null
+++ b/drivers/rtc/rtc-max8998.c
@@ -0,0 +1,321 @@
+// SPDX-License-Identifier: GPL-2.0+
+//
+// RTC driver for Maxim MAX8998
+//
+// Copyright (C) 2010 Samsung Electronics Co.Ltd
+// Author: Minkyu Kang <mk7.kang@samsung.com>
+// Author: Joonyoung Shim <jy0922.shim@samsung.com>
+
+#include <linux/module.h>
+#include <linux/i2c.h>
+#include <linux/slab.h>
+#include <linux/bcd.h>
+#include <linux/irqdomain.h>
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+#include <linux/mfd/max8998.h>
+#include <linux/mfd/max8998-private.h>
+#include <linux/delay.h>
+
+#define MAX8998_RTC_SEC 0x00
+#define MAX8998_RTC_MIN 0x01
+#define MAX8998_RTC_HOUR 0x02
+#define MAX8998_RTC_WEEKDAY 0x03
+#define MAX8998_RTC_DATE 0x04
+#define MAX8998_RTC_MONTH 0x05
+#define MAX8998_RTC_YEAR1 0x06
+#define MAX8998_RTC_YEAR2 0x07
+#define MAX8998_ALARM0_SEC 0x08
+#define MAX8998_ALARM0_MIN 0x09
+#define MAX8998_ALARM0_HOUR 0x0a
+#define MAX8998_ALARM0_WEEKDAY 0x0b
+#define MAX8998_ALARM0_DATE 0x0c
+#define MAX8998_ALARM0_MONTH 0x0d
+#define MAX8998_ALARM0_YEAR1 0x0e
+#define MAX8998_ALARM0_YEAR2 0x0f
+#define MAX8998_ALARM1_SEC 0x10
+#define MAX8998_ALARM1_MIN 0x11
+#define MAX8998_ALARM1_HOUR 0x12
+#define MAX8998_ALARM1_WEEKDAY 0x13
+#define MAX8998_ALARM1_DATE 0x14
+#define MAX8998_ALARM1_MONTH 0x15
+#define MAX8998_ALARM1_YEAR1 0x16
+#define MAX8998_ALARM1_YEAR2 0x17
+#define MAX8998_ALARM0_CONF 0x18
+#define MAX8998_ALARM1_CONF 0x19
+#define MAX8998_RTC_STATUS 0x1a
+#define MAX8998_WTSR_SMPL_CNTL 0x1b
+#define MAX8998_TEST 0x1f
+
+#define HOUR_12 (1 << 7)
+#define HOUR_PM (1 << 5)
+#define ALARM0_STATUS (1 << 1)
+#define ALARM1_STATUS (1 << 2)
+
+enum {
+ RTC_SEC = 0,
+ RTC_MIN,
+ RTC_HOUR,
+ RTC_WEEKDAY,
+ RTC_DATE,
+ RTC_MONTH,
+ RTC_YEAR1,
+ RTC_YEAR2,
+};
+
+struct max8998_rtc_info {
+ struct device *dev;
+ struct max8998_dev *max8998;
+ struct i2c_client *rtc;
+ struct rtc_device *rtc_dev;
+ int irq;
+ bool lp3974_bug_workaround;
+};
+
+static void max8998_data_to_tm(u8 *data, struct rtc_time *tm)
+{
+ tm->tm_sec = bcd2bin(data[RTC_SEC]);
+ tm->tm_min = bcd2bin(data[RTC_MIN]);
+ if (data[RTC_HOUR] & HOUR_12) {
+ tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
+ if (data[RTC_HOUR] & HOUR_PM)
+ tm->tm_hour += 12;
+ } else
+ tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
+
+ tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
+ tm->tm_mday = bcd2bin(data[RTC_DATE]);
+ tm->tm_mon = bcd2bin(data[RTC_MONTH]);
+ tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
+ tm->tm_year -= 1900;
+}
+
+static void max8998_tm_to_data(struct rtc_time *tm, u8 *data)
+{
+ data[RTC_SEC] = bin2bcd(tm->tm_sec);
+ data[RTC_MIN] = bin2bcd(tm->tm_min);
+ data[RTC_HOUR] = bin2bcd(tm->tm_hour);
+ data[RTC_WEEKDAY] = tm->tm_wday;
+ data[RTC_DATE] = bin2bcd(tm->tm_mday);
+ data[RTC_MONTH] = bin2bcd(tm->tm_mon);
+ data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
+ data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
+}
+
+static int max8998_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct max8998_rtc_info *info = dev_get_drvdata(dev);
+ u8 data[8];
+ int ret;
+
+ ret = max8998_bulk_read(info->rtc, MAX8998_RTC_SEC, 8, data);
+ if (ret < 0)
+ return ret;
+
+ max8998_data_to_tm(data, tm);
+
+ return 0;
+}
+
+static int max8998_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct max8998_rtc_info *info = dev_get_drvdata(dev);
+ u8 data[8];
+ int ret;
+
+ max8998_tm_to_data(tm, data);
+
+ ret = max8998_bulk_write(info->rtc, MAX8998_RTC_SEC, 8, data);
+
+ if (info->lp3974_bug_workaround)
+ msleep(2000);
+
+ return ret;
+}
+
+static int max8998_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct max8998_rtc_info *info = dev_get_drvdata(dev);
+ u8 data[8];
+ u8 val;
+ int ret;
+
+ ret = max8998_bulk_read(info->rtc, MAX8998_ALARM0_SEC, 8, data);
+ if (ret < 0)
+ return ret;
+
+ max8998_data_to_tm(data, &alrm->time);
+
+ ret = max8998_read_reg(info->rtc, MAX8998_ALARM0_CONF, &val);
+ if (ret < 0)
+ return ret;
+
+ alrm->enabled = !!val;
+
+ ret = max8998_read_reg(info->rtc, MAX8998_RTC_STATUS, &val);
+ if (ret < 0)
+ return ret;
+
+ if (val & ALARM0_STATUS)
+ alrm->pending = 1;
+ else
+ alrm->pending = 0;
+
+ return 0;
+}
+
+static int max8998_rtc_stop_alarm(struct max8998_rtc_info *info)
+{
+ int ret = max8998_write_reg(info->rtc, MAX8998_ALARM0_CONF, 0);
+
+ if (info->lp3974_bug_workaround)
+ msleep(2000);
+
+ return ret;
+}
+
+static int max8998_rtc_start_alarm(struct max8998_rtc_info *info)
+{
+ int ret;
+ u8 alarm0_conf = 0x77;
+
+ /* LP3974 with delay bug chips has rtc alarm bugs with "MONTH" field */
+ if (info->lp3974_bug_workaround)
+ alarm0_conf = 0x57;
+
+ ret = max8998_write_reg(info->rtc, MAX8998_ALARM0_CONF, alarm0_conf);
+
+ if (info->lp3974_bug_workaround)
+ msleep(2000);
+
+ return ret;
+}
+
+static int max8998_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct max8998_rtc_info *info = dev_get_drvdata(dev);
+ u8 data[8];
+ int ret;
+
+ max8998_tm_to_data(&alrm->time, data);
+
+ ret = max8998_rtc_stop_alarm(info);
+ if (ret < 0)
+ return ret;
+
+ ret = max8998_bulk_write(info->rtc, MAX8998_ALARM0_SEC, 8, data);
+ if (ret < 0)
+ return ret;
+
+ if (info->lp3974_bug_workaround)
+ msleep(2000);
+
+ if (alrm->enabled)
+ ret = max8998_rtc_start_alarm(info);
+
+ return ret;
+}
+
+static int max8998_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct max8998_rtc_info *info = dev_get_drvdata(dev);
+
+ if (enabled)
+ return max8998_rtc_start_alarm(info);
+ else
+ return max8998_rtc_stop_alarm(info);
+}
+
+static irqreturn_t max8998_rtc_alarm_irq(int irq, void *data)
+{
+ struct max8998_rtc_info *info = data;
+
+ rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops max8998_rtc_ops = {
+ .read_time = max8998_rtc_read_time,
+ .set_time = max8998_rtc_set_time,
+ .read_alarm = max8998_rtc_read_alarm,
+ .set_alarm = max8998_rtc_set_alarm,
+ .alarm_irq_enable = max8998_rtc_alarm_irq_enable,
+};
+
+static int max8998_rtc_probe(struct platform_device *pdev)
+{
+ struct max8998_dev *max8998 = dev_get_drvdata(pdev->dev.parent);
+ struct max8998_platform_data *pdata = max8998->pdata;
+ struct max8998_rtc_info *info;
+ int ret;
+
+ info = devm_kzalloc(&pdev->dev, sizeof(struct max8998_rtc_info),
+ GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ info->dev = &pdev->dev;
+ info->max8998 = max8998;
+ info->rtc = max8998->rtc;
+
+ platform_set_drvdata(pdev, info);
+
+ info->rtc_dev = devm_rtc_device_register(&pdev->dev, "max8998-rtc",
+ &max8998_rtc_ops, THIS_MODULE);
+
+ if (IS_ERR(info->rtc_dev)) {
+ ret = PTR_ERR(info->rtc_dev);
+ dev_err(&pdev->dev, "Failed to register RTC device: %d\n", ret);
+ return ret;
+ }
+
+ if (!max8998->irq_domain)
+ goto no_irq;
+
+ info->irq = irq_create_mapping(max8998->irq_domain, MAX8998_IRQ_ALARM0);
+ if (!info->irq) {
+ dev_warn(&pdev->dev, "Failed to map alarm IRQ\n");
+ goto no_irq;
+ }
+
+ ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
+ max8998_rtc_alarm_irq, 0, "rtc-alarm0", info);
+
+ if (ret < 0)
+ dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
+ info->irq, ret);
+
+no_irq:
+ dev_info(&pdev->dev, "RTC CHIP NAME: %s\n", pdev->id_entry->name);
+ if (pdata && pdata->rtc_delay) {
+ info->lp3974_bug_workaround = true;
+ dev_warn(&pdev->dev, "LP3974 with RTC REGERR option."
+ " RTC updates will be extremely slow.\n");
+ }
+
+ return 0;
+}
+
+static const struct platform_device_id max8998_rtc_id[] = {
+ { "max8998-rtc", TYPE_MAX8998 },
+ { "lp3974-rtc", TYPE_LP3974 },
+ { }
+};
+MODULE_DEVICE_TABLE(platform, max8998_rtc_id);
+
+static struct platform_driver max8998_rtc_driver = {
+ .driver = {
+ .name = "max8998-rtc",
+ },
+ .probe = max8998_rtc_probe,
+ .id_table = max8998_rtc_id,
+};
+
+module_platform_driver(max8998_rtc_driver);
+
+MODULE_AUTHOR("Minkyu Kang <mk7.kang@samsung.com>");
+MODULE_AUTHOR("Joonyoung Shim <jy0922.shim@samsung.com>");
+MODULE_DESCRIPTION("Maxim MAX8998 RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-mc13xxx.c b/drivers/rtc/rtc-mc13xxx.c
new file mode 100644
index 000000000..d6802e619
--- /dev/null
+++ b/drivers/rtc/rtc-mc13xxx.c
@@ -0,0 +1,365 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Real Time Clock driver for Freescale MC13XXX PMIC
+ *
+ * (C) 2009 Sascha Hauer, Pengutronix
+ * (C) 2009 Uwe Kleine-Koenig, Pengutronix
+ */
+
+#include <linux/mfd/mc13xxx.h>
+#include <linux/platform_device.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/mod_devicetable.h>
+#include <linux/slab.h>
+#include <linux/rtc.h>
+
+#define DRIVER_NAME "mc13xxx-rtc"
+
+#define MC13XXX_RTCTOD 20
+#define MC13XXX_RTCTODA 21
+#define MC13XXX_RTCDAY 22
+#define MC13XXX_RTCDAYA 23
+
+#define SEC_PER_DAY (24 * 60 * 60)
+
+struct mc13xxx_rtc {
+ struct rtc_device *rtc;
+ struct mc13xxx *mc13xxx;
+ int valid;
+};
+
+static int mc13xxx_rtc_irq_enable_unlocked(struct device *dev,
+ unsigned int enabled, int irq)
+{
+ struct mc13xxx_rtc *priv = dev_get_drvdata(dev);
+ int (*func)(struct mc13xxx *mc13xxx, int irq);
+
+ if (!priv->valid)
+ return -ENODATA;
+
+ func = enabled ? mc13xxx_irq_unmask : mc13xxx_irq_mask;
+ return func(priv->mc13xxx, irq);
+}
+
+static int mc13xxx_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct mc13xxx_rtc *priv = dev_get_drvdata(dev);
+ int ret;
+
+ mc13xxx_lock(priv->mc13xxx);
+
+ ret = mc13xxx_rtc_irq_enable_unlocked(dev, enabled, MC13XXX_IRQ_TODA);
+
+ mc13xxx_unlock(priv->mc13xxx);
+
+ return ret;
+}
+
+static int mc13xxx_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct mc13xxx_rtc *priv = dev_get_drvdata(dev);
+ unsigned int seconds, days1, days2;
+
+ if (!priv->valid)
+ return -ENODATA;
+
+ do {
+ int ret;
+
+ ret = mc13xxx_reg_read(priv->mc13xxx, MC13XXX_RTCDAY, &days1);
+ if (ret)
+ return ret;
+
+ ret = mc13xxx_reg_read(priv->mc13xxx, MC13XXX_RTCTOD, &seconds);
+ if (ret)
+ return ret;
+
+ ret = mc13xxx_reg_read(priv->mc13xxx, MC13XXX_RTCDAY, &days2);
+ if (ret)
+ return ret;
+ } while (days1 != days2);
+
+ rtc_time64_to_tm((time64_t)days1 * SEC_PER_DAY + seconds, tm);
+
+ return 0;
+}
+
+static int mc13xxx_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct mc13xxx_rtc *priv = dev_get_drvdata(dev);
+ unsigned int seconds, days;
+ unsigned int alarmseconds;
+ int ret;
+
+ days = div_s64_rem(rtc_tm_to_time64(tm), SEC_PER_DAY, &seconds);
+
+ mc13xxx_lock(priv->mc13xxx);
+
+ /*
+ * temporarily invalidate alarm to prevent triggering it when the day is
+ * already updated while the time isn't yet.
+ */
+ ret = mc13xxx_reg_read(priv->mc13xxx, MC13XXX_RTCTODA, &alarmseconds);
+ if (unlikely(ret))
+ goto out;
+
+ if (alarmseconds < SEC_PER_DAY) {
+ ret = mc13xxx_reg_write(priv->mc13xxx,
+ MC13XXX_RTCTODA, 0x1ffff);
+ if (unlikely(ret))
+ goto out;
+ }
+
+ /*
+ * write seconds=0 to prevent a day switch between writing days
+ * and seconds below
+ */
+ ret = mc13xxx_reg_write(priv->mc13xxx, MC13XXX_RTCTOD, 0);
+ if (unlikely(ret))
+ goto out;
+
+ ret = mc13xxx_reg_write(priv->mc13xxx, MC13XXX_RTCDAY, days);
+ if (unlikely(ret))
+ goto out;
+
+ ret = mc13xxx_reg_write(priv->mc13xxx, MC13XXX_RTCTOD, seconds);
+ if (unlikely(ret))
+ goto out;
+
+ /* restore alarm */
+ if (alarmseconds < SEC_PER_DAY) {
+ ret = mc13xxx_reg_write(priv->mc13xxx,
+ MC13XXX_RTCTODA, alarmseconds);
+ if (unlikely(ret))
+ goto out;
+ }
+
+ if (!priv->valid) {
+ ret = mc13xxx_irq_ack(priv->mc13xxx, MC13XXX_IRQ_RTCRST);
+ if (unlikely(ret))
+ goto out;
+
+ ret = mc13xxx_irq_unmask(priv->mc13xxx, MC13XXX_IRQ_RTCRST);
+ }
+
+out:
+ priv->valid = !ret;
+
+ mc13xxx_unlock(priv->mc13xxx);
+
+ return ret;
+}
+
+static int mc13xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct mc13xxx_rtc *priv = dev_get_drvdata(dev);
+ unsigned int seconds, days;
+ time64_t s1970;
+ int enabled, pending;
+ int ret;
+
+ mc13xxx_lock(priv->mc13xxx);
+
+ ret = mc13xxx_reg_read(priv->mc13xxx, MC13XXX_RTCTODA, &seconds);
+ if (unlikely(ret))
+ goto out;
+ if (seconds >= SEC_PER_DAY) {
+ ret = -ENODATA;
+ goto out;
+ }
+
+ ret = mc13xxx_reg_read(priv->mc13xxx, MC13XXX_RTCDAY, &days);
+ if (unlikely(ret))
+ goto out;
+
+ ret = mc13xxx_irq_status(priv->mc13xxx, MC13XXX_IRQ_TODA,
+ &enabled, &pending);
+
+out:
+ mc13xxx_unlock(priv->mc13xxx);
+
+ if (ret)
+ return ret;
+
+ alarm->enabled = enabled;
+ alarm->pending = pending;
+
+ s1970 = (time64_t)days * SEC_PER_DAY + seconds;
+
+ rtc_time64_to_tm(s1970, &alarm->time);
+ dev_dbg(dev, "%s: %lld\n", __func__, (long long)s1970);
+
+ return 0;
+}
+
+static int mc13xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct mc13xxx_rtc *priv = dev_get_drvdata(dev);
+ time64_t s1970;
+ u32 seconds, days;
+ int ret;
+
+ mc13xxx_lock(priv->mc13xxx);
+
+ /* disable alarm to prevent false triggering */
+ ret = mc13xxx_reg_write(priv->mc13xxx, MC13XXX_RTCTODA, 0x1ffff);
+ if (unlikely(ret))
+ goto out;
+
+ ret = mc13xxx_irq_ack(priv->mc13xxx, MC13XXX_IRQ_TODA);
+ if (unlikely(ret))
+ goto out;
+
+ s1970 = rtc_tm_to_time64(&alarm->time);
+
+ dev_dbg(dev, "%s: %s %lld\n", __func__, alarm->enabled ? "on" : "off",
+ (long long)s1970);
+
+ ret = mc13xxx_rtc_irq_enable_unlocked(dev, alarm->enabled,
+ MC13XXX_IRQ_TODA);
+ if (unlikely(ret))
+ goto out;
+
+ days = div_s64_rem(s1970, SEC_PER_DAY, &seconds);
+
+ ret = mc13xxx_reg_write(priv->mc13xxx, MC13XXX_RTCDAYA, days);
+ if (unlikely(ret))
+ goto out;
+
+ ret = mc13xxx_reg_write(priv->mc13xxx, MC13XXX_RTCTODA, seconds);
+
+out:
+ mc13xxx_unlock(priv->mc13xxx);
+
+ return ret;
+}
+
+static irqreturn_t mc13xxx_rtc_alarm_handler(int irq, void *dev)
+{
+ struct mc13xxx_rtc *priv = dev;
+ struct mc13xxx *mc13xxx = priv->mc13xxx;
+
+ rtc_update_irq(priv->rtc, 1, RTC_IRQF | RTC_AF);
+
+ mc13xxx_irq_ack(mc13xxx, irq);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops mc13xxx_rtc_ops = {
+ .read_time = mc13xxx_rtc_read_time,
+ .set_time = mc13xxx_rtc_set_time,
+ .read_alarm = mc13xxx_rtc_read_alarm,
+ .set_alarm = mc13xxx_rtc_set_alarm,
+ .alarm_irq_enable = mc13xxx_rtc_alarm_irq_enable,
+};
+
+static irqreturn_t mc13xxx_rtc_reset_handler(int irq, void *dev)
+{
+ struct mc13xxx_rtc *priv = dev;
+ struct mc13xxx *mc13xxx = priv->mc13xxx;
+
+ priv->valid = 0;
+
+ mc13xxx_irq_mask(mc13xxx, irq);
+
+ return IRQ_HANDLED;
+}
+
+static int __init mc13xxx_rtc_probe(struct platform_device *pdev)
+{
+ int ret;
+ struct mc13xxx_rtc *priv;
+ struct mc13xxx *mc13xxx;
+
+ priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ mc13xxx = dev_get_drvdata(pdev->dev.parent);
+ priv->mc13xxx = mc13xxx;
+ priv->valid = 1;
+
+ priv->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(priv->rtc))
+ return PTR_ERR(priv->rtc);
+ platform_set_drvdata(pdev, priv);
+
+ priv->rtc->ops = &mc13xxx_rtc_ops;
+ /* 15bit days + hours, minutes, seconds */
+ priv->rtc->range_max = (timeu64_t)(1 << 15) * SEC_PER_DAY - 1;
+
+ mc13xxx_lock(mc13xxx);
+
+ mc13xxx_irq_ack(mc13xxx, MC13XXX_IRQ_RTCRST);
+
+ ret = mc13xxx_irq_request(mc13xxx, MC13XXX_IRQ_RTCRST,
+ mc13xxx_rtc_reset_handler, DRIVER_NAME, priv);
+ if (ret)
+ goto err_irq_request;
+
+ ret = mc13xxx_irq_request_nounmask(mc13xxx, MC13XXX_IRQ_TODA,
+ mc13xxx_rtc_alarm_handler, DRIVER_NAME, priv);
+ if (ret)
+ goto err_irq_request;
+
+ mc13xxx_unlock(mc13xxx);
+
+ ret = rtc_register_device(priv->rtc);
+ if (ret) {
+ mc13xxx_lock(mc13xxx);
+ goto err_irq_request;
+ }
+
+ return 0;
+
+err_irq_request:
+ mc13xxx_irq_free(mc13xxx, MC13XXX_IRQ_TODA, priv);
+ mc13xxx_irq_free(mc13xxx, MC13XXX_IRQ_RTCRST, priv);
+
+ mc13xxx_unlock(mc13xxx);
+
+ return ret;
+}
+
+static int mc13xxx_rtc_remove(struct platform_device *pdev)
+{
+ struct mc13xxx_rtc *priv = platform_get_drvdata(pdev);
+
+ mc13xxx_lock(priv->mc13xxx);
+
+ mc13xxx_irq_free(priv->mc13xxx, MC13XXX_IRQ_TODA, priv);
+ mc13xxx_irq_free(priv->mc13xxx, MC13XXX_IRQ_RTCRST, priv);
+
+ mc13xxx_unlock(priv->mc13xxx);
+
+ return 0;
+}
+
+static const struct platform_device_id mc13xxx_rtc_idtable[] = {
+ {
+ .name = "mc13783-rtc",
+ }, {
+ .name = "mc13892-rtc",
+ }, {
+ .name = "mc34708-rtc",
+ },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(platform, mc13xxx_rtc_idtable);
+
+static struct platform_driver mc13xxx_rtc_driver = {
+ .id_table = mc13xxx_rtc_idtable,
+ .remove = mc13xxx_rtc_remove,
+ .driver = {
+ .name = DRIVER_NAME,
+ },
+};
+
+module_platform_driver_probe(mc13xxx_rtc_driver, &mc13xxx_rtc_probe);
+
+MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
+MODULE_DESCRIPTION("RTC driver for Freescale MC13XXX PMIC");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-mc146818-lib.c b/drivers/rtc/rtc-mc146818-lib.c
new file mode 100644
index 000000000..347655d24
--- /dev/null
+++ b/drivers/rtc/rtc-mc146818-lib.c
@@ -0,0 +1,330 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#include <linux/bcd.h>
+#include <linux/delay.h>
+#include <linux/export.h>
+#include <linux/mc146818rtc.h>
+
+#ifdef CONFIG_ACPI
+#include <linux/acpi.h>
+#endif
+
+/*
+ * Execute a function while the UIP (Update-in-progress) bit of the RTC is
+ * unset.
+ *
+ * Warning: callback may be executed more then once.
+ */
+bool mc146818_avoid_UIP(void (*callback)(unsigned char seconds, void *param),
+ void *param)
+{
+ int i;
+ unsigned long flags;
+ unsigned char seconds;
+
+ for (i = 0; i < 10; i++) {
+ spin_lock_irqsave(&rtc_lock, flags);
+
+ /*
+ * Check whether there is an update in progress during which the
+ * readout is unspecified. The maximum update time is ~2ms. Poll
+ * every msec for completion.
+ *
+ * Store the second value before checking UIP so a long lasting
+ * NMI which happens to hit after the UIP check cannot make
+ * an update cycle invisible.
+ */
+ seconds = CMOS_READ(RTC_SECONDS);
+
+ if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP) {
+ spin_unlock_irqrestore(&rtc_lock, flags);
+ mdelay(1);
+ continue;
+ }
+
+ /* Revalidate the above readout */
+ if (seconds != CMOS_READ(RTC_SECONDS)) {
+ spin_unlock_irqrestore(&rtc_lock, flags);
+ continue;
+ }
+
+ if (callback)
+ callback(seconds, param);
+
+ /*
+ * Check for the UIP bit again. If it is set now then
+ * the above values may contain garbage.
+ */
+ if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP) {
+ spin_unlock_irqrestore(&rtc_lock, flags);
+ mdelay(1);
+ continue;
+ }
+
+ /*
+ * A NMI might have interrupted the above sequence so check
+ * whether the seconds value has changed which indicates that
+ * the NMI took longer than the UIP bit was set. Unlikely, but
+ * possible and there is also virt...
+ */
+ if (seconds != CMOS_READ(RTC_SECONDS)) {
+ spin_unlock_irqrestore(&rtc_lock, flags);
+ continue;
+ }
+ spin_unlock_irqrestore(&rtc_lock, flags);
+
+ return true;
+ }
+ return false;
+}
+EXPORT_SYMBOL_GPL(mc146818_avoid_UIP);
+
+/*
+ * If the UIP (Update-in-progress) bit of the RTC is set for more then
+ * 10ms, the RTC is apparently broken or not present.
+ */
+bool mc146818_does_rtc_work(void)
+{
+ int i;
+ unsigned char val;
+ unsigned long flags;
+
+ for (i = 0; i < 10; i++) {
+ spin_lock_irqsave(&rtc_lock, flags);
+ val = CMOS_READ(RTC_FREQ_SELECT);
+ spin_unlock_irqrestore(&rtc_lock, flags);
+
+ if ((val & RTC_UIP) == 0)
+ return true;
+
+ mdelay(1);
+ }
+
+ return false;
+}
+EXPORT_SYMBOL_GPL(mc146818_does_rtc_work);
+
+int mc146818_get_time(struct rtc_time *time)
+{
+ unsigned char ctrl;
+ unsigned long flags;
+ unsigned int iter_count = 0;
+ unsigned char century = 0;
+ bool retry;
+
+#ifdef CONFIG_MACH_DECSTATION
+ unsigned int real_year;
+#endif
+
+again:
+ if (iter_count > 10) {
+ memset(time, 0, sizeof(*time));
+ return -EIO;
+ }
+ iter_count++;
+
+ spin_lock_irqsave(&rtc_lock, flags);
+
+ /*
+ * Check whether there is an update in progress during which the
+ * readout is unspecified. The maximum update time is ~2ms. Poll
+ * every msec for completion.
+ *
+ * Store the second value before checking UIP so a long lasting NMI
+ * which happens to hit after the UIP check cannot make an update
+ * cycle invisible.
+ */
+ time->tm_sec = CMOS_READ(RTC_SECONDS);
+
+ if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP) {
+ spin_unlock_irqrestore(&rtc_lock, flags);
+ mdelay(1);
+ goto again;
+ }
+
+ /* Revalidate the above readout */
+ if (time->tm_sec != CMOS_READ(RTC_SECONDS)) {
+ spin_unlock_irqrestore(&rtc_lock, flags);
+ goto again;
+ }
+
+ /*
+ * Only the values that we read from the RTC are set. We leave
+ * tm_wday, tm_yday and tm_isdst untouched. Even though the
+ * RTC has RTC_DAY_OF_WEEK, we ignore it, as it is only updated
+ * by the RTC when initially set to a non-zero value.
+ */
+ time->tm_min = CMOS_READ(RTC_MINUTES);
+ time->tm_hour = CMOS_READ(RTC_HOURS);
+ time->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
+ time->tm_mon = CMOS_READ(RTC_MONTH);
+ time->tm_year = CMOS_READ(RTC_YEAR);
+#ifdef CONFIG_MACH_DECSTATION
+ real_year = CMOS_READ(RTC_DEC_YEAR);
+#endif
+#ifdef CONFIG_ACPI
+ if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
+ acpi_gbl_FADT.century)
+ century = CMOS_READ(acpi_gbl_FADT.century);
+#endif
+ ctrl = CMOS_READ(RTC_CONTROL);
+ /*
+ * Check for the UIP bit again. If it is set now then
+ * the above values may contain garbage.
+ */
+ retry = CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP;
+ /*
+ * A NMI might have interrupted the above sequence so check whether
+ * the seconds value has changed which indicates that the NMI took
+ * longer than the UIP bit was set. Unlikely, but possible and
+ * there is also virt...
+ */
+ retry |= time->tm_sec != CMOS_READ(RTC_SECONDS);
+
+ spin_unlock_irqrestore(&rtc_lock, flags);
+
+ if (retry)
+ goto again;
+
+ if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
+ {
+ time->tm_sec = bcd2bin(time->tm_sec);
+ time->tm_min = bcd2bin(time->tm_min);
+ time->tm_hour = bcd2bin(time->tm_hour);
+ time->tm_mday = bcd2bin(time->tm_mday);
+ time->tm_mon = bcd2bin(time->tm_mon);
+ time->tm_year = bcd2bin(time->tm_year);
+ century = bcd2bin(century);
+ }
+
+#ifdef CONFIG_MACH_DECSTATION
+ time->tm_year += real_year - 72;
+#endif
+
+ if (century > 19)
+ time->tm_year += (century - 19) * 100;
+
+ /*
+ * Account for differences between how the RTC uses the values
+ * and how they are defined in a struct rtc_time;
+ */
+ if (time->tm_year <= 69)
+ time->tm_year += 100;
+
+ time->tm_mon--;
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(mc146818_get_time);
+
+/* AMD systems don't allow access to AltCentury with DV1 */
+static bool apply_amd_register_a_behavior(void)
+{
+#ifdef CONFIG_X86
+ if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
+ boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
+ return true;
+#endif
+ return false;
+}
+
+/* Set the current date and time in the real time clock. */
+int mc146818_set_time(struct rtc_time *time)
+{
+ unsigned long flags;
+ unsigned char mon, day, hrs, min, sec;
+ unsigned char save_control, save_freq_select;
+ unsigned int yrs;
+#ifdef CONFIG_MACH_DECSTATION
+ unsigned int real_yrs, leap_yr;
+#endif
+ unsigned char century = 0;
+
+ yrs = time->tm_year;
+ mon = time->tm_mon + 1; /* tm_mon starts at zero */
+ day = time->tm_mday;
+ hrs = time->tm_hour;
+ min = time->tm_min;
+ sec = time->tm_sec;
+
+ if (yrs > 255) /* They are unsigned */
+ return -EINVAL;
+
+#ifdef CONFIG_MACH_DECSTATION
+ real_yrs = yrs;
+ leap_yr = ((!((yrs + 1900) % 4) && ((yrs + 1900) % 100)) ||
+ !((yrs + 1900) % 400));
+ yrs = 72;
+
+ /*
+ * We want to keep the year set to 73 until March
+ * for non-leap years, so that Feb, 29th is handled
+ * correctly.
+ */
+ if (!leap_yr && mon < 3) {
+ real_yrs--;
+ yrs = 73;
+ }
+#endif
+
+#ifdef CONFIG_ACPI
+ if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
+ acpi_gbl_FADT.century) {
+ century = (yrs + 1900) / 100;
+ yrs %= 100;
+ }
+#endif
+
+ /* These limits and adjustments are independent of
+ * whether the chip is in binary mode or not.
+ */
+ if (yrs > 169)
+ return -EINVAL;
+
+ if (yrs >= 100)
+ yrs -= 100;
+
+ spin_lock_irqsave(&rtc_lock, flags);
+ save_control = CMOS_READ(RTC_CONTROL);
+ spin_unlock_irqrestore(&rtc_lock, flags);
+ if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
+ sec = bin2bcd(sec);
+ min = bin2bcd(min);
+ hrs = bin2bcd(hrs);
+ day = bin2bcd(day);
+ mon = bin2bcd(mon);
+ yrs = bin2bcd(yrs);
+ century = bin2bcd(century);
+ }
+
+ spin_lock_irqsave(&rtc_lock, flags);
+ save_control = CMOS_READ(RTC_CONTROL);
+ CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
+ save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
+ if (apply_amd_register_a_behavior())
+ CMOS_WRITE((save_freq_select & ~RTC_AMD_BANK_SELECT), RTC_FREQ_SELECT);
+ else
+ CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
+
+#ifdef CONFIG_MACH_DECSTATION
+ CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
+#endif
+ CMOS_WRITE(yrs, RTC_YEAR);
+ CMOS_WRITE(mon, RTC_MONTH);
+ CMOS_WRITE(day, RTC_DAY_OF_MONTH);
+ CMOS_WRITE(hrs, RTC_HOURS);
+ CMOS_WRITE(min, RTC_MINUTES);
+ CMOS_WRITE(sec, RTC_SECONDS);
+#ifdef CONFIG_ACPI
+ if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
+ acpi_gbl_FADT.century)
+ CMOS_WRITE(century, acpi_gbl_FADT.century);
+#endif
+
+ CMOS_WRITE(save_control, RTC_CONTROL);
+ CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
+
+ spin_unlock_irqrestore(&rtc_lock, flags);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(mc146818_set_time);
diff --git a/drivers/rtc/rtc-mcp795.c b/drivers/rtc/rtc-mcp795.c
new file mode 100644
index 000000000..21cbf7f89
--- /dev/null
+++ b/drivers/rtc/rtc-mcp795.c
@@ -0,0 +1,447 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * SPI Driver for Microchip MCP795 RTC
+ *
+ * Copyright (C) Josef Gajdusek <atx@atx.name>
+ *
+ * based on other Linux RTC drivers
+ *
+ * Device datasheet:
+ * https://ww1.microchip.com/downloads/en/DeviceDoc/22280A.pdf
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/device.h>
+#include <linux/printk.h>
+#include <linux/spi/spi.h>
+#include <linux/rtc.h>
+#include <linux/of.h>
+#include <linux/bcd.h>
+#include <linux/delay.h>
+
+/* MCP795 Instructions, see datasheet table 3-1 */
+#define MCP795_EEREAD 0x03
+#define MCP795_EEWRITE 0x02
+#define MCP795_EEWRDI 0x04
+#define MCP795_EEWREN 0x06
+#define MCP795_SRREAD 0x05
+#define MCP795_SRWRITE 0x01
+#define MCP795_READ 0x13
+#define MCP795_WRITE 0x12
+#define MCP795_UNLOCK 0x14
+#define MCP795_IDWRITE 0x32
+#define MCP795_IDREAD 0x33
+#define MCP795_CLRWDT 0x44
+#define MCP795_CLRRAM 0x54
+
+/* MCP795 RTCC registers, see datasheet table 4-1 */
+#define MCP795_REG_SECONDS 0x01
+#define MCP795_REG_DAY 0x04
+#define MCP795_REG_MONTH 0x06
+#define MCP795_REG_CONTROL 0x08
+#define MCP795_REG_ALM0_SECONDS 0x0C
+#define MCP795_REG_ALM0_DAY 0x0F
+
+#define MCP795_ST_BIT BIT(7)
+#define MCP795_24_BIT BIT(6)
+#define MCP795_LP_BIT BIT(5)
+#define MCP795_EXTOSC_BIT BIT(3)
+#define MCP795_OSCON_BIT BIT(5)
+#define MCP795_ALM0_BIT BIT(4)
+#define MCP795_ALM1_BIT BIT(5)
+#define MCP795_ALM0IF_BIT BIT(3)
+#define MCP795_ALM0C0_BIT BIT(4)
+#define MCP795_ALM0C1_BIT BIT(5)
+#define MCP795_ALM0C2_BIT BIT(6)
+
+#define SEC_PER_DAY (24 * 60 * 60)
+
+static int mcp795_rtcc_read(struct device *dev, u8 addr, u8 *buf, u8 count)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ int ret;
+ u8 tx[2];
+
+ tx[0] = MCP795_READ;
+ tx[1] = addr;
+ ret = spi_write_then_read(spi, tx, sizeof(tx), buf, count);
+
+ if (ret)
+ dev_err(dev, "Failed reading %d bytes from address %x.\n",
+ count, addr);
+
+ return ret;
+}
+
+static int mcp795_rtcc_write(struct device *dev, u8 addr, u8 *data, u8 count)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ int ret;
+ u8 tx[257];
+
+ tx[0] = MCP795_WRITE;
+ tx[1] = addr;
+ memcpy(&tx[2], data, count);
+
+ ret = spi_write(spi, tx, 2 + count);
+
+ if (ret)
+ dev_err(dev, "Failed to write %d bytes to address %x.\n",
+ count, addr);
+
+ return ret;
+}
+
+static int mcp795_rtcc_set_bits(struct device *dev, u8 addr, u8 mask, u8 state)
+{
+ int ret;
+ u8 tmp;
+
+ ret = mcp795_rtcc_read(dev, addr, &tmp, 1);
+ if (ret)
+ return ret;
+
+ if ((tmp & mask) != state) {
+ tmp = (tmp & ~mask) | state;
+ ret = mcp795_rtcc_write(dev, addr, &tmp, 1);
+ }
+
+ return ret;
+}
+
+static int mcp795_stop_oscillator(struct device *dev, bool *extosc)
+{
+ int retries = 5;
+ int ret;
+ u8 data;
+
+ ret = mcp795_rtcc_set_bits(dev, MCP795_REG_SECONDS, MCP795_ST_BIT, 0);
+ if (ret)
+ return ret;
+ ret = mcp795_rtcc_read(dev, MCP795_REG_CONTROL, &data, 1);
+ if (ret)
+ return ret;
+ *extosc = !!(data & MCP795_EXTOSC_BIT);
+ ret = mcp795_rtcc_set_bits(
+ dev, MCP795_REG_CONTROL, MCP795_EXTOSC_BIT, 0);
+ if (ret)
+ return ret;
+ /* wait for the OSCON bit to clear */
+ do {
+ usleep_range(700, 800);
+ ret = mcp795_rtcc_read(dev, MCP795_REG_DAY, &data, 1);
+ if (ret)
+ break;
+ if (!(data & MCP795_OSCON_BIT))
+ break;
+
+ } while (--retries);
+
+ return !retries ? -EIO : ret;
+}
+
+static int mcp795_start_oscillator(struct device *dev, bool *extosc)
+{
+ if (extosc) {
+ u8 data = *extosc ? MCP795_EXTOSC_BIT : 0;
+ int ret;
+
+ ret = mcp795_rtcc_set_bits(
+ dev, MCP795_REG_CONTROL, MCP795_EXTOSC_BIT, data);
+ if (ret)
+ return ret;
+ }
+ return mcp795_rtcc_set_bits(
+ dev, MCP795_REG_SECONDS, MCP795_ST_BIT, MCP795_ST_BIT);
+}
+
+/* Enable or disable Alarm 0 in RTC */
+static int mcp795_update_alarm(struct device *dev, bool enable)
+{
+ int ret;
+
+ dev_dbg(dev, "%s alarm\n", enable ? "Enable" : "Disable");
+
+ if (enable) {
+ /* clear ALM0IF (Alarm 0 Interrupt Flag) bit */
+ ret = mcp795_rtcc_set_bits(dev, MCP795_REG_ALM0_DAY,
+ MCP795_ALM0IF_BIT, 0);
+ if (ret)
+ return ret;
+ /* enable alarm 0 */
+ ret = mcp795_rtcc_set_bits(dev, MCP795_REG_CONTROL,
+ MCP795_ALM0_BIT, MCP795_ALM0_BIT);
+ } else {
+ /* disable alarm 0 and alarm 1 */
+ ret = mcp795_rtcc_set_bits(dev, MCP795_REG_CONTROL,
+ MCP795_ALM0_BIT | MCP795_ALM1_BIT, 0);
+ }
+ return ret;
+}
+
+static int mcp795_set_time(struct device *dev, struct rtc_time *tim)
+{
+ int ret;
+ u8 data[7];
+ bool extosc;
+
+ /* Stop RTC and store current value of EXTOSC bit */
+ ret = mcp795_stop_oscillator(dev, &extosc);
+ if (ret)
+ return ret;
+
+ /* Read first, so we can leave config bits untouched */
+ ret = mcp795_rtcc_read(dev, MCP795_REG_SECONDS, data, sizeof(data));
+
+ if (ret)
+ return ret;
+
+ data[0] = (data[0] & 0x80) | bin2bcd(tim->tm_sec);
+ data[1] = (data[1] & 0x80) | bin2bcd(tim->tm_min);
+ data[2] = bin2bcd(tim->tm_hour);
+ data[3] = (data[3] & 0xF8) | bin2bcd(tim->tm_wday + 1);
+ data[4] = bin2bcd(tim->tm_mday);
+ data[5] = (data[5] & MCP795_LP_BIT) | bin2bcd(tim->tm_mon + 1);
+
+ if (tim->tm_year > 100)
+ tim->tm_year -= 100;
+
+ data[6] = bin2bcd(tim->tm_year);
+
+ /* Always write the date and month using a separate Write command.
+ * This is a workaround for a know silicon issue that some combinations
+ * of date and month values may result in the date being reset to 1.
+ */
+ ret = mcp795_rtcc_write(dev, MCP795_REG_SECONDS, data, 5);
+ if (ret)
+ return ret;
+
+ ret = mcp795_rtcc_write(dev, MCP795_REG_MONTH, &data[5], 2);
+ if (ret)
+ return ret;
+
+ /* Start back RTC and restore previous value of EXTOSC bit.
+ * There is no need to clear EXTOSC bit when the previous value was 0
+ * because it was already cleared when stopping the RTC oscillator.
+ */
+ ret = mcp795_start_oscillator(dev, extosc ? &extosc : NULL);
+ if (ret)
+ return ret;
+
+ dev_dbg(dev, "Set mcp795: %ptR\n", tim);
+
+ return 0;
+}
+
+static int mcp795_read_time(struct device *dev, struct rtc_time *tim)
+{
+ int ret;
+ u8 data[7];
+
+ ret = mcp795_rtcc_read(dev, MCP795_REG_SECONDS, data, sizeof(data));
+
+ if (ret)
+ return ret;
+
+ tim->tm_sec = bcd2bin(data[0] & 0x7F);
+ tim->tm_min = bcd2bin(data[1] & 0x7F);
+ tim->tm_hour = bcd2bin(data[2] & 0x3F);
+ tim->tm_wday = bcd2bin(data[3] & 0x07) - 1;
+ tim->tm_mday = bcd2bin(data[4] & 0x3F);
+ tim->tm_mon = bcd2bin(data[5] & 0x1F) - 1;
+ tim->tm_year = bcd2bin(data[6]) + 100; /* Assume we are in 20xx */
+
+ dev_dbg(dev, "Read from mcp795: %ptR\n", tim);
+
+ return 0;
+}
+
+static int mcp795_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct rtc_time now_tm;
+ time64_t now;
+ time64_t later;
+ u8 tmp[6];
+ int ret;
+
+ /* Read current time from RTC hardware */
+ ret = mcp795_read_time(dev, &now_tm);
+ if (ret)
+ return ret;
+ /* Get the number of seconds since 1970 */
+ now = rtc_tm_to_time64(&now_tm);
+ later = rtc_tm_to_time64(&alm->time);
+ if (later <= now)
+ return -EINVAL;
+ /* make sure alarm fires within the next one year */
+ if ((later - now) >=
+ (SEC_PER_DAY * (365 + is_leap_year(alm->time.tm_year))))
+ return -EDOM;
+ /* disable alarm */
+ ret = mcp795_update_alarm(dev, false);
+ if (ret)
+ return ret;
+ /* Read registers, so we can leave configuration bits untouched */
+ ret = mcp795_rtcc_read(dev, MCP795_REG_ALM0_SECONDS, tmp, sizeof(tmp));
+ if (ret)
+ return ret;
+
+ alm->time.tm_year = -1;
+ alm->time.tm_isdst = -1;
+ alm->time.tm_yday = -1;
+
+ tmp[0] = (tmp[0] & 0x80) | bin2bcd(alm->time.tm_sec);
+ tmp[1] = (tmp[1] & 0x80) | bin2bcd(alm->time.tm_min);
+ tmp[2] = (tmp[2] & 0xE0) | bin2bcd(alm->time.tm_hour);
+ tmp[3] = (tmp[3] & 0x80) | bin2bcd(alm->time.tm_wday + 1);
+ /* set alarm match: seconds, minutes, hour, day, date and month */
+ tmp[3] |= (MCP795_ALM0C2_BIT | MCP795_ALM0C1_BIT | MCP795_ALM0C0_BIT);
+ tmp[4] = (tmp[4] & 0xC0) | bin2bcd(alm->time.tm_mday);
+ tmp[5] = (tmp[5] & 0xE0) | bin2bcd(alm->time.tm_mon + 1);
+
+ ret = mcp795_rtcc_write(dev, MCP795_REG_ALM0_SECONDS, tmp, sizeof(tmp));
+ if (ret)
+ return ret;
+
+ /* enable alarm if requested */
+ if (alm->enabled) {
+ ret = mcp795_update_alarm(dev, true);
+ if (ret)
+ return ret;
+ dev_dbg(dev, "Alarm IRQ armed\n");
+ }
+ dev_dbg(dev, "Set alarm: %ptRdr(%d) %ptRt\n",
+ &alm->time, alm->time.tm_wday, &alm->time);
+ return 0;
+}
+
+static int mcp795_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ u8 data[6];
+ int ret;
+
+ ret = mcp795_rtcc_read(
+ dev, MCP795_REG_ALM0_SECONDS, data, sizeof(data));
+ if (ret)
+ return ret;
+
+ alm->time.tm_sec = bcd2bin(data[0] & 0x7F);
+ alm->time.tm_min = bcd2bin(data[1] & 0x7F);
+ alm->time.tm_hour = bcd2bin(data[2] & 0x1F);
+ alm->time.tm_wday = bcd2bin(data[3] & 0x07) - 1;
+ alm->time.tm_mday = bcd2bin(data[4] & 0x3F);
+ alm->time.tm_mon = bcd2bin(data[5] & 0x1F) - 1;
+ alm->time.tm_year = -1;
+ alm->time.tm_isdst = -1;
+ alm->time.tm_yday = -1;
+
+ dev_dbg(dev, "Read alarm: %ptRdr(%d) %ptRt\n",
+ &alm->time, alm->time.tm_wday, &alm->time);
+ return 0;
+}
+
+static int mcp795_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ return mcp795_update_alarm(dev, !!enabled);
+}
+
+static irqreturn_t mcp795_irq(int irq, void *data)
+{
+ struct spi_device *spi = data;
+ struct rtc_device *rtc = spi_get_drvdata(spi);
+ struct mutex *lock = &rtc->ops_lock;
+ int ret;
+
+ mutex_lock(lock);
+
+ /* Disable alarm.
+ * There is no need to clear ALM0IF (Alarm 0 Interrupt Flag) bit,
+ * because it is done every time when alarm is enabled.
+ */
+ ret = mcp795_update_alarm(&spi->dev, false);
+ if (ret)
+ dev_err(&spi->dev,
+ "Failed to disable alarm in IRQ (ret=%d)\n", ret);
+ rtc_update_irq(rtc, 1, RTC_AF | RTC_IRQF);
+
+ mutex_unlock(lock);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops mcp795_rtc_ops = {
+ .read_time = mcp795_read_time,
+ .set_time = mcp795_set_time,
+ .read_alarm = mcp795_read_alarm,
+ .set_alarm = mcp795_set_alarm,
+ .alarm_irq_enable = mcp795_alarm_irq_enable
+};
+
+static int mcp795_probe(struct spi_device *spi)
+{
+ struct rtc_device *rtc;
+ int ret;
+
+ spi->mode = SPI_MODE_0;
+ spi->bits_per_word = 8;
+ ret = spi_setup(spi);
+ if (ret) {
+ dev_err(&spi->dev, "Unable to setup SPI\n");
+ return ret;
+ }
+
+ /* Start the oscillator but don't set the value of EXTOSC bit */
+ mcp795_start_oscillator(&spi->dev, NULL);
+ /* Clear the 12 hour mode flag*/
+ mcp795_rtcc_set_bits(&spi->dev, 0x03, MCP795_24_BIT, 0);
+
+ rtc = devm_rtc_device_register(&spi->dev, "rtc-mcp795",
+ &mcp795_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ spi_set_drvdata(spi, rtc);
+
+ if (spi->irq > 0) {
+ dev_dbg(&spi->dev, "Alarm support enabled\n");
+
+ /* Clear any pending alarm (ALM0IF bit) before requesting
+ * the interrupt.
+ */
+ mcp795_rtcc_set_bits(&spi->dev, MCP795_REG_ALM0_DAY,
+ MCP795_ALM0IF_BIT, 0);
+ ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL,
+ mcp795_irq, IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
+ dev_name(&rtc->dev), spi);
+ if (ret)
+ dev_err(&spi->dev, "Failed to request IRQ: %d: %d\n",
+ spi->irq, ret);
+ else
+ device_init_wakeup(&spi->dev, true);
+ }
+ return 0;
+}
+
+#ifdef CONFIG_OF
+static const struct of_device_id mcp795_of_match[] = {
+ { .compatible = "maxim,mcp795" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, mcp795_of_match);
+#endif
+
+static struct spi_driver mcp795_driver = {
+ .driver = {
+ .name = "rtc-mcp795",
+ .of_match_table = of_match_ptr(mcp795_of_match),
+ },
+ .probe = mcp795_probe,
+};
+
+module_spi_driver(mcp795_driver);
+
+MODULE_DESCRIPTION("MCP795 RTC SPI Driver");
+MODULE_AUTHOR("Josef Gajdusek <atx@atx.name>");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("spi:mcp795");
diff --git a/drivers/rtc/rtc-meson-vrtc.c b/drivers/rtc/rtc-meson-vrtc.c
new file mode 100644
index 000000000..18ff8439b
--- /dev/null
+++ b/drivers/rtc/rtc-meson-vrtc.c
@@ -0,0 +1,150 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2019 BayLibre, SAS
+ * Author: Neil Armstrong <narmstrong@baylibre.com>
+ * Copyright (C) 2015 Amlogic, Inc. All rights reserved.
+ */
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/io.h>
+#include <linux/of.h>
+#include <linux/time64.h>
+
+struct meson_vrtc_data {
+ void __iomem *io_alarm;
+ struct rtc_device *rtc;
+ unsigned long alarm_time;
+ bool enabled;
+};
+
+static int meson_vrtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct timespec64 time;
+
+ dev_dbg(dev, "%s\n", __func__);
+ ktime_get_real_ts64(&time);
+ rtc_time64_to_tm(time.tv_sec, tm);
+
+ return 0;
+}
+
+static void meson_vrtc_set_wakeup_time(struct meson_vrtc_data *vrtc,
+ unsigned long time)
+{
+ writel_relaxed(time, vrtc->io_alarm);
+}
+
+static int meson_vrtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct meson_vrtc_data *vrtc = dev_get_drvdata(dev);
+
+ dev_dbg(dev, "%s: alarm->enabled=%d\n", __func__, alarm->enabled);
+ if (alarm->enabled)
+ vrtc->alarm_time = rtc_tm_to_time64(&alarm->time);
+ else
+ vrtc->alarm_time = 0;
+
+ return 0;
+}
+
+static int meson_vrtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct meson_vrtc_data *vrtc = dev_get_drvdata(dev);
+
+ vrtc->enabled = enabled;
+ return 0;
+}
+
+static const struct rtc_class_ops meson_vrtc_ops = {
+ .read_time = meson_vrtc_read_time,
+ .set_alarm = meson_vrtc_set_alarm,
+ .alarm_irq_enable = meson_vrtc_alarm_irq_enable,
+};
+
+static int meson_vrtc_probe(struct platform_device *pdev)
+{
+ struct meson_vrtc_data *vrtc;
+
+ vrtc = devm_kzalloc(&pdev->dev, sizeof(*vrtc), GFP_KERNEL);
+ if (!vrtc)
+ return -ENOMEM;
+
+ vrtc->io_alarm = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(vrtc->io_alarm))
+ return PTR_ERR(vrtc->io_alarm);
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ platform_set_drvdata(pdev, vrtc);
+
+ vrtc->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(vrtc->rtc))
+ return PTR_ERR(vrtc->rtc);
+
+ vrtc->rtc->ops = &meson_vrtc_ops;
+ return rtc_register_device(vrtc->rtc);
+}
+
+static int __maybe_unused meson_vrtc_suspend(struct device *dev)
+{
+ struct meson_vrtc_data *vrtc = dev_get_drvdata(dev);
+
+ dev_dbg(dev, "%s\n", __func__);
+ if (vrtc->alarm_time) {
+ unsigned long local_time;
+ long alarm_secs;
+ struct timespec64 time;
+
+ ktime_get_real_ts64(&time);
+ local_time = time.tv_sec;
+
+ dev_dbg(dev, "alarm_time = %lus, local_time=%lus\n",
+ vrtc->alarm_time, local_time);
+ alarm_secs = vrtc->alarm_time - local_time;
+ if (alarm_secs > 0) {
+ meson_vrtc_set_wakeup_time(vrtc, alarm_secs);
+ dev_dbg(dev, "system will wakeup in %lds.\n",
+ alarm_secs);
+ } else {
+ dev_err(dev, "alarm time already passed: %lds.\n",
+ alarm_secs);
+ }
+ }
+
+ return 0;
+}
+
+static int __maybe_unused meson_vrtc_resume(struct device *dev)
+{
+ struct meson_vrtc_data *vrtc = dev_get_drvdata(dev);
+
+ dev_dbg(dev, "%s\n", __func__);
+
+ vrtc->alarm_time = 0;
+ meson_vrtc_set_wakeup_time(vrtc, 0);
+ return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(meson_vrtc_pm_ops,
+ meson_vrtc_suspend, meson_vrtc_resume);
+
+static const struct of_device_id meson_vrtc_dt_match[] = {
+ { .compatible = "amlogic,meson-vrtc"},
+ {},
+};
+MODULE_DEVICE_TABLE(of, meson_vrtc_dt_match);
+
+static struct platform_driver meson_vrtc_driver = {
+ .probe = meson_vrtc_probe,
+ .driver = {
+ .name = "meson-vrtc",
+ .of_match_table = meson_vrtc_dt_match,
+ .pm = &meson_vrtc_pm_ops,
+ },
+};
+
+module_platform_driver(meson_vrtc_driver);
+
+MODULE_DESCRIPTION("Amlogic Virtual Wakeup RTC Timer driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-meson.c b/drivers/rtc/rtc-meson.c
new file mode 100644
index 000000000..47ebcf834
--- /dev/null
+++ b/drivers/rtc/rtc-meson.c
@@ -0,0 +1,405 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * RTC driver for the interal RTC block in the Amlogic Meson6, Meson8,
+ * Meson8b and Meson8m2 SoCs.
+ *
+ * The RTC is split in to two parts, the AHB front end and a simple serial
+ * connection to the actual registers. This driver manages both parts.
+ *
+ * Copyright (c) 2018 Martin Blumenstingl <martin.blumenstingl@googlemail.com>
+ * Copyright (c) 2015 Ben Dooks <ben.dooks@codethink.co.uk> for Codethink Ltd
+ * Based on origin by Carlo Caione <carlo@endlessm.com>
+ */
+
+#include <linux/bitfield.h>
+#include <linux/delay.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/nvmem-provider.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/regmap.h>
+#include <linux/regulator/consumer.h>
+#include <linux/reset.h>
+#include <linux/rtc.h>
+
+/* registers accessed from cpu bus */
+#define RTC_ADDR0 0x00
+ #define RTC_ADDR0_LINE_SCLK BIT(0)
+ #define RTC_ADDR0_LINE_SEN BIT(1)
+ #define RTC_ADDR0_LINE_SDI BIT(2)
+ #define RTC_ADDR0_START_SER BIT(17)
+ #define RTC_ADDR0_WAIT_SER BIT(22)
+ #define RTC_ADDR0_DATA GENMASK(31, 24)
+
+#define RTC_ADDR1 0x04
+ #define RTC_ADDR1_SDO BIT(0)
+ #define RTC_ADDR1_S_READY BIT(1)
+
+#define RTC_ADDR2 0x08
+#define RTC_ADDR3 0x0c
+
+#define RTC_REG4 0x10
+ #define RTC_REG4_STATIC_VALUE GENMASK(7, 0)
+
+/* rtc registers accessed via rtc-serial interface */
+#define RTC_COUNTER (0)
+#define RTC_SEC_ADJ (2)
+#define RTC_REGMEM_0 (4)
+#define RTC_REGMEM_1 (5)
+#define RTC_REGMEM_2 (6)
+#define RTC_REGMEM_3 (7)
+
+#define RTC_ADDR_BITS (3) /* number of address bits to send */
+#define RTC_DATA_BITS (32) /* number of data bits to tx/rx */
+
+#define MESON_STATIC_BIAS_CUR (0x5 << 1)
+#define MESON_STATIC_VOLTAGE (0x3 << 11)
+#define MESON_STATIC_DEFAULT (MESON_STATIC_BIAS_CUR | MESON_STATIC_VOLTAGE)
+
+struct meson_rtc {
+ struct rtc_device *rtc; /* rtc device we created */
+ struct device *dev; /* device we bound from */
+ struct reset_control *reset; /* reset source */
+ struct regulator *vdd; /* voltage input */
+ struct regmap *peripheral; /* peripheral registers */
+ struct regmap *serial; /* serial registers */
+};
+
+static const struct regmap_config meson_rtc_peripheral_regmap_config = {
+ .name = "peripheral-registers",
+ .reg_bits = 8,
+ .val_bits = 32,
+ .reg_stride = 4,
+ .max_register = RTC_REG4,
+ .fast_io = true,
+};
+
+/* RTC front-end serialiser controls */
+
+static void meson_rtc_sclk_pulse(struct meson_rtc *rtc)
+{
+ udelay(5);
+ regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SCLK, 0);
+ udelay(5);
+ regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SCLK,
+ RTC_ADDR0_LINE_SCLK);
+}
+
+static void meson_rtc_send_bit(struct meson_rtc *rtc, unsigned int bit)
+{
+ regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SDI,
+ bit ? RTC_ADDR0_LINE_SDI : 0);
+ meson_rtc_sclk_pulse(rtc);
+}
+
+static void meson_rtc_send_bits(struct meson_rtc *rtc, u32 data,
+ unsigned int nr)
+{
+ u32 bit = 1 << (nr - 1);
+
+ while (bit) {
+ meson_rtc_send_bit(rtc, data & bit);
+ bit >>= 1;
+ }
+}
+
+static void meson_rtc_set_dir(struct meson_rtc *rtc, u32 mode)
+{
+ regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SEN, 0);
+ regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SDI, 0);
+ meson_rtc_send_bit(rtc, mode);
+ regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SDI, 0);
+}
+
+static u32 meson_rtc_get_data(struct meson_rtc *rtc)
+{
+ u32 tmp, val = 0;
+ int bit;
+
+ for (bit = 0; bit < RTC_DATA_BITS; bit++) {
+ meson_rtc_sclk_pulse(rtc);
+ val <<= 1;
+
+ regmap_read(rtc->peripheral, RTC_ADDR1, &tmp);
+ val |= tmp & RTC_ADDR1_SDO;
+ }
+
+ return val;
+}
+
+static int meson_rtc_get_bus(struct meson_rtc *rtc)
+{
+ int ret, retries;
+ u32 val;
+
+ /* prepare bus for transfers, set all lines low */
+ val = RTC_ADDR0_LINE_SDI | RTC_ADDR0_LINE_SEN | RTC_ADDR0_LINE_SCLK;
+ regmap_update_bits(rtc->peripheral, RTC_ADDR0, val, 0);
+
+ for (retries = 0; retries < 3; retries++) {
+ /* wait for the bus to be ready */
+ if (!regmap_read_poll_timeout(rtc->peripheral, RTC_ADDR1, val,
+ val & RTC_ADDR1_S_READY, 10,
+ 10000))
+ return 0;
+
+ dev_warn(rtc->dev, "failed to get bus, resetting RTC\n");
+
+ ret = reset_control_reset(rtc->reset);
+ if (ret)
+ return ret;
+ }
+
+ dev_err(rtc->dev, "bus is not ready\n");
+ return -ETIMEDOUT;
+}
+
+static int meson_rtc_serial_bus_reg_read(void *context, unsigned int reg,
+ unsigned int *data)
+{
+ struct meson_rtc *rtc = context;
+ int ret;
+
+ ret = meson_rtc_get_bus(rtc);
+ if (ret)
+ return ret;
+
+ regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SEN,
+ RTC_ADDR0_LINE_SEN);
+ meson_rtc_send_bits(rtc, reg, RTC_ADDR_BITS);
+ meson_rtc_set_dir(rtc, 0);
+ *data = meson_rtc_get_data(rtc);
+
+ return 0;
+}
+
+static int meson_rtc_serial_bus_reg_write(void *context, unsigned int reg,
+ unsigned int data)
+{
+ struct meson_rtc *rtc = context;
+ int ret;
+
+ ret = meson_rtc_get_bus(rtc);
+ if (ret)
+ return ret;
+
+ regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SEN,
+ RTC_ADDR0_LINE_SEN);
+ meson_rtc_send_bits(rtc, data, RTC_DATA_BITS);
+ meson_rtc_send_bits(rtc, reg, RTC_ADDR_BITS);
+ meson_rtc_set_dir(rtc, 1);
+
+ return 0;
+}
+
+static const struct regmap_bus meson_rtc_serial_bus = {
+ .reg_read = meson_rtc_serial_bus_reg_read,
+ .reg_write = meson_rtc_serial_bus_reg_write,
+};
+
+static const struct regmap_config meson_rtc_serial_regmap_config = {
+ .name = "serial-registers",
+ .reg_bits = 4,
+ .reg_stride = 1,
+ .val_bits = 32,
+ .max_register = RTC_REGMEM_3,
+ .fast_io = false,
+};
+
+static int meson_rtc_write_static(struct meson_rtc *rtc, u32 data)
+{
+ u32 tmp;
+
+ regmap_write(rtc->peripheral, RTC_REG4,
+ FIELD_PREP(RTC_REG4_STATIC_VALUE, (data >> 8)));
+
+ /* write the static value and start the auto serializer */
+ tmp = FIELD_PREP(RTC_ADDR0_DATA, (data & 0xff)) | RTC_ADDR0_START_SER;
+ regmap_update_bits(rtc->peripheral, RTC_ADDR0,
+ RTC_ADDR0_DATA | RTC_ADDR0_START_SER, tmp);
+
+ /* wait for the auto serializer to complete */
+ return regmap_read_poll_timeout(rtc->peripheral, RTC_REG4, tmp,
+ !(tmp & RTC_ADDR0_WAIT_SER), 10,
+ 10000);
+}
+
+/* RTC interface layer functions */
+
+static int meson_rtc_gettime(struct device *dev, struct rtc_time *tm)
+{
+ struct meson_rtc *rtc = dev_get_drvdata(dev);
+ u32 time;
+ int ret;
+
+ ret = regmap_read(rtc->serial, RTC_COUNTER, &time);
+ if (!ret)
+ rtc_time64_to_tm(time, tm);
+
+ return ret;
+}
+
+static int meson_rtc_settime(struct device *dev, struct rtc_time *tm)
+{
+ struct meson_rtc *rtc = dev_get_drvdata(dev);
+
+ return regmap_write(rtc->serial, RTC_COUNTER, rtc_tm_to_time64(tm));
+}
+
+static const struct rtc_class_ops meson_rtc_ops = {
+ .read_time = meson_rtc_gettime,
+ .set_time = meson_rtc_settime,
+};
+
+/* NVMEM interface layer functions */
+
+static int meson_rtc_regmem_read(void *context, unsigned int offset,
+ void *buf, size_t bytes)
+{
+ struct meson_rtc *rtc = context;
+ unsigned int read_offset, read_size;
+
+ read_offset = RTC_REGMEM_0 + (offset / 4);
+ read_size = bytes / 4;
+
+ return regmap_bulk_read(rtc->serial, read_offset, buf, read_size);
+}
+
+static int meson_rtc_regmem_write(void *context, unsigned int offset,
+ void *buf, size_t bytes)
+{
+ struct meson_rtc *rtc = context;
+ unsigned int write_offset, write_size;
+
+ write_offset = RTC_REGMEM_0 + (offset / 4);
+ write_size = bytes / 4;
+
+ return regmap_bulk_write(rtc->serial, write_offset, buf, write_size);
+}
+
+static int meson_rtc_probe(struct platform_device *pdev)
+{
+ struct nvmem_config meson_rtc_nvmem_config = {
+ .name = "meson-rtc-regmem",
+ .type = NVMEM_TYPE_BATTERY_BACKED,
+ .word_size = 4,
+ .stride = 4,
+ .size = 4 * 4,
+ .reg_read = meson_rtc_regmem_read,
+ .reg_write = meson_rtc_regmem_write,
+ };
+ struct device *dev = &pdev->dev;
+ struct meson_rtc *rtc;
+ void __iomem *base;
+ int ret;
+ u32 tm;
+
+ rtc = devm_kzalloc(dev, sizeof(struct meson_rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->rtc = devm_rtc_allocate_device(dev);
+ if (IS_ERR(rtc->rtc))
+ return PTR_ERR(rtc->rtc);
+
+ platform_set_drvdata(pdev, rtc);
+
+ rtc->dev = dev;
+
+ rtc->rtc->ops = &meson_rtc_ops;
+ rtc->rtc->range_max = U32_MAX;
+
+ base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(base))
+ return PTR_ERR(base);
+
+ rtc->peripheral = devm_regmap_init_mmio(dev, base,
+ &meson_rtc_peripheral_regmap_config);
+ if (IS_ERR(rtc->peripheral)) {
+ dev_err(dev, "failed to create peripheral regmap\n");
+ return PTR_ERR(rtc->peripheral);
+ }
+
+ rtc->reset = devm_reset_control_get(dev, NULL);
+ if (IS_ERR(rtc->reset)) {
+ dev_err(dev, "missing reset line\n");
+ return PTR_ERR(rtc->reset);
+ }
+
+ rtc->vdd = devm_regulator_get(dev, "vdd");
+ if (IS_ERR(rtc->vdd)) {
+ dev_err(dev, "failed to get the vdd-supply\n");
+ return PTR_ERR(rtc->vdd);
+ }
+
+ ret = regulator_enable(rtc->vdd);
+ if (ret) {
+ dev_err(dev, "failed to enable vdd-supply\n");
+ return ret;
+ }
+
+ ret = meson_rtc_write_static(rtc, MESON_STATIC_DEFAULT);
+ if (ret) {
+ dev_err(dev, "failed to set static values\n");
+ goto out_disable_vdd;
+ }
+
+ rtc->serial = devm_regmap_init(dev, &meson_rtc_serial_bus, rtc,
+ &meson_rtc_serial_regmap_config);
+ if (IS_ERR(rtc->serial)) {
+ dev_err(dev, "failed to create serial regmap\n");
+ ret = PTR_ERR(rtc->serial);
+ goto out_disable_vdd;
+ }
+
+ /*
+ * check if we can read RTC counter, if not then the RTC is probably
+ * not functional. If it isn't probably best to not bind.
+ */
+ ret = regmap_read(rtc->serial, RTC_COUNTER, &tm);
+ if (ret) {
+ dev_err(dev, "cannot read RTC counter, RTC not functional\n");
+ goto out_disable_vdd;
+ }
+
+ meson_rtc_nvmem_config.priv = rtc;
+ ret = rtc_nvmem_register(rtc->rtc, &meson_rtc_nvmem_config);
+ if (ret)
+ goto out_disable_vdd;
+
+ ret = rtc_register_device(rtc->rtc);
+ if (ret)
+ goto out_disable_vdd;
+
+ return 0;
+
+out_disable_vdd:
+ regulator_disable(rtc->vdd);
+ return ret;
+}
+
+static const struct of_device_id meson_rtc_dt_match[] = {
+ { .compatible = "amlogic,meson6-rtc", },
+ { .compatible = "amlogic,meson8-rtc", },
+ { .compatible = "amlogic,meson8b-rtc", },
+ { .compatible = "amlogic,meson8m2-rtc", },
+ { },
+};
+MODULE_DEVICE_TABLE(of, meson_rtc_dt_match);
+
+static struct platform_driver meson_rtc_driver = {
+ .probe = meson_rtc_probe,
+ .driver = {
+ .name = "meson-rtc",
+ .of_match_table = of_match_ptr(meson_rtc_dt_match),
+ },
+};
+module_platform_driver(meson_rtc_driver);
+
+MODULE_DESCRIPTION("Amlogic Meson RTC Driver");
+MODULE_AUTHOR("Ben Dooks <ben.doosk@codethink.co.uk>");
+MODULE_AUTHOR("Martin Blumenstingl <martin.blumenstingl@googlemail.com>");
+MODULE_LICENSE("GPL v2");
+MODULE_ALIAS("platform:meson-rtc");
diff --git a/drivers/rtc/rtc-moxart.c b/drivers/rtc/rtc-moxart.c
new file mode 100644
index 000000000..6b24ac9e1
--- /dev/null
+++ b/drivers/rtc/rtc-moxart.c
@@ -0,0 +1,325 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * MOXA ART RTC driver.
+ *
+ * Copyright (C) 2013 Jonas Jensen
+ *
+ * Jonas Jensen <jonas.jensen@gmail.com>
+ *
+ * Based on code from
+ * Moxa Technology Co., Ltd. <www.moxa.com>
+ */
+
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/delay.h>
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+#include <linux/module.h>
+#include <linux/gpio.h>
+#include <linux/of_gpio.h>
+
+#define GPIO_RTC_RESERVED 0x0C
+#define GPIO_RTC_DATA_SET 0x10
+#define GPIO_RTC_DATA_CLEAR 0x14
+#define GPIO_RTC_PIN_PULL_ENABLE 0x18
+#define GPIO_RTC_PIN_PULL_TYPE 0x1C
+#define GPIO_RTC_INT_ENABLE 0x20
+#define GPIO_RTC_INT_RAW_STATE 0x24
+#define GPIO_RTC_INT_MASKED_STATE 0x28
+#define GPIO_RTC_INT_MASK 0x2C
+#define GPIO_RTC_INT_CLEAR 0x30
+#define GPIO_RTC_INT_TRIGGER 0x34
+#define GPIO_RTC_INT_BOTH 0x38
+#define GPIO_RTC_INT_RISE_NEG 0x3C
+#define GPIO_RTC_BOUNCE_ENABLE 0x40
+#define GPIO_RTC_BOUNCE_PRE_SCALE 0x44
+#define GPIO_RTC_PROTECT_W 0x8E
+#define GPIO_RTC_PROTECT_R 0x8F
+#define GPIO_RTC_YEAR_W 0x8C
+#define GPIO_RTC_YEAR_R 0x8D
+#define GPIO_RTC_DAY_W 0x8A
+#define GPIO_RTC_DAY_R 0x8B
+#define GPIO_RTC_MONTH_W 0x88
+#define GPIO_RTC_MONTH_R 0x89
+#define GPIO_RTC_DATE_W 0x86
+#define GPIO_RTC_DATE_R 0x87
+#define GPIO_RTC_HOURS_W 0x84
+#define GPIO_RTC_HOURS_R 0x85
+#define GPIO_RTC_MINUTES_W 0x82
+#define GPIO_RTC_MINUTES_R 0x83
+#define GPIO_RTC_SECONDS_W 0x80
+#define GPIO_RTC_SECONDS_R 0x81
+#define GPIO_RTC_DELAY_TIME 8
+
+struct moxart_rtc {
+ struct rtc_device *rtc;
+ spinlock_t rtc_lock;
+ int gpio_data, gpio_sclk, gpio_reset;
+};
+
+static int day_of_year[12] = { 0, 31, 59, 90, 120, 151, 181,
+ 212, 243, 273, 304, 334 };
+
+static void moxart_rtc_write_byte(struct device *dev, u8 data)
+{
+ struct moxart_rtc *moxart_rtc = dev_get_drvdata(dev);
+ int i;
+
+ for (i = 0; i < 8; i++, data >>= 1) {
+ gpio_set_value(moxart_rtc->gpio_sclk, 0);
+ gpio_set_value(moxart_rtc->gpio_data, ((data & 1) == 1));
+ udelay(GPIO_RTC_DELAY_TIME);
+ gpio_set_value(moxart_rtc->gpio_sclk, 1);
+ udelay(GPIO_RTC_DELAY_TIME);
+ }
+}
+
+static u8 moxart_rtc_read_byte(struct device *dev)
+{
+ struct moxart_rtc *moxart_rtc = dev_get_drvdata(dev);
+ int i;
+ u8 data = 0;
+
+ for (i = 0; i < 8; i++) {
+ gpio_set_value(moxart_rtc->gpio_sclk, 0);
+ udelay(GPIO_RTC_DELAY_TIME);
+ gpio_set_value(moxart_rtc->gpio_sclk, 1);
+ udelay(GPIO_RTC_DELAY_TIME);
+ if (gpio_get_value(moxart_rtc->gpio_data))
+ data |= (1 << i);
+ udelay(GPIO_RTC_DELAY_TIME);
+ }
+ return data;
+}
+
+static u8 moxart_rtc_read_register(struct device *dev, u8 cmd)
+{
+ struct moxart_rtc *moxart_rtc = dev_get_drvdata(dev);
+ u8 data;
+ unsigned long flags;
+
+ local_irq_save(flags);
+
+ gpio_direction_output(moxart_rtc->gpio_data, 0);
+ gpio_set_value(moxart_rtc->gpio_reset, 1);
+ udelay(GPIO_RTC_DELAY_TIME);
+ moxart_rtc_write_byte(dev, cmd);
+ gpio_direction_input(moxart_rtc->gpio_data);
+ udelay(GPIO_RTC_DELAY_TIME);
+ data = moxart_rtc_read_byte(dev);
+ gpio_set_value(moxart_rtc->gpio_sclk, 0);
+ gpio_set_value(moxart_rtc->gpio_reset, 0);
+ udelay(GPIO_RTC_DELAY_TIME);
+
+ local_irq_restore(flags);
+
+ return data;
+}
+
+static void moxart_rtc_write_register(struct device *dev, u8 cmd, u8 data)
+{
+ struct moxart_rtc *moxart_rtc = dev_get_drvdata(dev);
+ unsigned long flags;
+
+ local_irq_save(flags);
+
+ gpio_direction_output(moxart_rtc->gpio_data, 0);
+ gpio_set_value(moxart_rtc->gpio_reset, 1);
+ udelay(GPIO_RTC_DELAY_TIME);
+ moxart_rtc_write_byte(dev, cmd);
+ moxart_rtc_write_byte(dev, data);
+ gpio_set_value(moxart_rtc->gpio_sclk, 0);
+ gpio_set_value(moxart_rtc->gpio_reset, 0);
+ udelay(GPIO_RTC_DELAY_TIME);
+
+ local_irq_restore(flags);
+}
+
+static int moxart_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct moxart_rtc *moxart_rtc = dev_get_drvdata(dev);
+
+ spin_lock_irq(&moxart_rtc->rtc_lock);
+
+ moxart_rtc_write_register(dev, GPIO_RTC_PROTECT_W, 0);
+ moxart_rtc_write_register(dev, GPIO_RTC_YEAR_W,
+ (((tm->tm_year - 100) / 10) << 4) |
+ ((tm->tm_year - 100) % 10));
+
+ moxart_rtc_write_register(dev, GPIO_RTC_MONTH_W,
+ (((tm->tm_mon + 1) / 10) << 4) |
+ ((tm->tm_mon + 1) % 10));
+
+ moxart_rtc_write_register(dev, GPIO_RTC_DATE_W,
+ ((tm->tm_mday / 10) << 4) |
+ (tm->tm_mday % 10));
+
+ moxart_rtc_write_register(dev, GPIO_RTC_HOURS_W,
+ ((tm->tm_hour / 10) << 4) |
+ (tm->tm_hour % 10));
+
+ moxart_rtc_write_register(dev, GPIO_RTC_MINUTES_W,
+ ((tm->tm_min / 10) << 4) |
+ (tm->tm_min % 10));
+
+ moxart_rtc_write_register(dev, GPIO_RTC_SECONDS_W,
+ ((tm->tm_sec / 10) << 4) |
+ (tm->tm_sec % 10));
+
+ moxart_rtc_write_register(dev, GPIO_RTC_PROTECT_W, 0x80);
+
+ spin_unlock_irq(&moxart_rtc->rtc_lock);
+
+ dev_dbg(dev, "%s: success tm_year=%d tm_mon=%d\n"
+ "tm_mday=%d tm_hour=%d tm_min=%d tm_sec=%d\n",
+ __func__, tm->tm_year, tm->tm_mon, tm->tm_mday,
+ tm->tm_hour, tm->tm_min, tm->tm_sec);
+
+ return 0;
+}
+
+static int moxart_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct moxart_rtc *moxart_rtc = dev_get_drvdata(dev);
+ unsigned char v;
+
+ spin_lock_irq(&moxart_rtc->rtc_lock);
+
+ v = moxart_rtc_read_register(dev, GPIO_RTC_SECONDS_R);
+ tm->tm_sec = (((v & 0x70) >> 4) * 10) + (v & 0x0F);
+
+ v = moxart_rtc_read_register(dev, GPIO_RTC_MINUTES_R);
+ tm->tm_min = (((v & 0x70) >> 4) * 10) + (v & 0x0F);
+
+ v = moxart_rtc_read_register(dev, GPIO_RTC_HOURS_R);
+ if (v & 0x80) { /* 12-hour mode */
+ tm->tm_hour = (((v & 0x10) >> 4) * 10) + (v & 0x0F);
+ if (v & 0x20) { /* PM mode */
+ tm->tm_hour += 12;
+ if (tm->tm_hour >= 24)
+ tm->tm_hour = 0;
+ }
+ } else { /* 24-hour mode */
+ tm->tm_hour = (((v & 0x30) >> 4) * 10) + (v & 0x0F);
+ }
+
+ v = moxart_rtc_read_register(dev, GPIO_RTC_DATE_R);
+ tm->tm_mday = (((v & 0x30) >> 4) * 10) + (v & 0x0F);
+
+ v = moxart_rtc_read_register(dev, GPIO_RTC_MONTH_R);
+ tm->tm_mon = (((v & 0x10) >> 4) * 10) + (v & 0x0F);
+ tm->tm_mon--;
+
+ v = moxart_rtc_read_register(dev, GPIO_RTC_YEAR_R);
+ tm->tm_year = (((v & 0xF0) >> 4) * 10) + (v & 0x0F);
+ tm->tm_year += 100;
+ if (tm->tm_year <= 69)
+ tm->tm_year += 100;
+
+ v = moxart_rtc_read_register(dev, GPIO_RTC_DAY_R);
+ tm->tm_wday = (v & 0x0f) - 1;
+ tm->tm_yday = day_of_year[tm->tm_mon];
+ tm->tm_yday += (tm->tm_mday - 1);
+ if (tm->tm_mon >= 2) {
+ if (!(tm->tm_year % 4) && (tm->tm_year % 100))
+ tm->tm_yday++;
+ }
+
+ tm->tm_isdst = 0;
+
+ spin_unlock_irq(&moxart_rtc->rtc_lock);
+
+ return 0;
+}
+
+static const struct rtc_class_ops moxart_rtc_ops = {
+ .read_time = moxart_rtc_read_time,
+ .set_time = moxart_rtc_set_time,
+};
+
+static int moxart_rtc_probe(struct platform_device *pdev)
+{
+ struct moxart_rtc *moxart_rtc;
+ int ret = 0;
+
+ moxart_rtc = devm_kzalloc(&pdev->dev, sizeof(*moxart_rtc), GFP_KERNEL);
+ if (!moxart_rtc)
+ return -ENOMEM;
+
+ moxart_rtc->gpio_data = of_get_named_gpio(pdev->dev.of_node,
+ "gpio-rtc-data", 0);
+ if (!gpio_is_valid(moxart_rtc->gpio_data)) {
+ dev_err(&pdev->dev, "invalid gpio (data): %d\n",
+ moxart_rtc->gpio_data);
+ return moxart_rtc->gpio_data;
+ }
+
+ moxart_rtc->gpio_sclk = of_get_named_gpio(pdev->dev.of_node,
+ "gpio-rtc-sclk", 0);
+ if (!gpio_is_valid(moxart_rtc->gpio_sclk)) {
+ dev_err(&pdev->dev, "invalid gpio (sclk): %d\n",
+ moxart_rtc->gpio_sclk);
+ return moxart_rtc->gpio_sclk;
+ }
+
+ moxart_rtc->gpio_reset = of_get_named_gpio(pdev->dev.of_node,
+ "gpio-rtc-reset", 0);
+ if (!gpio_is_valid(moxart_rtc->gpio_reset)) {
+ dev_err(&pdev->dev, "invalid gpio (reset): %d\n",
+ moxart_rtc->gpio_reset);
+ return moxart_rtc->gpio_reset;
+ }
+
+ spin_lock_init(&moxart_rtc->rtc_lock);
+ platform_set_drvdata(pdev, moxart_rtc);
+
+ ret = devm_gpio_request(&pdev->dev, moxart_rtc->gpio_data, "rtc_data");
+ if (ret) {
+ dev_err(&pdev->dev, "can't get rtc_data gpio\n");
+ return ret;
+ }
+
+ ret = devm_gpio_request_one(&pdev->dev, moxart_rtc->gpio_sclk,
+ GPIOF_DIR_OUT, "rtc_sclk");
+ if (ret) {
+ dev_err(&pdev->dev, "can't get rtc_sclk gpio\n");
+ return ret;
+ }
+
+ ret = devm_gpio_request_one(&pdev->dev, moxart_rtc->gpio_reset,
+ GPIOF_DIR_OUT, "rtc_reset");
+ if (ret) {
+ dev_err(&pdev->dev, "can't get rtc_reset gpio\n");
+ return ret;
+ }
+
+ moxart_rtc->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
+ &moxart_rtc_ops,
+ THIS_MODULE);
+ if (IS_ERR(moxart_rtc->rtc)) {
+ dev_err(&pdev->dev, "devm_rtc_device_register failed\n");
+ return PTR_ERR(moxart_rtc->rtc);
+ }
+
+ return 0;
+}
+
+static const struct of_device_id moxart_rtc_match[] = {
+ { .compatible = "moxa,moxart-rtc" },
+ { },
+};
+MODULE_DEVICE_TABLE(of, moxart_rtc_match);
+
+static struct platform_driver moxart_rtc_driver = {
+ .probe = moxart_rtc_probe,
+ .driver = {
+ .name = "moxart-rtc",
+ .of_match_table = moxart_rtc_match,
+ },
+};
+module_platform_driver(moxart_rtc_driver);
+
+MODULE_DESCRIPTION("MOXART RTC driver");
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Jonas Jensen <jonas.jensen@gmail.com>");
diff --git a/drivers/rtc/rtc-mpc5121.c b/drivers/rtc/rtc-mpc5121.c
new file mode 100644
index 000000000..5c2ce71aa
--- /dev/null
+++ b/drivers/rtc/rtc-mpc5121.c
@@ -0,0 +1,424 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Real-time clock driver for MPC5121
+ *
+ * Copyright 2007, Domen Puncer <domen.puncer@telargo.com>
+ * Copyright 2008, Freescale Semiconductor, Inc. All rights reserved.
+ * Copyright 2011, Dmitry Eremin-Solenikov
+ */
+
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/rtc.h>
+#include <linux/of.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/of_irq.h>
+#include <linux/of_platform.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+
+struct mpc5121_rtc_regs {
+ u8 set_time; /* RTC + 0x00 */
+ u8 hour_set; /* RTC + 0x01 */
+ u8 minute_set; /* RTC + 0x02 */
+ u8 second_set; /* RTC + 0x03 */
+
+ u8 set_date; /* RTC + 0x04 */
+ u8 month_set; /* RTC + 0x05 */
+ u8 weekday_set; /* RTC + 0x06 */
+ u8 date_set; /* RTC + 0x07 */
+
+ u8 write_sw; /* RTC + 0x08 */
+ u8 sw_set; /* RTC + 0x09 */
+ u16 year_set; /* RTC + 0x0a */
+
+ u8 alm_enable; /* RTC + 0x0c */
+ u8 alm_hour_set; /* RTC + 0x0d */
+ u8 alm_min_set; /* RTC + 0x0e */
+ u8 int_enable; /* RTC + 0x0f */
+
+ u8 reserved1;
+ u8 hour; /* RTC + 0x11 */
+ u8 minute; /* RTC + 0x12 */
+ u8 second; /* RTC + 0x13 */
+
+ u8 month; /* RTC + 0x14 */
+ u8 wday_mday; /* RTC + 0x15 */
+ u16 year; /* RTC + 0x16 */
+
+ u8 int_alm; /* RTC + 0x18 */
+ u8 int_sw; /* RTC + 0x19 */
+ u8 alm_status; /* RTC + 0x1a */
+ u8 sw_minute; /* RTC + 0x1b */
+
+ u8 bus_error_1; /* RTC + 0x1c */
+ u8 int_day; /* RTC + 0x1d */
+ u8 int_min; /* RTC + 0x1e */
+ u8 int_sec; /* RTC + 0x1f */
+
+ /*
+ * target_time:
+ * intended to be used for hibernation but hibernation
+ * does not work on silicon rev 1.5 so use it for non-volatile
+ * storage of offset between the actual_time register and linux
+ * time
+ */
+ u32 target_time; /* RTC + 0x20 */
+ /*
+ * actual_time:
+ * readonly time since VBAT_RTC was last connected
+ */
+ u32 actual_time; /* RTC + 0x24 */
+ u32 keep_alive; /* RTC + 0x28 */
+};
+
+struct mpc5121_rtc_data {
+ unsigned irq;
+ unsigned irq_periodic;
+ struct mpc5121_rtc_regs __iomem *regs;
+ struct rtc_device *rtc;
+ struct rtc_wkalrm wkalarm;
+};
+
+/*
+ * Update second/minute/hour registers.
+ *
+ * This is just so alarm will work.
+ */
+static void mpc5121_rtc_update_smh(struct mpc5121_rtc_regs __iomem *regs,
+ struct rtc_time *tm)
+{
+ out_8(&regs->second_set, tm->tm_sec);
+ out_8(&regs->minute_set, tm->tm_min);
+ out_8(&regs->hour_set, tm->tm_hour);
+
+ /* set time sequence */
+ out_8(&regs->set_time, 0x1);
+ out_8(&regs->set_time, 0x3);
+ out_8(&regs->set_time, 0x1);
+ out_8(&regs->set_time, 0x0);
+}
+
+static int mpc5121_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct mpc5121_rtc_data *rtc = dev_get_drvdata(dev);
+ struct mpc5121_rtc_regs __iomem *regs = rtc->regs;
+ unsigned long now;
+
+ /*
+ * linux time is actual_time plus the offset saved in target_time
+ */
+ now = in_be32(&regs->actual_time) + in_be32(&regs->target_time);
+
+ rtc_time64_to_tm(now, tm);
+
+ /*
+ * update second minute hour registers
+ * so alarms will work
+ */
+ mpc5121_rtc_update_smh(regs, tm);
+
+ return 0;
+}
+
+static int mpc5121_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct mpc5121_rtc_data *rtc = dev_get_drvdata(dev);
+ struct mpc5121_rtc_regs __iomem *regs = rtc->regs;
+ unsigned long now;
+
+ /*
+ * The actual_time register is read only so we write the offset
+ * between it and linux time to the target_time register.
+ */
+ now = rtc_tm_to_time64(tm);
+ out_be32(&regs->target_time, now - in_be32(&regs->actual_time));
+
+ /*
+ * update second minute hour registers
+ * so alarms will work
+ */
+ mpc5121_rtc_update_smh(regs, tm);
+
+ return 0;
+}
+
+static int mpc5200_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct mpc5121_rtc_data *rtc = dev_get_drvdata(dev);
+ struct mpc5121_rtc_regs __iomem *regs = rtc->regs;
+ int tmp;
+
+ tm->tm_sec = in_8(&regs->second);
+ tm->tm_min = in_8(&regs->minute);
+
+ /* 12 hour format? */
+ if (in_8(&regs->hour) & 0x20)
+ tm->tm_hour = (in_8(&regs->hour) >> 1) +
+ (in_8(&regs->hour) & 1 ? 12 : 0);
+ else
+ tm->tm_hour = in_8(&regs->hour);
+
+ tmp = in_8(&regs->wday_mday);
+ tm->tm_mday = tmp & 0x1f;
+ tm->tm_mon = in_8(&regs->month) - 1;
+ tm->tm_year = in_be16(&regs->year) - 1900;
+ tm->tm_wday = (tmp >> 5) % 7;
+ tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
+ tm->tm_isdst = 0;
+
+ return 0;
+}
+
+static int mpc5200_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct mpc5121_rtc_data *rtc = dev_get_drvdata(dev);
+ struct mpc5121_rtc_regs __iomem *regs = rtc->regs;
+
+ mpc5121_rtc_update_smh(regs, tm);
+
+ /* date */
+ out_8(&regs->month_set, tm->tm_mon + 1);
+ out_8(&regs->weekday_set, tm->tm_wday ? tm->tm_wday : 7);
+ out_8(&regs->date_set, tm->tm_mday);
+ out_be16(&regs->year_set, tm->tm_year + 1900);
+
+ /* set date sequence */
+ out_8(&regs->set_date, 0x1);
+ out_8(&regs->set_date, 0x3);
+ out_8(&regs->set_date, 0x1);
+ out_8(&regs->set_date, 0x0);
+
+ return 0;
+}
+
+static int mpc5121_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct mpc5121_rtc_data *rtc = dev_get_drvdata(dev);
+ struct mpc5121_rtc_regs __iomem *regs = rtc->regs;
+
+ *alarm = rtc->wkalarm;
+
+ alarm->pending = in_8(&regs->alm_status);
+
+ return 0;
+}
+
+static int mpc5121_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct mpc5121_rtc_data *rtc = dev_get_drvdata(dev);
+ struct mpc5121_rtc_regs __iomem *regs = rtc->regs;
+
+ /*
+ * the alarm has no seconds so deal with it
+ */
+ if (alarm->time.tm_sec) {
+ alarm->time.tm_sec = 0;
+ alarm->time.tm_min++;
+ if (alarm->time.tm_min >= 60) {
+ alarm->time.tm_min = 0;
+ alarm->time.tm_hour++;
+ if (alarm->time.tm_hour >= 24)
+ alarm->time.tm_hour = 0;
+ }
+ }
+
+ alarm->time.tm_mday = -1;
+ alarm->time.tm_mon = -1;
+ alarm->time.tm_year = -1;
+
+ out_8(&regs->alm_min_set, alarm->time.tm_min);
+ out_8(&regs->alm_hour_set, alarm->time.tm_hour);
+
+ out_8(&regs->alm_enable, alarm->enabled);
+
+ rtc->wkalarm = *alarm;
+ return 0;
+}
+
+static irqreturn_t mpc5121_rtc_handler(int irq, void *dev)
+{
+ struct mpc5121_rtc_data *rtc = dev_get_drvdata((struct device *)dev);
+ struct mpc5121_rtc_regs __iomem *regs = rtc->regs;
+
+ if (in_8(&regs->int_alm)) {
+ /* acknowledge and clear status */
+ out_8(&regs->int_alm, 1);
+ out_8(&regs->alm_status, 1);
+
+ rtc_update_irq(rtc->rtc, 1, RTC_IRQF | RTC_AF);
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+static irqreturn_t mpc5121_rtc_handler_upd(int irq, void *dev)
+{
+ struct mpc5121_rtc_data *rtc = dev_get_drvdata((struct device *)dev);
+ struct mpc5121_rtc_regs __iomem *regs = rtc->regs;
+
+ if (in_8(&regs->int_sec) && (in_8(&regs->int_enable) & 0x1)) {
+ /* acknowledge */
+ out_8(&regs->int_sec, 1);
+
+ rtc_update_irq(rtc->rtc, 1, RTC_IRQF | RTC_UF);
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+static int mpc5121_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct mpc5121_rtc_data *rtc = dev_get_drvdata(dev);
+ struct mpc5121_rtc_regs __iomem *regs = rtc->regs;
+ int val;
+
+ if (enabled)
+ val = 1;
+ else
+ val = 0;
+
+ out_8(&regs->alm_enable, val);
+ rtc->wkalarm.enabled = val;
+
+ return 0;
+}
+
+static const struct rtc_class_ops mpc5121_rtc_ops = {
+ .read_time = mpc5121_rtc_read_time,
+ .set_time = mpc5121_rtc_set_time,
+ .read_alarm = mpc5121_rtc_read_alarm,
+ .set_alarm = mpc5121_rtc_set_alarm,
+ .alarm_irq_enable = mpc5121_rtc_alarm_irq_enable,
+};
+
+static const struct rtc_class_ops mpc5200_rtc_ops = {
+ .read_time = mpc5200_rtc_read_time,
+ .set_time = mpc5200_rtc_set_time,
+ .read_alarm = mpc5121_rtc_read_alarm,
+ .set_alarm = mpc5121_rtc_set_alarm,
+ .alarm_irq_enable = mpc5121_rtc_alarm_irq_enable,
+};
+
+static int mpc5121_rtc_probe(struct platform_device *op)
+{
+ struct mpc5121_rtc_data *rtc;
+ int err = 0;
+
+ rtc = devm_kzalloc(&op->dev, sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->regs = devm_platform_ioremap_resource(op, 0);
+ if (IS_ERR(rtc->regs)) {
+ dev_err(&op->dev, "%s: couldn't map io space\n", __func__);
+ return PTR_ERR(rtc->regs);
+ }
+
+ device_init_wakeup(&op->dev, 1);
+
+ platform_set_drvdata(op, rtc);
+
+ rtc->irq = irq_of_parse_and_map(op->dev.of_node, 1);
+ err = devm_request_irq(&op->dev, rtc->irq, mpc5121_rtc_handler, 0,
+ "mpc5121-rtc", &op->dev);
+ if (err) {
+ dev_err(&op->dev, "%s: could not request irq: %i\n",
+ __func__, rtc->irq);
+ goto out_dispose;
+ }
+
+ rtc->irq_periodic = irq_of_parse_and_map(op->dev.of_node, 0);
+ err = devm_request_irq(&op->dev, rtc->irq_periodic,
+ mpc5121_rtc_handler_upd, 0, "mpc5121-rtc_upd",
+ &op->dev);
+ if (err) {
+ dev_err(&op->dev, "%s: could not request irq: %i\n",
+ __func__, rtc->irq_periodic);
+ goto out_dispose2;
+ }
+
+ rtc->rtc = devm_rtc_allocate_device(&op->dev);
+ if (IS_ERR(rtc->rtc)) {
+ err = PTR_ERR(rtc->rtc);
+ goto out_dispose2;
+ }
+
+ rtc->rtc->ops = &mpc5200_rtc_ops;
+ rtc->rtc->uie_unsupported = 1;
+ rtc->rtc->range_min = RTC_TIMESTAMP_BEGIN_0000;
+ rtc->rtc->range_max = 65733206399ULL; /* 4052-12-31 23:59:59 */
+
+ if (of_device_is_compatible(op->dev.of_node, "fsl,mpc5121-rtc")) {
+ u32 ka;
+ ka = in_be32(&rtc->regs->keep_alive);
+ if (ka & 0x02) {
+ dev_warn(&op->dev,
+ "mpc5121-rtc: Battery or oscillator failure!\n");
+ out_be32(&rtc->regs->keep_alive, ka);
+ }
+ rtc->rtc->ops = &mpc5121_rtc_ops;
+ /*
+ * This is a limitation of the driver that abuses the target
+ * time register, the actual maximum year for the mpc5121 is
+ * also 4052.
+ */
+ rtc->rtc->range_min = 0;
+ rtc->rtc->range_max = U32_MAX;
+ }
+
+ err = rtc_register_device(rtc->rtc);
+ if (err)
+ goto out_dispose2;
+
+ return 0;
+
+out_dispose2:
+ irq_dispose_mapping(rtc->irq_periodic);
+out_dispose:
+ irq_dispose_mapping(rtc->irq);
+
+ return err;
+}
+
+static int mpc5121_rtc_remove(struct platform_device *op)
+{
+ struct mpc5121_rtc_data *rtc = platform_get_drvdata(op);
+ struct mpc5121_rtc_regs __iomem *regs = rtc->regs;
+
+ /* disable interrupt, so there are no nasty surprises */
+ out_8(&regs->alm_enable, 0);
+ out_8(&regs->int_enable, in_8(&regs->int_enable) & ~0x1);
+
+ irq_dispose_mapping(rtc->irq);
+ irq_dispose_mapping(rtc->irq_periodic);
+
+ return 0;
+}
+
+#ifdef CONFIG_OF
+static const struct of_device_id mpc5121_rtc_match[] = {
+ { .compatible = "fsl,mpc5121-rtc", },
+ { .compatible = "fsl,mpc5200-rtc", },
+ {},
+};
+MODULE_DEVICE_TABLE(of, mpc5121_rtc_match);
+#endif
+
+static struct platform_driver mpc5121_rtc_driver = {
+ .driver = {
+ .name = "mpc5121-rtc",
+ .of_match_table = of_match_ptr(mpc5121_rtc_match),
+ },
+ .probe = mpc5121_rtc_probe,
+ .remove = mpc5121_rtc_remove,
+};
+
+module_platform_driver(mpc5121_rtc_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("John Rigby <jcrigby@gmail.com>");
diff --git a/drivers/rtc/rtc-mrst.c b/drivers/rtc/rtc-mrst.c
new file mode 100644
index 000000000..17bf5394e
--- /dev/null
+++ b/drivers/rtc/rtc-mrst.c
@@ -0,0 +1,521 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * rtc-mrst.c: Driver for Moorestown virtual RTC
+ *
+ * (C) Copyright 2009 Intel Corporation
+ * Author: Jacob Pan (jacob.jun.pan@intel.com)
+ * Feng Tang (feng.tang@intel.com)
+ *
+ * Note:
+ * VRTC is emulated by system controller firmware, the real HW
+ * RTC is located in the PMIC device. SCU FW shadows PMIC RTC
+ * in a memory mapped IO space that is visible to the host IA
+ * processor.
+ *
+ * This driver is based upon drivers/rtc/rtc-cmos.c
+ */
+
+/*
+ * Note:
+ * * vRTC only supports binary mode and 24H mode
+ * * vRTC only support PIE and AIE, no UIE, and its PIE only happens
+ * at 23:59:59pm everyday, no support for adjustable frequency
+ * * Alarm function is also limited to hr/min/sec.
+ */
+
+#include <linux/mod_devicetable.h>
+#include <linux/platform_device.h>
+#include <linux/interrupt.h>
+#include <linux/spinlock.h>
+#include <linux/kernel.h>
+#include <linux/mc146818rtc.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/sfi.h>
+
+#include <asm/intel_scu_ipc.h>
+#include <asm/intel-mid.h>
+#include <asm/intel_mid_vrtc.h>
+
+struct mrst_rtc {
+ struct rtc_device *rtc;
+ struct device *dev;
+ int irq;
+
+ u8 enabled_wake;
+ u8 suspend_ctrl;
+};
+
+static const char driver_name[] = "rtc_mrst";
+
+#define RTC_IRQMASK (RTC_PF | RTC_AF)
+
+static inline int is_intr(u8 rtc_intr)
+{
+ if (!(rtc_intr & RTC_IRQF))
+ return 0;
+ return rtc_intr & RTC_IRQMASK;
+}
+
+static inline unsigned char vrtc_is_updating(void)
+{
+ unsigned char uip;
+ unsigned long flags;
+
+ spin_lock_irqsave(&rtc_lock, flags);
+ uip = (vrtc_cmos_read(RTC_FREQ_SELECT) & RTC_UIP);
+ spin_unlock_irqrestore(&rtc_lock, flags);
+ return uip;
+}
+
+/*
+ * rtc_time's year contains the increment over 1900, but vRTC's YEAR
+ * register can't be programmed to value larger than 0x64, so vRTC
+ * driver chose to use 1972 (1970 is UNIX time start point) as the base,
+ * and does the translation at read/write time.
+ *
+ * Why not just use 1970 as the offset? it's because using 1972 will
+ * make it consistent in leap year setting for both vrtc and low-level
+ * physical rtc devices. Then why not use 1960 as the offset? If we use
+ * 1960, for a device's first use, its YEAR register is 0 and the system
+ * year will be parsed as 1960 which is not a valid UNIX time and will
+ * cause many applications to fail mysteriously.
+ */
+static int mrst_read_time(struct device *dev, struct rtc_time *time)
+{
+ unsigned long flags;
+
+ if (vrtc_is_updating())
+ msleep(20);
+
+ spin_lock_irqsave(&rtc_lock, flags);
+ time->tm_sec = vrtc_cmos_read(RTC_SECONDS);
+ time->tm_min = vrtc_cmos_read(RTC_MINUTES);
+ time->tm_hour = vrtc_cmos_read(RTC_HOURS);
+ time->tm_mday = vrtc_cmos_read(RTC_DAY_OF_MONTH);
+ time->tm_mon = vrtc_cmos_read(RTC_MONTH);
+ time->tm_year = vrtc_cmos_read(RTC_YEAR);
+ spin_unlock_irqrestore(&rtc_lock, flags);
+
+ /* Adjust for the 1972/1900 */
+ time->tm_year += 72;
+ time->tm_mon--;
+ return 0;
+}
+
+static int mrst_set_time(struct device *dev, struct rtc_time *time)
+{
+ int ret;
+ unsigned long flags;
+ unsigned char mon, day, hrs, min, sec;
+ unsigned int yrs;
+
+ yrs = time->tm_year;
+ mon = time->tm_mon + 1; /* tm_mon starts at zero */
+ day = time->tm_mday;
+ hrs = time->tm_hour;
+ min = time->tm_min;
+ sec = time->tm_sec;
+
+ if (yrs < 72 || yrs > 172)
+ return -EINVAL;
+ yrs -= 72;
+
+ spin_lock_irqsave(&rtc_lock, flags);
+
+ vrtc_cmos_write(yrs, RTC_YEAR);
+ vrtc_cmos_write(mon, RTC_MONTH);
+ vrtc_cmos_write(day, RTC_DAY_OF_MONTH);
+ vrtc_cmos_write(hrs, RTC_HOURS);
+ vrtc_cmos_write(min, RTC_MINUTES);
+ vrtc_cmos_write(sec, RTC_SECONDS);
+
+ spin_unlock_irqrestore(&rtc_lock, flags);
+
+ ret = intel_scu_ipc_simple_command(IPCMSG_VRTC, IPC_CMD_VRTC_SETTIME);
+ return ret;
+}
+
+static int mrst_read_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct mrst_rtc *mrst = dev_get_drvdata(dev);
+ unsigned char rtc_control;
+
+ if (mrst->irq <= 0)
+ return -EIO;
+
+ /* vRTC only supports binary mode */
+ spin_lock_irq(&rtc_lock);
+ t->time.tm_sec = vrtc_cmos_read(RTC_SECONDS_ALARM);
+ t->time.tm_min = vrtc_cmos_read(RTC_MINUTES_ALARM);
+ t->time.tm_hour = vrtc_cmos_read(RTC_HOURS_ALARM);
+
+ rtc_control = vrtc_cmos_read(RTC_CONTROL);
+ spin_unlock_irq(&rtc_lock);
+
+ t->enabled = !!(rtc_control & RTC_AIE);
+ t->pending = 0;
+
+ return 0;
+}
+
+static void mrst_checkintr(struct mrst_rtc *mrst, unsigned char rtc_control)
+{
+ unsigned char rtc_intr;
+
+ /*
+ * NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
+ * allegedly some older rtcs need that to handle irqs properly
+ */
+ rtc_intr = vrtc_cmos_read(RTC_INTR_FLAGS);
+ rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
+ if (is_intr(rtc_intr))
+ rtc_update_irq(mrst->rtc, 1, rtc_intr);
+}
+
+static void mrst_irq_enable(struct mrst_rtc *mrst, unsigned char mask)
+{
+ unsigned char rtc_control;
+
+ /*
+ * Flush any pending IRQ status, notably for update irqs,
+ * before we enable new IRQs
+ */
+ rtc_control = vrtc_cmos_read(RTC_CONTROL);
+ mrst_checkintr(mrst, rtc_control);
+
+ rtc_control |= mask;
+ vrtc_cmos_write(rtc_control, RTC_CONTROL);
+
+ mrst_checkintr(mrst, rtc_control);
+}
+
+static void mrst_irq_disable(struct mrst_rtc *mrst, unsigned char mask)
+{
+ unsigned char rtc_control;
+
+ rtc_control = vrtc_cmos_read(RTC_CONTROL);
+ rtc_control &= ~mask;
+ vrtc_cmos_write(rtc_control, RTC_CONTROL);
+ mrst_checkintr(mrst, rtc_control);
+}
+
+static int mrst_set_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct mrst_rtc *mrst = dev_get_drvdata(dev);
+ unsigned char hrs, min, sec;
+ int ret = 0;
+
+ if (!mrst->irq)
+ return -EIO;
+
+ hrs = t->time.tm_hour;
+ min = t->time.tm_min;
+ sec = t->time.tm_sec;
+
+ spin_lock_irq(&rtc_lock);
+ /* Next rtc irq must not be from previous alarm setting */
+ mrst_irq_disable(mrst, RTC_AIE);
+
+ /* Update alarm */
+ vrtc_cmos_write(hrs, RTC_HOURS_ALARM);
+ vrtc_cmos_write(min, RTC_MINUTES_ALARM);
+ vrtc_cmos_write(sec, RTC_SECONDS_ALARM);
+
+ spin_unlock_irq(&rtc_lock);
+
+ ret = intel_scu_ipc_simple_command(IPCMSG_VRTC, IPC_CMD_VRTC_SETALARM);
+ if (ret)
+ return ret;
+
+ spin_lock_irq(&rtc_lock);
+ if (t->enabled)
+ mrst_irq_enable(mrst, RTC_AIE);
+
+ spin_unlock_irq(&rtc_lock);
+
+ return 0;
+}
+
+/* Currently, the vRTC doesn't support UIE ON/OFF */
+static int mrst_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct mrst_rtc *mrst = dev_get_drvdata(dev);
+ unsigned long flags;
+
+ spin_lock_irqsave(&rtc_lock, flags);
+ if (enabled)
+ mrst_irq_enable(mrst, RTC_AIE);
+ else
+ mrst_irq_disable(mrst, RTC_AIE);
+ spin_unlock_irqrestore(&rtc_lock, flags);
+ return 0;
+}
+
+
+#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
+
+static int mrst_procfs(struct device *dev, struct seq_file *seq)
+{
+ unsigned char rtc_control;
+
+ spin_lock_irq(&rtc_lock);
+ rtc_control = vrtc_cmos_read(RTC_CONTROL);
+ spin_unlock_irq(&rtc_lock);
+
+ seq_printf(seq,
+ "periodic_IRQ\t: %s\n"
+ "alarm\t\t: %s\n"
+ "BCD\t\t: no\n"
+ "periodic_freq\t: daily (not adjustable)\n",
+ (rtc_control & RTC_PIE) ? "on" : "off",
+ (rtc_control & RTC_AIE) ? "on" : "off");
+
+ return 0;
+}
+
+#else
+#define mrst_procfs NULL
+#endif
+
+static const struct rtc_class_ops mrst_rtc_ops = {
+ .read_time = mrst_read_time,
+ .set_time = mrst_set_time,
+ .read_alarm = mrst_read_alarm,
+ .set_alarm = mrst_set_alarm,
+ .proc = mrst_procfs,
+ .alarm_irq_enable = mrst_rtc_alarm_irq_enable,
+};
+
+static struct mrst_rtc mrst_rtc;
+
+/*
+ * When vRTC IRQ is captured by SCU FW, FW will clear the AIE bit in
+ * Reg B, so no need for this driver to clear it
+ */
+static irqreturn_t mrst_rtc_irq(int irq, void *p)
+{
+ u8 irqstat;
+
+ spin_lock(&rtc_lock);
+ /* This read will clear all IRQ flags inside Reg C */
+ irqstat = vrtc_cmos_read(RTC_INTR_FLAGS);
+ spin_unlock(&rtc_lock);
+
+ irqstat &= RTC_IRQMASK | RTC_IRQF;
+ if (is_intr(irqstat)) {
+ rtc_update_irq(p, 1, irqstat);
+ return IRQ_HANDLED;
+ }
+ return IRQ_NONE;
+}
+
+static int vrtc_mrst_do_probe(struct device *dev, struct resource *iomem,
+ int rtc_irq)
+{
+ int retval = 0;
+ unsigned char rtc_control;
+
+ /* There can be only one ... */
+ if (mrst_rtc.dev)
+ return -EBUSY;
+
+ if (!iomem)
+ return -ENODEV;
+
+ iomem = devm_request_mem_region(dev, iomem->start, resource_size(iomem),
+ driver_name);
+ if (!iomem) {
+ dev_dbg(dev, "i/o mem already in use.\n");
+ return -EBUSY;
+ }
+
+ mrst_rtc.irq = rtc_irq;
+ mrst_rtc.dev = dev;
+ dev_set_drvdata(dev, &mrst_rtc);
+
+ mrst_rtc.rtc = devm_rtc_allocate_device(dev);
+ if (IS_ERR(mrst_rtc.rtc))
+ return PTR_ERR(mrst_rtc.rtc);
+
+ mrst_rtc.rtc->ops = &mrst_rtc_ops;
+
+ rename_region(iomem, dev_name(&mrst_rtc.rtc->dev));
+
+ spin_lock_irq(&rtc_lock);
+ mrst_irq_disable(&mrst_rtc, RTC_PIE | RTC_AIE);
+ rtc_control = vrtc_cmos_read(RTC_CONTROL);
+ spin_unlock_irq(&rtc_lock);
+
+ if (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY)))
+ dev_dbg(dev, "TODO: support more than 24-hr BCD mode\n");
+
+ if (rtc_irq) {
+ retval = devm_request_irq(dev, rtc_irq, mrst_rtc_irq,
+ 0, dev_name(&mrst_rtc.rtc->dev),
+ mrst_rtc.rtc);
+ if (retval < 0) {
+ dev_dbg(dev, "IRQ %d is already in use, err %d\n",
+ rtc_irq, retval);
+ goto cleanup0;
+ }
+ }
+
+ retval = rtc_register_device(mrst_rtc.rtc);
+ if (retval)
+ goto cleanup0;
+
+ dev_dbg(dev, "initialised\n");
+ return 0;
+
+cleanup0:
+ mrst_rtc.dev = NULL;
+ dev_err(dev, "rtc-mrst: unable to initialise\n");
+ return retval;
+}
+
+static void rtc_mrst_do_shutdown(void)
+{
+ spin_lock_irq(&rtc_lock);
+ mrst_irq_disable(&mrst_rtc, RTC_IRQMASK);
+ spin_unlock_irq(&rtc_lock);
+}
+
+static void rtc_mrst_do_remove(struct device *dev)
+{
+ struct mrst_rtc *mrst = dev_get_drvdata(dev);
+
+ rtc_mrst_do_shutdown();
+
+ mrst->rtc = NULL;
+ mrst->dev = NULL;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int mrst_suspend(struct device *dev)
+{
+ struct mrst_rtc *mrst = dev_get_drvdata(dev);
+ unsigned char tmp;
+
+ /* Only the alarm might be a wakeup event source */
+ spin_lock_irq(&rtc_lock);
+ mrst->suspend_ctrl = tmp = vrtc_cmos_read(RTC_CONTROL);
+ if (tmp & (RTC_PIE | RTC_AIE)) {
+ unsigned char mask;
+
+ if (device_may_wakeup(dev))
+ mask = RTC_IRQMASK & ~RTC_AIE;
+ else
+ mask = RTC_IRQMASK;
+ tmp &= ~mask;
+ vrtc_cmos_write(tmp, RTC_CONTROL);
+
+ mrst_checkintr(mrst, tmp);
+ }
+ spin_unlock_irq(&rtc_lock);
+
+ if (tmp & RTC_AIE) {
+ mrst->enabled_wake = 1;
+ enable_irq_wake(mrst->irq);
+ }
+
+ dev_dbg(&mrst_rtc.rtc->dev, "suspend%s, ctrl %02x\n",
+ (tmp & RTC_AIE) ? ", alarm may wake" : "",
+ tmp);
+
+ return 0;
+}
+
+/*
+ * We want RTC alarms to wake us from the deep power saving state
+ */
+static inline int mrst_poweroff(struct device *dev)
+{
+ return mrst_suspend(dev);
+}
+
+static int mrst_resume(struct device *dev)
+{
+ struct mrst_rtc *mrst = dev_get_drvdata(dev);
+ unsigned char tmp = mrst->suspend_ctrl;
+
+ /* Re-enable any irqs previously active */
+ if (tmp & RTC_IRQMASK) {
+ unsigned char mask;
+
+ if (mrst->enabled_wake) {
+ disable_irq_wake(mrst->irq);
+ mrst->enabled_wake = 0;
+ }
+
+ spin_lock_irq(&rtc_lock);
+ do {
+ vrtc_cmos_write(tmp, RTC_CONTROL);
+
+ mask = vrtc_cmos_read(RTC_INTR_FLAGS);
+ mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
+ if (!is_intr(mask))
+ break;
+
+ rtc_update_irq(mrst->rtc, 1, mask);
+ tmp &= ~RTC_AIE;
+ } while (mask & RTC_AIE);
+ spin_unlock_irq(&rtc_lock);
+ }
+
+ dev_dbg(&mrst_rtc.rtc->dev, "resume, ctrl %02x\n", tmp);
+
+ return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(mrst_pm_ops, mrst_suspend, mrst_resume);
+#define MRST_PM_OPS (&mrst_pm_ops)
+
+#else
+#define MRST_PM_OPS NULL
+
+static inline int mrst_poweroff(struct device *dev)
+{
+ return -ENOSYS;
+}
+
+#endif
+
+static int vrtc_mrst_platform_probe(struct platform_device *pdev)
+{
+ return vrtc_mrst_do_probe(&pdev->dev,
+ platform_get_resource(pdev, IORESOURCE_MEM, 0),
+ platform_get_irq(pdev, 0));
+}
+
+static int vrtc_mrst_platform_remove(struct platform_device *pdev)
+{
+ rtc_mrst_do_remove(&pdev->dev);
+ return 0;
+}
+
+static void vrtc_mrst_platform_shutdown(struct platform_device *pdev)
+{
+ if (system_state == SYSTEM_POWER_OFF && !mrst_poweroff(&pdev->dev))
+ return;
+
+ rtc_mrst_do_shutdown();
+}
+
+MODULE_ALIAS("platform:vrtc_mrst");
+
+static struct platform_driver vrtc_mrst_platform_driver = {
+ .probe = vrtc_mrst_platform_probe,
+ .remove = vrtc_mrst_platform_remove,
+ .shutdown = vrtc_mrst_platform_shutdown,
+ .driver = {
+ .name = driver_name,
+ .pm = MRST_PM_OPS,
+ }
+};
+
+module_platform_driver(vrtc_mrst_platform_driver);
+
+MODULE_AUTHOR("Jacob Pan; Feng Tang");
+MODULE_DESCRIPTION("Driver for Moorestown virtual RTC");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-msm6242.c b/drivers/rtc/rtc-msm6242.c
new file mode 100644
index 000000000..80e364baa
--- /dev/null
+++ b/drivers/rtc/rtc-msm6242.c
@@ -0,0 +1,228 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Oki MSM6242 RTC Driver
+ *
+ * Copyright 2009 Geert Uytterhoeven
+ *
+ * Based on the A2000 TOD code in arch/m68k/amiga/config.c
+ * Copyright (C) 1993 Hamish Macdonald
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/delay.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+
+
+enum {
+ MSM6242_SECOND1 = 0x0, /* 1-second digit register */
+ MSM6242_SECOND10 = 0x1, /* 10-second digit register */
+ MSM6242_MINUTE1 = 0x2, /* 1-minute digit register */
+ MSM6242_MINUTE10 = 0x3, /* 10-minute digit register */
+ MSM6242_HOUR1 = 0x4, /* 1-hour digit register */
+ MSM6242_HOUR10 = 0x5, /* PM/AM, 10-hour digit register */
+ MSM6242_DAY1 = 0x6, /* 1-day digit register */
+ MSM6242_DAY10 = 0x7, /* 10-day digit register */
+ MSM6242_MONTH1 = 0x8, /* 1-month digit register */
+ MSM6242_MONTH10 = 0x9, /* 10-month digit register */
+ MSM6242_YEAR1 = 0xa, /* 1-year digit register */
+ MSM6242_YEAR10 = 0xb, /* 10-year digit register */
+ MSM6242_WEEK = 0xc, /* Week register */
+ MSM6242_CD = 0xd, /* Control Register D */
+ MSM6242_CE = 0xe, /* Control Register E */
+ MSM6242_CF = 0xf, /* Control Register F */
+};
+
+#define MSM6242_HOUR10_AM (0 << 2)
+#define MSM6242_HOUR10_PM (1 << 2)
+#define MSM6242_HOUR10_HR_MASK (3 << 0)
+
+#define MSM6242_WEEK_SUNDAY 0
+#define MSM6242_WEEK_MONDAY 1
+#define MSM6242_WEEK_TUESDAY 2
+#define MSM6242_WEEK_WEDNESDAY 3
+#define MSM6242_WEEK_THURSDAY 4
+#define MSM6242_WEEK_FRIDAY 5
+#define MSM6242_WEEK_SATURDAY 6
+
+#define MSM6242_CD_30_S_ADJ (1 << 3) /* 30-second adjustment */
+#define MSM6242_CD_IRQ_FLAG (1 << 2)
+#define MSM6242_CD_BUSY (1 << 1)
+#define MSM6242_CD_HOLD (1 << 0)
+
+#define MSM6242_CE_T_MASK (3 << 2)
+#define MSM6242_CE_T_64HZ (0 << 2) /* period 1/64 second */
+#define MSM6242_CE_T_1HZ (1 << 2) /* period 1 second */
+#define MSM6242_CE_T_1MINUTE (2 << 2) /* period 1 minute */
+#define MSM6242_CE_T_1HOUR (3 << 2) /* period 1 hour */
+
+#define MSM6242_CE_ITRPT_STND (1 << 1)
+#define MSM6242_CE_MASK (1 << 0) /* STD.P output control */
+
+#define MSM6242_CF_TEST (1 << 3)
+#define MSM6242_CF_12H (0 << 2)
+#define MSM6242_CF_24H (1 << 2)
+#define MSM6242_CF_STOP (1 << 1)
+#define MSM6242_CF_REST (1 << 0) /* reset */
+
+
+struct msm6242_priv {
+ u32 __iomem *regs;
+ struct rtc_device *rtc;
+};
+
+static inline unsigned int msm6242_read(struct msm6242_priv *priv,
+ unsigned int reg)
+{
+ return __raw_readl(&priv->regs[reg]) & 0xf;
+}
+
+static inline void msm6242_write(struct msm6242_priv *priv, unsigned int val,
+ unsigned int reg)
+{
+ __raw_writel(val, &priv->regs[reg]);
+}
+
+static void msm6242_lock(struct msm6242_priv *priv)
+{
+ int cnt = 5;
+
+ msm6242_write(priv, MSM6242_CD_HOLD|MSM6242_CD_IRQ_FLAG, MSM6242_CD);
+
+ while ((msm6242_read(priv, MSM6242_CD) & MSM6242_CD_BUSY) && cnt) {
+ msm6242_write(priv, MSM6242_CD_IRQ_FLAG, MSM6242_CD);
+ udelay(70);
+ msm6242_write(priv, MSM6242_CD_HOLD|MSM6242_CD_IRQ_FLAG, MSM6242_CD);
+ cnt--;
+ }
+
+ if (!cnt)
+ pr_warn("timed out waiting for RTC (0x%x)\n",
+ msm6242_read(priv, MSM6242_CD));
+}
+
+static void msm6242_unlock(struct msm6242_priv *priv)
+{
+ msm6242_write(priv, MSM6242_CD_IRQ_FLAG, MSM6242_CD);
+}
+
+static int msm6242_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct msm6242_priv *priv = dev_get_drvdata(dev);
+
+ msm6242_lock(priv);
+
+ tm->tm_sec = msm6242_read(priv, MSM6242_SECOND10) * 10 +
+ msm6242_read(priv, MSM6242_SECOND1);
+ tm->tm_min = msm6242_read(priv, MSM6242_MINUTE10) * 10 +
+ msm6242_read(priv, MSM6242_MINUTE1);
+ tm->tm_hour = (msm6242_read(priv, MSM6242_HOUR10) &
+ MSM6242_HOUR10_HR_MASK) * 10 +
+ msm6242_read(priv, MSM6242_HOUR1);
+ tm->tm_mday = msm6242_read(priv, MSM6242_DAY10) * 10 +
+ msm6242_read(priv, MSM6242_DAY1);
+ tm->tm_wday = msm6242_read(priv, MSM6242_WEEK);
+ tm->tm_mon = msm6242_read(priv, MSM6242_MONTH10) * 10 +
+ msm6242_read(priv, MSM6242_MONTH1) - 1;
+ tm->tm_year = msm6242_read(priv, MSM6242_YEAR10) * 10 +
+ msm6242_read(priv, MSM6242_YEAR1);
+ if (tm->tm_year <= 69)
+ tm->tm_year += 100;
+
+ if (!(msm6242_read(priv, MSM6242_CF) & MSM6242_CF_24H)) {
+ unsigned int pm = msm6242_read(priv, MSM6242_HOUR10) &
+ MSM6242_HOUR10_PM;
+ if (!pm && tm->tm_hour == 12)
+ tm->tm_hour = 0;
+ else if (pm && tm->tm_hour != 12)
+ tm->tm_hour += 12;
+ }
+
+ msm6242_unlock(priv);
+
+ return 0;
+}
+
+static int msm6242_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct msm6242_priv *priv = dev_get_drvdata(dev);
+
+ msm6242_lock(priv);
+
+ msm6242_write(priv, tm->tm_sec / 10, MSM6242_SECOND10);
+ msm6242_write(priv, tm->tm_sec % 10, MSM6242_SECOND1);
+ msm6242_write(priv, tm->tm_min / 10, MSM6242_MINUTE10);
+ msm6242_write(priv, tm->tm_min % 10, MSM6242_MINUTE1);
+ if (msm6242_read(priv, MSM6242_CF) & MSM6242_CF_24H)
+ msm6242_write(priv, tm->tm_hour / 10, MSM6242_HOUR10);
+ else if (tm->tm_hour >= 12)
+ msm6242_write(priv, MSM6242_HOUR10_PM + (tm->tm_hour - 12) / 10,
+ MSM6242_HOUR10);
+ else
+ msm6242_write(priv, tm->tm_hour / 10, MSM6242_HOUR10);
+ msm6242_write(priv, tm->tm_hour % 10, MSM6242_HOUR1);
+ msm6242_write(priv, tm->tm_mday / 10, MSM6242_DAY10);
+ msm6242_write(priv, tm->tm_mday % 10, MSM6242_DAY1);
+ if (tm->tm_wday != -1)
+ msm6242_write(priv, tm->tm_wday, MSM6242_WEEK);
+ msm6242_write(priv, (tm->tm_mon + 1) / 10, MSM6242_MONTH10);
+ msm6242_write(priv, (tm->tm_mon + 1) % 10, MSM6242_MONTH1);
+ if (tm->tm_year >= 100)
+ tm->tm_year -= 100;
+ msm6242_write(priv, tm->tm_year / 10, MSM6242_YEAR10);
+ msm6242_write(priv, tm->tm_year % 10, MSM6242_YEAR1);
+
+ msm6242_unlock(priv);
+ return 0;
+}
+
+static const struct rtc_class_ops msm6242_rtc_ops = {
+ .read_time = msm6242_read_time,
+ .set_time = msm6242_set_time,
+};
+
+static int __init msm6242_rtc_probe(struct platform_device *pdev)
+{
+ struct resource *res;
+ struct msm6242_priv *priv;
+ struct rtc_device *rtc;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!res)
+ return -ENODEV;
+
+ priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ priv->regs = devm_ioremap(&pdev->dev, res->start, resource_size(res));
+ if (!priv->regs)
+ return -ENOMEM;
+ platform_set_drvdata(pdev, priv);
+
+ rtc = devm_rtc_device_register(&pdev->dev, "rtc-msm6242",
+ &msm6242_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ priv->rtc = rtc;
+ return 0;
+}
+
+static struct platform_driver msm6242_rtc_driver = {
+ .driver = {
+ .name = "rtc-msm6242",
+ },
+};
+
+module_platform_driver_probe(msm6242_rtc_driver, msm6242_rtc_probe);
+
+MODULE_AUTHOR("Geert Uytterhoeven <geert@linux-m68k.org>");
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Oki MSM6242 RTC driver");
+MODULE_ALIAS("platform:rtc-msm6242");
diff --git a/drivers/rtc/rtc-mt2712.c b/drivers/rtc/rtc-mt2712.c
new file mode 100644
index 000000000..d5f691c8a
--- /dev/null
+++ b/drivers/rtc/rtc-mt2712.c
@@ -0,0 +1,413 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2019 MediaTek Inc.
+ * Author: Ran Bi <ran.bi@mediatek.com>
+ */
+
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/irqdomain.h>
+#include <linux/module.h>
+#include <linux/of_address.h>
+#include <linux/of_irq.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+
+#define MT2712_BBPU 0x0000
+#define MT2712_BBPU_CLRPKY BIT(4)
+#define MT2712_BBPU_RELOAD BIT(5)
+#define MT2712_BBPU_CBUSY BIT(6)
+#define MT2712_BBPU_KEY (0x43 << 8)
+
+#define MT2712_IRQ_STA 0x0004
+#define MT2712_IRQ_STA_AL BIT(0)
+#define MT2712_IRQ_STA_TC BIT(1)
+
+#define MT2712_IRQ_EN 0x0008
+#define MT2712_IRQ_EN_AL BIT(0)
+#define MT2712_IRQ_EN_TC BIT(1)
+#define MT2712_IRQ_EN_ONESHOT BIT(2)
+
+#define MT2712_CII_EN 0x000c
+
+#define MT2712_AL_MASK 0x0010
+#define MT2712_AL_MASK_DOW BIT(4)
+
+#define MT2712_TC_SEC 0x0014
+#define MT2712_TC_MIN 0x0018
+#define MT2712_TC_HOU 0x001c
+#define MT2712_TC_DOM 0x0020
+#define MT2712_TC_DOW 0x0024
+#define MT2712_TC_MTH 0x0028
+#define MT2712_TC_YEA 0x002c
+
+#define MT2712_AL_SEC 0x0030
+#define MT2712_AL_MIN 0x0034
+#define MT2712_AL_HOU 0x0038
+#define MT2712_AL_DOM 0x003c
+#define MT2712_AL_DOW 0x0040
+#define MT2712_AL_MTH 0x0044
+#define MT2712_AL_YEA 0x0048
+
+#define MT2712_SEC_MASK 0x003f
+#define MT2712_MIN_MASK 0x003f
+#define MT2712_HOU_MASK 0x001f
+#define MT2712_DOM_MASK 0x001f
+#define MT2712_DOW_MASK 0x0007
+#define MT2712_MTH_MASK 0x000f
+#define MT2712_YEA_MASK 0x007f
+
+#define MT2712_POWERKEY1 0x004c
+#define MT2712_POWERKEY2 0x0050
+#define MT2712_POWERKEY1_KEY 0xa357
+#define MT2712_POWERKEY2_KEY 0x67d2
+
+#define MT2712_CON0 0x005c
+#define MT2712_CON1 0x0060
+
+#define MT2712_PROT 0x0070
+#define MT2712_PROT_UNLOCK1 0x9136
+#define MT2712_PROT_UNLOCK2 0x586a
+
+#define MT2712_WRTGR 0x0078
+
+#define MT2712_RTC_TIMESTAMP_END_2127 4985971199LL
+
+struct mt2712_rtc {
+ struct rtc_device *rtc;
+ void __iomem *base;
+ int irq;
+ u8 irq_wake_enabled;
+ u8 powerlost;
+};
+
+static inline u32 mt2712_readl(struct mt2712_rtc *mt2712_rtc, u32 reg)
+{
+ return readl(mt2712_rtc->base + reg);
+}
+
+static inline void mt2712_writel(struct mt2712_rtc *mt2712_rtc,
+ u32 reg, u32 val)
+{
+ writel(val, mt2712_rtc->base + reg);
+}
+
+static void mt2712_rtc_write_trigger(struct mt2712_rtc *mt2712_rtc)
+{
+ unsigned long timeout = jiffies + HZ / 10;
+
+ mt2712_writel(mt2712_rtc, MT2712_WRTGR, 1);
+ while (1) {
+ if (!(mt2712_readl(mt2712_rtc, MT2712_BBPU)
+ & MT2712_BBPU_CBUSY))
+ break;
+
+ if (time_after(jiffies, timeout)) {
+ dev_err(&mt2712_rtc->rtc->dev,
+ "%s time out!\n", __func__);
+ break;
+ }
+ cpu_relax();
+ }
+}
+
+static void mt2712_rtc_writeif_unlock(struct mt2712_rtc *mt2712_rtc)
+{
+ mt2712_writel(mt2712_rtc, MT2712_PROT, MT2712_PROT_UNLOCK1);
+ mt2712_rtc_write_trigger(mt2712_rtc);
+ mt2712_writel(mt2712_rtc, MT2712_PROT, MT2712_PROT_UNLOCK2);
+ mt2712_rtc_write_trigger(mt2712_rtc);
+}
+
+static irqreturn_t rtc_irq_handler_thread(int irq, void *data)
+{
+ struct mt2712_rtc *mt2712_rtc = data;
+ u16 irqsta;
+
+ /* Clear interrupt */
+ irqsta = mt2712_readl(mt2712_rtc, MT2712_IRQ_STA);
+ if (irqsta & MT2712_IRQ_STA_AL) {
+ rtc_update_irq(mt2712_rtc->rtc, 1, RTC_IRQF | RTC_AF);
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+static void __mt2712_rtc_read_time(struct mt2712_rtc *mt2712_rtc,
+ struct rtc_time *tm, int *sec)
+{
+ tm->tm_sec = mt2712_readl(mt2712_rtc, MT2712_TC_SEC)
+ & MT2712_SEC_MASK;
+ tm->tm_min = mt2712_readl(mt2712_rtc, MT2712_TC_MIN)
+ & MT2712_MIN_MASK;
+ tm->tm_hour = mt2712_readl(mt2712_rtc, MT2712_TC_HOU)
+ & MT2712_HOU_MASK;
+ tm->tm_mday = mt2712_readl(mt2712_rtc, MT2712_TC_DOM)
+ & MT2712_DOM_MASK;
+ tm->tm_mon = (mt2712_readl(mt2712_rtc, MT2712_TC_MTH) - 1)
+ & MT2712_MTH_MASK;
+ tm->tm_year = (mt2712_readl(mt2712_rtc, MT2712_TC_YEA) + 100)
+ & MT2712_YEA_MASK;
+
+ *sec = mt2712_readl(mt2712_rtc, MT2712_TC_SEC) & MT2712_SEC_MASK;
+}
+
+static int mt2712_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct mt2712_rtc *mt2712_rtc = dev_get_drvdata(dev);
+ int sec;
+
+ if (mt2712_rtc->powerlost)
+ return -EINVAL;
+
+ do {
+ __mt2712_rtc_read_time(mt2712_rtc, tm, &sec);
+ } while (sec < tm->tm_sec); /* SEC has carried */
+
+ return 0;
+}
+
+static int mt2712_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct mt2712_rtc *mt2712_rtc = dev_get_drvdata(dev);
+
+ mt2712_writel(mt2712_rtc, MT2712_TC_SEC, tm->tm_sec & MT2712_SEC_MASK);
+ mt2712_writel(mt2712_rtc, MT2712_TC_MIN, tm->tm_min & MT2712_MIN_MASK);
+ mt2712_writel(mt2712_rtc, MT2712_TC_HOU, tm->tm_hour & MT2712_HOU_MASK);
+ mt2712_writel(mt2712_rtc, MT2712_TC_DOM, tm->tm_mday & MT2712_DOM_MASK);
+ mt2712_writel(mt2712_rtc, MT2712_TC_MTH,
+ (tm->tm_mon + 1) & MT2712_MTH_MASK);
+ mt2712_writel(mt2712_rtc, MT2712_TC_YEA,
+ (tm->tm_year - 100) & MT2712_YEA_MASK);
+
+ mt2712_rtc_write_trigger(mt2712_rtc);
+
+ if (mt2712_rtc->powerlost)
+ mt2712_rtc->powerlost = false;
+
+ return 0;
+}
+
+static int mt2712_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct mt2712_rtc *mt2712_rtc = dev_get_drvdata(dev);
+ struct rtc_time *tm = &alm->time;
+ u16 irqen;
+
+ irqen = mt2712_readl(mt2712_rtc, MT2712_IRQ_EN);
+ alm->enabled = !!(irqen & MT2712_IRQ_EN_AL);
+
+ tm->tm_sec = mt2712_readl(mt2712_rtc, MT2712_AL_SEC) & MT2712_SEC_MASK;
+ tm->tm_min = mt2712_readl(mt2712_rtc, MT2712_AL_MIN) & MT2712_MIN_MASK;
+ tm->tm_hour = mt2712_readl(mt2712_rtc, MT2712_AL_HOU) & MT2712_HOU_MASK;
+ tm->tm_mday = mt2712_readl(mt2712_rtc, MT2712_AL_DOM) & MT2712_DOM_MASK;
+ tm->tm_mon = (mt2712_readl(mt2712_rtc, MT2712_AL_MTH) - 1)
+ & MT2712_MTH_MASK;
+ tm->tm_year = (mt2712_readl(mt2712_rtc, MT2712_AL_YEA) + 100)
+ & MT2712_YEA_MASK;
+
+ return 0;
+}
+
+static int mt2712_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct mt2712_rtc *mt2712_rtc = dev_get_drvdata(dev);
+ u16 irqen;
+
+ irqen = mt2712_readl(mt2712_rtc, MT2712_IRQ_EN);
+ if (enabled)
+ irqen |= MT2712_IRQ_EN_AL;
+ else
+ irqen &= ~MT2712_IRQ_EN_AL;
+ mt2712_writel(mt2712_rtc, MT2712_IRQ_EN, irqen);
+ mt2712_rtc_write_trigger(mt2712_rtc);
+
+ return 0;
+}
+
+static int mt2712_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct mt2712_rtc *mt2712_rtc = dev_get_drvdata(dev);
+ struct rtc_time *tm = &alm->time;
+
+ dev_dbg(&mt2712_rtc->rtc->dev, "set al time: %ptR, alm en: %d\n",
+ tm, alm->enabled);
+
+ mt2712_writel(mt2712_rtc, MT2712_AL_SEC,
+ (mt2712_readl(mt2712_rtc, MT2712_AL_SEC)
+ & ~(MT2712_SEC_MASK)) | (tm->tm_sec & MT2712_SEC_MASK));
+ mt2712_writel(mt2712_rtc, MT2712_AL_MIN,
+ (mt2712_readl(mt2712_rtc, MT2712_AL_MIN)
+ & ~(MT2712_MIN_MASK)) | (tm->tm_min & MT2712_MIN_MASK));
+ mt2712_writel(mt2712_rtc, MT2712_AL_HOU,
+ (mt2712_readl(mt2712_rtc, MT2712_AL_HOU)
+ & ~(MT2712_HOU_MASK)) | (tm->tm_hour & MT2712_HOU_MASK));
+ mt2712_writel(mt2712_rtc, MT2712_AL_DOM,
+ (mt2712_readl(mt2712_rtc, MT2712_AL_DOM)
+ & ~(MT2712_DOM_MASK)) | (tm->tm_mday & MT2712_DOM_MASK));
+ mt2712_writel(mt2712_rtc, MT2712_AL_MTH,
+ (mt2712_readl(mt2712_rtc, MT2712_AL_MTH)
+ & ~(MT2712_MTH_MASK))
+ | ((tm->tm_mon + 1) & MT2712_MTH_MASK));
+ mt2712_writel(mt2712_rtc, MT2712_AL_YEA,
+ (mt2712_readl(mt2712_rtc, MT2712_AL_YEA)
+ & ~(MT2712_YEA_MASK))
+ | ((tm->tm_year - 100) & MT2712_YEA_MASK));
+
+ /* mask day of week */
+ mt2712_writel(mt2712_rtc, MT2712_AL_MASK, MT2712_AL_MASK_DOW);
+ mt2712_rtc_write_trigger(mt2712_rtc);
+
+ mt2712_rtc_alarm_irq_enable(dev, alm->enabled);
+
+ return 0;
+}
+
+/* Init RTC register */
+static void mt2712_rtc_hw_init(struct mt2712_rtc *mt2712_rtc)
+{
+ u32 p1, p2;
+
+ mt2712_writel(mt2712_rtc, MT2712_BBPU,
+ MT2712_BBPU_KEY | MT2712_BBPU_RELOAD);
+
+ mt2712_writel(mt2712_rtc, MT2712_CII_EN, 0);
+ mt2712_writel(mt2712_rtc, MT2712_AL_MASK, 0);
+ /* necessary before set MT2712_POWERKEY */
+ mt2712_writel(mt2712_rtc, MT2712_CON0, 0x4848);
+ mt2712_writel(mt2712_rtc, MT2712_CON1, 0x0048);
+
+ mt2712_rtc_write_trigger(mt2712_rtc);
+
+ p1 = mt2712_readl(mt2712_rtc, MT2712_POWERKEY1);
+ p2 = mt2712_readl(mt2712_rtc, MT2712_POWERKEY2);
+ if (p1 != MT2712_POWERKEY1_KEY || p2 != MT2712_POWERKEY2_KEY) {
+ mt2712_rtc->powerlost = true;
+ dev_dbg(&mt2712_rtc->rtc->dev,
+ "powerkey not set (lost power)\n");
+ } else {
+ mt2712_rtc->powerlost = false;
+ }
+
+ /* RTC need POWERKEY1/2 match, then goto normal work mode */
+ mt2712_writel(mt2712_rtc, MT2712_POWERKEY1, MT2712_POWERKEY1_KEY);
+ mt2712_writel(mt2712_rtc, MT2712_POWERKEY2, MT2712_POWERKEY2_KEY);
+ mt2712_rtc_write_trigger(mt2712_rtc);
+
+ mt2712_rtc_writeif_unlock(mt2712_rtc);
+}
+
+static const struct rtc_class_ops mt2712_rtc_ops = {
+ .read_time = mt2712_rtc_read_time,
+ .set_time = mt2712_rtc_set_time,
+ .read_alarm = mt2712_rtc_read_alarm,
+ .set_alarm = mt2712_rtc_set_alarm,
+ .alarm_irq_enable = mt2712_rtc_alarm_irq_enable,
+};
+
+static int mt2712_rtc_probe(struct platform_device *pdev)
+{
+ struct mt2712_rtc *mt2712_rtc;
+ int ret;
+
+ mt2712_rtc = devm_kzalloc(&pdev->dev,
+ sizeof(struct mt2712_rtc), GFP_KERNEL);
+ if (!mt2712_rtc)
+ return -ENOMEM;
+
+ mt2712_rtc->base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(mt2712_rtc->base))
+ return PTR_ERR(mt2712_rtc->base);
+
+ /* rtc hw init */
+ mt2712_rtc_hw_init(mt2712_rtc);
+
+ mt2712_rtc->irq = platform_get_irq(pdev, 0);
+ if (mt2712_rtc->irq < 0)
+ return mt2712_rtc->irq;
+
+ platform_set_drvdata(pdev, mt2712_rtc);
+
+ mt2712_rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(mt2712_rtc->rtc))
+ return PTR_ERR(mt2712_rtc->rtc);
+
+ ret = devm_request_threaded_irq(&pdev->dev, mt2712_rtc->irq, NULL,
+ rtc_irq_handler_thread,
+ IRQF_ONESHOT | IRQF_TRIGGER_LOW,
+ dev_name(&mt2712_rtc->rtc->dev),
+ mt2712_rtc);
+ if (ret) {
+ dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
+ mt2712_rtc->irq, ret);
+ return ret;
+ }
+
+ device_init_wakeup(&pdev->dev, true);
+
+ mt2712_rtc->rtc->ops = &mt2712_rtc_ops;
+ mt2712_rtc->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ mt2712_rtc->rtc->range_max = MT2712_RTC_TIMESTAMP_END_2127;
+
+ return rtc_register_device(mt2712_rtc->rtc);
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int mt2712_rtc_suspend(struct device *dev)
+{
+ int wake_status = 0;
+ struct mt2712_rtc *mt2712_rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev)) {
+ wake_status = enable_irq_wake(mt2712_rtc->irq);
+ if (!wake_status)
+ mt2712_rtc->irq_wake_enabled = true;
+ }
+
+ return 0;
+}
+
+static int mt2712_rtc_resume(struct device *dev)
+{
+ int wake_status = 0;
+ struct mt2712_rtc *mt2712_rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev) && mt2712_rtc->irq_wake_enabled) {
+ wake_status = disable_irq_wake(mt2712_rtc->irq);
+ if (!wake_status)
+ mt2712_rtc->irq_wake_enabled = false;
+ }
+
+ return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(mt2712_pm_ops, mt2712_rtc_suspend,
+ mt2712_rtc_resume);
+#endif
+
+static const struct of_device_id mt2712_rtc_of_match[] = {
+ { .compatible = "mediatek,mt2712-rtc", },
+ { },
+};
+
+MODULE_DEVICE_TABLE(of, mt2712_rtc_of_match);
+
+static struct platform_driver mt2712_rtc_driver = {
+ .driver = {
+ .name = "mt2712-rtc",
+ .of_match_table = mt2712_rtc_of_match,
+#ifdef CONFIG_PM_SLEEP
+ .pm = &mt2712_pm_ops,
+#endif
+ },
+ .probe = mt2712_rtc_probe,
+};
+
+module_platform_driver(mt2712_rtc_driver);
+
+MODULE_DESCRIPTION("MediaTek MT2712 SoC based RTC Driver");
+MODULE_AUTHOR("Ran Bi <ran.bi@mediatek.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-mt6397.c b/drivers/rtc/rtc-mt6397.c
new file mode 100644
index 000000000..acfcb3787
--- /dev/null
+++ b/drivers/rtc/rtc-mt6397.c
@@ -0,0 +1,363 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+* Copyright (c) 2014-2015 MediaTek Inc.
+* Author: Tianping.Fang <tianping.fang@mediatek.com>
+*/
+
+#include <linux/err.h>
+#include <linux/interrupt.h>
+#include <linux/mfd/mt6397/core.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/regmap.h>
+#include <linux/rtc.h>
+#include <linux/mfd/mt6397/rtc.h>
+#include <linux/mod_devicetable.h>
+
+static int mtk_rtc_write_trigger(struct mt6397_rtc *rtc)
+{
+ int ret;
+ u32 data;
+
+ ret = regmap_write(rtc->regmap, rtc->addr_base + rtc->data->wrtgr, 1);
+ if (ret < 0)
+ return ret;
+
+ ret = regmap_read_poll_timeout(rtc->regmap,
+ rtc->addr_base + RTC_BBPU, data,
+ !(data & RTC_BBPU_CBUSY),
+ MTK_RTC_POLL_DELAY_US,
+ MTK_RTC_POLL_TIMEOUT);
+ if (ret < 0)
+ dev_err(rtc->rtc_dev->dev.parent,
+ "failed to write WRTGR: %d\n", ret);
+
+ return ret;
+}
+
+static irqreturn_t mtk_rtc_irq_handler_thread(int irq, void *data)
+{
+ struct mt6397_rtc *rtc = data;
+ u32 irqsta, irqen;
+ int ret;
+
+ ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_IRQ_STA, &irqsta);
+ if ((ret >= 0) && (irqsta & RTC_IRQ_STA_AL)) {
+ rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
+ irqen = irqsta & ~RTC_IRQ_EN_AL;
+ mutex_lock(&rtc->lock);
+ if (regmap_write(rtc->regmap, rtc->addr_base + RTC_IRQ_EN,
+ irqen) == 0)
+ mtk_rtc_write_trigger(rtc);
+ mutex_unlock(&rtc->lock);
+
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+static int __mtk_rtc_read_time(struct mt6397_rtc *rtc,
+ struct rtc_time *tm, int *sec)
+{
+ int ret;
+ u16 data[RTC_OFFSET_COUNT];
+
+ mutex_lock(&rtc->lock);
+ ret = regmap_bulk_read(rtc->regmap, rtc->addr_base + RTC_TC_SEC,
+ data, RTC_OFFSET_COUNT);
+ if (ret < 0)
+ goto exit;
+
+ tm->tm_sec = data[RTC_OFFSET_SEC];
+ tm->tm_min = data[RTC_OFFSET_MIN];
+ tm->tm_hour = data[RTC_OFFSET_HOUR];
+ tm->tm_mday = data[RTC_OFFSET_DOM];
+ tm->tm_mon = data[RTC_OFFSET_MTH];
+ tm->tm_year = data[RTC_OFFSET_YEAR];
+
+ ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_TC_SEC, sec);
+exit:
+ mutex_unlock(&rtc->lock);
+ return ret;
+}
+
+static int mtk_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ time64_t time;
+ struct mt6397_rtc *rtc = dev_get_drvdata(dev);
+ int days, sec, ret;
+
+ do {
+ ret = __mtk_rtc_read_time(rtc, tm, &sec);
+ if (ret < 0)
+ goto exit;
+ } while (sec < tm->tm_sec);
+
+ /* HW register use 7 bits to store year data, minus
+ * RTC_MIN_YEAR_OFFSET before write year data to register, and plus
+ * RTC_MIN_YEAR_OFFSET back after read year from register
+ */
+ tm->tm_year += RTC_MIN_YEAR_OFFSET;
+
+ /* HW register start mon from one, but tm_mon start from zero. */
+ tm->tm_mon--;
+ time = rtc_tm_to_time64(tm);
+
+ /* rtc_tm_to_time64 covert Gregorian date to seconds since
+ * 01-01-1970 00:00:00, and this date is Thursday.
+ */
+ days = div_s64(time, 86400);
+ tm->tm_wday = (days + 4) % 7;
+
+exit:
+ return ret;
+}
+
+static int mtk_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct mt6397_rtc *rtc = dev_get_drvdata(dev);
+ int ret;
+ u16 data[RTC_OFFSET_COUNT];
+
+ tm->tm_year -= RTC_MIN_YEAR_OFFSET;
+ tm->tm_mon++;
+
+ data[RTC_OFFSET_SEC] = tm->tm_sec;
+ data[RTC_OFFSET_MIN] = tm->tm_min;
+ data[RTC_OFFSET_HOUR] = tm->tm_hour;
+ data[RTC_OFFSET_DOM] = tm->tm_mday;
+ data[RTC_OFFSET_MTH] = tm->tm_mon;
+ data[RTC_OFFSET_YEAR] = tm->tm_year;
+
+ mutex_lock(&rtc->lock);
+ ret = regmap_bulk_write(rtc->regmap, rtc->addr_base + RTC_TC_SEC,
+ data, RTC_OFFSET_COUNT);
+ if (ret < 0)
+ goto exit;
+
+ /* Time register write to hardware after call trigger function */
+ ret = mtk_rtc_write_trigger(rtc);
+
+exit:
+ mutex_unlock(&rtc->lock);
+ return ret;
+}
+
+static int mtk_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct rtc_time *tm = &alm->time;
+ struct mt6397_rtc *rtc = dev_get_drvdata(dev);
+ u32 irqen, pdn2;
+ int ret;
+ u16 data[RTC_OFFSET_COUNT];
+
+ mutex_lock(&rtc->lock);
+ ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_IRQ_EN, &irqen);
+ if (ret < 0)
+ goto err_exit;
+ ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_PDN2, &pdn2);
+ if (ret < 0)
+ goto err_exit;
+
+ ret = regmap_bulk_read(rtc->regmap, rtc->addr_base + RTC_AL_SEC,
+ data, RTC_OFFSET_COUNT);
+ if (ret < 0)
+ goto err_exit;
+
+ alm->enabled = !!(irqen & RTC_IRQ_EN_AL);
+ alm->pending = !!(pdn2 & RTC_PDN2_PWRON_ALARM);
+ mutex_unlock(&rtc->lock);
+
+ tm->tm_sec = data[RTC_OFFSET_SEC] & RTC_AL_SEC_MASK;
+ tm->tm_min = data[RTC_OFFSET_MIN] & RTC_AL_MIN_MASK;
+ tm->tm_hour = data[RTC_OFFSET_HOUR] & RTC_AL_HOU_MASK;
+ tm->tm_mday = data[RTC_OFFSET_DOM] & RTC_AL_DOM_MASK;
+ tm->tm_mon = data[RTC_OFFSET_MTH] & RTC_AL_MTH_MASK;
+ tm->tm_year = data[RTC_OFFSET_YEAR] & RTC_AL_YEA_MASK;
+
+ tm->tm_year += RTC_MIN_YEAR_OFFSET;
+ tm->tm_mon--;
+
+ return 0;
+err_exit:
+ mutex_unlock(&rtc->lock);
+ return ret;
+}
+
+static int mtk_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct rtc_time *tm = &alm->time;
+ struct mt6397_rtc *rtc = dev_get_drvdata(dev);
+ int ret;
+ u16 data[RTC_OFFSET_COUNT];
+
+ tm->tm_year -= RTC_MIN_YEAR_OFFSET;
+ tm->tm_mon++;
+
+ mutex_lock(&rtc->lock);
+ ret = regmap_bulk_read(rtc->regmap, rtc->addr_base + RTC_AL_SEC,
+ data, RTC_OFFSET_COUNT);
+ if (ret < 0)
+ goto exit;
+
+ data[RTC_OFFSET_SEC] = ((data[RTC_OFFSET_SEC] & ~(RTC_AL_SEC_MASK)) |
+ (tm->tm_sec & RTC_AL_SEC_MASK));
+ data[RTC_OFFSET_MIN] = ((data[RTC_OFFSET_MIN] & ~(RTC_AL_MIN_MASK)) |
+ (tm->tm_min & RTC_AL_MIN_MASK));
+ data[RTC_OFFSET_HOUR] = ((data[RTC_OFFSET_HOUR] & ~(RTC_AL_HOU_MASK)) |
+ (tm->tm_hour & RTC_AL_HOU_MASK));
+ data[RTC_OFFSET_DOM] = ((data[RTC_OFFSET_DOM] & ~(RTC_AL_DOM_MASK)) |
+ (tm->tm_mday & RTC_AL_DOM_MASK));
+ data[RTC_OFFSET_MTH] = ((data[RTC_OFFSET_MTH] & ~(RTC_AL_MTH_MASK)) |
+ (tm->tm_mon & RTC_AL_MTH_MASK));
+ data[RTC_OFFSET_YEAR] = ((data[RTC_OFFSET_YEAR] & ~(RTC_AL_YEA_MASK)) |
+ (tm->tm_year & RTC_AL_YEA_MASK));
+
+ if (alm->enabled) {
+ ret = regmap_bulk_write(rtc->regmap,
+ rtc->addr_base + RTC_AL_SEC,
+ data, RTC_OFFSET_COUNT);
+ if (ret < 0)
+ goto exit;
+ ret = regmap_write(rtc->regmap, rtc->addr_base + RTC_AL_MASK,
+ RTC_AL_MASK_DOW);
+ if (ret < 0)
+ goto exit;
+ ret = regmap_update_bits(rtc->regmap,
+ rtc->addr_base + RTC_IRQ_EN,
+ RTC_IRQ_EN_ONESHOT_AL,
+ RTC_IRQ_EN_ONESHOT_AL);
+ if (ret < 0)
+ goto exit;
+ } else {
+ ret = regmap_update_bits(rtc->regmap,
+ rtc->addr_base + RTC_IRQ_EN,
+ RTC_IRQ_EN_ONESHOT_AL, 0);
+ if (ret < 0)
+ goto exit;
+ }
+
+ /* All alarm time register write to hardware after calling
+ * mtk_rtc_write_trigger. This can avoid race condition if alarm
+ * occur happen during writing alarm time register.
+ */
+ ret = mtk_rtc_write_trigger(rtc);
+exit:
+ mutex_unlock(&rtc->lock);
+ return ret;
+}
+
+static const struct rtc_class_ops mtk_rtc_ops = {
+ .read_time = mtk_rtc_read_time,
+ .set_time = mtk_rtc_set_time,
+ .read_alarm = mtk_rtc_read_alarm,
+ .set_alarm = mtk_rtc_set_alarm,
+};
+
+static int mtk_rtc_probe(struct platform_device *pdev)
+{
+ struct resource *res;
+ struct mt6397_chip *mt6397_chip = dev_get_drvdata(pdev->dev.parent);
+ struct mt6397_rtc *rtc;
+ int ret;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(struct mt6397_rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!res)
+ return -EINVAL;
+ rtc->addr_base = res->start;
+
+ rtc->data = of_device_get_match_data(&pdev->dev);
+
+ rtc->irq = platform_get_irq(pdev, 0);
+ if (rtc->irq < 0)
+ return rtc->irq;
+
+ rtc->regmap = mt6397_chip->regmap;
+ mutex_init(&rtc->lock);
+
+ platform_set_drvdata(pdev, rtc);
+
+ rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc->rtc_dev))
+ return PTR_ERR(rtc->rtc_dev);
+
+ ret = devm_request_threaded_irq(&pdev->dev, rtc->irq, NULL,
+ mtk_rtc_irq_handler_thread,
+ IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
+ "mt6397-rtc", rtc);
+
+ if (ret) {
+ dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
+ rtc->irq, ret);
+ return ret;
+ }
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ rtc->rtc_dev->ops = &mtk_rtc_ops;
+
+ return rtc_register_device(rtc->rtc_dev);
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int mt6397_rtc_suspend(struct device *dev)
+{
+ struct mt6397_rtc *rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ enable_irq_wake(rtc->irq);
+
+ return 0;
+}
+
+static int mt6397_rtc_resume(struct device *dev)
+{
+ struct mt6397_rtc *rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ disable_irq_wake(rtc->irq);
+
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(mt6397_pm_ops, mt6397_rtc_suspend,
+ mt6397_rtc_resume);
+
+static const struct mtk_rtc_data mt6358_rtc_data = {
+ .wrtgr = RTC_WRTGR_MT6358,
+};
+
+static const struct mtk_rtc_data mt6397_rtc_data = {
+ .wrtgr = RTC_WRTGR_MT6397,
+};
+
+static const struct of_device_id mt6397_rtc_of_match[] = {
+ { .compatible = "mediatek,mt6323-rtc", .data = &mt6397_rtc_data },
+ { .compatible = "mediatek,mt6358-rtc", .data = &mt6358_rtc_data },
+ { .compatible = "mediatek,mt6397-rtc", .data = &mt6397_rtc_data },
+ { }
+};
+MODULE_DEVICE_TABLE(of, mt6397_rtc_of_match);
+
+static struct platform_driver mtk_rtc_driver = {
+ .driver = {
+ .name = "mt6397-rtc",
+ .of_match_table = mt6397_rtc_of_match,
+ .pm = &mt6397_pm_ops,
+ },
+ .probe = mtk_rtc_probe,
+};
+
+module_platform_driver(mtk_rtc_driver);
+
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Tianping Fang <tianping.fang@mediatek.com>");
+MODULE_DESCRIPTION("RTC Driver for MediaTek MT6397 PMIC");
diff --git a/drivers/rtc/rtc-mt7622.c b/drivers/rtc/rtc-mt7622.c
new file mode 100644
index 000000000..f1e356394
--- /dev/null
+++ b/drivers/rtc/rtc-mt7622.c
@@ -0,0 +1,411 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Driver for MediaTek SoC based RTC
+ *
+ * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
+ */
+
+#include <linux/clk.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+
+#define MTK_RTC_DEV KBUILD_MODNAME
+
+#define MTK_RTC_PWRCHK1 0x4
+#define RTC_PWRCHK1_MAGIC 0xc6
+
+#define MTK_RTC_PWRCHK2 0x8
+#define RTC_PWRCHK2_MAGIC 0x9a
+
+#define MTK_RTC_KEY 0xc
+#define RTC_KEY_MAGIC 0x59
+
+#define MTK_RTC_PROT1 0x10
+#define RTC_PROT1_MAGIC 0xa3
+
+#define MTK_RTC_PROT2 0x14
+#define RTC_PROT2_MAGIC 0x57
+
+#define MTK_RTC_PROT3 0x18
+#define RTC_PROT3_MAGIC 0x67
+
+#define MTK_RTC_PROT4 0x1c
+#define RTC_PROT4_MAGIC 0xd2
+
+#define MTK_RTC_CTL 0x20
+#define RTC_RC_STOP BIT(0)
+
+#define MTK_RTC_DEBNCE 0x2c
+#define RTC_DEBNCE_MASK GENMASK(2, 0)
+
+#define MTK_RTC_INT 0x30
+#define RTC_INT_AL_STA BIT(4)
+
+/*
+ * Ranges from 0x40 to 0x78 provide RTC time setup for year, month,
+ * day of month, day of week, hour, minute and second.
+ */
+#define MTK_RTC_TREG(_t, _f) (0x40 + (0x4 * (_f)) + ((_t) * 0x20))
+
+#define MTK_RTC_AL_CTL 0x7c
+#define RTC_AL_EN BIT(0)
+#define RTC_AL_ALL GENMASK(7, 0)
+
+/*
+ * The offset is used in the translation for the year between in struct
+ * rtc_time and in hardware register MTK_RTC_TREG(x,MTK_YEA)
+ */
+#define MTK_RTC_TM_YR_OFFSET 100
+
+/*
+ * The lowest value for the valid tm_year. RTC hardware would take incorrectly
+ * tm_year 100 as not a leap year and thus it is also required being excluded
+ * from the valid options.
+ */
+#define MTK_RTC_TM_YR_L (MTK_RTC_TM_YR_OFFSET + 1)
+
+/*
+ * The most year the RTC can hold is 99 and the next to 99 in year register
+ * would be wraparound to 0, for MT7622.
+ */
+#define MTK_RTC_HW_YR_LIMIT 99
+
+/* The highest value for the valid tm_year */
+#define MTK_RTC_TM_YR_H (MTK_RTC_TM_YR_OFFSET + MTK_RTC_HW_YR_LIMIT)
+
+/* Simple macro helps to check whether the hardware supports the tm_year */
+#define MTK_RTC_TM_YR_VALID(_y) ((_y) >= MTK_RTC_TM_YR_L && \
+ (_y) <= MTK_RTC_TM_YR_H)
+
+/* Types of the function the RTC provides are time counter and alarm. */
+enum {
+ MTK_TC,
+ MTK_AL,
+};
+
+/* Indexes are used for the pointer to relevant registers in MTK_RTC_TREG */
+enum {
+ MTK_YEA,
+ MTK_MON,
+ MTK_DOM,
+ MTK_DOW,
+ MTK_HOU,
+ MTK_MIN,
+ MTK_SEC
+};
+
+struct mtk_rtc {
+ struct rtc_device *rtc;
+ void __iomem *base;
+ int irq;
+ struct clk *clk;
+};
+
+static void mtk_w32(struct mtk_rtc *rtc, u32 reg, u32 val)
+{
+ writel_relaxed(val, rtc->base + reg);
+}
+
+static u32 mtk_r32(struct mtk_rtc *rtc, u32 reg)
+{
+ return readl_relaxed(rtc->base + reg);
+}
+
+static void mtk_rmw(struct mtk_rtc *rtc, u32 reg, u32 mask, u32 set)
+{
+ u32 val;
+
+ val = mtk_r32(rtc, reg);
+ val &= ~mask;
+ val |= set;
+ mtk_w32(rtc, reg, val);
+}
+
+static void mtk_set(struct mtk_rtc *rtc, u32 reg, u32 val)
+{
+ mtk_rmw(rtc, reg, 0, val);
+}
+
+static void mtk_clr(struct mtk_rtc *rtc, u32 reg, u32 val)
+{
+ mtk_rmw(rtc, reg, val, 0);
+}
+
+static void mtk_rtc_hw_init(struct mtk_rtc *hw)
+{
+ /* The setup of the init sequence is for allowing RTC got to work */
+ mtk_w32(hw, MTK_RTC_PWRCHK1, RTC_PWRCHK1_MAGIC);
+ mtk_w32(hw, MTK_RTC_PWRCHK2, RTC_PWRCHK2_MAGIC);
+ mtk_w32(hw, MTK_RTC_KEY, RTC_KEY_MAGIC);
+ mtk_w32(hw, MTK_RTC_PROT1, RTC_PROT1_MAGIC);
+ mtk_w32(hw, MTK_RTC_PROT2, RTC_PROT2_MAGIC);
+ mtk_w32(hw, MTK_RTC_PROT3, RTC_PROT3_MAGIC);
+ mtk_w32(hw, MTK_RTC_PROT4, RTC_PROT4_MAGIC);
+ mtk_rmw(hw, MTK_RTC_DEBNCE, RTC_DEBNCE_MASK, 0);
+ mtk_clr(hw, MTK_RTC_CTL, RTC_RC_STOP);
+}
+
+static void mtk_rtc_get_alarm_or_time(struct mtk_rtc *hw, struct rtc_time *tm,
+ int time_alarm)
+{
+ u32 year, mon, mday, wday, hour, min, sec;
+
+ /*
+ * Read again until the field of the second is not changed which
+ * ensures all fields in the consistent state. Note that MTK_SEC must
+ * be read first. In this way, it guarantees the others remain not
+ * changed when the results for two MTK_SEC consecutive reads are same.
+ */
+ do {
+ sec = mtk_r32(hw, MTK_RTC_TREG(time_alarm, MTK_SEC));
+ min = mtk_r32(hw, MTK_RTC_TREG(time_alarm, MTK_MIN));
+ hour = mtk_r32(hw, MTK_RTC_TREG(time_alarm, MTK_HOU));
+ wday = mtk_r32(hw, MTK_RTC_TREG(time_alarm, MTK_DOW));
+ mday = mtk_r32(hw, MTK_RTC_TREG(time_alarm, MTK_DOM));
+ mon = mtk_r32(hw, MTK_RTC_TREG(time_alarm, MTK_MON));
+ year = mtk_r32(hw, MTK_RTC_TREG(time_alarm, MTK_YEA));
+ } while (sec != mtk_r32(hw, MTK_RTC_TREG(time_alarm, MTK_SEC)));
+
+ tm->tm_sec = sec;
+ tm->tm_min = min;
+ tm->tm_hour = hour;
+ tm->tm_wday = wday;
+ tm->tm_mday = mday;
+ tm->tm_mon = mon - 1;
+
+ /* Rebase to the absolute year which userspace queries */
+ tm->tm_year = year + MTK_RTC_TM_YR_OFFSET;
+}
+
+static void mtk_rtc_set_alarm_or_time(struct mtk_rtc *hw, struct rtc_time *tm,
+ int time_alarm)
+{
+ u32 year;
+
+ /* Rebase to the relative year which RTC hardware requires */
+ year = tm->tm_year - MTK_RTC_TM_YR_OFFSET;
+
+ mtk_w32(hw, MTK_RTC_TREG(time_alarm, MTK_YEA), year);
+ mtk_w32(hw, MTK_RTC_TREG(time_alarm, MTK_MON), tm->tm_mon + 1);
+ mtk_w32(hw, MTK_RTC_TREG(time_alarm, MTK_DOW), tm->tm_wday);
+ mtk_w32(hw, MTK_RTC_TREG(time_alarm, MTK_DOM), tm->tm_mday);
+ mtk_w32(hw, MTK_RTC_TREG(time_alarm, MTK_HOU), tm->tm_hour);
+ mtk_w32(hw, MTK_RTC_TREG(time_alarm, MTK_MIN), tm->tm_min);
+ mtk_w32(hw, MTK_RTC_TREG(time_alarm, MTK_SEC), tm->tm_sec);
+}
+
+static irqreturn_t mtk_rtc_alarmirq(int irq, void *id)
+{
+ struct mtk_rtc *hw = (struct mtk_rtc *)id;
+ u32 irq_sta;
+
+ irq_sta = mtk_r32(hw, MTK_RTC_INT);
+ if (irq_sta & RTC_INT_AL_STA) {
+ /* Stop alarm also implicitly disables the alarm interrupt */
+ mtk_w32(hw, MTK_RTC_AL_CTL, 0);
+ rtc_update_irq(hw->rtc, 1, RTC_IRQF | RTC_AF);
+
+ /* Ack alarm interrupt status */
+ mtk_w32(hw, MTK_RTC_INT, RTC_INT_AL_STA);
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+static int mtk_rtc_gettime(struct device *dev, struct rtc_time *tm)
+{
+ struct mtk_rtc *hw = dev_get_drvdata(dev);
+
+ mtk_rtc_get_alarm_or_time(hw, tm, MTK_TC);
+
+ return 0;
+}
+
+static int mtk_rtc_settime(struct device *dev, struct rtc_time *tm)
+{
+ struct mtk_rtc *hw = dev_get_drvdata(dev);
+
+ if (!MTK_RTC_TM_YR_VALID(tm->tm_year))
+ return -EINVAL;
+
+ /* Stop time counter before setting a new one*/
+ mtk_set(hw, MTK_RTC_CTL, RTC_RC_STOP);
+
+ mtk_rtc_set_alarm_or_time(hw, tm, MTK_TC);
+
+ /* Restart the time counter */
+ mtk_clr(hw, MTK_RTC_CTL, RTC_RC_STOP);
+
+ return 0;
+}
+
+static int mtk_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
+{
+ struct mtk_rtc *hw = dev_get_drvdata(dev);
+ struct rtc_time *alrm_tm = &wkalrm->time;
+
+ mtk_rtc_get_alarm_or_time(hw, alrm_tm, MTK_AL);
+
+ wkalrm->enabled = !!(mtk_r32(hw, MTK_RTC_AL_CTL) & RTC_AL_EN);
+ wkalrm->pending = !!(mtk_r32(hw, MTK_RTC_INT) & RTC_INT_AL_STA);
+
+ return 0;
+}
+
+static int mtk_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
+{
+ struct mtk_rtc *hw = dev_get_drvdata(dev);
+ struct rtc_time *alrm_tm = &wkalrm->time;
+
+ if (!MTK_RTC_TM_YR_VALID(alrm_tm->tm_year))
+ return -EINVAL;
+
+ /*
+ * Stop the alarm also implicitly including disables interrupt before
+ * setting a new one.
+ */
+ mtk_clr(hw, MTK_RTC_AL_CTL, RTC_AL_EN);
+
+ /*
+ * Avoid contention between mtk_rtc_setalarm and IRQ handler so that
+ * disabling the interrupt and awaiting for pending IRQ handler to
+ * complete.
+ */
+ synchronize_irq(hw->irq);
+
+ mtk_rtc_set_alarm_or_time(hw, alrm_tm, MTK_AL);
+
+ /* Restart the alarm with the new setup */
+ mtk_w32(hw, MTK_RTC_AL_CTL, RTC_AL_ALL);
+
+ return 0;
+}
+
+static const struct rtc_class_ops mtk_rtc_ops = {
+ .read_time = mtk_rtc_gettime,
+ .set_time = mtk_rtc_settime,
+ .read_alarm = mtk_rtc_getalarm,
+ .set_alarm = mtk_rtc_setalarm,
+};
+
+static const struct of_device_id mtk_rtc_match[] = {
+ { .compatible = "mediatek,mt7622-rtc" },
+ { .compatible = "mediatek,soc-rtc" },
+ {},
+};
+MODULE_DEVICE_TABLE(of, mtk_rtc_match);
+
+static int mtk_rtc_probe(struct platform_device *pdev)
+{
+ struct mtk_rtc *hw;
+ int ret;
+
+ hw = devm_kzalloc(&pdev->dev, sizeof(*hw), GFP_KERNEL);
+ if (!hw)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, hw);
+
+ hw->base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(hw->base))
+ return PTR_ERR(hw->base);
+
+ hw->clk = devm_clk_get(&pdev->dev, "rtc");
+ if (IS_ERR(hw->clk)) {
+ dev_err(&pdev->dev, "No clock\n");
+ return PTR_ERR(hw->clk);
+ }
+
+ ret = clk_prepare_enable(hw->clk);
+ if (ret)
+ return ret;
+
+ hw->irq = platform_get_irq(pdev, 0);
+ if (hw->irq < 0) {
+ ret = hw->irq;
+ goto err;
+ }
+
+ ret = devm_request_irq(&pdev->dev, hw->irq, mtk_rtc_alarmirq,
+ 0, dev_name(&pdev->dev), hw);
+ if (ret) {
+ dev_err(&pdev->dev, "Can't request IRQ\n");
+ goto err;
+ }
+
+ mtk_rtc_hw_init(hw);
+
+ device_init_wakeup(&pdev->dev, true);
+
+ hw->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
+ &mtk_rtc_ops, THIS_MODULE);
+ if (IS_ERR(hw->rtc)) {
+ ret = PTR_ERR(hw->rtc);
+ dev_err(&pdev->dev, "Unable to register device\n");
+ goto err;
+ }
+
+ return 0;
+err:
+ clk_disable_unprepare(hw->clk);
+
+ return ret;
+}
+
+static int mtk_rtc_remove(struct platform_device *pdev)
+{
+ struct mtk_rtc *hw = platform_get_drvdata(pdev);
+
+ clk_disable_unprepare(hw->clk);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int mtk_rtc_suspend(struct device *dev)
+{
+ struct mtk_rtc *hw = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ enable_irq_wake(hw->irq);
+
+ return 0;
+}
+
+static int mtk_rtc_resume(struct device *dev)
+{
+ struct mtk_rtc *hw = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ disable_irq_wake(hw->irq);
+
+ return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(mtk_rtc_pm_ops, mtk_rtc_suspend, mtk_rtc_resume);
+
+#define MTK_RTC_PM_OPS (&mtk_rtc_pm_ops)
+#else /* CONFIG_PM */
+#define MTK_RTC_PM_OPS NULL
+#endif /* CONFIG_PM */
+
+static struct platform_driver mtk_rtc_driver = {
+ .probe = mtk_rtc_probe,
+ .remove = mtk_rtc_remove,
+ .driver = {
+ .name = MTK_RTC_DEV,
+ .of_match_table = mtk_rtc_match,
+ .pm = MTK_RTC_PM_OPS,
+ },
+};
+
+module_platform_driver(mtk_rtc_driver);
+
+MODULE_DESCRIPTION("MediaTek SoC based RTC Driver");
+MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-mv.c b/drivers/rtc/rtc-mv.c
new file mode 100644
index 000000000..d5f190e57
--- /dev/null
+++ b/drivers/rtc/rtc-mv.c
@@ -0,0 +1,325 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Driver for the RTC in Marvell SoCs.
+ */
+
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/rtc.h>
+#include <linux/bcd.h>
+#include <linux/bitops.h>
+#include <linux/io.h>
+#include <linux/platform_device.h>
+#include <linux/of.h>
+#include <linux/delay.h>
+#include <linux/clk.h>
+#include <linux/gfp.h>
+#include <linux/module.h>
+
+
+#define RTC_TIME_REG_OFFS 0
+#define RTC_SECONDS_OFFS 0
+#define RTC_MINUTES_OFFS 8
+#define RTC_HOURS_OFFS 16
+#define RTC_WDAY_OFFS 24
+#define RTC_HOURS_12H_MODE BIT(22) /* 12 hour mode */
+
+#define RTC_DATE_REG_OFFS 4
+#define RTC_MDAY_OFFS 0
+#define RTC_MONTH_OFFS 8
+#define RTC_YEAR_OFFS 16
+
+#define RTC_ALARM_TIME_REG_OFFS 8
+#define RTC_ALARM_DATE_REG_OFFS 0xc
+#define RTC_ALARM_VALID BIT(7)
+
+#define RTC_ALARM_INTERRUPT_MASK_REG_OFFS 0x10
+#define RTC_ALARM_INTERRUPT_CASUE_REG_OFFS 0x14
+
+struct rtc_plat_data {
+ struct rtc_device *rtc;
+ void __iomem *ioaddr;
+ int irq;
+ struct clk *clk;
+};
+
+static int mv_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+ void __iomem *ioaddr = pdata->ioaddr;
+ u32 rtc_reg;
+
+ rtc_reg = (bin2bcd(tm->tm_sec) << RTC_SECONDS_OFFS) |
+ (bin2bcd(tm->tm_min) << RTC_MINUTES_OFFS) |
+ (bin2bcd(tm->tm_hour) << RTC_HOURS_OFFS) |
+ (bin2bcd(tm->tm_wday) << RTC_WDAY_OFFS);
+ writel(rtc_reg, ioaddr + RTC_TIME_REG_OFFS);
+
+ rtc_reg = (bin2bcd(tm->tm_mday) << RTC_MDAY_OFFS) |
+ (bin2bcd(tm->tm_mon + 1) << RTC_MONTH_OFFS) |
+ (bin2bcd(tm->tm_year - 100) << RTC_YEAR_OFFS);
+ writel(rtc_reg, ioaddr + RTC_DATE_REG_OFFS);
+
+ return 0;
+}
+
+static int mv_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+ void __iomem *ioaddr = pdata->ioaddr;
+ u32 rtc_time, rtc_date;
+ unsigned int year, month, day, hour, minute, second, wday;
+
+ rtc_time = readl(ioaddr + RTC_TIME_REG_OFFS);
+ rtc_date = readl(ioaddr + RTC_DATE_REG_OFFS);
+
+ second = rtc_time & 0x7f;
+ minute = (rtc_time >> RTC_MINUTES_OFFS) & 0x7f;
+ hour = (rtc_time >> RTC_HOURS_OFFS) & 0x3f; /* assume 24 hour mode */
+ wday = (rtc_time >> RTC_WDAY_OFFS) & 0x7;
+
+ day = rtc_date & 0x3f;
+ month = (rtc_date >> RTC_MONTH_OFFS) & 0x3f;
+ year = (rtc_date >> RTC_YEAR_OFFS) & 0xff;
+
+ tm->tm_sec = bcd2bin(second);
+ tm->tm_min = bcd2bin(minute);
+ tm->tm_hour = bcd2bin(hour);
+ tm->tm_mday = bcd2bin(day);
+ tm->tm_wday = bcd2bin(wday);
+ tm->tm_mon = bcd2bin(month) - 1;
+ /* hw counts from year 2000, but tm_year is relative to 1900 */
+ tm->tm_year = bcd2bin(year) + 100;
+
+ return 0;
+}
+
+static int mv_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+ void __iomem *ioaddr = pdata->ioaddr;
+ u32 rtc_time, rtc_date;
+ unsigned int year, month, day, hour, minute, second, wday;
+
+ rtc_time = readl(ioaddr + RTC_ALARM_TIME_REG_OFFS);
+ rtc_date = readl(ioaddr + RTC_ALARM_DATE_REG_OFFS);
+
+ second = rtc_time & 0x7f;
+ minute = (rtc_time >> RTC_MINUTES_OFFS) & 0x7f;
+ hour = (rtc_time >> RTC_HOURS_OFFS) & 0x3f; /* assume 24 hour mode */
+ wday = (rtc_time >> RTC_WDAY_OFFS) & 0x7;
+
+ day = rtc_date & 0x3f;
+ month = (rtc_date >> RTC_MONTH_OFFS) & 0x3f;
+ year = (rtc_date >> RTC_YEAR_OFFS) & 0xff;
+
+ alm->time.tm_sec = bcd2bin(second);
+ alm->time.tm_min = bcd2bin(minute);
+ alm->time.tm_hour = bcd2bin(hour);
+ alm->time.tm_mday = bcd2bin(day);
+ alm->time.tm_wday = bcd2bin(wday);
+ alm->time.tm_mon = bcd2bin(month) - 1;
+ /* hw counts from year 2000, but tm_year is relative to 1900 */
+ alm->time.tm_year = bcd2bin(year) + 100;
+
+ alm->enabled = !!readl(ioaddr + RTC_ALARM_INTERRUPT_MASK_REG_OFFS);
+
+ return rtc_valid_tm(&alm->time);
+}
+
+static int mv_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+ void __iomem *ioaddr = pdata->ioaddr;
+ u32 rtc_reg = 0;
+
+ if (alm->time.tm_sec >= 0)
+ rtc_reg |= (RTC_ALARM_VALID | bin2bcd(alm->time.tm_sec))
+ << RTC_SECONDS_OFFS;
+ if (alm->time.tm_min >= 0)
+ rtc_reg |= (RTC_ALARM_VALID | bin2bcd(alm->time.tm_min))
+ << RTC_MINUTES_OFFS;
+ if (alm->time.tm_hour >= 0)
+ rtc_reg |= (RTC_ALARM_VALID | bin2bcd(alm->time.tm_hour))
+ << RTC_HOURS_OFFS;
+
+ writel(rtc_reg, ioaddr + RTC_ALARM_TIME_REG_OFFS);
+
+ if (alm->time.tm_mday >= 0)
+ rtc_reg = (RTC_ALARM_VALID | bin2bcd(alm->time.tm_mday))
+ << RTC_MDAY_OFFS;
+ else
+ rtc_reg = 0;
+
+ if (alm->time.tm_mon >= 0)
+ rtc_reg |= (RTC_ALARM_VALID | bin2bcd(alm->time.tm_mon + 1))
+ << RTC_MONTH_OFFS;
+
+ if (alm->time.tm_year >= 0)
+ rtc_reg |= (RTC_ALARM_VALID | bin2bcd(alm->time.tm_year - 100))
+ << RTC_YEAR_OFFS;
+
+ writel(rtc_reg, ioaddr + RTC_ALARM_DATE_REG_OFFS);
+ writel(0, ioaddr + RTC_ALARM_INTERRUPT_CASUE_REG_OFFS);
+ writel(alm->enabled ? 1 : 0,
+ ioaddr + RTC_ALARM_INTERRUPT_MASK_REG_OFFS);
+
+ return 0;
+}
+
+static int mv_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+ void __iomem *ioaddr = pdata->ioaddr;
+
+ if (pdata->irq < 0)
+ return -EINVAL; /* fall back into rtc-dev's emulation */
+
+ if (enabled)
+ writel(1, ioaddr + RTC_ALARM_INTERRUPT_MASK_REG_OFFS);
+ else
+ writel(0, ioaddr + RTC_ALARM_INTERRUPT_MASK_REG_OFFS);
+ return 0;
+}
+
+static irqreturn_t mv_rtc_interrupt(int irq, void *data)
+{
+ struct rtc_plat_data *pdata = data;
+ void __iomem *ioaddr = pdata->ioaddr;
+
+ /* alarm irq? */
+ if (!readl(ioaddr + RTC_ALARM_INTERRUPT_CASUE_REG_OFFS))
+ return IRQ_NONE;
+
+ /* clear interrupt */
+ writel(0, ioaddr + RTC_ALARM_INTERRUPT_CASUE_REG_OFFS);
+ rtc_update_irq(pdata->rtc, 1, RTC_IRQF | RTC_AF);
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops mv_rtc_ops = {
+ .read_time = mv_rtc_read_time,
+ .set_time = mv_rtc_set_time,
+};
+
+static const struct rtc_class_ops mv_rtc_alarm_ops = {
+ .read_time = mv_rtc_read_time,
+ .set_time = mv_rtc_set_time,
+ .read_alarm = mv_rtc_read_alarm,
+ .set_alarm = mv_rtc_set_alarm,
+ .alarm_irq_enable = mv_rtc_alarm_irq_enable,
+};
+
+static int __init mv_rtc_probe(struct platform_device *pdev)
+{
+ struct rtc_plat_data *pdata;
+ u32 rtc_time;
+ int ret = 0;
+
+ pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
+ if (!pdata)
+ return -ENOMEM;
+
+ pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(pdata->ioaddr))
+ return PTR_ERR(pdata->ioaddr);
+
+ pdata->clk = devm_clk_get(&pdev->dev, NULL);
+ /* Not all SoCs require a clock.*/
+ if (!IS_ERR(pdata->clk))
+ clk_prepare_enable(pdata->clk);
+
+ /* make sure the 24 hour mode is enabled */
+ rtc_time = readl(pdata->ioaddr + RTC_TIME_REG_OFFS);
+ if (rtc_time & RTC_HOURS_12H_MODE) {
+ dev_err(&pdev->dev, "12 Hour mode is enabled but not supported.\n");
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /* make sure it is actually functional */
+ if (rtc_time == 0x01000000) {
+ ssleep(1);
+ rtc_time = readl(pdata->ioaddr + RTC_TIME_REG_OFFS);
+ if (rtc_time == 0x01000000) {
+ dev_err(&pdev->dev, "internal RTC not ticking\n");
+ ret = -ENODEV;
+ goto out;
+ }
+ }
+
+ pdata->irq = platform_get_irq(pdev, 0);
+
+ platform_set_drvdata(pdev, pdata);
+
+ pdata->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(pdata->rtc)) {
+ ret = PTR_ERR(pdata->rtc);
+ goto out;
+ }
+
+ if (pdata->irq >= 0) {
+ writel(0, pdata->ioaddr + RTC_ALARM_INTERRUPT_MASK_REG_OFFS);
+ if (devm_request_irq(&pdev->dev, pdata->irq, mv_rtc_interrupt,
+ IRQF_SHARED,
+ pdev->name, pdata) < 0) {
+ dev_warn(&pdev->dev, "interrupt not available.\n");
+ pdata->irq = -1;
+ }
+ }
+
+ if (pdata->irq >= 0) {
+ device_init_wakeup(&pdev->dev, 1);
+ pdata->rtc->ops = &mv_rtc_alarm_ops;
+ } else {
+ pdata->rtc->ops = &mv_rtc_ops;
+ }
+
+ pdata->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ pdata->rtc->range_max = RTC_TIMESTAMP_END_2099;
+
+ ret = rtc_register_device(pdata->rtc);
+ if (!ret)
+ return 0;
+out:
+ if (!IS_ERR(pdata->clk))
+ clk_disable_unprepare(pdata->clk);
+
+ return ret;
+}
+
+static int __exit mv_rtc_remove(struct platform_device *pdev)
+{
+ struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
+
+ if (pdata->irq >= 0)
+ device_init_wakeup(&pdev->dev, 0);
+
+ if (!IS_ERR(pdata->clk))
+ clk_disable_unprepare(pdata->clk);
+
+ return 0;
+}
+
+#ifdef CONFIG_OF
+static const struct of_device_id rtc_mv_of_match_table[] = {
+ { .compatible = "marvell,orion-rtc", },
+ {}
+};
+MODULE_DEVICE_TABLE(of, rtc_mv_of_match_table);
+#endif
+
+static struct platform_driver mv_rtc_driver = {
+ .remove = __exit_p(mv_rtc_remove),
+ .driver = {
+ .name = "rtc-mv",
+ .of_match_table = of_match_ptr(rtc_mv_of_match_table),
+ },
+};
+
+module_platform_driver_probe(mv_rtc_driver, mv_rtc_probe);
+
+MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
+MODULE_DESCRIPTION("Marvell RTC driver");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:rtc-mv");
diff --git a/drivers/rtc/rtc-mxc.c b/drivers/rtc/rtc-mxc.c
new file mode 100644
index 000000000..a8cfbde04
--- /dev/null
+++ b/drivers/rtc/rtc-mxc.c
@@ -0,0 +1,450 @@
+// SPDX-License-Identifier: GPL-2.0+
+//
+// Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
+
+#include <linux/io.h>
+#include <linux/rtc.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/interrupt.h>
+#include <linux/platform_device.h>
+#include <linux/pm_wakeirq.h>
+#include <linux/clk.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+
+#define RTC_INPUT_CLK_32768HZ (0x00 << 5)
+#define RTC_INPUT_CLK_32000HZ (0x01 << 5)
+#define RTC_INPUT_CLK_38400HZ (0x02 << 5)
+
+#define RTC_SW_BIT (1 << 0)
+#define RTC_ALM_BIT (1 << 2)
+#define RTC_1HZ_BIT (1 << 4)
+#define RTC_2HZ_BIT (1 << 7)
+#define RTC_SAM0_BIT (1 << 8)
+#define RTC_SAM1_BIT (1 << 9)
+#define RTC_SAM2_BIT (1 << 10)
+#define RTC_SAM3_BIT (1 << 11)
+#define RTC_SAM4_BIT (1 << 12)
+#define RTC_SAM5_BIT (1 << 13)
+#define RTC_SAM6_BIT (1 << 14)
+#define RTC_SAM7_BIT (1 << 15)
+#define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
+ RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
+ RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
+
+#define RTC_ENABLE_BIT (1 << 7)
+
+#define MAX_PIE_NUM 9
+#define MAX_PIE_FREQ 512
+
+#define MXC_RTC_TIME 0
+#define MXC_RTC_ALARM 1
+
+#define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
+#define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
+#define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
+#define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
+#define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
+#define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
+#define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
+#define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
+#define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
+#define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
+#define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
+#define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
+#define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
+
+enum imx_rtc_type {
+ IMX1_RTC,
+ IMX21_RTC,
+};
+
+struct rtc_plat_data {
+ struct rtc_device *rtc;
+ void __iomem *ioaddr;
+ int irq;
+ struct clk *clk_ref;
+ struct clk *clk_ipg;
+ struct rtc_time g_rtc_alarm;
+ enum imx_rtc_type devtype;
+};
+
+static const struct platform_device_id imx_rtc_devtype[] = {
+ {
+ .name = "imx1-rtc",
+ .driver_data = IMX1_RTC,
+ }, {
+ .name = "imx21-rtc",
+ .driver_data = IMX21_RTC,
+ }, {
+ /* sentinel */
+ }
+};
+MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
+
+#ifdef CONFIG_OF
+static const struct of_device_id imx_rtc_dt_ids[] = {
+ { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
+ { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
+ {}
+};
+MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
+#endif
+
+static inline int is_imx1_rtc(struct rtc_plat_data *data)
+{
+ return data->devtype == IMX1_RTC;
+}
+
+/*
+ * This function is used to obtain the RTC time or the alarm value in
+ * second.
+ */
+static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+ void __iomem *ioaddr = pdata->ioaddr;
+ u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
+
+ switch (time_alarm) {
+ case MXC_RTC_TIME:
+ day = readw(ioaddr + RTC_DAYR);
+ hr_min = readw(ioaddr + RTC_HOURMIN);
+ sec = readw(ioaddr + RTC_SECOND);
+ break;
+ case MXC_RTC_ALARM:
+ day = readw(ioaddr + RTC_DAYALARM);
+ hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
+ sec = readw(ioaddr + RTC_ALRM_SEC);
+ break;
+ }
+
+ hr = hr_min >> 8;
+ min = hr_min & 0xff;
+
+ return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
+}
+
+/*
+ * This function sets the RTC alarm value or the time value.
+ */
+static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
+{
+ u32 tod, day, hr, min, sec, temp;
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+ void __iomem *ioaddr = pdata->ioaddr;
+
+ day = div_s64_rem(time, 86400, &tod);
+
+ /* time is within a day now */
+ hr = tod / 3600;
+ tod -= hr * 3600;
+
+ /* time is within an hour now */
+ min = tod / 60;
+ sec = tod - min * 60;
+
+ temp = (hr << 8) + min;
+
+ switch (time_alarm) {
+ case MXC_RTC_TIME:
+ writew(day, ioaddr + RTC_DAYR);
+ writew(sec, ioaddr + RTC_SECOND);
+ writew(temp, ioaddr + RTC_HOURMIN);
+ break;
+ case MXC_RTC_ALARM:
+ writew(day, ioaddr + RTC_DAYALARM);
+ writew(sec, ioaddr + RTC_ALRM_SEC);
+ writew(temp, ioaddr + RTC_ALRM_HM);
+ break;
+ }
+}
+
+/*
+ * This function updates the RTC alarm registers and then clears all the
+ * interrupt status bits.
+ */
+static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
+{
+ time64_t time;
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+ void __iomem *ioaddr = pdata->ioaddr;
+
+ time = rtc_tm_to_time64(alrm);
+
+ /* clear all the interrupt status bits */
+ writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
+ set_alarm_or_time(dev, MXC_RTC_ALARM, time);
+}
+
+static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
+ unsigned int enabled)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+ void __iomem *ioaddr = pdata->ioaddr;
+ u32 reg;
+ unsigned long flags;
+
+ spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
+ reg = readw(ioaddr + RTC_RTCIENR);
+
+ if (enabled)
+ reg |= bit;
+ else
+ reg &= ~bit;
+
+ writew(reg, ioaddr + RTC_RTCIENR);
+ spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
+}
+
+/* This function is the RTC interrupt service routine. */
+static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
+{
+ struct platform_device *pdev = dev_id;
+ struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
+ void __iomem *ioaddr = pdata->ioaddr;
+ unsigned long flags;
+ u32 status;
+ u32 events = 0;
+
+ spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
+ status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
+ /* clear interrupt sources */
+ writew(status, ioaddr + RTC_RTCISR);
+
+ /* update irq data & counter */
+ if (status & RTC_ALM_BIT) {
+ events |= (RTC_AF | RTC_IRQF);
+ /* RTC alarm should be one-shot */
+ mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
+ }
+
+ if (status & PIT_ALL_ON)
+ events |= (RTC_PF | RTC_IRQF);
+
+ rtc_update_irq(pdata->rtc, 1, events);
+ spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
+
+ return IRQ_HANDLED;
+}
+
+static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
+ return 0;
+}
+
+/*
+ * This function reads the current RTC time into tm in Gregorian date.
+ */
+static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ time64_t val;
+
+ /* Avoid roll-over from reading the different registers */
+ do {
+ val = get_alarm_or_time(dev, MXC_RTC_TIME);
+ } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
+
+ rtc_time64_to_tm(val, tm);
+
+ return 0;
+}
+
+/*
+ * This function sets the internal RTC time based on tm in Gregorian date.
+ */
+static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ time64_t time = rtc_tm_to_time64(tm);
+
+ /* Avoid roll-over from reading the different registers */
+ do {
+ set_alarm_or_time(dev, MXC_RTC_TIME, time);
+ } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
+
+ return 0;
+}
+
+/*
+ * This function reads the current alarm value into the passed in 'alrm'
+ * argument. It updates the alrm's pending field value based on the whether
+ * an alarm interrupt occurs or not.
+ */
+static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+ void __iomem *ioaddr = pdata->ioaddr;
+
+ rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
+ alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
+
+ return 0;
+}
+
+/*
+ * This function sets the RTC alarm based on passed in alrm.
+ */
+static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+
+ rtc_update_alarm(dev, &alrm->time);
+
+ memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
+ mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
+
+ return 0;
+}
+
+/* RTC layer */
+static const struct rtc_class_ops mxc_rtc_ops = {
+ .read_time = mxc_rtc_read_time,
+ .set_time = mxc_rtc_set_time,
+ .read_alarm = mxc_rtc_read_alarm,
+ .set_alarm = mxc_rtc_set_alarm,
+ .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
+};
+
+static void mxc_rtc_action(void *p)
+{
+ struct rtc_plat_data *pdata = p;
+
+ clk_disable_unprepare(pdata->clk_ref);
+ clk_disable_unprepare(pdata->clk_ipg);
+}
+
+static int mxc_rtc_probe(struct platform_device *pdev)
+{
+ struct rtc_device *rtc;
+ struct rtc_plat_data *pdata = NULL;
+ u32 reg;
+ unsigned long rate;
+ int ret;
+ const struct of_device_id *of_id;
+
+ pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
+ if (!pdata)
+ return -ENOMEM;
+
+ of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
+ if (of_id)
+ pdata->devtype = (enum imx_rtc_type)of_id->data;
+ else
+ pdata->devtype = pdev->id_entry->driver_data;
+
+ pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(pdata->ioaddr))
+ return PTR_ERR(pdata->ioaddr);
+
+ rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ pdata->rtc = rtc;
+ rtc->ops = &mxc_rtc_ops;
+ if (is_imx1_rtc(pdata)) {
+ struct rtc_time tm;
+
+ /* 9bit days + hours minutes seconds */
+ rtc->range_max = (1 << 9) * 86400 - 1;
+
+ /*
+ * Set the start date as beginning of the current year. This can
+ * be overridden using device tree.
+ */
+ rtc_time64_to_tm(ktime_get_real_seconds(), &tm);
+ rtc->start_secs = mktime64(tm.tm_year, 1, 1, 0, 0, 0);
+ rtc->set_start_time = true;
+ } else {
+ /* 16bit days + hours minutes seconds */
+ rtc->range_max = (1 << 16) * 86400ULL - 1;
+ }
+
+ pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
+ if (IS_ERR(pdata->clk_ipg)) {
+ dev_err(&pdev->dev, "unable to get ipg clock!\n");
+ return PTR_ERR(pdata->clk_ipg);
+ }
+
+ ret = clk_prepare_enable(pdata->clk_ipg);
+ if (ret)
+ return ret;
+
+ pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
+ if (IS_ERR(pdata->clk_ref)) {
+ clk_disable_unprepare(pdata->clk_ipg);
+ dev_err(&pdev->dev, "unable to get ref clock!\n");
+ return PTR_ERR(pdata->clk_ref);
+ }
+
+ ret = clk_prepare_enable(pdata->clk_ref);
+ if (ret) {
+ clk_disable_unprepare(pdata->clk_ipg);
+ return ret;
+ }
+
+ ret = devm_add_action_or_reset(&pdev->dev, mxc_rtc_action, pdata);
+ if (ret)
+ return ret;
+
+ rate = clk_get_rate(pdata->clk_ref);
+
+ if (rate == 32768)
+ reg = RTC_INPUT_CLK_32768HZ;
+ else if (rate == 32000)
+ reg = RTC_INPUT_CLK_32000HZ;
+ else if (rate == 38400)
+ reg = RTC_INPUT_CLK_38400HZ;
+ else {
+ dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
+ return -EINVAL;
+ }
+
+ reg |= RTC_ENABLE_BIT;
+ writew(reg, (pdata->ioaddr + RTC_RTCCTL));
+ if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
+ dev_err(&pdev->dev, "hardware module can't be enabled!\n");
+ return -EIO;
+ }
+
+ platform_set_drvdata(pdev, pdata);
+
+ /* Configure and enable the RTC */
+ pdata->irq = platform_get_irq(pdev, 0);
+
+ if (pdata->irq >= 0 &&
+ devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
+ IRQF_SHARED, pdev->name, pdev) < 0) {
+ dev_warn(&pdev->dev, "interrupt not available.\n");
+ pdata->irq = -1;
+ }
+
+ if (pdata->irq >= 0) {
+ device_init_wakeup(&pdev->dev, 1);
+ ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq);
+ if (ret)
+ dev_err(&pdev->dev, "failed to enable irq wake\n");
+ }
+
+ ret = rtc_register_device(rtc);
+
+ return ret;
+}
+
+static struct platform_driver mxc_rtc_driver = {
+ .driver = {
+ .name = "mxc_rtc",
+ .of_match_table = of_match_ptr(imx_rtc_dt_ids),
+ },
+ .id_table = imx_rtc_devtype,
+ .probe = mxc_rtc_probe,
+};
+
+module_platform_driver(mxc_rtc_driver)
+
+MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
+MODULE_DESCRIPTION("RTC driver for Freescale MXC");
+MODULE_LICENSE("GPL");
+
diff --git a/drivers/rtc/rtc-mxc_v2.c b/drivers/rtc/rtc-mxc_v2.c
new file mode 100644
index 000000000..48595b00e
--- /dev/null
+++ b/drivers/rtc/rtc-mxc_v2.c
@@ -0,0 +1,393 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Real Time Clock (RTC) Driver for i.MX53
+ * Copyright (c) 2004-2011 Freescale Semiconductor, Inc.
+ * Copyright (c) 2017 Beckhoff Automation GmbH & Co. KG
+ */
+
+#include <linux/clk.h>
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/mod_devicetable.h>
+#include <linux/platform_device.h>
+#include <linux/pm_wakeirq.h>
+#include <linux/rtc.h>
+
+#define SRTC_LPPDR_INIT 0x41736166 /* init for glitch detect */
+
+#define SRTC_LPCR_EN_LP BIT(3) /* lp enable */
+#define SRTC_LPCR_WAE BIT(4) /* lp wakeup alarm enable */
+#define SRTC_LPCR_ALP BIT(7) /* lp alarm flag */
+#define SRTC_LPCR_NSA BIT(11) /* lp non secure access */
+#define SRTC_LPCR_NVE BIT(14) /* lp non valid state exit bit */
+#define SRTC_LPCR_IE BIT(15) /* lp init state exit bit */
+
+#define SRTC_LPSR_ALP BIT(3) /* lp alarm flag */
+#define SRTC_LPSR_NVES BIT(14) /* lp non-valid state exit status */
+#define SRTC_LPSR_IES BIT(15) /* lp init state exit status */
+
+#define SRTC_LPSCMR 0x00 /* LP Secure Counter MSB Reg */
+#define SRTC_LPSCLR 0x04 /* LP Secure Counter LSB Reg */
+#define SRTC_LPSAR 0x08 /* LP Secure Alarm Reg */
+#define SRTC_LPCR 0x10 /* LP Control Reg */
+#define SRTC_LPSR 0x14 /* LP Status Reg */
+#define SRTC_LPPDR 0x18 /* LP Power Supply Glitch Detector Reg */
+
+/* max. number of retries to read registers, 120 was max during test */
+#define REG_READ_TIMEOUT 2000
+
+struct mxc_rtc_data {
+ struct rtc_device *rtc;
+ void __iomem *ioaddr;
+ struct clk *clk;
+ spinlock_t lock; /* protects register access */
+ int irq;
+};
+
+/*
+ * This function does write synchronization for writes to the lp srtc block.
+ * To take care of the asynchronous CKIL clock, all writes from the IP domain
+ * will be synchronized to the CKIL domain.
+ * The caller should hold the pdata->lock
+ */
+static void mxc_rtc_sync_lp_locked(struct device *dev, void __iomem *ioaddr)
+{
+ unsigned int i;
+
+ /* Wait for 3 CKIL cycles */
+ for (i = 0; i < 3; i++) {
+ const u32 count = readl(ioaddr + SRTC_LPSCLR);
+ unsigned int timeout = REG_READ_TIMEOUT;
+
+ while ((readl(ioaddr + SRTC_LPSCLR)) == count) {
+ if (!--timeout) {
+ dev_err_once(dev, "SRTC_LPSCLR stuck! Check your hw.\n");
+ return;
+ }
+ }
+ }
+}
+
+/* This function is the RTC interrupt service routine. */
+static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
+{
+ struct device *dev = dev_id;
+ struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
+ void __iomem *ioaddr = pdata->ioaddr;
+ unsigned long flags;
+ u32 lp_status;
+ u32 lp_cr;
+
+ spin_lock_irqsave(&pdata->lock, flags);
+ if (clk_enable(pdata->clk)) {
+ spin_unlock_irqrestore(&pdata->lock, flags);
+ return IRQ_NONE;
+ }
+
+ lp_status = readl(ioaddr + SRTC_LPSR);
+ lp_cr = readl(ioaddr + SRTC_LPCR);
+
+ /* update irq data & counter */
+ if (lp_status & SRTC_LPSR_ALP) {
+ if (lp_cr & SRTC_LPCR_ALP)
+ rtc_update_irq(pdata->rtc, 1, RTC_AF | RTC_IRQF);
+
+ /* disable further lp alarm interrupts */
+ lp_cr &= ~(SRTC_LPCR_ALP | SRTC_LPCR_WAE);
+ }
+
+ /* Update interrupt enables */
+ writel(lp_cr, ioaddr + SRTC_LPCR);
+
+ /* clear interrupt status */
+ writel(lp_status, ioaddr + SRTC_LPSR);
+
+ mxc_rtc_sync_lp_locked(dev, ioaddr);
+ clk_disable(pdata->clk);
+ spin_unlock_irqrestore(&pdata->lock, flags);
+ return IRQ_HANDLED;
+}
+
+/*
+ * Enable clk and aquire spinlock
+ * @return 0 if successful; non-zero otherwise.
+ */
+static int mxc_rtc_lock(struct mxc_rtc_data *const pdata)
+{
+ int ret;
+
+ spin_lock_irq(&pdata->lock);
+ ret = clk_enable(pdata->clk);
+ if (ret) {
+ spin_unlock_irq(&pdata->lock);
+ return ret;
+ }
+ return 0;
+}
+
+static int mxc_rtc_unlock(struct mxc_rtc_data *const pdata)
+{
+ clk_disable(pdata->clk);
+ spin_unlock_irq(&pdata->lock);
+ return 0;
+}
+
+/*
+ * This function reads the current RTC time into tm in Gregorian date.
+ *
+ * @param tm contains the RTC time value upon return
+ *
+ * @return 0 if successful; non-zero otherwise.
+ */
+static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
+ const int clk_failed = clk_enable(pdata->clk);
+
+ if (!clk_failed) {
+ const time64_t now = readl(pdata->ioaddr + SRTC_LPSCMR);
+
+ rtc_time64_to_tm(now, tm);
+ clk_disable(pdata->clk);
+ return 0;
+ }
+ return clk_failed;
+}
+
+/*
+ * This function sets the internal RTC time based on tm in Gregorian date.
+ *
+ * @param tm the time value to be set in the RTC
+ *
+ * @return 0 if successful; non-zero otherwise.
+ */
+static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
+ time64_t time = rtc_tm_to_time64(tm);
+ int ret;
+
+ ret = mxc_rtc_lock(pdata);
+ if (ret)
+ return ret;
+
+ writel(time, pdata->ioaddr + SRTC_LPSCMR);
+ mxc_rtc_sync_lp_locked(dev, pdata->ioaddr);
+ return mxc_rtc_unlock(pdata);
+}
+
+/*
+ * This function reads the current alarm value into the passed in \b alrm
+ * argument. It updates the \b alrm's pending field value based on the whether
+ * an alarm interrupt occurs or not.
+ *
+ * @param alrm contains the RTC alarm value upon return
+ *
+ * @return 0 if successful; non-zero otherwise.
+ */
+static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
+ void __iomem *ioaddr = pdata->ioaddr;
+ int ret;
+
+ ret = mxc_rtc_lock(pdata);
+ if (ret)
+ return ret;
+
+ rtc_time64_to_tm(readl(ioaddr + SRTC_LPSAR), &alrm->time);
+ alrm->pending = !!(readl(ioaddr + SRTC_LPSR) & SRTC_LPSR_ALP);
+ return mxc_rtc_unlock(pdata);
+}
+
+/*
+ * Enable/Disable alarm interrupt
+ * The caller should hold the pdata->lock
+ */
+static void mxc_rtc_alarm_irq_enable_locked(struct mxc_rtc_data *pdata,
+ unsigned int enable)
+{
+ u32 lp_cr = readl(pdata->ioaddr + SRTC_LPCR);
+
+ if (enable)
+ lp_cr |= (SRTC_LPCR_ALP | SRTC_LPCR_WAE);
+ else
+ lp_cr &= ~(SRTC_LPCR_ALP | SRTC_LPCR_WAE);
+
+ writel(lp_cr, pdata->ioaddr + SRTC_LPCR);
+}
+
+static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
+{
+ struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
+ int ret = mxc_rtc_lock(pdata);
+
+ if (ret)
+ return ret;
+
+ mxc_rtc_alarm_irq_enable_locked(pdata, enable);
+ return mxc_rtc_unlock(pdata);
+}
+
+/*
+ * This function sets the RTC alarm based on passed in alrm.
+ *
+ * @param alrm the alarm value to be set in the RTC
+ *
+ * @return 0 if successful; non-zero otherwise.
+ */
+static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ const time64_t time = rtc_tm_to_time64(&alrm->time);
+ struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
+ int ret = mxc_rtc_lock(pdata);
+
+ if (ret)
+ return ret;
+
+ writel((u32)time, pdata->ioaddr + SRTC_LPSAR);
+
+ /* clear alarm interrupt status bit */
+ writel(SRTC_LPSR_ALP, pdata->ioaddr + SRTC_LPSR);
+ mxc_rtc_sync_lp_locked(dev, pdata->ioaddr);
+
+ mxc_rtc_alarm_irq_enable_locked(pdata, alrm->enabled);
+ mxc_rtc_sync_lp_locked(dev, pdata->ioaddr);
+ mxc_rtc_unlock(pdata);
+ return ret;
+}
+
+static const struct rtc_class_ops mxc_rtc_ops = {
+ .read_time = mxc_rtc_read_time,
+ .set_time = mxc_rtc_set_time,
+ .read_alarm = mxc_rtc_read_alarm,
+ .set_alarm = mxc_rtc_set_alarm,
+ .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
+};
+
+static int mxc_rtc_wait_for_flag(void __iomem *ioaddr, int flag)
+{
+ unsigned int timeout = REG_READ_TIMEOUT;
+
+ while (!(readl(ioaddr) & flag)) {
+ if (!--timeout)
+ return -EBUSY;
+ }
+ return 0;
+}
+
+static int mxc_rtc_probe(struct platform_device *pdev)
+{
+ struct mxc_rtc_data *pdata;
+ void __iomem *ioaddr;
+ int ret = 0;
+
+ pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
+ if (!pdata)
+ return -ENOMEM;
+
+ pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(pdata->ioaddr))
+ return PTR_ERR(pdata->ioaddr);
+
+ ioaddr = pdata->ioaddr;
+
+ pdata->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(pdata->clk)) {
+ dev_err(&pdev->dev, "unable to get rtc clock!\n");
+ return PTR_ERR(pdata->clk);
+ }
+
+ spin_lock_init(&pdata->lock);
+ pdata->irq = platform_get_irq(pdev, 0);
+ if (pdata->irq < 0)
+ return pdata->irq;
+
+ device_init_wakeup(&pdev->dev, 1);
+ ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq);
+ if (ret)
+ dev_err(&pdev->dev, "failed to enable irq wake\n");
+
+ ret = clk_prepare_enable(pdata->clk);
+ if (ret)
+ return ret;
+ /* initialize glitch detect */
+ writel(SRTC_LPPDR_INIT, ioaddr + SRTC_LPPDR);
+
+ /* clear lp interrupt status */
+ writel(0xFFFFFFFF, ioaddr + SRTC_LPSR);
+
+ /* move out of init state */
+ writel((SRTC_LPCR_IE | SRTC_LPCR_NSA), ioaddr + SRTC_LPCR);
+ ret = mxc_rtc_wait_for_flag(ioaddr + SRTC_LPSR, SRTC_LPSR_IES);
+ if (ret) {
+ dev_err(&pdev->dev, "Timeout waiting for SRTC_LPSR_IES\n");
+ clk_disable_unprepare(pdata->clk);
+ return ret;
+ }
+
+ /* move out of non-valid state */
+ writel((SRTC_LPCR_IE | SRTC_LPCR_NVE | SRTC_LPCR_NSA |
+ SRTC_LPCR_EN_LP), ioaddr + SRTC_LPCR);
+ ret = mxc_rtc_wait_for_flag(ioaddr + SRTC_LPSR, SRTC_LPSR_NVES);
+ if (ret) {
+ dev_err(&pdev->dev, "Timeout waiting for SRTC_LPSR_NVES\n");
+ clk_disable_unprepare(pdata->clk);
+ return ret;
+ }
+
+ pdata->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(pdata->rtc)) {
+ clk_disable_unprepare(pdata->clk);
+ return PTR_ERR(pdata->rtc);
+ }
+
+ pdata->rtc->ops = &mxc_rtc_ops;
+ pdata->rtc->range_max = U32_MAX;
+
+ clk_disable(pdata->clk);
+ platform_set_drvdata(pdev, pdata);
+ ret =
+ devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt, 0,
+ pdev->name, &pdev->dev);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "interrupt not available.\n");
+ clk_unprepare(pdata->clk);
+ return ret;
+ }
+
+ ret = rtc_register_device(pdata->rtc);
+ if (ret < 0)
+ clk_unprepare(pdata->clk);
+
+ return ret;
+}
+
+static int mxc_rtc_remove(struct platform_device *pdev)
+{
+ struct mxc_rtc_data *pdata = platform_get_drvdata(pdev);
+
+ clk_disable_unprepare(pdata->clk);
+ return 0;
+}
+
+static const struct of_device_id mxc_ids[] = {
+ { .compatible = "fsl,imx53-rtc", },
+ {}
+};
+MODULE_DEVICE_TABLE(of, mxc_ids);
+
+static struct platform_driver mxc_rtc_driver = {
+ .driver = {
+ .name = "mxc_rtc_v2",
+ .of_match_table = mxc_ids,
+ },
+ .probe = mxc_rtc_probe,
+ .remove = mxc_rtc_remove,
+};
+
+module_platform_driver(mxc_rtc_driver);
+
+MODULE_AUTHOR("Freescale Semiconductor, Inc.");
+MODULE_DESCRIPTION("Real Time Clock (RTC) Driver for i.MX53");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-omap.c b/drivers/rtc/rtc-omap.c
new file mode 100644
index 000000000..18ae2a4f2
--- /dev/null
+++ b/drivers/rtc/rtc-omap.c
@@ -0,0 +1,1041 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * TI OMAP Real Time Clock interface for Linux
+ *
+ * Copyright (C) 2003 MontaVista Software, Inc.
+ * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
+ *
+ * Copyright (C) 2006 David Brownell (new RTC framework)
+ * Copyright (C) 2014 Johan Hovold <johan@kernel.org>
+ */
+
+#include <linux/bcd.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/pinctrl/pinctrl.h>
+#include <linux/pinctrl/pinconf.h>
+#include <linux/pinctrl/pinconf-generic.h>
+#include <linux/platform_device.h>
+#include <linux/pm_runtime.h>
+#include <linux/rtc.h>
+#include <linux/rtc/rtc-omap.h>
+
+/*
+ * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
+ * with century-range alarm matching, driven by the 32kHz clock.
+ *
+ * The main user-visible ways it differs from PC RTCs are by omitting
+ * "don't care" alarm fields and sub-second periodic IRQs, and having
+ * an autoadjust mechanism to calibrate to the true oscillator rate.
+ *
+ * Board-specific wiring options include using split power mode with
+ * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
+ * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
+ * low power modes) for OMAP1 boards (OMAP-L138 has this built into
+ * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
+ */
+
+/* RTC registers */
+#define OMAP_RTC_SECONDS_REG 0x00
+#define OMAP_RTC_MINUTES_REG 0x04
+#define OMAP_RTC_HOURS_REG 0x08
+#define OMAP_RTC_DAYS_REG 0x0C
+#define OMAP_RTC_MONTHS_REG 0x10
+#define OMAP_RTC_YEARS_REG 0x14
+#define OMAP_RTC_WEEKS_REG 0x18
+
+#define OMAP_RTC_ALARM_SECONDS_REG 0x20
+#define OMAP_RTC_ALARM_MINUTES_REG 0x24
+#define OMAP_RTC_ALARM_HOURS_REG 0x28
+#define OMAP_RTC_ALARM_DAYS_REG 0x2c
+#define OMAP_RTC_ALARM_MONTHS_REG 0x30
+#define OMAP_RTC_ALARM_YEARS_REG 0x34
+
+#define OMAP_RTC_CTRL_REG 0x40
+#define OMAP_RTC_STATUS_REG 0x44
+#define OMAP_RTC_INTERRUPTS_REG 0x48
+
+#define OMAP_RTC_COMP_LSB_REG 0x4c
+#define OMAP_RTC_COMP_MSB_REG 0x50
+#define OMAP_RTC_OSC_REG 0x54
+
+#define OMAP_RTC_SCRATCH0_REG 0x60
+#define OMAP_RTC_SCRATCH1_REG 0x64
+#define OMAP_RTC_SCRATCH2_REG 0x68
+
+#define OMAP_RTC_KICK0_REG 0x6c
+#define OMAP_RTC_KICK1_REG 0x70
+
+#define OMAP_RTC_IRQWAKEEN 0x7c
+
+#define OMAP_RTC_ALARM2_SECONDS_REG 0x80
+#define OMAP_RTC_ALARM2_MINUTES_REG 0x84
+#define OMAP_RTC_ALARM2_HOURS_REG 0x88
+#define OMAP_RTC_ALARM2_DAYS_REG 0x8c
+#define OMAP_RTC_ALARM2_MONTHS_REG 0x90
+#define OMAP_RTC_ALARM2_YEARS_REG 0x94
+
+#define OMAP_RTC_PMIC_REG 0x98
+
+/* OMAP_RTC_CTRL_REG bit fields: */
+#define OMAP_RTC_CTRL_SPLIT BIT(7)
+#define OMAP_RTC_CTRL_DISABLE BIT(6)
+#define OMAP_RTC_CTRL_SET_32_COUNTER BIT(5)
+#define OMAP_RTC_CTRL_TEST BIT(4)
+#define OMAP_RTC_CTRL_MODE_12_24 BIT(3)
+#define OMAP_RTC_CTRL_AUTO_COMP BIT(2)
+#define OMAP_RTC_CTRL_ROUND_30S BIT(1)
+#define OMAP_RTC_CTRL_STOP BIT(0)
+
+/* OMAP_RTC_STATUS_REG bit fields: */
+#define OMAP_RTC_STATUS_POWER_UP BIT(7)
+#define OMAP_RTC_STATUS_ALARM2 BIT(7)
+#define OMAP_RTC_STATUS_ALARM BIT(6)
+#define OMAP_RTC_STATUS_1D_EVENT BIT(5)
+#define OMAP_RTC_STATUS_1H_EVENT BIT(4)
+#define OMAP_RTC_STATUS_1M_EVENT BIT(3)
+#define OMAP_RTC_STATUS_1S_EVENT BIT(2)
+#define OMAP_RTC_STATUS_RUN BIT(1)
+#define OMAP_RTC_STATUS_BUSY BIT(0)
+
+/* OMAP_RTC_INTERRUPTS_REG bit fields: */
+#define OMAP_RTC_INTERRUPTS_IT_ALARM2 BIT(4)
+#define OMAP_RTC_INTERRUPTS_IT_ALARM BIT(3)
+#define OMAP_RTC_INTERRUPTS_IT_TIMER BIT(2)
+
+/* OMAP_RTC_OSC_REG bit fields: */
+#define OMAP_RTC_OSC_32KCLK_EN BIT(6)
+#define OMAP_RTC_OSC_SEL_32KCLK_SRC BIT(3)
+#define OMAP_RTC_OSC_OSC32K_GZ_DISABLE BIT(4)
+
+/* OMAP_RTC_IRQWAKEEN bit fields: */
+#define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN BIT(1)
+
+/* OMAP_RTC_PMIC bit fields: */
+#define OMAP_RTC_PMIC_POWER_EN_EN BIT(16)
+#define OMAP_RTC_PMIC_EXT_WKUP_EN(x) BIT(x)
+#define OMAP_RTC_PMIC_EXT_WKUP_POL(x) BIT(4 + x)
+
+/* OMAP_RTC_KICKER values */
+#define KICK0_VALUE 0x83e70b13
+#define KICK1_VALUE 0x95a4f1e0
+
+struct omap_rtc;
+
+struct omap_rtc_device_type {
+ bool has_32kclk_en;
+ bool has_irqwakeen;
+ bool has_pmic_mode;
+ bool has_power_up_reset;
+ void (*lock)(struct omap_rtc *rtc);
+ void (*unlock)(struct omap_rtc *rtc);
+};
+
+struct omap_rtc {
+ struct rtc_device *rtc;
+ void __iomem *base;
+ struct clk *clk;
+ int irq_alarm;
+ int irq_timer;
+ u8 interrupts_reg;
+ bool is_pmic_controller;
+ bool has_ext_clk;
+ bool is_suspending;
+ const struct omap_rtc_device_type *type;
+ struct pinctrl_dev *pctldev;
+};
+
+static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
+{
+ return readb(rtc->base + reg);
+}
+
+static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
+{
+ return readl(rtc->base + reg);
+}
+
+static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
+{
+ writeb(val, rtc->base + reg);
+}
+
+static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
+{
+ writel(val, rtc->base + reg);
+}
+
+static void am3352_rtc_unlock(struct omap_rtc *rtc)
+{
+ rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
+ rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
+}
+
+static void am3352_rtc_lock(struct omap_rtc *rtc)
+{
+ rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
+ rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
+}
+
+static void default_rtc_unlock(struct omap_rtc *rtc)
+{
+}
+
+static void default_rtc_lock(struct omap_rtc *rtc)
+{
+}
+
+/*
+ * We rely on the rtc framework to handle locking (rtc->ops_lock),
+ * so the only other requirement is that register accesses which
+ * require BUSY to be clear are made with IRQs locally disabled
+ */
+static void rtc_wait_not_busy(struct omap_rtc *rtc)
+{
+ int count;
+ u8 status;
+
+ /* BUSY may stay active for 1/32768 second (~30 usec) */
+ for (count = 0; count < 50; count++) {
+ status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
+ if (!(status & OMAP_RTC_STATUS_BUSY))
+ break;
+ udelay(1);
+ }
+ /* now we have ~15 usec to read/write various registers */
+}
+
+static irqreturn_t rtc_irq(int irq, void *dev_id)
+{
+ struct omap_rtc *rtc = dev_id;
+ unsigned long events = 0;
+ u8 irq_data;
+
+ irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);
+
+ /* alarm irq? */
+ if (irq_data & OMAP_RTC_STATUS_ALARM) {
+ rtc->type->unlock(rtc);
+ rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
+ rtc->type->lock(rtc);
+ events |= RTC_IRQF | RTC_AF;
+ }
+
+ /* 1/sec periodic/update irq? */
+ if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
+ events |= RTC_IRQF | RTC_UF;
+
+ rtc_update_irq(rtc->rtc, 1, events);
+
+ return IRQ_HANDLED;
+}
+
+static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct omap_rtc *rtc = dev_get_drvdata(dev);
+ u8 reg, irqwake_reg = 0;
+
+ local_irq_disable();
+ rtc_wait_not_busy(rtc);
+ reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
+ if (rtc->type->has_irqwakeen)
+ irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
+
+ if (enabled) {
+ reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
+ irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
+ } else {
+ reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
+ irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
+ }
+ rtc_wait_not_busy(rtc);
+ rtc->type->unlock(rtc);
+ rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
+ if (rtc->type->has_irqwakeen)
+ rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
+ rtc->type->lock(rtc);
+ local_irq_enable();
+
+ return 0;
+}
+
+/* this hardware doesn't support "don't care" alarm fields */
+static void tm2bcd(struct rtc_time *tm)
+{
+ tm->tm_sec = bin2bcd(tm->tm_sec);
+ tm->tm_min = bin2bcd(tm->tm_min);
+ tm->tm_hour = bin2bcd(tm->tm_hour);
+ tm->tm_mday = bin2bcd(tm->tm_mday);
+
+ tm->tm_mon = bin2bcd(tm->tm_mon + 1);
+ tm->tm_year = bin2bcd(tm->tm_year - 100);
+}
+
+static void bcd2tm(struct rtc_time *tm)
+{
+ tm->tm_sec = bcd2bin(tm->tm_sec);
+ tm->tm_min = bcd2bin(tm->tm_min);
+ tm->tm_hour = bcd2bin(tm->tm_hour);
+ tm->tm_mday = bcd2bin(tm->tm_mday);
+ tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
+ /* epoch == 1900 */
+ tm->tm_year = bcd2bin(tm->tm_year) + 100;
+}
+
+static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
+{
+ tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
+ tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
+ tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
+ tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
+ tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
+ tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
+}
+
+static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct omap_rtc *rtc = dev_get_drvdata(dev);
+
+ /* we don't report wday/yday/isdst ... */
+ local_irq_disable();
+ rtc_wait_not_busy(rtc);
+ omap_rtc_read_time_raw(rtc, tm);
+ local_irq_enable();
+
+ bcd2tm(tm);
+
+ return 0;
+}
+
+static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct omap_rtc *rtc = dev_get_drvdata(dev);
+
+ tm2bcd(tm);
+
+ local_irq_disable();
+ rtc_wait_not_busy(rtc);
+
+ rtc->type->unlock(rtc);
+ rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
+ rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
+ rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
+ rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
+ rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
+ rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
+ rtc->type->lock(rtc);
+
+ local_irq_enable();
+
+ return 0;
+}
+
+static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct omap_rtc *rtc = dev_get_drvdata(dev);
+ u8 interrupts;
+
+ local_irq_disable();
+ rtc_wait_not_busy(rtc);
+
+ alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
+ alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
+ alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
+ alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
+ alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
+ alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);
+
+ local_irq_enable();
+
+ bcd2tm(&alm->time);
+
+ interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
+ alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);
+
+ return 0;
+}
+
+static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct omap_rtc *rtc = dev_get_drvdata(dev);
+ u8 reg, irqwake_reg = 0;
+
+ tm2bcd(&alm->time);
+
+ local_irq_disable();
+ rtc_wait_not_busy(rtc);
+
+ rtc->type->unlock(rtc);
+ rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
+ rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
+ rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
+ rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
+ rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
+ rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);
+
+ reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
+ if (rtc->type->has_irqwakeen)
+ irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
+
+ if (alm->enabled) {
+ reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
+ irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
+ } else {
+ reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
+ irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
+ }
+ rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
+ if (rtc->type->has_irqwakeen)
+ rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
+ rtc->type->lock(rtc);
+
+ local_irq_enable();
+
+ return 0;
+}
+
+static struct omap_rtc *omap_rtc_power_off_rtc;
+
+/**
+ * omap_rtc_power_off_program: Set the pmic power off sequence. The RTC
+ * generates pmic_pwr_enable control, which can be used to control an external
+ * PMIC.
+ */
+int omap_rtc_power_off_program(struct device *dev)
+{
+ struct omap_rtc *rtc = omap_rtc_power_off_rtc;
+ struct rtc_time tm;
+ unsigned long now;
+ int seconds;
+ u32 val;
+
+ rtc->type->unlock(rtc);
+ /* enable pmic_power_en control */
+ val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
+ rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);
+
+again:
+ /* Clear any existing ALARM2 event */
+ rtc_writel(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM2);
+
+ /* set alarm one second from now */
+ omap_rtc_read_time_raw(rtc, &tm);
+ seconds = tm.tm_sec;
+ bcd2tm(&tm);
+ now = rtc_tm_to_time64(&tm);
+ rtc_time64_to_tm(now + 1, &tm);
+
+ tm2bcd(&tm);
+
+ rtc_wait_not_busy(rtc);
+
+ rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
+ rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
+ rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
+ rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
+ rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
+ rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);
+
+ /*
+ * enable ALARM2 interrupt
+ *
+ * NOTE: this fails on AM3352 if rtc_write (writeb) is used
+ */
+ val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
+ rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
+ val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
+
+ /* Retry in case roll over happened before alarm was armed. */
+ if (rtc_read(rtc, OMAP_RTC_SECONDS_REG) != seconds) {
+ val = rtc_read(rtc, OMAP_RTC_STATUS_REG);
+ if (!(val & OMAP_RTC_STATUS_ALARM2))
+ goto again;
+ }
+
+ rtc->type->lock(rtc);
+
+ return 0;
+}
+EXPORT_SYMBOL(omap_rtc_power_off_program);
+
+/*
+ * omap_rtc_poweroff: RTC-controlled power off
+ *
+ * The RTC can be used to control an external PMIC via the pmic_power_en pin,
+ * which can be configured to transition to OFF on ALARM2 events.
+ *
+ * Notes:
+ * The one-second alarm offset is the shortest offset possible as the alarm
+ * registers must be set before the next timer update and the offset
+ * calculation is too heavy for everything to be done within a single access
+ * period (~15 us).
+ *
+ * Called with local interrupts disabled.
+ */
+static void omap_rtc_power_off(void)
+{
+ struct rtc_device *rtc = omap_rtc_power_off_rtc->rtc;
+ u32 val;
+
+ omap_rtc_power_off_program(rtc->dev.parent);
+
+ /* Set PMIC power enable and EXT_WAKEUP in case PB power on is used */
+ omap_rtc_power_off_rtc->type->unlock(omap_rtc_power_off_rtc);
+ val = rtc_readl(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG);
+ val |= OMAP_RTC_PMIC_POWER_EN_EN | OMAP_RTC_PMIC_EXT_WKUP_POL(0) |
+ OMAP_RTC_PMIC_EXT_WKUP_EN(0);
+ rtc_writel(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG, val);
+ omap_rtc_power_off_rtc->type->lock(omap_rtc_power_off_rtc);
+
+ /*
+ * Wait for alarm to trigger (within one second) and external PMIC to
+ * power off the system. Add a 500 ms margin for external latencies
+ * (e.g. debounce circuits).
+ */
+ mdelay(1500);
+}
+
+static const struct rtc_class_ops omap_rtc_ops = {
+ .read_time = omap_rtc_read_time,
+ .set_time = omap_rtc_set_time,
+ .read_alarm = omap_rtc_read_alarm,
+ .set_alarm = omap_rtc_set_alarm,
+ .alarm_irq_enable = omap_rtc_alarm_irq_enable,
+};
+
+static const struct omap_rtc_device_type omap_rtc_default_type = {
+ .has_power_up_reset = true,
+ .lock = default_rtc_lock,
+ .unlock = default_rtc_unlock,
+};
+
+static const struct omap_rtc_device_type omap_rtc_am3352_type = {
+ .has_32kclk_en = true,
+ .has_irqwakeen = true,
+ .has_pmic_mode = true,
+ .lock = am3352_rtc_lock,
+ .unlock = am3352_rtc_unlock,
+};
+
+static const struct omap_rtc_device_type omap_rtc_da830_type = {
+ .lock = am3352_rtc_lock,
+ .unlock = am3352_rtc_unlock,
+};
+
+static const struct platform_device_id omap_rtc_id_table[] = {
+ {
+ .name = "omap_rtc",
+ .driver_data = (kernel_ulong_t)&omap_rtc_default_type,
+ }, {
+ .name = "am3352-rtc",
+ .driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
+ }, {
+ .name = "da830-rtc",
+ .driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
+ }, {
+ /* sentinel */
+ }
+};
+MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);
+
+static const struct of_device_id omap_rtc_of_match[] = {
+ {
+ .compatible = "ti,am3352-rtc",
+ .data = &omap_rtc_am3352_type,
+ }, {
+ .compatible = "ti,da830-rtc",
+ .data = &omap_rtc_da830_type,
+ }, {
+ /* sentinel */
+ }
+};
+MODULE_DEVICE_TABLE(of, omap_rtc_of_match);
+
+static const struct pinctrl_pin_desc rtc_pins_desc[] = {
+ PINCTRL_PIN(0, "ext_wakeup0"),
+ PINCTRL_PIN(1, "ext_wakeup1"),
+ PINCTRL_PIN(2, "ext_wakeup2"),
+ PINCTRL_PIN(3, "ext_wakeup3"),
+};
+
+static int rtc_pinctrl_get_groups_count(struct pinctrl_dev *pctldev)
+{
+ return 0;
+}
+
+static const char *rtc_pinctrl_get_group_name(struct pinctrl_dev *pctldev,
+ unsigned int group)
+{
+ return NULL;
+}
+
+static const struct pinctrl_ops rtc_pinctrl_ops = {
+ .get_groups_count = rtc_pinctrl_get_groups_count,
+ .get_group_name = rtc_pinctrl_get_group_name,
+ .dt_node_to_map = pinconf_generic_dt_node_to_map_pin,
+ .dt_free_map = pinconf_generic_dt_free_map,
+};
+
+#define PIN_CONFIG_ACTIVE_HIGH (PIN_CONFIG_END + 1)
+
+static const struct pinconf_generic_params rtc_params[] = {
+ {"ti,active-high", PIN_CONFIG_ACTIVE_HIGH, 0},
+};
+
+#ifdef CONFIG_DEBUG_FS
+static const struct pin_config_item rtc_conf_items[ARRAY_SIZE(rtc_params)] = {
+ PCONFDUMP(PIN_CONFIG_ACTIVE_HIGH, "input active high", NULL, false),
+};
+#endif
+
+static int rtc_pinconf_get(struct pinctrl_dev *pctldev,
+ unsigned int pin, unsigned long *config)
+{
+ struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
+ unsigned int param = pinconf_to_config_param(*config);
+ u32 val;
+ u16 arg = 0;
+
+ val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
+
+ switch (param) {
+ case PIN_CONFIG_INPUT_ENABLE:
+ if (!(val & OMAP_RTC_PMIC_EXT_WKUP_EN(pin)))
+ return -EINVAL;
+ break;
+ case PIN_CONFIG_ACTIVE_HIGH:
+ if (val & OMAP_RTC_PMIC_EXT_WKUP_POL(pin))
+ return -EINVAL;
+ break;
+ default:
+ return -ENOTSUPP;
+ }
+
+ *config = pinconf_to_config_packed(param, arg);
+
+ return 0;
+}
+
+static int rtc_pinconf_set(struct pinctrl_dev *pctldev,
+ unsigned int pin, unsigned long *configs,
+ unsigned int num_configs)
+{
+ struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
+ u32 val;
+ unsigned int param;
+ u32 param_val;
+ int i;
+
+ val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
+
+ /* active low by default */
+ val |= OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
+
+ for (i = 0; i < num_configs; i++) {
+ param = pinconf_to_config_param(configs[i]);
+ param_val = pinconf_to_config_argument(configs[i]);
+
+ switch (param) {
+ case PIN_CONFIG_INPUT_ENABLE:
+ if (param_val)
+ val |= OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
+ else
+ val &= ~OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
+ break;
+ case PIN_CONFIG_ACTIVE_HIGH:
+ val &= ~OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
+ break;
+ default:
+ dev_err(&rtc->rtc->dev, "Property %u not supported\n",
+ param);
+ return -ENOTSUPP;
+ }
+ }
+
+ rtc->type->unlock(rtc);
+ rtc_writel(rtc, OMAP_RTC_PMIC_REG, val);
+ rtc->type->lock(rtc);
+
+ return 0;
+}
+
+static const struct pinconf_ops rtc_pinconf_ops = {
+ .is_generic = true,
+ .pin_config_get = rtc_pinconf_get,
+ .pin_config_set = rtc_pinconf_set,
+};
+
+static struct pinctrl_desc rtc_pinctrl_desc = {
+ .pins = rtc_pins_desc,
+ .npins = ARRAY_SIZE(rtc_pins_desc),
+ .pctlops = &rtc_pinctrl_ops,
+ .confops = &rtc_pinconf_ops,
+ .custom_params = rtc_params,
+ .num_custom_params = ARRAY_SIZE(rtc_params),
+#ifdef CONFIG_DEBUG_FS
+ .custom_conf_items = rtc_conf_items,
+#endif
+ .owner = THIS_MODULE,
+};
+
+static int omap_rtc_scratch_read(void *priv, unsigned int offset, void *_val,
+ size_t bytes)
+{
+ struct omap_rtc *rtc = priv;
+ u32 *val = _val;
+ int i;
+
+ for (i = 0; i < bytes / 4; i++)
+ val[i] = rtc_readl(rtc,
+ OMAP_RTC_SCRATCH0_REG + offset + (i * 4));
+
+ return 0;
+}
+
+static int omap_rtc_scratch_write(void *priv, unsigned int offset, void *_val,
+ size_t bytes)
+{
+ struct omap_rtc *rtc = priv;
+ u32 *val = _val;
+ int i;
+
+ rtc->type->unlock(rtc);
+ for (i = 0; i < bytes / 4; i++)
+ rtc_writel(rtc,
+ OMAP_RTC_SCRATCH0_REG + offset + (i * 4), val[i]);
+ rtc->type->lock(rtc);
+
+ return 0;
+}
+
+static struct nvmem_config omap_rtc_nvmem_config = {
+ .name = "omap_rtc_scratch",
+ .word_size = 4,
+ .stride = 4,
+ .size = OMAP_RTC_KICK0_REG - OMAP_RTC_SCRATCH0_REG,
+ .reg_read = omap_rtc_scratch_read,
+ .reg_write = omap_rtc_scratch_write,
+};
+
+static int omap_rtc_probe(struct platform_device *pdev)
+{
+ struct omap_rtc *rtc;
+ u8 reg, mask, new_ctrl;
+ const struct platform_device_id *id_entry;
+ const struct of_device_id *of_id;
+ int ret;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ of_id = of_match_device(omap_rtc_of_match, &pdev->dev);
+ if (of_id) {
+ rtc->type = of_id->data;
+ rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
+ of_device_is_system_power_controller(pdev->dev.of_node);
+ } else {
+ id_entry = platform_get_device_id(pdev);
+ rtc->type = (void *)id_entry->driver_data;
+ }
+
+ rtc->irq_timer = platform_get_irq(pdev, 0);
+ if (rtc->irq_timer <= 0)
+ return -ENOENT;
+
+ rtc->irq_alarm = platform_get_irq(pdev, 1);
+ if (rtc->irq_alarm <= 0)
+ return -ENOENT;
+
+ rtc->clk = devm_clk_get(&pdev->dev, "ext-clk");
+ if (!IS_ERR(rtc->clk))
+ rtc->has_ext_clk = true;
+ else
+ rtc->clk = devm_clk_get(&pdev->dev, "int-clk");
+
+ if (!IS_ERR(rtc->clk))
+ clk_prepare_enable(rtc->clk);
+
+ rtc->base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(rtc->base)) {
+ clk_disable_unprepare(rtc->clk);
+ return PTR_ERR(rtc->base);
+ }
+
+ platform_set_drvdata(pdev, rtc);
+
+ /* Enable the clock/module so that we can access the registers */
+ pm_runtime_enable(&pdev->dev);
+ pm_runtime_get_sync(&pdev->dev);
+
+ rtc->type->unlock(rtc);
+
+ /*
+ * disable interrupts
+ *
+ * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
+ */
+ rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
+
+ /* enable RTC functional clock */
+ if (rtc->type->has_32kclk_en) {
+ reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
+ rtc_writel(rtc, OMAP_RTC_OSC_REG,
+ reg | OMAP_RTC_OSC_32KCLK_EN);
+ }
+
+ /* clear old status */
+ reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);
+
+ mask = OMAP_RTC_STATUS_ALARM;
+
+ if (rtc->type->has_pmic_mode)
+ mask |= OMAP_RTC_STATUS_ALARM2;
+
+ if (rtc->type->has_power_up_reset) {
+ mask |= OMAP_RTC_STATUS_POWER_UP;
+ if (reg & OMAP_RTC_STATUS_POWER_UP)
+ dev_info(&pdev->dev, "RTC power up reset detected\n");
+ }
+
+ if (reg & mask)
+ rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);
+
+ /* On boards with split power, RTC_ON_NOFF won't reset the RTC */
+ reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
+ if (reg & OMAP_RTC_CTRL_STOP)
+ dev_info(&pdev->dev, "already running\n");
+
+ /* force to 24 hour mode */
+ new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
+ new_ctrl |= OMAP_RTC_CTRL_STOP;
+
+ /*
+ * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
+ *
+ * - Device wake-up capability setting should come through chip
+ * init logic. OMAP1 boards should initialize the "wakeup capable"
+ * flag in the platform device if the board is wired right for
+ * being woken up by RTC alarm. For OMAP-L138, this capability
+ * is built into the SoC by the "Deep Sleep" capability.
+ *
+ * - Boards wired so RTC_ON_nOFF is used as the reset signal,
+ * rather than nPWRON_RESET, should forcibly enable split
+ * power mode. (Some chip errata report that RTC_CTRL_SPLIT
+ * is write-only, and always reads as zero...)
+ */
+
+ if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
+ dev_info(&pdev->dev, "split power mode\n");
+
+ if (reg != new_ctrl)
+ rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);
+
+ /*
+ * If we have the external clock then switch to it so we can keep
+ * ticking across suspend.
+ */
+ if (rtc->has_ext_clk) {
+ reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
+ reg &= ~OMAP_RTC_OSC_OSC32K_GZ_DISABLE;
+ reg |= OMAP_RTC_OSC_32KCLK_EN | OMAP_RTC_OSC_SEL_32KCLK_SRC;
+ rtc_writel(rtc, OMAP_RTC_OSC_REG, reg);
+ }
+
+ rtc->type->lock(rtc);
+
+ device_init_wakeup(&pdev->dev, true);
+
+ rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc->rtc)) {
+ ret = PTR_ERR(rtc->rtc);
+ goto err;
+ }
+
+ rtc->rtc->ops = &omap_rtc_ops;
+ rtc->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ rtc->rtc->range_max = RTC_TIMESTAMP_END_2099;
+ omap_rtc_nvmem_config.priv = rtc;
+
+ /* handle periodic and alarm irqs */
+ ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
+ dev_name(&rtc->rtc->dev), rtc);
+ if (ret)
+ goto err;
+
+ if (rtc->irq_timer != rtc->irq_alarm) {
+ ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
+ dev_name(&rtc->rtc->dev), rtc);
+ if (ret)
+ goto err;
+ }
+
+ /* Support ext_wakeup pinconf */
+ rtc_pinctrl_desc.name = dev_name(&pdev->dev);
+
+ rtc->pctldev = pinctrl_register(&rtc_pinctrl_desc, &pdev->dev, rtc);
+ if (IS_ERR(rtc->pctldev)) {
+ dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
+ ret = PTR_ERR(rtc->pctldev);
+ goto err;
+ }
+
+ ret = rtc_register_device(rtc->rtc);
+ if (ret)
+ goto err_deregister_pinctrl;
+
+ rtc_nvmem_register(rtc->rtc, &omap_rtc_nvmem_config);
+
+ if (rtc->is_pmic_controller) {
+ if (!pm_power_off) {
+ omap_rtc_power_off_rtc = rtc;
+ pm_power_off = omap_rtc_power_off;
+ }
+ }
+
+ return 0;
+
+err_deregister_pinctrl:
+ pinctrl_unregister(rtc->pctldev);
+err:
+ clk_disable_unprepare(rtc->clk);
+ device_init_wakeup(&pdev->dev, false);
+ rtc->type->lock(rtc);
+ pm_runtime_put_sync(&pdev->dev);
+ pm_runtime_disable(&pdev->dev);
+
+ return ret;
+}
+
+static int omap_rtc_remove(struct platform_device *pdev)
+{
+ struct omap_rtc *rtc = platform_get_drvdata(pdev);
+ u8 reg;
+
+ if (pm_power_off == omap_rtc_power_off &&
+ omap_rtc_power_off_rtc == rtc) {
+ pm_power_off = NULL;
+ omap_rtc_power_off_rtc = NULL;
+ }
+
+ device_init_wakeup(&pdev->dev, 0);
+
+ if (!IS_ERR(rtc->clk))
+ clk_disable_unprepare(rtc->clk);
+
+ rtc->type->unlock(rtc);
+ /* leave rtc running, but disable irqs */
+ rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
+
+ if (rtc->has_ext_clk) {
+ reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
+ reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC;
+ rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
+ }
+
+ rtc->type->lock(rtc);
+
+ /* Disable the clock/module */
+ pm_runtime_put_sync(&pdev->dev);
+ pm_runtime_disable(&pdev->dev);
+
+ /* Remove ext_wakeup pinconf */
+ pinctrl_unregister(rtc->pctldev);
+
+ return 0;
+}
+
+static int __maybe_unused omap_rtc_suspend(struct device *dev)
+{
+ struct omap_rtc *rtc = dev_get_drvdata(dev);
+
+ rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
+
+ rtc->type->unlock(rtc);
+ /*
+ * FIXME: the RTC alarm is not currently acting as a wakeup event
+ * source on some platforms, and in fact this enable() call is just
+ * saving a flag that's never used...
+ */
+ if (device_may_wakeup(dev))
+ enable_irq_wake(rtc->irq_alarm);
+ else
+ rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
+ rtc->type->lock(rtc);
+
+ rtc->is_suspending = true;
+
+ return 0;
+}
+
+static int __maybe_unused omap_rtc_resume(struct device *dev)
+{
+ struct omap_rtc *rtc = dev_get_drvdata(dev);
+
+ rtc->type->unlock(rtc);
+ if (device_may_wakeup(dev))
+ disable_irq_wake(rtc->irq_alarm);
+ else
+ rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
+ rtc->type->lock(rtc);
+
+ rtc->is_suspending = false;
+
+ return 0;
+}
+
+static int __maybe_unused omap_rtc_runtime_suspend(struct device *dev)
+{
+ struct omap_rtc *rtc = dev_get_drvdata(dev);
+
+ if (rtc->is_suspending && !rtc->has_ext_clk)
+ return -EBUSY;
+
+ return 0;
+}
+
+static const struct dev_pm_ops omap_rtc_pm_ops = {
+ SET_SYSTEM_SLEEP_PM_OPS(omap_rtc_suspend, omap_rtc_resume)
+ SET_RUNTIME_PM_OPS(omap_rtc_runtime_suspend, NULL, NULL)
+};
+
+static void omap_rtc_shutdown(struct platform_device *pdev)
+{
+ struct omap_rtc *rtc = platform_get_drvdata(pdev);
+ u8 mask;
+
+ /*
+ * Keep the ALARM interrupt enabled to allow the system to power up on
+ * alarm events.
+ */
+ rtc->type->unlock(rtc);
+ mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
+ mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
+ rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
+ rtc->type->lock(rtc);
+}
+
+static struct platform_driver omap_rtc_driver = {
+ .probe = omap_rtc_probe,
+ .remove = omap_rtc_remove,
+ .shutdown = omap_rtc_shutdown,
+ .driver = {
+ .name = "omap_rtc",
+ .pm = &omap_rtc_pm_ops,
+ .of_match_table = omap_rtc_of_match,
+ },
+ .id_table = omap_rtc_id_table,
+};
+
+module_platform_driver(omap_rtc_driver);
+
+MODULE_ALIAS("platform:omap_rtc");
+MODULE_AUTHOR("George G. Davis (and others)");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-opal.c b/drivers/rtc/rtc-opal.c
new file mode 100644
index 000000000..7b9f8bcf8
--- /dev/null
+++ b/drivers/rtc/rtc-opal.c
@@ -0,0 +1,298 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * IBM OPAL RTC driver
+ * Copyright (C) 2014 IBM
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#define DRVNAME "rtc-opal"
+
+#include <linux/module.h>
+#include <linux/err.h>
+#include <linux/rtc.h>
+#include <linux/delay.h>
+#include <linux/bcd.h>
+#include <linux/platform_device.h>
+#include <linux/of.h>
+#include <asm/opal.h>
+#include <asm/firmware.h>
+
+static void opal_to_tm(u32 y_m_d, u64 h_m_s_ms, struct rtc_time *tm)
+{
+ tm->tm_year = ((bcd2bin(y_m_d >> 24) * 100) +
+ bcd2bin((y_m_d >> 16) & 0xff)) - 1900;
+ tm->tm_mon = bcd2bin((y_m_d >> 8) & 0xff) - 1;
+ tm->tm_mday = bcd2bin(y_m_d & 0xff);
+ tm->tm_hour = bcd2bin((h_m_s_ms >> 56) & 0xff);
+ tm->tm_min = bcd2bin((h_m_s_ms >> 48) & 0xff);
+ tm->tm_sec = bcd2bin((h_m_s_ms >> 40) & 0xff);
+
+ tm->tm_wday = -1;
+}
+
+static void tm_to_opal(struct rtc_time *tm, u32 *y_m_d, u64 *h_m_s_ms)
+{
+ *y_m_d |= ((u32)bin2bcd((tm->tm_year + 1900) / 100)) << 24;
+ *y_m_d |= ((u32)bin2bcd((tm->tm_year + 1900) % 100)) << 16;
+ *y_m_d |= ((u32)bin2bcd((tm->tm_mon + 1))) << 8;
+ *y_m_d |= ((u32)bin2bcd(tm->tm_mday));
+
+ *h_m_s_ms |= ((u64)bin2bcd(tm->tm_hour)) << 56;
+ *h_m_s_ms |= ((u64)bin2bcd(tm->tm_min)) << 48;
+ *h_m_s_ms |= ((u64)bin2bcd(tm->tm_sec)) << 40;
+}
+
+static int opal_get_rtc_time(struct device *dev, struct rtc_time *tm)
+{
+ s64 rc = OPAL_BUSY;
+ int retries = 10;
+ u32 y_m_d;
+ u64 h_m_s_ms;
+ __be32 __y_m_d;
+ __be64 __h_m_s_ms;
+
+ while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
+ rc = opal_rtc_read(&__y_m_d, &__h_m_s_ms);
+ if (rc == OPAL_BUSY_EVENT) {
+ msleep(OPAL_BUSY_DELAY_MS);
+ opal_poll_events(NULL);
+ } else if (rc == OPAL_BUSY) {
+ msleep(OPAL_BUSY_DELAY_MS);
+ } else if (rc == OPAL_HARDWARE || rc == OPAL_INTERNAL_ERROR) {
+ if (retries--) {
+ msleep(10); /* Wait 10ms before retry */
+ rc = OPAL_BUSY; /* go around again */
+ }
+ }
+ }
+
+ if (rc != OPAL_SUCCESS)
+ return -EIO;
+
+ y_m_d = be32_to_cpu(__y_m_d);
+ h_m_s_ms = be64_to_cpu(__h_m_s_ms);
+ opal_to_tm(y_m_d, h_m_s_ms, tm);
+
+ return 0;
+}
+
+static int opal_set_rtc_time(struct device *dev, struct rtc_time *tm)
+{
+ s64 rc = OPAL_BUSY;
+ int retries = 10;
+ u32 y_m_d = 0;
+ u64 h_m_s_ms = 0;
+
+ tm_to_opal(tm, &y_m_d, &h_m_s_ms);
+
+ while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
+ rc = opal_rtc_write(y_m_d, h_m_s_ms);
+ if (rc == OPAL_BUSY_EVENT) {
+ msleep(OPAL_BUSY_DELAY_MS);
+ opal_poll_events(NULL);
+ } else if (rc == OPAL_BUSY) {
+ msleep(OPAL_BUSY_DELAY_MS);
+ } else if (rc == OPAL_HARDWARE || rc == OPAL_INTERNAL_ERROR) {
+ if (retries--) {
+ msleep(10); /* Wait 10ms before retry */
+ rc = OPAL_BUSY; /* go around again */
+ }
+ }
+ }
+
+ return rc == OPAL_SUCCESS ? 0 : -EIO;
+}
+
+/*
+ * TPO Timed Power-On
+ *
+ * TPO get/set OPAL calls care about the hour and min and to make it consistent
+ * with the rtc utility time conversion functions, we use the 'u64' to store
+ * its value and perform bit shift by 32 before use..
+ */
+static int opal_get_tpo_time(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ __be32 __y_m_d, __h_m;
+ struct opal_msg msg;
+ int rc, token;
+ u64 h_m_s_ms;
+ u32 y_m_d;
+
+ token = opal_async_get_token_interruptible();
+ if (token < 0) {
+ if (token != -ERESTARTSYS)
+ pr_err("Failed to get the async token\n");
+
+ return token;
+ }
+
+ rc = opal_tpo_read(token, &__y_m_d, &__h_m);
+ if (rc != OPAL_ASYNC_COMPLETION) {
+ rc = -EIO;
+ goto exit;
+ }
+
+ rc = opal_async_wait_response(token, &msg);
+ if (rc) {
+ rc = -EIO;
+ goto exit;
+ }
+
+ rc = opal_get_async_rc(msg);
+ if (rc != OPAL_SUCCESS) {
+ rc = -EIO;
+ goto exit;
+ }
+
+ y_m_d = be32_to_cpu(__y_m_d);
+ h_m_s_ms = ((u64)be32_to_cpu(__h_m) << 32);
+
+ /* check if no alarm is set */
+ if (y_m_d == 0 && h_m_s_ms == 0) {
+ pr_debug("No alarm is set\n");
+ rc = -ENOENT;
+ goto exit;
+ } else {
+ pr_debug("Alarm set to %x %llx\n", y_m_d, h_m_s_ms);
+ }
+
+ opal_to_tm(y_m_d, h_m_s_ms, &alarm->time);
+
+exit:
+ opal_async_release_token(token);
+ return rc;
+}
+
+/* Set Timed Power-On */
+static int opal_set_tpo_time(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ u64 h_m_s_ms = 0;
+ struct opal_msg msg;
+ u32 y_m_d = 0;
+ int token, rc;
+
+ /* if alarm is enabled */
+ if (alarm->enabled) {
+ tm_to_opal(&alarm->time, &y_m_d, &h_m_s_ms);
+ pr_debug("Alarm set to %x %llx\n", y_m_d, h_m_s_ms);
+
+ } else {
+ pr_debug("Alarm getting disabled\n");
+ }
+
+ token = opal_async_get_token_interruptible();
+ if (token < 0) {
+ if (token != -ERESTARTSYS)
+ pr_err("Failed to get the async token\n");
+
+ return token;
+ }
+
+ /* TPO, we care about hour and minute */
+ rc = opal_tpo_write(token, y_m_d,
+ (u32)((h_m_s_ms >> 32) & 0xffff0000));
+ if (rc != OPAL_ASYNC_COMPLETION) {
+ rc = -EIO;
+ goto exit;
+ }
+
+ rc = opal_async_wait_response(token, &msg);
+ if (rc) {
+ rc = -EIO;
+ goto exit;
+ }
+
+ rc = opal_get_async_rc(msg);
+ if (rc != OPAL_SUCCESS)
+ rc = -EIO;
+
+exit:
+ opal_async_release_token(token);
+ return rc;
+}
+
+static int opal_tpo_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct rtc_wkalrm alarm = { .enabled = 0 };
+
+ /*
+ * TPO is automatically enabled when opal_set_tpo_time() is called with
+ * non-zero rtc-time. We only handle disable case which needs to be
+ * explicitly told to opal.
+ */
+ return enabled ? 0 : opal_set_tpo_time(dev, &alarm);
+}
+
+static struct rtc_class_ops opal_rtc_ops = {
+ .read_time = opal_get_rtc_time,
+ .set_time = opal_set_rtc_time,
+};
+
+static int opal_rtc_probe(struct platform_device *pdev)
+{
+ struct rtc_device *rtc;
+
+ if (pdev->dev.of_node &&
+ (of_property_read_bool(pdev->dev.of_node, "wakeup-source") ||
+ of_property_read_bool(pdev->dev.of_node, "has-tpo")/* legacy */)) {
+ device_set_wakeup_capable(&pdev->dev, true);
+ opal_rtc_ops.read_alarm = opal_get_tpo_time;
+ opal_rtc_ops.set_alarm = opal_set_tpo_time;
+ opal_rtc_ops.alarm_irq_enable = opal_tpo_alarm_irq_enable;
+ }
+
+ rtc = devm_rtc_device_register(&pdev->dev, DRVNAME, &opal_rtc_ops,
+ THIS_MODULE);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ rtc->uie_unsupported = 1;
+
+ return 0;
+}
+
+static const struct of_device_id opal_rtc_match[] = {
+ {
+ .compatible = "ibm,opal-rtc",
+ },
+ { }
+};
+MODULE_DEVICE_TABLE(of, opal_rtc_match);
+
+static const struct platform_device_id opal_rtc_driver_ids[] = {
+ {
+ .name = "opal-rtc",
+ },
+ { }
+};
+MODULE_DEVICE_TABLE(platform, opal_rtc_driver_ids);
+
+static struct platform_driver opal_rtc_driver = {
+ .probe = opal_rtc_probe,
+ .id_table = opal_rtc_driver_ids,
+ .driver = {
+ .name = DRVNAME,
+ .of_match_table = opal_rtc_match,
+ },
+};
+
+static int __init opal_rtc_init(void)
+{
+ if (!firmware_has_feature(FW_FEATURE_OPAL))
+ return -ENODEV;
+
+ return platform_driver_register(&opal_rtc_driver);
+}
+
+static void __exit opal_rtc_exit(void)
+{
+ platform_driver_unregister(&opal_rtc_driver);
+}
+
+MODULE_AUTHOR("Neelesh Gupta <neelegup@linux.vnet.ibm.com>");
+MODULE_DESCRIPTION("IBM OPAL RTC driver");
+MODULE_LICENSE("GPL");
+
+module_init(opal_rtc_init);
+module_exit(opal_rtc_exit);
diff --git a/drivers/rtc/rtc-palmas.c b/drivers/rtc/rtc-palmas.c
new file mode 100644
index 000000000..4bcfb8867
--- /dev/null
+++ b/drivers/rtc/rtc-palmas.c
@@ -0,0 +1,376 @@
+/*
+ * rtc-palmas.c -- Palmas Real Time Clock driver.
+
+ * RTC driver for TI Palma series devices like TPS65913,
+ * TPS65914 power management IC.
+ *
+ * Copyright (c) 2012, NVIDIA Corporation.
+ *
+ * Author: Laxman Dewangan <ldewangan@nvidia.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation version 2.
+ *
+ * This program is distributed "as is" WITHOUT ANY WARRANTY of any kind,
+ * whether express or implied; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ * 02111-1307, USA
+ */
+
+#include <linux/bcd.h>
+#include <linux/errno.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/kernel.h>
+#include <linux/mfd/palmas.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/rtc.h>
+#include <linux/types.h>
+#include <linux/platform_device.h>
+#include <linux/pm.h>
+
+struct palmas_rtc {
+ struct rtc_device *rtc;
+ struct device *dev;
+ unsigned int irq;
+};
+
+/* Total number of RTC registers needed to set time*/
+#define PALMAS_NUM_TIME_REGS (PALMAS_YEARS_REG - PALMAS_SECONDS_REG + 1)
+
+static int palmas_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ unsigned char rtc_data[PALMAS_NUM_TIME_REGS];
+ struct palmas *palmas = dev_get_drvdata(dev->parent);
+ int ret;
+
+ /* Copy RTC counting registers to static registers or latches */
+ ret = palmas_update_bits(palmas, PALMAS_RTC_BASE, PALMAS_RTC_CTRL_REG,
+ PALMAS_RTC_CTRL_REG_GET_TIME, PALMAS_RTC_CTRL_REG_GET_TIME);
+ if (ret < 0) {
+ dev_err(dev, "RTC CTRL reg update failed, err: %d\n", ret);
+ return ret;
+ }
+
+ ret = palmas_bulk_read(palmas, PALMAS_RTC_BASE, PALMAS_SECONDS_REG,
+ rtc_data, PALMAS_NUM_TIME_REGS);
+ if (ret < 0) {
+ dev_err(dev, "RTC_SECONDS reg read failed, err = %d\n", ret);
+ return ret;
+ }
+
+ tm->tm_sec = bcd2bin(rtc_data[0]);
+ tm->tm_min = bcd2bin(rtc_data[1]);
+ tm->tm_hour = bcd2bin(rtc_data[2]);
+ tm->tm_mday = bcd2bin(rtc_data[3]);
+ tm->tm_mon = bcd2bin(rtc_data[4]) - 1;
+ tm->tm_year = bcd2bin(rtc_data[5]) + 100;
+
+ return ret;
+}
+
+static int palmas_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ unsigned char rtc_data[PALMAS_NUM_TIME_REGS];
+ struct palmas *palmas = dev_get_drvdata(dev->parent);
+ int ret;
+
+ rtc_data[0] = bin2bcd(tm->tm_sec);
+ rtc_data[1] = bin2bcd(tm->tm_min);
+ rtc_data[2] = bin2bcd(tm->tm_hour);
+ rtc_data[3] = bin2bcd(tm->tm_mday);
+ rtc_data[4] = bin2bcd(tm->tm_mon + 1);
+ rtc_data[5] = bin2bcd(tm->tm_year - 100);
+
+ /* Stop RTC while updating the RTC time registers */
+ ret = palmas_update_bits(palmas, PALMAS_RTC_BASE, PALMAS_RTC_CTRL_REG,
+ PALMAS_RTC_CTRL_REG_STOP_RTC, 0);
+ if (ret < 0) {
+ dev_err(dev, "RTC stop failed, err = %d\n", ret);
+ return ret;
+ }
+
+ ret = palmas_bulk_write(palmas, PALMAS_RTC_BASE, PALMAS_SECONDS_REG,
+ rtc_data, PALMAS_NUM_TIME_REGS);
+ if (ret < 0) {
+ dev_err(dev, "RTC_SECONDS reg write failed, err = %d\n", ret);
+ return ret;
+ }
+
+ /* Start back RTC */
+ ret = palmas_update_bits(palmas, PALMAS_RTC_BASE, PALMAS_RTC_CTRL_REG,
+ PALMAS_RTC_CTRL_REG_STOP_RTC, PALMAS_RTC_CTRL_REG_STOP_RTC);
+ if (ret < 0)
+ dev_err(dev, "RTC start failed, err = %d\n", ret);
+ return ret;
+}
+
+static int palmas_rtc_alarm_irq_enable(struct device *dev, unsigned enabled)
+{
+ struct palmas *palmas = dev_get_drvdata(dev->parent);
+ u8 val;
+
+ val = enabled ? PALMAS_RTC_INTERRUPTS_REG_IT_ALARM : 0;
+ return palmas_write(palmas, PALMAS_RTC_BASE,
+ PALMAS_RTC_INTERRUPTS_REG, val);
+}
+
+static int palmas_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ unsigned char alarm_data[PALMAS_NUM_TIME_REGS];
+ u32 int_val;
+ struct palmas *palmas = dev_get_drvdata(dev->parent);
+ int ret;
+
+ ret = palmas_bulk_read(palmas, PALMAS_RTC_BASE,
+ PALMAS_ALARM_SECONDS_REG,
+ alarm_data, PALMAS_NUM_TIME_REGS);
+ if (ret < 0) {
+ dev_err(dev, "RTC_ALARM_SECONDS read failed, err = %d\n", ret);
+ return ret;
+ }
+
+ alm->time.tm_sec = bcd2bin(alarm_data[0]);
+ alm->time.tm_min = bcd2bin(alarm_data[1]);
+ alm->time.tm_hour = bcd2bin(alarm_data[2]);
+ alm->time.tm_mday = bcd2bin(alarm_data[3]);
+ alm->time.tm_mon = bcd2bin(alarm_data[4]) - 1;
+ alm->time.tm_year = bcd2bin(alarm_data[5]) + 100;
+
+ ret = palmas_read(palmas, PALMAS_RTC_BASE, PALMAS_RTC_INTERRUPTS_REG,
+ &int_val);
+ if (ret < 0) {
+ dev_err(dev, "RTC_INTERRUPTS reg read failed, err = %d\n", ret);
+ return ret;
+ }
+
+ if (int_val & PALMAS_RTC_INTERRUPTS_REG_IT_ALARM)
+ alm->enabled = 1;
+ return ret;
+}
+
+static int palmas_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ unsigned char alarm_data[PALMAS_NUM_TIME_REGS];
+ struct palmas *palmas = dev_get_drvdata(dev->parent);
+ int ret;
+
+ ret = palmas_rtc_alarm_irq_enable(dev, 0);
+ if (ret < 0) {
+ dev_err(dev, "Disable RTC alarm failed\n");
+ return ret;
+ }
+
+ alarm_data[0] = bin2bcd(alm->time.tm_sec);
+ alarm_data[1] = bin2bcd(alm->time.tm_min);
+ alarm_data[2] = bin2bcd(alm->time.tm_hour);
+ alarm_data[3] = bin2bcd(alm->time.tm_mday);
+ alarm_data[4] = bin2bcd(alm->time.tm_mon + 1);
+ alarm_data[5] = bin2bcd(alm->time.tm_year - 100);
+
+ ret = palmas_bulk_write(palmas, PALMAS_RTC_BASE,
+ PALMAS_ALARM_SECONDS_REG, alarm_data, PALMAS_NUM_TIME_REGS);
+ if (ret < 0) {
+ dev_err(dev, "ALARM_SECONDS_REG write failed, err = %d\n", ret);
+ return ret;
+ }
+
+ if (alm->enabled)
+ ret = palmas_rtc_alarm_irq_enable(dev, 1);
+ return ret;
+}
+
+static int palmas_clear_interrupts(struct device *dev)
+{
+ struct palmas *palmas = dev_get_drvdata(dev->parent);
+ unsigned int rtc_reg;
+ int ret;
+
+ ret = palmas_read(palmas, PALMAS_RTC_BASE, PALMAS_RTC_STATUS_REG,
+ &rtc_reg);
+ if (ret < 0) {
+ dev_err(dev, "RTC_STATUS read failed, err = %d\n", ret);
+ return ret;
+ }
+
+ ret = palmas_write(palmas, PALMAS_RTC_BASE, PALMAS_RTC_STATUS_REG,
+ rtc_reg);
+ if (ret < 0) {
+ dev_err(dev, "RTC_STATUS write failed, err = %d\n", ret);
+ return ret;
+ }
+ return 0;
+}
+
+static irqreturn_t palmas_rtc_interrupt(int irq, void *context)
+{
+ struct palmas_rtc *palmas_rtc = context;
+ struct device *dev = palmas_rtc->dev;
+ int ret;
+
+ ret = palmas_clear_interrupts(dev);
+ if (ret < 0) {
+ dev_err(dev, "RTC interrupt clear failed, err = %d\n", ret);
+ return IRQ_NONE;
+ }
+
+ rtc_update_irq(palmas_rtc->rtc, 1, RTC_IRQF | RTC_AF);
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops palmas_rtc_ops = {
+ .read_time = palmas_rtc_read_time,
+ .set_time = palmas_rtc_set_time,
+ .read_alarm = palmas_rtc_read_alarm,
+ .set_alarm = palmas_rtc_set_alarm,
+ .alarm_irq_enable = palmas_rtc_alarm_irq_enable,
+};
+
+static int palmas_rtc_probe(struct platform_device *pdev)
+{
+ struct palmas *palmas = dev_get_drvdata(pdev->dev.parent);
+ struct palmas_rtc *palmas_rtc = NULL;
+ int ret;
+ bool enable_bb_charging = false;
+ bool high_bb_charging = false;
+
+ if (pdev->dev.of_node) {
+ enable_bb_charging = of_property_read_bool(pdev->dev.of_node,
+ "ti,backup-battery-chargeable");
+ high_bb_charging = of_property_read_bool(pdev->dev.of_node,
+ "ti,backup-battery-charge-high-current");
+ }
+
+ palmas_rtc = devm_kzalloc(&pdev->dev, sizeof(struct palmas_rtc),
+ GFP_KERNEL);
+ if (!palmas_rtc)
+ return -ENOMEM;
+
+ /* Clear pending interrupts */
+ ret = palmas_clear_interrupts(&pdev->dev);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "clear RTC int failed, err = %d\n", ret);
+ return ret;
+ }
+
+ palmas_rtc->dev = &pdev->dev;
+ platform_set_drvdata(pdev, palmas_rtc);
+
+ if (enable_bb_charging) {
+ unsigned reg = PALMAS_BACKUP_BATTERY_CTRL_BBS_BBC_LOW_ICHRG;
+
+ if (high_bb_charging)
+ reg = 0;
+
+ ret = palmas_update_bits(palmas, PALMAS_PMU_CONTROL_BASE,
+ PALMAS_BACKUP_BATTERY_CTRL,
+ PALMAS_BACKUP_BATTERY_CTRL_BBS_BBC_LOW_ICHRG, reg);
+ if (ret < 0) {
+ dev_err(&pdev->dev,
+ "BACKUP_BATTERY_CTRL update failed, %d\n", ret);
+ return ret;
+ }
+
+ ret = palmas_update_bits(palmas, PALMAS_PMU_CONTROL_BASE,
+ PALMAS_BACKUP_BATTERY_CTRL,
+ PALMAS_BACKUP_BATTERY_CTRL_BB_CHG_EN,
+ PALMAS_BACKUP_BATTERY_CTRL_BB_CHG_EN);
+ if (ret < 0) {
+ dev_err(&pdev->dev,
+ "BACKUP_BATTERY_CTRL update failed, %d\n", ret);
+ return ret;
+ }
+ }
+
+ /* Start RTC */
+ ret = palmas_update_bits(palmas, PALMAS_RTC_BASE, PALMAS_RTC_CTRL_REG,
+ PALMAS_RTC_CTRL_REG_STOP_RTC,
+ PALMAS_RTC_CTRL_REG_STOP_RTC);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "RTC_CTRL write failed, err = %d\n", ret);
+ return ret;
+ }
+
+ palmas_rtc->irq = platform_get_irq(pdev, 0);
+
+ device_init_wakeup(&pdev->dev, 1);
+ palmas_rtc->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
+ &palmas_rtc_ops, THIS_MODULE);
+ if (IS_ERR(palmas_rtc->rtc)) {
+ ret = PTR_ERR(palmas_rtc->rtc);
+ dev_err(&pdev->dev, "RTC register failed, err = %d\n", ret);
+ return ret;
+ }
+
+ ret = devm_request_threaded_irq(&pdev->dev, palmas_rtc->irq, NULL,
+ palmas_rtc_interrupt,
+ IRQF_TRIGGER_LOW | IRQF_ONESHOT,
+ dev_name(&pdev->dev), palmas_rtc);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "IRQ request failed, err = %d\n", ret);
+ return ret;
+ }
+
+ return 0;
+}
+
+static int palmas_rtc_remove(struct platform_device *pdev)
+{
+ palmas_rtc_alarm_irq_enable(&pdev->dev, 0);
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int palmas_rtc_suspend(struct device *dev)
+{
+ struct palmas_rtc *palmas_rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ enable_irq_wake(palmas_rtc->irq);
+ return 0;
+}
+
+static int palmas_rtc_resume(struct device *dev)
+{
+ struct palmas_rtc *palmas_rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ disable_irq_wake(palmas_rtc->irq);
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(palmas_rtc_pm_ops, palmas_rtc_suspend,
+ palmas_rtc_resume);
+
+#ifdef CONFIG_OF
+static const struct of_device_id of_palmas_rtc_match[] = {
+ { .compatible = "ti,palmas-rtc"},
+ { },
+};
+MODULE_DEVICE_TABLE(of, of_palmas_rtc_match);
+#endif
+
+static struct platform_driver palmas_rtc_driver = {
+ .probe = palmas_rtc_probe,
+ .remove = palmas_rtc_remove,
+ .driver = {
+ .name = "palmas-rtc",
+ .pm = &palmas_rtc_pm_ops,
+ .of_match_table = of_match_ptr(of_palmas_rtc_match),
+ },
+};
+
+module_platform_driver(palmas_rtc_driver);
+
+MODULE_ALIAS("platform:palmas_rtc");
+MODULE_DESCRIPTION("TI PALMAS series RTC driver");
+MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-pcap.c b/drivers/rtc/rtc-pcap.c
new file mode 100644
index 000000000..178bfb1de
--- /dev/null
+++ b/drivers/rtc/rtc-pcap.c
@@ -0,0 +1,185 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * pcap rtc code for Motorola EZX phones
+ *
+ * Copyright (c) 2008 guiming zhuo <gmzhuo@gmail.com>
+ * Copyright (c) 2009 Daniel Ribeiro <drwyrm@gmail.com>
+ *
+ * Based on Motorola's rtc.c Copyright (c) 2003-2005 Motorola
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/mfd/ezx-pcap.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+#include <linux/platform_device.h>
+
+struct pcap_rtc {
+ struct pcap_chip *pcap;
+ struct rtc_device *rtc;
+};
+
+static irqreturn_t pcap_rtc_irq(int irq, void *_pcap_rtc)
+{
+ struct pcap_rtc *pcap_rtc = _pcap_rtc;
+ unsigned long rtc_events;
+
+ if (irq == pcap_to_irq(pcap_rtc->pcap, PCAP_IRQ_1HZ))
+ rtc_events = RTC_IRQF | RTC_UF;
+ else if (irq == pcap_to_irq(pcap_rtc->pcap, PCAP_IRQ_TODA))
+ rtc_events = RTC_IRQF | RTC_AF;
+ else
+ rtc_events = 0;
+
+ rtc_update_irq(pcap_rtc->rtc, 1, rtc_events);
+ return IRQ_HANDLED;
+}
+
+static int pcap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pcap_rtc *pcap_rtc = dev_get_drvdata(dev);
+ struct rtc_time *tm = &alrm->time;
+ unsigned long secs;
+ u32 tod; /* time of day, seconds since midnight */
+ u32 days; /* days since 1/1/1970 */
+
+ ezx_pcap_read(pcap_rtc->pcap, PCAP_REG_RTC_TODA, &tod);
+ secs = tod & PCAP_RTC_TOD_MASK;
+
+ ezx_pcap_read(pcap_rtc->pcap, PCAP_REG_RTC_DAYA, &days);
+ secs += (days & PCAP_RTC_DAY_MASK) * SEC_PER_DAY;
+
+ rtc_time64_to_tm(secs, tm);
+
+ return 0;
+}
+
+static int pcap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pcap_rtc *pcap_rtc = dev_get_drvdata(dev);
+ unsigned long secs = rtc_tm_to_time64(&alrm->time);
+ u32 tod, days;
+
+ tod = secs % SEC_PER_DAY;
+ ezx_pcap_write(pcap_rtc->pcap, PCAP_REG_RTC_TODA, tod);
+
+ days = secs / SEC_PER_DAY;
+ ezx_pcap_write(pcap_rtc->pcap, PCAP_REG_RTC_DAYA, days);
+
+ return 0;
+}
+
+static int pcap_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pcap_rtc *pcap_rtc = dev_get_drvdata(dev);
+ unsigned long secs;
+ u32 tod, days;
+
+ ezx_pcap_read(pcap_rtc->pcap, PCAP_REG_RTC_TOD, &tod);
+ secs = tod & PCAP_RTC_TOD_MASK;
+
+ ezx_pcap_read(pcap_rtc->pcap, PCAP_REG_RTC_DAY, &days);
+ secs += (days & PCAP_RTC_DAY_MASK) * SEC_PER_DAY;
+
+ rtc_time64_to_tm(secs, tm);
+
+ return 0;
+}
+
+static int pcap_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pcap_rtc *pcap_rtc = dev_get_drvdata(dev);
+ unsigned long secs = rtc_tm_to_time64(tm);
+ u32 tod, days;
+
+ tod = secs % SEC_PER_DAY;
+ ezx_pcap_write(pcap_rtc->pcap, PCAP_REG_RTC_TOD, tod);
+
+ days = secs / SEC_PER_DAY;
+ ezx_pcap_write(pcap_rtc->pcap, PCAP_REG_RTC_DAY, days);
+
+ return 0;
+}
+
+static int pcap_rtc_irq_enable(struct device *dev, int pirq, unsigned int en)
+{
+ struct pcap_rtc *pcap_rtc = dev_get_drvdata(dev);
+
+ if (en)
+ enable_irq(pcap_to_irq(pcap_rtc->pcap, pirq));
+ else
+ disable_irq(pcap_to_irq(pcap_rtc->pcap, pirq));
+
+ return 0;
+}
+
+static int pcap_rtc_alarm_irq_enable(struct device *dev, unsigned int en)
+{
+ return pcap_rtc_irq_enable(dev, PCAP_IRQ_TODA, en);
+}
+
+static const struct rtc_class_ops pcap_rtc_ops = {
+ .read_time = pcap_rtc_read_time,
+ .set_time = pcap_rtc_set_time,
+ .read_alarm = pcap_rtc_read_alarm,
+ .set_alarm = pcap_rtc_set_alarm,
+ .alarm_irq_enable = pcap_rtc_alarm_irq_enable,
+};
+
+static int __init pcap_rtc_probe(struct platform_device *pdev)
+{
+ struct pcap_rtc *pcap_rtc;
+ int timer_irq, alarm_irq;
+ int err = -ENOMEM;
+
+ pcap_rtc = devm_kzalloc(&pdev->dev, sizeof(struct pcap_rtc),
+ GFP_KERNEL);
+ if (!pcap_rtc)
+ return err;
+
+ pcap_rtc->pcap = dev_get_drvdata(pdev->dev.parent);
+
+ platform_set_drvdata(pdev, pcap_rtc);
+
+ pcap_rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(pcap_rtc->rtc))
+ return PTR_ERR(pcap_rtc->rtc);
+
+ pcap_rtc->rtc->ops = &pcap_rtc_ops;
+ pcap_rtc->rtc->range_max = (1 << 14) * 86400ULL - 1;
+
+ timer_irq = pcap_to_irq(pcap_rtc->pcap, PCAP_IRQ_1HZ);
+ alarm_irq = pcap_to_irq(pcap_rtc->pcap, PCAP_IRQ_TODA);
+
+ err = devm_request_irq(&pdev->dev, timer_irq, pcap_rtc_irq, 0,
+ "RTC Timer", pcap_rtc);
+ if (err)
+ return err;
+
+ err = devm_request_irq(&pdev->dev, alarm_irq, pcap_rtc_irq, 0,
+ "RTC Alarm", pcap_rtc);
+ if (err)
+ return err;
+
+ return rtc_register_device(pcap_rtc->rtc);
+}
+
+static int __exit pcap_rtc_remove(struct platform_device *pdev)
+{
+ return 0;
+}
+
+static struct platform_driver pcap_rtc_driver = {
+ .remove = __exit_p(pcap_rtc_remove),
+ .driver = {
+ .name = "pcap-rtc",
+ },
+};
+
+module_platform_driver_probe(pcap_rtc_driver, pcap_rtc_probe);
+
+MODULE_DESCRIPTION("Motorola pcap rtc driver");
+MODULE_AUTHOR("guiming zhuo <gmzhuo@gmail.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-pcf2123.c b/drivers/rtc/rtc-pcf2123.c
new file mode 100644
index 000000000..c3691fa42
--- /dev/null
+++ b/drivers/rtc/rtc-pcf2123.c
@@ -0,0 +1,467 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * An SPI driver for the Philips PCF2123 RTC
+ * Copyright 2009 Cyber Switching, Inc.
+ *
+ * Author: Chris Verges <chrisv@cyberswitching.com>
+ * Maintainers: http://www.cyberswitching.com
+ *
+ * based on the RS5C348 driver in this same directory.
+ *
+ * Thanks to Christian Pellegrin <chripell@fsfe.org> for
+ * the sysfs contributions to this driver.
+ *
+ * Please note that the CS is active high, so platform data
+ * should look something like:
+ *
+ * static struct spi_board_info ek_spi_devices[] = {
+ * ...
+ * {
+ * .modalias = "rtc-pcf2123",
+ * .chip_select = 1,
+ * .controller_data = (void *)AT91_PIN_PA10,
+ * .max_speed_hz = 1000 * 1000,
+ * .mode = SPI_CS_HIGH,
+ * .bus_num = 0,
+ * },
+ * ...
+ *};
+ */
+
+#include <linux/bcd.h>
+#include <linux/delay.h>
+#include <linux/device.h>
+#include <linux/errno.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/of.h>
+#include <linux/string.h>
+#include <linux/slab.h>
+#include <linux/rtc.h>
+#include <linux/spi/spi.h>
+#include <linux/module.h>
+#include <linux/regmap.h>
+
+/* REGISTERS */
+#define PCF2123_REG_CTRL1 (0x00) /* Control Register 1 */
+#define PCF2123_REG_CTRL2 (0x01) /* Control Register 2 */
+#define PCF2123_REG_SC (0x02) /* datetime */
+#define PCF2123_REG_MN (0x03)
+#define PCF2123_REG_HR (0x04)
+#define PCF2123_REG_DM (0x05)
+#define PCF2123_REG_DW (0x06)
+#define PCF2123_REG_MO (0x07)
+#define PCF2123_REG_YR (0x08)
+#define PCF2123_REG_ALRM_MN (0x09) /* Alarm Registers */
+#define PCF2123_REG_ALRM_HR (0x0a)
+#define PCF2123_REG_ALRM_DM (0x0b)
+#define PCF2123_REG_ALRM_DW (0x0c)
+#define PCF2123_REG_OFFSET (0x0d) /* Clock Rate Offset Register */
+#define PCF2123_REG_TMR_CLKOUT (0x0e) /* Timer Registers */
+#define PCF2123_REG_CTDWN_TMR (0x0f)
+
+/* PCF2123_REG_CTRL1 BITS */
+#define CTRL1_CLEAR (0) /* Clear */
+#define CTRL1_CORR_INT BIT(1) /* Correction irq enable */
+#define CTRL1_12_HOUR BIT(2) /* 12 hour time */
+#define CTRL1_SW_RESET (BIT(3) | BIT(4) | BIT(6)) /* Software reset */
+#define CTRL1_STOP BIT(5) /* Stop the clock */
+#define CTRL1_EXT_TEST BIT(7) /* External clock test mode */
+
+/* PCF2123_REG_CTRL2 BITS */
+#define CTRL2_TIE BIT(0) /* Countdown timer irq enable */
+#define CTRL2_AIE BIT(1) /* Alarm irq enable */
+#define CTRL2_TF BIT(2) /* Countdown timer flag */
+#define CTRL2_AF BIT(3) /* Alarm flag */
+#define CTRL2_TI_TP BIT(4) /* Irq pin generates pulse */
+#define CTRL2_MSF BIT(5) /* Minute or second irq flag */
+#define CTRL2_SI BIT(6) /* Second irq enable */
+#define CTRL2_MI BIT(7) /* Minute irq enable */
+
+/* PCF2123_REG_SC BITS */
+#define OSC_HAS_STOPPED BIT(7) /* Clock has been stopped */
+
+/* PCF2123_REG_ALRM_XX BITS */
+#define ALRM_DISABLE BIT(7) /* MN, HR, DM, or DW alarm matching */
+
+/* PCF2123_REG_TMR_CLKOUT BITS */
+#define CD_TMR_4096KHZ (0) /* 4096 KHz countdown timer */
+#define CD_TMR_64HZ (1) /* 64 Hz countdown timer */
+#define CD_TMR_1HZ (2) /* 1 Hz countdown timer */
+#define CD_TMR_60th_HZ (3) /* 60th Hz countdown timer */
+#define CD_TMR_TE BIT(3) /* Countdown timer enable */
+
+/* PCF2123_REG_OFFSET BITS */
+#define OFFSET_SIGN_BIT 6 /* 2's complement sign bit */
+#define OFFSET_COARSE BIT(7) /* Coarse mode offset */
+#define OFFSET_STEP (2170) /* Offset step in parts per billion */
+#define OFFSET_MASK GENMASK(6, 0) /* Offset value */
+
+/* READ/WRITE ADDRESS BITS */
+#define PCF2123_WRITE BIT(4)
+#define PCF2123_READ (BIT(4) | BIT(7))
+
+
+static struct spi_driver pcf2123_driver;
+
+struct pcf2123_data {
+ struct rtc_device *rtc;
+ struct regmap *map;
+};
+
+static const struct regmap_config pcf2123_regmap_config = {
+ .reg_bits = 8,
+ .val_bits = 8,
+ .read_flag_mask = PCF2123_READ,
+ .write_flag_mask = PCF2123_WRITE,
+ .max_register = PCF2123_REG_CTDWN_TMR,
+};
+
+static int pcf2123_read_offset(struct device *dev, long *offset)
+{
+ struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
+ int ret, val;
+ unsigned int reg;
+
+ ret = regmap_read(pcf2123->map, PCF2123_REG_OFFSET, &reg);
+ if (ret)
+ return ret;
+
+ val = sign_extend32((reg & OFFSET_MASK), OFFSET_SIGN_BIT);
+
+ if (reg & OFFSET_COARSE)
+ val *= 2;
+
+ *offset = ((long)val) * OFFSET_STEP;
+
+ return 0;
+}
+
+/*
+ * The offset register is a 7 bit signed value with a coarse bit in bit 7.
+ * The main difference between the two is normal offset adjusts the first
+ * second of n minutes every other hour, with 61, 62 and 63 being shoved
+ * into the 60th minute.
+ * The coarse adjustment does the same, but every hour.
+ * the two overlap, with every even normal offset value corresponding
+ * to a coarse offset. Based on this algorithm, it seems that despite the
+ * name, coarse offset is a better fit for overlapping values.
+ */
+static int pcf2123_set_offset(struct device *dev, long offset)
+{
+ struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
+ s8 reg;
+
+ if (offset > OFFSET_STEP * 127)
+ reg = 127;
+ else if (offset < OFFSET_STEP * -128)
+ reg = -128;
+ else
+ reg = DIV_ROUND_CLOSEST(offset, OFFSET_STEP);
+
+ /* choose fine offset only for odd values in the normal range */
+ if (reg & 1 && reg <= 63 && reg >= -64) {
+ /* Normal offset. Clear the coarse bit */
+ reg &= ~OFFSET_COARSE;
+ } else {
+ /* Coarse offset. Divide by 2 and set the coarse bit */
+ reg >>= 1;
+ reg |= OFFSET_COARSE;
+ }
+
+ return regmap_write(pcf2123->map, PCF2123_REG_OFFSET, (unsigned int)reg);
+}
+
+static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
+ u8 rxbuf[7];
+ int ret;
+
+ ret = regmap_bulk_read(pcf2123->map, PCF2123_REG_SC, rxbuf,
+ sizeof(rxbuf));
+ if (ret)
+ return ret;
+
+ if (rxbuf[0] & OSC_HAS_STOPPED) {
+ dev_info(dev, "clock was stopped. Time is not valid\n");
+ return -EINVAL;
+ }
+
+ tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
+ tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
+ tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
+ tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
+ tm->tm_wday = rxbuf[4] & 0x07;
+ tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
+ tm->tm_year = bcd2bin(rxbuf[6]) + 100;
+
+ dev_dbg(dev, "%s: tm is %ptR\n", __func__, tm);
+
+ return 0;
+}
+
+static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
+ u8 txbuf[7];
+ int ret;
+
+ dev_dbg(dev, "%s: tm is %ptR\n", __func__, tm);
+
+ /* Stop the counter first */
+ ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_STOP);
+ if (ret)
+ return ret;
+
+ /* Set the new time */
+ txbuf[0] = bin2bcd(tm->tm_sec & 0x7F);
+ txbuf[1] = bin2bcd(tm->tm_min & 0x7F);
+ txbuf[2] = bin2bcd(tm->tm_hour & 0x3F);
+ txbuf[3] = bin2bcd(tm->tm_mday & 0x3F);
+ txbuf[4] = tm->tm_wday & 0x07;
+ txbuf[5] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
+ txbuf[6] = bin2bcd(tm->tm_year - 100);
+
+ ret = regmap_bulk_write(pcf2123->map, PCF2123_REG_SC, txbuf,
+ sizeof(txbuf));
+ if (ret)
+ return ret;
+
+ /* Start the counter */
+ ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_CLEAR);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+static int pcf2123_rtc_alarm_irq_enable(struct device *dev, unsigned int en)
+{
+ struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
+
+ return regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AIE,
+ en ? CTRL2_AIE : 0);
+}
+
+static int pcf2123_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
+ u8 rxbuf[4];
+ int ret;
+ unsigned int val = 0;
+
+ ret = regmap_bulk_read(pcf2123->map, PCF2123_REG_ALRM_MN, rxbuf,
+ sizeof(rxbuf));
+ if (ret)
+ return ret;
+
+ alm->time.tm_min = bcd2bin(rxbuf[0] & 0x7F);
+ alm->time.tm_hour = bcd2bin(rxbuf[1] & 0x3F);
+ alm->time.tm_mday = bcd2bin(rxbuf[2] & 0x3F);
+ alm->time.tm_wday = bcd2bin(rxbuf[3] & 0x07);
+
+ dev_dbg(dev, "%s: alm is %ptR\n", __func__, &alm->time);
+
+ ret = regmap_read(pcf2123->map, PCF2123_REG_CTRL2, &val);
+ if (ret)
+ return ret;
+
+ alm->enabled = !!(val & CTRL2_AIE);
+
+ return 0;
+}
+
+static int pcf2123_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
+ u8 txbuf[4];
+ int ret;
+
+ dev_dbg(dev, "%s: alm is %ptR\n", __func__, &alm->time);
+
+ /* Disable alarm interrupt */
+ ret = regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AIE, 0);
+ if (ret)
+ return ret;
+
+ /* Ensure alarm flag is clear */
+ ret = regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AF, 0);
+ if (ret)
+ return ret;
+
+ /* Set new alarm */
+ txbuf[0] = bin2bcd(alm->time.tm_min & 0x7F);
+ txbuf[1] = bin2bcd(alm->time.tm_hour & 0x3F);
+ txbuf[2] = bin2bcd(alm->time.tm_mday & 0x3F);
+ txbuf[3] = ALRM_DISABLE;
+
+ ret = regmap_bulk_write(pcf2123->map, PCF2123_REG_ALRM_MN, txbuf,
+ sizeof(txbuf));
+ if (ret)
+ return ret;
+
+ return pcf2123_rtc_alarm_irq_enable(dev, alm->enabled);
+}
+
+static irqreturn_t pcf2123_rtc_irq(int irq, void *dev)
+{
+ struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
+ struct mutex *lock = &pcf2123->rtc->ops_lock;
+ unsigned int val = 0;
+ int ret = IRQ_NONE;
+
+ mutex_lock(lock);
+ regmap_read(pcf2123->map, PCF2123_REG_CTRL2, &val);
+
+ /* Alarm? */
+ if (val & CTRL2_AF) {
+ ret = IRQ_HANDLED;
+
+ /* Clear alarm flag */
+ regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AF, 0);
+
+ rtc_update_irq(pcf2123->rtc, 1, RTC_IRQF | RTC_AF);
+ }
+
+ mutex_unlock(lock);
+
+ return ret;
+}
+
+static int pcf2123_reset(struct device *dev)
+{
+ struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
+ int ret;
+ unsigned int val = 0;
+
+ ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_SW_RESET);
+ if (ret)
+ return ret;
+
+ /* Stop the counter */
+ dev_dbg(dev, "stopping RTC\n");
+ ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_STOP);
+ if (ret)
+ return ret;
+
+ /* See if the counter was actually stopped */
+ dev_dbg(dev, "checking for presence of RTC\n");
+ ret = regmap_read(pcf2123->map, PCF2123_REG_CTRL1, &val);
+ if (ret)
+ return ret;
+
+ dev_dbg(dev, "received data from RTC (0x%08X)\n", val);
+ if (!(val & CTRL1_STOP))
+ return -ENODEV;
+
+ /* Start the counter */
+ ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_CLEAR);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+static const struct rtc_class_ops pcf2123_rtc_ops = {
+ .read_time = pcf2123_rtc_read_time,
+ .set_time = pcf2123_rtc_set_time,
+ .read_offset = pcf2123_read_offset,
+ .set_offset = pcf2123_set_offset,
+ .read_alarm = pcf2123_rtc_read_alarm,
+ .set_alarm = pcf2123_rtc_set_alarm,
+ .alarm_irq_enable = pcf2123_rtc_alarm_irq_enable,
+};
+
+static int pcf2123_probe(struct spi_device *spi)
+{
+ struct rtc_device *rtc;
+ struct rtc_time tm;
+ struct pcf2123_data *pcf2123;
+ int ret = 0;
+
+ pcf2123 = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_data),
+ GFP_KERNEL);
+ if (!pcf2123)
+ return -ENOMEM;
+
+ dev_set_drvdata(&spi->dev, pcf2123);
+
+ pcf2123->map = devm_regmap_init_spi(spi, &pcf2123_regmap_config);
+ if (IS_ERR(pcf2123->map)) {
+ dev_err(&spi->dev, "regmap init failed.\n");
+ return PTR_ERR(pcf2123->map);
+ }
+
+ ret = pcf2123_rtc_read_time(&spi->dev, &tm);
+ if (ret < 0) {
+ ret = pcf2123_reset(&spi->dev);
+ if (ret < 0) {
+ dev_err(&spi->dev, "chip not found\n");
+ return ret;
+ }
+ }
+
+ dev_info(&spi->dev, "spiclk %u KHz.\n",
+ (spi->max_speed_hz + 500) / 1000);
+
+ /* Finalize the initialization */
+ rtc = devm_rtc_allocate_device(&spi->dev);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ pcf2123->rtc = rtc;
+
+ /* Register alarm irq */
+ if (spi->irq > 0) {
+ ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL,
+ pcf2123_rtc_irq,
+ IRQF_TRIGGER_LOW | IRQF_ONESHOT,
+ pcf2123_driver.driver.name, &spi->dev);
+ if (!ret)
+ device_init_wakeup(&spi->dev, true);
+ else
+ dev_err(&spi->dev, "could not request irq.\n");
+ }
+
+ /* The PCF2123's alarm only has minute accuracy. Must add timer
+ * support to this driver to generate interrupts more than once
+ * per minute.
+ */
+ rtc->uie_unsupported = 1;
+ rtc->ops = &pcf2123_rtc_ops;
+ rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ rtc->range_max = RTC_TIMESTAMP_END_2099;
+ rtc->set_start_time = true;
+
+ ret = rtc_register_device(rtc);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+#ifdef CONFIG_OF
+static const struct of_device_id pcf2123_dt_ids[] = {
+ { .compatible = "nxp,pcf2123", },
+ { .compatible = "microcrystal,rv2123", },
+ /* Deprecated, do not use */
+ { .compatible = "nxp,rtc-pcf2123", },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, pcf2123_dt_ids);
+#endif
+
+static struct spi_driver pcf2123_driver = {
+ .driver = {
+ .name = "rtc-pcf2123",
+ .of_match_table = of_match_ptr(pcf2123_dt_ids),
+ },
+ .probe = pcf2123_probe,
+};
+
+module_spi_driver(pcf2123_driver);
+
+MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
+MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-pcf2127.c b/drivers/rtc/rtc-pcf2127.c
new file mode 100644
index 000000000..715513311
--- /dev/null
+++ b/drivers/rtc/rtc-pcf2127.c
@@ -0,0 +1,939 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * An I2C and SPI driver for the NXP PCF2127/29 RTC
+ * Copyright 2013 Til-Technologies
+ *
+ * Author: Renaud Cerrato <r.cerrato@til-technologies.fr>
+ *
+ * Watchdog and tamper functions
+ * Author: Bruno Thomsen <bruno.thomsen@gmail.com>
+ *
+ * based on the other drivers in this same directory.
+ *
+ * Datasheet: http://cache.nxp.com/documents/data_sheet/PCF2127.pdf
+ */
+
+#include <linux/i2c.h>
+#include <linux/spi/spi.h>
+#include <linux/bcd.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_irq.h>
+#include <linux/regmap.h>
+#include <linux/watchdog.h>
+
+/* Control register 1 */
+#define PCF2127_REG_CTRL1 0x00
+#define PCF2127_BIT_CTRL1_TSF1 BIT(4)
+/* Control register 2 */
+#define PCF2127_REG_CTRL2 0x01
+#define PCF2127_BIT_CTRL2_AIE BIT(1)
+#define PCF2127_BIT_CTRL2_TSIE BIT(2)
+#define PCF2127_BIT_CTRL2_AF BIT(4)
+#define PCF2127_BIT_CTRL2_TSF2 BIT(5)
+#define PCF2127_BIT_CTRL2_WDTF BIT(6)
+/* Control register 3 */
+#define PCF2127_REG_CTRL3 0x02
+#define PCF2127_BIT_CTRL3_BLIE BIT(0)
+#define PCF2127_BIT_CTRL3_BIE BIT(1)
+#define PCF2127_BIT_CTRL3_BLF BIT(2)
+#define PCF2127_BIT_CTRL3_BF BIT(3)
+#define PCF2127_BIT_CTRL3_BTSE BIT(4)
+/* Time and date registers */
+#define PCF2127_REG_SC 0x03
+#define PCF2127_BIT_SC_OSF BIT(7)
+#define PCF2127_REG_MN 0x04
+#define PCF2127_REG_HR 0x05
+#define PCF2127_REG_DM 0x06
+#define PCF2127_REG_DW 0x07
+#define PCF2127_REG_MO 0x08
+#define PCF2127_REG_YR 0x09
+/* Alarm registers */
+#define PCF2127_REG_ALARM_SC 0x0A
+#define PCF2127_REG_ALARM_MN 0x0B
+#define PCF2127_REG_ALARM_HR 0x0C
+#define PCF2127_REG_ALARM_DM 0x0D
+#define PCF2127_REG_ALARM_DW 0x0E
+#define PCF2127_BIT_ALARM_AE BIT(7)
+/* Watchdog registers */
+#define PCF2127_REG_WD_CTL 0x10
+#define PCF2127_BIT_WD_CTL_TF0 BIT(0)
+#define PCF2127_BIT_WD_CTL_TF1 BIT(1)
+#define PCF2127_BIT_WD_CTL_CD0 BIT(6)
+#define PCF2127_BIT_WD_CTL_CD1 BIT(7)
+#define PCF2127_REG_WD_VAL 0x11
+/* Tamper timestamp registers */
+#define PCF2127_REG_TS_CTRL 0x12
+#define PCF2127_BIT_TS_CTRL_TSOFF BIT(6)
+#define PCF2127_BIT_TS_CTRL_TSM BIT(7)
+#define PCF2127_REG_TS_SC 0x13
+#define PCF2127_REG_TS_MN 0x14
+#define PCF2127_REG_TS_HR 0x15
+#define PCF2127_REG_TS_DM 0x16
+#define PCF2127_REG_TS_MO 0x17
+#define PCF2127_REG_TS_YR 0x18
+/*
+ * RAM registers
+ * PCF2127 has 512 bytes general-purpose static RAM (SRAM) that is
+ * battery backed and can survive a power outage.
+ * PCF2129 doesn't have this feature.
+ */
+#define PCF2127_REG_RAM_ADDR_MSB 0x1A
+#define PCF2127_REG_RAM_WRT_CMD 0x1C
+#define PCF2127_REG_RAM_RD_CMD 0x1D
+
+/* Watchdog timer value constants */
+#define PCF2127_WD_VAL_STOP 0
+#define PCF2127_WD_VAL_MIN 2
+#define PCF2127_WD_VAL_MAX 255
+#define PCF2127_WD_VAL_DEFAULT 60
+
+struct pcf2127 {
+ struct rtc_device *rtc;
+ struct watchdog_device wdd;
+ struct regmap *regmap;
+};
+
+/*
+ * In the routines that deal directly with the pcf2127 hardware, we use
+ * rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch.
+ */
+static int pcf2127_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
+ unsigned char buf[10];
+ int ret;
+
+ /*
+ * Avoid reading CTRL2 register as it causes WD_VAL register
+ * value to reset to 0 which means watchdog is stopped.
+ */
+ ret = regmap_bulk_read(pcf2127->regmap, PCF2127_REG_CTRL3,
+ (buf + PCF2127_REG_CTRL3),
+ ARRAY_SIZE(buf) - PCF2127_REG_CTRL3);
+ if (ret) {
+ dev_err(dev, "%s: read error\n", __func__);
+ return ret;
+ }
+
+ if (buf[PCF2127_REG_CTRL3] & PCF2127_BIT_CTRL3_BLF)
+ dev_info(dev,
+ "low voltage detected, check/replace RTC battery.\n");
+
+ /* Clock integrity is not guaranteed when OSF flag is set. */
+ if (buf[PCF2127_REG_SC] & PCF2127_BIT_SC_OSF) {
+ /*
+ * no need clear the flag here,
+ * it will be cleared once the new date is saved
+ */
+ dev_warn(dev,
+ "oscillator stop detected, date/time is not reliable\n");
+ return -EINVAL;
+ }
+
+ dev_dbg(dev,
+ "%s: raw data is cr3=%02x, sec=%02x, min=%02x, hr=%02x, "
+ "mday=%02x, wday=%02x, mon=%02x, year=%02x\n",
+ __func__, buf[PCF2127_REG_CTRL3], buf[PCF2127_REG_SC],
+ buf[PCF2127_REG_MN], buf[PCF2127_REG_HR],
+ buf[PCF2127_REG_DM], buf[PCF2127_REG_DW],
+ buf[PCF2127_REG_MO], buf[PCF2127_REG_YR]);
+
+ tm->tm_sec = bcd2bin(buf[PCF2127_REG_SC] & 0x7F);
+ tm->tm_min = bcd2bin(buf[PCF2127_REG_MN] & 0x7F);
+ tm->tm_hour = bcd2bin(buf[PCF2127_REG_HR] & 0x3F); /* rtc hr 0-23 */
+ tm->tm_mday = bcd2bin(buf[PCF2127_REG_DM] & 0x3F);
+ tm->tm_wday = buf[PCF2127_REG_DW] & 0x07;
+ tm->tm_mon = bcd2bin(buf[PCF2127_REG_MO] & 0x1F) - 1; /* rtc mn 1-12 */
+ tm->tm_year = bcd2bin(buf[PCF2127_REG_YR]);
+ tm->tm_year += 100;
+
+ dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
+ "mday=%d, mon=%d, year=%d, wday=%d\n",
+ __func__,
+ tm->tm_sec, tm->tm_min, tm->tm_hour,
+ tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ return 0;
+}
+
+static int pcf2127_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
+ unsigned char buf[7];
+ int i = 0, err;
+
+ dev_dbg(dev, "%s: secs=%d, mins=%d, hours=%d, "
+ "mday=%d, mon=%d, year=%d, wday=%d\n",
+ __func__,
+ tm->tm_sec, tm->tm_min, tm->tm_hour,
+ tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ /* hours, minutes and seconds */
+ buf[i++] = bin2bcd(tm->tm_sec); /* this will also clear OSF flag */
+ buf[i++] = bin2bcd(tm->tm_min);
+ buf[i++] = bin2bcd(tm->tm_hour);
+ buf[i++] = bin2bcd(tm->tm_mday);
+ buf[i++] = tm->tm_wday & 0x07;
+
+ /* month, 1 - 12 */
+ buf[i++] = bin2bcd(tm->tm_mon + 1);
+
+ /* year */
+ buf[i++] = bin2bcd(tm->tm_year - 100);
+
+ /* write register's data */
+ err = regmap_bulk_write(pcf2127->regmap, PCF2127_REG_SC, buf, i);
+ if (err) {
+ dev_err(dev,
+ "%s: err=%d", __func__, err);
+ return err;
+ }
+
+ return 0;
+}
+
+static int pcf2127_rtc_ioctl(struct device *dev,
+ unsigned int cmd, unsigned long arg)
+{
+ struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
+ int val, touser = 0;
+ int ret;
+
+ switch (cmd) {
+ case RTC_VL_READ:
+ ret = regmap_read(pcf2127->regmap, PCF2127_REG_CTRL3, &val);
+ if (ret)
+ return ret;
+
+ if (val & PCF2127_BIT_CTRL3_BLF)
+ touser |= RTC_VL_BACKUP_LOW;
+
+ if (val & PCF2127_BIT_CTRL3_BF)
+ touser |= RTC_VL_BACKUP_SWITCH;
+
+ return put_user(touser, (unsigned int __user *)arg);
+
+ case RTC_VL_CLR:
+ return regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL3,
+ PCF2127_BIT_CTRL3_BF, 0);
+
+ default:
+ return -ENOIOCTLCMD;
+ }
+}
+
+static const struct rtc_class_ops pcf2127_rtc_ops = {
+ .ioctl = pcf2127_rtc_ioctl,
+ .read_time = pcf2127_rtc_read_time,
+ .set_time = pcf2127_rtc_set_time,
+};
+
+static int pcf2127_nvmem_read(void *priv, unsigned int offset,
+ void *val, size_t bytes)
+{
+ struct pcf2127 *pcf2127 = priv;
+ int ret;
+ unsigned char offsetbuf[] = { offset >> 8, offset };
+
+ ret = regmap_bulk_write(pcf2127->regmap, PCF2127_REG_RAM_ADDR_MSB,
+ offsetbuf, 2);
+ if (ret)
+ return ret;
+
+ return regmap_bulk_read(pcf2127->regmap, PCF2127_REG_RAM_RD_CMD,
+ val, bytes);
+}
+
+static int pcf2127_nvmem_write(void *priv, unsigned int offset,
+ void *val, size_t bytes)
+{
+ struct pcf2127 *pcf2127 = priv;
+ int ret;
+ unsigned char offsetbuf[] = { offset >> 8, offset };
+
+ ret = regmap_bulk_write(pcf2127->regmap, PCF2127_REG_RAM_ADDR_MSB,
+ offsetbuf, 2);
+ if (ret)
+ return ret;
+
+ return regmap_bulk_write(pcf2127->regmap, PCF2127_REG_RAM_WRT_CMD,
+ val, bytes);
+}
+
+/* watchdog driver */
+
+static int pcf2127_wdt_ping(struct watchdog_device *wdd)
+{
+ struct pcf2127 *pcf2127 = watchdog_get_drvdata(wdd);
+
+ return regmap_write(pcf2127->regmap, PCF2127_REG_WD_VAL, wdd->timeout);
+}
+
+/*
+ * Restart watchdog timer if feature is active.
+ *
+ * Note: Reading CTRL2 register causes watchdog to stop which is unfortunate,
+ * since register also contain control/status flags for other features.
+ * Always call this function after reading CTRL2 register.
+ */
+static int pcf2127_wdt_active_ping(struct watchdog_device *wdd)
+{
+ int ret = 0;
+
+ if (watchdog_active(wdd)) {
+ ret = pcf2127_wdt_ping(wdd);
+ if (ret)
+ dev_err(wdd->parent,
+ "%s: watchdog restart failed, ret=%d\n",
+ __func__, ret);
+ }
+
+ return ret;
+}
+
+static int pcf2127_wdt_start(struct watchdog_device *wdd)
+{
+ return pcf2127_wdt_ping(wdd);
+}
+
+static int pcf2127_wdt_stop(struct watchdog_device *wdd)
+{
+ struct pcf2127 *pcf2127 = watchdog_get_drvdata(wdd);
+
+ return regmap_write(pcf2127->regmap, PCF2127_REG_WD_VAL,
+ PCF2127_WD_VAL_STOP);
+}
+
+static int pcf2127_wdt_set_timeout(struct watchdog_device *wdd,
+ unsigned int new_timeout)
+{
+ dev_dbg(wdd->parent, "new watchdog timeout: %is (old: %is)\n",
+ new_timeout, wdd->timeout);
+
+ wdd->timeout = new_timeout;
+
+ return pcf2127_wdt_active_ping(wdd);
+}
+
+static const struct watchdog_info pcf2127_wdt_info = {
+ .identity = "NXP PCF2127/PCF2129 Watchdog",
+ .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT,
+};
+
+static const struct watchdog_ops pcf2127_watchdog_ops = {
+ .owner = THIS_MODULE,
+ .start = pcf2127_wdt_start,
+ .stop = pcf2127_wdt_stop,
+ .ping = pcf2127_wdt_ping,
+ .set_timeout = pcf2127_wdt_set_timeout,
+};
+
+static int pcf2127_watchdog_init(struct device *dev, struct pcf2127 *pcf2127)
+{
+ u32 wdd_timeout;
+ int ret;
+
+ if (!IS_ENABLED(CONFIG_WATCHDOG) ||
+ !device_property_read_bool(dev, "reset-source"))
+ return 0;
+
+ pcf2127->wdd.parent = dev;
+ pcf2127->wdd.info = &pcf2127_wdt_info;
+ pcf2127->wdd.ops = &pcf2127_watchdog_ops;
+ pcf2127->wdd.min_timeout = PCF2127_WD_VAL_MIN;
+ pcf2127->wdd.max_timeout = PCF2127_WD_VAL_MAX;
+ pcf2127->wdd.timeout = PCF2127_WD_VAL_DEFAULT;
+ pcf2127->wdd.min_hw_heartbeat_ms = 500;
+ pcf2127->wdd.status = WATCHDOG_NOWAYOUT_INIT_STATUS;
+
+ watchdog_set_drvdata(&pcf2127->wdd, pcf2127);
+
+ /* Test if watchdog timer is started by bootloader */
+ ret = regmap_read(pcf2127->regmap, PCF2127_REG_WD_VAL, &wdd_timeout);
+ if (ret)
+ return ret;
+
+ if (wdd_timeout)
+ set_bit(WDOG_HW_RUNNING, &pcf2127->wdd.status);
+
+ return devm_watchdog_register_device(dev, &pcf2127->wdd);
+}
+
+/* Alarm */
+static int pcf2127_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
+ u8 buf[5];
+ unsigned int ctrl2;
+ int ret;
+
+ ret = regmap_read(pcf2127->regmap, PCF2127_REG_CTRL2, &ctrl2);
+ if (ret)
+ return ret;
+
+ ret = pcf2127_wdt_active_ping(&pcf2127->wdd);
+ if (ret)
+ return ret;
+
+ ret = regmap_bulk_read(pcf2127->regmap, PCF2127_REG_ALARM_SC, buf,
+ sizeof(buf));
+ if (ret)
+ return ret;
+
+ alrm->enabled = ctrl2 & PCF2127_BIT_CTRL2_AIE;
+ alrm->pending = ctrl2 & PCF2127_BIT_CTRL2_AF;
+
+ alrm->time.tm_sec = bcd2bin(buf[0] & 0x7F);
+ alrm->time.tm_min = bcd2bin(buf[1] & 0x7F);
+ alrm->time.tm_hour = bcd2bin(buf[2] & 0x3F);
+ alrm->time.tm_mday = bcd2bin(buf[3] & 0x3F);
+
+ return 0;
+}
+
+static int pcf2127_rtc_alarm_irq_enable(struct device *dev, u32 enable)
+{
+ struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
+ int ret;
+
+ ret = regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL2,
+ PCF2127_BIT_CTRL2_AIE,
+ enable ? PCF2127_BIT_CTRL2_AIE : 0);
+ if (ret)
+ return ret;
+
+ return pcf2127_wdt_active_ping(&pcf2127->wdd);
+}
+
+static int pcf2127_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
+ uint8_t buf[5];
+ int ret;
+
+ ret = regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL2,
+ PCF2127_BIT_CTRL2_AF, 0);
+ if (ret)
+ return ret;
+
+ ret = pcf2127_wdt_active_ping(&pcf2127->wdd);
+ if (ret)
+ return ret;
+
+ buf[0] = bin2bcd(alrm->time.tm_sec);
+ buf[1] = bin2bcd(alrm->time.tm_min);
+ buf[2] = bin2bcd(alrm->time.tm_hour);
+ buf[3] = bin2bcd(alrm->time.tm_mday);
+ buf[4] = PCF2127_BIT_ALARM_AE; /* Do not match on week day */
+
+ ret = regmap_bulk_write(pcf2127->regmap, PCF2127_REG_ALARM_SC, buf,
+ sizeof(buf));
+ if (ret)
+ return ret;
+
+ return pcf2127_rtc_alarm_irq_enable(dev, alrm->enabled);
+}
+
+static irqreturn_t pcf2127_rtc_irq(int irq, void *dev)
+{
+ struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
+ unsigned int ctrl2 = 0;
+ int ret = 0;
+
+ ret = regmap_read(pcf2127->regmap, PCF2127_REG_CTRL2, &ctrl2);
+ if (ret)
+ return IRQ_NONE;
+
+ if (!(ctrl2 & PCF2127_BIT_CTRL2_AF))
+ return IRQ_NONE;
+
+ regmap_write(pcf2127->regmap, PCF2127_REG_CTRL2,
+ ctrl2 & ~(PCF2127_BIT_CTRL2_AF | PCF2127_BIT_CTRL2_WDTF));
+
+ rtc_update_irq(pcf2127->rtc, 1, RTC_IRQF | RTC_AF);
+
+ pcf2127_wdt_active_ping(&pcf2127->wdd);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops pcf2127_rtc_alrm_ops = {
+ .ioctl = pcf2127_rtc_ioctl,
+ .read_time = pcf2127_rtc_read_time,
+ .set_time = pcf2127_rtc_set_time,
+ .read_alarm = pcf2127_rtc_read_alarm,
+ .set_alarm = pcf2127_rtc_set_alarm,
+ .alarm_irq_enable = pcf2127_rtc_alarm_irq_enable,
+};
+
+/* sysfs interface */
+
+static ssize_t timestamp0_store(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ struct pcf2127 *pcf2127 = dev_get_drvdata(dev->parent);
+ int ret;
+
+ ret = regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL1,
+ PCF2127_BIT_CTRL1_TSF1, 0);
+ if (ret) {
+ dev_err(dev, "%s: update ctrl1 ret=%d\n", __func__, ret);
+ return ret;
+ }
+
+ ret = regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL2,
+ PCF2127_BIT_CTRL2_TSF2, 0);
+ if (ret) {
+ dev_err(dev, "%s: update ctrl2 ret=%d\n", __func__, ret);
+ return ret;
+ }
+
+ ret = pcf2127_wdt_active_ping(&pcf2127->wdd);
+ if (ret)
+ return ret;
+
+ return count;
+};
+
+static ssize_t timestamp0_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct pcf2127 *pcf2127 = dev_get_drvdata(dev->parent);
+ struct rtc_time tm;
+ int ret;
+ unsigned char data[25];
+
+ ret = regmap_bulk_read(pcf2127->regmap, PCF2127_REG_CTRL1, data,
+ sizeof(data));
+ if (ret) {
+ dev_err(dev, "%s: read error ret=%d\n", __func__, ret);
+ return ret;
+ }
+
+ dev_dbg(dev,
+ "%s: raw data is cr1=%02x, cr2=%02x, cr3=%02x, ts_sc=%02x, "
+ "ts_mn=%02x, ts_hr=%02x, ts_dm=%02x, ts_mo=%02x, ts_yr=%02x\n",
+ __func__, data[PCF2127_REG_CTRL1], data[PCF2127_REG_CTRL2],
+ data[PCF2127_REG_CTRL3], data[PCF2127_REG_TS_SC],
+ data[PCF2127_REG_TS_MN], data[PCF2127_REG_TS_HR],
+ data[PCF2127_REG_TS_DM], data[PCF2127_REG_TS_MO],
+ data[PCF2127_REG_TS_YR]);
+
+ ret = pcf2127_wdt_active_ping(&pcf2127->wdd);
+ if (ret)
+ return ret;
+
+ if (!(data[PCF2127_REG_CTRL1] & PCF2127_BIT_CTRL1_TSF1) &&
+ !(data[PCF2127_REG_CTRL2] & PCF2127_BIT_CTRL2_TSF2))
+ return 0;
+
+ tm.tm_sec = bcd2bin(data[PCF2127_REG_TS_SC] & 0x7F);
+ tm.tm_min = bcd2bin(data[PCF2127_REG_TS_MN] & 0x7F);
+ tm.tm_hour = bcd2bin(data[PCF2127_REG_TS_HR] & 0x3F);
+ tm.tm_mday = bcd2bin(data[PCF2127_REG_TS_DM] & 0x3F);
+ /* TS_MO register (month) value range: 1-12 */
+ tm.tm_mon = bcd2bin(data[PCF2127_REG_TS_MO] & 0x1F) - 1;
+ tm.tm_year = bcd2bin(data[PCF2127_REG_TS_YR]);
+ if (tm.tm_year < 70)
+ tm.tm_year += 100; /* assume we are in 1970...2069 */
+
+ ret = rtc_valid_tm(&tm);
+ if (ret)
+ return ret;
+
+ return sprintf(buf, "%llu\n",
+ (unsigned long long)rtc_tm_to_time64(&tm));
+};
+
+static DEVICE_ATTR_RW(timestamp0);
+
+static struct attribute *pcf2127_attrs[] = {
+ &dev_attr_timestamp0.attr,
+ NULL
+};
+
+static const struct attribute_group pcf2127_attr_group = {
+ .attrs = pcf2127_attrs,
+};
+
+static int pcf2127_probe(struct device *dev, struct regmap *regmap,
+ int alarm_irq, const char *name, bool has_nvmem)
+{
+ struct pcf2127 *pcf2127;
+ int ret = 0;
+
+ dev_dbg(dev, "%s\n", __func__);
+
+ pcf2127 = devm_kzalloc(dev, sizeof(*pcf2127), GFP_KERNEL);
+ if (!pcf2127)
+ return -ENOMEM;
+
+ pcf2127->regmap = regmap;
+
+ dev_set_drvdata(dev, pcf2127);
+
+ pcf2127->rtc = devm_rtc_allocate_device(dev);
+ if (IS_ERR(pcf2127->rtc))
+ return PTR_ERR(pcf2127->rtc);
+
+ pcf2127->rtc->ops = &pcf2127_rtc_ops;
+ pcf2127->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ pcf2127->rtc->range_max = RTC_TIMESTAMP_END_2099;
+ pcf2127->rtc->set_start_time = true; /* Sets actual start to 1970 */
+ pcf2127->rtc->uie_unsupported = 1;
+
+ if (alarm_irq > 0) {
+ ret = devm_request_threaded_irq(dev, alarm_irq, NULL,
+ pcf2127_rtc_irq,
+ IRQF_TRIGGER_LOW | IRQF_ONESHOT,
+ dev_name(dev), dev);
+ if (ret) {
+ dev_err(dev, "failed to request alarm irq\n");
+ return ret;
+ }
+ }
+
+ if (alarm_irq > 0 || device_property_read_bool(dev, "wakeup-source")) {
+ device_init_wakeup(dev, true);
+ pcf2127->rtc->ops = &pcf2127_rtc_alrm_ops;
+ }
+
+ if (has_nvmem) {
+ struct nvmem_config nvmem_cfg = {
+ .priv = pcf2127,
+ .reg_read = pcf2127_nvmem_read,
+ .reg_write = pcf2127_nvmem_write,
+ .size = 512,
+ };
+
+ ret = rtc_nvmem_register(pcf2127->rtc, &nvmem_cfg);
+ }
+
+ /*
+ * Watchdog timer enabled and reset pin /RST activated when timed out.
+ * Select 1Hz clock source for watchdog timer.
+ * Note: Countdown timer disabled and not available.
+ */
+ ret = regmap_update_bits(pcf2127->regmap, PCF2127_REG_WD_CTL,
+ PCF2127_BIT_WD_CTL_CD1 |
+ PCF2127_BIT_WD_CTL_CD0 |
+ PCF2127_BIT_WD_CTL_TF1 |
+ PCF2127_BIT_WD_CTL_TF0,
+ PCF2127_BIT_WD_CTL_CD1 |
+ PCF2127_BIT_WD_CTL_CD0 |
+ PCF2127_BIT_WD_CTL_TF1);
+ if (ret) {
+ dev_err(dev, "%s: watchdog config (wd_ctl) failed\n", __func__);
+ return ret;
+ }
+
+ pcf2127_watchdog_init(dev, pcf2127);
+
+ /*
+ * Disable battery low/switch-over timestamp and interrupts.
+ * Clear battery interrupt flags which can block new trigger events.
+ * Note: This is the default chip behaviour but added to ensure
+ * correct tamper timestamp and interrupt function.
+ */
+ ret = regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL3,
+ PCF2127_BIT_CTRL3_BTSE |
+ PCF2127_BIT_CTRL3_BIE |
+ PCF2127_BIT_CTRL3_BLIE, 0);
+ if (ret) {
+ dev_err(dev, "%s: interrupt config (ctrl3) failed\n",
+ __func__);
+ return ret;
+ }
+
+ /*
+ * Enable timestamp function and store timestamp of first trigger
+ * event until TSF1 and TFS2 interrupt flags are cleared.
+ */
+ ret = regmap_update_bits(pcf2127->regmap, PCF2127_REG_TS_CTRL,
+ PCF2127_BIT_TS_CTRL_TSOFF |
+ PCF2127_BIT_TS_CTRL_TSM,
+ PCF2127_BIT_TS_CTRL_TSM);
+ if (ret) {
+ dev_err(dev, "%s: tamper detection config (ts_ctrl) failed\n",
+ __func__);
+ return ret;
+ }
+
+ /*
+ * Enable interrupt generation when TSF1 or TSF2 timestamp flags
+ * are set. Interrupt signal is an open-drain output and can be
+ * left floating if unused.
+ */
+ ret = regmap_update_bits(pcf2127->regmap, PCF2127_REG_CTRL2,
+ PCF2127_BIT_CTRL2_TSIE,
+ PCF2127_BIT_CTRL2_TSIE);
+ if (ret) {
+ dev_err(dev, "%s: tamper detection config (ctrl2) failed\n",
+ __func__);
+ return ret;
+ }
+
+ ret = rtc_add_group(pcf2127->rtc, &pcf2127_attr_group);
+ if (ret) {
+ dev_err(dev, "%s: tamper sysfs registering failed\n",
+ __func__);
+ return ret;
+ }
+
+ return rtc_register_device(pcf2127->rtc);
+}
+
+#ifdef CONFIG_OF
+static const struct of_device_id pcf2127_of_match[] = {
+ { .compatible = "nxp,pcf2127" },
+ { .compatible = "nxp,pcf2129" },
+ { .compatible = "nxp,pca2129" },
+ {}
+};
+MODULE_DEVICE_TABLE(of, pcf2127_of_match);
+#endif
+
+#if IS_ENABLED(CONFIG_I2C)
+
+static int pcf2127_i2c_write(void *context, const void *data, size_t count)
+{
+ struct device *dev = context;
+ struct i2c_client *client = to_i2c_client(dev);
+ int ret;
+
+ ret = i2c_master_send(client, data, count);
+ if (ret != count)
+ return ret < 0 ? ret : -EIO;
+
+ return 0;
+}
+
+static int pcf2127_i2c_gather_write(void *context,
+ const void *reg, size_t reg_size,
+ const void *val, size_t val_size)
+{
+ struct device *dev = context;
+ struct i2c_client *client = to_i2c_client(dev);
+ int ret;
+ void *buf;
+
+ if (WARN_ON(reg_size != 1))
+ return -EINVAL;
+
+ buf = kmalloc(val_size + 1, GFP_KERNEL);
+ if (!buf)
+ return -ENOMEM;
+
+ memcpy(buf, reg, 1);
+ memcpy(buf + 1, val, val_size);
+
+ ret = i2c_master_send(client, buf, val_size + 1);
+
+ kfree(buf);
+
+ if (ret != val_size + 1)
+ return ret < 0 ? ret : -EIO;
+
+ return 0;
+}
+
+static int pcf2127_i2c_read(void *context, const void *reg, size_t reg_size,
+ void *val, size_t val_size)
+{
+ struct device *dev = context;
+ struct i2c_client *client = to_i2c_client(dev);
+ int ret;
+
+ if (WARN_ON(reg_size != 1))
+ return -EINVAL;
+
+ ret = i2c_master_send(client, reg, 1);
+ if (ret != 1)
+ return ret < 0 ? ret : -EIO;
+
+ ret = i2c_master_recv(client, val, val_size);
+ if (ret != val_size)
+ return ret < 0 ? ret : -EIO;
+
+ return 0;
+}
+
+/*
+ * The reason we need this custom regmap_bus instead of using regmap_init_i2c()
+ * is that the STOP condition is required between set register address and
+ * read register data when reading from registers.
+ */
+static const struct regmap_bus pcf2127_i2c_regmap = {
+ .write = pcf2127_i2c_write,
+ .gather_write = pcf2127_i2c_gather_write,
+ .read = pcf2127_i2c_read,
+};
+
+static struct i2c_driver pcf2127_i2c_driver;
+
+static int pcf2127_i2c_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct regmap *regmap;
+ static const struct regmap_config config = {
+ .reg_bits = 8,
+ .val_bits = 8,
+ .max_register = 0x1d,
+ };
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
+ return -ENODEV;
+
+ regmap = devm_regmap_init(&client->dev, &pcf2127_i2c_regmap,
+ &client->dev, &config);
+ if (IS_ERR(regmap)) {
+ dev_err(&client->dev, "%s: regmap allocation failed: %ld\n",
+ __func__, PTR_ERR(regmap));
+ return PTR_ERR(regmap);
+ }
+
+ return pcf2127_probe(&client->dev, regmap, client->irq,
+ pcf2127_i2c_driver.driver.name, id->driver_data);
+}
+
+static const struct i2c_device_id pcf2127_i2c_id[] = {
+ { "pcf2127", 1 },
+ { "pcf2129", 0 },
+ { "pca2129", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, pcf2127_i2c_id);
+
+static struct i2c_driver pcf2127_i2c_driver = {
+ .driver = {
+ .name = "rtc-pcf2127-i2c",
+ .of_match_table = of_match_ptr(pcf2127_of_match),
+ },
+ .probe = pcf2127_i2c_probe,
+ .id_table = pcf2127_i2c_id,
+};
+
+static int pcf2127_i2c_register_driver(void)
+{
+ return i2c_add_driver(&pcf2127_i2c_driver);
+}
+
+static void pcf2127_i2c_unregister_driver(void)
+{
+ i2c_del_driver(&pcf2127_i2c_driver);
+}
+
+#else
+
+static int pcf2127_i2c_register_driver(void)
+{
+ return 0;
+}
+
+static void pcf2127_i2c_unregister_driver(void)
+{
+}
+
+#endif
+
+#if IS_ENABLED(CONFIG_SPI_MASTER)
+
+static struct spi_driver pcf2127_spi_driver;
+
+static int pcf2127_spi_probe(struct spi_device *spi)
+{
+ static const struct regmap_config config = {
+ .reg_bits = 8,
+ .val_bits = 8,
+ .read_flag_mask = 0xa0,
+ .write_flag_mask = 0x20,
+ .max_register = 0x1d,
+ };
+ struct regmap *regmap;
+
+ regmap = devm_regmap_init_spi(spi, &config);
+ if (IS_ERR(regmap)) {
+ dev_err(&spi->dev, "%s: regmap allocation failed: %ld\n",
+ __func__, PTR_ERR(regmap));
+ return PTR_ERR(regmap);
+ }
+
+ return pcf2127_probe(&spi->dev, regmap, spi->irq,
+ pcf2127_spi_driver.driver.name,
+ spi_get_device_id(spi)->driver_data);
+}
+
+static const struct spi_device_id pcf2127_spi_id[] = {
+ { "pcf2127", 1 },
+ { "pcf2129", 0 },
+ { "pca2129", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(spi, pcf2127_spi_id);
+
+static struct spi_driver pcf2127_spi_driver = {
+ .driver = {
+ .name = "rtc-pcf2127-spi",
+ .of_match_table = of_match_ptr(pcf2127_of_match),
+ },
+ .probe = pcf2127_spi_probe,
+ .id_table = pcf2127_spi_id,
+};
+
+static int pcf2127_spi_register_driver(void)
+{
+ return spi_register_driver(&pcf2127_spi_driver);
+}
+
+static void pcf2127_spi_unregister_driver(void)
+{
+ spi_unregister_driver(&pcf2127_spi_driver);
+}
+
+#else
+
+static int pcf2127_spi_register_driver(void)
+{
+ return 0;
+}
+
+static void pcf2127_spi_unregister_driver(void)
+{
+}
+
+#endif
+
+static int __init pcf2127_init(void)
+{
+ int ret;
+
+ ret = pcf2127_i2c_register_driver();
+ if (ret) {
+ pr_err("Failed to register pcf2127 i2c driver: %d\n", ret);
+ return ret;
+ }
+
+ ret = pcf2127_spi_register_driver();
+ if (ret) {
+ pr_err("Failed to register pcf2127 spi driver: %d\n", ret);
+ pcf2127_i2c_unregister_driver();
+ }
+
+ return ret;
+}
+module_init(pcf2127_init)
+
+static void __exit pcf2127_exit(void)
+{
+ pcf2127_spi_unregister_driver();
+ pcf2127_i2c_unregister_driver();
+}
+module_exit(pcf2127_exit)
+
+MODULE_AUTHOR("Renaud Cerrato <r.cerrato@til-technologies.fr>");
+MODULE_DESCRIPTION("NXP PCF2127/29 RTC driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-pcf50633.c b/drivers/rtc/rtc-pcf50633.c
new file mode 100644
index 000000000..48951a16d
--- /dev/null
+++ b/drivers/rtc/rtc-pcf50633.c
@@ -0,0 +1,286 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/* NXP PCF50633 RTC Driver
+ *
+ * (C) 2006-2008 by Openmoko, Inc.
+ * Author: Balaji Rao <balajirrao@openmoko.org>
+ * All rights reserved.
+ *
+ * Broken down from monstrous PCF50633 driver mainly by
+ * Harald Welte, Andy Green and Werner Almesberger
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/device.h>
+#include <linux/slab.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/bcd.h>
+#include <linux/err.h>
+
+#include <linux/mfd/pcf50633/core.h>
+
+#define PCF50633_REG_RTCSC 0x59 /* Second */
+#define PCF50633_REG_RTCMN 0x5a /* Minute */
+#define PCF50633_REG_RTCHR 0x5b /* Hour */
+#define PCF50633_REG_RTCWD 0x5c /* Weekday */
+#define PCF50633_REG_RTCDT 0x5d /* Day */
+#define PCF50633_REG_RTCMT 0x5e /* Month */
+#define PCF50633_REG_RTCYR 0x5f /* Year */
+#define PCF50633_REG_RTCSCA 0x60 /* Alarm Second */
+#define PCF50633_REG_RTCMNA 0x61 /* Alarm Minute */
+#define PCF50633_REG_RTCHRA 0x62 /* Alarm Hour */
+#define PCF50633_REG_RTCWDA 0x63 /* Alarm Weekday */
+#define PCF50633_REG_RTCDTA 0x64 /* Alarm Day */
+#define PCF50633_REG_RTCMTA 0x65 /* Alarm Month */
+#define PCF50633_REG_RTCYRA 0x66 /* Alarm Year */
+
+enum pcf50633_time_indexes {
+ PCF50633_TI_SEC,
+ PCF50633_TI_MIN,
+ PCF50633_TI_HOUR,
+ PCF50633_TI_WKDAY,
+ PCF50633_TI_DAY,
+ PCF50633_TI_MONTH,
+ PCF50633_TI_YEAR,
+ PCF50633_TI_EXTENT /* always last */
+};
+
+struct pcf50633_time {
+ u_int8_t time[PCF50633_TI_EXTENT];
+};
+
+struct pcf50633_rtc {
+ int alarm_enabled;
+ int alarm_pending;
+
+ struct pcf50633 *pcf;
+ struct rtc_device *rtc_dev;
+};
+
+static void pcf2rtc_time(struct rtc_time *rtc, struct pcf50633_time *pcf)
+{
+ rtc->tm_sec = bcd2bin(pcf->time[PCF50633_TI_SEC]);
+ rtc->tm_min = bcd2bin(pcf->time[PCF50633_TI_MIN]);
+ rtc->tm_hour = bcd2bin(pcf->time[PCF50633_TI_HOUR]);
+ rtc->tm_wday = bcd2bin(pcf->time[PCF50633_TI_WKDAY]);
+ rtc->tm_mday = bcd2bin(pcf->time[PCF50633_TI_DAY]);
+ rtc->tm_mon = bcd2bin(pcf->time[PCF50633_TI_MONTH]) - 1;
+ rtc->tm_year = bcd2bin(pcf->time[PCF50633_TI_YEAR]) + 100;
+}
+
+static void rtc2pcf_time(struct pcf50633_time *pcf, struct rtc_time *rtc)
+{
+ pcf->time[PCF50633_TI_SEC] = bin2bcd(rtc->tm_sec);
+ pcf->time[PCF50633_TI_MIN] = bin2bcd(rtc->tm_min);
+ pcf->time[PCF50633_TI_HOUR] = bin2bcd(rtc->tm_hour);
+ pcf->time[PCF50633_TI_WKDAY] = bin2bcd(rtc->tm_wday);
+ pcf->time[PCF50633_TI_DAY] = bin2bcd(rtc->tm_mday);
+ pcf->time[PCF50633_TI_MONTH] = bin2bcd(rtc->tm_mon + 1);
+ pcf->time[PCF50633_TI_YEAR] = bin2bcd(rtc->tm_year % 100);
+}
+
+static int
+pcf50633_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct pcf50633_rtc *rtc = dev_get_drvdata(dev);
+ int err;
+
+ if (enabled)
+ err = pcf50633_irq_unmask(rtc->pcf, PCF50633_IRQ_ALARM);
+ else
+ err = pcf50633_irq_mask(rtc->pcf, PCF50633_IRQ_ALARM);
+
+ if (err < 0)
+ return err;
+
+ rtc->alarm_enabled = enabled;
+
+ return 0;
+}
+
+static int pcf50633_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pcf50633_rtc *rtc;
+ struct pcf50633_time pcf_tm;
+ int ret;
+
+ rtc = dev_get_drvdata(dev);
+
+ ret = pcf50633_read_block(rtc->pcf, PCF50633_REG_RTCSC,
+ PCF50633_TI_EXTENT,
+ &pcf_tm.time[0]);
+ if (ret != PCF50633_TI_EXTENT) {
+ dev_err(dev, "Failed to read time\n");
+ return -EIO;
+ }
+
+ dev_dbg(dev, "PCF_TIME: %02x.%02x.%02x %02x:%02x:%02x\n",
+ pcf_tm.time[PCF50633_TI_DAY],
+ pcf_tm.time[PCF50633_TI_MONTH],
+ pcf_tm.time[PCF50633_TI_YEAR],
+ pcf_tm.time[PCF50633_TI_HOUR],
+ pcf_tm.time[PCF50633_TI_MIN],
+ pcf_tm.time[PCF50633_TI_SEC]);
+
+ pcf2rtc_time(tm, &pcf_tm);
+
+ dev_dbg(dev, "RTC_TIME: %ptRr\n", tm);
+
+ return 0;
+}
+
+static int pcf50633_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pcf50633_rtc *rtc;
+ struct pcf50633_time pcf_tm;
+ int alarm_masked, ret = 0;
+
+ rtc = dev_get_drvdata(dev);
+
+ dev_dbg(dev, "RTC_TIME: %ptRr\n", tm);
+
+ rtc2pcf_time(&pcf_tm, tm);
+
+ dev_dbg(dev, "PCF_TIME: %02x.%02x.%02x %02x:%02x:%02x\n",
+ pcf_tm.time[PCF50633_TI_DAY],
+ pcf_tm.time[PCF50633_TI_MONTH],
+ pcf_tm.time[PCF50633_TI_YEAR],
+ pcf_tm.time[PCF50633_TI_HOUR],
+ pcf_tm.time[PCF50633_TI_MIN],
+ pcf_tm.time[PCF50633_TI_SEC]);
+
+
+ alarm_masked = pcf50633_irq_mask_get(rtc->pcf, PCF50633_IRQ_ALARM);
+
+ if (!alarm_masked)
+ pcf50633_irq_mask(rtc->pcf, PCF50633_IRQ_ALARM);
+
+ /* Returns 0 on success */
+ ret = pcf50633_write_block(rtc->pcf, PCF50633_REG_RTCSC,
+ PCF50633_TI_EXTENT,
+ &pcf_tm.time[0]);
+
+ if (!alarm_masked)
+ pcf50633_irq_unmask(rtc->pcf, PCF50633_IRQ_ALARM);
+
+ return ret;
+}
+
+static int pcf50633_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pcf50633_rtc *rtc;
+ struct pcf50633_time pcf_tm;
+ int ret = 0;
+
+ rtc = dev_get_drvdata(dev);
+
+ alrm->enabled = rtc->alarm_enabled;
+ alrm->pending = rtc->alarm_pending;
+
+ ret = pcf50633_read_block(rtc->pcf, PCF50633_REG_RTCSCA,
+ PCF50633_TI_EXTENT, &pcf_tm.time[0]);
+ if (ret != PCF50633_TI_EXTENT) {
+ dev_err(dev, "Failed to read time\n");
+ return -EIO;
+ }
+
+ pcf2rtc_time(&alrm->time, &pcf_tm);
+
+ return rtc_valid_tm(&alrm->time);
+}
+
+static int pcf50633_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pcf50633_rtc *rtc;
+ struct pcf50633_time pcf_tm;
+ int alarm_masked, ret = 0;
+
+ rtc = dev_get_drvdata(dev);
+
+ rtc2pcf_time(&pcf_tm, &alrm->time);
+
+ /* do like mktime does and ignore tm_wday */
+ pcf_tm.time[PCF50633_TI_WKDAY] = 7;
+
+ alarm_masked = pcf50633_irq_mask_get(rtc->pcf, PCF50633_IRQ_ALARM);
+
+ /* disable alarm interrupt */
+ if (!alarm_masked)
+ pcf50633_irq_mask(rtc->pcf, PCF50633_IRQ_ALARM);
+
+ /* Returns 0 on success */
+ ret = pcf50633_write_block(rtc->pcf, PCF50633_REG_RTCSCA,
+ PCF50633_TI_EXTENT, &pcf_tm.time[0]);
+ if (!alrm->enabled)
+ rtc->alarm_pending = 0;
+
+ if (!alarm_masked || alrm->enabled)
+ pcf50633_irq_unmask(rtc->pcf, PCF50633_IRQ_ALARM);
+ rtc->alarm_enabled = alrm->enabled;
+
+ return ret;
+}
+
+static const struct rtc_class_ops pcf50633_rtc_ops = {
+ .read_time = pcf50633_rtc_read_time,
+ .set_time = pcf50633_rtc_set_time,
+ .read_alarm = pcf50633_rtc_read_alarm,
+ .set_alarm = pcf50633_rtc_set_alarm,
+ .alarm_irq_enable = pcf50633_rtc_alarm_irq_enable,
+};
+
+static void pcf50633_rtc_irq(int irq, void *data)
+{
+ struct pcf50633_rtc *rtc = data;
+
+ rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
+ rtc->alarm_pending = 1;
+}
+
+static int pcf50633_rtc_probe(struct platform_device *pdev)
+{
+ struct pcf50633_rtc *rtc;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->pcf = dev_to_pcf50633(pdev->dev.parent);
+ platform_set_drvdata(pdev, rtc);
+ rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, "pcf50633-rtc",
+ &pcf50633_rtc_ops, THIS_MODULE);
+
+ if (IS_ERR(rtc->rtc_dev))
+ return PTR_ERR(rtc->rtc_dev);
+
+ pcf50633_register_irq(rtc->pcf, PCF50633_IRQ_ALARM,
+ pcf50633_rtc_irq, rtc);
+ return 0;
+}
+
+static int pcf50633_rtc_remove(struct platform_device *pdev)
+{
+ struct pcf50633_rtc *rtc;
+
+ rtc = platform_get_drvdata(pdev);
+ pcf50633_free_irq(rtc->pcf, PCF50633_IRQ_ALARM);
+
+ return 0;
+}
+
+static struct platform_driver pcf50633_rtc_driver = {
+ .driver = {
+ .name = "pcf50633-rtc",
+ },
+ .probe = pcf50633_rtc_probe,
+ .remove = pcf50633_rtc_remove,
+};
+
+module_platform_driver(pcf50633_rtc_driver);
+
+MODULE_DESCRIPTION("PCF50633 RTC driver");
+MODULE_AUTHOR("Balaji Rao <balajirrao@openmoko.org>");
+MODULE_LICENSE("GPL");
+
diff --git a/drivers/rtc/rtc-pcf85063.c b/drivers/rtc/rtc-pcf85063.c
new file mode 100644
index 000000000..449204d84
--- /dev/null
+++ b/drivers/rtc/rtc-pcf85063.c
@@ -0,0 +1,642 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * An I2C driver for the PCF85063 RTC
+ * Copyright 2014 Rose Technology
+ *
+ * Author: Søren Andersen <san@rosetechnology.dk>
+ * Maintainers: http://www.nslu2-linux.org/
+ *
+ * Copyright (C) 2019 Micro Crystal AG
+ * Author: Alexandre Belloni <alexandre.belloni@bootlin.com>
+ */
+#include <linux/clk-provider.h>
+#include <linux/i2c.h>
+#include <linux/bcd.h>
+#include <linux/rtc.h>
+#include <linux/module.h>
+#include <linux/of_device.h>
+#include <linux/pm_wakeirq.h>
+#include <linux/regmap.h>
+
+/*
+ * Information for this driver was pulled from the following datasheets.
+ *
+ * https://www.nxp.com/documents/data_sheet/PCF85063A.pdf
+ * https://www.nxp.com/documents/data_sheet/PCF85063TP.pdf
+ *
+ * PCF85063A -- Rev. 6 — 18 November 2015
+ * PCF85063TP -- Rev. 4 — 6 May 2015
+ *
+ * https://www.microcrystal.com/fileadmin/Media/Products/RTC/App.Manual/RV-8263-C7_App-Manual.pdf
+ * RV8263 -- Rev. 1.0 — January 2019
+ */
+
+#define PCF85063_REG_CTRL1 0x00 /* status */
+#define PCF85063_REG_CTRL1_CAP_SEL BIT(0)
+#define PCF85063_REG_CTRL1_STOP BIT(5)
+
+#define PCF85063_REG_CTRL2 0x01
+#define PCF85063_CTRL2_AF BIT(6)
+#define PCF85063_CTRL2_AIE BIT(7)
+
+#define PCF85063_REG_OFFSET 0x02
+#define PCF85063_OFFSET_SIGN_BIT 6 /* 2's complement sign bit */
+#define PCF85063_OFFSET_MODE BIT(7)
+#define PCF85063_OFFSET_STEP0 4340
+#define PCF85063_OFFSET_STEP1 4069
+
+#define PCF85063_REG_CLKO_F_MASK 0x07 /* frequency mask */
+#define PCF85063_REG_CLKO_F_32768HZ 0x00
+#define PCF85063_REG_CLKO_F_OFF 0x07
+
+#define PCF85063_REG_RAM 0x03
+
+#define PCF85063_REG_SC 0x04 /* datetime */
+#define PCF85063_REG_SC_OS 0x80
+
+#define PCF85063_REG_ALM_S 0x0b
+#define PCF85063_AEN BIT(7)
+
+struct pcf85063_config {
+ struct regmap_config regmap;
+ unsigned has_alarms:1;
+ unsigned force_cap_7000:1;
+};
+
+struct pcf85063 {
+ struct rtc_device *rtc;
+ struct regmap *regmap;
+#ifdef CONFIG_COMMON_CLK
+ struct clk_hw clkout_hw;
+#endif
+};
+
+static int pcf85063_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pcf85063 *pcf85063 = dev_get_drvdata(dev);
+ int rc;
+ u8 regs[7];
+
+ /*
+ * while reading, the time/date registers are blocked and not updated
+ * anymore until the access is finished. To not lose a second
+ * event, the access must be finished within one second. So, read all
+ * time/date registers in one turn.
+ */
+ rc = regmap_bulk_read(pcf85063->regmap, PCF85063_REG_SC, regs,
+ sizeof(regs));
+ if (rc)
+ return rc;
+
+ /* if the clock has lost its power it makes no sense to use its time */
+ if (regs[0] & PCF85063_REG_SC_OS) {
+ dev_warn(&pcf85063->rtc->dev, "Power loss detected, invalid time\n");
+ return -EINVAL;
+ }
+
+ tm->tm_sec = bcd2bin(regs[0] & 0x7F);
+ tm->tm_min = bcd2bin(regs[1] & 0x7F);
+ tm->tm_hour = bcd2bin(regs[2] & 0x3F); /* rtc hr 0-23 */
+ tm->tm_mday = bcd2bin(regs[3] & 0x3F);
+ tm->tm_wday = regs[4] & 0x07;
+ tm->tm_mon = bcd2bin(regs[5] & 0x1F) - 1; /* rtc mn 1-12 */
+ tm->tm_year = bcd2bin(regs[6]);
+ tm->tm_year += 100;
+
+ return 0;
+}
+
+static int pcf85063_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pcf85063 *pcf85063 = dev_get_drvdata(dev);
+ int rc;
+ u8 regs[7];
+
+ /*
+ * to accurately set the time, reset the divider chain and keep it in
+ * reset state until all time/date registers are written
+ */
+ rc = regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL1,
+ PCF85063_REG_CTRL1_STOP,
+ PCF85063_REG_CTRL1_STOP);
+ if (rc)
+ return rc;
+
+ /* hours, minutes and seconds */
+ regs[0] = bin2bcd(tm->tm_sec) & 0x7F; /* clear OS flag */
+
+ regs[1] = bin2bcd(tm->tm_min);
+ regs[2] = bin2bcd(tm->tm_hour);
+
+ /* Day of month, 1 - 31 */
+ regs[3] = bin2bcd(tm->tm_mday);
+
+ /* Day, 0 - 6 */
+ regs[4] = tm->tm_wday & 0x07;
+
+ /* month, 1 - 12 */
+ regs[5] = bin2bcd(tm->tm_mon + 1);
+
+ /* year and century */
+ regs[6] = bin2bcd(tm->tm_year - 100);
+
+ /* write all registers at once */
+ rc = regmap_bulk_write(pcf85063->regmap, PCF85063_REG_SC,
+ regs, sizeof(regs));
+ if (rc)
+ return rc;
+
+ /*
+ * Write the control register as a separate action since the size of
+ * the register space is different between the PCF85063TP and
+ * PCF85063A devices. The rollover point can not be used.
+ */
+ return regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL1,
+ PCF85063_REG_CTRL1_STOP, 0);
+}
+
+static int pcf85063_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pcf85063 *pcf85063 = dev_get_drvdata(dev);
+ u8 buf[4];
+ unsigned int val;
+ int ret;
+
+ ret = regmap_bulk_read(pcf85063->regmap, PCF85063_REG_ALM_S,
+ buf, sizeof(buf));
+ if (ret)
+ return ret;
+
+ alrm->time.tm_sec = bcd2bin(buf[0] & 0x7f);
+ alrm->time.tm_min = bcd2bin(buf[1] & 0x7f);
+ alrm->time.tm_hour = bcd2bin(buf[2] & 0x3f);
+ alrm->time.tm_mday = bcd2bin(buf[3] & 0x3f);
+
+ ret = regmap_read(pcf85063->regmap, PCF85063_REG_CTRL2, &val);
+ if (ret)
+ return ret;
+
+ alrm->enabled = !!(val & PCF85063_CTRL2_AIE);
+
+ return 0;
+}
+
+static int pcf85063_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pcf85063 *pcf85063 = dev_get_drvdata(dev);
+ u8 buf[5];
+ int ret;
+
+ buf[0] = bin2bcd(alrm->time.tm_sec);
+ buf[1] = bin2bcd(alrm->time.tm_min);
+ buf[2] = bin2bcd(alrm->time.tm_hour);
+ buf[3] = bin2bcd(alrm->time.tm_mday);
+ buf[4] = PCF85063_AEN; /* Do not match on week day */
+
+ ret = regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL2,
+ PCF85063_CTRL2_AIE | PCF85063_CTRL2_AF, 0);
+ if (ret)
+ return ret;
+
+ ret = regmap_bulk_write(pcf85063->regmap, PCF85063_REG_ALM_S,
+ buf, sizeof(buf));
+ if (ret)
+ return ret;
+
+ return regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL2,
+ PCF85063_CTRL2_AIE | PCF85063_CTRL2_AF,
+ alrm->enabled ? PCF85063_CTRL2_AIE | PCF85063_CTRL2_AF : PCF85063_CTRL2_AF);
+}
+
+static int pcf85063_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct pcf85063 *pcf85063 = dev_get_drvdata(dev);
+
+ return regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL2,
+ PCF85063_CTRL2_AIE,
+ enabled ? PCF85063_CTRL2_AIE : 0);
+}
+
+static irqreturn_t pcf85063_rtc_handle_irq(int irq, void *dev_id)
+{
+ struct pcf85063 *pcf85063 = dev_id;
+ unsigned int val;
+ int err;
+
+ err = regmap_read(pcf85063->regmap, PCF85063_REG_CTRL2, &val);
+ if (err)
+ return IRQ_NONE;
+
+ if (val & PCF85063_CTRL2_AF) {
+ rtc_update_irq(pcf85063->rtc, 1, RTC_IRQF | RTC_AF);
+ regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL2,
+ PCF85063_CTRL2_AIE | PCF85063_CTRL2_AF,
+ 0);
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+static int pcf85063_read_offset(struct device *dev, long *offset)
+{
+ struct pcf85063 *pcf85063 = dev_get_drvdata(dev);
+ long val;
+ u32 reg;
+ int ret;
+
+ ret = regmap_read(pcf85063->regmap, PCF85063_REG_OFFSET, &reg);
+ if (ret < 0)
+ return ret;
+
+ val = sign_extend32(reg & ~PCF85063_OFFSET_MODE,
+ PCF85063_OFFSET_SIGN_BIT);
+
+ if (reg & PCF85063_OFFSET_MODE)
+ *offset = val * PCF85063_OFFSET_STEP1;
+ else
+ *offset = val * PCF85063_OFFSET_STEP0;
+
+ return 0;
+}
+
+static int pcf85063_set_offset(struct device *dev, long offset)
+{
+ struct pcf85063 *pcf85063 = dev_get_drvdata(dev);
+ s8 mode0, mode1, reg;
+ unsigned int error0, error1;
+
+ if (offset > PCF85063_OFFSET_STEP0 * 63)
+ return -ERANGE;
+ if (offset < PCF85063_OFFSET_STEP0 * -64)
+ return -ERANGE;
+
+ mode0 = DIV_ROUND_CLOSEST(offset, PCF85063_OFFSET_STEP0);
+ mode1 = DIV_ROUND_CLOSEST(offset, PCF85063_OFFSET_STEP1);
+
+ error0 = abs(offset - (mode0 * PCF85063_OFFSET_STEP0));
+ error1 = abs(offset - (mode1 * PCF85063_OFFSET_STEP1));
+ if (mode1 > 63 || mode1 < -64 || error0 < error1)
+ reg = mode0 & ~PCF85063_OFFSET_MODE;
+ else
+ reg = mode1 | PCF85063_OFFSET_MODE;
+
+ return regmap_write(pcf85063->regmap, PCF85063_REG_OFFSET, reg);
+}
+
+static int pcf85063_ioctl(struct device *dev, unsigned int cmd,
+ unsigned long arg)
+{
+ struct pcf85063 *pcf85063 = dev_get_drvdata(dev);
+ int status, ret = 0;
+
+ switch (cmd) {
+ case RTC_VL_READ:
+ ret = regmap_read(pcf85063->regmap, PCF85063_REG_SC, &status);
+ if (ret < 0)
+ return ret;
+
+ status = status & PCF85063_REG_SC_OS ? RTC_VL_DATA_INVALID : 0;
+
+ return put_user(status, (unsigned int __user *)arg);
+
+ default:
+ return -ENOIOCTLCMD;
+ }
+}
+
+static const struct rtc_class_ops pcf85063_rtc_ops = {
+ .read_time = pcf85063_rtc_read_time,
+ .set_time = pcf85063_rtc_set_time,
+ .read_offset = pcf85063_read_offset,
+ .set_offset = pcf85063_set_offset,
+ .ioctl = pcf85063_ioctl,
+};
+
+static const struct rtc_class_ops pcf85063_rtc_ops_alarm = {
+ .read_time = pcf85063_rtc_read_time,
+ .set_time = pcf85063_rtc_set_time,
+ .read_offset = pcf85063_read_offset,
+ .set_offset = pcf85063_set_offset,
+ .read_alarm = pcf85063_rtc_read_alarm,
+ .set_alarm = pcf85063_rtc_set_alarm,
+ .alarm_irq_enable = pcf85063_rtc_alarm_irq_enable,
+ .ioctl = pcf85063_ioctl,
+};
+
+static int pcf85063_nvmem_read(void *priv, unsigned int offset,
+ void *val, size_t bytes)
+{
+ return regmap_read(priv, PCF85063_REG_RAM, val);
+}
+
+static int pcf85063_nvmem_write(void *priv, unsigned int offset,
+ void *val, size_t bytes)
+{
+ return regmap_write(priv, PCF85063_REG_RAM, *(u8 *)val);
+}
+
+static int pcf85063_load_capacitance(struct pcf85063 *pcf85063,
+ const struct device_node *np,
+ unsigned int force_cap)
+{
+ u32 load = 7000;
+ u8 reg = 0;
+
+ if (force_cap)
+ load = force_cap;
+ else
+ of_property_read_u32(np, "quartz-load-femtofarads", &load);
+
+ switch (load) {
+ default:
+ dev_warn(&pcf85063->rtc->dev, "Unknown quartz-load-femtofarads value: %d. Assuming 7000",
+ load);
+ fallthrough;
+ case 7000:
+ break;
+ case 12500:
+ reg = PCF85063_REG_CTRL1_CAP_SEL;
+ break;
+ }
+
+ return regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL1,
+ PCF85063_REG_CTRL1_CAP_SEL, reg);
+}
+
+#ifdef CONFIG_COMMON_CLK
+/*
+ * Handling of the clkout
+ */
+
+#define clkout_hw_to_pcf85063(_hw) container_of(_hw, struct pcf85063, clkout_hw)
+
+static int clkout_rates[] = {
+ 32768,
+ 16384,
+ 8192,
+ 4096,
+ 2048,
+ 1024,
+ 1,
+ 0
+};
+
+static unsigned long pcf85063_clkout_recalc_rate(struct clk_hw *hw,
+ unsigned long parent_rate)
+{
+ struct pcf85063 *pcf85063 = clkout_hw_to_pcf85063(hw);
+ unsigned int buf;
+ int ret = regmap_read(pcf85063->regmap, PCF85063_REG_CTRL2, &buf);
+
+ if (ret < 0)
+ return 0;
+
+ buf &= PCF85063_REG_CLKO_F_MASK;
+ return clkout_rates[buf];
+}
+
+static long pcf85063_clkout_round_rate(struct clk_hw *hw, unsigned long rate,
+ unsigned long *prate)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(clkout_rates); i++)
+ if (clkout_rates[i] <= rate)
+ return clkout_rates[i];
+
+ return 0;
+}
+
+static int pcf85063_clkout_set_rate(struct clk_hw *hw, unsigned long rate,
+ unsigned long parent_rate)
+{
+ struct pcf85063 *pcf85063 = clkout_hw_to_pcf85063(hw);
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(clkout_rates); i++)
+ if (clkout_rates[i] == rate)
+ return regmap_update_bits(pcf85063->regmap,
+ PCF85063_REG_CTRL2,
+ PCF85063_REG_CLKO_F_MASK, i);
+
+ return -EINVAL;
+}
+
+static int pcf85063_clkout_control(struct clk_hw *hw, bool enable)
+{
+ struct pcf85063 *pcf85063 = clkout_hw_to_pcf85063(hw);
+ unsigned int buf;
+ int ret;
+
+ ret = regmap_read(pcf85063->regmap, PCF85063_REG_CTRL2, &buf);
+ if (ret < 0)
+ return ret;
+ buf &= PCF85063_REG_CLKO_F_MASK;
+
+ if (enable) {
+ if (buf == PCF85063_REG_CLKO_F_OFF)
+ buf = PCF85063_REG_CLKO_F_32768HZ;
+ else
+ return 0;
+ } else {
+ if (buf != PCF85063_REG_CLKO_F_OFF)
+ buf = PCF85063_REG_CLKO_F_OFF;
+ else
+ return 0;
+ }
+
+ return regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL2,
+ PCF85063_REG_CLKO_F_MASK, buf);
+}
+
+static int pcf85063_clkout_prepare(struct clk_hw *hw)
+{
+ return pcf85063_clkout_control(hw, 1);
+}
+
+static void pcf85063_clkout_unprepare(struct clk_hw *hw)
+{
+ pcf85063_clkout_control(hw, 0);
+}
+
+static int pcf85063_clkout_is_prepared(struct clk_hw *hw)
+{
+ struct pcf85063 *pcf85063 = clkout_hw_to_pcf85063(hw);
+ unsigned int buf;
+ int ret = regmap_read(pcf85063->regmap, PCF85063_REG_CTRL2, &buf);
+
+ if (ret < 0)
+ return 0;
+
+ return (buf & PCF85063_REG_CLKO_F_MASK) != PCF85063_REG_CLKO_F_OFF;
+}
+
+static const struct clk_ops pcf85063_clkout_ops = {
+ .prepare = pcf85063_clkout_prepare,
+ .unprepare = pcf85063_clkout_unprepare,
+ .is_prepared = pcf85063_clkout_is_prepared,
+ .recalc_rate = pcf85063_clkout_recalc_rate,
+ .round_rate = pcf85063_clkout_round_rate,
+ .set_rate = pcf85063_clkout_set_rate,
+};
+
+static struct clk *pcf85063_clkout_register_clk(struct pcf85063 *pcf85063)
+{
+ struct clk *clk;
+ struct clk_init_data init;
+ struct device_node *node = pcf85063->rtc->dev.parent->of_node;
+
+ init.name = "pcf85063-clkout";
+ init.ops = &pcf85063_clkout_ops;
+ init.flags = 0;
+ init.parent_names = NULL;
+ init.num_parents = 0;
+ pcf85063->clkout_hw.init = &init;
+
+ /* optional override of the clockname */
+ of_property_read_string(node, "clock-output-names", &init.name);
+
+ /* register the clock */
+ clk = devm_clk_register(&pcf85063->rtc->dev, &pcf85063->clkout_hw);
+
+ if (!IS_ERR(clk))
+ of_clk_add_provider(node, of_clk_src_simple_get, clk);
+
+ return clk;
+}
+#endif
+
+static const struct pcf85063_config pcf85063a_config = {
+ .regmap = {
+ .reg_bits = 8,
+ .val_bits = 8,
+ .max_register = 0x11,
+ },
+ .has_alarms = 1,
+};
+
+static const struct pcf85063_config pcf85063tp_config = {
+ .regmap = {
+ .reg_bits = 8,
+ .val_bits = 8,
+ .max_register = 0x0a,
+ },
+};
+
+static const struct pcf85063_config rv8263_config = {
+ .regmap = {
+ .reg_bits = 8,
+ .val_bits = 8,
+ .max_register = 0x11,
+ },
+ .has_alarms = 1,
+ .force_cap_7000 = 1,
+};
+
+static int pcf85063_probe(struct i2c_client *client)
+{
+ struct pcf85063 *pcf85063;
+ unsigned int tmp;
+ int err;
+ const struct pcf85063_config *config = &pcf85063tp_config;
+ const void *data = of_device_get_match_data(&client->dev);
+ struct nvmem_config nvmem_cfg = {
+ .name = "pcf85063_nvram",
+ .reg_read = pcf85063_nvmem_read,
+ .reg_write = pcf85063_nvmem_write,
+ .type = NVMEM_TYPE_BATTERY_BACKED,
+ .size = 1,
+ };
+
+ dev_dbg(&client->dev, "%s\n", __func__);
+
+ pcf85063 = devm_kzalloc(&client->dev, sizeof(struct pcf85063),
+ GFP_KERNEL);
+ if (!pcf85063)
+ return -ENOMEM;
+
+ if (data)
+ config = data;
+
+ pcf85063->regmap = devm_regmap_init_i2c(client, &config->regmap);
+ if (IS_ERR(pcf85063->regmap))
+ return PTR_ERR(pcf85063->regmap);
+
+ i2c_set_clientdata(client, pcf85063);
+
+ err = regmap_read(pcf85063->regmap, PCF85063_REG_CTRL1, &tmp);
+ if (err) {
+ dev_err(&client->dev, "RTC chip is not present\n");
+ return err;
+ }
+
+ pcf85063->rtc = devm_rtc_allocate_device(&client->dev);
+ if (IS_ERR(pcf85063->rtc))
+ return PTR_ERR(pcf85063->rtc);
+
+ err = pcf85063_load_capacitance(pcf85063, client->dev.of_node,
+ config->force_cap_7000 ? 7000 : 0);
+ if (err < 0)
+ dev_warn(&client->dev, "failed to set xtal load capacitance: %d",
+ err);
+
+ pcf85063->rtc->ops = &pcf85063_rtc_ops;
+ pcf85063->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ pcf85063->rtc->range_max = RTC_TIMESTAMP_END_2099;
+ pcf85063->rtc->uie_unsupported = 1;
+
+ if (config->has_alarms && client->irq > 0) {
+ err = devm_request_threaded_irq(&client->dev, client->irq,
+ NULL, pcf85063_rtc_handle_irq,
+ IRQF_TRIGGER_LOW | IRQF_ONESHOT,
+ "pcf85063", pcf85063);
+ if (err) {
+ dev_warn(&pcf85063->rtc->dev,
+ "unable to request IRQ, alarms disabled\n");
+ } else {
+ pcf85063->rtc->ops = &pcf85063_rtc_ops_alarm;
+ device_init_wakeup(&client->dev, true);
+ err = dev_pm_set_wake_irq(&client->dev, client->irq);
+ if (err)
+ dev_err(&pcf85063->rtc->dev,
+ "failed to enable irq wake\n");
+ }
+ }
+
+ nvmem_cfg.priv = pcf85063->regmap;
+ rtc_nvmem_register(pcf85063->rtc, &nvmem_cfg);
+
+#ifdef CONFIG_COMMON_CLK
+ /* register clk in common clk framework */
+ pcf85063_clkout_register_clk(pcf85063);
+#endif
+
+ return rtc_register_device(pcf85063->rtc);
+}
+
+#ifdef CONFIG_OF
+static const struct of_device_id pcf85063_of_match[] = {
+ { .compatible = "nxp,pcf85063", .data = &pcf85063tp_config },
+ { .compatible = "nxp,pcf85063tp", .data = &pcf85063tp_config },
+ { .compatible = "nxp,pcf85063a", .data = &pcf85063a_config },
+ { .compatible = "microcrystal,rv8263", .data = &rv8263_config },
+ {}
+};
+MODULE_DEVICE_TABLE(of, pcf85063_of_match);
+#endif
+
+static struct i2c_driver pcf85063_driver = {
+ .driver = {
+ .name = "rtc-pcf85063",
+ .of_match_table = of_match_ptr(pcf85063_of_match),
+ },
+ .probe_new = pcf85063_probe,
+};
+
+module_i2c_driver(pcf85063_driver);
+
+MODULE_AUTHOR("Søren Andersen <san@rosetechnology.dk>");
+MODULE_DESCRIPTION("PCF85063 RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-pcf8523.c b/drivers/rtc/rtc-pcf8523.c
new file mode 100644
index 000000000..57d351dfe
--- /dev/null
+++ b/drivers/rtc/rtc-pcf8523.c
@@ -0,0 +1,394 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2012 Avionic Design GmbH
+ */
+
+#include <linux/bcd.h>
+#include <linux/i2c.h>
+#include <linux/module.h>
+#include <linux/rtc.h>
+#include <linux/of.h>
+
+#define DRIVER_NAME "rtc-pcf8523"
+
+#define REG_CONTROL1 0x00
+#define REG_CONTROL1_CAP_SEL (1 << 7)
+#define REG_CONTROL1_STOP (1 << 5)
+
+#define REG_CONTROL3 0x02
+#define REG_CONTROL3_PM_BLD (1 << 7) /* battery low detection disabled */
+#define REG_CONTROL3_PM_VDD (1 << 6) /* switch-over disabled */
+#define REG_CONTROL3_PM_DSM (1 << 5) /* direct switching mode */
+#define REG_CONTROL3_PM_MASK 0xe0
+#define REG_CONTROL3_BLF (1 << 2) /* battery low bit, read-only */
+
+#define REG_SECONDS 0x03
+#define REG_SECONDS_OS (1 << 7)
+
+#define REG_MINUTES 0x04
+#define REG_HOURS 0x05
+#define REG_DAYS 0x06
+#define REG_WEEKDAYS 0x07
+#define REG_MONTHS 0x08
+#define REG_YEARS 0x09
+
+#define REG_OFFSET 0x0e
+#define REG_OFFSET_MODE BIT(7)
+
+static int pcf8523_read(struct i2c_client *client, u8 reg, u8 *valuep)
+{
+ struct i2c_msg msgs[2];
+ u8 value = 0;
+ int err;
+
+ msgs[0].addr = client->addr;
+ msgs[0].flags = 0;
+ msgs[0].len = sizeof(reg);
+ msgs[0].buf = &reg;
+
+ msgs[1].addr = client->addr;
+ msgs[1].flags = I2C_M_RD;
+ msgs[1].len = sizeof(value);
+ msgs[1].buf = &value;
+
+ err = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
+ if (err < 0)
+ return err;
+
+ *valuep = value;
+
+ return 0;
+}
+
+static int pcf8523_write(struct i2c_client *client, u8 reg, u8 value)
+{
+ u8 buffer[2] = { reg, value };
+ struct i2c_msg msg;
+ int err;
+
+ msg.addr = client->addr;
+ msg.flags = 0;
+ msg.len = sizeof(buffer);
+ msg.buf = buffer;
+
+ err = i2c_transfer(client->adapter, &msg, 1);
+ if (err < 0)
+ return err;
+
+ return 0;
+}
+
+static int pcf8523_voltage_low(struct i2c_client *client)
+{
+ u8 value;
+ int err;
+
+ err = pcf8523_read(client, REG_CONTROL3, &value);
+ if (err < 0)
+ return err;
+
+ return !!(value & REG_CONTROL3_BLF);
+}
+
+static int pcf8523_load_capacitance(struct i2c_client *client)
+{
+ u32 load;
+ u8 value;
+ int err;
+
+ err = pcf8523_read(client, REG_CONTROL1, &value);
+ if (err < 0)
+ return err;
+
+ load = 12500;
+ of_property_read_u32(client->dev.of_node, "quartz-load-femtofarads",
+ &load);
+
+ switch (load) {
+ default:
+ dev_warn(&client->dev, "Unknown quartz-load-femtofarads value: %d. Assuming 12500",
+ load);
+ fallthrough;
+ case 12500:
+ value |= REG_CONTROL1_CAP_SEL;
+ break;
+ case 7000:
+ value &= ~REG_CONTROL1_CAP_SEL;
+ break;
+ }
+
+ err = pcf8523_write(client, REG_CONTROL1, value);
+
+ return err;
+}
+
+static int pcf8523_set_pm(struct i2c_client *client, u8 pm)
+{
+ u8 value;
+ int err;
+
+ err = pcf8523_read(client, REG_CONTROL3, &value);
+ if (err < 0)
+ return err;
+
+ value = (value & ~REG_CONTROL3_PM_MASK) | pm;
+
+ err = pcf8523_write(client, REG_CONTROL3, value);
+ if (err < 0)
+ return err;
+
+ return 0;
+}
+
+static int pcf8523_stop_rtc(struct i2c_client *client)
+{
+ u8 value;
+ int err;
+
+ err = pcf8523_read(client, REG_CONTROL1, &value);
+ if (err < 0)
+ return err;
+
+ value |= REG_CONTROL1_STOP;
+
+ err = pcf8523_write(client, REG_CONTROL1, value);
+ if (err < 0)
+ return err;
+
+ return 0;
+}
+
+static int pcf8523_start_rtc(struct i2c_client *client)
+{
+ u8 value;
+ int err;
+
+ err = pcf8523_read(client, REG_CONTROL1, &value);
+ if (err < 0)
+ return err;
+
+ value &= ~REG_CONTROL1_STOP;
+
+ err = pcf8523_write(client, REG_CONTROL1, value);
+ if (err < 0)
+ return err;
+
+ return 0;
+}
+
+static int pcf8523_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ u8 start = REG_SECONDS, regs[7];
+ struct i2c_msg msgs[2];
+ int err;
+
+ err = pcf8523_voltage_low(client);
+ if (err < 0) {
+ return err;
+ } else if (err > 0) {
+ dev_err(dev, "low voltage detected, time is unreliable\n");
+ return -EINVAL;
+ }
+
+ msgs[0].addr = client->addr;
+ msgs[0].flags = 0;
+ msgs[0].len = 1;
+ msgs[0].buf = &start;
+
+ msgs[1].addr = client->addr;
+ msgs[1].flags = I2C_M_RD;
+ msgs[1].len = sizeof(regs);
+ msgs[1].buf = regs;
+
+ err = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
+ if (err < 0)
+ return err;
+
+ if (regs[0] & REG_SECONDS_OS)
+ return -EINVAL;
+
+ tm->tm_sec = bcd2bin(regs[0] & 0x7f);
+ tm->tm_min = bcd2bin(regs[1] & 0x7f);
+ tm->tm_hour = bcd2bin(regs[2] & 0x3f);
+ tm->tm_mday = bcd2bin(regs[3] & 0x3f);
+ tm->tm_wday = regs[4] & 0x7;
+ tm->tm_mon = bcd2bin(regs[5] & 0x1f) - 1;
+ tm->tm_year = bcd2bin(regs[6]) + 100;
+
+ return 0;
+}
+
+static int pcf8523_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct i2c_msg msg;
+ u8 regs[8];
+ int err;
+
+ /*
+ * The hardware can only store values between 0 and 99 in it's YEAR
+ * register (with 99 overflowing to 0 on increment).
+ * After 2100-02-28 we could start interpreting the year to be in the
+ * interval [2100, 2199], but there is no path to switch in a smooth way
+ * because the chip handles YEAR=0x00 (and the out-of-spec
+ * YEAR=0xa0) as a leap year, but 2100 isn't.
+ */
+ if (tm->tm_year < 100 || tm->tm_year >= 200)
+ return -EINVAL;
+
+ err = pcf8523_stop_rtc(client);
+ if (err < 0)
+ return err;
+
+ regs[0] = REG_SECONDS;
+ /* This will purposely overwrite REG_SECONDS_OS */
+ regs[1] = bin2bcd(tm->tm_sec);
+ regs[2] = bin2bcd(tm->tm_min);
+ regs[3] = bin2bcd(tm->tm_hour);
+ regs[4] = bin2bcd(tm->tm_mday);
+ regs[5] = tm->tm_wday;
+ regs[6] = bin2bcd(tm->tm_mon + 1);
+ regs[7] = bin2bcd(tm->tm_year - 100);
+
+ msg.addr = client->addr;
+ msg.flags = 0;
+ msg.len = sizeof(regs);
+ msg.buf = regs;
+
+ err = i2c_transfer(client->adapter, &msg, 1);
+ if (err < 0) {
+ /*
+ * If the time cannot be set, restart the RTC anyway. Note
+ * that errors are ignored if the RTC cannot be started so
+ * that we have a chance to propagate the original error.
+ */
+ pcf8523_start_rtc(client);
+ return err;
+ }
+
+ return pcf8523_start_rtc(client);
+}
+
+#ifdef CONFIG_RTC_INTF_DEV
+static int pcf8523_rtc_ioctl(struct device *dev, unsigned int cmd,
+ unsigned long arg)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ int ret;
+
+ switch (cmd) {
+ case RTC_VL_READ:
+ ret = pcf8523_voltage_low(client);
+ if (ret < 0)
+ return ret;
+ if (ret)
+ ret = RTC_VL_BACKUP_LOW;
+
+ return put_user(ret, (unsigned int __user *)arg);
+
+ default:
+ return -ENOIOCTLCMD;
+ }
+}
+#else
+#define pcf8523_rtc_ioctl NULL
+#endif
+
+static int pcf8523_rtc_read_offset(struct device *dev, long *offset)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ int err;
+ u8 value;
+ s8 val;
+
+ err = pcf8523_read(client, REG_OFFSET, &value);
+ if (err < 0)
+ return err;
+
+ /* sign extend the 7-bit offset value */
+ val = value << 1;
+ *offset = (value & REG_OFFSET_MODE ? 4069 : 4340) * (val >> 1);
+
+ return 0;
+}
+
+static int pcf8523_rtc_set_offset(struct device *dev, long offset)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ long reg_m0, reg_m1;
+ u8 value;
+
+ reg_m0 = clamp(DIV_ROUND_CLOSEST(offset, 4340), -64L, 63L);
+ reg_m1 = clamp(DIV_ROUND_CLOSEST(offset, 4069), -64L, 63L);
+
+ if (abs(reg_m0 * 4340 - offset) < abs(reg_m1 * 4069 - offset))
+ value = reg_m0 & 0x7f;
+ else
+ value = (reg_m1 & 0x7f) | REG_OFFSET_MODE;
+
+ return pcf8523_write(client, REG_OFFSET, value);
+}
+
+static const struct rtc_class_ops pcf8523_rtc_ops = {
+ .read_time = pcf8523_rtc_read_time,
+ .set_time = pcf8523_rtc_set_time,
+ .ioctl = pcf8523_rtc_ioctl,
+ .read_offset = pcf8523_rtc_read_offset,
+ .set_offset = pcf8523_rtc_set_offset,
+};
+
+static int pcf8523_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct rtc_device *rtc;
+ int err;
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
+ return -ENODEV;
+
+ err = pcf8523_load_capacitance(client);
+ if (err < 0)
+ dev_warn(&client->dev, "failed to set xtal load capacitance: %d",
+ err);
+
+ err = pcf8523_set_pm(client, 0);
+ if (err < 0)
+ return err;
+
+ rtc = devm_rtc_device_register(&client->dev, DRIVER_NAME,
+ &pcf8523_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ return 0;
+}
+
+static const struct i2c_device_id pcf8523_id[] = {
+ { "pcf8523", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, pcf8523_id);
+
+#ifdef CONFIG_OF
+static const struct of_device_id pcf8523_of_match[] = {
+ { .compatible = "nxp,pcf8523" },
+ { .compatible = "microcrystal,rv8523" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, pcf8523_of_match);
+#endif
+
+static struct i2c_driver pcf8523_driver = {
+ .driver = {
+ .name = DRIVER_NAME,
+ .of_match_table = of_match_ptr(pcf8523_of_match),
+ },
+ .probe = pcf8523_probe,
+ .id_table = pcf8523_id,
+};
+module_i2c_driver(pcf8523_driver);
+
+MODULE_AUTHOR("Thierry Reding <thierry.reding@avionic-design.de>");
+MODULE_DESCRIPTION("NXP PCF8523 RTC driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-pcf85363.c b/drivers/rtc/rtc-pcf85363.c
new file mode 100644
index 000000000..bb962dce3
--- /dev/null
+++ b/drivers/rtc/rtc-pcf85363.c
@@ -0,0 +1,450 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * drivers/rtc/rtc-pcf85363.c
+ *
+ * Driver for NXP PCF85363 real-time clock.
+ *
+ * Copyright (C) 2017 Eric Nelson
+ */
+#include <linux/module.h>
+#include <linux/i2c.h>
+#include <linux/slab.h>
+#include <linux/rtc.h>
+#include <linux/init.h>
+#include <linux/err.h>
+#include <linux/errno.h>
+#include <linux/bcd.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/regmap.h>
+
+/*
+ * Date/Time registers
+ */
+#define DT_100THS 0x00
+#define DT_SECS 0x01
+#define DT_MINUTES 0x02
+#define DT_HOURS 0x03
+#define DT_DAYS 0x04
+#define DT_WEEKDAYS 0x05
+#define DT_MONTHS 0x06
+#define DT_YEARS 0x07
+
+/*
+ * Alarm registers
+ */
+#define DT_SECOND_ALM1 0x08
+#define DT_MINUTE_ALM1 0x09
+#define DT_HOUR_ALM1 0x0a
+#define DT_DAY_ALM1 0x0b
+#define DT_MONTH_ALM1 0x0c
+#define DT_MINUTE_ALM2 0x0d
+#define DT_HOUR_ALM2 0x0e
+#define DT_WEEKDAY_ALM2 0x0f
+#define DT_ALARM_EN 0x10
+
+/*
+ * Time stamp registers
+ */
+#define DT_TIMESTAMP1 0x11
+#define DT_TIMESTAMP2 0x17
+#define DT_TIMESTAMP3 0x1d
+#define DT_TS_MODE 0x23
+
+/*
+ * control registers
+ */
+#define CTRL_OFFSET 0x24
+#define CTRL_OSCILLATOR 0x25
+#define CTRL_BATTERY 0x26
+#define CTRL_PIN_IO 0x27
+#define CTRL_FUNCTION 0x28
+#define CTRL_INTA_EN 0x29
+#define CTRL_INTB_EN 0x2a
+#define CTRL_FLAGS 0x2b
+#define CTRL_RAMBYTE 0x2c
+#define CTRL_WDOG 0x2d
+#define CTRL_STOP_EN 0x2e
+#define CTRL_RESETS 0x2f
+#define CTRL_RAM 0x40
+
+#define ALRM_SEC_A1E BIT(0)
+#define ALRM_MIN_A1E BIT(1)
+#define ALRM_HR_A1E BIT(2)
+#define ALRM_DAY_A1E BIT(3)
+#define ALRM_MON_A1E BIT(4)
+#define ALRM_MIN_A2E BIT(5)
+#define ALRM_HR_A2E BIT(6)
+#define ALRM_DAY_A2E BIT(7)
+
+#define INT_WDIE BIT(0)
+#define INT_BSIE BIT(1)
+#define INT_TSRIE BIT(2)
+#define INT_A2IE BIT(3)
+#define INT_A1IE BIT(4)
+#define INT_OIE BIT(5)
+#define INT_PIE BIT(6)
+#define INT_ILP BIT(7)
+
+#define FLAGS_TSR1F BIT(0)
+#define FLAGS_TSR2F BIT(1)
+#define FLAGS_TSR3F BIT(2)
+#define FLAGS_BSF BIT(3)
+#define FLAGS_WDF BIT(4)
+#define FLAGS_A1F BIT(5)
+#define FLAGS_A2F BIT(6)
+#define FLAGS_PIF BIT(7)
+
+#define PIN_IO_INTAPM GENMASK(1, 0)
+#define PIN_IO_INTA_CLK 0
+#define PIN_IO_INTA_BAT 1
+#define PIN_IO_INTA_OUT 2
+#define PIN_IO_INTA_HIZ 3
+
+#define STOP_EN_STOP BIT(0)
+
+#define RESET_CPR 0xa4
+
+#define NVRAM_SIZE 0x40
+
+struct pcf85363 {
+ struct rtc_device *rtc;
+ struct regmap *regmap;
+};
+
+struct pcf85x63_config {
+ struct regmap_config regmap;
+ unsigned int num_nvram;
+};
+
+static int pcf85363_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pcf85363 *pcf85363 = dev_get_drvdata(dev);
+ unsigned char buf[DT_YEARS + 1];
+ int ret, len = sizeof(buf);
+
+ /* read the RTC date and time registers all at once */
+ ret = regmap_bulk_read(pcf85363->regmap, DT_100THS, buf, len);
+ if (ret) {
+ dev_err(dev, "%s: error %d\n", __func__, ret);
+ return ret;
+ }
+
+ tm->tm_year = bcd2bin(buf[DT_YEARS]);
+ /* adjust for 1900 base of rtc_time */
+ tm->tm_year += 100;
+
+ tm->tm_wday = buf[DT_WEEKDAYS] & 7;
+ buf[DT_SECS] &= 0x7F;
+ tm->tm_sec = bcd2bin(buf[DT_SECS]);
+ buf[DT_MINUTES] &= 0x7F;
+ tm->tm_min = bcd2bin(buf[DT_MINUTES]);
+ tm->tm_hour = bcd2bin(buf[DT_HOURS]);
+ tm->tm_mday = bcd2bin(buf[DT_DAYS]);
+ tm->tm_mon = bcd2bin(buf[DT_MONTHS]) - 1;
+
+ return 0;
+}
+
+static int pcf85363_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pcf85363 *pcf85363 = dev_get_drvdata(dev);
+ unsigned char tmp[11];
+ unsigned char *buf = &tmp[2];
+ int ret;
+
+ tmp[0] = STOP_EN_STOP;
+ tmp[1] = RESET_CPR;
+
+ buf[DT_100THS] = 0;
+ buf[DT_SECS] = bin2bcd(tm->tm_sec);
+ buf[DT_MINUTES] = bin2bcd(tm->tm_min);
+ buf[DT_HOURS] = bin2bcd(tm->tm_hour);
+ buf[DT_DAYS] = bin2bcd(tm->tm_mday);
+ buf[DT_WEEKDAYS] = tm->tm_wday;
+ buf[DT_MONTHS] = bin2bcd(tm->tm_mon + 1);
+ buf[DT_YEARS] = bin2bcd(tm->tm_year % 100);
+
+ ret = regmap_bulk_write(pcf85363->regmap, CTRL_STOP_EN,
+ tmp, 2);
+ if (ret)
+ return ret;
+
+ ret = regmap_bulk_write(pcf85363->regmap, DT_100THS,
+ buf, sizeof(tmp) - 2);
+ if (ret)
+ return ret;
+
+ return regmap_write(pcf85363->regmap, CTRL_STOP_EN, 0);
+}
+
+static int pcf85363_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pcf85363 *pcf85363 = dev_get_drvdata(dev);
+ unsigned char buf[DT_MONTH_ALM1 - DT_SECOND_ALM1 + 1];
+ unsigned int val;
+ int ret;
+
+ ret = regmap_bulk_read(pcf85363->regmap, DT_SECOND_ALM1, buf,
+ sizeof(buf));
+ if (ret)
+ return ret;
+
+ alrm->time.tm_sec = bcd2bin(buf[0]);
+ alrm->time.tm_min = bcd2bin(buf[1]);
+ alrm->time.tm_hour = bcd2bin(buf[2]);
+ alrm->time.tm_mday = bcd2bin(buf[3]);
+ alrm->time.tm_mon = bcd2bin(buf[4]) - 1;
+
+ ret = regmap_read(pcf85363->regmap, CTRL_INTA_EN, &val);
+ if (ret)
+ return ret;
+
+ alrm->enabled = !!(val & INT_A1IE);
+
+ return 0;
+}
+
+static int _pcf85363_rtc_alarm_irq_enable(struct pcf85363 *pcf85363, unsigned
+ int enabled)
+{
+ unsigned int alarm_flags = ALRM_SEC_A1E | ALRM_MIN_A1E | ALRM_HR_A1E |
+ ALRM_DAY_A1E | ALRM_MON_A1E;
+ int ret;
+
+ ret = regmap_update_bits(pcf85363->regmap, DT_ALARM_EN, alarm_flags,
+ enabled ? alarm_flags : 0);
+ if (ret)
+ return ret;
+
+ ret = regmap_update_bits(pcf85363->regmap, CTRL_INTA_EN,
+ INT_A1IE, enabled ? INT_A1IE : 0);
+
+ if (ret || enabled)
+ return ret;
+
+ /* clear current flags */
+ return regmap_update_bits(pcf85363->regmap, CTRL_FLAGS, FLAGS_A1F, 0);
+}
+
+static int pcf85363_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct pcf85363 *pcf85363 = dev_get_drvdata(dev);
+
+ return _pcf85363_rtc_alarm_irq_enable(pcf85363, enabled);
+}
+
+static int pcf85363_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pcf85363 *pcf85363 = dev_get_drvdata(dev);
+ unsigned char buf[DT_MONTH_ALM1 - DT_SECOND_ALM1 + 1];
+ int ret;
+
+ buf[0] = bin2bcd(alrm->time.tm_sec);
+ buf[1] = bin2bcd(alrm->time.tm_min);
+ buf[2] = bin2bcd(alrm->time.tm_hour);
+ buf[3] = bin2bcd(alrm->time.tm_mday);
+ buf[4] = bin2bcd(alrm->time.tm_mon + 1);
+
+ /*
+ * Disable the alarm interrupt before changing the value to avoid
+ * spurious interrupts
+ */
+ ret = _pcf85363_rtc_alarm_irq_enable(pcf85363, 0);
+ if (ret)
+ return ret;
+
+ ret = regmap_bulk_write(pcf85363->regmap, DT_SECOND_ALM1, buf,
+ sizeof(buf));
+ if (ret)
+ return ret;
+
+ return _pcf85363_rtc_alarm_irq_enable(pcf85363, alrm->enabled);
+}
+
+static irqreturn_t pcf85363_rtc_handle_irq(int irq, void *dev_id)
+{
+ struct pcf85363 *pcf85363 = i2c_get_clientdata(dev_id);
+ unsigned int flags;
+ int err;
+
+ err = regmap_read(pcf85363->regmap, CTRL_FLAGS, &flags);
+ if (err)
+ return IRQ_NONE;
+
+ if (flags & FLAGS_A1F) {
+ rtc_update_irq(pcf85363->rtc, 1, RTC_IRQF | RTC_AF);
+ regmap_update_bits(pcf85363->regmap, CTRL_FLAGS, FLAGS_A1F, 0);
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+static const struct rtc_class_ops rtc_ops = {
+ .read_time = pcf85363_rtc_read_time,
+ .set_time = pcf85363_rtc_set_time,
+};
+
+static const struct rtc_class_ops rtc_ops_alarm = {
+ .read_time = pcf85363_rtc_read_time,
+ .set_time = pcf85363_rtc_set_time,
+ .read_alarm = pcf85363_rtc_read_alarm,
+ .set_alarm = pcf85363_rtc_set_alarm,
+ .alarm_irq_enable = pcf85363_rtc_alarm_irq_enable,
+};
+
+static int pcf85363_nvram_read(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ struct pcf85363 *pcf85363 = priv;
+
+ return regmap_bulk_read(pcf85363->regmap, CTRL_RAM + offset,
+ val, bytes);
+}
+
+static int pcf85363_nvram_write(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ struct pcf85363 *pcf85363 = priv;
+
+ return regmap_bulk_write(pcf85363->regmap, CTRL_RAM + offset,
+ val, bytes);
+}
+
+static int pcf85x63_nvram_read(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ struct pcf85363 *pcf85363 = priv;
+ unsigned int tmp_val;
+ int ret;
+
+ ret = regmap_read(pcf85363->regmap, CTRL_RAMBYTE, &tmp_val);
+ (*(unsigned char *) val) = (unsigned char) tmp_val;
+
+ return ret;
+}
+
+static int pcf85x63_nvram_write(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ struct pcf85363 *pcf85363 = priv;
+ unsigned char tmp_val;
+
+ tmp_val = *((unsigned char *)val);
+ return regmap_write(pcf85363->regmap, CTRL_RAMBYTE,
+ (unsigned int)tmp_val);
+}
+
+static const struct pcf85x63_config pcf_85263_config = {
+ .regmap = {
+ .reg_bits = 8,
+ .val_bits = 8,
+ .max_register = 0x2f,
+ },
+ .num_nvram = 1
+};
+
+static const struct pcf85x63_config pcf_85363_config = {
+ .regmap = {
+ .reg_bits = 8,
+ .val_bits = 8,
+ .max_register = 0x7f,
+ },
+ .num_nvram = 2
+};
+
+static int pcf85363_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct pcf85363 *pcf85363;
+ const struct pcf85x63_config *config = &pcf_85363_config;
+ const void *data = of_device_get_match_data(&client->dev);
+ static struct nvmem_config nvmem_cfg[] = {
+ {
+ .name = "pcf85x63-",
+ .word_size = 1,
+ .stride = 1,
+ .size = 1,
+ .reg_read = pcf85x63_nvram_read,
+ .reg_write = pcf85x63_nvram_write,
+ }, {
+ .name = "pcf85363-",
+ .word_size = 1,
+ .stride = 1,
+ .size = NVRAM_SIZE,
+ .reg_read = pcf85363_nvram_read,
+ .reg_write = pcf85363_nvram_write,
+ },
+ };
+ int ret, i;
+
+ if (data)
+ config = data;
+
+ pcf85363 = devm_kzalloc(&client->dev, sizeof(struct pcf85363),
+ GFP_KERNEL);
+ if (!pcf85363)
+ return -ENOMEM;
+
+ pcf85363->regmap = devm_regmap_init_i2c(client, &config->regmap);
+ if (IS_ERR(pcf85363->regmap)) {
+ dev_err(&client->dev, "regmap allocation failed\n");
+ return PTR_ERR(pcf85363->regmap);
+ }
+
+ i2c_set_clientdata(client, pcf85363);
+
+ pcf85363->rtc = devm_rtc_allocate_device(&client->dev);
+ if (IS_ERR(pcf85363->rtc))
+ return PTR_ERR(pcf85363->rtc);
+
+ pcf85363->rtc->ops = &rtc_ops;
+ pcf85363->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ pcf85363->rtc->range_max = RTC_TIMESTAMP_END_2099;
+
+ if (client->irq > 0) {
+ regmap_write(pcf85363->regmap, CTRL_FLAGS, 0);
+ regmap_update_bits(pcf85363->regmap, CTRL_PIN_IO,
+ PIN_IO_INTAPM, PIN_IO_INTA_OUT);
+ ret = devm_request_threaded_irq(&client->dev, client->irq,
+ NULL, pcf85363_rtc_handle_irq,
+ IRQF_TRIGGER_LOW | IRQF_ONESHOT,
+ "pcf85363", client);
+ if (ret)
+ dev_warn(&client->dev, "unable to request IRQ, alarms disabled\n");
+ else
+ pcf85363->rtc->ops = &rtc_ops_alarm;
+ }
+
+ ret = rtc_register_device(pcf85363->rtc);
+
+ for (i = 0; i < config->num_nvram; i++) {
+ nvmem_cfg[i].priv = pcf85363;
+ rtc_nvmem_register(pcf85363->rtc, &nvmem_cfg[i]);
+ }
+
+ return ret;
+}
+
+static const struct of_device_id dev_ids[] = {
+ { .compatible = "nxp,pcf85263", .data = &pcf_85263_config },
+ { .compatible = "nxp,pcf85363", .data = &pcf_85363_config },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, dev_ids);
+
+static struct i2c_driver pcf85363_driver = {
+ .driver = {
+ .name = "pcf85363",
+ .of_match_table = of_match_ptr(dev_ids),
+ },
+ .probe = pcf85363_probe,
+};
+
+module_i2c_driver(pcf85363_driver);
+
+MODULE_AUTHOR("Eric Nelson");
+MODULE_DESCRIPTION("pcf85263/pcf85363 I2C RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-pcf8563.c b/drivers/rtc/rtc-pcf8563.c
new file mode 100644
index 000000000..2dc30eafa
--- /dev/null
+++ b/drivers/rtc/rtc-pcf8563.c
@@ -0,0 +1,627 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * An I2C driver for the Philips PCF8563 RTC
+ * Copyright 2005-06 Tower Technologies
+ *
+ * Author: Alessandro Zummo <a.zummo@towertech.it>
+ * Maintainers: http://www.nslu2-linux.org/
+ *
+ * based on the other drivers in this same directory.
+ *
+ * http://www.semiconductors.philips.com/acrobat/datasheets/PCF8563-04.pdf
+ */
+
+#include <linux/clk-provider.h>
+#include <linux/i2c.h>
+#include <linux/bcd.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/err.h>
+
+#define PCF8563_REG_ST1 0x00 /* status */
+#define PCF8563_REG_ST2 0x01
+#define PCF8563_BIT_AIE BIT(1)
+#define PCF8563_BIT_AF BIT(3)
+#define PCF8563_BITS_ST2_N (7 << 5)
+
+#define PCF8563_REG_SC 0x02 /* datetime */
+#define PCF8563_REG_MN 0x03
+#define PCF8563_REG_HR 0x04
+#define PCF8563_REG_DM 0x05
+#define PCF8563_REG_DW 0x06
+#define PCF8563_REG_MO 0x07
+#define PCF8563_REG_YR 0x08
+
+#define PCF8563_REG_AMN 0x09 /* alarm */
+
+#define PCF8563_REG_CLKO 0x0D /* clock out */
+#define PCF8563_REG_CLKO_FE 0x80 /* clock out enabled */
+#define PCF8563_REG_CLKO_F_MASK 0x03 /* frequenc mask */
+#define PCF8563_REG_CLKO_F_32768HZ 0x00
+#define PCF8563_REG_CLKO_F_1024HZ 0x01
+#define PCF8563_REG_CLKO_F_32HZ 0x02
+#define PCF8563_REG_CLKO_F_1HZ 0x03
+
+#define PCF8563_REG_TMRC 0x0E /* timer control */
+#define PCF8563_TMRC_ENABLE BIT(7)
+#define PCF8563_TMRC_4096 0
+#define PCF8563_TMRC_64 1
+#define PCF8563_TMRC_1 2
+#define PCF8563_TMRC_1_60 3
+#define PCF8563_TMRC_MASK 3
+
+#define PCF8563_REG_TMR 0x0F /* timer */
+
+#define PCF8563_SC_LV 0x80 /* low voltage */
+#define PCF8563_MO_C 0x80 /* century */
+
+static struct i2c_driver pcf8563_driver;
+
+struct pcf8563 {
+ struct rtc_device *rtc;
+ /*
+ * The meaning of MO_C bit varies by the chip type.
+ * From PCF8563 datasheet: this bit is toggled when the years
+ * register overflows from 99 to 00
+ * 0 indicates the century is 20xx
+ * 1 indicates the century is 19xx
+ * From RTC8564 datasheet: this bit indicates change of
+ * century. When the year digit data overflows from 99 to 00,
+ * this bit is set. By presetting it to 0 while still in the
+ * 20th century, it will be set in year 2000, ...
+ * There seems no reliable way to know how the system use this
+ * bit. So let's do it heuristically, assuming we are live in
+ * 1970...2069.
+ */
+ int c_polarity; /* 0: MO_C=1 means 19xx, otherwise MO_C=1 means 20xx */
+
+ struct i2c_client *client;
+#ifdef CONFIG_COMMON_CLK
+ struct clk_hw clkout_hw;
+#endif
+};
+
+static int pcf8563_read_block_data(struct i2c_client *client, unsigned char reg,
+ unsigned char length, unsigned char *buf)
+{
+ struct i2c_msg msgs[] = {
+ {/* setup read ptr */
+ .addr = client->addr,
+ .len = 1,
+ .buf = &reg,
+ },
+ {
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = length,
+ .buf = buf
+ },
+ };
+
+ if ((i2c_transfer(client->adapter, msgs, 2)) != 2) {
+ dev_err(&client->dev, "%s: read error\n", __func__);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static int pcf8563_write_block_data(struct i2c_client *client,
+ unsigned char reg, unsigned char length,
+ unsigned char *buf)
+{
+ int i, err;
+
+ for (i = 0; i < length; i++) {
+ unsigned char data[2] = { reg + i, buf[i] };
+
+ err = i2c_master_send(client, data, sizeof(data));
+ if (err != sizeof(data)) {
+ dev_err(&client->dev,
+ "%s: err=%d addr=%02x, data=%02x\n",
+ __func__, err, data[0], data[1]);
+ return -EIO;
+ }
+ }
+
+ return 0;
+}
+
+static int pcf8563_set_alarm_mode(struct i2c_client *client, bool on)
+{
+ unsigned char buf;
+ int err;
+
+ err = pcf8563_read_block_data(client, PCF8563_REG_ST2, 1, &buf);
+ if (err < 0)
+ return err;
+
+ if (on)
+ buf |= PCF8563_BIT_AIE;
+ else
+ buf &= ~PCF8563_BIT_AIE;
+
+ buf &= ~(PCF8563_BIT_AF | PCF8563_BITS_ST2_N);
+
+ err = pcf8563_write_block_data(client, PCF8563_REG_ST2, 1, &buf);
+ if (err < 0) {
+ dev_err(&client->dev, "%s: write error\n", __func__);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static int pcf8563_get_alarm_mode(struct i2c_client *client, unsigned char *en,
+ unsigned char *pen)
+{
+ unsigned char buf;
+ int err;
+
+ err = pcf8563_read_block_data(client, PCF8563_REG_ST2, 1, &buf);
+ if (err)
+ return err;
+
+ if (en)
+ *en = !!(buf & PCF8563_BIT_AIE);
+ if (pen)
+ *pen = !!(buf & PCF8563_BIT_AF);
+
+ return 0;
+}
+
+static irqreturn_t pcf8563_irq(int irq, void *dev_id)
+{
+ struct pcf8563 *pcf8563 = i2c_get_clientdata(dev_id);
+ int err;
+ char pending;
+
+ err = pcf8563_get_alarm_mode(pcf8563->client, NULL, &pending);
+ if (err)
+ return IRQ_NONE;
+
+ if (pending) {
+ rtc_update_irq(pcf8563->rtc, 1, RTC_IRQF | RTC_AF);
+ pcf8563_set_alarm_mode(pcf8563->client, 1);
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+/*
+ * In the routines that deal directly with the pcf8563 hardware, we use
+ * rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch.
+ */
+static int pcf8563_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct pcf8563 *pcf8563 = i2c_get_clientdata(client);
+ unsigned char buf[9];
+ int err;
+
+ err = pcf8563_read_block_data(client, PCF8563_REG_ST1, 9, buf);
+ if (err)
+ return err;
+
+ if (buf[PCF8563_REG_SC] & PCF8563_SC_LV) {
+ dev_err(&client->dev,
+ "low voltage detected, date/time is not reliable.\n");
+ return -EINVAL;
+ }
+
+ dev_dbg(&client->dev,
+ "%s: raw data is st1=%02x, st2=%02x, sec=%02x, min=%02x, hr=%02x, "
+ "mday=%02x, wday=%02x, mon=%02x, year=%02x\n",
+ __func__,
+ buf[0], buf[1], buf[2], buf[3],
+ buf[4], buf[5], buf[6], buf[7],
+ buf[8]);
+
+
+ tm->tm_sec = bcd2bin(buf[PCF8563_REG_SC] & 0x7F);
+ tm->tm_min = bcd2bin(buf[PCF8563_REG_MN] & 0x7F);
+ tm->tm_hour = bcd2bin(buf[PCF8563_REG_HR] & 0x3F); /* rtc hr 0-23 */
+ tm->tm_mday = bcd2bin(buf[PCF8563_REG_DM] & 0x3F);
+ tm->tm_wday = buf[PCF8563_REG_DW] & 0x07;
+ tm->tm_mon = bcd2bin(buf[PCF8563_REG_MO] & 0x1F) - 1; /* rtc mn 1-12 */
+ tm->tm_year = bcd2bin(buf[PCF8563_REG_YR]) + 100;
+ /* detect the polarity heuristically. see note above. */
+ pcf8563->c_polarity = (buf[PCF8563_REG_MO] & PCF8563_MO_C) ?
+ (tm->tm_year >= 100) : (tm->tm_year < 100);
+
+ dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
+ "mday=%d, mon=%d, year=%d, wday=%d\n",
+ __func__,
+ tm->tm_sec, tm->tm_min, tm->tm_hour,
+ tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ return 0;
+}
+
+static int pcf8563_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct pcf8563 *pcf8563 = i2c_get_clientdata(client);
+ unsigned char buf[9];
+
+ dev_dbg(&client->dev, "%s: secs=%d, mins=%d, hours=%d, "
+ "mday=%d, mon=%d, year=%d, wday=%d\n",
+ __func__,
+ tm->tm_sec, tm->tm_min, tm->tm_hour,
+ tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ /* hours, minutes and seconds */
+ buf[PCF8563_REG_SC] = bin2bcd(tm->tm_sec);
+ buf[PCF8563_REG_MN] = bin2bcd(tm->tm_min);
+ buf[PCF8563_REG_HR] = bin2bcd(tm->tm_hour);
+
+ buf[PCF8563_REG_DM] = bin2bcd(tm->tm_mday);
+
+ /* month, 1 - 12 */
+ buf[PCF8563_REG_MO] = bin2bcd(tm->tm_mon + 1);
+
+ /* year and century */
+ buf[PCF8563_REG_YR] = bin2bcd(tm->tm_year - 100);
+ if (pcf8563->c_polarity ? (tm->tm_year >= 100) : (tm->tm_year < 100))
+ buf[PCF8563_REG_MO] |= PCF8563_MO_C;
+
+ buf[PCF8563_REG_DW] = tm->tm_wday & 0x07;
+
+ return pcf8563_write_block_data(client, PCF8563_REG_SC,
+ 9 - PCF8563_REG_SC, buf + PCF8563_REG_SC);
+}
+
+static int pcf8563_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ int ret;
+
+ switch (cmd) {
+ case RTC_VL_READ:
+ ret = i2c_smbus_read_byte_data(client, PCF8563_REG_SC);
+ if (ret < 0)
+ return ret;
+
+ return put_user(ret & PCF8563_SC_LV ? RTC_VL_DATA_INVALID : 0,
+ (unsigned int __user *)arg);
+ default:
+ return -ENOIOCTLCMD;
+ }
+}
+
+static int pcf8563_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ unsigned char buf[4];
+ int err;
+
+ err = pcf8563_read_block_data(client, PCF8563_REG_AMN, 4, buf);
+ if (err)
+ return err;
+
+ dev_dbg(&client->dev,
+ "%s: raw data is min=%02x, hr=%02x, mday=%02x, wday=%02x\n",
+ __func__, buf[0], buf[1], buf[2], buf[3]);
+
+ tm->time.tm_sec = 0;
+ tm->time.tm_min = bcd2bin(buf[0] & 0x7F);
+ tm->time.tm_hour = bcd2bin(buf[1] & 0x3F);
+ tm->time.tm_mday = bcd2bin(buf[2] & 0x3F);
+ tm->time.tm_wday = bcd2bin(buf[3] & 0x7);
+
+ err = pcf8563_get_alarm_mode(client, &tm->enabled, &tm->pending);
+ if (err < 0)
+ return err;
+
+ dev_dbg(&client->dev, "%s: tm is mins=%d, hours=%d, mday=%d, wday=%d,"
+ " enabled=%d, pending=%d\n", __func__, tm->time.tm_min,
+ tm->time.tm_hour, tm->time.tm_mday, tm->time.tm_wday,
+ tm->enabled, tm->pending);
+
+ return 0;
+}
+
+static int pcf8563_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ unsigned char buf[4];
+ int err;
+
+ /* The alarm has no seconds, round up to nearest minute */
+ if (tm->time.tm_sec) {
+ time64_t alarm_time = rtc_tm_to_time64(&tm->time);
+
+ alarm_time += 60 - tm->time.tm_sec;
+ rtc_time64_to_tm(alarm_time, &tm->time);
+ }
+
+ dev_dbg(dev, "%s, min=%d hour=%d wday=%d mday=%d "
+ "enabled=%d pending=%d\n", __func__,
+ tm->time.tm_min, tm->time.tm_hour, tm->time.tm_wday,
+ tm->time.tm_mday, tm->enabled, tm->pending);
+
+ buf[0] = bin2bcd(tm->time.tm_min);
+ buf[1] = bin2bcd(tm->time.tm_hour);
+ buf[2] = bin2bcd(tm->time.tm_mday);
+ buf[3] = tm->time.tm_wday & 0x07;
+
+ err = pcf8563_write_block_data(client, PCF8563_REG_AMN, 4, buf);
+ if (err)
+ return err;
+
+ return pcf8563_set_alarm_mode(client, !!tm->enabled);
+}
+
+static int pcf8563_irq_enable(struct device *dev, unsigned int enabled)
+{
+ dev_dbg(dev, "%s: en=%d\n", __func__, enabled);
+ return pcf8563_set_alarm_mode(to_i2c_client(dev), !!enabled);
+}
+
+#ifdef CONFIG_COMMON_CLK
+/*
+ * Handling of the clkout
+ */
+
+#define clkout_hw_to_pcf8563(_hw) container_of(_hw, struct pcf8563, clkout_hw)
+
+static const int clkout_rates[] = {
+ 32768,
+ 1024,
+ 32,
+ 1,
+};
+
+static unsigned long pcf8563_clkout_recalc_rate(struct clk_hw *hw,
+ unsigned long parent_rate)
+{
+ struct pcf8563 *pcf8563 = clkout_hw_to_pcf8563(hw);
+ struct i2c_client *client = pcf8563->client;
+ unsigned char buf;
+ int ret = pcf8563_read_block_data(client, PCF8563_REG_CLKO, 1, &buf);
+
+ if (ret < 0)
+ return 0;
+
+ buf &= PCF8563_REG_CLKO_F_MASK;
+ return clkout_rates[buf];
+}
+
+static long pcf8563_clkout_round_rate(struct clk_hw *hw, unsigned long rate,
+ unsigned long *prate)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(clkout_rates); i++)
+ if (clkout_rates[i] <= rate)
+ return clkout_rates[i];
+
+ return 0;
+}
+
+static int pcf8563_clkout_set_rate(struct clk_hw *hw, unsigned long rate,
+ unsigned long parent_rate)
+{
+ struct pcf8563 *pcf8563 = clkout_hw_to_pcf8563(hw);
+ struct i2c_client *client = pcf8563->client;
+ unsigned char buf;
+ int ret = pcf8563_read_block_data(client, PCF8563_REG_CLKO, 1, &buf);
+ int i;
+
+ if (ret < 0)
+ return ret;
+
+ for (i = 0; i < ARRAY_SIZE(clkout_rates); i++)
+ if (clkout_rates[i] == rate) {
+ buf &= ~PCF8563_REG_CLKO_F_MASK;
+ buf |= i;
+ ret = pcf8563_write_block_data(client,
+ PCF8563_REG_CLKO, 1,
+ &buf);
+ return ret;
+ }
+
+ return -EINVAL;
+}
+
+static int pcf8563_clkout_control(struct clk_hw *hw, bool enable)
+{
+ struct pcf8563 *pcf8563 = clkout_hw_to_pcf8563(hw);
+ struct i2c_client *client = pcf8563->client;
+ unsigned char buf;
+ int ret = pcf8563_read_block_data(client, PCF8563_REG_CLKO, 1, &buf);
+
+ if (ret < 0)
+ return ret;
+
+ if (enable)
+ buf |= PCF8563_REG_CLKO_FE;
+ else
+ buf &= ~PCF8563_REG_CLKO_FE;
+
+ ret = pcf8563_write_block_data(client, PCF8563_REG_CLKO, 1, &buf);
+ return ret;
+}
+
+static int pcf8563_clkout_prepare(struct clk_hw *hw)
+{
+ return pcf8563_clkout_control(hw, 1);
+}
+
+static void pcf8563_clkout_unprepare(struct clk_hw *hw)
+{
+ pcf8563_clkout_control(hw, 0);
+}
+
+static int pcf8563_clkout_is_prepared(struct clk_hw *hw)
+{
+ struct pcf8563 *pcf8563 = clkout_hw_to_pcf8563(hw);
+ struct i2c_client *client = pcf8563->client;
+ unsigned char buf;
+ int ret = pcf8563_read_block_data(client, PCF8563_REG_CLKO, 1, &buf);
+
+ if (ret < 0)
+ return ret;
+
+ return !!(buf & PCF8563_REG_CLKO_FE);
+}
+
+static const struct clk_ops pcf8563_clkout_ops = {
+ .prepare = pcf8563_clkout_prepare,
+ .unprepare = pcf8563_clkout_unprepare,
+ .is_prepared = pcf8563_clkout_is_prepared,
+ .recalc_rate = pcf8563_clkout_recalc_rate,
+ .round_rate = pcf8563_clkout_round_rate,
+ .set_rate = pcf8563_clkout_set_rate,
+};
+
+static struct clk *pcf8563_clkout_register_clk(struct pcf8563 *pcf8563)
+{
+ struct i2c_client *client = pcf8563->client;
+ struct device_node *node = client->dev.of_node;
+ struct clk *clk;
+ struct clk_init_data init;
+ int ret;
+ unsigned char buf;
+
+ /* disable the clkout output */
+ buf = 0;
+ ret = pcf8563_write_block_data(client, PCF8563_REG_CLKO, 1, &buf);
+ if (ret < 0)
+ return ERR_PTR(ret);
+
+ init.name = "pcf8563-clkout";
+ init.ops = &pcf8563_clkout_ops;
+ init.flags = 0;
+ init.parent_names = NULL;
+ init.num_parents = 0;
+ pcf8563->clkout_hw.init = &init;
+
+ /* optional override of the clockname */
+ of_property_read_string(node, "clock-output-names", &init.name);
+
+ /* register the clock */
+ clk = devm_clk_register(&client->dev, &pcf8563->clkout_hw);
+
+ if (!IS_ERR(clk))
+ of_clk_add_provider(node, of_clk_src_simple_get, clk);
+
+ return clk;
+}
+#endif
+
+static const struct rtc_class_ops pcf8563_rtc_ops = {
+ .ioctl = pcf8563_rtc_ioctl,
+ .read_time = pcf8563_rtc_read_time,
+ .set_time = pcf8563_rtc_set_time,
+ .read_alarm = pcf8563_rtc_read_alarm,
+ .set_alarm = pcf8563_rtc_set_alarm,
+ .alarm_irq_enable = pcf8563_irq_enable,
+};
+
+static int pcf8563_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct pcf8563 *pcf8563;
+ int err;
+ unsigned char buf;
+
+ dev_dbg(&client->dev, "%s\n", __func__);
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
+ return -ENODEV;
+
+ pcf8563 = devm_kzalloc(&client->dev, sizeof(struct pcf8563),
+ GFP_KERNEL);
+ if (!pcf8563)
+ return -ENOMEM;
+
+ i2c_set_clientdata(client, pcf8563);
+ pcf8563->client = client;
+ device_set_wakeup_capable(&client->dev, 1);
+
+ /* Set timer to lowest frequency to save power (ref Haoyu datasheet) */
+ buf = PCF8563_TMRC_1_60;
+ err = pcf8563_write_block_data(client, PCF8563_REG_TMRC, 1, &buf);
+ if (err < 0) {
+ dev_err(&client->dev, "%s: write error\n", __func__);
+ return err;
+ }
+
+ /* Clear flags and disable interrupts */
+ buf = 0;
+ err = pcf8563_write_block_data(client, PCF8563_REG_ST2, 1, &buf);
+ if (err < 0) {
+ dev_err(&client->dev, "%s: write error\n", __func__);
+ return err;
+ }
+
+ pcf8563->rtc = devm_rtc_allocate_device(&client->dev);
+ if (IS_ERR(pcf8563->rtc))
+ return PTR_ERR(pcf8563->rtc);
+
+ pcf8563->rtc->ops = &pcf8563_rtc_ops;
+ /* the pcf8563 alarm only supports a minute accuracy */
+ pcf8563->rtc->uie_unsupported = 1;
+ pcf8563->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ pcf8563->rtc->range_max = RTC_TIMESTAMP_END_2099;
+ pcf8563->rtc->set_start_time = true;
+
+ if (client->irq > 0) {
+ err = devm_request_threaded_irq(&client->dev, client->irq,
+ NULL, pcf8563_irq,
+ IRQF_SHARED | IRQF_ONESHOT | IRQF_TRIGGER_LOW,
+ pcf8563_driver.driver.name, client);
+ if (err) {
+ dev_err(&client->dev, "unable to request IRQ %d\n",
+ client->irq);
+ return err;
+ }
+ }
+
+ err = rtc_register_device(pcf8563->rtc);
+ if (err)
+ return err;
+
+#ifdef CONFIG_COMMON_CLK
+ /* register clk in common clk framework */
+ pcf8563_clkout_register_clk(pcf8563);
+#endif
+
+ return 0;
+}
+
+static const struct i2c_device_id pcf8563_id[] = {
+ { "pcf8563", 0 },
+ { "rtc8564", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, pcf8563_id);
+
+#ifdef CONFIG_OF
+static const struct of_device_id pcf8563_of_match[] = {
+ { .compatible = "nxp,pcf8563" },
+ { .compatible = "epson,rtc8564" },
+ { .compatible = "microcrystal,rv8564" },
+ {}
+};
+MODULE_DEVICE_TABLE(of, pcf8563_of_match);
+#endif
+
+static struct i2c_driver pcf8563_driver = {
+ .driver = {
+ .name = "rtc-pcf8563",
+ .of_match_table = of_match_ptr(pcf8563_of_match),
+ },
+ .probe = pcf8563_probe,
+ .id_table = pcf8563_id,
+};
+
+module_i2c_driver(pcf8563_driver);
+
+MODULE_AUTHOR("Alessandro Zummo <a.zummo@towertech.it>");
+MODULE_DESCRIPTION("Philips PCF8563/Epson RTC8564 RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-pcf8583.c b/drivers/rtc/rtc-pcf8583.c
new file mode 100644
index 000000000..c80ca20e5
--- /dev/null
+++ b/drivers/rtc/rtc-pcf8583.c
@@ -0,0 +1,318 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * drivers/rtc/rtc-pcf8583.c
+ *
+ * Copyright (C) 2000 Russell King
+ * Copyright (C) 2008 Wolfram Sang & Juergen Beisert, Pengutronix
+ *
+ * Driver for PCF8583 RTC & RAM chip
+ *
+ * Converted to the generic RTC susbsystem by G. Liakhovetski (2006)
+ */
+#include <linux/module.h>
+#include <linux/i2c.h>
+#include <linux/slab.h>
+#include <linux/rtc.h>
+#include <linux/init.h>
+#include <linux/err.h>
+#include <linux/errno.h>
+#include <linux/bcd.h>
+
+struct rtc_mem {
+ unsigned int loc;
+ unsigned int nr;
+ unsigned char *data;
+};
+
+struct pcf8583 {
+ struct rtc_device *rtc;
+ unsigned char ctrl;
+};
+
+#define CTRL_STOP 0x80
+#define CTRL_HOLD 0x40
+#define CTRL_32KHZ 0x00
+#define CTRL_MASK 0x08
+#define CTRL_ALARMEN 0x04
+#define CTRL_ALARM 0x02
+#define CTRL_TIMER 0x01
+
+
+static struct i2c_driver pcf8583_driver;
+
+#define get_ctrl(x) ((struct pcf8583 *)i2c_get_clientdata(x))->ctrl
+#define set_ctrl(x, v) get_ctrl(x) = v
+
+#define CMOS_YEAR (64 + 128)
+#define CMOS_CHECKSUM (63)
+
+static int pcf8583_get_datetime(struct i2c_client *client, struct rtc_time *dt)
+{
+ unsigned char buf[8], addr[1] = { 1 };
+ struct i2c_msg msgs[2] = {
+ {
+ .addr = client->addr,
+ .flags = 0,
+ .len = 1,
+ .buf = addr,
+ }, {
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = 6,
+ .buf = buf,
+ }
+ };
+ int ret;
+
+ memset(buf, 0, sizeof(buf));
+
+ ret = i2c_transfer(client->adapter, msgs, 2);
+ if (ret == 2) {
+ dt->tm_year = buf[4] >> 6;
+ dt->tm_wday = buf[5] >> 5;
+
+ buf[4] &= 0x3f;
+ buf[5] &= 0x1f;
+
+ dt->tm_sec = bcd2bin(buf[1]);
+ dt->tm_min = bcd2bin(buf[2]);
+ dt->tm_hour = bcd2bin(buf[3]);
+ dt->tm_mday = bcd2bin(buf[4]);
+ dt->tm_mon = bcd2bin(buf[5]) - 1;
+ }
+
+ return ret == 2 ? 0 : -EIO;
+}
+
+static int pcf8583_set_datetime(struct i2c_client *client, struct rtc_time *dt, int datetoo)
+{
+ unsigned char buf[8];
+ int ret, len = 6;
+
+ buf[0] = 0;
+ buf[1] = get_ctrl(client) | 0x80;
+ buf[2] = 0;
+ buf[3] = bin2bcd(dt->tm_sec);
+ buf[4] = bin2bcd(dt->tm_min);
+ buf[5] = bin2bcd(dt->tm_hour);
+
+ if (datetoo) {
+ len = 8;
+ buf[6] = bin2bcd(dt->tm_mday) | (dt->tm_year << 6);
+ buf[7] = bin2bcd(dt->tm_mon + 1) | (dt->tm_wday << 5);
+ }
+
+ ret = i2c_master_send(client, (char *)buf, len);
+ if (ret != len)
+ return -EIO;
+
+ buf[1] = get_ctrl(client);
+ ret = i2c_master_send(client, (char *)buf, 2);
+
+ return ret == 2 ? 0 : -EIO;
+}
+
+static int pcf8583_get_ctrl(struct i2c_client *client, unsigned char *ctrl)
+{
+ *ctrl = get_ctrl(client);
+ return 0;
+}
+
+static int pcf8583_set_ctrl(struct i2c_client *client, unsigned char *ctrl)
+{
+ unsigned char buf[2];
+
+ buf[0] = 0;
+ buf[1] = *ctrl;
+ set_ctrl(client, *ctrl);
+
+ return i2c_master_send(client, (char *)buf, 2);
+}
+
+static int pcf8583_read_mem(struct i2c_client *client, struct rtc_mem *mem)
+{
+ unsigned char addr[1];
+ struct i2c_msg msgs[2] = {
+ {
+ .addr = client->addr,
+ .flags = 0,
+ .len = 1,
+ .buf = addr,
+ }, {
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = mem->nr,
+ .buf = mem->data,
+ }
+ };
+
+ if (mem->loc < 8)
+ return -EINVAL;
+
+ addr[0] = mem->loc;
+
+ return i2c_transfer(client->adapter, msgs, 2) == 2 ? 0 : -EIO;
+}
+
+static int pcf8583_write_mem(struct i2c_client *client, struct rtc_mem *mem)
+{
+ unsigned char buf[9];
+ int ret;
+
+ if (mem->loc < 8 || mem->nr > 8)
+ return -EINVAL;
+
+ buf[0] = mem->loc;
+ memcpy(buf + 1, mem->data, mem->nr);
+
+ ret = i2c_master_send(client, buf, mem->nr + 1);
+ return ret == mem->nr + 1 ? 0 : -EIO;
+}
+
+static int pcf8583_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ unsigned char ctrl, year[2];
+ struct rtc_mem mem = {
+ .loc = CMOS_YEAR,
+ .nr = sizeof(year),
+ .data = year
+ };
+ int real_year, year_offset, err;
+
+ /*
+ * Ensure that the RTC is running.
+ */
+ pcf8583_get_ctrl(client, &ctrl);
+ if (ctrl & (CTRL_STOP | CTRL_HOLD)) {
+ unsigned char new_ctrl = ctrl & ~(CTRL_STOP | CTRL_HOLD);
+
+ dev_warn(dev, "resetting control %02x -> %02x\n",
+ ctrl, new_ctrl);
+
+ err = pcf8583_set_ctrl(client, &new_ctrl);
+ if (err < 0)
+ return err;
+ }
+
+ if (pcf8583_get_datetime(client, tm) ||
+ pcf8583_read_mem(client, &mem))
+ return -EIO;
+
+ real_year = year[0];
+
+ /*
+ * The RTC year holds the LSB two bits of the current
+ * year, which should reflect the LSB two bits of the
+ * CMOS copy of the year. Any difference indicates
+ * that we have to correct the CMOS version.
+ */
+ year_offset = tm->tm_year - (real_year & 3);
+ if (year_offset < 0)
+ /*
+ * RTC year wrapped. Adjust it appropriately.
+ */
+ year_offset += 4;
+
+ tm->tm_year = (real_year + year_offset + year[1] * 100) - 1900;
+
+ return 0;
+}
+
+static int pcf8583_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ unsigned char year[2], chk;
+ struct rtc_mem cmos_year = {
+ .loc = CMOS_YEAR,
+ .nr = sizeof(year),
+ .data = year
+ };
+ struct rtc_mem cmos_check = {
+ .loc = CMOS_CHECKSUM,
+ .nr = 1,
+ .data = &chk
+ };
+ unsigned int proper_year = tm->tm_year + 1900;
+ int ret;
+
+ /*
+ * The RTC's own 2-bit year must reflect the least
+ * significant two bits of the CMOS year.
+ */
+
+ ret = pcf8583_set_datetime(client, tm, 1);
+ if (ret)
+ return ret;
+
+ ret = pcf8583_read_mem(client, &cmos_check);
+ if (ret)
+ return ret;
+
+ ret = pcf8583_read_mem(client, &cmos_year);
+ if (ret)
+ return ret;
+
+ chk -= year[1] + year[0];
+
+ year[1] = proper_year / 100;
+ year[0] = proper_year % 100;
+
+ chk += year[1] + year[0];
+
+ ret = pcf8583_write_mem(client, &cmos_year);
+
+ if (ret)
+ return ret;
+
+ ret = pcf8583_write_mem(client, &cmos_check);
+
+ return ret;
+}
+
+static const struct rtc_class_ops pcf8583_rtc_ops = {
+ .read_time = pcf8583_rtc_read_time,
+ .set_time = pcf8583_rtc_set_time,
+};
+
+static int pcf8583_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct pcf8583 *pcf8583;
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
+ return -ENODEV;
+
+ pcf8583 = devm_kzalloc(&client->dev, sizeof(struct pcf8583),
+ GFP_KERNEL);
+ if (!pcf8583)
+ return -ENOMEM;
+
+ i2c_set_clientdata(client, pcf8583);
+
+ pcf8583->rtc = devm_rtc_device_register(&client->dev,
+ pcf8583_driver.driver.name,
+ &pcf8583_rtc_ops, THIS_MODULE);
+
+ return PTR_ERR_OR_ZERO(pcf8583->rtc);
+}
+
+static const struct i2c_device_id pcf8583_id[] = {
+ { "pcf8583", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, pcf8583_id);
+
+static struct i2c_driver pcf8583_driver = {
+ .driver = {
+ .name = "pcf8583",
+ },
+ .probe = pcf8583_probe,
+ .id_table = pcf8583_id,
+};
+
+module_i2c_driver(pcf8583_driver);
+
+MODULE_AUTHOR("Russell King");
+MODULE_DESCRIPTION("PCF8583 I2C RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-pic32.c b/drivers/rtc/rtc-pic32.c
new file mode 100644
index 000000000..7be1ca163
--- /dev/null
+++ b/drivers/rtc/rtc-pic32.c
@@ -0,0 +1,386 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * PIC32 RTC driver
+ *
+ * Joshua Henderson <joshua.henderson@microchip.com>
+ * Copyright (C) 2016 Microchip Technology Inc. All rights reserved.
+ *
+ */
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+#include <linux/clk.h>
+#include <linux/rtc.h>
+#include <linux/bcd.h>
+
+#include <asm/mach-pic32/pic32.h>
+
+#define PIC32_RTCCON 0x00
+#define PIC32_RTCCON_ON BIT(15)
+#define PIC32_RTCCON_SIDL BIT(13)
+#define PIC32_RTCCON_RTCCLKSEL (3 << 9)
+#define PIC32_RTCCON_RTCCLKON BIT(6)
+#define PIC32_RTCCON_RTCWREN BIT(3)
+#define PIC32_RTCCON_RTCSYNC BIT(2)
+#define PIC32_RTCCON_HALFSEC BIT(1)
+#define PIC32_RTCCON_RTCOE BIT(0)
+
+#define PIC32_RTCALRM 0x10
+#define PIC32_RTCALRM_ALRMEN BIT(15)
+#define PIC32_RTCALRM_CHIME BIT(14)
+#define PIC32_RTCALRM_PIV BIT(13)
+#define PIC32_RTCALRM_ALARMSYNC BIT(12)
+#define PIC32_RTCALRM_AMASK 0x0F00
+#define PIC32_RTCALRM_ARPT 0xFF
+
+#define PIC32_RTCHOUR 0x23
+#define PIC32_RTCMIN 0x22
+#define PIC32_RTCSEC 0x21
+#define PIC32_RTCYEAR 0x33
+#define PIC32_RTCMON 0x32
+#define PIC32_RTCDAY 0x31
+
+#define PIC32_ALRMTIME 0x40
+#define PIC32_ALRMDATE 0x50
+
+#define PIC32_ALRMHOUR 0x43
+#define PIC32_ALRMMIN 0x42
+#define PIC32_ALRMSEC 0x41
+#define PIC32_ALRMYEAR 0x53
+#define PIC32_ALRMMON 0x52
+#define PIC32_ALRMDAY 0x51
+
+struct pic32_rtc_dev {
+ struct rtc_device *rtc;
+ void __iomem *reg_base;
+ struct clk *clk;
+ spinlock_t alarm_lock;
+ int alarm_irq;
+ bool alarm_clk_enabled;
+};
+
+static void pic32_rtc_alarm_clk_enable(struct pic32_rtc_dev *pdata,
+ bool enable)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&pdata->alarm_lock, flags);
+ if (enable) {
+ if (!pdata->alarm_clk_enabled) {
+ clk_enable(pdata->clk);
+ pdata->alarm_clk_enabled = true;
+ }
+ } else {
+ if (pdata->alarm_clk_enabled) {
+ clk_disable(pdata->clk);
+ pdata->alarm_clk_enabled = false;
+ }
+ }
+ spin_unlock_irqrestore(&pdata->alarm_lock, flags);
+}
+
+static irqreturn_t pic32_rtc_alarmirq(int irq, void *id)
+{
+ struct pic32_rtc_dev *pdata = (struct pic32_rtc_dev *)id;
+
+ clk_enable(pdata->clk);
+ rtc_update_irq(pdata->rtc, 1, RTC_AF | RTC_IRQF);
+ clk_disable(pdata->clk);
+
+ pic32_rtc_alarm_clk_enable(pdata, false);
+
+ return IRQ_HANDLED;
+}
+
+static int pic32_rtc_setaie(struct device *dev, unsigned int enabled)
+{
+ struct pic32_rtc_dev *pdata = dev_get_drvdata(dev);
+ void __iomem *base = pdata->reg_base;
+
+ clk_enable(pdata->clk);
+
+ writel(PIC32_RTCALRM_ALRMEN,
+ base + (enabled ? PIC32_SET(PIC32_RTCALRM) :
+ PIC32_CLR(PIC32_RTCALRM)));
+
+ clk_disable(pdata->clk);
+
+ pic32_rtc_alarm_clk_enable(pdata, enabled);
+
+ return 0;
+}
+
+static int pic32_rtc_setfreq(struct device *dev, int freq)
+{
+ struct pic32_rtc_dev *pdata = dev_get_drvdata(dev);
+ void __iomem *base = pdata->reg_base;
+
+ clk_enable(pdata->clk);
+
+ writel(PIC32_RTCALRM_AMASK, base + PIC32_CLR(PIC32_RTCALRM));
+ writel(freq << 8, base + PIC32_SET(PIC32_RTCALRM));
+ writel(PIC32_RTCALRM_CHIME, base + PIC32_SET(PIC32_RTCALRM));
+
+ clk_disable(pdata->clk);
+
+ return 0;
+}
+
+static int pic32_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
+{
+ struct pic32_rtc_dev *pdata = dev_get_drvdata(dev);
+ void __iomem *base = pdata->reg_base;
+ unsigned int tries = 0;
+
+ clk_enable(pdata->clk);
+
+ do {
+ rtc_tm->tm_hour = readb(base + PIC32_RTCHOUR);
+ rtc_tm->tm_min = readb(base + PIC32_RTCMIN);
+ rtc_tm->tm_mon = readb(base + PIC32_RTCMON);
+ rtc_tm->tm_mday = readb(base + PIC32_RTCDAY);
+ rtc_tm->tm_year = readb(base + PIC32_RTCYEAR);
+ rtc_tm->tm_sec = readb(base + PIC32_RTCSEC);
+
+ /*
+ * The only way to work out whether the system was mid-update
+ * when we read it is to check the second counter, and if it
+ * is zero, then we re-try the entire read.
+ */
+ tries += 1;
+ } while (rtc_tm->tm_sec == 0 && tries < 2);
+
+ rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
+ rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
+ rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
+ rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
+ rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon) - 1;
+ rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
+
+ rtc_tm->tm_year += 100;
+
+ dev_dbg(dev, "read time %ptR\n", rtc_tm);
+
+ clk_disable(pdata->clk);
+ return 0;
+}
+
+static int pic32_rtc_settime(struct device *dev, struct rtc_time *tm)
+{
+ struct pic32_rtc_dev *pdata = dev_get_drvdata(dev);
+ void __iomem *base = pdata->reg_base;
+
+ dev_dbg(dev, "set time %ptR\n", tm);
+
+ clk_enable(pdata->clk);
+ writeb(bin2bcd(tm->tm_sec), base + PIC32_RTCSEC);
+ writeb(bin2bcd(tm->tm_min), base + PIC32_RTCMIN);
+ writeb(bin2bcd(tm->tm_hour), base + PIC32_RTCHOUR);
+ writeb(bin2bcd(tm->tm_mday), base + PIC32_RTCDAY);
+ writeb(bin2bcd(tm->tm_mon + 1), base + PIC32_RTCMON);
+ writeb(bin2bcd(tm->tm_year - 100), base + PIC32_RTCYEAR);
+ clk_disable(pdata->clk);
+
+ return 0;
+}
+
+static int pic32_rtc_getalarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pic32_rtc_dev *pdata = dev_get_drvdata(dev);
+ struct rtc_time *alm_tm = &alrm->time;
+ void __iomem *base = pdata->reg_base;
+ unsigned int alm_en;
+
+ clk_enable(pdata->clk);
+ alm_tm->tm_sec = readb(base + PIC32_ALRMSEC);
+ alm_tm->tm_min = readb(base + PIC32_ALRMMIN);
+ alm_tm->tm_hour = readb(base + PIC32_ALRMHOUR);
+ alm_tm->tm_mon = readb(base + PIC32_ALRMMON);
+ alm_tm->tm_mday = readb(base + PIC32_ALRMDAY);
+ alm_tm->tm_year = readb(base + PIC32_ALRMYEAR);
+
+ alm_en = readb(base + PIC32_RTCALRM);
+
+ alrm->enabled = (alm_en & PIC32_RTCALRM_ALRMEN) ? 1 : 0;
+
+ dev_dbg(dev, "getalarm: %d, %ptR\n", alm_en, alm_tm);
+
+ alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
+ alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
+ alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
+ alm_tm->tm_mday = bcd2bin(alm_tm->tm_mday);
+ alm_tm->tm_mon = bcd2bin(alm_tm->tm_mon) - 1;
+ alm_tm->tm_year = bcd2bin(alm_tm->tm_year);
+
+ clk_disable(pdata->clk);
+ return 0;
+}
+
+static int pic32_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pic32_rtc_dev *pdata = dev_get_drvdata(dev);
+ struct rtc_time *tm = &alrm->time;
+ void __iomem *base = pdata->reg_base;
+
+ clk_enable(pdata->clk);
+ dev_dbg(dev, "setalarm: %d, %ptR\n", alrm->enabled, tm);
+
+ writel(0x00, base + PIC32_ALRMTIME);
+ writel(0x00, base + PIC32_ALRMDATE);
+
+ pic32_rtc_setaie(dev, alrm->enabled);
+
+ clk_disable(pdata->clk);
+ return 0;
+}
+
+static int pic32_rtc_proc(struct device *dev, struct seq_file *seq)
+{
+ struct pic32_rtc_dev *pdata = dev_get_drvdata(dev);
+ void __iomem *base = pdata->reg_base;
+ unsigned int repeat;
+
+ clk_enable(pdata->clk);
+
+ repeat = readw(base + PIC32_RTCALRM);
+ repeat &= PIC32_RTCALRM_ARPT;
+ seq_printf(seq, "periodic_IRQ\t: %s\n", repeat ? "yes" : "no");
+
+ clk_disable(pdata->clk);
+ return 0;
+}
+
+static const struct rtc_class_ops pic32_rtcops = {
+ .read_time = pic32_rtc_gettime,
+ .set_time = pic32_rtc_settime,
+ .read_alarm = pic32_rtc_getalarm,
+ .set_alarm = pic32_rtc_setalarm,
+ .proc = pic32_rtc_proc,
+ .alarm_irq_enable = pic32_rtc_setaie,
+};
+
+static void pic32_rtc_enable(struct pic32_rtc_dev *pdata, int en)
+{
+ void __iomem *base = pdata->reg_base;
+
+ if (!base)
+ return;
+
+ clk_enable(pdata->clk);
+ if (!en) {
+ writel(PIC32_RTCCON_ON, base + PIC32_CLR(PIC32_RTCCON));
+ } else {
+ pic32_syskey_unlock();
+
+ writel(PIC32_RTCCON_RTCWREN, base + PIC32_SET(PIC32_RTCCON));
+ writel(3 << 9, base + PIC32_CLR(PIC32_RTCCON));
+
+ if (!(readl(base + PIC32_RTCCON) & PIC32_RTCCON_ON))
+ writel(PIC32_RTCCON_ON, base + PIC32_SET(PIC32_RTCCON));
+ }
+ clk_disable(pdata->clk);
+}
+
+static int pic32_rtc_remove(struct platform_device *pdev)
+{
+ struct pic32_rtc_dev *pdata = platform_get_drvdata(pdev);
+
+ pic32_rtc_setaie(&pdev->dev, 0);
+ clk_unprepare(pdata->clk);
+ pdata->clk = NULL;
+
+ return 0;
+}
+
+static int pic32_rtc_probe(struct platform_device *pdev)
+{
+ struct pic32_rtc_dev *pdata;
+ int ret;
+
+ pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
+ if (!pdata)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, pdata);
+
+ pdata->alarm_irq = platform_get_irq(pdev, 0);
+ if (pdata->alarm_irq < 0)
+ return pdata->alarm_irq;
+
+ pdata->reg_base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(pdata->reg_base))
+ return PTR_ERR(pdata->reg_base);
+
+ pdata->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(pdata->clk)) {
+ dev_err(&pdev->dev, "failed to find rtc clock source\n");
+ ret = PTR_ERR(pdata->clk);
+ pdata->clk = NULL;
+ return ret;
+ }
+
+ spin_lock_init(&pdata->alarm_lock);
+
+ pdata->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(pdata->rtc))
+ return PTR_ERR(pdata->rtc);
+
+ clk_prepare_enable(pdata->clk);
+
+ pic32_rtc_enable(pdata, 1);
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ pdata->rtc->ops = &pic32_rtcops;
+ pdata->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ pdata->rtc->range_max = RTC_TIMESTAMP_END_2099;
+
+ ret = rtc_register_device(pdata->rtc);
+ if (ret)
+ goto err_nortc;
+
+ pdata->rtc->max_user_freq = 128;
+
+ pic32_rtc_setfreq(&pdev->dev, 1);
+ ret = devm_request_irq(&pdev->dev, pdata->alarm_irq,
+ pic32_rtc_alarmirq, 0,
+ dev_name(&pdev->dev), pdata);
+ if (ret) {
+ dev_err(&pdev->dev,
+ "IRQ %d error %d\n", pdata->alarm_irq, ret);
+ goto err_nortc;
+ }
+
+ clk_disable(pdata->clk);
+
+ return 0;
+
+err_nortc:
+ pic32_rtc_enable(pdata, 0);
+ clk_disable_unprepare(pdata->clk);
+
+ return ret;
+}
+
+static const struct of_device_id pic32_rtc_dt_ids[] = {
+ { .compatible = "microchip,pic32mzda-rtc" },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, pic32_rtc_dt_ids);
+
+static struct platform_driver pic32_rtc_driver = {
+ .probe = pic32_rtc_probe,
+ .remove = pic32_rtc_remove,
+ .driver = {
+ .name = "pic32-rtc",
+ .of_match_table = of_match_ptr(pic32_rtc_dt_ids),
+ },
+};
+module_platform_driver(pic32_rtc_driver);
+
+MODULE_DESCRIPTION("Microchip PIC32 RTC Driver");
+MODULE_AUTHOR("Joshua Henderson <joshua.henderson@microchip.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-pl030.c b/drivers/rtc/rtc-pl030.c
new file mode 100644
index 000000000..87c93843d
--- /dev/null
+++ b/drivers/rtc/rtc-pl030.c
@@ -0,0 +1,174 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * linux/drivers/rtc/rtc-pl030.c
+ *
+ * Copyright (C) 2000-2001 Deep Blue Solutions Ltd.
+ */
+#include <linux/module.h>
+#include <linux/rtc.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/amba/bus.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+
+#define RTC_DR (0)
+#define RTC_MR (4)
+#define RTC_STAT (8)
+#define RTC_EOI (8)
+#define RTC_LR (12)
+#define RTC_CR (16)
+#define RTC_CR_MIE (1 << 0)
+
+struct pl030_rtc {
+ struct rtc_device *rtc;
+ void __iomem *base;
+};
+
+static irqreturn_t pl030_interrupt(int irq, void *dev_id)
+{
+ struct pl030_rtc *rtc = dev_id;
+ writel(0, rtc->base + RTC_EOI);
+ return IRQ_HANDLED;
+}
+
+static int pl030_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pl030_rtc *rtc = dev_get_drvdata(dev);
+
+ rtc_time64_to_tm(readl(rtc->base + RTC_MR), &alrm->time);
+ return 0;
+}
+
+static int pl030_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pl030_rtc *rtc = dev_get_drvdata(dev);
+
+ writel(rtc_tm_to_time64(&alrm->time), rtc->base + RTC_MR);
+
+ return 0;
+}
+
+static int pl030_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pl030_rtc *rtc = dev_get_drvdata(dev);
+
+ rtc_time64_to_tm(readl(rtc->base + RTC_DR), tm);
+
+ return 0;
+}
+
+/*
+ * Set the RTC time. Unfortunately, we can't accurately set
+ * the point at which the counter updates.
+ *
+ * Also, since RTC_LR is transferred to RTC_CR on next rising
+ * edge of the 1Hz clock, we must write the time one second
+ * in advance.
+ */
+static int pl030_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pl030_rtc *rtc = dev_get_drvdata(dev);
+
+ writel(rtc_tm_to_time64(tm) + 1, rtc->base + RTC_LR);
+
+ return 0;
+}
+
+static const struct rtc_class_ops pl030_ops = {
+ .read_time = pl030_read_time,
+ .set_time = pl030_set_time,
+ .read_alarm = pl030_read_alarm,
+ .set_alarm = pl030_set_alarm,
+};
+
+static int pl030_probe(struct amba_device *dev, const struct amba_id *id)
+{
+ struct pl030_rtc *rtc;
+ int ret;
+
+ ret = amba_request_regions(dev, NULL);
+ if (ret)
+ goto err_req;
+
+ rtc = devm_kzalloc(&dev->dev, sizeof(*rtc), GFP_KERNEL);
+ if (!rtc) {
+ ret = -ENOMEM;
+ goto err_rtc;
+ }
+
+ rtc->rtc = devm_rtc_allocate_device(&dev->dev);
+ if (IS_ERR(rtc->rtc)) {
+ ret = PTR_ERR(rtc->rtc);
+ goto err_rtc;
+ }
+
+ rtc->rtc->ops = &pl030_ops;
+ rtc->rtc->range_max = U32_MAX;
+ rtc->base = ioremap(dev->res.start, resource_size(&dev->res));
+ if (!rtc->base) {
+ ret = -ENOMEM;
+ goto err_rtc;
+ }
+
+ __raw_writel(0, rtc->base + RTC_CR);
+ __raw_writel(0, rtc->base + RTC_EOI);
+
+ amba_set_drvdata(dev, rtc);
+
+ ret = request_irq(dev->irq[0], pl030_interrupt, 0,
+ "rtc-pl030", rtc);
+ if (ret)
+ goto err_irq;
+
+ ret = rtc_register_device(rtc->rtc);
+ if (ret)
+ goto err_reg;
+
+ return 0;
+
+ err_reg:
+ free_irq(dev->irq[0], rtc);
+ err_irq:
+ iounmap(rtc->base);
+ err_rtc:
+ amba_release_regions(dev);
+ err_req:
+ return ret;
+}
+
+static void pl030_remove(struct amba_device *dev)
+{
+ struct pl030_rtc *rtc = amba_get_drvdata(dev);
+
+ writel(0, rtc->base + RTC_CR);
+
+ free_irq(dev->irq[0], rtc);
+ iounmap(rtc->base);
+ amba_release_regions(dev);
+}
+
+static struct amba_id pl030_ids[] = {
+ {
+ .id = 0x00041030,
+ .mask = 0x000fffff,
+ },
+ { 0, 0 },
+};
+
+MODULE_DEVICE_TABLE(amba, pl030_ids);
+
+static struct amba_driver pl030_driver = {
+ .drv = {
+ .name = "rtc-pl030",
+ },
+ .probe = pl030_probe,
+ .remove = pl030_remove,
+ .id_table = pl030_ids,
+};
+
+module_amba_driver(pl030_driver);
+
+MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
+MODULE_DESCRIPTION("ARM AMBA PL030 RTC Driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-pl031.c b/drivers/rtc/rtc-pl031.c
new file mode 100644
index 000000000..2f5581ea2
--- /dev/null
+++ b/drivers/rtc/rtc-pl031.c
@@ -0,0 +1,474 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * drivers/rtc/rtc-pl031.c
+ *
+ * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC
+ *
+ * Author: Deepak Saxena <dsaxena@plexity.net>
+ *
+ * Copyright 2006 (c) MontaVista Software, Inc.
+ *
+ * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com>
+ * Copyright 2010 (c) ST-Ericsson AB
+ */
+#include <linux/module.h>
+#include <linux/rtc.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/amba/bus.h>
+#include <linux/io.h>
+#include <linux/bcd.h>
+#include <linux/delay.h>
+#include <linux/pm_wakeirq.h>
+#include <linux/slab.h>
+
+/*
+ * Register definitions
+ */
+#define RTC_DR 0x00 /* Data read register */
+#define RTC_MR 0x04 /* Match register */
+#define RTC_LR 0x08 /* Data load register */
+#define RTC_CR 0x0c /* Control register */
+#define RTC_IMSC 0x10 /* Interrupt mask and set register */
+#define RTC_RIS 0x14 /* Raw interrupt status register */
+#define RTC_MIS 0x18 /* Masked interrupt status register */
+#define RTC_ICR 0x1c /* Interrupt clear register */
+/* ST variants have additional timer functionality */
+#define RTC_TDR 0x20 /* Timer data read register */
+#define RTC_TLR 0x24 /* Timer data load register */
+#define RTC_TCR 0x28 /* Timer control register */
+#define RTC_YDR 0x30 /* Year data read register */
+#define RTC_YMR 0x34 /* Year match register */
+#define RTC_YLR 0x38 /* Year data load register */
+
+#define RTC_CR_EN (1 << 0) /* counter enable bit */
+#define RTC_CR_CWEN (1 << 26) /* Clockwatch enable bit */
+
+#define RTC_TCR_EN (1 << 1) /* Periodic timer enable bit */
+
+/* Common bit definitions for Interrupt status and control registers */
+#define RTC_BIT_AI (1 << 0) /* Alarm interrupt bit */
+#define RTC_BIT_PI (1 << 1) /* Periodic interrupt bit. ST variants only. */
+
+/* Common bit definations for ST v2 for reading/writing time */
+#define RTC_SEC_SHIFT 0
+#define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */
+#define RTC_MIN_SHIFT 6
+#define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */
+#define RTC_HOUR_SHIFT 12
+#define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */
+#define RTC_WDAY_SHIFT 17
+#define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */
+#define RTC_MDAY_SHIFT 20
+#define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */
+#define RTC_MON_SHIFT 25
+#define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */
+
+#define RTC_TIMER_FREQ 32768
+
+/**
+ * struct pl031_vendor_data - per-vendor variations
+ * @ops: the vendor-specific operations used on this silicon version
+ * @clockwatch: if this is an ST Microelectronics silicon version with a
+ * clockwatch function
+ * @st_weekday: if this is an ST Microelectronics silicon version that need
+ * the weekday fix
+ * @irqflags: special IRQ flags per variant
+ */
+struct pl031_vendor_data {
+ struct rtc_class_ops ops;
+ bool clockwatch;
+ bool st_weekday;
+ unsigned long irqflags;
+ time64_t range_min;
+ timeu64_t range_max;
+};
+
+struct pl031_local {
+ struct pl031_vendor_data *vendor;
+ struct rtc_device *rtc;
+ void __iomem *base;
+};
+
+static int pl031_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct pl031_local *ldata = dev_get_drvdata(dev);
+ unsigned long imsc;
+
+ /* Clear any pending alarm interrupts. */
+ writel(RTC_BIT_AI, ldata->base + RTC_ICR);
+
+ imsc = readl(ldata->base + RTC_IMSC);
+
+ if (enabled == 1)
+ writel(imsc | RTC_BIT_AI, ldata->base + RTC_IMSC);
+ else
+ writel(imsc & ~RTC_BIT_AI, ldata->base + RTC_IMSC);
+
+ return 0;
+}
+
+/*
+ * Convert Gregorian date to ST v2 RTC format.
+ */
+static int pl031_stv2_tm_to_time(struct device *dev,
+ struct rtc_time *tm, unsigned long *st_time,
+ unsigned long *bcd_year)
+{
+ int year = tm->tm_year + 1900;
+ int wday = tm->tm_wday;
+
+ /* wday masking is not working in hardware so wday must be valid */
+ if (wday < -1 || wday > 6) {
+ dev_err(dev, "invalid wday value %d\n", tm->tm_wday);
+ return -EINVAL;
+ } else if (wday == -1) {
+ /* wday is not provided, calculate it here */
+ struct rtc_time calc_tm;
+
+ rtc_time64_to_tm(rtc_tm_to_time64(tm), &calc_tm);
+ wday = calc_tm.tm_wday;
+ }
+
+ *bcd_year = (bin2bcd(year % 100) | bin2bcd(year / 100) << 8);
+
+ *st_time = ((tm->tm_mon + 1) << RTC_MON_SHIFT)
+ | (tm->tm_mday << RTC_MDAY_SHIFT)
+ | ((wday + 1) << RTC_WDAY_SHIFT)
+ | (tm->tm_hour << RTC_HOUR_SHIFT)
+ | (tm->tm_min << RTC_MIN_SHIFT)
+ | (tm->tm_sec << RTC_SEC_SHIFT);
+
+ return 0;
+}
+
+/*
+ * Convert ST v2 RTC format to Gregorian date.
+ */
+static int pl031_stv2_time_to_tm(unsigned long st_time, unsigned long bcd_year,
+ struct rtc_time *tm)
+{
+ tm->tm_year = bcd2bin(bcd_year) + (bcd2bin(bcd_year >> 8) * 100);
+ tm->tm_mon = ((st_time & RTC_MON_MASK) >> RTC_MON_SHIFT) - 1;
+ tm->tm_mday = ((st_time & RTC_MDAY_MASK) >> RTC_MDAY_SHIFT);
+ tm->tm_wday = ((st_time & RTC_WDAY_MASK) >> RTC_WDAY_SHIFT) - 1;
+ tm->tm_hour = ((st_time & RTC_HOUR_MASK) >> RTC_HOUR_SHIFT);
+ tm->tm_min = ((st_time & RTC_MIN_MASK) >> RTC_MIN_SHIFT);
+ tm->tm_sec = ((st_time & RTC_SEC_MASK) >> RTC_SEC_SHIFT);
+
+ tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
+ tm->tm_year -= 1900;
+
+ return 0;
+}
+
+static int pl031_stv2_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pl031_local *ldata = dev_get_drvdata(dev);
+
+ pl031_stv2_time_to_tm(readl(ldata->base + RTC_DR),
+ readl(ldata->base + RTC_YDR), tm);
+
+ return 0;
+}
+
+static int pl031_stv2_set_time(struct device *dev, struct rtc_time *tm)
+{
+ unsigned long time;
+ unsigned long bcd_year;
+ struct pl031_local *ldata = dev_get_drvdata(dev);
+ int ret;
+
+ ret = pl031_stv2_tm_to_time(dev, tm, &time, &bcd_year);
+ if (ret == 0) {
+ writel(bcd_year, ldata->base + RTC_YLR);
+ writel(time, ldata->base + RTC_LR);
+ }
+
+ return ret;
+}
+
+static int pl031_stv2_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct pl031_local *ldata = dev_get_drvdata(dev);
+ int ret;
+
+ ret = pl031_stv2_time_to_tm(readl(ldata->base + RTC_MR),
+ readl(ldata->base + RTC_YMR), &alarm->time);
+
+ alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
+ alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
+
+ return ret;
+}
+
+static int pl031_stv2_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct pl031_local *ldata = dev_get_drvdata(dev);
+ unsigned long time;
+ unsigned long bcd_year;
+ int ret;
+
+ ret = pl031_stv2_tm_to_time(dev, &alarm->time,
+ &time, &bcd_year);
+ if (ret == 0) {
+ writel(bcd_year, ldata->base + RTC_YMR);
+ writel(time, ldata->base + RTC_MR);
+
+ pl031_alarm_irq_enable(dev, alarm->enabled);
+ }
+
+ return ret;
+}
+
+static irqreturn_t pl031_interrupt(int irq, void *dev_id)
+{
+ struct pl031_local *ldata = dev_id;
+ unsigned long rtcmis;
+ unsigned long events = 0;
+
+ rtcmis = readl(ldata->base + RTC_MIS);
+ if (rtcmis & RTC_BIT_AI) {
+ writel(RTC_BIT_AI, ldata->base + RTC_ICR);
+ events |= (RTC_AF | RTC_IRQF);
+ rtc_update_irq(ldata->rtc, 1, events);
+
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+static int pl031_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pl031_local *ldata = dev_get_drvdata(dev);
+
+ rtc_time64_to_tm(readl(ldata->base + RTC_DR), tm);
+
+ return 0;
+}
+
+static int pl031_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pl031_local *ldata = dev_get_drvdata(dev);
+
+ writel(rtc_tm_to_time64(tm), ldata->base + RTC_LR);
+
+ return 0;
+}
+
+static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct pl031_local *ldata = dev_get_drvdata(dev);
+
+ rtc_time64_to_tm(readl(ldata->base + RTC_MR), &alarm->time);
+
+ alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
+ alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
+
+ return 0;
+}
+
+static int pl031_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct pl031_local *ldata = dev_get_drvdata(dev);
+
+ writel(rtc_tm_to_time64(&alarm->time), ldata->base + RTC_MR);
+ pl031_alarm_irq_enable(dev, alarm->enabled);
+
+ return 0;
+}
+
+static void pl031_remove(struct amba_device *adev)
+{
+ struct pl031_local *ldata = dev_get_drvdata(&adev->dev);
+
+ dev_pm_clear_wake_irq(&adev->dev);
+ device_init_wakeup(&adev->dev, false);
+ if (adev->irq[0])
+ free_irq(adev->irq[0], ldata);
+ amba_release_regions(adev);
+}
+
+static int pl031_probe(struct amba_device *adev, const struct amba_id *id)
+{
+ int ret;
+ struct pl031_local *ldata;
+ struct pl031_vendor_data *vendor = id->data;
+ struct rtc_class_ops *ops;
+ unsigned long time, data;
+
+ ret = amba_request_regions(adev, NULL);
+ if (ret)
+ goto err_req;
+
+ ldata = devm_kzalloc(&adev->dev, sizeof(struct pl031_local),
+ GFP_KERNEL);
+ ops = devm_kmemdup(&adev->dev, &vendor->ops, sizeof(vendor->ops),
+ GFP_KERNEL);
+ if (!ldata || !ops) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ ldata->vendor = vendor;
+ ldata->base = devm_ioremap(&adev->dev, adev->res.start,
+ resource_size(&adev->res));
+ if (!ldata->base) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ amba_set_drvdata(adev, ldata);
+
+ dev_dbg(&adev->dev, "designer ID = 0x%02x\n", amba_manf(adev));
+ dev_dbg(&adev->dev, "revision = 0x%01x\n", amba_rev(adev));
+
+ data = readl(ldata->base + RTC_CR);
+ /* Enable the clockwatch on ST Variants */
+ if (vendor->clockwatch)
+ data |= RTC_CR_CWEN;
+ else
+ data |= RTC_CR_EN;
+ writel(data, ldata->base + RTC_CR);
+
+ /*
+ * On ST PL031 variants, the RTC reset value does not provide correct
+ * weekday for 2000-01-01. Correct the erroneous sunday to saturday.
+ */
+ if (vendor->st_weekday) {
+ if (readl(ldata->base + RTC_YDR) == 0x2000) {
+ time = readl(ldata->base + RTC_DR);
+ if ((time &
+ (RTC_MON_MASK | RTC_MDAY_MASK | RTC_WDAY_MASK))
+ == 0x02120000) {
+ time = time | (0x7 << RTC_WDAY_SHIFT);
+ writel(0x2000, ldata->base + RTC_YLR);
+ writel(time, ldata->base + RTC_LR);
+ }
+ }
+ }
+
+ if (!adev->irq[0]) {
+ /* When there's no interrupt, no point in exposing the alarm */
+ ops->read_alarm = NULL;
+ ops->set_alarm = NULL;
+ ops->alarm_irq_enable = NULL;
+ }
+
+ device_init_wakeup(&adev->dev, true);
+ ldata->rtc = devm_rtc_allocate_device(&adev->dev);
+ if (IS_ERR(ldata->rtc)) {
+ ret = PTR_ERR(ldata->rtc);
+ goto out;
+ }
+
+ ldata->rtc->ops = ops;
+ ldata->rtc->range_min = vendor->range_min;
+ ldata->rtc->range_max = vendor->range_max;
+
+ ret = rtc_register_device(ldata->rtc);
+ if (ret)
+ goto out;
+
+ if (adev->irq[0]) {
+ ret = request_irq(adev->irq[0], pl031_interrupt,
+ vendor->irqflags, "rtc-pl031", ldata);
+ if (ret)
+ goto out;
+ dev_pm_set_wake_irq(&adev->dev, adev->irq[0]);
+ }
+ return 0;
+
+out:
+ amba_release_regions(adev);
+err_req:
+
+ return ret;
+}
+
+/* Operations for the original ARM version */
+static struct pl031_vendor_data arm_pl031 = {
+ .ops = {
+ .read_time = pl031_read_time,
+ .set_time = pl031_set_time,
+ .read_alarm = pl031_read_alarm,
+ .set_alarm = pl031_set_alarm,
+ .alarm_irq_enable = pl031_alarm_irq_enable,
+ },
+ .range_max = U32_MAX,
+};
+
+/* The First ST derivative */
+static struct pl031_vendor_data stv1_pl031 = {
+ .ops = {
+ .read_time = pl031_read_time,
+ .set_time = pl031_set_time,
+ .read_alarm = pl031_read_alarm,
+ .set_alarm = pl031_set_alarm,
+ .alarm_irq_enable = pl031_alarm_irq_enable,
+ },
+ .clockwatch = true,
+ .st_weekday = true,
+ .range_max = U32_MAX,
+};
+
+/* And the second ST derivative */
+static struct pl031_vendor_data stv2_pl031 = {
+ .ops = {
+ .read_time = pl031_stv2_read_time,
+ .set_time = pl031_stv2_set_time,
+ .read_alarm = pl031_stv2_read_alarm,
+ .set_alarm = pl031_stv2_set_alarm,
+ .alarm_irq_enable = pl031_alarm_irq_enable,
+ },
+ .clockwatch = true,
+ .st_weekday = true,
+ /*
+ * This variant shares the IRQ with another block and must not
+ * suspend that IRQ line.
+ * TODO check if it shares with IRQF_NO_SUSPEND user, else we can
+ * remove IRQF_COND_SUSPEND
+ */
+ .irqflags = IRQF_SHARED | IRQF_COND_SUSPEND,
+ .range_min = RTC_TIMESTAMP_BEGIN_0000,
+ .range_max = RTC_TIMESTAMP_END_9999,
+};
+
+static const struct amba_id pl031_ids[] = {
+ {
+ .id = 0x00041031,
+ .mask = 0x000fffff,
+ .data = &arm_pl031,
+ },
+ /* ST Micro variants */
+ {
+ .id = 0x00180031,
+ .mask = 0x00ffffff,
+ .data = &stv1_pl031,
+ },
+ {
+ .id = 0x00280031,
+ .mask = 0x00ffffff,
+ .data = &stv2_pl031,
+ },
+ {0, 0},
+};
+
+MODULE_DEVICE_TABLE(amba, pl031_ids);
+
+static struct amba_driver pl031_driver = {
+ .drv = {
+ .name = "rtc-pl031",
+ },
+ .id_table = pl031_ids,
+ .probe = pl031_probe,
+ .remove = pl031_remove,
+};
+
+module_amba_driver(pl031_driver);
+
+MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net>");
+MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-pm8xxx.c b/drivers/rtc/rtc-pm8xxx.c
new file mode 100644
index 000000000..3417eef0a
--- /dev/null
+++ b/drivers/rtc/rtc-pm8xxx.c
@@ -0,0 +1,550 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* Copyright (c) 2010-2011, Code Aurora Forum. All rights reserved.
+ */
+#include <linux/of.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+#include <linux/pm.h>
+#include <linux/regmap.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+
+/* RTC Register offsets from RTC CTRL REG */
+#define PM8XXX_ALARM_CTRL_OFFSET 0x01
+#define PM8XXX_RTC_WRITE_OFFSET 0x02
+#define PM8XXX_RTC_READ_OFFSET 0x06
+#define PM8XXX_ALARM_RW_OFFSET 0x0A
+
+/* RTC_CTRL register bit fields */
+#define PM8xxx_RTC_ENABLE BIT(7)
+#define PM8xxx_RTC_ALARM_CLEAR BIT(0)
+
+#define NUM_8_BIT_RTC_REGS 0x4
+
+/**
+ * struct pm8xxx_rtc_regs - describe RTC registers per PMIC versions
+ * @ctrl: base address of control register
+ * @write: base address of write register
+ * @read: base address of read register
+ * @alarm_ctrl: base address of alarm control register
+ * @alarm_ctrl2: base address of alarm control2 register
+ * @alarm_rw: base address of alarm read-write register
+ * @alarm_en: alarm enable mask
+ */
+struct pm8xxx_rtc_regs {
+ unsigned int ctrl;
+ unsigned int write;
+ unsigned int read;
+ unsigned int alarm_ctrl;
+ unsigned int alarm_ctrl2;
+ unsigned int alarm_rw;
+ unsigned int alarm_en;
+};
+
+/**
+ * struct pm8xxx_rtc - rtc driver internal structure
+ * @rtc: rtc device for this driver.
+ * @regmap: regmap used to access RTC registers
+ * @allow_set_time: indicates whether writing to the RTC is allowed
+ * @rtc_alarm_irq: rtc alarm irq number.
+ * @regs: rtc registers description.
+ * @rtc_dev: device structure.
+ * @ctrl_reg_lock: spinlock protecting access to ctrl_reg.
+ */
+struct pm8xxx_rtc {
+ struct rtc_device *rtc;
+ struct regmap *regmap;
+ bool allow_set_time;
+ int rtc_alarm_irq;
+ const struct pm8xxx_rtc_regs *regs;
+ struct device *rtc_dev;
+ spinlock_t ctrl_reg_lock;
+};
+
+/*
+ * Steps to write the RTC registers.
+ * 1. Disable alarm if enabled.
+ * 2. Disable rtc if enabled.
+ * 3. Write 0x00 to LSB.
+ * 4. Write Byte[1], Byte[2], Byte[3] then Byte[0].
+ * 5. Enable rtc if disabled in step 2.
+ * 6. Enable alarm if disabled in step 1.
+ */
+static int pm8xxx_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ int rc, i;
+ unsigned long secs, irq_flags;
+ u8 value[NUM_8_BIT_RTC_REGS], alarm_enabled = 0, rtc_disabled = 0;
+ unsigned int ctrl_reg, rtc_ctrl_reg;
+ struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
+ const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
+
+ if (!rtc_dd->allow_set_time)
+ return -EACCES;
+
+ secs = rtc_tm_to_time64(tm);
+
+ dev_dbg(dev, "Seconds value to be written to RTC = %lu\n", secs);
+
+ for (i = 0; i < NUM_8_BIT_RTC_REGS; i++) {
+ value[i] = secs & 0xFF;
+ secs >>= 8;
+ }
+
+ spin_lock_irqsave(&rtc_dd->ctrl_reg_lock, irq_flags);
+
+ rc = regmap_read(rtc_dd->regmap, regs->alarm_ctrl, &ctrl_reg);
+ if (rc)
+ goto rtc_rw_fail;
+
+ if (ctrl_reg & regs->alarm_en) {
+ alarm_enabled = 1;
+ ctrl_reg &= ~regs->alarm_en;
+ rc = regmap_write(rtc_dd->regmap, regs->alarm_ctrl, ctrl_reg);
+ if (rc) {
+ dev_err(dev, "Write to RTC Alarm control register failed\n");
+ goto rtc_rw_fail;
+ }
+ }
+
+ /* Disable RTC H/w before writing on RTC register */
+ rc = regmap_read(rtc_dd->regmap, regs->ctrl, &rtc_ctrl_reg);
+ if (rc)
+ goto rtc_rw_fail;
+
+ if (rtc_ctrl_reg & PM8xxx_RTC_ENABLE) {
+ rtc_disabled = 1;
+ rtc_ctrl_reg &= ~PM8xxx_RTC_ENABLE;
+ rc = regmap_write(rtc_dd->regmap, regs->ctrl, rtc_ctrl_reg);
+ if (rc) {
+ dev_err(dev, "Write to RTC control register failed\n");
+ goto rtc_rw_fail;
+ }
+ }
+
+ /* Write 0 to Byte[0] */
+ rc = regmap_write(rtc_dd->regmap, regs->write, 0);
+ if (rc) {
+ dev_err(dev, "Write to RTC write data register failed\n");
+ goto rtc_rw_fail;
+ }
+
+ /* Write Byte[1], Byte[2], Byte[3] */
+ rc = regmap_bulk_write(rtc_dd->regmap, regs->write + 1,
+ &value[1], sizeof(value) - 1);
+ if (rc) {
+ dev_err(dev, "Write to RTC write data register failed\n");
+ goto rtc_rw_fail;
+ }
+
+ /* Write Byte[0] */
+ rc = regmap_write(rtc_dd->regmap, regs->write, value[0]);
+ if (rc) {
+ dev_err(dev, "Write to RTC write data register failed\n");
+ goto rtc_rw_fail;
+ }
+
+ /* Enable RTC H/w after writing on RTC register */
+ if (rtc_disabled) {
+ rtc_ctrl_reg |= PM8xxx_RTC_ENABLE;
+ rc = regmap_write(rtc_dd->regmap, regs->ctrl, rtc_ctrl_reg);
+ if (rc) {
+ dev_err(dev, "Write to RTC control register failed\n");
+ goto rtc_rw_fail;
+ }
+ }
+
+ if (alarm_enabled) {
+ ctrl_reg |= regs->alarm_en;
+ rc = regmap_write(rtc_dd->regmap, regs->alarm_ctrl, ctrl_reg);
+ if (rc) {
+ dev_err(dev, "Write to RTC Alarm control register failed\n");
+ goto rtc_rw_fail;
+ }
+ }
+
+rtc_rw_fail:
+ spin_unlock_irqrestore(&rtc_dd->ctrl_reg_lock, irq_flags);
+
+ return rc;
+}
+
+static int pm8xxx_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ int rc;
+ u8 value[NUM_8_BIT_RTC_REGS];
+ unsigned long secs;
+ unsigned int reg;
+ struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
+ const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
+
+ rc = regmap_bulk_read(rtc_dd->regmap, regs->read, value, sizeof(value));
+ if (rc) {
+ dev_err(dev, "RTC read data register failed\n");
+ return rc;
+ }
+
+ /*
+ * Read the LSB again and check if there has been a carry over.
+ * If there is, redo the read operation.
+ */
+ rc = regmap_read(rtc_dd->regmap, regs->read, &reg);
+ if (rc < 0) {
+ dev_err(dev, "RTC read data register failed\n");
+ return rc;
+ }
+
+ if (unlikely(reg < value[0])) {
+ rc = regmap_bulk_read(rtc_dd->regmap, regs->read,
+ value, sizeof(value));
+ if (rc) {
+ dev_err(dev, "RTC read data register failed\n");
+ return rc;
+ }
+ }
+
+ secs = value[0] | (value[1] << 8) | (value[2] << 16) |
+ ((unsigned long)value[3] << 24);
+
+ rtc_time64_to_tm(secs, tm);
+
+ dev_dbg(dev, "secs = %lu, h:m:s == %ptRt, y-m-d = %ptRdr\n", secs, tm, tm);
+
+ return 0;
+}
+
+static int pm8xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ int rc, i;
+ u8 value[NUM_8_BIT_RTC_REGS];
+ unsigned long secs, irq_flags;
+ struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
+ const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
+
+ secs = rtc_tm_to_time64(&alarm->time);
+
+ for (i = 0; i < NUM_8_BIT_RTC_REGS; i++) {
+ value[i] = secs & 0xFF;
+ secs >>= 8;
+ }
+
+ rc = regmap_update_bits(rtc_dd->regmap, regs->alarm_ctrl,
+ regs->alarm_en, 0);
+ if (rc)
+ return rc;
+
+ spin_lock_irqsave(&rtc_dd->ctrl_reg_lock, irq_flags);
+
+ rc = regmap_bulk_write(rtc_dd->regmap, regs->alarm_rw, value,
+ sizeof(value));
+ if (rc) {
+ dev_err(dev, "Write to RTC ALARM register failed\n");
+ goto rtc_rw_fail;
+ }
+
+ if (alarm->enabled) {
+ rc = regmap_update_bits(rtc_dd->regmap, regs->alarm_ctrl,
+ regs->alarm_en, regs->alarm_en);
+ if (rc)
+ goto rtc_rw_fail;
+ }
+
+ dev_dbg(dev, "Alarm Set for h:m:s=%ptRt, y-m-d=%ptRdr\n",
+ &alarm->time, &alarm->time);
+rtc_rw_fail:
+ spin_unlock_irqrestore(&rtc_dd->ctrl_reg_lock, irq_flags);
+ return rc;
+}
+
+static int pm8xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ int rc;
+ u8 value[NUM_8_BIT_RTC_REGS];
+ unsigned long secs;
+ struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
+ const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
+
+ rc = regmap_bulk_read(rtc_dd->regmap, regs->alarm_rw, value,
+ sizeof(value));
+ if (rc) {
+ dev_err(dev, "RTC alarm time read failed\n");
+ return rc;
+ }
+
+ secs = value[0] | (value[1] << 8) | (value[2] << 16) |
+ ((unsigned long)value[3] << 24);
+
+ rtc_time64_to_tm(secs, &alarm->time);
+
+ dev_dbg(dev, "Alarm set for - h:m:s=%ptRt, y-m-d=%ptRdr\n",
+ &alarm->time, &alarm->time);
+
+ return 0;
+}
+
+static int pm8xxx_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
+{
+ int rc;
+ unsigned long irq_flags;
+ struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
+ const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
+ unsigned int ctrl_reg;
+ u8 value[NUM_8_BIT_RTC_REGS] = {0};
+
+ spin_lock_irqsave(&rtc_dd->ctrl_reg_lock, irq_flags);
+
+ rc = regmap_read(rtc_dd->regmap, regs->alarm_ctrl, &ctrl_reg);
+ if (rc)
+ goto rtc_rw_fail;
+
+ if (enable)
+ ctrl_reg |= regs->alarm_en;
+ else
+ ctrl_reg &= ~regs->alarm_en;
+
+ rc = regmap_write(rtc_dd->regmap, regs->alarm_ctrl, ctrl_reg);
+ if (rc) {
+ dev_err(dev, "Write to RTC control register failed\n");
+ goto rtc_rw_fail;
+ }
+
+ /* Clear Alarm register */
+ if (!enable) {
+ rc = regmap_bulk_write(rtc_dd->regmap, regs->alarm_rw, value,
+ sizeof(value));
+ if (rc) {
+ dev_err(dev, "Clear RTC ALARM register failed\n");
+ goto rtc_rw_fail;
+ }
+ }
+
+rtc_rw_fail:
+ spin_unlock_irqrestore(&rtc_dd->ctrl_reg_lock, irq_flags);
+ return rc;
+}
+
+static const struct rtc_class_ops pm8xxx_rtc_ops = {
+ .read_time = pm8xxx_rtc_read_time,
+ .set_time = pm8xxx_rtc_set_time,
+ .set_alarm = pm8xxx_rtc_set_alarm,
+ .read_alarm = pm8xxx_rtc_read_alarm,
+ .alarm_irq_enable = pm8xxx_rtc_alarm_irq_enable,
+};
+
+static irqreturn_t pm8xxx_alarm_trigger(int irq, void *dev_id)
+{
+ struct pm8xxx_rtc *rtc_dd = dev_id;
+ const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
+ unsigned int ctrl_reg;
+ int rc;
+ unsigned long irq_flags;
+
+ rtc_update_irq(rtc_dd->rtc, 1, RTC_IRQF | RTC_AF);
+
+ spin_lock_irqsave(&rtc_dd->ctrl_reg_lock, irq_flags);
+
+ /* Clear the alarm enable bit */
+ rc = regmap_read(rtc_dd->regmap, regs->alarm_ctrl, &ctrl_reg);
+ if (rc) {
+ spin_unlock_irqrestore(&rtc_dd->ctrl_reg_lock, irq_flags);
+ goto rtc_alarm_handled;
+ }
+
+ ctrl_reg &= ~regs->alarm_en;
+
+ rc = regmap_write(rtc_dd->regmap, regs->alarm_ctrl, ctrl_reg);
+ if (rc) {
+ spin_unlock_irqrestore(&rtc_dd->ctrl_reg_lock, irq_flags);
+ dev_err(rtc_dd->rtc_dev,
+ "Write to alarm control register failed\n");
+ goto rtc_alarm_handled;
+ }
+
+ spin_unlock_irqrestore(&rtc_dd->ctrl_reg_lock, irq_flags);
+
+ /* Clear RTC alarm register */
+ rc = regmap_read(rtc_dd->regmap, regs->alarm_ctrl2, &ctrl_reg);
+ if (rc) {
+ dev_err(rtc_dd->rtc_dev,
+ "RTC Alarm control2 register read failed\n");
+ goto rtc_alarm_handled;
+ }
+
+ ctrl_reg |= PM8xxx_RTC_ALARM_CLEAR;
+ rc = regmap_write(rtc_dd->regmap, regs->alarm_ctrl2, ctrl_reg);
+ if (rc)
+ dev_err(rtc_dd->rtc_dev,
+ "Write to RTC Alarm control2 register failed\n");
+
+rtc_alarm_handled:
+ return IRQ_HANDLED;
+}
+
+static int pm8xxx_rtc_enable(struct pm8xxx_rtc *rtc_dd)
+{
+ const struct pm8xxx_rtc_regs *regs = rtc_dd->regs;
+ unsigned int ctrl_reg;
+ int rc;
+
+ /* Check if the RTC is on, else turn it on */
+ rc = regmap_read(rtc_dd->regmap, regs->ctrl, &ctrl_reg);
+ if (rc)
+ return rc;
+
+ if (!(ctrl_reg & PM8xxx_RTC_ENABLE)) {
+ ctrl_reg |= PM8xxx_RTC_ENABLE;
+ rc = regmap_write(rtc_dd->regmap, regs->ctrl, ctrl_reg);
+ if (rc)
+ return rc;
+ }
+
+ return 0;
+}
+
+static const struct pm8xxx_rtc_regs pm8921_regs = {
+ .ctrl = 0x11d,
+ .write = 0x11f,
+ .read = 0x123,
+ .alarm_rw = 0x127,
+ .alarm_ctrl = 0x11d,
+ .alarm_ctrl2 = 0x11e,
+ .alarm_en = BIT(1),
+};
+
+static const struct pm8xxx_rtc_regs pm8058_regs = {
+ .ctrl = 0x1e8,
+ .write = 0x1ea,
+ .read = 0x1ee,
+ .alarm_rw = 0x1f2,
+ .alarm_ctrl = 0x1e8,
+ .alarm_ctrl2 = 0x1e9,
+ .alarm_en = BIT(1),
+};
+
+static const struct pm8xxx_rtc_regs pm8941_regs = {
+ .ctrl = 0x6046,
+ .write = 0x6040,
+ .read = 0x6048,
+ .alarm_rw = 0x6140,
+ .alarm_ctrl = 0x6146,
+ .alarm_ctrl2 = 0x6148,
+ .alarm_en = BIT(7),
+};
+
+/*
+ * Hardcoded RTC bases until IORESOURCE_REG mapping is figured out
+ */
+static const struct of_device_id pm8xxx_id_table[] = {
+ { .compatible = "qcom,pm8921-rtc", .data = &pm8921_regs },
+ { .compatible = "qcom,pm8018-rtc", .data = &pm8921_regs },
+ { .compatible = "qcom,pm8058-rtc", .data = &pm8058_regs },
+ { .compatible = "qcom,pm8941-rtc", .data = &pm8941_regs },
+ { },
+};
+MODULE_DEVICE_TABLE(of, pm8xxx_id_table);
+
+static int pm8xxx_rtc_probe(struct platform_device *pdev)
+{
+ int rc;
+ struct pm8xxx_rtc *rtc_dd;
+ const struct of_device_id *match;
+
+ match = of_match_node(pm8xxx_id_table, pdev->dev.of_node);
+ if (!match)
+ return -ENXIO;
+
+ rtc_dd = devm_kzalloc(&pdev->dev, sizeof(*rtc_dd), GFP_KERNEL);
+ if (rtc_dd == NULL)
+ return -ENOMEM;
+
+ /* Initialise spinlock to protect RTC control register */
+ spin_lock_init(&rtc_dd->ctrl_reg_lock);
+
+ rtc_dd->regmap = dev_get_regmap(pdev->dev.parent, NULL);
+ if (!rtc_dd->regmap) {
+ dev_err(&pdev->dev, "Parent regmap unavailable.\n");
+ return -ENXIO;
+ }
+
+ rtc_dd->rtc_alarm_irq = platform_get_irq(pdev, 0);
+ if (rtc_dd->rtc_alarm_irq < 0)
+ return -ENXIO;
+
+ rtc_dd->allow_set_time = of_property_read_bool(pdev->dev.of_node,
+ "allow-set-time");
+
+ rtc_dd->regs = match->data;
+ rtc_dd->rtc_dev = &pdev->dev;
+
+ rc = pm8xxx_rtc_enable(rtc_dd);
+ if (rc)
+ return rc;
+
+ platform_set_drvdata(pdev, rtc_dd);
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ /* Register the RTC device */
+ rtc_dd->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc_dd->rtc))
+ return PTR_ERR(rtc_dd->rtc);
+
+ rtc_dd->rtc->ops = &pm8xxx_rtc_ops;
+ rtc_dd->rtc->range_max = U32_MAX;
+
+ /* Request the alarm IRQ */
+ rc = devm_request_any_context_irq(&pdev->dev, rtc_dd->rtc_alarm_irq,
+ pm8xxx_alarm_trigger,
+ IRQF_TRIGGER_RISING,
+ "pm8xxx_rtc_alarm", rtc_dd);
+ if (rc < 0) {
+ dev_err(&pdev->dev, "Request IRQ failed (%d)\n", rc);
+ return rc;
+ }
+
+ return rtc_register_device(rtc_dd->rtc);
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int pm8xxx_rtc_resume(struct device *dev)
+{
+ struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ disable_irq_wake(rtc_dd->rtc_alarm_irq);
+
+ return 0;
+}
+
+static int pm8xxx_rtc_suspend(struct device *dev)
+{
+ struct pm8xxx_rtc *rtc_dd = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ enable_irq_wake(rtc_dd->rtc_alarm_irq);
+
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(pm8xxx_rtc_pm_ops,
+ pm8xxx_rtc_suspend,
+ pm8xxx_rtc_resume);
+
+static struct platform_driver pm8xxx_rtc_driver = {
+ .probe = pm8xxx_rtc_probe,
+ .driver = {
+ .name = "rtc-pm8xxx",
+ .pm = &pm8xxx_rtc_pm_ops,
+ .of_match_table = pm8xxx_id_table,
+ },
+};
+
+module_platform_driver(pm8xxx_rtc_driver);
+
+MODULE_ALIAS("platform:rtc-pm8xxx");
+MODULE_DESCRIPTION("PMIC8xxx RTC driver");
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Anirudh Ghayal <aghayal@codeaurora.org>");
diff --git a/drivers/rtc/rtc-ps3.c b/drivers/rtc/rtc-ps3.c
new file mode 100644
index 000000000..f0336d691
--- /dev/null
+++ b/drivers/rtc/rtc-ps3.c
@@ -0,0 +1,73 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * PS3 RTC Driver
+ *
+ * Copyright 2009 Sony Corporation
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+
+#include <asm/lv1call.h>
+#include <asm/ps3.h>
+
+
+static u64 read_rtc(void)
+{
+ int result;
+ u64 rtc_val;
+ u64 tb_val;
+
+ result = lv1_get_rtc(&rtc_val, &tb_val);
+ BUG_ON(result);
+
+ return rtc_val;
+}
+
+static int ps3_get_time(struct device *dev, struct rtc_time *tm)
+{
+ rtc_time64_to_tm(read_rtc() + ps3_os_area_get_rtc_diff(), tm);
+ return 0;
+}
+
+static int ps3_set_time(struct device *dev, struct rtc_time *tm)
+{
+ ps3_os_area_set_rtc_diff(rtc_tm_to_time64(tm) - read_rtc());
+ return 0;
+}
+
+static const struct rtc_class_ops ps3_rtc_ops = {
+ .read_time = ps3_get_time,
+ .set_time = ps3_set_time,
+};
+
+static int __init ps3_rtc_probe(struct platform_device *dev)
+{
+ struct rtc_device *rtc;
+
+ rtc = devm_rtc_allocate_device(&dev->dev);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ rtc->ops = &ps3_rtc_ops;
+ rtc->range_max = U64_MAX;
+
+ platform_set_drvdata(dev, rtc);
+
+ return rtc_register_device(rtc);
+}
+
+static struct platform_driver ps3_rtc_driver = {
+ .driver = {
+ .name = "rtc-ps3",
+ },
+};
+
+module_platform_driver_probe(ps3_rtc_driver, ps3_rtc_probe);
+
+MODULE_AUTHOR("Sony Corporation");
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("ps3 RTC driver");
+MODULE_ALIAS("platform:rtc-ps3");
diff --git a/drivers/rtc/rtc-pxa.c b/drivers/rtc/rtc-pxa.c
new file mode 100644
index 000000000..cf8119b6d
--- /dev/null
+++ b/drivers/rtc/rtc-pxa.c
@@ -0,0 +1,423 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Real Time Clock interface for XScale PXA27x and PXA3xx
+ *
+ * Copyright (C) 2008 Robert Jarzmik
+ */
+
+#include <linux/init.h>
+#include <linux/platform_device.h>
+#include <linux/module.h>
+#include <linux/rtc.h>
+#include <linux/seq_file.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+
+#include <mach/hardware.h>
+
+#include "rtc-sa1100.h"
+
+#define RTC_DEF_DIVIDER (32768 - 1)
+#define RTC_DEF_TRIM 0
+#define MAXFREQ_PERIODIC 1000
+
+/*
+ * PXA Registers and bits definitions
+ */
+#define RTSR_PICE (1 << 15) /* Periodic interrupt count enable */
+#define RTSR_PIALE (1 << 14) /* Periodic interrupt Alarm enable */
+#define RTSR_PIAL (1 << 13) /* Periodic interrupt detected */
+#define RTSR_SWALE2 (1 << 11) /* RTC stopwatch alarm2 enable */
+#define RTSR_SWAL2 (1 << 10) /* RTC stopwatch alarm2 detected */
+#define RTSR_SWALE1 (1 << 9) /* RTC stopwatch alarm1 enable */
+#define RTSR_SWAL1 (1 << 8) /* RTC stopwatch alarm1 detected */
+#define RTSR_RDALE2 (1 << 7) /* RTC alarm2 enable */
+#define RTSR_RDAL2 (1 << 6) /* RTC alarm2 detected */
+#define RTSR_RDALE1 (1 << 5) /* RTC alarm1 enable */
+#define RTSR_RDAL1 (1 << 4) /* RTC alarm1 detected */
+#define RTSR_HZE (1 << 3) /* HZ interrupt enable */
+#define RTSR_ALE (1 << 2) /* RTC alarm interrupt enable */
+#define RTSR_HZ (1 << 1) /* HZ rising-edge detected */
+#define RTSR_AL (1 << 0) /* RTC alarm detected */
+#define RTSR_TRIG_MASK (RTSR_AL | RTSR_HZ | RTSR_RDAL1 | RTSR_RDAL2\
+ | RTSR_SWAL1 | RTSR_SWAL2)
+#define RYxR_YEAR_S 9
+#define RYxR_YEAR_MASK (0xfff << RYxR_YEAR_S)
+#define RYxR_MONTH_S 5
+#define RYxR_MONTH_MASK (0xf << RYxR_MONTH_S)
+#define RYxR_DAY_MASK 0x1f
+#define RDxR_WOM_S 20
+#define RDxR_WOM_MASK (0x7 << RDxR_WOM_S)
+#define RDxR_DOW_S 17
+#define RDxR_DOW_MASK (0x7 << RDxR_DOW_S)
+#define RDxR_HOUR_S 12
+#define RDxR_HOUR_MASK (0x1f << RDxR_HOUR_S)
+#define RDxR_MIN_S 6
+#define RDxR_MIN_MASK (0x3f << RDxR_MIN_S)
+#define RDxR_SEC_MASK 0x3f
+
+#define RTSR 0x08
+#define RTTR 0x0c
+#define RDCR 0x10
+#define RYCR 0x14
+#define RDAR1 0x18
+#define RYAR1 0x1c
+#define RTCPICR 0x34
+#define PIAR 0x38
+
+#define rtc_readl(pxa_rtc, reg) \
+ __raw_readl((pxa_rtc)->base + (reg))
+#define rtc_writel(pxa_rtc, reg, value) \
+ __raw_writel((value), (pxa_rtc)->base + (reg))
+
+struct pxa_rtc {
+ struct sa1100_rtc sa1100_rtc;
+ struct resource *ress;
+ void __iomem *base;
+ struct rtc_device *rtc;
+ spinlock_t lock; /* Protects this structure */
+};
+
+
+static u32 ryxr_calc(struct rtc_time *tm)
+{
+ return ((tm->tm_year + 1900) << RYxR_YEAR_S)
+ | ((tm->tm_mon + 1) << RYxR_MONTH_S)
+ | tm->tm_mday;
+}
+
+static u32 rdxr_calc(struct rtc_time *tm)
+{
+ return ((((tm->tm_mday + 6) / 7) << RDxR_WOM_S) & RDxR_WOM_MASK)
+ | (((tm->tm_wday + 1) << RDxR_DOW_S) & RDxR_DOW_MASK)
+ | (tm->tm_hour << RDxR_HOUR_S)
+ | (tm->tm_min << RDxR_MIN_S)
+ | tm->tm_sec;
+}
+
+static void tm_calc(u32 rycr, u32 rdcr, struct rtc_time *tm)
+{
+ tm->tm_year = ((rycr & RYxR_YEAR_MASK) >> RYxR_YEAR_S) - 1900;
+ tm->tm_mon = (((rycr & RYxR_MONTH_MASK) >> RYxR_MONTH_S)) - 1;
+ tm->tm_mday = (rycr & RYxR_DAY_MASK);
+ tm->tm_wday = ((rycr & RDxR_DOW_MASK) >> RDxR_DOW_S) - 1;
+ tm->tm_hour = (rdcr & RDxR_HOUR_MASK) >> RDxR_HOUR_S;
+ tm->tm_min = (rdcr & RDxR_MIN_MASK) >> RDxR_MIN_S;
+ tm->tm_sec = rdcr & RDxR_SEC_MASK;
+}
+
+static void rtsr_clear_bits(struct pxa_rtc *pxa_rtc, u32 mask)
+{
+ u32 rtsr;
+
+ rtsr = rtc_readl(pxa_rtc, RTSR);
+ rtsr &= ~RTSR_TRIG_MASK;
+ rtsr &= ~mask;
+ rtc_writel(pxa_rtc, RTSR, rtsr);
+}
+
+static void rtsr_set_bits(struct pxa_rtc *pxa_rtc, u32 mask)
+{
+ u32 rtsr;
+
+ rtsr = rtc_readl(pxa_rtc, RTSR);
+ rtsr &= ~RTSR_TRIG_MASK;
+ rtsr |= mask;
+ rtc_writel(pxa_rtc, RTSR, rtsr);
+}
+
+static irqreturn_t pxa_rtc_irq(int irq, void *dev_id)
+{
+ struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev_id);
+ u32 rtsr;
+ unsigned long events = 0;
+
+ spin_lock(&pxa_rtc->lock);
+
+ /* clear interrupt sources */
+ rtsr = rtc_readl(pxa_rtc, RTSR);
+ rtc_writel(pxa_rtc, RTSR, rtsr);
+
+ /* temporary disable rtc interrupts */
+ rtsr_clear_bits(pxa_rtc, RTSR_RDALE1 | RTSR_PIALE | RTSR_HZE);
+
+ /* clear alarm interrupt if it has occurred */
+ if (rtsr & RTSR_RDAL1)
+ rtsr &= ~RTSR_RDALE1;
+
+ /* update irq data & counter */
+ if (rtsr & RTSR_RDAL1)
+ events |= RTC_AF | RTC_IRQF;
+ if (rtsr & RTSR_HZ)
+ events |= RTC_UF | RTC_IRQF;
+ if (rtsr & RTSR_PIAL)
+ events |= RTC_PF | RTC_IRQF;
+
+ rtc_update_irq(pxa_rtc->rtc, 1, events);
+
+ /* enable back rtc interrupts */
+ rtc_writel(pxa_rtc, RTSR, rtsr & ~RTSR_TRIG_MASK);
+
+ spin_unlock(&pxa_rtc->lock);
+ return IRQ_HANDLED;
+}
+
+static int pxa_rtc_open(struct device *dev)
+{
+ struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
+ int ret;
+
+ ret = request_irq(pxa_rtc->sa1100_rtc.irq_1hz, pxa_rtc_irq, 0,
+ "rtc 1Hz", dev);
+ if (ret < 0) {
+ dev_err(dev, "can't get irq %i, err %d\n",
+ pxa_rtc->sa1100_rtc.irq_1hz, ret);
+ goto err_irq_1Hz;
+ }
+ ret = request_irq(pxa_rtc->sa1100_rtc.irq_alarm, pxa_rtc_irq, 0,
+ "rtc Alrm", dev);
+ if (ret < 0) {
+ dev_err(dev, "can't get irq %i, err %d\n",
+ pxa_rtc->sa1100_rtc.irq_alarm, ret);
+ goto err_irq_Alrm;
+ }
+
+ return 0;
+
+err_irq_Alrm:
+ free_irq(pxa_rtc->sa1100_rtc.irq_1hz, dev);
+err_irq_1Hz:
+ return ret;
+}
+
+static void pxa_rtc_release(struct device *dev)
+{
+ struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
+
+ spin_lock_irq(&pxa_rtc->lock);
+ rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
+ spin_unlock_irq(&pxa_rtc->lock);
+
+ free_irq(pxa_rtc->sa1100_rtc.irq_1hz, dev);
+ free_irq(pxa_rtc->sa1100_rtc.irq_alarm, dev);
+}
+
+static int pxa_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
+
+ spin_lock_irq(&pxa_rtc->lock);
+
+ if (enabled)
+ rtsr_set_bits(pxa_rtc, RTSR_RDALE1);
+ else
+ rtsr_clear_bits(pxa_rtc, RTSR_RDALE1);
+
+ spin_unlock_irq(&pxa_rtc->lock);
+ return 0;
+}
+
+static int pxa_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
+ u32 rycr, rdcr;
+
+ rycr = rtc_readl(pxa_rtc, RYCR);
+ rdcr = rtc_readl(pxa_rtc, RDCR);
+
+ tm_calc(rycr, rdcr, tm);
+ return 0;
+}
+
+static int pxa_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
+
+ rtc_writel(pxa_rtc, RYCR, ryxr_calc(tm));
+ rtc_writel(pxa_rtc, RDCR, rdxr_calc(tm));
+
+ return 0;
+}
+
+static int pxa_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
+ u32 rtsr, ryar, rdar;
+
+ ryar = rtc_readl(pxa_rtc, RYAR1);
+ rdar = rtc_readl(pxa_rtc, RDAR1);
+ tm_calc(ryar, rdar, &alrm->time);
+
+ rtsr = rtc_readl(pxa_rtc, RTSR);
+ alrm->enabled = (rtsr & RTSR_RDALE1) ? 1 : 0;
+ alrm->pending = (rtsr & RTSR_RDAL1) ? 1 : 0;
+ return 0;
+}
+
+static int pxa_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
+ u32 rtsr;
+
+ spin_lock_irq(&pxa_rtc->lock);
+
+ rtc_writel(pxa_rtc, RYAR1, ryxr_calc(&alrm->time));
+ rtc_writel(pxa_rtc, RDAR1, rdxr_calc(&alrm->time));
+
+ rtsr = rtc_readl(pxa_rtc, RTSR);
+ if (alrm->enabled)
+ rtsr |= RTSR_RDALE1;
+ else
+ rtsr &= ~RTSR_RDALE1;
+ rtc_writel(pxa_rtc, RTSR, rtsr);
+
+ spin_unlock_irq(&pxa_rtc->lock);
+
+ return 0;
+}
+
+static int pxa_rtc_proc(struct device *dev, struct seq_file *seq)
+{
+ struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
+
+ seq_printf(seq, "trim/divider\t: 0x%08x\n", rtc_readl(pxa_rtc, RTTR));
+ seq_printf(seq, "update_IRQ\t: %s\n",
+ (rtc_readl(pxa_rtc, RTSR) & RTSR_HZE) ? "yes" : "no");
+ seq_printf(seq, "periodic_IRQ\t: %s\n",
+ (rtc_readl(pxa_rtc, RTSR) & RTSR_PIALE) ? "yes" : "no");
+ seq_printf(seq, "periodic_freq\t: %u\n", rtc_readl(pxa_rtc, PIAR));
+
+ return 0;
+}
+
+static const struct rtc_class_ops pxa_rtc_ops = {
+ .read_time = pxa_rtc_read_time,
+ .set_time = pxa_rtc_set_time,
+ .read_alarm = pxa_rtc_read_alarm,
+ .set_alarm = pxa_rtc_set_alarm,
+ .alarm_irq_enable = pxa_alarm_irq_enable,
+ .proc = pxa_rtc_proc,
+};
+
+static int __init pxa_rtc_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct pxa_rtc *pxa_rtc;
+ struct sa1100_rtc *sa1100_rtc;
+ int ret;
+
+ pxa_rtc = devm_kzalloc(dev, sizeof(*pxa_rtc), GFP_KERNEL);
+ if (!pxa_rtc)
+ return -ENOMEM;
+ sa1100_rtc = &pxa_rtc->sa1100_rtc;
+
+ spin_lock_init(&pxa_rtc->lock);
+ platform_set_drvdata(pdev, pxa_rtc);
+
+ pxa_rtc->ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!pxa_rtc->ress) {
+ dev_err(dev, "No I/O memory resource defined\n");
+ return -ENXIO;
+ }
+
+ sa1100_rtc->irq_1hz = platform_get_irq(pdev, 0);
+ if (sa1100_rtc->irq_1hz < 0)
+ return -ENXIO;
+ sa1100_rtc->irq_alarm = platform_get_irq(pdev, 1);
+ if (sa1100_rtc->irq_alarm < 0)
+ return -ENXIO;
+
+ sa1100_rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(sa1100_rtc->rtc))
+ return PTR_ERR(sa1100_rtc->rtc);
+
+ pxa_rtc->base = devm_ioremap(dev, pxa_rtc->ress->start,
+ resource_size(pxa_rtc->ress));
+ if (!pxa_rtc->base) {
+ dev_err(dev, "Unable to map pxa RTC I/O memory\n");
+ return -ENOMEM;
+ }
+
+ pxa_rtc_open(dev);
+
+ sa1100_rtc->rcnr = pxa_rtc->base + 0x0;
+ sa1100_rtc->rtsr = pxa_rtc->base + 0x8;
+ sa1100_rtc->rtar = pxa_rtc->base + 0x4;
+ sa1100_rtc->rttr = pxa_rtc->base + 0xc;
+ ret = sa1100_rtc_init(pdev, sa1100_rtc);
+ if (ret) {
+ dev_err(dev, "Unable to init SA1100 RTC sub-device\n");
+ return ret;
+ }
+
+ rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
+
+ pxa_rtc->rtc = devm_rtc_device_register(&pdev->dev, "pxa-rtc",
+ &pxa_rtc_ops, THIS_MODULE);
+ if (IS_ERR(pxa_rtc->rtc)) {
+ ret = PTR_ERR(pxa_rtc->rtc);
+ dev_err(dev, "Failed to register RTC device -> %d\n", ret);
+ return ret;
+ }
+
+ device_init_wakeup(dev, 1);
+
+ return 0;
+}
+
+static int __exit pxa_rtc_remove(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+
+ pxa_rtc_release(dev);
+ return 0;
+}
+
+#ifdef CONFIG_OF
+static const struct of_device_id pxa_rtc_dt_ids[] = {
+ { .compatible = "marvell,pxa-rtc" },
+ {}
+};
+MODULE_DEVICE_TABLE(of, pxa_rtc_dt_ids);
+#endif
+
+#ifdef CONFIG_PM_SLEEP
+static int pxa_rtc_suspend(struct device *dev)
+{
+ struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ enable_irq_wake(pxa_rtc->sa1100_rtc.irq_alarm);
+ return 0;
+}
+
+static int pxa_rtc_resume(struct device *dev)
+{
+ struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ disable_irq_wake(pxa_rtc->sa1100_rtc.irq_alarm);
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(pxa_rtc_pm_ops, pxa_rtc_suspend, pxa_rtc_resume);
+
+static struct platform_driver pxa_rtc_driver = {
+ .remove = __exit_p(pxa_rtc_remove),
+ .driver = {
+ .name = "pxa-rtc",
+ .of_match_table = of_match_ptr(pxa_rtc_dt_ids),
+ .pm = &pxa_rtc_pm_ops,
+ },
+};
+
+module_platform_driver_probe(pxa_rtc_driver, pxa_rtc_probe);
+
+MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
+MODULE_DESCRIPTION("PXA27x/PXA3xx Realtime Clock Driver (RTC)");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:pxa-rtc");
diff --git a/drivers/rtc/rtc-r7301.c b/drivers/rtc/rtc-r7301.c
new file mode 100644
index 000000000..aaf1b95e3
--- /dev/null
+++ b/drivers/rtc/rtc-r7301.c
@@ -0,0 +1,450 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * EPSON TOYOCOM RTC-7301SF/DG Driver
+ *
+ * Copyright (c) 2016 Akinobu Mita <akinobu.mita@gmail.com>
+ *
+ * Based on rtc-rp5c01.c
+ *
+ * Datasheet: http://www5.epsondevice.com/en/products/parallel/rtc7301sf.html
+ */
+
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/mod_devicetable.h>
+#include <linux/delay.h>
+#include <linux/regmap.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+
+#define DRV_NAME "rtc-r7301"
+
+#define RTC7301_1_SEC 0x0 /* Bank 0 and Band 1 */
+#define RTC7301_10_SEC 0x1 /* Bank 0 and Band 1 */
+#define RTC7301_AE BIT(3)
+#define RTC7301_1_MIN 0x2 /* Bank 0 and Band 1 */
+#define RTC7301_10_MIN 0x3 /* Bank 0 and Band 1 */
+#define RTC7301_1_HOUR 0x4 /* Bank 0 and Band 1 */
+#define RTC7301_10_HOUR 0x5 /* Bank 0 and Band 1 */
+#define RTC7301_DAY_OF_WEEK 0x6 /* Bank 0 and Band 1 */
+#define RTC7301_1_DAY 0x7 /* Bank 0 and Band 1 */
+#define RTC7301_10_DAY 0x8 /* Bank 0 and Band 1 */
+#define RTC7301_1_MONTH 0x9 /* Bank 0 */
+#define RTC7301_10_MONTH 0xa /* Bank 0 */
+#define RTC7301_1_YEAR 0xb /* Bank 0 */
+#define RTC7301_10_YEAR 0xc /* Bank 0 */
+#define RTC7301_100_YEAR 0xd /* Bank 0 */
+#define RTC7301_1000_YEAR 0xe /* Bank 0 */
+#define RTC7301_ALARM_CONTROL 0xe /* Bank 1 */
+#define RTC7301_ALARM_CONTROL_AIE BIT(0)
+#define RTC7301_ALARM_CONTROL_AF BIT(1)
+#define RTC7301_TIMER_CONTROL 0xe /* Bank 2 */
+#define RTC7301_TIMER_CONTROL_TIE BIT(0)
+#define RTC7301_TIMER_CONTROL_TF BIT(1)
+#define RTC7301_CONTROL 0xf /* All banks */
+#define RTC7301_CONTROL_BUSY BIT(0)
+#define RTC7301_CONTROL_STOP BIT(1)
+#define RTC7301_CONTROL_BANK_SEL_0 BIT(2)
+#define RTC7301_CONTROL_BANK_SEL_1 BIT(3)
+
+struct rtc7301_priv {
+ struct regmap *regmap;
+ int irq;
+ spinlock_t lock;
+ u8 bank;
+};
+
+static const struct regmap_config rtc7301_regmap_config = {
+ .reg_bits = 32,
+ .val_bits = 8,
+ .reg_stride = 4,
+};
+
+static u8 rtc7301_read(struct rtc7301_priv *priv, unsigned int reg)
+{
+ int reg_stride = regmap_get_reg_stride(priv->regmap);
+ unsigned int val;
+
+ regmap_read(priv->regmap, reg_stride * reg, &val);
+
+ return val & 0xf;
+}
+
+static void rtc7301_write(struct rtc7301_priv *priv, u8 val, unsigned int reg)
+{
+ int reg_stride = regmap_get_reg_stride(priv->regmap);
+
+ regmap_write(priv->regmap, reg_stride * reg, val);
+}
+
+static void rtc7301_update_bits(struct rtc7301_priv *priv, unsigned int reg,
+ u8 mask, u8 val)
+{
+ int reg_stride = regmap_get_reg_stride(priv->regmap);
+
+ regmap_update_bits(priv->regmap, reg_stride * reg, mask, val);
+}
+
+static int rtc7301_wait_while_busy(struct rtc7301_priv *priv)
+{
+ int retries = 100;
+
+ while (retries-- > 0) {
+ u8 val;
+
+ val = rtc7301_read(priv, RTC7301_CONTROL);
+ if (!(val & RTC7301_CONTROL_BUSY))
+ return 0;
+
+ udelay(300);
+ }
+
+ return -ETIMEDOUT;
+}
+
+static void rtc7301_stop(struct rtc7301_priv *priv)
+{
+ rtc7301_update_bits(priv, RTC7301_CONTROL, RTC7301_CONTROL_STOP,
+ RTC7301_CONTROL_STOP);
+}
+
+static void rtc7301_start(struct rtc7301_priv *priv)
+{
+ rtc7301_update_bits(priv, RTC7301_CONTROL, RTC7301_CONTROL_STOP, 0);
+}
+
+static void rtc7301_select_bank(struct rtc7301_priv *priv, u8 bank)
+{
+ u8 val = 0;
+
+ if (bank == priv->bank)
+ return;
+
+ if (bank & BIT(0))
+ val |= RTC7301_CONTROL_BANK_SEL_0;
+ if (bank & BIT(1))
+ val |= RTC7301_CONTROL_BANK_SEL_1;
+
+ rtc7301_update_bits(priv, RTC7301_CONTROL,
+ RTC7301_CONTROL_BANK_SEL_0 |
+ RTC7301_CONTROL_BANK_SEL_1, val);
+
+ priv->bank = bank;
+}
+
+static void rtc7301_get_time(struct rtc7301_priv *priv, struct rtc_time *tm,
+ bool alarm)
+{
+ int year;
+
+ tm->tm_sec = rtc7301_read(priv, RTC7301_1_SEC);
+ tm->tm_sec += (rtc7301_read(priv, RTC7301_10_SEC) & ~RTC7301_AE) * 10;
+ tm->tm_min = rtc7301_read(priv, RTC7301_1_MIN);
+ tm->tm_min += (rtc7301_read(priv, RTC7301_10_MIN) & ~RTC7301_AE) * 10;
+ tm->tm_hour = rtc7301_read(priv, RTC7301_1_HOUR);
+ tm->tm_hour += (rtc7301_read(priv, RTC7301_10_HOUR) & ~RTC7301_AE) * 10;
+ tm->tm_mday = rtc7301_read(priv, RTC7301_1_DAY);
+ tm->tm_mday += (rtc7301_read(priv, RTC7301_10_DAY) & ~RTC7301_AE) * 10;
+
+ if (alarm) {
+ tm->tm_wday = -1;
+ tm->tm_mon = -1;
+ tm->tm_year = -1;
+ tm->tm_yday = -1;
+ tm->tm_isdst = -1;
+ return;
+ }
+
+ tm->tm_wday = (rtc7301_read(priv, RTC7301_DAY_OF_WEEK) & ~RTC7301_AE);
+ tm->tm_mon = rtc7301_read(priv, RTC7301_10_MONTH) * 10 +
+ rtc7301_read(priv, RTC7301_1_MONTH) - 1;
+ year = rtc7301_read(priv, RTC7301_1000_YEAR) * 1000 +
+ rtc7301_read(priv, RTC7301_100_YEAR) * 100 +
+ rtc7301_read(priv, RTC7301_10_YEAR) * 10 +
+ rtc7301_read(priv, RTC7301_1_YEAR);
+
+ tm->tm_year = year - 1900;
+}
+
+static void rtc7301_write_time(struct rtc7301_priv *priv, struct rtc_time *tm,
+ bool alarm)
+{
+ int year;
+
+ rtc7301_write(priv, tm->tm_sec % 10, RTC7301_1_SEC);
+ rtc7301_write(priv, tm->tm_sec / 10, RTC7301_10_SEC);
+
+ rtc7301_write(priv, tm->tm_min % 10, RTC7301_1_MIN);
+ rtc7301_write(priv, tm->tm_min / 10, RTC7301_10_MIN);
+
+ rtc7301_write(priv, tm->tm_hour % 10, RTC7301_1_HOUR);
+ rtc7301_write(priv, tm->tm_hour / 10, RTC7301_10_HOUR);
+
+ rtc7301_write(priv, tm->tm_mday % 10, RTC7301_1_DAY);
+ rtc7301_write(priv, tm->tm_mday / 10, RTC7301_10_DAY);
+
+ /* Don't care for alarm register */
+ rtc7301_write(priv, alarm ? RTC7301_AE : tm->tm_wday,
+ RTC7301_DAY_OF_WEEK);
+
+ if (alarm)
+ return;
+
+ rtc7301_write(priv, (tm->tm_mon + 1) % 10, RTC7301_1_MONTH);
+ rtc7301_write(priv, (tm->tm_mon + 1) / 10, RTC7301_10_MONTH);
+
+ year = tm->tm_year + 1900;
+
+ rtc7301_write(priv, year % 10, RTC7301_1_YEAR);
+ rtc7301_write(priv, (year / 10) % 10, RTC7301_10_YEAR);
+ rtc7301_write(priv, (year / 100) % 10, RTC7301_100_YEAR);
+ rtc7301_write(priv, year / 1000, RTC7301_1000_YEAR);
+}
+
+static void rtc7301_alarm_irq(struct rtc7301_priv *priv, unsigned int enabled)
+{
+ rtc7301_update_bits(priv, RTC7301_ALARM_CONTROL,
+ RTC7301_ALARM_CONTROL_AF |
+ RTC7301_ALARM_CONTROL_AIE,
+ enabled ? RTC7301_ALARM_CONTROL_AIE : 0);
+}
+
+static int rtc7301_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rtc7301_priv *priv = dev_get_drvdata(dev);
+ unsigned long flags;
+ int err;
+
+ spin_lock_irqsave(&priv->lock, flags);
+
+ rtc7301_select_bank(priv, 0);
+
+ err = rtc7301_wait_while_busy(priv);
+ if (!err)
+ rtc7301_get_time(priv, tm, false);
+
+ spin_unlock_irqrestore(&priv->lock, flags);
+
+ return err;
+}
+
+static int rtc7301_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rtc7301_priv *priv = dev_get_drvdata(dev);
+ unsigned long flags;
+
+ spin_lock_irqsave(&priv->lock, flags);
+
+ rtc7301_stop(priv);
+ udelay(300);
+ rtc7301_select_bank(priv, 0);
+ rtc7301_write_time(priv, tm, false);
+ rtc7301_start(priv);
+
+ spin_unlock_irqrestore(&priv->lock, flags);
+
+ return 0;
+}
+
+static int rtc7301_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct rtc7301_priv *priv = dev_get_drvdata(dev);
+ unsigned long flags;
+ u8 alrm_ctrl;
+
+ if (priv->irq <= 0)
+ return -EINVAL;
+
+ spin_lock_irqsave(&priv->lock, flags);
+
+ rtc7301_select_bank(priv, 1);
+ rtc7301_get_time(priv, &alarm->time, true);
+
+ alrm_ctrl = rtc7301_read(priv, RTC7301_ALARM_CONTROL);
+
+ alarm->enabled = !!(alrm_ctrl & RTC7301_ALARM_CONTROL_AIE);
+ alarm->pending = !!(alrm_ctrl & RTC7301_ALARM_CONTROL_AF);
+
+ spin_unlock_irqrestore(&priv->lock, flags);
+
+ return 0;
+}
+
+static int rtc7301_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct rtc7301_priv *priv = dev_get_drvdata(dev);
+ unsigned long flags;
+
+ if (priv->irq <= 0)
+ return -EINVAL;
+
+ spin_lock_irqsave(&priv->lock, flags);
+
+ rtc7301_select_bank(priv, 1);
+ rtc7301_write_time(priv, &alarm->time, true);
+ rtc7301_alarm_irq(priv, alarm->enabled);
+
+ spin_unlock_irqrestore(&priv->lock, flags);
+
+ return 0;
+}
+
+static int rtc7301_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct rtc7301_priv *priv = dev_get_drvdata(dev);
+ unsigned long flags;
+
+ if (priv->irq <= 0)
+ return -EINVAL;
+
+ spin_lock_irqsave(&priv->lock, flags);
+
+ rtc7301_select_bank(priv, 1);
+ rtc7301_alarm_irq(priv, enabled);
+
+ spin_unlock_irqrestore(&priv->lock, flags);
+
+ return 0;
+}
+
+static const struct rtc_class_ops rtc7301_rtc_ops = {
+ .read_time = rtc7301_read_time,
+ .set_time = rtc7301_set_time,
+ .read_alarm = rtc7301_read_alarm,
+ .set_alarm = rtc7301_set_alarm,
+ .alarm_irq_enable = rtc7301_alarm_irq_enable,
+};
+
+static irqreturn_t rtc7301_irq_handler(int irq, void *dev_id)
+{
+ struct rtc_device *rtc = dev_id;
+ struct rtc7301_priv *priv = dev_get_drvdata(rtc->dev.parent);
+ unsigned long flags;
+ irqreturn_t ret = IRQ_NONE;
+ u8 alrm_ctrl;
+
+ spin_lock_irqsave(&priv->lock, flags);
+
+ rtc7301_select_bank(priv, 1);
+
+ alrm_ctrl = rtc7301_read(priv, RTC7301_ALARM_CONTROL);
+ if (alrm_ctrl & RTC7301_ALARM_CONTROL_AF) {
+ ret = IRQ_HANDLED;
+ rtc7301_alarm_irq(priv, false);
+ rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
+ }
+
+ spin_unlock_irqrestore(&priv->lock, flags);
+
+ return ret;
+}
+
+static void rtc7301_init(struct rtc7301_priv *priv)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&priv->lock, flags);
+
+ rtc7301_select_bank(priv, 2);
+ rtc7301_write(priv, 0, RTC7301_TIMER_CONTROL);
+
+ spin_unlock_irqrestore(&priv->lock, flags);
+}
+
+static int __init rtc7301_rtc_probe(struct platform_device *dev)
+{
+ void __iomem *regs;
+ struct rtc7301_priv *priv;
+ struct rtc_device *rtc;
+ int ret;
+
+ priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ regs = devm_platform_ioremap_resource(dev, 0);
+ if (IS_ERR(regs))
+ return PTR_ERR(regs);
+
+ priv->regmap = devm_regmap_init_mmio(&dev->dev, regs,
+ &rtc7301_regmap_config);
+ if (IS_ERR(priv->regmap))
+ return PTR_ERR(priv->regmap);
+
+ priv->irq = platform_get_irq(dev, 0);
+
+ spin_lock_init(&priv->lock);
+ priv->bank = -1;
+
+ rtc7301_init(priv);
+
+ platform_set_drvdata(dev, priv);
+
+ rtc = devm_rtc_device_register(&dev->dev, DRV_NAME, &rtc7301_rtc_ops,
+ THIS_MODULE);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ if (priv->irq > 0) {
+ ret = devm_request_irq(&dev->dev, priv->irq,
+ rtc7301_irq_handler, IRQF_SHARED,
+ dev_name(&dev->dev), rtc);
+ if (ret) {
+ priv->irq = 0;
+ dev_err(&dev->dev, "unable to request IRQ\n");
+ } else {
+ device_set_wakeup_capable(&dev->dev, true);
+ }
+ }
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+
+static int rtc7301_suspend(struct device *dev)
+{
+ struct rtc7301_priv *priv = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ enable_irq_wake(priv->irq);
+
+ return 0;
+}
+
+static int rtc7301_resume(struct device *dev)
+{
+ struct rtc7301_priv *priv = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ disable_irq_wake(priv->irq);
+
+ return 0;
+}
+
+#endif
+
+static SIMPLE_DEV_PM_OPS(rtc7301_pm_ops, rtc7301_suspend, rtc7301_resume);
+
+static const struct of_device_id rtc7301_dt_match[] = {
+ { .compatible = "epson,rtc7301sf" },
+ { .compatible = "epson,rtc7301dg" },
+ {}
+};
+MODULE_DEVICE_TABLE(of, rtc7301_dt_match);
+
+static struct platform_driver rtc7301_rtc_driver = {
+ .driver = {
+ .name = DRV_NAME,
+ .of_match_table = rtc7301_dt_match,
+ .pm = &rtc7301_pm_ops,
+ },
+};
+
+module_platform_driver_probe(rtc7301_rtc_driver, rtc7301_rtc_probe);
+
+MODULE_AUTHOR("Akinobu Mita <akinobu.mita@gmail.com>");
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("EPSON TOYOCOM RTC-7301SF/DG Driver");
+MODULE_ALIAS("platform:rtc-r7301");
diff --git a/drivers/rtc/rtc-r9701.c b/drivers/rtc/rtc-r9701.c
new file mode 100644
index 000000000..7ceb968f0
--- /dev/null
+++ b/drivers/rtc/rtc-r9701.c
@@ -0,0 +1,145 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Driver for Epson RTC-9701JE
+ *
+ * Copyright (C) 2008 Magnus Damm
+ *
+ * Based on rtc-max6902.c
+ *
+ * Copyright (C) 2006 8D Technologies inc.
+ * Copyright (C) 2004 Compulab Ltd.
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/platform_device.h>
+#include <linux/device.h>
+#include <linux/init.h>
+#include <linux/rtc.h>
+#include <linux/spi/spi.h>
+#include <linux/bcd.h>
+#include <linux/delay.h>
+#include <linux/bitops.h>
+
+#define RSECCNT 0x00 /* Second Counter */
+#define RMINCNT 0x01 /* Minute Counter */
+#define RHRCNT 0x02 /* Hour Counter */
+#define RWKCNT 0x03 /* Week Counter */
+#define RDAYCNT 0x04 /* Day Counter */
+#define RMONCNT 0x05 /* Month Counter */
+#define RYRCNT 0x06 /* Year Counter */
+#define R100CNT 0x07 /* Y100 Counter */
+#define RMINAR 0x08 /* Minute Alarm */
+#define RHRAR 0x09 /* Hour Alarm */
+#define RWKAR 0x0a /* Week/Day Alarm */
+#define RTIMCNT 0x0c /* Interval Timer */
+#define REXT 0x0d /* Extension Register */
+#define RFLAG 0x0e /* RTC Flag Register */
+#define RCR 0x0f /* RTC Control Register */
+
+static int write_reg(struct device *dev, int address, unsigned char data)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ unsigned char buf[2];
+
+ buf[0] = address & 0x7f;
+ buf[1] = data;
+
+ return spi_write(spi, buf, ARRAY_SIZE(buf));
+}
+
+static int read_regs(struct device *dev, unsigned char *regs, int no_regs)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ u8 txbuf[1], rxbuf[1];
+ int k, ret;
+
+ ret = 0;
+
+ for (k = 0; ret == 0 && k < no_regs; k++) {
+ txbuf[0] = 0x80 | regs[k];
+ ret = spi_write_then_read(spi, txbuf, 1, rxbuf, 1);
+ regs[k] = rxbuf[0];
+ }
+
+ return ret;
+}
+
+static int r9701_get_datetime(struct device *dev, struct rtc_time *dt)
+{
+ int ret;
+ unsigned char buf[] = { RSECCNT, RMINCNT, RHRCNT,
+ RDAYCNT, RMONCNT, RYRCNT };
+
+ ret = read_regs(dev, buf, ARRAY_SIZE(buf));
+ if (ret)
+ return ret;
+
+ dt->tm_sec = bcd2bin(buf[0]); /* RSECCNT */
+ dt->tm_min = bcd2bin(buf[1]); /* RMINCNT */
+ dt->tm_hour = bcd2bin(buf[2]); /* RHRCNT */
+
+ dt->tm_mday = bcd2bin(buf[3]); /* RDAYCNT */
+ dt->tm_mon = bcd2bin(buf[4]) - 1; /* RMONCNT */
+ dt->tm_year = bcd2bin(buf[5]) + 100; /* RYRCNT */
+
+ return 0;
+}
+
+static int r9701_set_datetime(struct device *dev, struct rtc_time *dt)
+{
+ int ret;
+
+ ret = write_reg(dev, RHRCNT, bin2bcd(dt->tm_hour));
+ ret = ret ? ret : write_reg(dev, RMINCNT, bin2bcd(dt->tm_min));
+ ret = ret ? ret : write_reg(dev, RSECCNT, bin2bcd(dt->tm_sec));
+ ret = ret ? ret : write_reg(dev, RDAYCNT, bin2bcd(dt->tm_mday));
+ ret = ret ? ret : write_reg(dev, RMONCNT, bin2bcd(dt->tm_mon + 1));
+ ret = ret ? ret : write_reg(dev, RYRCNT, bin2bcd(dt->tm_year - 100));
+
+ return ret;
+}
+
+static const struct rtc_class_ops r9701_rtc_ops = {
+ .read_time = r9701_get_datetime,
+ .set_time = r9701_set_datetime,
+};
+
+static int r9701_probe(struct spi_device *spi)
+{
+ struct rtc_device *rtc;
+ unsigned char tmp;
+ int res;
+
+ tmp = R100CNT;
+ res = read_regs(&spi->dev, &tmp, 1);
+ if (res || tmp != 0x20) {
+ dev_err(&spi->dev, "cannot read RTC register\n");
+ return -ENODEV;
+ }
+
+ rtc = devm_rtc_allocate_device(&spi->dev);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ spi_set_drvdata(spi, rtc);
+ rtc->ops = &r9701_rtc_ops;
+ rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ rtc->range_max = RTC_TIMESTAMP_END_2099;
+
+ return rtc_register_device(rtc);
+}
+
+static struct spi_driver r9701_driver = {
+ .driver = {
+ .name = "rtc-r9701",
+ },
+ .probe = r9701_probe,
+};
+
+module_spi_driver(r9701_driver);
+
+MODULE_DESCRIPTION("r9701 spi RTC driver");
+MODULE_AUTHOR("Magnus Damm <damm@opensource.se>");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("spi:rtc-r9701");
diff --git a/drivers/rtc/rtc-rc5t583.c b/drivers/rtc/rtc-rc5t583.c
new file mode 100644
index 000000000..18684a702
--- /dev/null
+++ b/drivers/rtc/rtc-rc5t583.c
@@ -0,0 +1,312 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * rtc-rc5t583.c -- RICOH RC5T583 Real Time Clock
+ *
+ * Copyright (c) 2012, NVIDIA CORPORATION. All rights reserved.
+ * Author: Venu Byravarasu <vbyravarasu@nvidia.com>
+ */
+
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/rtc.h>
+#include <linux/bcd.h>
+#include <linux/platform_device.h>
+#include <linux/interrupt.h>
+#include <linux/mfd/rc5t583.h>
+
+struct rc5t583_rtc {
+ struct rtc_device *rtc;
+ /* To store the list of enabled interrupts, during system suspend */
+ u32 irqen;
+};
+
+/* Total number of RTC registers needed to set time*/
+#define NUM_TIME_REGS (RC5T583_RTC_YEAR - RC5T583_RTC_SEC + 1)
+
+/* Total number of RTC registers needed to set Y-Alarm*/
+#define NUM_YAL_REGS (RC5T583_RTC_AY_YEAR - RC5T583_RTC_AY_MIN + 1)
+
+/* Set Y-Alarm interrupt */
+#define SET_YAL BIT(5)
+
+/* Get Y-Alarm interrupt status*/
+#define GET_YAL_STATUS BIT(3)
+
+static int rc5t583_rtc_alarm_irq_enable(struct device *dev, unsigned enabled)
+{
+ struct rc5t583 *rc5t583 = dev_get_drvdata(dev->parent);
+ u8 val;
+
+ /* Set Y-Alarm, based on 'enabled' */
+ val = enabled ? SET_YAL : 0;
+
+ return regmap_update_bits(rc5t583->regmap, RC5T583_RTC_CTL1, SET_YAL,
+ val);
+}
+
+/*
+ * Gets current rc5t583 RTC time and date parameters.
+ *
+ * The RTC's time/alarm representation is not what gmtime(3) requires
+ * Linux to use:
+ *
+ * - Months are 1..12 vs Linux 0-11
+ * - Years are 0..99 vs Linux 1900..N (we assume 21st century)
+ */
+static int rc5t583_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rc5t583 *rc5t583 = dev_get_drvdata(dev->parent);
+ u8 rtc_data[NUM_TIME_REGS];
+ int ret;
+
+ ret = regmap_bulk_read(rc5t583->regmap, RC5T583_RTC_SEC, rtc_data,
+ NUM_TIME_REGS);
+ if (ret < 0) {
+ dev_err(dev, "RTC read time failed with err:%d\n", ret);
+ return ret;
+ }
+
+ tm->tm_sec = bcd2bin(rtc_data[0]);
+ tm->tm_min = bcd2bin(rtc_data[1]);
+ tm->tm_hour = bcd2bin(rtc_data[2]);
+ tm->tm_wday = bcd2bin(rtc_data[3]);
+ tm->tm_mday = bcd2bin(rtc_data[4]);
+ tm->tm_mon = bcd2bin(rtc_data[5]) - 1;
+ tm->tm_year = bcd2bin(rtc_data[6]) + 100;
+
+ return ret;
+}
+
+static int rc5t583_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rc5t583 *rc5t583 = dev_get_drvdata(dev->parent);
+ unsigned char rtc_data[NUM_TIME_REGS];
+ int ret;
+
+ rtc_data[0] = bin2bcd(tm->tm_sec);
+ rtc_data[1] = bin2bcd(tm->tm_min);
+ rtc_data[2] = bin2bcd(tm->tm_hour);
+ rtc_data[3] = bin2bcd(tm->tm_wday);
+ rtc_data[4] = bin2bcd(tm->tm_mday);
+ rtc_data[5] = bin2bcd(tm->tm_mon + 1);
+ rtc_data[6] = bin2bcd(tm->tm_year - 100);
+
+ ret = regmap_bulk_write(rc5t583->regmap, RC5T583_RTC_SEC, rtc_data,
+ NUM_TIME_REGS);
+ if (ret < 0) {
+ dev_err(dev, "RTC set time failed with error %d\n", ret);
+ return ret;
+ }
+
+ return ret;
+}
+
+static int rc5t583_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct rc5t583 *rc5t583 = dev_get_drvdata(dev->parent);
+ unsigned char alarm_data[NUM_YAL_REGS];
+ u32 interrupt_enable;
+ int ret;
+
+ ret = regmap_bulk_read(rc5t583->regmap, RC5T583_RTC_AY_MIN, alarm_data,
+ NUM_YAL_REGS);
+ if (ret < 0) {
+ dev_err(dev, "rtc_read_alarm error %d\n", ret);
+ return ret;
+ }
+
+ alm->time.tm_sec = 0;
+ alm->time.tm_min = bcd2bin(alarm_data[0]);
+ alm->time.tm_hour = bcd2bin(alarm_data[1]);
+ alm->time.tm_mday = bcd2bin(alarm_data[2]);
+ alm->time.tm_mon = bcd2bin(alarm_data[3]) - 1;
+ alm->time.tm_year = bcd2bin(alarm_data[4]) + 100;
+
+ ret = regmap_read(rc5t583->regmap, RC5T583_RTC_CTL1, &interrupt_enable);
+ if (ret < 0)
+ return ret;
+
+ /* check if YALE is set */
+ if (interrupt_enable & SET_YAL)
+ alm->enabled = 1;
+
+ return ret;
+}
+
+static int rc5t583_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct rc5t583 *rc5t583 = dev_get_drvdata(dev->parent);
+ unsigned char alarm_data[NUM_YAL_REGS];
+ int ret;
+
+ ret = rc5t583_rtc_alarm_irq_enable(dev, 0);
+ if (ret)
+ return ret;
+
+ alarm_data[0] = bin2bcd(alm->time.tm_min);
+ alarm_data[1] = bin2bcd(alm->time.tm_hour);
+ alarm_data[2] = bin2bcd(alm->time.tm_mday);
+ alarm_data[3] = bin2bcd(alm->time.tm_mon + 1);
+ alarm_data[4] = bin2bcd(alm->time.tm_year - 100);
+
+ ret = regmap_bulk_write(rc5t583->regmap, RC5T583_RTC_AY_MIN, alarm_data,
+ NUM_YAL_REGS);
+ if (ret) {
+ dev_err(dev, "rtc_set_alarm error %d\n", ret);
+ return ret;
+ }
+
+ if (alm->enabled)
+ ret = rc5t583_rtc_alarm_irq_enable(dev, 1);
+
+ return ret;
+}
+
+static irqreturn_t rc5t583_rtc_interrupt(int irq, void *rtc)
+{
+ struct device *dev = rtc;
+ struct rc5t583 *rc5t583 = dev_get_drvdata(dev->parent);
+ struct rc5t583_rtc *rc5t583_rtc = dev_get_drvdata(dev);
+ unsigned long events = 0;
+ int ret;
+ u32 rtc_reg;
+
+ ret = regmap_read(rc5t583->regmap, RC5T583_RTC_CTL2, &rtc_reg);
+ if (ret < 0)
+ return IRQ_NONE;
+
+ if (rtc_reg & GET_YAL_STATUS) {
+ events = RTC_IRQF | RTC_AF;
+ /* clear pending Y-alarm interrupt bit */
+ rtc_reg &= ~GET_YAL_STATUS;
+ }
+
+ ret = regmap_write(rc5t583->regmap, RC5T583_RTC_CTL2, rtc_reg);
+ if (ret)
+ return IRQ_NONE;
+
+ /* Notify RTC core on event */
+ rtc_update_irq(rc5t583_rtc->rtc, 1, events);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops rc5t583_rtc_ops = {
+ .read_time = rc5t583_rtc_read_time,
+ .set_time = rc5t583_rtc_set_time,
+ .read_alarm = rc5t583_rtc_read_alarm,
+ .set_alarm = rc5t583_rtc_set_alarm,
+ .alarm_irq_enable = rc5t583_rtc_alarm_irq_enable,
+};
+
+static int rc5t583_rtc_probe(struct platform_device *pdev)
+{
+ struct rc5t583 *rc5t583 = dev_get_drvdata(pdev->dev.parent);
+ struct rc5t583_rtc *ricoh_rtc;
+ struct rc5t583_platform_data *pmic_plat_data;
+ int ret;
+ int irq;
+
+ ricoh_rtc = devm_kzalloc(&pdev->dev, sizeof(struct rc5t583_rtc),
+ GFP_KERNEL);
+ if (!ricoh_rtc)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, ricoh_rtc);
+
+ /* Clear pending interrupts */
+ ret = regmap_write(rc5t583->regmap, RC5T583_RTC_CTL2, 0);
+ if (ret < 0)
+ return ret;
+
+ /* clear RTC Adjust register */
+ ret = regmap_write(rc5t583->regmap, RC5T583_RTC_ADJ, 0);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "unable to program rtc_adjust reg\n");
+ return -EBUSY;
+ }
+
+ pmic_plat_data = dev_get_platdata(rc5t583->dev);
+ irq = pmic_plat_data->irq_base;
+ if (irq <= 0) {
+ dev_warn(&pdev->dev, "Wake up is not possible as irq = %d\n",
+ irq);
+ return ret;
+ }
+
+ irq += RC5T583_IRQ_YALE;
+ ret = devm_request_threaded_irq(&pdev->dev, irq, NULL,
+ rc5t583_rtc_interrupt, IRQF_TRIGGER_LOW,
+ "rtc-rc5t583", &pdev->dev);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "IRQ is not free.\n");
+ return ret;
+ }
+ device_init_wakeup(&pdev->dev, 1);
+
+ ricoh_rtc->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
+ &rc5t583_rtc_ops, THIS_MODULE);
+ if (IS_ERR(ricoh_rtc->rtc)) {
+ ret = PTR_ERR(ricoh_rtc->rtc);
+ dev_err(&pdev->dev, "RTC device register: err %d\n", ret);
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * Disable rc5t583 RTC interrupts.
+ * Sets status flag to free.
+ */
+static int rc5t583_rtc_remove(struct platform_device *pdev)
+{
+ struct rc5t583_rtc *rc5t583_rtc = platform_get_drvdata(pdev);
+
+ rc5t583_rtc_alarm_irq_enable(&rc5t583_rtc->rtc->dev, 0);
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int rc5t583_rtc_suspend(struct device *dev)
+{
+ struct rc5t583 *rc5t583 = dev_get_drvdata(dev->parent);
+ struct rc5t583_rtc *rc5t583_rtc = dev_get_drvdata(dev);
+ int ret;
+
+ /* Store current list of enabled interrupts*/
+ ret = regmap_read(rc5t583->regmap, RC5T583_RTC_CTL1,
+ &rc5t583_rtc->irqen);
+ return ret;
+}
+
+static int rc5t583_rtc_resume(struct device *dev)
+{
+ struct rc5t583 *rc5t583 = dev_get_drvdata(dev->parent);
+ struct rc5t583_rtc *rc5t583_rtc = dev_get_drvdata(dev);
+
+ /* Restore list of enabled interrupts before suspend */
+ return regmap_write(rc5t583->regmap, RC5T583_RTC_CTL1,
+ rc5t583_rtc->irqen);
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(rc5t583_rtc_pm_ops, rc5t583_rtc_suspend,
+ rc5t583_rtc_resume);
+
+static struct platform_driver rc5t583_rtc_driver = {
+ .probe = rc5t583_rtc_probe,
+ .remove = rc5t583_rtc_remove,
+ .driver = {
+ .name = "rtc-rc5t583",
+ .pm = &rc5t583_rtc_pm_ops,
+ },
+};
+
+module_platform_driver(rc5t583_rtc_driver);
+MODULE_ALIAS("platform:rtc-rc5t583");
+MODULE_AUTHOR("Venu Byravarasu <vbyravarasu@nvidia.com>");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-rc5t619.c b/drivers/rtc/rtc-rc5t619.c
new file mode 100644
index 000000000..dd1a20977
--- /dev/null
+++ b/drivers/rtc/rtc-rc5t619.c
@@ -0,0 +1,442 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * drivers/rtc/rtc-rc5t619.c
+ *
+ * Real time clock driver for RICOH RC5T619 power management chip.
+ *
+ * Copyright (C) 2019 Andreas Kemnade
+ */
+
+#include <linux/kernel.h>
+#include <linux/device.h>
+#include <linux/errno.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/mfd/rn5t618.h>
+#include <linux/platform_device.h>
+#include <linux/regmap.h>
+#include <linux/bcd.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+#include <linux/irqdomain.h>
+
+struct rc5t619_rtc {
+ int irq;
+ struct rtc_device *rtc;
+ struct rn5t618 *rn5t618;
+};
+
+#define CTRL1_ALARM_ENABLED 0x40
+#define CTRL1_24HR 0x20
+#define CTRL1_PERIODIC_MASK 0xf
+
+#define CTRL2_PON 0x10
+#define CTRL2_ALARM_STATUS 0x80
+#define CTRL2_CTFG 0x4
+#define CTRL2_CTC 0x1
+
+#define MONTH_CENTFLAG 0x80
+#define HOUR_PMFLAG 0x20
+#define MDAY_DAL_EXT 0x80
+
+static uint8_t rtc5t619_12hour_bcd2bin(uint8_t hour)
+{
+ if (hour & HOUR_PMFLAG) {
+ hour = bcd2bin(hour & ~HOUR_PMFLAG);
+ return hour == 12 ? 12 : 12 + hour;
+ }
+
+ hour = bcd2bin(hour);
+ return hour == 12 ? 0 : hour;
+}
+
+static uint8_t rtc5t619_12hour_bin2bcd(uint8_t hour)
+{
+ if (!hour)
+ return 0x12;
+
+ if (hour < 12)
+ return bin2bcd(hour);
+
+ if (hour == 12)
+ return 0x12 | HOUR_PMFLAG;
+
+ return bin2bcd(hour - 12) | HOUR_PMFLAG;
+}
+
+static int rc5t619_rtc_periodic_disable(struct device *dev)
+{
+ struct rc5t619_rtc *rtc = dev_get_drvdata(dev);
+ int err;
+
+ /* disable function */
+ err = regmap_update_bits(rtc->rn5t618->regmap,
+ RN5T618_RTC_CTRL1, CTRL1_PERIODIC_MASK, 0);
+ if (err < 0)
+ return err;
+
+ /* clear alarm flag and CTFG */
+ err = regmap_update_bits(rtc->rn5t618->regmap, RN5T618_RTC_CTRL2,
+ CTRL2_ALARM_STATUS | CTRL2_CTFG | CTRL2_CTC,
+ 0);
+ if (err < 0)
+ return err;
+
+ return 0;
+}
+
+/* things to be done once after power on */
+static int rc5t619_rtc_pon_setup(struct device *dev)
+{
+ struct rc5t619_rtc *rtc = dev_get_drvdata(dev);
+ int err;
+ unsigned int reg_data;
+
+ err = regmap_read(rtc->rn5t618->regmap, RN5T618_RTC_CTRL2, &reg_data);
+ if (err < 0)
+ return err;
+
+ /* clear VDET PON */
+ reg_data &= ~(CTRL2_PON | CTRL2_CTC | 0x4a); /* 0101-1011 */
+ reg_data |= 0x20; /* 0010-0000 */
+ err = regmap_write(rtc->rn5t618->regmap, RN5T618_RTC_CTRL2, reg_data);
+ if (err < 0)
+ return err;
+
+ /* clearing RTC Adjust register */
+ err = regmap_write(rtc->rn5t618->regmap, RN5T618_RTC_ADJUST, 0);
+ if (err)
+ return err;
+
+ return regmap_update_bits(rtc->rn5t618->regmap,
+ RN5T618_RTC_CTRL1,
+ CTRL1_24HR, CTRL1_24HR);
+}
+
+static int rc5t619_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rc5t619_rtc *rtc = dev_get_drvdata(dev);
+ u8 buff[7];
+ int err;
+ int cent_flag;
+ unsigned int ctrl1;
+ unsigned int ctrl2;
+
+ err = regmap_read(rtc->rn5t618->regmap, RN5T618_RTC_CTRL2, &ctrl2);
+ if (err < 0)
+ return err;
+
+ if (ctrl2 & CTRL2_PON)
+ return -EINVAL;
+
+ err = regmap_read(rtc->rn5t618->regmap, RN5T618_RTC_CTRL1, &ctrl1);
+ if (err < 0)
+ return err;
+
+ err = regmap_bulk_read(rtc->rn5t618->regmap, RN5T618_RTC_SECONDS,
+ buff, sizeof(buff));
+ if (err < 0)
+ return err;
+
+ if (buff[5] & MONTH_CENTFLAG)
+ cent_flag = 1;
+ else
+ cent_flag = 0;
+
+ tm->tm_sec = bcd2bin(buff[0]);
+ tm->tm_min = bcd2bin(buff[1]);
+
+ if (ctrl1 & CTRL1_24HR)
+ tm->tm_hour = bcd2bin(buff[2]);
+ else
+ tm->tm_hour = rtc5t619_12hour_bcd2bin(buff[2]);
+
+ tm->tm_wday = bcd2bin(buff[3]);
+ tm->tm_mday = bcd2bin(buff[4]);
+ tm->tm_mon = bcd2bin(buff[5] & 0x1f) - 1; /* back to system 0-11 */
+ tm->tm_year = bcd2bin(buff[6]) + 100 * cent_flag;
+
+ return 0;
+}
+
+static int rc5t619_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rc5t619_rtc *rtc = dev_get_drvdata(dev);
+ u8 buff[7];
+ int err;
+ int cent_flag;
+ unsigned int ctrl1;
+ unsigned int ctrl2;
+
+ err = regmap_read(rtc->rn5t618->regmap, RN5T618_RTC_CTRL2, &ctrl2);
+ if (err < 0)
+ return err;
+
+ if (ctrl2 & CTRL2_PON)
+ rc5t619_rtc_pon_setup(dev);
+
+ err = regmap_read(rtc->rn5t618->regmap, RN5T618_RTC_CTRL1, &ctrl1);
+ if (err < 0)
+ return err;
+
+ if (tm->tm_year >= 100)
+ cent_flag = 1;
+ else
+ cent_flag = 0;
+
+ buff[0] = bin2bcd(tm->tm_sec);
+ buff[1] = bin2bcd(tm->tm_min);
+
+ if (ctrl1 & CTRL1_24HR)
+ buff[2] = bin2bcd(tm->tm_hour);
+ else
+ buff[2] = rtc5t619_12hour_bin2bcd(tm->tm_hour);
+
+ buff[3] = bin2bcd(tm->tm_wday);
+ buff[4] = bin2bcd(tm->tm_mday);
+ buff[5] = bin2bcd(tm->tm_mon + 1); /* system set 0-11 */
+ buff[6] = bin2bcd(tm->tm_year - cent_flag * 100);
+
+ if (cent_flag)
+ buff[5] |= MONTH_CENTFLAG;
+
+ err = regmap_bulk_write(rtc->rn5t618->regmap, RN5T618_RTC_SECONDS,
+ buff, sizeof(buff));
+ if (err < 0) {
+ dev_err(dev, "failed to program new time: %d\n", err);
+ return err;
+ }
+
+ return 0;
+}
+
+/* 0-disable, 1-enable */
+static int rc5t619_rtc_alarm_enable(struct device *dev, unsigned int enabled)
+{
+ struct rc5t619_rtc *rtc = dev_get_drvdata(dev);
+
+ return regmap_update_bits(rtc->rn5t618->regmap,
+ RN5T618_RTC_CTRL1,
+ CTRL1_ALARM_ENABLED,
+ enabled ? CTRL1_ALARM_ENABLED : 0);
+}
+
+static int rc5t619_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rc5t619_rtc *rtc = dev_get_drvdata(dev);
+ u8 buff[6];
+ unsigned int buff_cent;
+ int err;
+ int cent_flag;
+ unsigned int ctrl1;
+
+ err = regmap_read(rtc->rn5t618->regmap, RN5T618_RTC_CTRL1, &ctrl1);
+ if (err)
+ return err;
+
+ err = regmap_read(rtc->rn5t618->regmap, RN5T618_RTC_MONTH, &buff_cent);
+ if (err < 0) {
+ dev_err(dev, "failed to read time: %d\n", err);
+ return err;
+ }
+
+ if (buff_cent & MONTH_CENTFLAG)
+ cent_flag = 1;
+ else
+ cent_flag = 0;
+
+ err = regmap_bulk_read(rtc->rn5t618->regmap, RN5T618_RTC_ALARM_Y_SEC,
+ buff, sizeof(buff));
+ if (err)
+ return err;
+
+ buff[3] = buff[3] & 0x3f;
+
+ alrm->time.tm_sec = bcd2bin(buff[0]);
+ alrm->time.tm_min = bcd2bin(buff[1]);
+
+ if (ctrl1 & CTRL1_24HR)
+ alrm->time.tm_hour = bcd2bin(buff[2]);
+ else
+ alrm->time.tm_hour = rtc5t619_12hour_bcd2bin(buff[2]);
+
+ alrm->time.tm_mday = bcd2bin(buff[3]);
+ alrm->time.tm_mon = bcd2bin(buff[4]) - 1;
+ alrm->time.tm_year = bcd2bin(buff[5]) + 100 * cent_flag;
+ alrm->enabled = !!(ctrl1 & CTRL1_ALARM_ENABLED);
+ dev_dbg(dev, "read alarm: %ptR\n", &alrm->time);
+
+ return 0;
+}
+
+static int rc5t619_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rc5t619_rtc *rtc = dev_get_drvdata(dev);
+ u8 buff[6];
+ int err;
+ int cent_flag;
+ unsigned int ctrl1;
+
+ err = regmap_read(rtc->rn5t618->regmap, RN5T618_RTC_CTRL1, &ctrl1);
+ if (err)
+ return err;
+
+ err = rc5t619_rtc_alarm_enable(dev, 0);
+ if (err < 0)
+ return err;
+
+ if (rtc->irq == -1)
+ return -EINVAL;
+
+ if (alrm->enabled == 0)
+ return 0;
+
+ if (alrm->time.tm_year >= 100)
+ cent_flag = 1;
+ else
+ cent_flag = 0;
+
+ alrm->time.tm_mon += 1;
+ buff[0] = bin2bcd(alrm->time.tm_sec);
+ buff[1] = bin2bcd(alrm->time.tm_min);
+
+ if (ctrl1 & CTRL1_24HR)
+ buff[2] = bin2bcd(alrm->time.tm_hour);
+ else
+ buff[2] = rtc5t619_12hour_bin2bcd(alrm->time.tm_hour);
+
+ buff[3] = bin2bcd(alrm->time.tm_mday);
+ buff[4] = bin2bcd(alrm->time.tm_mon);
+ buff[5] = bin2bcd(alrm->time.tm_year - 100 * cent_flag);
+ buff[3] |= MDAY_DAL_EXT;
+
+ err = regmap_bulk_write(rtc->rn5t618->regmap, RN5T618_RTC_ALARM_Y_SEC,
+ buff, sizeof(buff));
+ if (err < 0)
+ return err;
+
+ return rc5t619_rtc_alarm_enable(dev, alrm->enabled);
+}
+
+static const struct rtc_class_ops rc5t619_rtc_ops = {
+ .read_time = rc5t619_rtc_read_time,
+ .set_time = rc5t619_rtc_set_time,
+ .set_alarm = rc5t619_rtc_set_alarm,
+ .read_alarm = rc5t619_rtc_read_alarm,
+ .alarm_irq_enable = rc5t619_rtc_alarm_enable,
+};
+
+static int rc5t619_rtc_alarm_flag_clr(struct device *dev)
+{
+ struct rc5t619_rtc *rtc = dev_get_drvdata(dev);
+
+ /* clear alarm-D status bits.*/
+ return regmap_update_bits(rtc->rn5t618->regmap,
+ RN5T618_RTC_CTRL2,
+ CTRL2_ALARM_STATUS | CTRL2_CTC, 0);
+}
+
+static irqreturn_t rc5t619_rtc_irq(int irq, void *data)
+{
+ struct device *dev = data;
+ struct rc5t619_rtc *rtc = dev_get_drvdata(dev);
+
+ rc5t619_rtc_alarm_flag_clr(dev);
+
+ rtc_update_irq(rtc->rtc, 1, RTC_IRQF | RTC_AF);
+ return IRQ_HANDLED;
+}
+
+static int rc5t619_rtc_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct rn5t618 *rn5t618 = dev_get_drvdata(pdev->dev.parent);
+ struct rc5t619_rtc *rtc;
+ unsigned int ctrl2;
+ int err;
+
+ rtc = devm_kzalloc(dev, sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->rn5t618 = rn5t618;
+
+ dev_set_drvdata(dev, rtc);
+ rtc->irq = -1;
+
+ if (rn5t618->irq_data)
+ rtc->irq = regmap_irq_get_virq(rn5t618->irq_data,
+ RN5T618_IRQ_RTC);
+
+ if (rtc->irq < 0)
+ rtc->irq = -1;
+
+ err = regmap_read(rtc->rn5t618->regmap, RN5T618_RTC_CTRL2, &ctrl2);
+ if (err < 0)
+ return err;
+
+ /* disable rtc periodic function */
+ err = rc5t619_rtc_periodic_disable(&pdev->dev);
+ if (err)
+ return err;
+
+ if (ctrl2 & CTRL2_PON) {
+ err = rc5t619_rtc_alarm_flag_clr(&pdev->dev);
+ if (err)
+ return err;
+ }
+
+ rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc->rtc)) {
+ err = PTR_ERR(rtc->rtc);
+ dev_err(dev, "RTC device register: err %d\n", err);
+ return err;
+ }
+
+ rtc->rtc->ops = &rc5t619_rtc_ops;
+ rtc->rtc->range_min = RTC_TIMESTAMP_BEGIN_1900;
+ rtc->rtc->range_max = RTC_TIMESTAMP_END_2099;
+
+ /* set interrupt and enable it */
+ if (rtc->irq != -1) {
+ err = devm_request_threaded_irq(&pdev->dev, rtc->irq, NULL,
+ rc5t619_rtc_irq,
+ IRQF_ONESHOT,
+ "rtc-rc5t619",
+ &pdev->dev);
+ if (err < 0) {
+ dev_err(&pdev->dev, "request IRQ:%d fail\n", rtc->irq);
+ rtc->irq = -1;
+
+ err = rc5t619_rtc_alarm_enable(&pdev->dev, 0);
+ if (err)
+ return err;
+
+ } else {
+ /* enable wake */
+ device_init_wakeup(&pdev->dev, 1);
+ enable_irq_wake(rtc->irq);
+ }
+ } else {
+ /* system don't want to using alarm interrupt, so close it */
+ err = rc5t619_rtc_alarm_enable(&pdev->dev, 0);
+ if (err)
+ return err;
+
+ dev_warn(&pdev->dev, "rc5t619 interrupt is disabled\n");
+ }
+
+ return rtc_register_device(rtc->rtc);
+}
+
+static struct platform_driver rc5t619_rtc_driver = {
+ .driver = {
+ .name = "rc5t619-rtc",
+ },
+ .probe = rc5t619_rtc_probe,
+};
+
+module_platform_driver(rc5t619_rtc_driver);
+MODULE_ALIAS("platform:rc5t619-rtc");
+MODULE_DESCRIPTION("RICOH RC5T619 RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-rk808.c b/drivers/rtc/rtc-rk808.c
new file mode 100644
index 000000000..c0334c602
--- /dev/null
+++ b/drivers/rtc/rtc-rk808.c
@@ -0,0 +1,467 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * RTC driver for Rockchip RK808
+ *
+ * Copyright (c) 2014, Fuzhou Rockchip Electronics Co., Ltd
+ *
+ * Author: Chris Zhong <zyw@rock-chips.com>
+ * Author: Zhang Qing <zhangqing@rock-chips.com>
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/rtc.h>
+#include <linux/bcd.h>
+#include <linux/mfd/rk808.h>
+#include <linux/platform_device.h>
+#include <linux/i2c.h>
+
+/* RTC_CTRL_REG bitfields */
+#define BIT_RTC_CTRL_REG_STOP_RTC_M BIT(0)
+
+/* RK808 has a shadowed register for saving a "frozen" RTC time.
+ * When user setting "GET_TIME" to 1, the time will save in this shadowed
+ * register. If set "READSEL" to 1, user read rtc time register, actually
+ * get the time of that moment. If we need the real time, clr this bit.
+ */
+#define BIT_RTC_CTRL_REG_RTC_GET_TIME BIT(6)
+#define BIT_RTC_CTRL_REG_RTC_READSEL_M BIT(7)
+#define BIT_RTC_INTERRUPTS_REG_IT_ALARM_M BIT(3)
+#define RTC_STATUS_MASK 0xFE
+
+#define SECONDS_REG_MSK 0x7F
+#define MINUTES_REG_MAK 0x7F
+#define HOURS_REG_MSK 0x3F
+#define DAYS_REG_MSK 0x3F
+#define MONTHS_REG_MSK 0x1F
+#define YEARS_REG_MSK 0xFF
+#define WEEKS_REG_MSK 0x7
+
+/* REG_SECONDS_REG through REG_YEARS_REG is how many registers? */
+
+#define NUM_TIME_REGS (RK808_WEEKS_REG - RK808_SECONDS_REG + 1)
+#define NUM_ALARM_REGS (RK808_ALARM_YEARS_REG - RK808_ALARM_SECONDS_REG + 1)
+
+struct rk_rtc_compat_reg {
+ unsigned int ctrl_reg;
+ unsigned int status_reg;
+ unsigned int alarm_seconds_reg;
+ unsigned int int_reg;
+ unsigned int seconds_reg;
+};
+
+struct rk808_rtc {
+ struct rk808 *rk808;
+ struct rtc_device *rtc;
+ struct rk_rtc_compat_reg *creg;
+ int irq;
+};
+
+/*
+ * The Rockchip calendar used by the RK808 counts November with 31 days. We use
+ * these translation functions to convert its dates to/from the Gregorian
+ * calendar used by the rest of the world. We arbitrarily define Jan 1st, 2016
+ * as the day when both calendars were in sync, and treat all other dates
+ * relative to that.
+ * NOTE: Other system software (e.g. firmware) that reads the same hardware must
+ * implement this exact same conversion algorithm, with the same anchor date.
+ */
+static time64_t nov2dec_transitions(struct rtc_time *tm)
+{
+ return (tm->tm_year + 1900) - 2016 + (tm->tm_mon + 1 > 11 ? 1 : 0);
+}
+
+static void rockchip_to_gregorian(struct rtc_time *tm)
+{
+ /* If it's Nov 31st, rtc_tm_to_time64() will count that like Dec 1st */
+ time64_t time = rtc_tm_to_time64(tm);
+ rtc_time64_to_tm(time + nov2dec_transitions(tm) * 86400, tm);
+}
+
+static void gregorian_to_rockchip(struct rtc_time *tm)
+{
+ time64_t extra_days = nov2dec_transitions(tm);
+ time64_t time = rtc_tm_to_time64(tm);
+ rtc_time64_to_tm(time - extra_days * 86400, tm);
+
+ /* Compensate if we went back over Nov 31st (will work up to 2381) */
+ if (nov2dec_transitions(tm) < extra_days) {
+ if (tm->tm_mon + 1 == 11)
+ tm->tm_mday++; /* This may result in 31! */
+ else
+ rtc_time64_to_tm(time - (extra_days - 1) * 86400, tm);
+ }
+}
+
+/* Read current time and date in RTC */
+static int rk808_rtc_readtime(struct device *dev, struct rtc_time *tm)
+{
+ struct rk808_rtc *rk808_rtc = dev_get_drvdata(dev);
+ struct rk808 *rk808 = rk808_rtc->rk808;
+ u8 rtc_data[NUM_TIME_REGS];
+ int ret;
+
+ /* Force an update of the shadowed registers right now */
+ ret = regmap_update_bits(rk808->regmap, rk808_rtc->creg->ctrl_reg,
+ BIT_RTC_CTRL_REG_RTC_GET_TIME,
+ BIT_RTC_CTRL_REG_RTC_GET_TIME);
+ if (ret) {
+ dev_err(dev, "Failed to update bits rtc_ctrl: %d\n", ret);
+ return ret;
+ }
+
+ /*
+ * After we set the GET_TIME bit, the rtc time can't be read
+ * immediately. So we should wait up to 31.25 us, about one cycle of
+ * 32khz. If we clear the GET_TIME bit here, the time of i2c transfer
+ * certainly more than 31.25us: 16 * 2.5us at 400kHz bus frequency.
+ */
+ ret = regmap_update_bits(rk808->regmap, rk808_rtc->creg->ctrl_reg,
+ BIT_RTC_CTRL_REG_RTC_GET_TIME,
+ 0);
+ if (ret) {
+ dev_err(dev, "Failed to update bits rtc_ctrl: %d\n", ret);
+ return ret;
+ }
+
+ ret = regmap_bulk_read(rk808->regmap, rk808_rtc->creg->seconds_reg,
+ rtc_data, NUM_TIME_REGS);
+ if (ret) {
+ dev_err(dev, "Failed to bulk read rtc_data: %d\n", ret);
+ return ret;
+ }
+
+ tm->tm_sec = bcd2bin(rtc_data[0] & SECONDS_REG_MSK);
+ tm->tm_min = bcd2bin(rtc_data[1] & MINUTES_REG_MAK);
+ tm->tm_hour = bcd2bin(rtc_data[2] & HOURS_REG_MSK);
+ tm->tm_mday = bcd2bin(rtc_data[3] & DAYS_REG_MSK);
+ tm->tm_mon = (bcd2bin(rtc_data[4] & MONTHS_REG_MSK)) - 1;
+ tm->tm_year = (bcd2bin(rtc_data[5] & YEARS_REG_MSK)) + 100;
+ tm->tm_wday = bcd2bin(rtc_data[6] & WEEKS_REG_MSK);
+ rockchip_to_gregorian(tm);
+ dev_dbg(dev, "RTC date/time %ptRd(%d) %ptRt\n", tm, tm->tm_wday, tm);
+
+ return ret;
+}
+
+/* Set current time and date in RTC */
+static int rk808_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rk808_rtc *rk808_rtc = dev_get_drvdata(dev);
+ struct rk808 *rk808 = rk808_rtc->rk808;
+ u8 rtc_data[NUM_TIME_REGS];
+ int ret;
+
+ dev_dbg(dev, "set RTC date/time %ptRd(%d) %ptRt\n", tm, tm->tm_wday, tm);
+ gregorian_to_rockchip(tm);
+ rtc_data[0] = bin2bcd(tm->tm_sec);
+ rtc_data[1] = bin2bcd(tm->tm_min);
+ rtc_data[2] = bin2bcd(tm->tm_hour);
+ rtc_data[3] = bin2bcd(tm->tm_mday);
+ rtc_data[4] = bin2bcd(tm->tm_mon + 1);
+ rtc_data[5] = bin2bcd(tm->tm_year - 100);
+ rtc_data[6] = bin2bcd(tm->tm_wday);
+
+ /* Stop RTC while updating the RTC registers */
+ ret = regmap_update_bits(rk808->regmap, rk808_rtc->creg->ctrl_reg,
+ BIT_RTC_CTRL_REG_STOP_RTC_M,
+ BIT_RTC_CTRL_REG_STOP_RTC_M);
+ if (ret) {
+ dev_err(dev, "Failed to update RTC control: %d\n", ret);
+ return ret;
+ }
+
+ ret = regmap_bulk_write(rk808->regmap, rk808_rtc->creg->seconds_reg,
+ rtc_data, NUM_TIME_REGS);
+ if (ret) {
+ dev_err(dev, "Failed to bull write rtc_data: %d\n", ret);
+ return ret;
+ }
+ /* Start RTC again */
+ ret = regmap_update_bits(rk808->regmap, rk808_rtc->creg->ctrl_reg,
+ BIT_RTC_CTRL_REG_STOP_RTC_M, 0);
+ if (ret) {
+ dev_err(dev, "Failed to update RTC control: %d\n", ret);
+ return ret;
+ }
+ return 0;
+}
+
+/* Read alarm time and date in RTC */
+static int rk808_rtc_readalarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rk808_rtc *rk808_rtc = dev_get_drvdata(dev);
+ struct rk808 *rk808 = rk808_rtc->rk808;
+ u8 alrm_data[NUM_ALARM_REGS];
+ uint32_t int_reg;
+ int ret;
+
+ ret = regmap_bulk_read(rk808->regmap,
+ rk808_rtc->creg->alarm_seconds_reg,
+ alrm_data, NUM_ALARM_REGS);
+ if (ret) {
+ dev_err(dev, "Failed to read RTC alarm date REG: %d\n", ret);
+ return ret;
+ }
+
+ alrm->time.tm_sec = bcd2bin(alrm_data[0] & SECONDS_REG_MSK);
+ alrm->time.tm_min = bcd2bin(alrm_data[1] & MINUTES_REG_MAK);
+ alrm->time.tm_hour = bcd2bin(alrm_data[2] & HOURS_REG_MSK);
+ alrm->time.tm_mday = bcd2bin(alrm_data[3] & DAYS_REG_MSK);
+ alrm->time.tm_mon = (bcd2bin(alrm_data[4] & MONTHS_REG_MSK)) - 1;
+ alrm->time.tm_year = (bcd2bin(alrm_data[5] & YEARS_REG_MSK)) + 100;
+ rockchip_to_gregorian(&alrm->time);
+
+ ret = regmap_read(rk808->regmap, rk808_rtc->creg->int_reg, &int_reg);
+ if (ret) {
+ dev_err(dev, "Failed to read RTC INT REG: %d\n", ret);
+ return ret;
+ }
+
+ dev_dbg(dev, "alrm read RTC date/time %ptRd(%d) %ptRt\n",
+ &alrm->time, alrm->time.tm_wday, &alrm->time);
+
+ alrm->enabled = (int_reg & BIT_RTC_INTERRUPTS_REG_IT_ALARM_M) ? 1 : 0;
+
+ return 0;
+}
+
+static int rk808_rtc_stop_alarm(struct rk808_rtc *rk808_rtc)
+{
+ struct rk808 *rk808 = rk808_rtc->rk808;
+ int ret;
+
+ ret = regmap_update_bits(rk808->regmap, rk808_rtc->creg->int_reg,
+ BIT_RTC_INTERRUPTS_REG_IT_ALARM_M, 0);
+
+ return ret;
+}
+
+static int rk808_rtc_start_alarm(struct rk808_rtc *rk808_rtc)
+{
+ struct rk808 *rk808 = rk808_rtc->rk808;
+ int ret;
+
+ ret = regmap_update_bits(rk808->regmap, rk808_rtc->creg->int_reg,
+ BIT_RTC_INTERRUPTS_REG_IT_ALARM_M,
+ BIT_RTC_INTERRUPTS_REG_IT_ALARM_M);
+
+ return ret;
+}
+
+static int rk808_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rk808_rtc *rk808_rtc = dev_get_drvdata(dev);
+ struct rk808 *rk808 = rk808_rtc->rk808;
+ u8 alrm_data[NUM_ALARM_REGS];
+ int ret;
+
+ ret = rk808_rtc_stop_alarm(rk808_rtc);
+ if (ret) {
+ dev_err(dev, "Failed to stop alarm: %d\n", ret);
+ return ret;
+ }
+ dev_dbg(dev, "alrm set RTC date/time %ptRd(%d) %ptRt\n",
+ &alrm->time, alrm->time.tm_wday, &alrm->time);
+
+ gregorian_to_rockchip(&alrm->time);
+ alrm_data[0] = bin2bcd(alrm->time.tm_sec);
+ alrm_data[1] = bin2bcd(alrm->time.tm_min);
+ alrm_data[2] = bin2bcd(alrm->time.tm_hour);
+ alrm_data[3] = bin2bcd(alrm->time.tm_mday);
+ alrm_data[4] = bin2bcd(alrm->time.tm_mon + 1);
+ alrm_data[5] = bin2bcd(alrm->time.tm_year - 100);
+
+ ret = regmap_bulk_write(rk808->regmap,
+ rk808_rtc->creg->alarm_seconds_reg,
+ alrm_data, NUM_ALARM_REGS);
+ if (ret) {
+ dev_err(dev, "Failed to bulk write: %d\n", ret);
+ return ret;
+ }
+ if (alrm->enabled) {
+ ret = rk808_rtc_start_alarm(rk808_rtc);
+ if (ret) {
+ dev_err(dev, "Failed to start alarm: %d\n", ret);
+ return ret;
+ }
+ }
+ return 0;
+}
+
+static int rk808_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct rk808_rtc *rk808_rtc = dev_get_drvdata(dev);
+
+ if (enabled)
+ return rk808_rtc_start_alarm(rk808_rtc);
+
+ return rk808_rtc_stop_alarm(rk808_rtc);
+}
+
+/*
+ * We will just handle setting the frequency and make use the framework for
+ * reading the periodic interupts.
+ *
+ * @freq: Current periodic IRQ freq:
+ * bit 0: every second
+ * bit 1: every minute
+ * bit 2: every hour
+ * bit 3: every day
+ */
+static irqreturn_t rk808_alarm_irq(int irq, void *data)
+{
+ struct rk808_rtc *rk808_rtc = data;
+ struct rk808 *rk808 = rk808_rtc->rk808;
+ struct i2c_client *client = rk808->i2c;
+ int ret;
+
+ ret = regmap_write(rk808->regmap, rk808_rtc->creg->status_reg,
+ RTC_STATUS_MASK);
+ if (ret) {
+ dev_err(&client->dev,
+ "%s:Failed to update RTC status: %d\n", __func__, ret);
+ return ret;
+ }
+
+ rtc_update_irq(rk808_rtc->rtc, 1, RTC_IRQF | RTC_AF);
+ dev_dbg(&client->dev,
+ "%s:irq=%d\n", __func__, irq);
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops rk808_rtc_ops = {
+ .read_time = rk808_rtc_readtime,
+ .set_time = rk808_rtc_set_time,
+ .read_alarm = rk808_rtc_readalarm,
+ .set_alarm = rk808_rtc_setalarm,
+ .alarm_irq_enable = rk808_rtc_alarm_irq_enable,
+};
+
+#ifdef CONFIG_PM_SLEEP
+/* Turn off the alarm if it should not be a wake source. */
+static int rk808_rtc_suspend(struct device *dev)
+{
+ struct rk808_rtc *rk808_rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ enable_irq_wake(rk808_rtc->irq);
+
+ return 0;
+}
+
+/* Enable the alarm if it should be enabled (in case it was disabled to
+ * prevent use as a wake source).
+ */
+static int rk808_rtc_resume(struct device *dev)
+{
+ struct rk808_rtc *rk808_rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ disable_irq_wake(rk808_rtc->irq);
+
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(rk808_rtc_pm_ops,
+ rk808_rtc_suspend, rk808_rtc_resume);
+
+static struct rk_rtc_compat_reg rk808_creg = {
+ .ctrl_reg = RK808_RTC_CTRL_REG,
+ .status_reg = RK808_RTC_STATUS_REG,
+ .alarm_seconds_reg = RK808_ALARM_SECONDS_REG,
+ .int_reg = RK808_RTC_INT_REG,
+ .seconds_reg = RK808_SECONDS_REG,
+};
+
+static struct rk_rtc_compat_reg rk817_creg = {
+ .ctrl_reg = RK817_RTC_CTRL_REG,
+ .status_reg = RK817_RTC_STATUS_REG,
+ .alarm_seconds_reg = RK817_ALARM_SECONDS_REG,
+ .int_reg = RK817_RTC_INT_REG,
+ .seconds_reg = RK817_SECONDS_REG,
+};
+
+static int rk808_rtc_probe(struct platform_device *pdev)
+{
+ struct rk808 *rk808 = dev_get_drvdata(pdev->dev.parent);
+ struct rk808_rtc *rk808_rtc;
+ int ret;
+
+ rk808_rtc = devm_kzalloc(&pdev->dev, sizeof(*rk808_rtc), GFP_KERNEL);
+ if (rk808_rtc == NULL)
+ return -ENOMEM;
+
+ switch (rk808->variant) {
+ case RK809_ID:
+ case RK817_ID:
+ rk808_rtc->creg = &rk817_creg;
+ break;
+ default:
+ rk808_rtc->creg = &rk808_creg;
+ break;
+ }
+ platform_set_drvdata(pdev, rk808_rtc);
+ rk808_rtc->rk808 = rk808;
+
+ /* start rtc running by default, and use shadowed timer. */
+ ret = regmap_update_bits(rk808->regmap, rk808_rtc->creg->ctrl_reg,
+ BIT_RTC_CTRL_REG_STOP_RTC_M |
+ BIT_RTC_CTRL_REG_RTC_READSEL_M,
+ BIT_RTC_CTRL_REG_RTC_READSEL_M);
+ if (ret) {
+ dev_err(&pdev->dev,
+ "Failed to update RTC control: %d\n", ret);
+ return ret;
+ }
+
+ ret = regmap_write(rk808->regmap, rk808_rtc->creg->status_reg,
+ RTC_STATUS_MASK);
+ if (ret) {
+ dev_err(&pdev->dev,
+ "Failed to write RTC status: %d\n", ret);
+ return ret;
+ }
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ rk808_rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rk808_rtc->rtc))
+ return PTR_ERR(rk808_rtc->rtc);
+
+ rk808_rtc->rtc->ops = &rk808_rtc_ops;
+
+ rk808_rtc->irq = platform_get_irq(pdev, 0);
+ if (rk808_rtc->irq < 0)
+ return rk808_rtc->irq;
+
+ /* request alarm irq of rk808 */
+ ret = devm_request_threaded_irq(&pdev->dev, rk808_rtc->irq, NULL,
+ rk808_alarm_irq, 0,
+ "RTC alarm", rk808_rtc);
+ if (ret) {
+ dev_err(&pdev->dev, "Failed to request alarm IRQ %d: %d\n",
+ rk808_rtc->irq, ret);
+ return ret;
+ }
+
+ return rtc_register_device(rk808_rtc->rtc);
+}
+
+static struct platform_driver rk808_rtc_driver = {
+ .probe = rk808_rtc_probe,
+ .driver = {
+ .name = "rk808-rtc",
+ .pm = &rk808_rtc_pm_ops,
+ },
+};
+
+module_platform_driver(rk808_rtc_driver);
+
+MODULE_DESCRIPTION("RTC driver for the rk808 series PMICs");
+MODULE_AUTHOR("Chris Zhong <zyw@rock-chips.com>");
+MODULE_AUTHOR("Zhang Qing <zhangqing@rock-chips.com>");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:rk808-rtc");
diff --git a/drivers/rtc/rtc-rp5c01.c b/drivers/rtc/rtc-rp5c01.c
new file mode 100644
index 000000000..8776eadbd
--- /dev/null
+++ b/drivers/rtc/rtc-rp5c01.c
@@ -0,0 +1,277 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Ricoh RP5C01 RTC Driver
+ *
+ * Copyright 2009 Geert Uytterhoeven
+ *
+ * Based on the A3000 TOD code in arch/m68k/amiga/config.c
+ * Copyright (C) 1993 Hamish Macdonald
+ */
+
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+
+
+enum {
+ RP5C01_1_SECOND = 0x0, /* MODE 00 */
+ RP5C01_10_SECOND = 0x1, /* MODE 00 */
+ RP5C01_1_MINUTE = 0x2, /* MODE 00 and MODE 01 */
+ RP5C01_10_MINUTE = 0x3, /* MODE 00 and MODE 01 */
+ RP5C01_1_HOUR = 0x4, /* MODE 00 and MODE 01 */
+ RP5C01_10_HOUR = 0x5, /* MODE 00 and MODE 01 */
+ RP5C01_DAY_OF_WEEK = 0x6, /* MODE 00 and MODE 01 */
+ RP5C01_1_DAY = 0x7, /* MODE 00 and MODE 01 */
+ RP5C01_10_DAY = 0x8, /* MODE 00 and MODE 01 */
+ RP5C01_1_MONTH = 0x9, /* MODE 00 */
+ RP5C01_10_MONTH = 0xa, /* MODE 00 */
+ RP5C01_1_YEAR = 0xb, /* MODE 00 */
+ RP5C01_10_YEAR = 0xc, /* MODE 00 */
+
+ RP5C01_12_24_SELECT = 0xa, /* MODE 01 */
+ RP5C01_LEAP_YEAR = 0xb, /* MODE 01 */
+
+ RP5C01_MODE = 0xd, /* all modes */
+ RP5C01_TEST = 0xe, /* all modes */
+ RP5C01_RESET = 0xf, /* all modes */
+};
+
+#define RP5C01_12_24_SELECT_12 (0 << 0)
+#define RP5C01_12_24_SELECT_24 (1 << 0)
+
+#define RP5C01_10_HOUR_AM (0 << 1)
+#define RP5C01_10_HOUR_PM (1 << 1)
+
+#define RP5C01_MODE_TIMER_EN (1 << 3) /* timer enable */
+#define RP5C01_MODE_ALARM_EN (1 << 2) /* alarm enable */
+
+#define RP5C01_MODE_MODE_MASK (3 << 0)
+#define RP5C01_MODE_MODE00 (0 << 0) /* time */
+#define RP5C01_MODE_MODE01 (1 << 0) /* alarm, 12h/24h, leap year */
+#define RP5C01_MODE_RAM_BLOCK10 (2 << 0) /* RAM 4 bits x 13 */
+#define RP5C01_MODE_RAM_BLOCK11 (3 << 0) /* RAM 4 bits x 13 */
+
+#define RP5C01_RESET_1HZ_PULSE (1 << 3)
+#define RP5C01_RESET_16HZ_PULSE (1 << 2)
+#define RP5C01_RESET_SECOND (1 << 1) /* reset divider stages for */
+ /* seconds or smaller units */
+#define RP5C01_RESET_ALARM (1 << 0) /* reset all alarm registers */
+
+
+struct rp5c01_priv {
+ u32 __iomem *regs;
+ struct rtc_device *rtc;
+ spinlock_t lock; /* against concurrent RTC/NVRAM access */
+};
+
+static inline unsigned int rp5c01_read(struct rp5c01_priv *priv,
+ unsigned int reg)
+{
+ return __raw_readl(&priv->regs[reg]) & 0xf;
+}
+
+static inline void rp5c01_write(struct rp5c01_priv *priv, unsigned int val,
+ unsigned int reg)
+{
+ __raw_writel(val, &priv->regs[reg]);
+}
+
+static void rp5c01_lock(struct rp5c01_priv *priv)
+{
+ rp5c01_write(priv, RP5C01_MODE_MODE00, RP5C01_MODE);
+}
+
+static void rp5c01_unlock(struct rp5c01_priv *priv)
+{
+ rp5c01_write(priv, RP5C01_MODE_TIMER_EN | RP5C01_MODE_MODE01,
+ RP5C01_MODE);
+}
+
+static int rp5c01_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rp5c01_priv *priv = dev_get_drvdata(dev);
+
+ spin_lock_irq(&priv->lock);
+ rp5c01_lock(priv);
+
+ tm->tm_sec = rp5c01_read(priv, RP5C01_10_SECOND) * 10 +
+ rp5c01_read(priv, RP5C01_1_SECOND);
+ tm->tm_min = rp5c01_read(priv, RP5C01_10_MINUTE) * 10 +
+ rp5c01_read(priv, RP5C01_1_MINUTE);
+ tm->tm_hour = rp5c01_read(priv, RP5C01_10_HOUR) * 10 +
+ rp5c01_read(priv, RP5C01_1_HOUR);
+ tm->tm_mday = rp5c01_read(priv, RP5C01_10_DAY) * 10 +
+ rp5c01_read(priv, RP5C01_1_DAY);
+ tm->tm_wday = rp5c01_read(priv, RP5C01_DAY_OF_WEEK);
+ tm->tm_mon = rp5c01_read(priv, RP5C01_10_MONTH) * 10 +
+ rp5c01_read(priv, RP5C01_1_MONTH) - 1;
+ tm->tm_year = rp5c01_read(priv, RP5C01_10_YEAR) * 10 +
+ rp5c01_read(priv, RP5C01_1_YEAR);
+ if (tm->tm_year <= 69)
+ tm->tm_year += 100;
+
+ rp5c01_unlock(priv);
+ spin_unlock_irq(&priv->lock);
+
+ return 0;
+}
+
+static int rp5c01_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rp5c01_priv *priv = dev_get_drvdata(dev);
+
+ spin_lock_irq(&priv->lock);
+ rp5c01_lock(priv);
+
+ rp5c01_write(priv, tm->tm_sec / 10, RP5C01_10_SECOND);
+ rp5c01_write(priv, tm->tm_sec % 10, RP5C01_1_SECOND);
+ rp5c01_write(priv, tm->tm_min / 10, RP5C01_10_MINUTE);
+ rp5c01_write(priv, tm->tm_min % 10, RP5C01_1_MINUTE);
+ rp5c01_write(priv, tm->tm_hour / 10, RP5C01_10_HOUR);
+ rp5c01_write(priv, tm->tm_hour % 10, RP5C01_1_HOUR);
+ rp5c01_write(priv, tm->tm_mday / 10, RP5C01_10_DAY);
+ rp5c01_write(priv, tm->tm_mday % 10, RP5C01_1_DAY);
+ if (tm->tm_wday != -1)
+ rp5c01_write(priv, tm->tm_wday, RP5C01_DAY_OF_WEEK);
+ rp5c01_write(priv, (tm->tm_mon + 1) / 10, RP5C01_10_MONTH);
+ rp5c01_write(priv, (tm->tm_mon + 1) % 10, RP5C01_1_MONTH);
+ if (tm->tm_year >= 100)
+ tm->tm_year -= 100;
+ rp5c01_write(priv, tm->tm_year / 10, RP5C01_10_YEAR);
+ rp5c01_write(priv, tm->tm_year % 10, RP5C01_1_YEAR);
+
+ rp5c01_unlock(priv);
+ spin_unlock_irq(&priv->lock);
+ return 0;
+}
+
+static const struct rtc_class_ops rp5c01_rtc_ops = {
+ .read_time = rp5c01_read_time,
+ .set_time = rp5c01_set_time,
+};
+
+
+/*
+ * The NVRAM is organized as 2 blocks of 13 nibbles of 4 bits.
+ * We provide access to them like AmigaOS does: the high nibble of each 8-bit
+ * byte is stored in BLOCK10, the low nibble in BLOCK11.
+ */
+
+static int rp5c01_nvram_read(void *_priv, unsigned int pos, void *val,
+ size_t bytes)
+{
+ struct rp5c01_priv *priv = _priv;
+ u8 *buf = val;
+
+ spin_lock_irq(&priv->lock);
+
+ for (; bytes; bytes--) {
+ u8 data;
+
+ rp5c01_write(priv,
+ RP5C01_MODE_TIMER_EN | RP5C01_MODE_RAM_BLOCK10,
+ RP5C01_MODE);
+ data = rp5c01_read(priv, pos) << 4;
+ rp5c01_write(priv,
+ RP5C01_MODE_TIMER_EN | RP5C01_MODE_RAM_BLOCK11,
+ RP5C01_MODE);
+ data |= rp5c01_read(priv, pos++);
+ rp5c01_write(priv, RP5C01_MODE_TIMER_EN | RP5C01_MODE_MODE01,
+ RP5C01_MODE);
+ *buf++ = data;
+ }
+
+ spin_unlock_irq(&priv->lock);
+ return 0;
+}
+
+static int rp5c01_nvram_write(void *_priv, unsigned int pos, void *val,
+ size_t bytes)
+{
+ struct rp5c01_priv *priv = _priv;
+ u8 *buf = val;
+
+ spin_lock_irq(&priv->lock);
+
+ for (; bytes; bytes--) {
+ u8 data = *buf++;
+
+ rp5c01_write(priv,
+ RP5C01_MODE_TIMER_EN | RP5C01_MODE_RAM_BLOCK10,
+ RP5C01_MODE);
+ rp5c01_write(priv, data >> 4, pos);
+ rp5c01_write(priv,
+ RP5C01_MODE_TIMER_EN | RP5C01_MODE_RAM_BLOCK11,
+ RP5C01_MODE);
+ rp5c01_write(priv, data & 0xf, pos++);
+ rp5c01_write(priv, RP5C01_MODE_TIMER_EN | RP5C01_MODE_MODE01,
+ RP5C01_MODE);
+ }
+
+ spin_unlock_irq(&priv->lock);
+ return 0;
+}
+
+static int __init rp5c01_rtc_probe(struct platform_device *dev)
+{
+ struct resource *res;
+ struct rp5c01_priv *priv;
+ struct rtc_device *rtc;
+ int error;
+ struct nvmem_config nvmem_cfg = {
+ .name = "rp5c01_nvram",
+ .word_size = 1,
+ .stride = 1,
+ .size = RP5C01_MODE,
+ .reg_read = rp5c01_nvram_read,
+ .reg_write = rp5c01_nvram_write,
+ };
+
+ res = platform_get_resource(dev, IORESOURCE_MEM, 0);
+ if (!res)
+ return -ENODEV;
+
+ priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ priv->regs = devm_ioremap(&dev->dev, res->start, resource_size(res));
+ if (!priv->regs)
+ return -ENOMEM;
+
+ spin_lock_init(&priv->lock);
+
+ platform_set_drvdata(dev, priv);
+
+ rtc = devm_rtc_allocate_device(&dev->dev);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ rtc->ops = &rp5c01_rtc_ops;
+ rtc->nvram_old_abi = true;
+
+ priv->rtc = rtc;
+
+ nvmem_cfg.priv = priv;
+ error = rtc_nvmem_register(rtc, &nvmem_cfg);
+ if (error)
+ return error;
+
+ return rtc_register_device(rtc);
+}
+
+static struct platform_driver rp5c01_rtc_driver = {
+ .driver = {
+ .name = "rtc-rp5c01",
+ },
+};
+
+module_platform_driver_probe(rp5c01_rtc_driver, rp5c01_rtc_probe);
+
+MODULE_AUTHOR("Geert Uytterhoeven <geert@linux-m68k.org>");
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Ricoh RP5C01 RTC driver");
+MODULE_ALIAS("platform:rtc-rp5c01");
diff --git a/drivers/rtc/rtc-rs5c313.c b/drivers/rtc/rtc-rs5c313.c
new file mode 100644
index 000000000..e98f85f34
--- /dev/null
+++ b/drivers/rtc/rtc-rs5c313.c
@@ -0,0 +1,392 @@
+/*
+ * Ricoh RS5C313 RTC device/driver
+ * Copyright (C) 2007 Nobuhiro Iwamatsu
+ *
+ * 2005-09-19 modifed by kogiidena
+ *
+ * Based on the old drivers/char/rs5c313_rtc.c by:
+ * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
+ * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
+ *
+ * Based on code written by Paul Gortmaker.
+ * Copyright (C) 1996 Paul Gortmaker
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * Based on other minimal char device drivers, like Alan's
+ * watchdog, Ted's random, etc. etc.
+ *
+ * 1.07 Paul Gortmaker.
+ * 1.08 Miquel van Smoorenburg: disallow certain things on the
+ * DEC Alpha as the CMOS clock is also used for other things.
+ * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
+ * 1.09a Pete Zaitcev: Sun SPARC
+ * 1.09b Jeff Garzik: Modularize, init cleanup
+ * 1.09c Jeff Garzik: SMP cleanup
+ * 1.10 Paul Barton-Davis: add support for async I/O
+ * 1.10a Andrea Arcangeli: Alpha updates
+ * 1.10b Andrew Morton: SMP lock fix
+ * 1.10c Cesar Barros: SMP locking fixes and cleanup
+ * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
+ * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
+ * 1.11 Takashi Iwai: Kernel access functions
+ * rtc_register/rtc_unregister/rtc_control
+ * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
+ * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
+ * CONFIG_HPET_EMULATE_RTC
+ * 1.13 Nobuhiro Iwamatsu: Updata driver.
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/module.h>
+#include <linux/err.h>
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+#include <linux/bcd.h>
+#include <linux/delay.h>
+#include <linux/io.h>
+
+#define DRV_NAME "rs5c313"
+
+#ifdef CONFIG_SH_LANDISK
+/*****************************************************/
+/* LANDISK dependence part of RS5C313 */
+/*****************************************************/
+
+#define SCSMR1 0xFFE00000
+#define SCSCR1 0xFFE00008
+#define SCSMR1_CA 0x80
+#define SCSCR1_CKE 0x03
+#define SCSPTR1 0xFFE0001C
+#define SCSPTR1_EIO 0x80
+#define SCSPTR1_SPB1IO 0x08
+#define SCSPTR1_SPB1DT 0x04
+#define SCSPTR1_SPB0IO 0x02
+#define SCSPTR1_SPB0DT 0x01
+
+#define SDA_OEN SCSPTR1_SPB1IO
+#define SDA SCSPTR1_SPB1DT
+#define SCL_OEN SCSPTR1_SPB0IO
+#define SCL SCSPTR1_SPB0DT
+
+/* RICOH RS5C313 CE port */
+#define RS5C313_CE 0xB0000003
+
+/* RICOH RS5C313 CE port bit */
+#define RS5C313_CE_RTCCE 0x02
+
+/* SCSPTR1 data */
+unsigned char scsptr1_data;
+
+#define RS5C313_CEENABLE __raw_writeb(RS5C313_CE_RTCCE, RS5C313_CE);
+#define RS5C313_CEDISABLE __raw_writeb(0x00, RS5C313_CE)
+#define RS5C313_MISCOP __raw_writeb(0x02, 0xB0000008)
+
+static void rs5c313_init_port(void)
+{
+ /* Set SCK as I/O port and Initialize SCSPTR1 data & I/O port. */
+ __raw_writeb(__raw_readb(SCSMR1) & ~SCSMR1_CA, SCSMR1);
+ __raw_writeb(__raw_readb(SCSCR1) & ~SCSCR1_CKE, SCSCR1);
+
+ /* And Initialize SCL for RS5C313 clock */
+ scsptr1_data = __raw_readb(SCSPTR1) | SCL; /* SCL:H */
+ __raw_writeb(scsptr1_data, SCSPTR1);
+ scsptr1_data = __raw_readb(SCSPTR1) | SCL_OEN; /* SCL output enable */
+ __raw_writeb(scsptr1_data, SCSPTR1);
+ RS5C313_CEDISABLE; /* CE:L */
+}
+
+static void rs5c313_write_data(unsigned char data)
+{
+ int i;
+
+ for (i = 0; i < 8; i++) {
+ /* SDA:Write Data */
+ scsptr1_data = (scsptr1_data & ~SDA) |
+ ((((0x80 >> i) & data) >> (7 - i)) << 2);
+ __raw_writeb(scsptr1_data, SCSPTR1);
+ if (i == 0) {
+ scsptr1_data |= SDA_OEN; /* SDA:output enable */
+ __raw_writeb(scsptr1_data, SCSPTR1);
+ }
+ ndelay(700);
+ scsptr1_data &= ~SCL; /* SCL:L */
+ __raw_writeb(scsptr1_data, SCSPTR1);
+ ndelay(700);
+ scsptr1_data |= SCL; /* SCL:H */
+ __raw_writeb(scsptr1_data, SCSPTR1);
+ }
+
+ scsptr1_data &= ~SDA_OEN; /* SDA:output disable */
+ __raw_writeb(scsptr1_data, SCSPTR1);
+}
+
+static unsigned char rs5c313_read_data(void)
+{
+ int i;
+ unsigned char data = 0;
+
+ for (i = 0; i < 8; i++) {
+ ndelay(700);
+ /* SDA:Read Data */
+ data |= ((__raw_readb(SCSPTR1) & SDA) >> 2) << (7 - i);
+ scsptr1_data &= ~SCL; /* SCL:L */
+ __raw_writeb(scsptr1_data, SCSPTR1);
+ ndelay(700);
+ scsptr1_data |= SCL; /* SCL:H */
+ __raw_writeb(scsptr1_data, SCSPTR1);
+ }
+ return data & 0x0F;
+}
+
+#endif /* CONFIG_SH_LANDISK */
+
+/*****************************************************/
+/* machine independence part of RS5C313 */
+/*****************************************************/
+
+/* RICOH RS5C313 address */
+#define RS5C313_ADDR_SEC 0x00
+#define RS5C313_ADDR_SEC10 0x01
+#define RS5C313_ADDR_MIN 0x02
+#define RS5C313_ADDR_MIN10 0x03
+#define RS5C313_ADDR_HOUR 0x04
+#define RS5C313_ADDR_HOUR10 0x05
+#define RS5C313_ADDR_WEEK 0x06
+#define RS5C313_ADDR_INTINTVREG 0x07
+#define RS5C313_ADDR_DAY 0x08
+#define RS5C313_ADDR_DAY10 0x09
+#define RS5C313_ADDR_MON 0x0A
+#define RS5C313_ADDR_MON10 0x0B
+#define RS5C313_ADDR_YEAR 0x0C
+#define RS5C313_ADDR_YEAR10 0x0D
+#define RS5C313_ADDR_CNTREG 0x0E
+#define RS5C313_ADDR_TESTREG 0x0F
+
+/* RICOH RS5C313 control register */
+#define RS5C313_CNTREG_ADJ_BSY 0x01
+#define RS5C313_CNTREG_WTEN_XSTP 0x02
+#define RS5C313_CNTREG_12_24 0x04
+#define RS5C313_CNTREG_CTFG 0x08
+
+/* RICOH RS5C313 test register */
+#define RS5C313_TESTREG_TEST 0x01
+
+/* RICOH RS5C313 control bit */
+#define RS5C313_CNTBIT_READ 0x40
+#define RS5C313_CNTBIT_AD 0x20
+#define RS5C313_CNTBIT_DT 0x10
+
+static unsigned char rs5c313_read_reg(unsigned char addr)
+{
+
+ rs5c313_write_data(addr | RS5C313_CNTBIT_READ | RS5C313_CNTBIT_AD);
+ return rs5c313_read_data();
+}
+
+static void rs5c313_write_reg(unsigned char addr, unsigned char data)
+{
+ data &= 0x0f;
+ rs5c313_write_data(addr | RS5C313_CNTBIT_AD);
+ rs5c313_write_data(data | RS5C313_CNTBIT_DT);
+ return;
+}
+
+static inline unsigned char rs5c313_read_cntreg(void)
+{
+ return rs5c313_read_reg(RS5C313_ADDR_CNTREG);
+}
+
+static inline void rs5c313_write_cntreg(unsigned char data)
+{
+ rs5c313_write_reg(RS5C313_ADDR_CNTREG, data);
+}
+
+static inline void rs5c313_write_intintvreg(unsigned char data)
+{
+ rs5c313_write_reg(RS5C313_ADDR_INTINTVREG, data);
+}
+
+static int rs5c313_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ int data;
+ int cnt;
+
+ cnt = 0;
+ while (1) {
+ RS5C313_CEENABLE; /* CE:H */
+
+ /* Initialize control reg. 24 hour */
+ rs5c313_write_cntreg(0x04);
+
+ if (!(rs5c313_read_cntreg() & RS5C313_CNTREG_ADJ_BSY))
+ break;
+
+ RS5C313_CEDISABLE;
+ ndelay(700); /* CE:L */
+
+ if (cnt++ > 100) {
+ dev_err(dev, "%s: timeout error\n", __func__);
+ return -EIO;
+ }
+ }
+
+ data = rs5c313_read_reg(RS5C313_ADDR_SEC);
+ data |= (rs5c313_read_reg(RS5C313_ADDR_SEC10) << 4);
+ tm->tm_sec = bcd2bin(data);
+
+ data = rs5c313_read_reg(RS5C313_ADDR_MIN);
+ data |= (rs5c313_read_reg(RS5C313_ADDR_MIN10) << 4);
+ tm->tm_min = bcd2bin(data);
+
+ data = rs5c313_read_reg(RS5C313_ADDR_HOUR);
+ data |= (rs5c313_read_reg(RS5C313_ADDR_HOUR10) << 4);
+ tm->tm_hour = bcd2bin(data);
+
+ data = rs5c313_read_reg(RS5C313_ADDR_DAY);
+ data |= (rs5c313_read_reg(RS5C313_ADDR_DAY10) << 4);
+ tm->tm_mday = bcd2bin(data);
+
+ data = rs5c313_read_reg(RS5C313_ADDR_MON);
+ data |= (rs5c313_read_reg(RS5C313_ADDR_MON10) << 4);
+ tm->tm_mon = bcd2bin(data) - 1;
+
+ data = rs5c313_read_reg(RS5C313_ADDR_YEAR);
+ data |= (rs5c313_read_reg(RS5C313_ADDR_YEAR10) << 4);
+ tm->tm_year = bcd2bin(data);
+
+ if (tm->tm_year < 70)
+ tm->tm_year += 100;
+
+ data = rs5c313_read_reg(RS5C313_ADDR_WEEK);
+ tm->tm_wday = bcd2bin(data);
+
+ RS5C313_CEDISABLE;
+ ndelay(700); /* CE:L */
+
+ return 0;
+}
+
+static int rs5c313_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ int data;
+ int cnt;
+
+ cnt = 0;
+ /* busy check. */
+ while (1) {
+ RS5C313_CEENABLE; /* CE:H */
+
+ /* Initiatlize control reg. 24 hour */
+ rs5c313_write_cntreg(0x04);
+
+ if (!(rs5c313_read_cntreg() & RS5C313_CNTREG_ADJ_BSY))
+ break;
+ RS5C313_MISCOP;
+ RS5C313_CEDISABLE;
+ ndelay(700); /* CE:L */
+
+ if (cnt++ > 100) {
+ dev_err(dev, "%s: timeout error\n", __func__);
+ return -EIO;
+ }
+ }
+
+ data = bin2bcd(tm->tm_sec);
+ rs5c313_write_reg(RS5C313_ADDR_SEC, data);
+ rs5c313_write_reg(RS5C313_ADDR_SEC10, (data >> 4));
+
+ data = bin2bcd(tm->tm_min);
+ rs5c313_write_reg(RS5C313_ADDR_MIN, data);
+ rs5c313_write_reg(RS5C313_ADDR_MIN10, (data >> 4));
+
+ data = bin2bcd(tm->tm_hour);
+ rs5c313_write_reg(RS5C313_ADDR_HOUR, data);
+ rs5c313_write_reg(RS5C313_ADDR_HOUR10, (data >> 4));
+
+ data = bin2bcd(tm->tm_mday);
+ rs5c313_write_reg(RS5C313_ADDR_DAY, data);
+ rs5c313_write_reg(RS5C313_ADDR_DAY10, (data >> 4));
+
+ data = bin2bcd(tm->tm_mon + 1);
+ rs5c313_write_reg(RS5C313_ADDR_MON, data);
+ rs5c313_write_reg(RS5C313_ADDR_MON10, (data >> 4));
+
+ data = bin2bcd(tm->tm_year % 100);
+ rs5c313_write_reg(RS5C313_ADDR_YEAR, data);
+ rs5c313_write_reg(RS5C313_ADDR_YEAR10, (data >> 4));
+
+ data = bin2bcd(tm->tm_wday);
+ rs5c313_write_reg(RS5C313_ADDR_WEEK, data);
+
+ RS5C313_CEDISABLE; /* CE:H */
+ ndelay(700);
+
+ return 0;
+}
+
+static void rs5c313_check_xstp_bit(void)
+{
+ struct rtc_time tm;
+ int cnt;
+
+ RS5C313_CEENABLE; /* CE:H */
+ if (rs5c313_read_cntreg() & RS5C313_CNTREG_WTEN_XSTP) {
+ /* INT interval reg. OFF */
+ rs5c313_write_intintvreg(0x00);
+ /* Initialize control reg. 24 hour & adjust */
+ rs5c313_write_cntreg(0x07);
+
+ /* busy check. */
+ for (cnt = 0; cnt < 100; cnt++) {
+ if (!(rs5c313_read_cntreg() & RS5C313_CNTREG_ADJ_BSY))
+ break;
+ RS5C313_MISCOP;
+ }
+
+ memset(&tm, 0, sizeof(struct rtc_time));
+ tm.tm_mday = 1;
+ tm.tm_mon = 1 - 1;
+ tm.tm_year = 2000 - 1900;
+
+ rs5c313_rtc_set_time(NULL, &tm);
+ pr_err("invalid value, resetting to 1 Jan 2000\n");
+ }
+ RS5C313_CEDISABLE;
+ ndelay(700); /* CE:L */
+}
+
+static const struct rtc_class_ops rs5c313_rtc_ops = {
+ .read_time = rs5c313_rtc_read_time,
+ .set_time = rs5c313_rtc_set_time,
+};
+
+static int rs5c313_rtc_probe(struct platform_device *pdev)
+{
+ struct rtc_device *rtc;
+
+ rs5c313_init_port();
+ rs5c313_check_xstp_bit();
+
+ rtc = devm_rtc_device_register(&pdev->dev, "rs5c313", &rs5c313_rtc_ops,
+ THIS_MODULE);
+
+ return PTR_ERR_OR_ZERO(rtc);
+}
+
+static struct platform_driver rs5c313_rtc_platform_driver = {
+ .driver = {
+ .name = DRV_NAME,
+ },
+ .probe = rs5c313_rtc_probe,
+};
+
+module_platform_driver(rs5c313_rtc_platform_driver);
+
+MODULE_AUTHOR("kogiidena , Nobuhiro Iwamatsu <iwamatsu@nigauri.org>");
+MODULE_DESCRIPTION("Ricoh RS5C313 RTC device driver");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:" DRV_NAME);
diff --git a/drivers/rtc/rtc-rs5c348.c b/drivers/rtc/rtc-rs5c348.c
new file mode 100644
index 000000000..47c136784
--- /dev/null
+++ b/drivers/rtc/rtc-rs5c348.c
@@ -0,0 +1,215 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * A SPI driver for the Ricoh RS5C348 RTC
+ *
+ * Copyright (C) 2006 Atsushi Nemoto <anemo@mba.ocn.ne.jp>
+ *
+ * The board specific init code should provide characteristics of this
+ * device:
+ * Mode 1 (High-Active, Shift-Then-Sample), High Avtive CS
+ */
+
+#include <linux/bcd.h>
+#include <linux/delay.h>
+#include <linux/device.h>
+#include <linux/errno.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/string.h>
+#include <linux/slab.h>
+#include <linux/rtc.h>
+#include <linux/workqueue.h>
+#include <linux/spi/spi.h>
+#include <linux/module.h>
+
+#define RS5C348_REG_SECS 0
+#define RS5C348_REG_MINS 1
+#define RS5C348_REG_HOURS 2
+#define RS5C348_REG_WDAY 3
+#define RS5C348_REG_DAY 4
+#define RS5C348_REG_MONTH 5
+#define RS5C348_REG_YEAR 6
+#define RS5C348_REG_CTL1 14
+#define RS5C348_REG_CTL2 15
+
+#define RS5C348_SECS_MASK 0x7f
+#define RS5C348_MINS_MASK 0x7f
+#define RS5C348_HOURS_MASK 0x3f
+#define RS5C348_WDAY_MASK 0x03
+#define RS5C348_DAY_MASK 0x3f
+#define RS5C348_MONTH_MASK 0x1f
+
+#define RS5C348_BIT_PM 0x20 /* REG_HOURS */
+#define RS5C348_BIT_Y2K 0x80 /* REG_MONTH */
+#define RS5C348_BIT_24H 0x20 /* REG_CTL1 */
+#define RS5C348_BIT_XSTP 0x10 /* REG_CTL2 */
+#define RS5C348_BIT_VDET 0x40 /* REG_CTL2 */
+
+#define RS5C348_CMD_W(addr) (((addr) << 4) | 0x08) /* single write */
+#define RS5C348_CMD_R(addr) (((addr) << 4) | 0x0c) /* single read */
+#define RS5C348_CMD_MW(addr) (((addr) << 4) | 0x00) /* burst write */
+#define RS5C348_CMD_MR(addr) (((addr) << 4) | 0x04) /* burst read */
+
+struct rs5c348_plat_data {
+ struct rtc_device *rtc;
+ int rtc_24h;
+};
+
+static int
+rs5c348_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ struct rs5c348_plat_data *pdata = dev_get_platdata(&spi->dev);
+ u8 txbuf[5+7], *txp;
+ int ret;
+
+ ret = spi_w8r8(spi, RS5C348_CMD_R(RS5C348_REG_CTL2));
+ if (ret < 0)
+ return ret;
+ if (ret & RS5C348_BIT_XSTP) {
+ txbuf[0] = RS5C348_CMD_W(RS5C348_REG_CTL2);
+ txbuf[1] = 0;
+ ret = spi_write_then_read(spi, txbuf, 2, NULL, 0);
+ if (ret < 0)
+ return ret;
+ }
+
+ /* Transfer 5 bytes before writing SEC. This gives 31us for carry. */
+ txp = txbuf;
+ txbuf[0] = RS5C348_CMD_R(RS5C348_REG_CTL2); /* cmd, ctl2 */
+ txbuf[1] = 0; /* dummy */
+ txbuf[2] = RS5C348_CMD_R(RS5C348_REG_CTL2); /* cmd, ctl2 */
+ txbuf[3] = 0; /* dummy */
+ txbuf[4] = RS5C348_CMD_MW(RS5C348_REG_SECS); /* cmd, sec, ... */
+ txp = &txbuf[5];
+ txp[RS5C348_REG_SECS] = bin2bcd(tm->tm_sec);
+ txp[RS5C348_REG_MINS] = bin2bcd(tm->tm_min);
+ if (pdata->rtc_24h) {
+ txp[RS5C348_REG_HOURS] = bin2bcd(tm->tm_hour);
+ } else {
+ /* hour 0 is AM12, noon is PM12 */
+ txp[RS5C348_REG_HOURS] = bin2bcd((tm->tm_hour + 11) % 12 + 1) |
+ (tm->tm_hour >= 12 ? RS5C348_BIT_PM : 0);
+ }
+ txp[RS5C348_REG_WDAY] = bin2bcd(tm->tm_wday);
+ txp[RS5C348_REG_DAY] = bin2bcd(tm->tm_mday);
+ txp[RS5C348_REG_MONTH] = bin2bcd(tm->tm_mon + 1) |
+ (tm->tm_year >= 100 ? RS5C348_BIT_Y2K : 0);
+ txp[RS5C348_REG_YEAR] = bin2bcd(tm->tm_year % 100);
+ /* write in one transfer to avoid data inconsistency */
+ ret = spi_write_then_read(spi, txbuf, sizeof(txbuf), NULL, 0);
+ udelay(62); /* Tcsr 62us */
+ return ret;
+}
+
+static int
+rs5c348_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ struct rs5c348_plat_data *pdata = dev_get_platdata(&spi->dev);
+ u8 txbuf[5], rxbuf[7];
+ int ret;
+
+ ret = spi_w8r8(spi, RS5C348_CMD_R(RS5C348_REG_CTL2));
+ if (ret < 0)
+ return ret;
+ if (ret & RS5C348_BIT_VDET)
+ dev_warn(&spi->dev, "voltage-low detected.\n");
+ if (ret & RS5C348_BIT_XSTP) {
+ dev_warn(&spi->dev, "oscillator-stop detected.\n");
+ return -EINVAL;
+ }
+
+ /* Transfer 5 byte befores reading SEC. This gives 31us for carry. */
+ txbuf[0] = RS5C348_CMD_R(RS5C348_REG_CTL2); /* cmd, ctl2 */
+ txbuf[1] = 0; /* dummy */
+ txbuf[2] = RS5C348_CMD_R(RS5C348_REG_CTL2); /* cmd, ctl2 */
+ txbuf[3] = 0; /* dummy */
+ txbuf[4] = RS5C348_CMD_MR(RS5C348_REG_SECS); /* cmd, sec, ... */
+
+ /* read in one transfer to avoid data inconsistency */
+ ret = spi_write_then_read(spi, txbuf, sizeof(txbuf),
+ rxbuf, sizeof(rxbuf));
+ udelay(62); /* Tcsr 62us */
+ if (ret < 0)
+ return ret;
+
+ tm->tm_sec = bcd2bin(rxbuf[RS5C348_REG_SECS] & RS5C348_SECS_MASK);
+ tm->tm_min = bcd2bin(rxbuf[RS5C348_REG_MINS] & RS5C348_MINS_MASK);
+ tm->tm_hour = bcd2bin(rxbuf[RS5C348_REG_HOURS] & RS5C348_HOURS_MASK);
+ if (!pdata->rtc_24h) {
+ if (rxbuf[RS5C348_REG_HOURS] & RS5C348_BIT_PM) {
+ tm->tm_hour -= 20;
+ tm->tm_hour %= 12;
+ tm->tm_hour += 12;
+ } else
+ tm->tm_hour %= 12;
+ }
+ tm->tm_wday = bcd2bin(rxbuf[RS5C348_REG_WDAY] & RS5C348_WDAY_MASK);
+ tm->tm_mday = bcd2bin(rxbuf[RS5C348_REG_DAY] & RS5C348_DAY_MASK);
+ tm->tm_mon =
+ bcd2bin(rxbuf[RS5C348_REG_MONTH] & RS5C348_MONTH_MASK) - 1;
+ /* year is 1900 + tm->tm_year */
+ tm->tm_year = bcd2bin(rxbuf[RS5C348_REG_YEAR]) +
+ ((rxbuf[RS5C348_REG_MONTH] & RS5C348_BIT_Y2K) ? 100 : 0);
+
+ return 0;
+}
+
+static const struct rtc_class_ops rs5c348_rtc_ops = {
+ .read_time = rs5c348_rtc_read_time,
+ .set_time = rs5c348_rtc_set_time,
+};
+
+static int rs5c348_probe(struct spi_device *spi)
+{
+ int ret;
+ struct rtc_device *rtc;
+ struct rs5c348_plat_data *pdata;
+
+ pdata = devm_kzalloc(&spi->dev, sizeof(struct rs5c348_plat_data),
+ GFP_KERNEL);
+ if (!pdata)
+ return -ENOMEM;
+ spi->dev.platform_data = pdata;
+
+ /* Check D7 of SECOND register */
+ ret = spi_w8r8(spi, RS5C348_CMD_R(RS5C348_REG_SECS));
+ if (ret < 0 || (ret & 0x80)) {
+ dev_err(&spi->dev, "not found.\n");
+ return ret;
+ }
+
+ dev_info(&spi->dev, "spiclk %u KHz.\n",
+ (spi->max_speed_hz + 500) / 1000);
+
+ ret = spi_w8r8(spi, RS5C348_CMD_R(RS5C348_REG_CTL1));
+ if (ret < 0)
+ return ret;
+ if (ret & RS5C348_BIT_24H)
+ pdata->rtc_24h = 1;
+
+ rtc = devm_rtc_allocate_device(&spi->dev);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ pdata->rtc = rtc;
+
+ rtc->ops = &rs5c348_rtc_ops;
+
+ return rtc_register_device(rtc);
+}
+
+static struct spi_driver rs5c348_driver = {
+ .driver = {
+ .name = "rtc-rs5c348",
+ },
+ .probe = rs5c348_probe,
+};
+
+module_spi_driver(rs5c348_driver);
+
+MODULE_AUTHOR("Atsushi Nemoto <anemo@mba.ocn.ne.jp>");
+MODULE_DESCRIPTION("Ricoh RS5C348 RTC driver");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("spi:rtc-rs5c348");
diff --git a/drivers/rtc/rtc-rs5c372.c b/drivers/rtc/rtc-rs5c372.c
new file mode 100644
index 000000000..3bd6eaa0d
--- /dev/null
+++ b/drivers/rtc/rtc-rs5c372.c
@@ -0,0 +1,757 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * An I2C driver for Ricoh RS5C372, R2025S/D and RV5C38[67] RTCs
+ *
+ * Copyright (C) 2005 Pavel Mironchik <pmironchik@optifacio.net>
+ * Copyright (C) 2006 Tower Technologies
+ * Copyright (C) 2008 Paul Mundt
+ */
+
+#include <linux/i2c.h>
+#include <linux/rtc.h>
+#include <linux/bcd.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/of_device.h>
+
+/*
+ * Ricoh has a family of I2C based RTCs, which differ only slightly from
+ * each other. Differences center on pinout (e.g. how many interrupts,
+ * output clock, etc) and how the control registers are used. The '372
+ * is significant only because that's the one this driver first supported.
+ */
+#define RS5C372_REG_SECS 0
+#define RS5C372_REG_MINS 1
+#define RS5C372_REG_HOURS 2
+#define RS5C372_REG_WDAY 3
+#define RS5C372_REG_DAY 4
+#define RS5C372_REG_MONTH 5
+#define RS5C372_REG_YEAR 6
+#define RS5C372_REG_TRIM 7
+# define RS5C372_TRIM_XSL 0x80
+# define RS5C372_TRIM_MASK 0x7F
+
+#define RS5C_REG_ALARM_A_MIN 8 /* or ALARM_W */
+#define RS5C_REG_ALARM_A_HOURS 9
+#define RS5C_REG_ALARM_A_WDAY 10
+
+#define RS5C_REG_ALARM_B_MIN 11 /* or ALARM_D */
+#define RS5C_REG_ALARM_B_HOURS 12
+#define RS5C_REG_ALARM_B_WDAY 13 /* (ALARM_B only) */
+
+#define RS5C_REG_CTRL1 14
+# define RS5C_CTRL1_AALE (1 << 7) /* or WALE */
+# define RS5C_CTRL1_BALE (1 << 6) /* or DALE */
+# define RV5C387_CTRL1_24 (1 << 5)
+# define RS5C372A_CTRL1_SL1 (1 << 5)
+# define RS5C_CTRL1_CT_MASK (7 << 0)
+# define RS5C_CTRL1_CT0 (0 << 0) /* no periodic irq */
+# define RS5C_CTRL1_CT4 (4 << 0) /* 1 Hz level irq */
+#define RS5C_REG_CTRL2 15
+# define RS5C372_CTRL2_24 (1 << 5)
+# define RS5C_CTRL2_XSTP (1 << 4) /* only if !R2x2x */
+# define R2x2x_CTRL2_VDET (1 << 6) /* only if R2x2x */
+# define R2x2x_CTRL2_XSTP (1 << 5) /* only if R2x2x */
+# define R2x2x_CTRL2_PON (1 << 4) /* only if R2x2x */
+# define RS5C_CTRL2_CTFG (1 << 2)
+# define RS5C_CTRL2_AAFG (1 << 1) /* or WAFG */
+# define RS5C_CTRL2_BAFG (1 << 0) /* or DAFG */
+
+
+/* to read (style 1) or write registers starting at R */
+#define RS5C_ADDR(R) (((R) << 4) | 0)
+
+
+enum rtc_type {
+ rtc_undef = 0,
+ rtc_r2025sd,
+ rtc_r2221tl,
+ rtc_rs5c372a,
+ rtc_rs5c372b,
+ rtc_rv5c386,
+ rtc_rv5c387a,
+};
+
+static const struct i2c_device_id rs5c372_id[] = {
+ { "r2025sd", rtc_r2025sd },
+ { "r2221tl", rtc_r2221tl },
+ { "rs5c372a", rtc_rs5c372a },
+ { "rs5c372b", rtc_rs5c372b },
+ { "rv5c386", rtc_rv5c386 },
+ { "rv5c387a", rtc_rv5c387a },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, rs5c372_id);
+
+static const struct of_device_id rs5c372_of_match[] = {
+ {
+ .compatible = "ricoh,r2025sd",
+ .data = (void *)rtc_r2025sd
+ },
+ {
+ .compatible = "ricoh,r2221tl",
+ .data = (void *)rtc_r2221tl
+ },
+ {
+ .compatible = "ricoh,rs5c372a",
+ .data = (void *)rtc_rs5c372a
+ },
+ {
+ .compatible = "ricoh,rs5c372b",
+ .data = (void *)rtc_rs5c372b
+ },
+ {
+ .compatible = "ricoh,rv5c386",
+ .data = (void *)rtc_rv5c386
+ },
+ {
+ .compatible = "ricoh,rv5c387a",
+ .data = (void *)rtc_rv5c387a
+ },
+ { }
+};
+MODULE_DEVICE_TABLE(of, rs5c372_of_match);
+
+/* REVISIT: this assumes that:
+ * - we're in the 21st century, so it's safe to ignore the century
+ * bit for rv5c38[67] (REG_MONTH bit 7);
+ * - we should use ALARM_A not ALARM_B (may be wrong on some boards)
+ */
+struct rs5c372 {
+ struct i2c_client *client;
+ struct rtc_device *rtc;
+ enum rtc_type type;
+ unsigned time24:1;
+ unsigned has_irq:1;
+ unsigned smbus:1;
+ char buf[17];
+ char *regs;
+};
+
+static int rs5c_get_regs(struct rs5c372 *rs5c)
+{
+ struct i2c_client *client = rs5c->client;
+ struct i2c_msg msgs[] = {
+ {
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = sizeof(rs5c->buf),
+ .buf = rs5c->buf
+ },
+ };
+
+ /* This implements the third reading method from the datasheet, using
+ * an internal address that's reset after each transaction (by STOP)
+ * to 0x0f ... so we read extra registers, and skip the first one.
+ *
+ * The first method doesn't work with the iop3xx adapter driver, on at
+ * least 80219 chips; this works around that bug.
+ *
+ * The third method on the other hand doesn't work for the SMBus-only
+ * configurations, so we use the the first method there, stripping off
+ * the extra register in the process.
+ */
+ if (rs5c->smbus) {
+ int addr = RS5C_ADDR(RS5C372_REG_SECS);
+ int size = sizeof(rs5c->buf) - 1;
+
+ if (i2c_smbus_read_i2c_block_data(client, addr, size,
+ rs5c->buf + 1) != size) {
+ dev_warn(&client->dev, "can't read registers\n");
+ return -EIO;
+ }
+ } else {
+ if ((i2c_transfer(client->adapter, msgs, 1)) != 1) {
+ dev_warn(&client->dev, "can't read registers\n");
+ return -EIO;
+ }
+ }
+
+ dev_dbg(&client->dev,
+ "%3ph (%02x) %3ph (%02x), %3ph, %3ph; %02x %02x\n",
+ rs5c->regs + 0, rs5c->regs[3],
+ rs5c->regs + 4, rs5c->regs[7],
+ rs5c->regs + 8, rs5c->regs + 11,
+ rs5c->regs[14], rs5c->regs[15]);
+
+ return 0;
+}
+
+static unsigned rs5c_reg2hr(struct rs5c372 *rs5c, unsigned reg)
+{
+ unsigned hour;
+
+ if (rs5c->time24)
+ return bcd2bin(reg & 0x3f);
+
+ hour = bcd2bin(reg & 0x1f);
+ if (hour == 12)
+ hour = 0;
+ if (reg & 0x20)
+ hour += 12;
+ return hour;
+}
+
+static unsigned rs5c_hr2reg(struct rs5c372 *rs5c, unsigned hour)
+{
+ if (rs5c->time24)
+ return bin2bcd(hour);
+
+ if (hour > 12)
+ return 0x20 | bin2bcd(hour - 12);
+ if (hour == 12)
+ return 0x20 | bin2bcd(12);
+ if (hour == 0)
+ return bin2bcd(12);
+ return bin2bcd(hour);
+}
+
+static int rs5c372_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct rs5c372 *rs5c = i2c_get_clientdata(client);
+ int status = rs5c_get_regs(rs5c);
+ unsigned char ctrl2 = rs5c->regs[RS5C_REG_CTRL2];
+
+ if (status < 0)
+ return status;
+
+ switch (rs5c->type) {
+ case rtc_r2025sd:
+ case rtc_r2221tl:
+ if ((rs5c->type == rtc_r2025sd && !(ctrl2 & R2x2x_CTRL2_XSTP)) ||
+ (rs5c->type == rtc_r2221tl && (ctrl2 & R2x2x_CTRL2_XSTP))) {
+ dev_warn(&client->dev, "rtc oscillator interruption detected. Please reset the rtc clock.\n");
+ return -EINVAL;
+ }
+ break;
+ default:
+ if (ctrl2 & RS5C_CTRL2_XSTP) {
+ dev_warn(&client->dev, "rtc oscillator interruption detected. Please reset the rtc clock.\n");
+ return -EINVAL;
+ }
+ }
+
+ tm->tm_sec = bcd2bin(rs5c->regs[RS5C372_REG_SECS] & 0x7f);
+ tm->tm_min = bcd2bin(rs5c->regs[RS5C372_REG_MINS] & 0x7f);
+ tm->tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C372_REG_HOURS]);
+
+ tm->tm_wday = bcd2bin(rs5c->regs[RS5C372_REG_WDAY] & 0x07);
+ tm->tm_mday = bcd2bin(rs5c->regs[RS5C372_REG_DAY] & 0x3f);
+
+ /* tm->tm_mon is zero-based */
+ tm->tm_mon = bcd2bin(rs5c->regs[RS5C372_REG_MONTH] & 0x1f) - 1;
+
+ /* year is 1900 + tm->tm_year */
+ tm->tm_year = bcd2bin(rs5c->regs[RS5C372_REG_YEAR]) + 100;
+
+ dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
+ "mday=%d, mon=%d, year=%d, wday=%d\n",
+ __func__,
+ tm->tm_sec, tm->tm_min, tm->tm_hour,
+ tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ return 0;
+}
+
+static int rs5c372_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct rs5c372 *rs5c = i2c_get_clientdata(client);
+ unsigned char buf[7];
+ unsigned char ctrl2;
+ int addr;
+
+ dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d "
+ "mday=%d, mon=%d, year=%d, wday=%d\n",
+ __func__,
+ tm->tm_sec, tm->tm_min, tm->tm_hour,
+ tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ addr = RS5C_ADDR(RS5C372_REG_SECS);
+ buf[0] = bin2bcd(tm->tm_sec);
+ buf[1] = bin2bcd(tm->tm_min);
+ buf[2] = rs5c_hr2reg(rs5c, tm->tm_hour);
+ buf[3] = bin2bcd(tm->tm_wday);
+ buf[4] = bin2bcd(tm->tm_mday);
+ buf[5] = bin2bcd(tm->tm_mon + 1);
+ buf[6] = bin2bcd(tm->tm_year - 100);
+
+ if (i2c_smbus_write_i2c_block_data(client, addr, sizeof(buf), buf) < 0) {
+ dev_dbg(&client->dev, "%s: write error in line %i\n",
+ __func__, __LINE__);
+ return -EIO;
+ }
+
+ addr = RS5C_ADDR(RS5C_REG_CTRL2);
+ ctrl2 = i2c_smbus_read_byte_data(client, addr);
+
+ /* clear rtc warning bits */
+ switch (rs5c->type) {
+ case rtc_r2025sd:
+ case rtc_r2221tl:
+ ctrl2 &= ~(R2x2x_CTRL2_VDET | R2x2x_CTRL2_PON);
+ if (rs5c->type == rtc_r2025sd)
+ ctrl2 |= R2x2x_CTRL2_XSTP;
+ else
+ ctrl2 &= ~R2x2x_CTRL2_XSTP;
+ break;
+ default:
+ ctrl2 &= ~RS5C_CTRL2_XSTP;
+ break;
+ }
+
+ if (i2c_smbus_write_byte_data(client, addr, ctrl2) < 0) {
+ dev_dbg(&client->dev, "%s: write error in line %i\n",
+ __func__, __LINE__);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
+#define NEED_TRIM
+#endif
+
+#if IS_ENABLED(CONFIG_RTC_INTF_SYSFS)
+#define NEED_TRIM
+#endif
+
+#ifdef NEED_TRIM
+static int rs5c372_get_trim(struct i2c_client *client, int *osc, int *trim)
+{
+ struct rs5c372 *rs5c372 = i2c_get_clientdata(client);
+ u8 tmp = rs5c372->regs[RS5C372_REG_TRIM];
+
+ if (osc)
+ *osc = (tmp & RS5C372_TRIM_XSL) ? 32000 : 32768;
+
+ if (trim) {
+ dev_dbg(&client->dev, "%s: raw trim=%x\n", __func__, tmp);
+ tmp &= RS5C372_TRIM_MASK;
+ if (tmp & 0x3e) {
+ int t = tmp & 0x3f;
+
+ if (tmp & 0x40)
+ t = (~t | (s8)0xc0) + 1;
+ else
+ t = t - 1;
+
+ tmp = t * 2;
+ } else
+ tmp = 0;
+ *trim = tmp;
+ }
+
+ return 0;
+}
+#endif
+
+static int rs5c_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct rs5c372 *rs5c = i2c_get_clientdata(client);
+ unsigned char buf;
+ int status, addr;
+
+ buf = rs5c->regs[RS5C_REG_CTRL1];
+
+ if (!rs5c->has_irq)
+ return -EINVAL;
+
+ status = rs5c_get_regs(rs5c);
+ if (status < 0)
+ return status;
+
+ addr = RS5C_ADDR(RS5C_REG_CTRL1);
+ if (enabled)
+ buf |= RS5C_CTRL1_AALE;
+ else
+ buf &= ~RS5C_CTRL1_AALE;
+
+ if (i2c_smbus_write_byte_data(client, addr, buf) < 0) {
+ dev_warn(dev, "can't update alarm\n");
+ status = -EIO;
+ } else
+ rs5c->regs[RS5C_REG_CTRL1] = buf;
+
+ return status;
+}
+
+
+/* NOTE: Since RTC_WKALM_{RD,SET} were originally defined for EFI,
+ * which only exposes a polled programming interface; and since
+ * these calls map directly to those EFI requests; we don't demand
+ * we have an IRQ for this chip when we go through this API.
+ *
+ * The older x86_pc derived RTC_ALM_{READ,SET} calls require irqs
+ * though, managed through RTC_AIE_{ON,OFF} requests.
+ */
+
+static int rs5c_read_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct rs5c372 *rs5c = i2c_get_clientdata(client);
+ int status;
+
+ status = rs5c_get_regs(rs5c);
+ if (status < 0)
+ return status;
+
+ /* report alarm time */
+ t->time.tm_sec = 0;
+ t->time.tm_min = bcd2bin(rs5c->regs[RS5C_REG_ALARM_A_MIN] & 0x7f);
+ t->time.tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C_REG_ALARM_A_HOURS]);
+
+ /* ... and status */
+ t->enabled = !!(rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE);
+ t->pending = !!(rs5c->regs[RS5C_REG_CTRL2] & RS5C_CTRL2_AAFG);
+
+ return 0;
+}
+
+static int rs5c_set_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct rs5c372 *rs5c = i2c_get_clientdata(client);
+ int status, addr, i;
+ unsigned char buf[3];
+
+ /* only handle up to 24 hours in the future, like RTC_ALM_SET */
+ if (t->time.tm_mday != -1
+ || t->time.tm_mon != -1
+ || t->time.tm_year != -1)
+ return -EINVAL;
+
+ /* REVISIT: round up tm_sec */
+
+ /* if needed, disable irq (clears pending status) */
+ status = rs5c_get_regs(rs5c);
+ if (status < 0)
+ return status;
+ if (rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE) {
+ addr = RS5C_ADDR(RS5C_REG_CTRL1);
+ buf[0] = rs5c->regs[RS5C_REG_CTRL1] & ~RS5C_CTRL1_AALE;
+ if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0) {
+ dev_dbg(dev, "can't disable alarm\n");
+ return -EIO;
+ }
+ rs5c->regs[RS5C_REG_CTRL1] = buf[0];
+ }
+
+ /* set alarm */
+ buf[0] = bin2bcd(t->time.tm_min);
+ buf[1] = rs5c_hr2reg(rs5c, t->time.tm_hour);
+ buf[2] = 0x7f; /* any/all days */
+
+ for (i = 0; i < sizeof(buf); i++) {
+ addr = RS5C_ADDR(RS5C_REG_ALARM_A_MIN + i);
+ if (i2c_smbus_write_byte_data(client, addr, buf[i]) < 0) {
+ dev_dbg(dev, "can't set alarm time\n");
+ return -EIO;
+ }
+ }
+
+ /* ... and maybe enable its irq */
+ if (t->enabled) {
+ addr = RS5C_ADDR(RS5C_REG_CTRL1);
+ buf[0] = rs5c->regs[RS5C_REG_CTRL1] | RS5C_CTRL1_AALE;
+ if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0)
+ dev_warn(dev, "can't enable alarm\n");
+ rs5c->regs[RS5C_REG_CTRL1] = buf[0];
+ }
+
+ return 0;
+}
+
+#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
+
+static int rs5c372_rtc_proc(struct device *dev, struct seq_file *seq)
+{
+ int err, osc, trim;
+
+ err = rs5c372_get_trim(to_i2c_client(dev), &osc, &trim);
+ if (err == 0) {
+ seq_printf(seq, "crystal\t\t: %d.%03d KHz\n",
+ osc / 1000, osc % 1000);
+ seq_printf(seq, "trim\t\t: %d\n", trim);
+ }
+
+ return 0;
+}
+
+#else
+#define rs5c372_rtc_proc NULL
+#endif
+
+static const struct rtc_class_ops rs5c372_rtc_ops = {
+ .proc = rs5c372_rtc_proc,
+ .read_time = rs5c372_rtc_read_time,
+ .set_time = rs5c372_rtc_set_time,
+ .read_alarm = rs5c_read_alarm,
+ .set_alarm = rs5c_set_alarm,
+ .alarm_irq_enable = rs5c_rtc_alarm_irq_enable,
+};
+
+#if IS_ENABLED(CONFIG_RTC_INTF_SYSFS)
+
+static ssize_t rs5c372_sysfs_show_trim(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ int err, trim;
+
+ err = rs5c372_get_trim(to_i2c_client(dev), NULL, &trim);
+ if (err)
+ return err;
+
+ return sprintf(buf, "%d\n", trim);
+}
+static DEVICE_ATTR(trim, S_IRUGO, rs5c372_sysfs_show_trim, NULL);
+
+static ssize_t rs5c372_sysfs_show_osc(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ int err, osc;
+
+ err = rs5c372_get_trim(to_i2c_client(dev), &osc, NULL);
+ if (err)
+ return err;
+
+ return sprintf(buf, "%d.%03d KHz\n", osc / 1000, osc % 1000);
+}
+static DEVICE_ATTR(osc, S_IRUGO, rs5c372_sysfs_show_osc, NULL);
+
+static int rs5c_sysfs_register(struct device *dev)
+{
+ int err;
+
+ err = device_create_file(dev, &dev_attr_trim);
+ if (err)
+ return err;
+ err = device_create_file(dev, &dev_attr_osc);
+ if (err)
+ device_remove_file(dev, &dev_attr_trim);
+
+ return err;
+}
+
+static void rs5c_sysfs_unregister(struct device *dev)
+{
+ device_remove_file(dev, &dev_attr_trim);
+ device_remove_file(dev, &dev_attr_osc);
+}
+
+#else
+static int rs5c_sysfs_register(struct device *dev)
+{
+ return 0;
+}
+
+static void rs5c_sysfs_unregister(struct device *dev)
+{
+ /* nothing */
+}
+#endif /* SYSFS */
+
+static struct i2c_driver rs5c372_driver;
+
+static int rs5c_oscillator_setup(struct rs5c372 *rs5c372)
+{
+ unsigned char buf[2];
+ int addr, i, ret = 0;
+
+ addr = RS5C_ADDR(RS5C_REG_CTRL1);
+ buf[0] = rs5c372->regs[RS5C_REG_CTRL1];
+ buf[1] = rs5c372->regs[RS5C_REG_CTRL2];
+
+ switch (rs5c372->type) {
+ case rtc_r2025sd:
+ if (buf[1] & R2x2x_CTRL2_XSTP)
+ return ret;
+ break;
+ case rtc_r2221tl:
+ if (!(buf[1] & R2x2x_CTRL2_XSTP))
+ return ret;
+ break;
+ default:
+ if (!(buf[1] & RS5C_CTRL2_XSTP))
+ return ret;
+ break;
+ }
+
+ /* use 24hr mode */
+ switch (rs5c372->type) {
+ case rtc_rs5c372a:
+ case rtc_rs5c372b:
+ buf[1] |= RS5C372_CTRL2_24;
+ rs5c372->time24 = 1;
+ break;
+ case rtc_r2025sd:
+ case rtc_r2221tl:
+ case rtc_rv5c386:
+ case rtc_rv5c387a:
+ buf[0] |= RV5C387_CTRL1_24;
+ rs5c372->time24 = 1;
+ break;
+ default:
+ /* impossible */
+ break;
+ }
+
+ for (i = 0; i < sizeof(buf); i++) {
+ addr = RS5C_ADDR(RS5C_REG_CTRL1 + i);
+ ret = i2c_smbus_write_byte_data(rs5c372->client, addr, buf[i]);
+ if (unlikely(ret < 0))
+ return ret;
+ }
+
+ rs5c372->regs[RS5C_REG_CTRL1] = buf[0];
+ rs5c372->regs[RS5C_REG_CTRL2] = buf[1];
+
+ return 0;
+}
+
+static int rs5c372_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ int err = 0;
+ int smbus_mode = 0;
+ struct rs5c372 *rs5c372;
+
+ dev_dbg(&client->dev, "%s\n", __func__);
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
+ I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_I2C_BLOCK)) {
+ /*
+ * If we don't have any master mode adapter, try breaking
+ * it down in to the barest of capabilities.
+ */
+ if (i2c_check_functionality(client->adapter,
+ I2C_FUNC_SMBUS_BYTE_DATA |
+ I2C_FUNC_SMBUS_I2C_BLOCK))
+ smbus_mode = 1;
+ else {
+ /* Still no good, give up */
+ err = -ENODEV;
+ goto exit;
+ }
+ }
+
+ rs5c372 = devm_kzalloc(&client->dev, sizeof(struct rs5c372),
+ GFP_KERNEL);
+ if (!rs5c372) {
+ err = -ENOMEM;
+ goto exit;
+ }
+
+ rs5c372->client = client;
+ i2c_set_clientdata(client, rs5c372);
+ if (client->dev.of_node)
+ rs5c372->type = (enum rtc_type)
+ of_device_get_match_data(&client->dev);
+ else
+ rs5c372->type = id->driver_data;
+
+ /* we read registers 0x0f then 0x00-0x0f; skip the first one */
+ rs5c372->regs = &rs5c372->buf[1];
+ rs5c372->smbus = smbus_mode;
+
+ err = rs5c_get_regs(rs5c372);
+ if (err < 0)
+ goto exit;
+
+ /* clock may be set for am/pm or 24 hr time */
+ switch (rs5c372->type) {
+ case rtc_rs5c372a:
+ case rtc_rs5c372b:
+ /* alarm uses ALARM_A; and nINTRA on 372a, nINTR on 372b.
+ * so does periodic irq, except some 327a modes.
+ */
+ if (rs5c372->regs[RS5C_REG_CTRL2] & RS5C372_CTRL2_24)
+ rs5c372->time24 = 1;
+ break;
+ case rtc_r2025sd:
+ case rtc_r2221tl:
+ case rtc_rv5c386:
+ case rtc_rv5c387a:
+ if (rs5c372->regs[RS5C_REG_CTRL1] & RV5C387_CTRL1_24)
+ rs5c372->time24 = 1;
+ /* alarm uses ALARM_W; and nINTRB for alarm and periodic
+ * irq, on both 386 and 387
+ */
+ break;
+ default:
+ dev_err(&client->dev, "unknown RTC type\n");
+ goto exit;
+ }
+
+ /* if the oscillator lost power and no other software (like
+ * the bootloader) set it up, do it here.
+ *
+ * The R2025S/D does this a little differently than the other
+ * parts, so we special case that..
+ */
+ err = rs5c_oscillator_setup(rs5c372);
+ if (unlikely(err < 0)) {
+ dev_err(&client->dev, "setup error\n");
+ goto exit;
+ }
+
+ dev_info(&client->dev, "%s found, %s\n",
+ ({ char *s; switch (rs5c372->type) {
+ case rtc_r2025sd: s = "r2025sd"; break;
+ case rtc_r2221tl: s = "r2221tl"; break;
+ case rtc_rs5c372a: s = "rs5c372a"; break;
+ case rtc_rs5c372b: s = "rs5c372b"; break;
+ case rtc_rv5c386: s = "rv5c386"; break;
+ case rtc_rv5c387a: s = "rv5c387a"; break;
+ default: s = "chip"; break;
+ }; s;}),
+ rs5c372->time24 ? "24hr" : "am/pm"
+ );
+
+ /* REVISIT use client->irq to register alarm irq ... */
+ rs5c372->rtc = devm_rtc_device_register(&client->dev,
+ rs5c372_driver.driver.name,
+ &rs5c372_rtc_ops, THIS_MODULE);
+
+ if (IS_ERR(rs5c372->rtc)) {
+ err = PTR_ERR(rs5c372->rtc);
+ goto exit;
+ }
+
+ err = rs5c_sysfs_register(&client->dev);
+ if (err)
+ goto exit;
+
+ return 0;
+
+exit:
+ return err;
+}
+
+static int rs5c372_remove(struct i2c_client *client)
+{
+ rs5c_sysfs_unregister(&client->dev);
+ return 0;
+}
+
+static struct i2c_driver rs5c372_driver = {
+ .driver = {
+ .name = "rtc-rs5c372",
+ .of_match_table = of_match_ptr(rs5c372_of_match),
+ },
+ .probe = rs5c372_probe,
+ .remove = rs5c372_remove,
+ .id_table = rs5c372_id,
+};
+
+module_i2c_driver(rs5c372_driver);
+
+MODULE_AUTHOR(
+ "Pavel Mironchik <pmironchik@optifacio.net>, "
+ "Alessandro Zummo <a.zummo@towertech.it>, "
+ "Paul Mundt <lethal@linux-sh.org>");
+MODULE_DESCRIPTION("Ricoh RS5C372 RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-rtd119x.c b/drivers/rtc/rtc-rtd119x.c
new file mode 100644
index 000000000..bb98f2d57
--- /dev/null
+++ b/drivers/rtc/rtc-rtd119x.c
@@ -0,0 +1,240 @@
+/*
+ * Realtek RTD129x RTC
+ *
+ * Copyright (c) 2017 Andreas Färber
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include <linux/clk.h>
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_address.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/spinlock.h>
+
+#define RTD_RTCSEC 0x00
+#define RTD_RTCMIN 0x04
+#define RTD_RTCHR 0x08
+#define RTD_RTCDATE1 0x0c
+#define RTD_RTCDATE2 0x10
+#define RTD_RTCACR 0x28
+#define RTD_RTCEN 0x2c
+#define RTD_RTCCR 0x30
+
+#define RTD_RTCSEC_RTCSEC_MASK 0x7f
+
+#define RTD_RTCMIN_RTCMIN_MASK 0x3f
+
+#define RTD_RTCHR_RTCHR_MASK 0x1f
+
+#define RTD_RTCDATE1_RTCDATE1_MASK 0xff
+
+#define RTD_RTCDATE2_RTCDATE2_MASK 0x7f
+
+#define RTD_RTCACR_RTCPWR BIT(7)
+
+#define RTD_RTCEN_RTCEN_MASK 0xff
+
+#define RTD_RTCCR_RTCRST BIT(6)
+
+struct rtd119x_rtc {
+ void __iomem *base;
+ struct clk *clk;
+ struct rtc_device *rtcdev;
+ unsigned int base_year;
+};
+
+static inline int rtd119x_rtc_days_in_year(int year)
+{
+ return 365 + (is_leap_year(year) ? 1 : 0);
+}
+
+static void rtd119x_rtc_reset(struct device *dev)
+{
+ struct rtd119x_rtc *data = dev_get_drvdata(dev);
+ u32 val;
+
+ val = readl_relaxed(data->base + RTD_RTCCR);
+ val |= RTD_RTCCR_RTCRST;
+ writel_relaxed(val, data->base + RTD_RTCCR);
+
+ val &= ~RTD_RTCCR_RTCRST;
+ writel(val, data->base + RTD_RTCCR);
+}
+
+static void rtd119x_rtc_set_enabled(struct device *dev, bool enable)
+{
+ struct rtd119x_rtc *data = dev_get_drvdata(dev);
+ u32 val;
+
+ val = readl_relaxed(data->base + RTD_RTCEN);
+ if (enable) {
+ if ((val & RTD_RTCEN_RTCEN_MASK) == 0x5a)
+ return;
+ writel_relaxed(0x5a, data->base + RTD_RTCEN);
+ } else {
+ writel_relaxed(0, data->base + RTD_RTCEN);
+ }
+}
+
+static int rtd119x_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rtd119x_rtc *data = dev_get_drvdata(dev);
+ s32 day;
+ u32 sec;
+ unsigned int year;
+ int tries = 0;
+
+ while (true) {
+ tm->tm_sec = (readl_relaxed(data->base + RTD_RTCSEC) & RTD_RTCSEC_RTCSEC_MASK) >> 1;
+ tm->tm_min = readl_relaxed(data->base + RTD_RTCMIN) & RTD_RTCMIN_RTCMIN_MASK;
+ tm->tm_hour = readl_relaxed(data->base + RTD_RTCHR) & RTD_RTCHR_RTCHR_MASK;
+ day = readl_relaxed(data->base + RTD_RTCDATE1) & RTD_RTCDATE1_RTCDATE1_MASK;
+ day |= (readl_relaxed(data->base + RTD_RTCDATE2) & RTD_RTCDATE2_RTCDATE2_MASK) << 8;
+ sec = (readl_relaxed(data->base + RTD_RTCSEC) & RTD_RTCSEC_RTCSEC_MASK) >> 1;
+ tries++;
+
+ if (sec == tm->tm_sec)
+ break;
+
+ if (tries >= 3)
+ return -EINVAL;
+ }
+ if (tries > 1)
+ dev_dbg(dev, "%s: needed %i tries\n", __func__, tries);
+
+ year = data->base_year;
+ while (day >= rtd119x_rtc_days_in_year(year)) {
+ day -= rtd119x_rtc_days_in_year(year);
+ year++;
+ }
+ tm->tm_year = year - 1900;
+ tm->tm_yday = day;
+
+ tm->tm_mon = 0;
+ while (day >= rtc_month_days(tm->tm_mon, year)) {
+ day -= rtc_month_days(tm->tm_mon, year);
+ tm->tm_mon++;
+ }
+ tm->tm_mday = day + 1;
+
+ return 0;
+}
+
+static int rtd119x_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rtd119x_rtc *data = dev_get_drvdata(dev);
+ unsigned int day;
+ int i;
+
+ if (1900 + tm->tm_year < data->base_year)
+ return -EINVAL;
+
+ day = 0;
+ for (i = data->base_year; i < 1900 + tm->tm_year; i++)
+ day += rtd119x_rtc_days_in_year(i);
+
+ day += tm->tm_yday;
+ if (day > 0x7fff)
+ return -EINVAL;
+
+ rtd119x_rtc_set_enabled(dev, false);
+
+ writel_relaxed((tm->tm_sec << 1) & RTD_RTCSEC_RTCSEC_MASK, data->base + RTD_RTCSEC);
+ writel_relaxed(tm->tm_min & RTD_RTCMIN_RTCMIN_MASK, data->base + RTD_RTCMIN);
+ writel_relaxed(tm->tm_hour & RTD_RTCHR_RTCHR_MASK, data->base + RTD_RTCHR);
+ writel_relaxed(day & RTD_RTCDATE1_RTCDATE1_MASK, data->base + RTD_RTCDATE1);
+ writel_relaxed((day >> 8) & RTD_RTCDATE2_RTCDATE2_MASK, data->base + RTD_RTCDATE2);
+
+ rtd119x_rtc_set_enabled(dev, true);
+
+ return 0;
+}
+
+static const struct rtc_class_ops rtd119x_rtc_ops = {
+ .read_time = rtd119x_rtc_read_time,
+ .set_time = rtd119x_rtc_set_time,
+};
+
+static const struct of_device_id rtd119x_rtc_dt_ids[] = {
+ { .compatible = "realtek,rtd1295-rtc" },
+ { }
+};
+
+static int rtd119x_rtc_probe(struct platform_device *pdev)
+{
+ struct rtd119x_rtc *data;
+ u32 val;
+ int ret;
+
+ data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
+ if (!data)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, data);
+ data->base_year = 2014;
+
+ data->base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(data->base))
+ return PTR_ERR(data->base);
+
+ data->clk = of_clk_get(pdev->dev.of_node, 0);
+ if (IS_ERR(data->clk))
+ return PTR_ERR(data->clk);
+
+ ret = clk_prepare_enable(data->clk);
+ if (ret) {
+ clk_put(data->clk);
+ return ret;
+ }
+
+ val = readl_relaxed(data->base + RTD_RTCACR);
+ if (!(val & RTD_RTCACR_RTCPWR)) {
+ writel_relaxed(RTD_RTCACR_RTCPWR, data->base + RTD_RTCACR);
+
+ rtd119x_rtc_reset(&pdev->dev);
+
+ writel_relaxed(0, data->base + RTD_RTCMIN);
+ writel_relaxed(0, data->base + RTD_RTCHR);
+ writel_relaxed(0, data->base + RTD_RTCDATE1);
+ writel_relaxed(0, data->base + RTD_RTCDATE2);
+ }
+
+ rtd119x_rtc_set_enabled(&pdev->dev, true);
+
+ data->rtcdev = devm_rtc_device_register(&pdev->dev, "rtc",
+ &rtd119x_rtc_ops, THIS_MODULE);
+ if (IS_ERR(data->rtcdev)) {
+ dev_err(&pdev->dev, "failed to register rtc device");
+ clk_disable_unprepare(data->clk);
+ clk_put(data->clk);
+ return PTR_ERR(data->rtcdev);
+ }
+
+ return 0;
+}
+
+static int rtd119x_rtc_remove(struct platform_device *pdev)
+{
+ struct rtd119x_rtc *data = platform_get_drvdata(pdev);
+
+ rtd119x_rtc_set_enabled(&pdev->dev, false);
+
+ clk_disable_unprepare(data->clk);
+ clk_put(data->clk);
+
+ return 0;
+}
+
+static struct platform_driver rtd119x_rtc_driver = {
+ .probe = rtd119x_rtc_probe,
+ .remove = rtd119x_rtc_remove,
+ .driver = {
+ .name = "rtd1295-rtc",
+ .of_match_table = rtd119x_rtc_dt_ids,
+ },
+};
+builtin_platform_driver(rtd119x_rtc_driver);
diff --git a/drivers/rtc/rtc-rv3028.c b/drivers/rtc/rtc-rv3028.c
new file mode 100644
index 000000000..fa226f0fe
--- /dev/null
+++ b/drivers/rtc/rtc-rv3028.c
@@ -0,0 +1,923 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * RTC driver for the Micro Crystal RV3028
+ *
+ * Copyright (C) 2019 Micro Crystal SA
+ *
+ * Alexandre Belloni <alexandre.belloni@bootlin.com>
+ *
+ */
+
+#include <linux/clk-provider.h>
+#include <linux/bcd.h>
+#include <linux/bitops.h>
+#include <linux/i2c.h>
+#include <linux/interrupt.h>
+#include <linux/kernel.h>
+#include <linux/log2.h>
+#include <linux/module.h>
+#include <linux/of_device.h>
+#include <linux/regmap.h>
+#include <linux/rtc.h>
+
+#define RV3028_SEC 0x00
+#define RV3028_MIN 0x01
+#define RV3028_HOUR 0x02
+#define RV3028_WDAY 0x03
+#define RV3028_DAY 0x04
+#define RV3028_MONTH 0x05
+#define RV3028_YEAR 0x06
+#define RV3028_ALARM_MIN 0x07
+#define RV3028_ALARM_HOUR 0x08
+#define RV3028_ALARM_DAY 0x09
+#define RV3028_STATUS 0x0E
+#define RV3028_CTRL1 0x0F
+#define RV3028_CTRL2 0x10
+#define RV3028_EVT_CTRL 0x13
+#define RV3028_TS_COUNT 0x14
+#define RV3028_TS_SEC 0x15
+#define RV3028_RAM1 0x1F
+#define RV3028_EEPROM_ADDR 0x25
+#define RV3028_EEPROM_DATA 0x26
+#define RV3028_EEPROM_CMD 0x27
+#define RV3028_CLKOUT 0x35
+#define RV3028_OFFSET 0x36
+#define RV3028_BACKUP 0x37
+
+#define RV3028_STATUS_PORF BIT(0)
+#define RV3028_STATUS_EVF BIT(1)
+#define RV3028_STATUS_AF BIT(2)
+#define RV3028_STATUS_TF BIT(3)
+#define RV3028_STATUS_UF BIT(4)
+#define RV3028_STATUS_BSF BIT(5)
+#define RV3028_STATUS_CLKF BIT(6)
+#define RV3028_STATUS_EEBUSY BIT(7)
+
+#define RV3028_CLKOUT_FD_MASK GENMASK(2, 0)
+#define RV3028_CLKOUT_PORIE BIT(3)
+#define RV3028_CLKOUT_CLKSY BIT(6)
+#define RV3028_CLKOUT_CLKOE BIT(7)
+
+#define RV3028_CTRL1_EERD BIT(3)
+#define RV3028_CTRL1_WADA BIT(5)
+
+#define RV3028_CTRL2_RESET BIT(0)
+#define RV3028_CTRL2_12_24 BIT(1)
+#define RV3028_CTRL2_EIE BIT(2)
+#define RV3028_CTRL2_AIE BIT(3)
+#define RV3028_CTRL2_TIE BIT(4)
+#define RV3028_CTRL2_UIE BIT(5)
+#define RV3028_CTRL2_TSE BIT(7)
+
+#define RV3028_EVT_CTRL_TSR BIT(2)
+
+#define RV3028_EEPROM_CMD_UPDATE 0x11
+#define RV3028_EEPROM_CMD_WRITE 0x21
+#define RV3028_EEPROM_CMD_READ 0x22
+
+#define RV3028_EEBUSY_POLL 10000
+#define RV3028_EEBUSY_TIMEOUT 100000
+
+#define RV3028_BACKUP_TCE BIT(5)
+#define RV3028_BACKUP_TCR_MASK GENMASK(1,0)
+
+#define OFFSET_STEP_PPT 953674
+
+enum rv3028_type {
+ rv_3028,
+};
+
+struct rv3028_data {
+ struct regmap *regmap;
+ struct rtc_device *rtc;
+ enum rv3028_type type;
+#ifdef CONFIG_COMMON_CLK
+ struct clk_hw clkout_hw;
+#endif
+};
+
+static u16 rv3028_trickle_resistors[] = {3000, 5000, 9000, 15000};
+
+static ssize_t timestamp0_store(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ struct rv3028_data *rv3028 = dev_get_drvdata(dev->parent);
+
+ regmap_update_bits(rv3028->regmap, RV3028_EVT_CTRL, RV3028_EVT_CTRL_TSR,
+ RV3028_EVT_CTRL_TSR);
+
+ return count;
+};
+
+static ssize_t timestamp0_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct rv3028_data *rv3028 = dev_get_drvdata(dev->parent);
+ struct rtc_time tm;
+ int ret, count;
+ u8 date[6];
+
+ ret = regmap_read(rv3028->regmap, RV3028_TS_COUNT, &count);
+ if (ret)
+ return ret;
+
+ if (!count)
+ return 0;
+
+ ret = regmap_bulk_read(rv3028->regmap, RV3028_TS_SEC, date,
+ sizeof(date));
+ if (ret)
+ return ret;
+
+ tm.tm_sec = bcd2bin(date[0]);
+ tm.tm_min = bcd2bin(date[1]);
+ tm.tm_hour = bcd2bin(date[2]);
+ tm.tm_mday = bcd2bin(date[3]);
+ tm.tm_mon = bcd2bin(date[4]) - 1;
+ tm.tm_year = bcd2bin(date[5]) + 100;
+
+ ret = rtc_valid_tm(&tm);
+ if (ret)
+ return ret;
+
+ return sprintf(buf, "%llu\n",
+ (unsigned long long)rtc_tm_to_time64(&tm));
+};
+
+static DEVICE_ATTR_RW(timestamp0);
+
+static ssize_t timestamp0_count_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct rv3028_data *rv3028 = dev_get_drvdata(dev->parent);
+ int ret, count;
+
+ ret = regmap_read(rv3028->regmap, RV3028_TS_COUNT, &count);
+ if (ret)
+ return ret;
+
+ return sprintf(buf, "%u\n", count);
+};
+
+static DEVICE_ATTR_RO(timestamp0_count);
+
+static struct attribute *rv3028_attrs[] = {
+ &dev_attr_timestamp0.attr,
+ &dev_attr_timestamp0_count.attr,
+ NULL
+};
+
+static const struct attribute_group rv3028_attr_group = {
+ .attrs = rv3028_attrs,
+};
+
+static int rv3028_exit_eerd(struct rv3028_data *rv3028, u32 eerd)
+{
+ if (eerd)
+ return 0;
+
+ return regmap_update_bits(rv3028->regmap, RV3028_CTRL1, RV3028_CTRL1_EERD, 0);
+}
+
+static int rv3028_enter_eerd(struct rv3028_data *rv3028, u32 *eerd)
+{
+ u32 ctrl1, status;
+ int ret;
+
+ ret = regmap_read(rv3028->regmap, RV3028_CTRL1, &ctrl1);
+ if (ret)
+ return ret;
+
+ *eerd = ctrl1 & RV3028_CTRL1_EERD;
+ if (*eerd)
+ return 0;
+
+ ret = regmap_update_bits(rv3028->regmap, RV3028_CTRL1,
+ RV3028_CTRL1_EERD, RV3028_CTRL1_EERD);
+ if (ret)
+ return ret;
+
+ ret = regmap_read_poll_timeout(rv3028->regmap, RV3028_STATUS, status,
+ !(status & RV3028_STATUS_EEBUSY),
+ RV3028_EEBUSY_POLL, RV3028_EEBUSY_TIMEOUT);
+ if (ret) {
+ rv3028_exit_eerd(rv3028, *eerd);
+
+ return ret;
+ }
+
+ return 0;
+}
+
+static int rv3028_update_eeprom(struct rv3028_data *rv3028, u32 eerd)
+{
+ u32 status;
+ int ret;
+
+ ret = regmap_write(rv3028->regmap, RV3028_EEPROM_CMD, 0x0);
+ if (ret)
+ goto exit_eerd;
+
+ ret = regmap_write(rv3028->regmap, RV3028_EEPROM_CMD, RV3028_EEPROM_CMD_UPDATE);
+ if (ret)
+ goto exit_eerd;
+
+ usleep_range(63000, RV3028_EEBUSY_TIMEOUT);
+
+ ret = regmap_read_poll_timeout(rv3028->regmap, RV3028_STATUS, status,
+ !(status & RV3028_STATUS_EEBUSY),
+ RV3028_EEBUSY_POLL, RV3028_EEBUSY_TIMEOUT);
+
+exit_eerd:
+ rv3028_exit_eerd(rv3028, eerd);
+
+ return ret;
+}
+
+static int rv3028_update_cfg(struct rv3028_data *rv3028, unsigned int reg,
+ unsigned int mask, unsigned int val)
+{
+ u32 eerd;
+ int ret;
+
+ ret = rv3028_enter_eerd(rv3028, &eerd);
+ if (ret)
+ return ret;
+
+ ret = regmap_update_bits(rv3028->regmap, reg, mask, val);
+ if (ret) {
+ rv3028_exit_eerd(rv3028, eerd);
+ return ret;
+ }
+
+ return rv3028_update_eeprom(rv3028, eerd);
+}
+
+static irqreturn_t rv3028_handle_irq(int irq, void *dev_id)
+{
+ struct rv3028_data *rv3028 = dev_id;
+ unsigned long events = 0;
+ u32 status = 0, ctrl = 0;
+
+ if (regmap_read(rv3028->regmap, RV3028_STATUS, &status) < 0 ||
+ status == 0) {
+ return IRQ_NONE;
+ }
+
+ if (status & RV3028_STATUS_PORF)
+ dev_warn(&rv3028->rtc->dev, "Voltage low, data loss detected.\n");
+
+ if (status & RV3028_STATUS_TF) {
+ status |= RV3028_STATUS_TF;
+ ctrl |= RV3028_CTRL2_TIE;
+ events |= RTC_PF;
+ }
+
+ if (status & RV3028_STATUS_AF) {
+ status |= RV3028_STATUS_AF;
+ ctrl |= RV3028_CTRL2_AIE;
+ events |= RTC_AF;
+ }
+
+ if (status & RV3028_STATUS_UF) {
+ status |= RV3028_STATUS_UF;
+ ctrl |= RV3028_CTRL2_UIE;
+ events |= RTC_UF;
+ }
+
+ if (events) {
+ rtc_update_irq(rv3028->rtc, 1, events);
+ regmap_update_bits(rv3028->regmap, RV3028_STATUS, status, 0);
+ regmap_update_bits(rv3028->regmap, RV3028_CTRL2, ctrl, 0);
+ }
+
+ if (status & RV3028_STATUS_EVF) {
+ sysfs_notify(&rv3028->rtc->dev.kobj, NULL,
+ dev_attr_timestamp0.attr.name);
+ dev_warn(&rv3028->rtc->dev, "event detected");
+ }
+
+ return IRQ_HANDLED;
+}
+
+static int rv3028_get_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rv3028_data *rv3028 = dev_get_drvdata(dev);
+ u8 date[7];
+ int ret, status;
+
+ ret = regmap_read(rv3028->regmap, RV3028_STATUS, &status);
+ if (ret < 0)
+ return ret;
+
+ if (status & RV3028_STATUS_PORF) {
+ dev_warn(dev, "Voltage low, data is invalid.\n");
+ return -EINVAL;
+ }
+
+ ret = regmap_bulk_read(rv3028->regmap, RV3028_SEC, date, sizeof(date));
+ if (ret)
+ return ret;
+
+ tm->tm_sec = bcd2bin(date[RV3028_SEC] & 0x7f);
+ tm->tm_min = bcd2bin(date[RV3028_MIN] & 0x7f);
+ tm->tm_hour = bcd2bin(date[RV3028_HOUR] & 0x3f);
+ tm->tm_wday = ilog2(date[RV3028_WDAY] & 0x7f);
+ tm->tm_mday = bcd2bin(date[RV3028_DAY] & 0x3f);
+ tm->tm_mon = bcd2bin(date[RV3028_MONTH] & 0x1f) - 1;
+ tm->tm_year = bcd2bin(date[RV3028_YEAR]) + 100;
+
+ return 0;
+}
+
+static int rv3028_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rv3028_data *rv3028 = dev_get_drvdata(dev);
+ u8 date[7];
+ int ret;
+
+ date[RV3028_SEC] = bin2bcd(tm->tm_sec);
+ date[RV3028_MIN] = bin2bcd(tm->tm_min);
+ date[RV3028_HOUR] = bin2bcd(tm->tm_hour);
+ date[RV3028_WDAY] = 1 << (tm->tm_wday);
+ date[RV3028_DAY] = bin2bcd(tm->tm_mday);
+ date[RV3028_MONTH] = bin2bcd(tm->tm_mon + 1);
+ date[RV3028_YEAR] = bin2bcd(tm->tm_year - 100);
+
+ /*
+ * Writing to the Seconds register has the same effect as setting RESET
+ * bit to 1
+ */
+ ret = regmap_bulk_write(rv3028->regmap, RV3028_SEC, date,
+ sizeof(date));
+ if (ret)
+ return ret;
+
+ ret = regmap_update_bits(rv3028->regmap, RV3028_STATUS,
+ RV3028_STATUS_PORF, 0);
+
+ return ret;
+}
+
+static int rv3028_get_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rv3028_data *rv3028 = dev_get_drvdata(dev);
+ u8 alarmvals[3];
+ int status, ctrl, ret;
+
+ ret = regmap_bulk_read(rv3028->regmap, RV3028_ALARM_MIN, alarmvals,
+ sizeof(alarmvals));
+ if (ret)
+ return ret;
+
+ ret = regmap_read(rv3028->regmap, RV3028_STATUS, &status);
+ if (ret < 0)
+ return ret;
+
+ ret = regmap_read(rv3028->regmap, RV3028_CTRL2, &ctrl);
+ if (ret < 0)
+ return ret;
+
+ alrm->time.tm_sec = 0;
+ alrm->time.tm_min = bcd2bin(alarmvals[0] & 0x7f);
+ alrm->time.tm_hour = bcd2bin(alarmvals[1] & 0x3f);
+ alrm->time.tm_mday = bcd2bin(alarmvals[2] & 0x3f);
+
+ alrm->enabled = !!(ctrl & RV3028_CTRL2_AIE);
+ alrm->pending = (status & RV3028_STATUS_AF) && alrm->enabled;
+
+ return 0;
+}
+
+static int rv3028_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rv3028_data *rv3028 = dev_get_drvdata(dev);
+ u8 alarmvals[3];
+ u8 ctrl = 0;
+ int ret;
+
+ /* The alarm has no seconds, round up to nearest minute */
+ if (alrm->time.tm_sec) {
+ time64_t alarm_time = rtc_tm_to_time64(&alrm->time);
+
+ alarm_time += 60 - alrm->time.tm_sec;
+ rtc_time64_to_tm(alarm_time, &alrm->time);
+ }
+
+ ret = regmap_update_bits(rv3028->regmap, RV3028_CTRL2,
+ RV3028_CTRL2_AIE | RV3028_CTRL2_UIE, 0);
+ if (ret)
+ return ret;
+
+ alarmvals[0] = bin2bcd(alrm->time.tm_min);
+ alarmvals[1] = bin2bcd(alrm->time.tm_hour);
+ alarmvals[2] = bin2bcd(alrm->time.tm_mday);
+
+ ret = regmap_update_bits(rv3028->regmap, RV3028_STATUS,
+ RV3028_STATUS_AF, 0);
+ if (ret)
+ return ret;
+
+ ret = regmap_bulk_write(rv3028->regmap, RV3028_ALARM_MIN, alarmvals,
+ sizeof(alarmvals));
+ if (ret)
+ return ret;
+
+ if (alrm->enabled) {
+ if (rv3028->rtc->uie_rtctimer.enabled)
+ ctrl |= RV3028_CTRL2_UIE;
+ if (rv3028->rtc->aie_timer.enabled)
+ ctrl |= RV3028_CTRL2_AIE;
+ }
+
+ ret = regmap_update_bits(rv3028->regmap, RV3028_CTRL2,
+ RV3028_CTRL2_UIE | RV3028_CTRL2_AIE, ctrl);
+
+ return ret;
+}
+
+static int rv3028_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct rv3028_data *rv3028 = dev_get_drvdata(dev);
+ int ctrl = 0, ret;
+
+ if (enabled) {
+ if (rv3028->rtc->uie_rtctimer.enabled)
+ ctrl |= RV3028_CTRL2_UIE;
+ if (rv3028->rtc->aie_timer.enabled)
+ ctrl |= RV3028_CTRL2_AIE;
+ }
+
+ ret = regmap_update_bits(rv3028->regmap, RV3028_STATUS,
+ RV3028_STATUS_AF | RV3028_STATUS_UF, 0);
+ if (ret)
+ return ret;
+
+ ret = regmap_update_bits(rv3028->regmap, RV3028_CTRL2,
+ RV3028_CTRL2_UIE | RV3028_CTRL2_AIE, ctrl);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+static int rv3028_read_offset(struct device *dev, long *offset)
+{
+ struct rv3028_data *rv3028 = dev_get_drvdata(dev);
+ int ret, value, steps;
+
+ ret = regmap_read(rv3028->regmap, RV3028_OFFSET, &value);
+ if (ret < 0)
+ return ret;
+
+ steps = sign_extend32(value << 1, 8);
+
+ ret = regmap_read(rv3028->regmap, RV3028_BACKUP, &value);
+ if (ret < 0)
+ return ret;
+
+ steps += value >> 7;
+
+ *offset = DIV_ROUND_CLOSEST(steps * OFFSET_STEP_PPT, 1000);
+
+ return 0;
+}
+
+static int rv3028_set_offset(struct device *dev, long offset)
+{
+ struct rv3028_data *rv3028 = dev_get_drvdata(dev);
+ u32 eerd;
+ int ret;
+
+ offset = clamp(offset, -244141L, 243187L) * 1000;
+ offset = DIV_ROUND_CLOSEST(offset, OFFSET_STEP_PPT);
+
+ ret = rv3028_enter_eerd(rv3028, &eerd);
+ if (ret)
+ return ret;
+
+ ret = regmap_write(rv3028->regmap, RV3028_OFFSET, offset >> 1);
+ if (ret < 0)
+ goto exit_eerd;
+
+ ret = regmap_update_bits(rv3028->regmap, RV3028_BACKUP, BIT(7),
+ offset << 7);
+ if (ret < 0)
+ goto exit_eerd;
+
+ return rv3028_update_eeprom(rv3028, eerd);
+
+exit_eerd:
+ rv3028_exit_eerd(rv3028, eerd);
+
+ return ret;
+
+}
+
+static int rv3028_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
+{
+ struct rv3028_data *rv3028 = dev_get_drvdata(dev);
+ int status, ret = 0;
+
+ switch (cmd) {
+ case RTC_VL_READ:
+ ret = regmap_read(rv3028->regmap, RV3028_STATUS, &status);
+ if (ret < 0)
+ return ret;
+
+ status = status & RV3028_STATUS_PORF ? RTC_VL_DATA_INVALID : 0;
+ return put_user(status, (unsigned int __user *)arg);
+
+ default:
+ return -ENOIOCTLCMD;
+ }
+}
+
+static int rv3028_nvram_write(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ return regmap_bulk_write(priv, RV3028_RAM1 + offset, val, bytes);
+}
+
+static int rv3028_nvram_read(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ return regmap_bulk_read(priv, RV3028_RAM1 + offset, val, bytes);
+}
+
+static int rv3028_eeprom_write(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ struct rv3028_data *rv3028 = priv;
+ u32 status, eerd;
+ int i, ret;
+ u8 *buf = val;
+
+ ret = rv3028_enter_eerd(rv3028, &eerd);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < bytes; i++) {
+ ret = regmap_write(rv3028->regmap, RV3028_EEPROM_ADDR, offset + i);
+ if (ret)
+ goto restore_eerd;
+
+ ret = regmap_write(rv3028->regmap, RV3028_EEPROM_DATA, buf[i]);
+ if (ret)
+ goto restore_eerd;
+
+ ret = regmap_write(rv3028->regmap, RV3028_EEPROM_CMD, 0x0);
+ if (ret)
+ goto restore_eerd;
+
+ ret = regmap_write(rv3028->regmap, RV3028_EEPROM_CMD,
+ RV3028_EEPROM_CMD_WRITE);
+ if (ret)
+ goto restore_eerd;
+
+ usleep_range(RV3028_EEBUSY_POLL, RV3028_EEBUSY_TIMEOUT);
+
+ ret = regmap_read_poll_timeout(rv3028->regmap, RV3028_STATUS, status,
+ !(status & RV3028_STATUS_EEBUSY),
+ RV3028_EEBUSY_POLL,
+ RV3028_EEBUSY_TIMEOUT);
+ if (ret)
+ goto restore_eerd;
+ }
+
+restore_eerd:
+ rv3028_exit_eerd(rv3028, eerd);
+
+ return ret;
+}
+
+static int rv3028_eeprom_read(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ struct rv3028_data *rv3028 = priv;
+ u32 status, eerd, data;
+ int i, ret;
+ u8 *buf = val;
+
+ ret = rv3028_enter_eerd(rv3028, &eerd);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < bytes; i++) {
+ ret = regmap_write(rv3028->regmap, RV3028_EEPROM_ADDR, offset + i);
+ if (ret)
+ goto restore_eerd;
+
+ ret = regmap_write(rv3028->regmap, RV3028_EEPROM_CMD, 0x0);
+ if (ret)
+ goto restore_eerd;
+
+ ret = regmap_write(rv3028->regmap, RV3028_EEPROM_CMD,
+ RV3028_EEPROM_CMD_READ);
+ if (ret)
+ goto restore_eerd;
+
+ ret = regmap_read_poll_timeout(rv3028->regmap, RV3028_STATUS, status,
+ !(status & RV3028_STATUS_EEBUSY),
+ RV3028_EEBUSY_POLL,
+ RV3028_EEBUSY_TIMEOUT);
+ if (ret)
+ goto restore_eerd;
+
+ ret = regmap_read(rv3028->regmap, RV3028_EEPROM_DATA, &data);
+ if (ret)
+ goto restore_eerd;
+ buf[i] = data;
+ }
+
+restore_eerd:
+ rv3028_exit_eerd(rv3028, eerd);
+
+ return ret;
+}
+
+#ifdef CONFIG_COMMON_CLK
+#define clkout_hw_to_rv3028(hw) container_of(hw, struct rv3028_data, clkout_hw)
+
+static int clkout_rates[] = {
+ 32768,
+ 8192,
+ 1024,
+ 64,
+ 32,
+ 1,
+};
+
+static unsigned long rv3028_clkout_recalc_rate(struct clk_hw *hw,
+ unsigned long parent_rate)
+{
+ int clkout, ret;
+ struct rv3028_data *rv3028 = clkout_hw_to_rv3028(hw);
+
+ ret = regmap_read(rv3028->regmap, RV3028_CLKOUT, &clkout);
+ if (ret < 0)
+ return 0;
+
+ clkout &= RV3028_CLKOUT_FD_MASK;
+ return clkout_rates[clkout];
+}
+
+static long rv3028_clkout_round_rate(struct clk_hw *hw, unsigned long rate,
+ unsigned long *prate)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(clkout_rates); i++)
+ if (clkout_rates[i] <= rate)
+ return clkout_rates[i];
+
+ return 0;
+}
+
+static int rv3028_clkout_set_rate(struct clk_hw *hw, unsigned long rate,
+ unsigned long parent_rate)
+{
+ int i, ret;
+ u32 enabled;
+ struct rv3028_data *rv3028 = clkout_hw_to_rv3028(hw);
+
+ ret = regmap_read(rv3028->regmap, RV3028_CLKOUT, &enabled);
+ if (ret < 0)
+ return ret;
+
+ ret = regmap_write(rv3028->regmap, RV3028_CLKOUT, 0x0);
+ if (ret < 0)
+ return ret;
+
+ enabled &= RV3028_CLKOUT_CLKOE;
+
+ for (i = 0; i < ARRAY_SIZE(clkout_rates); i++)
+ if (clkout_rates[i] == rate)
+ return rv3028_update_cfg(rv3028, RV3028_CLKOUT, 0xff,
+ RV3028_CLKOUT_CLKSY | enabled | i);
+
+ return -EINVAL;
+}
+
+static int rv3028_clkout_prepare(struct clk_hw *hw)
+{
+ struct rv3028_data *rv3028 = clkout_hw_to_rv3028(hw);
+
+ return regmap_write(rv3028->regmap, RV3028_CLKOUT,
+ RV3028_CLKOUT_CLKSY | RV3028_CLKOUT_CLKOE);
+}
+
+static void rv3028_clkout_unprepare(struct clk_hw *hw)
+{
+ struct rv3028_data *rv3028 = clkout_hw_to_rv3028(hw);
+
+ regmap_write(rv3028->regmap, RV3028_CLKOUT, 0x0);
+ regmap_update_bits(rv3028->regmap, RV3028_STATUS,
+ RV3028_STATUS_CLKF, 0);
+}
+
+static int rv3028_clkout_is_prepared(struct clk_hw *hw)
+{
+ int clkout, ret;
+ struct rv3028_data *rv3028 = clkout_hw_to_rv3028(hw);
+
+ ret = regmap_read(rv3028->regmap, RV3028_CLKOUT, &clkout);
+ if (ret < 0)
+ return ret;
+
+ return !!(clkout & RV3028_CLKOUT_CLKOE);
+}
+
+static const struct clk_ops rv3028_clkout_ops = {
+ .prepare = rv3028_clkout_prepare,
+ .unprepare = rv3028_clkout_unprepare,
+ .is_prepared = rv3028_clkout_is_prepared,
+ .recalc_rate = rv3028_clkout_recalc_rate,
+ .round_rate = rv3028_clkout_round_rate,
+ .set_rate = rv3028_clkout_set_rate,
+};
+
+static int rv3028_clkout_register_clk(struct rv3028_data *rv3028,
+ struct i2c_client *client)
+{
+ int ret;
+ struct clk *clk;
+ struct clk_init_data init;
+ struct device_node *node = client->dev.of_node;
+
+ ret = regmap_update_bits(rv3028->regmap, RV3028_STATUS,
+ RV3028_STATUS_CLKF, 0);
+ if (ret < 0)
+ return ret;
+
+ init.name = "rv3028-clkout";
+ init.ops = &rv3028_clkout_ops;
+ init.flags = 0;
+ init.parent_names = NULL;
+ init.num_parents = 0;
+ rv3028->clkout_hw.init = &init;
+
+ /* optional override of the clockname */
+ of_property_read_string(node, "clock-output-names", &init.name);
+
+ /* register the clock */
+ clk = devm_clk_register(&client->dev, &rv3028->clkout_hw);
+ if (!IS_ERR(clk))
+ of_clk_add_provider(node, of_clk_src_simple_get, clk);
+
+ return 0;
+}
+#endif
+
+static struct rtc_class_ops rv3028_rtc_ops = {
+ .read_time = rv3028_get_time,
+ .set_time = rv3028_set_time,
+ .read_offset = rv3028_read_offset,
+ .set_offset = rv3028_set_offset,
+ .ioctl = rv3028_ioctl,
+};
+
+static const struct regmap_config regmap_config = {
+ .reg_bits = 8,
+ .val_bits = 8,
+ .max_register = 0x37,
+};
+
+static int rv3028_probe(struct i2c_client *client)
+{
+ struct rv3028_data *rv3028;
+ int ret, status;
+ u32 ohms;
+ struct nvmem_config nvmem_cfg = {
+ .name = "rv3028_nvram",
+ .word_size = 1,
+ .stride = 1,
+ .size = 2,
+ .type = NVMEM_TYPE_BATTERY_BACKED,
+ .reg_read = rv3028_nvram_read,
+ .reg_write = rv3028_nvram_write,
+ };
+ struct nvmem_config eeprom_cfg = {
+ .name = "rv3028_eeprom",
+ .word_size = 1,
+ .stride = 1,
+ .size = 43,
+ .type = NVMEM_TYPE_EEPROM,
+ .reg_read = rv3028_eeprom_read,
+ .reg_write = rv3028_eeprom_write,
+ };
+
+ rv3028 = devm_kzalloc(&client->dev, sizeof(struct rv3028_data),
+ GFP_KERNEL);
+ if (!rv3028)
+ return -ENOMEM;
+
+ rv3028->regmap = devm_regmap_init_i2c(client, &regmap_config);
+ if (IS_ERR(rv3028->regmap))
+ return PTR_ERR(rv3028->regmap);
+
+ i2c_set_clientdata(client, rv3028);
+
+ ret = regmap_read(rv3028->regmap, RV3028_STATUS, &status);
+ if (ret < 0)
+ return ret;
+
+ if (status & RV3028_STATUS_PORF)
+ dev_warn(&client->dev, "Voltage low, data loss detected.\n");
+
+ if (status & RV3028_STATUS_AF)
+ dev_warn(&client->dev, "An alarm may have been missed.\n");
+
+ rv3028->rtc = devm_rtc_allocate_device(&client->dev);
+ if (IS_ERR(rv3028->rtc))
+ return PTR_ERR(rv3028->rtc);
+
+ if (client->irq > 0) {
+ ret = devm_request_threaded_irq(&client->dev, client->irq,
+ NULL, rv3028_handle_irq,
+ IRQF_TRIGGER_LOW | IRQF_ONESHOT,
+ "rv3028", rv3028);
+ if (ret) {
+ dev_warn(&client->dev, "unable to request IRQ, alarms disabled\n");
+ client->irq = 0;
+ } else {
+ rv3028_rtc_ops.read_alarm = rv3028_get_alarm;
+ rv3028_rtc_ops.set_alarm = rv3028_set_alarm;
+ rv3028_rtc_ops.alarm_irq_enable = rv3028_alarm_irq_enable;
+ }
+ }
+
+ ret = regmap_update_bits(rv3028->regmap, RV3028_CTRL1,
+ RV3028_CTRL1_WADA, RV3028_CTRL1_WADA);
+ if (ret)
+ return ret;
+
+ /* setup timestamping */
+ ret = regmap_update_bits(rv3028->regmap, RV3028_CTRL2,
+ RV3028_CTRL2_EIE | RV3028_CTRL2_TSE,
+ RV3028_CTRL2_EIE | RV3028_CTRL2_TSE);
+ if (ret)
+ return ret;
+
+ /* setup trickle charger */
+ if (!device_property_read_u32(&client->dev, "trickle-resistor-ohms",
+ &ohms)) {
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(rv3028_trickle_resistors); i++)
+ if (ohms == rv3028_trickle_resistors[i])
+ break;
+
+ if (i < ARRAY_SIZE(rv3028_trickle_resistors)) {
+ ret = rv3028_update_cfg(rv3028, RV3028_BACKUP, RV3028_BACKUP_TCE |
+ RV3028_BACKUP_TCR_MASK, RV3028_BACKUP_TCE | i);
+ if (ret)
+ return ret;
+ } else {
+ dev_warn(&client->dev, "invalid trickle resistor value\n");
+ }
+ }
+
+ ret = rtc_add_group(rv3028->rtc, &rv3028_attr_group);
+ if (ret)
+ return ret;
+
+ rv3028->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ rv3028->rtc->range_max = RTC_TIMESTAMP_END_2099;
+ rv3028->rtc->ops = &rv3028_rtc_ops;
+ ret = rtc_register_device(rv3028->rtc);
+ if (ret)
+ return ret;
+
+ nvmem_cfg.priv = rv3028->regmap;
+ rtc_nvmem_register(rv3028->rtc, &nvmem_cfg);
+ eeprom_cfg.priv = rv3028;
+ rtc_nvmem_register(rv3028->rtc, &eeprom_cfg);
+
+ rv3028->rtc->max_user_freq = 1;
+
+#ifdef CONFIG_COMMON_CLK
+ rv3028_clkout_register_clk(rv3028, client);
+#endif
+ return 0;
+}
+
+static const struct of_device_id rv3028_of_match[] = {
+ { .compatible = "microcrystal,rv3028", },
+ { }
+};
+MODULE_DEVICE_TABLE(of, rv3028_of_match);
+
+static struct i2c_driver rv3028_driver = {
+ .driver = {
+ .name = "rtc-rv3028",
+ .of_match_table = of_match_ptr(rv3028_of_match),
+ },
+ .probe_new = rv3028_probe,
+};
+module_i2c_driver(rv3028_driver);
+
+MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@bootlin.com>");
+MODULE_DESCRIPTION("Micro Crystal RV3028 RTC driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-rv3029c2.c b/drivers/rtc/rtc-rv3029c2.c
new file mode 100644
index 000000000..627182317
--- /dev/null
+++ b/drivers/rtc/rtc-rv3029c2.c
@@ -0,0 +1,919 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Micro Crystal RV-3029 / RV-3049 rtc class driver
+ *
+ * Author: Gregory Hermant <gregory.hermant@calao-systems.com>
+ * Michael Buesch <m@bues.ch>
+ *
+ * based on previously existing rtc class drivers
+ */
+
+#include <linux/module.h>
+#include <linux/i2c.h>
+#include <linux/spi/spi.h>
+#include <linux/bcd.h>
+#include <linux/rtc.h>
+#include <linux/delay.h>
+#include <linux/of.h>
+#include <linux/hwmon.h>
+#include <linux/hwmon-sysfs.h>
+#include <linux/regmap.h>
+
+/* Register map */
+/* control section */
+#define RV3029_ONOFF_CTRL 0x00
+#define RV3029_ONOFF_CTRL_WE BIT(0)
+#define RV3029_ONOFF_CTRL_TE BIT(1)
+#define RV3029_ONOFF_CTRL_TAR BIT(2)
+#define RV3029_ONOFF_CTRL_EERE BIT(3)
+#define RV3029_ONOFF_CTRL_SRON BIT(4)
+#define RV3029_ONOFF_CTRL_TD0 BIT(5)
+#define RV3029_ONOFF_CTRL_TD1 BIT(6)
+#define RV3029_ONOFF_CTRL_CLKINT BIT(7)
+#define RV3029_IRQ_CTRL 0x01
+#define RV3029_IRQ_CTRL_AIE BIT(0)
+#define RV3029_IRQ_CTRL_TIE BIT(1)
+#define RV3029_IRQ_CTRL_V1IE BIT(2)
+#define RV3029_IRQ_CTRL_V2IE BIT(3)
+#define RV3029_IRQ_CTRL_SRIE BIT(4)
+#define RV3029_IRQ_FLAGS 0x02
+#define RV3029_IRQ_FLAGS_AF BIT(0)
+#define RV3029_IRQ_FLAGS_TF BIT(1)
+#define RV3029_IRQ_FLAGS_V1IF BIT(2)
+#define RV3029_IRQ_FLAGS_V2IF BIT(3)
+#define RV3029_IRQ_FLAGS_SRF BIT(4)
+#define RV3029_STATUS 0x03
+#define RV3029_STATUS_VLOW1 BIT(2)
+#define RV3029_STATUS_VLOW2 BIT(3)
+#define RV3029_STATUS_SR BIT(4)
+#define RV3029_STATUS_PON BIT(5)
+#define RV3029_STATUS_EEBUSY BIT(7)
+#define RV3029_RST_CTRL 0x04
+#define RV3029_RST_CTRL_SYSR BIT(4)
+#define RV3029_CONTROL_SECTION_LEN 0x05
+
+/* watch section */
+#define RV3029_W_SEC 0x08
+#define RV3029_W_MINUTES 0x09
+#define RV3029_W_HOURS 0x0A
+#define RV3029_REG_HR_12_24 BIT(6) /* 24h/12h mode */
+#define RV3029_REG_HR_PM BIT(5) /* PM/AM bit in 12h mode */
+#define RV3029_W_DATE 0x0B
+#define RV3029_W_DAYS 0x0C
+#define RV3029_W_MONTHS 0x0D
+#define RV3029_W_YEARS 0x0E
+#define RV3029_WATCH_SECTION_LEN 0x07
+
+/* alarm section */
+#define RV3029_A_SC 0x10
+#define RV3029_A_MN 0x11
+#define RV3029_A_HR 0x12
+#define RV3029_A_DT 0x13
+#define RV3029_A_DW 0x14
+#define RV3029_A_MO 0x15
+#define RV3029_A_YR 0x16
+#define RV3029_A_AE_X BIT(7)
+#define RV3029_ALARM_SECTION_LEN 0x07
+
+/* timer section */
+#define RV3029_TIMER_LOW 0x18
+#define RV3029_TIMER_HIGH 0x19
+
+/* temperature section */
+#define RV3029_TEMP_PAGE 0x20
+
+/* eeprom data section */
+#define RV3029_E2P_EEDATA1 0x28
+#define RV3029_E2P_EEDATA2 0x29
+#define RV3029_E2PDATA_SECTION_LEN 0x02
+
+/* eeprom control section */
+#define RV3029_CONTROL_E2P_EECTRL 0x30
+#define RV3029_EECTRL_THP BIT(0) /* temp scan interval */
+#define RV3029_EECTRL_THE BIT(1) /* thermometer enable */
+#define RV3029_EECTRL_FD0 BIT(2) /* CLKOUT */
+#define RV3029_EECTRL_FD1 BIT(3) /* CLKOUT */
+#define RV3029_TRICKLE_1K BIT(4) /* 1.5K resistance */
+#define RV3029_TRICKLE_5K BIT(5) /* 5K resistance */
+#define RV3029_TRICKLE_20K BIT(6) /* 20K resistance */
+#define RV3029_TRICKLE_80K BIT(7) /* 80K resistance */
+#define RV3029_TRICKLE_MASK (RV3029_TRICKLE_1K |\
+ RV3029_TRICKLE_5K |\
+ RV3029_TRICKLE_20K |\
+ RV3029_TRICKLE_80K)
+#define RV3029_TRICKLE_SHIFT 4
+#define RV3029_CONTROL_E2P_XOFFS 0x31 /* XTAL offset */
+#define RV3029_CONTROL_E2P_XOFFS_SIGN BIT(7) /* Sign: 1->pos, 0->neg */
+#define RV3029_CONTROL_E2P_QCOEF 0x32 /* XTAL temp drift coef */
+#define RV3029_CONTROL_E2P_TURNOVER 0x33 /* XTAL turnover temp (in *C) */
+#define RV3029_CONTROL_E2P_TOV_MASK 0x3F /* XTAL turnover temp mask */
+
+/* user ram section */
+#define RV3029_RAM_PAGE 0x38
+#define RV3029_RAM_SECTION_LEN 8
+
+struct rv3029_data {
+ struct device *dev;
+ struct rtc_device *rtc;
+ struct regmap *regmap;
+ int irq;
+};
+
+static int rv3029_eeprom_busywait(struct rv3029_data *rv3029)
+{
+ unsigned int sr;
+ int i, ret;
+
+ for (i = 100; i > 0; i--) {
+ ret = regmap_read(rv3029->regmap, RV3029_STATUS, &sr);
+ if (ret < 0)
+ break;
+ if (!(sr & RV3029_STATUS_EEBUSY))
+ break;
+ usleep_range(1000, 10000);
+ }
+ if (i <= 0) {
+ dev_err(rv3029->dev, "EEPROM busy wait timeout.\n");
+ return -ETIMEDOUT;
+ }
+
+ return ret;
+}
+
+static int rv3029_eeprom_exit(struct rv3029_data *rv3029)
+{
+ /* Re-enable eeprom refresh */
+ return regmap_update_bits(rv3029->regmap, RV3029_ONOFF_CTRL,
+ RV3029_ONOFF_CTRL_EERE,
+ RV3029_ONOFF_CTRL_EERE);
+}
+
+static int rv3029_eeprom_enter(struct rv3029_data *rv3029)
+{
+ unsigned int sr;
+ int ret;
+
+ /* Check whether we are in the allowed voltage range. */
+ ret = regmap_read(rv3029->regmap, RV3029_STATUS, &sr);
+ if (ret < 0)
+ return ret;
+ if (sr & RV3029_STATUS_VLOW2)
+ return -ENODEV;
+ if (sr & RV3029_STATUS_VLOW1) {
+ /* We clear the bits and retry once just in case
+ * we had a brown out in early startup.
+ */
+ ret = regmap_update_bits(rv3029->regmap, RV3029_STATUS,
+ RV3029_STATUS_VLOW1, 0);
+ if (ret < 0)
+ return ret;
+ usleep_range(1000, 10000);
+ ret = regmap_read(rv3029->regmap, RV3029_STATUS, &sr);
+ if (ret < 0)
+ return ret;
+ if (sr & RV3029_STATUS_VLOW1) {
+ dev_err(rv3029->dev,
+ "Supply voltage is too low to safely access the EEPROM.\n");
+ return -ENODEV;
+ }
+ }
+
+ /* Disable eeprom refresh. */
+ ret = regmap_update_bits(rv3029->regmap, RV3029_ONOFF_CTRL,
+ RV3029_ONOFF_CTRL_EERE, 0);
+ if (ret < 0)
+ return ret;
+
+ /* Wait for any previous eeprom accesses to finish. */
+ ret = rv3029_eeprom_busywait(rv3029);
+ if (ret < 0)
+ rv3029_eeprom_exit(rv3029);
+
+ return ret;
+}
+
+static int rv3029_eeprom_read(struct rv3029_data *rv3029, u8 reg,
+ u8 buf[], size_t len)
+{
+ int ret, err;
+
+ err = rv3029_eeprom_enter(rv3029);
+ if (err < 0)
+ return err;
+
+ ret = regmap_bulk_read(rv3029->regmap, reg, buf, len);
+
+ err = rv3029_eeprom_exit(rv3029);
+ if (err < 0)
+ return err;
+
+ return ret;
+}
+
+static int rv3029_eeprom_write(struct rv3029_data *rv3029, u8 reg,
+ u8 const buf[], size_t len)
+{
+ unsigned int tmp;
+ int ret, err;
+ size_t i;
+
+ err = rv3029_eeprom_enter(rv3029);
+ if (err < 0)
+ return err;
+
+ for (i = 0; i < len; i++, reg++) {
+ ret = regmap_read(rv3029->regmap, reg, &tmp);
+ if (ret < 0)
+ break;
+ if (tmp != buf[i]) {
+ tmp = buf[i];
+ ret = regmap_write(rv3029->regmap, reg, tmp);
+ if (ret < 0)
+ break;
+ }
+ ret = rv3029_eeprom_busywait(rv3029);
+ if (ret < 0)
+ break;
+ }
+
+ err = rv3029_eeprom_exit(rv3029);
+ if (err < 0)
+ return err;
+
+ return ret;
+}
+
+static int rv3029_eeprom_update_bits(struct rv3029_data *rv3029,
+ u8 reg, u8 mask, u8 set)
+{
+ u8 buf;
+ int ret;
+
+ ret = rv3029_eeprom_read(rv3029, reg, &buf, 1);
+ if (ret < 0)
+ return ret;
+ buf &= ~mask;
+ buf |= set & mask;
+ ret = rv3029_eeprom_write(rv3029, reg, &buf, 1);
+ if (ret < 0)
+ return ret;
+
+ return 0;
+}
+
+static irqreturn_t rv3029_handle_irq(int irq, void *dev_id)
+{
+ struct device *dev = dev_id;
+ struct rv3029_data *rv3029 = dev_get_drvdata(dev);
+ struct mutex *lock = &rv3029->rtc->ops_lock;
+ unsigned int flags, controls;
+ unsigned long events = 0;
+ int ret;
+
+ mutex_lock(lock);
+
+ ret = regmap_read(rv3029->regmap, RV3029_IRQ_CTRL, &controls);
+ if (ret) {
+ dev_warn(dev, "Read IRQ Control Register error %d\n", ret);
+ mutex_unlock(lock);
+ return IRQ_NONE;
+ }
+
+ ret = regmap_read(rv3029->regmap, RV3029_IRQ_FLAGS, &flags);
+ if (ret) {
+ dev_warn(dev, "Read IRQ Flags Register error %d\n", ret);
+ mutex_unlock(lock);
+ return IRQ_NONE;
+ }
+
+ if (flags & RV3029_IRQ_FLAGS_AF) {
+ flags &= ~RV3029_IRQ_FLAGS_AF;
+ controls &= ~RV3029_IRQ_CTRL_AIE;
+ events |= RTC_AF;
+ }
+
+ if (events) {
+ rtc_update_irq(rv3029->rtc, 1, events);
+ regmap_write(rv3029->regmap, RV3029_IRQ_FLAGS, flags);
+ regmap_write(rv3029->regmap, RV3029_IRQ_CTRL, controls);
+ }
+ mutex_unlock(lock);
+
+ return IRQ_HANDLED;
+}
+
+static int rv3029_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rv3029_data *rv3029 = dev_get_drvdata(dev);
+ unsigned int sr;
+ int ret;
+ u8 regs[RV3029_WATCH_SECTION_LEN] = { 0, };
+
+ ret = regmap_read(rv3029->regmap, RV3029_STATUS, &sr);
+ if (ret < 0)
+ return ret;
+
+ if (sr & (RV3029_STATUS_VLOW2 | RV3029_STATUS_PON))
+ return -EINVAL;
+
+ ret = regmap_bulk_read(rv3029->regmap, RV3029_W_SEC, regs,
+ RV3029_WATCH_SECTION_LEN);
+ if (ret < 0)
+ return ret;
+
+ tm->tm_sec = bcd2bin(regs[RV3029_W_SEC - RV3029_W_SEC]);
+ tm->tm_min = bcd2bin(regs[RV3029_W_MINUTES - RV3029_W_SEC]);
+
+ /* HR field has a more complex interpretation */
+ {
+ const u8 _hr = regs[RV3029_W_HOURS - RV3029_W_SEC];
+
+ if (_hr & RV3029_REG_HR_12_24) {
+ /* 12h format */
+ tm->tm_hour = bcd2bin(_hr & 0x1f);
+ if (_hr & RV3029_REG_HR_PM) /* PM flag set */
+ tm->tm_hour += 12;
+ } else /* 24h format */
+ tm->tm_hour = bcd2bin(_hr & 0x3f);
+ }
+
+ tm->tm_mday = bcd2bin(regs[RV3029_W_DATE - RV3029_W_SEC]);
+ tm->tm_mon = bcd2bin(regs[RV3029_W_MONTHS - RV3029_W_SEC]) - 1;
+ tm->tm_year = bcd2bin(regs[RV3029_W_YEARS - RV3029_W_SEC]) + 100;
+ tm->tm_wday = bcd2bin(regs[RV3029_W_DAYS - RV3029_W_SEC]) - 1;
+
+ return 0;
+}
+
+static int rv3029_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct rv3029_data *rv3029 = dev_get_drvdata(dev);
+ struct rtc_time *const tm = &alarm->time;
+ unsigned int controls, flags;
+ int ret;
+ u8 regs[8];
+
+ ret = regmap_bulk_read(rv3029->regmap, RV3029_A_SC, regs,
+ RV3029_ALARM_SECTION_LEN);
+ if (ret < 0)
+ return ret;
+
+ ret = regmap_read(rv3029->regmap, RV3029_IRQ_CTRL, &controls);
+ if (ret)
+ return ret;
+
+ ret = regmap_read(rv3029->regmap, RV3029_IRQ_FLAGS, &flags);
+ if (ret < 0)
+ return ret;
+
+ tm->tm_sec = bcd2bin(regs[RV3029_A_SC - RV3029_A_SC] & 0x7f);
+ tm->tm_min = bcd2bin(regs[RV3029_A_MN - RV3029_A_SC] & 0x7f);
+ tm->tm_hour = bcd2bin(regs[RV3029_A_HR - RV3029_A_SC] & 0x3f);
+ tm->tm_mday = bcd2bin(regs[RV3029_A_DT - RV3029_A_SC] & 0x3f);
+ tm->tm_mon = bcd2bin(regs[RV3029_A_MO - RV3029_A_SC] & 0x1f) - 1;
+ tm->tm_year = bcd2bin(regs[RV3029_A_YR - RV3029_A_SC] & 0x7f) + 100;
+ tm->tm_wday = bcd2bin(regs[RV3029_A_DW - RV3029_A_SC] & 0x07) - 1;
+
+ alarm->enabled = !!(controls & RV3029_IRQ_CTRL_AIE);
+ alarm->pending = (flags & RV3029_IRQ_FLAGS_AF) && alarm->enabled;
+
+ return 0;
+}
+
+static int rv3029_alarm_irq_enable(struct device *dev, unsigned int enable)
+{
+ struct rv3029_data *rv3029 = dev_get_drvdata(dev);
+
+ return regmap_update_bits(rv3029->regmap, RV3029_IRQ_CTRL,
+ RV3029_IRQ_CTRL_AIE,
+ enable ? RV3029_IRQ_CTRL_AIE : 0);
+}
+
+static int rv3029_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct rv3029_data *rv3029 = dev_get_drvdata(dev);
+ struct rtc_time *const tm = &alarm->time;
+ int ret;
+ u8 regs[8];
+
+ /* Activate all the alarms with AE_x bit */
+ regs[RV3029_A_SC - RV3029_A_SC] = bin2bcd(tm->tm_sec) | RV3029_A_AE_X;
+ regs[RV3029_A_MN - RV3029_A_SC] = bin2bcd(tm->tm_min) | RV3029_A_AE_X;
+ regs[RV3029_A_HR - RV3029_A_SC] = (bin2bcd(tm->tm_hour) & 0x3f)
+ | RV3029_A_AE_X;
+ regs[RV3029_A_DT - RV3029_A_SC] = (bin2bcd(tm->tm_mday) & 0x3f)
+ | RV3029_A_AE_X;
+ regs[RV3029_A_MO - RV3029_A_SC] = (bin2bcd(tm->tm_mon + 1) & 0x1f)
+ | RV3029_A_AE_X;
+ regs[RV3029_A_DW - RV3029_A_SC] = (bin2bcd(tm->tm_wday + 1) & 0x7)
+ | RV3029_A_AE_X;
+ regs[RV3029_A_YR - RV3029_A_SC] = (bin2bcd(tm->tm_year - 100))
+ | RV3029_A_AE_X;
+
+ /* Write the alarm */
+ ret = regmap_bulk_write(rv3029->regmap, RV3029_A_SC, regs,
+ RV3029_ALARM_SECTION_LEN);
+ if (ret < 0)
+ return ret;
+
+ return rv3029_alarm_irq_enable(dev, alarm->enabled);
+}
+
+static int rv3029_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rv3029_data *rv3029 = dev_get_drvdata(dev);
+ u8 regs[8];
+ int ret;
+
+ regs[RV3029_W_SEC - RV3029_W_SEC] = bin2bcd(tm->tm_sec);
+ regs[RV3029_W_MINUTES - RV3029_W_SEC] = bin2bcd(tm->tm_min);
+ regs[RV3029_W_HOURS - RV3029_W_SEC] = bin2bcd(tm->tm_hour);
+ regs[RV3029_W_DATE - RV3029_W_SEC] = bin2bcd(tm->tm_mday);
+ regs[RV3029_W_MONTHS - RV3029_W_SEC] = bin2bcd(tm->tm_mon + 1);
+ regs[RV3029_W_DAYS - RV3029_W_SEC] = bin2bcd(tm->tm_wday + 1) & 0x7;
+ regs[RV3029_W_YEARS - RV3029_W_SEC] = bin2bcd(tm->tm_year - 100);
+
+ ret = regmap_bulk_write(rv3029->regmap, RV3029_W_SEC, regs,
+ RV3029_WATCH_SECTION_LEN);
+ if (ret < 0)
+ return ret;
+
+ /* clear PON and VLOW2 bits */
+ return regmap_update_bits(rv3029->regmap, RV3029_STATUS,
+ RV3029_STATUS_PON | RV3029_STATUS_VLOW2, 0);
+}
+
+static int rv3029_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
+{
+ struct rv3029_data *rv3029 = dev_get_drvdata(dev);
+ unsigned long vl = 0;
+ int sr, ret = 0;
+
+ switch (cmd) {
+ case RTC_VL_READ:
+ ret = regmap_read(rv3029->regmap, RV3029_STATUS, &sr);
+ if (ret < 0)
+ return ret;
+
+ if (sr & RV3029_STATUS_VLOW1)
+ vl = RTC_VL_ACCURACY_LOW;
+
+ if (sr & (RV3029_STATUS_VLOW2 | RV3029_STATUS_PON))
+ vl |= RTC_VL_DATA_INVALID;
+
+ return put_user(vl, (unsigned int __user *)arg);
+
+ case RTC_VL_CLR:
+ return regmap_update_bits(rv3029->regmap, RV3029_STATUS,
+ RV3029_STATUS_VLOW1, 0);
+
+ default:
+ return -ENOIOCTLCMD;
+ }
+}
+
+static int rv3029_nvram_write(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ return regmap_bulk_write(priv, RV3029_RAM_PAGE + offset, val, bytes);
+}
+
+static int rv3029_nvram_read(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ return regmap_bulk_read(priv, RV3029_RAM_PAGE + offset, val, bytes);
+}
+
+static const struct rv3029_trickle_tab_elem {
+ u32 r; /* resistance in ohms */
+ u8 conf; /* trickle config bits */
+} rv3029_trickle_tab[] = {
+ {
+ .r = 1076,
+ .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K |
+ RV3029_TRICKLE_20K | RV3029_TRICKLE_80K,
+ }, {
+ .r = 1091,
+ .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K |
+ RV3029_TRICKLE_20K,
+ }, {
+ .r = 1137,
+ .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K |
+ RV3029_TRICKLE_80K,
+ }, {
+ .r = 1154,
+ .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K,
+ }, {
+ .r = 1371,
+ .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_20K |
+ RV3029_TRICKLE_80K,
+ }, {
+ .r = 1395,
+ .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_20K,
+ }, {
+ .r = 1472,
+ .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_80K,
+ }, {
+ .r = 1500,
+ .conf = RV3029_TRICKLE_1K,
+ }, {
+ .r = 3810,
+ .conf = RV3029_TRICKLE_5K | RV3029_TRICKLE_20K |
+ RV3029_TRICKLE_80K,
+ }, {
+ .r = 4000,
+ .conf = RV3029_TRICKLE_5K | RV3029_TRICKLE_20K,
+ }, {
+ .r = 4706,
+ .conf = RV3029_TRICKLE_5K | RV3029_TRICKLE_80K,
+ }, {
+ .r = 5000,
+ .conf = RV3029_TRICKLE_5K,
+ }, {
+ .r = 16000,
+ .conf = RV3029_TRICKLE_20K | RV3029_TRICKLE_80K,
+ }, {
+ .r = 20000,
+ .conf = RV3029_TRICKLE_20K,
+ }, {
+ .r = 80000,
+ .conf = RV3029_TRICKLE_80K,
+ },
+};
+
+static void rv3029_trickle_config(struct device *dev)
+{
+ struct rv3029_data *rv3029 = dev_get_drvdata(dev);
+ struct device_node *of_node = dev->of_node;
+ const struct rv3029_trickle_tab_elem *elem;
+ int i, err;
+ u32 ohms;
+ u8 trickle_set_bits;
+
+ if (!of_node)
+ return;
+
+ /* Configure the trickle charger. */
+ err = of_property_read_u32(of_node, "trickle-resistor-ohms", &ohms);
+ if (err) {
+ /* Disable trickle charger. */
+ trickle_set_bits = 0;
+ } else {
+ /* Enable trickle charger. */
+ for (i = 0; i < ARRAY_SIZE(rv3029_trickle_tab); i++) {
+ elem = &rv3029_trickle_tab[i];
+ if (elem->r >= ohms)
+ break;
+ }
+ trickle_set_bits = elem->conf;
+ dev_info(dev,
+ "Trickle charger enabled at %d ohms resistance.\n",
+ elem->r);
+ }
+ err = rv3029_eeprom_update_bits(rv3029, RV3029_CONTROL_E2P_EECTRL,
+ RV3029_TRICKLE_MASK,
+ trickle_set_bits);
+ if (err < 0)
+ dev_err(dev, "Failed to update trickle charger config\n");
+}
+
+#ifdef CONFIG_RTC_DRV_RV3029_HWMON
+
+static int rv3029_read_temp(struct rv3029_data *rv3029, int *temp_mC)
+{
+ unsigned int temp;
+ int ret;
+
+ ret = regmap_read(rv3029->regmap, RV3029_TEMP_PAGE, &temp);
+ if (ret < 0)
+ return ret;
+
+ *temp_mC = ((int)temp - 60) * 1000;
+
+ return 0;
+}
+
+static ssize_t rv3029_hwmon_show_temp(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct rv3029_data *rv3029 = dev_get_drvdata(dev);
+ int ret, temp_mC;
+
+ ret = rv3029_read_temp(rv3029, &temp_mC);
+ if (ret < 0)
+ return ret;
+
+ return sprintf(buf, "%d\n", temp_mC);
+}
+
+static ssize_t rv3029_hwmon_set_update_interval(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf,
+ size_t count)
+{
+ struct rv3029_data *rv3029 = dev_get_drvdata(dev);
+ unsigned int th_set_bits = 0;
+ unsigned long interval_ms;
+ int ret;
+
+ ret = kstrtoul(buf, 10, &interval_ms);
+ if (ret < 0)
+ return ret;
+
+ if (interval_ms != 0) {
+ th_set_bits |= RV3029_EECTRL_THE;
+ if (interval_ms >= 16000)
+ th_set_bits |= RV3029_EECTRL_THP;
+ }
+ ret = rv3029_eeprom_update_bits(rv3029, RV3029_CONTROL_E2P_EECTRL,
+ RV3029_EECTRL_THE | RV3029_EECTRL_THP,
+ th_set_bits);
+ if (ret < 0)
+ return ret;
+
+ return count;
+}
+
+static ssize_t rv3029_hwmon_show_update_interval(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct rv3029_data *rv3029 = dev_get_drvdata(dev);
+ int ret, interval_ms;
+ u8 eectrl;
+
+ ret = rv3029_eeprom_read(rv3029, RV3029_CONTROL_E2P_EECTRL,
+ &eectrl, 1);
+ if (ret < 0)
+ return ret;
+
+ if (eectrl & RV3029_EECTRL_THE) {
+ if (eectrl & RV3029_EECTRL_THP)
+ interval_ms = 16000;
+ else
+ interval_ms = 1000;
+ } else {
+ interval_ms = 0;
+ }
+
+ return sprintf(buf, "%d\n", interval_ms);
+}
+
+static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, rv3029_hwmon_show_temp,
+ NULL, 0);
+static SENSOR_DEVICE_ATTR(update_interval, S_IWUSR | S_IRUGO,
+ rv3029_hwmon_show_update_interval,
+ rv3029_hwmon_set_update_interval, 0);
+
+static struct attribute *rv3029_hwmon_attrs[] = {
+ &sensor_dev_attr_temp1_input.dev_attr.attr,
+ &sensor_dev_attr_update_interval.dev_attr.attr,
+ NULL,
+};
+ATTRIBUTE_GROUPS(rv3029_hwmon);
+
+static void rv3029_hwmon_register(struct device *dev, const char *name)
+{
+ struct rv3029_data *rv3029 = dev_get_drvdata(dev);
+ struct device *hwmon_dev;
+
+ hwmon_dev = devm_hwmon_device_register_with_groups(dev, name, rv3029,
+ rv3029_hwmon_groups);
+ if (IS_ERR(hwmon_dev)) {
+ dev_warn(dev, "unable to register hwmon device %ld\n",
+ PTR_ERR(hwmon_dev));
+ }
+}
+
+#else /* CONFIG_RTC_DRV_RV3029_HWMON */
+
+static void rv3029_hwmon_register(struct device *dev, const char *name)
+{
+}
+
+#endif /* CONFIG_RTC_DRV_RV3029_HWMON */
+
+static struct rtc_class_ops rv3029_rtc_ops = {
+ .read_time = rv3029_read_time,
+ .set_time = rv3029_set_time,
+ .ioctl = rv3029_ioctl,
+};
+
+static int rv3029_probe(struct device *dev, struct regmap *regmap, int irq,
+ const char *name)
+{
+ struct rv3029_data *rv3029;
+ struct nvmem_config nvmem_cfg = {
+ .name = "rv3029_nvram",
+ .word_size = 1,
+ .stride = 1,
+ .size = RV3029_RAM_SECTION_LEN,
+ .type = NVMEM_TYPE_BATTERY_BACKED,
+ .reg_read = rv3029_nvram_read,
+ .reg_write = rv3029_nvram_write,
+ };
+ int rc = 0;
+
+ rv3029 = devm_kzalloc(dev, sizeof(*rv3029), GFP_KERNEL);
+ if (!rv3029)
+ return -ENOMEM;
+
+ rv3029->regmap = regmap;
+ rv3029->irq = irq;
+ rv3029->dev = dev;
+ dev_set_drvdata(dev, rv3029);
+
+ rv3029_trickle_config(dev);
+ rv3029_hwmon_register(dev, name);
+
+ rv3029->rtc = devm_rtc_allocate_device(dev);
+ if (IS_ERR(rv3029->rtc))
+ return PTR_ERR(rv3029->rtc);
+
+ if (rv3029->irq > 0) {
+ rc = devm_request_threaded_irq(dev, rv3029->irq,
+ NULL, rv3029_handle_irq,
+ IRQF_TRIGGER_LOW | IRQF_ONESHOT,
+ "rv3029", dev);
+ if (rc) {
+ dev_warn(dev, "unable to request IRQ, alarms disabled\n");
+ rv3029->irq = 0;
+ } else {
+ rv3029_rtc_ops.read_alarm = rv3029_read_alarm;
+ rv3029_rtc_ops.set_alarm = rv3029_set_alarm;
+ rv3029_rtc_ops.alarm_irq_enable = rv3029_alarm_irq_enable;
+ }
+ }
+
+ rv3029->rtc->ops = &rv3029_rtc_ops;
+ rv3029->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ rv3029->rtc->range_max = RTC_TIMESTAMP_END_2079;
+
+ rc = rtc_register_device(rv3029->rtc);
+ if (rc)
+ return rc;
+
+ nvmem_cfg.priv = rv3029->regmap;
+ rtc_nvmem_register(rv3029->rtc, &nvmem_cfg);
+
+ return 0;
+}
+
+static const struct regmap_range rv3029_holes_range[] = {
+ regmap_reg_range(0x05, 0x07),
+ regmap_reg_range(0x0f, 0x0f),
+ regmap_reg_range(0x17, 0x17),
+ regmap_reg_range(0x1a, 0x1f),
+ regmap_reg_range(0x21, 0x27),
+ regmap_reg_range(0x34, 0x37),
+};
+
+static const struct regmap_access_table rv3029_regs = {
+ .no_ranges = rv3029_holes_range,
+ .n_no_ranges = ARRAY_SIZE(rv3029_holes_range),
+};
+
+static const struct regmap_config config = {
+ .reg_bits = 8,
+ .val_bits = 8,
+ .rd_table = &rv3029_regs,
+ .wr_table = &rv3029_regs,
+ .max_register = 0x3f,
+};
+
+#if IS_ENABLED(CONFIG_I2C)
+
+static int rv3029_i2c_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct regmap *regmap;
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_I2C_BLOCK |
+ I2C_FUNC_SMBUS_BYTE)) {
+ dev_err(&client->dev, "Adapter does not support SMBUS_I2C_BLOCK or SMBUS_I2C_BYTE\n");
+ return -ENODEV;
+ }
+
+ regmap = devm_regmap_init_i2c(client, &config);
+ if (IS_ERR(regmap))
+ return PTR_ERR(regmap);
+
+ return rv3029_probe(&client->dev, regmap, client->irq, client->name);
+}
+
+static const struct i2c_device_id rv3029_id[] = {
+ { "rv3029", 0 },
+ { "rv3029c2", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, rv3029_id);
+
+static const struct of_device_id rv3029_of_match[] = {
+ { .compatible = "microcrystal,rv3029" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, rv3029_of_match);
+
+static struct i2c_driver rv3029_driver = {
+ .driver = {
+ .name = "rv3029",
+ .of_match_table = of_match_ptr(rv3029_of_match),
+ },
+ .probe = rv3029_i2c_probe,
+ .id_table = rv3029_id,
+};
+
+static int __init rv3029_register_driver(void)
+{
+ return i2c_add_driver(&rv3029_driver);
+}
+
+static void rv3029_unregister_driver(void)
+{
+ i2c_del_driver(&rv3029_driver);
+}
+
+#else
+
+static int __init rv3029_register_driver(void)
+{
+ return 0;
+}
+
+static void rv3029_unregister_driver(void)
+{
+}
+
+#endif
+
+#if IS_ENABLED(CONFIG_SPI_MASTER)
+
+static int rv3049_probe(struct spi_device *spi)
+{
+ struct regmap *regmap;
+
+ regmap = devm_regmap_init_spi(spi, &config);
+ if (IS_ERR(regmap))
+ return PTR_ERR(regmap);
+
+ return rv3029_probe(&spi->dev, regmap, spi->irq, "rv3049");
+}
+
+static struct spi_driver rv3049_driver = {
+ .driver = {
+ .name = "rv3049",
+ },
+ .probe = rv3049_probe,
+};
+
+static int __init rv3049_register_driver(void)
+{
+ return spi_register_driver(&rv3049_driver);
+}
+
+static void __exit rv3049_unregister_driver(void)
+{
+ spi_unregister_driver(&rv3049_driver);
+}
+
+#else
+
+static int __init rv3049_register_driver(void)
+{
+ return 0;
+}
+
+static void __exit rv3049_unregister_driver(void)
+{
+}
+
+#endif
+
+static int __init rv30x9_init(void)
+{
+ int ret;
+
+ ret = rv3029_register_driver();
+ if (ret)
+ return ret;
+
+ ret = rv3049_register_driver();
+ if (ret)
+ rv3029_unregister_driver();
+
+ return ret;
+}
+module_init(rv30x9_init)
+
+static void __exit rv30x9_exit(void)
+{
+ rv3049_unregister_driver();
+ rv3029_unregister_driver();
+}
+module_exit(rv30x9_exit)
+
+MODULE_AUTHOR("Gregory Hermant <gregory.hermant@calao-systems.com>");
+MODULE_AUTHOR("Michael Buesch <m@bues.ch>");
+MODULE_DESCRIPTION("Micro Crystal RV3029/RV3049 RTC driver");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("spi:rv3049");
diff --git a/drivers/rtc/rtc-rv3032.c b/drivers/rtc/rtc-rv3032.c
new file mode 100644
index 000000000..9e6166864
--- /dev/null
+++ b/drivers/rtc/rtc-rv3032.c
@@ -0,0 +1,925 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * RTC driver for the Micro Crystal RV3032
+ *
+ * Copyright (C) 2020 Micro Crystal SA
+ *
+ * Alexandre Belloni <alexandre.belloni@bootlin.com>
+ *
+ */
+
+#include <linux/clk.h>
+#include <linux/clk-provider.h>
+#include <linux/bcd.h>
+#include <linux/bitfield.h>
+#include <linux/bitops.h>
+#include <linux/hwmon.h>
+#include <linux/i2c.h>
+#include <linux/interrupt.h>
+#include <linux/kernel.h>
+#include <linux/log2.h>
+#include <linux/module.h>
+#include <linux/of_device.h>
+#include <linux/regmap.h>
+#include <linux/rtc.h>
+
+#define RV3032_SEC 0x01
+#define RV3032_MIN 0x02
+#define RV3032_HOUR 0x03
+#define RV3032_WDAY 0x04
+#define RV3032_DAY 0x05
+#define RV3032_MONTH 0x06
+#define RV3032_YEAR 0x07
+#define RV3032_ALARM_MIN 0x08
+#define RV3032_ALARM_HOUR 0x09
+#define RV3032_ALARM_DAY 0x0A
+#define RV3032_STATUS 0x0D
+#define RV3032_TLSB 0x0E
+#define RV3032_TMSB 0x0F
+#define RV3032_CTRL1 0x10
+#define RV3032_CTRL2 0x11
+#define RV3032_CTRL3 0x12
+#define RV3032_TS_CTRL 0x13
+#define RV3032_CLK_IRQ 0x14
+#define RV3032_EEPROM_ADDR 0x3D
+#define RV3032_EEPROM_DATA 0x3E
+#define RV3032_EEPROM_CMD 0x3F
+#define RV3032_RAM1 0x40
+#define RV3032_PMU 0xC0
+#define RV3032_OFFSET 0xC1
+#define RV3032_CLKOUT1 0xC2
+#define RV3032_CLKOUT2 0xC3
+#define RV3032_TREF0 0xC4
+#define RV3032_TREF1 0xC5
+
+#define RV3032_STATUS_VLF BIT(0)
+#define RV3032_STATUS_PORF BIT(1)
+#define RV3032_STATUS_EVF BIT(2)
+#define RV3032_STATUS_AF BIT(3)
+#define RV3032_STATUS_TF BIT(4)
+#define RV3032_STATUS_UF BIT(5)
+#define RV3032_STATUS_TLF BIT(6)
+#define RV3032_STATUS_THF BIT(7)
+
+#define RV3032_TLSB_CLKF BIT(1)
+#define RV3032_TLSB_EEBUSY BIT(2)
+#define RV3032_TLSB_TEMP GENMASK(7, 4)
+
+#define RV3032_CLKOUT2_HFD_MSK GENMASK(4, 0)
+#define RV3032_CLKOUT2_FD_MSK GENMASK(6, 5)
+#define RV3032_CLKOUT2_OS BIT(7)
+
+#define RV3032_CTRL1_EERD BIT(3)
+#define RV3032_CTRL1_WADA BIT(5)
+
+#define RV3032_CTRL2_STOP BIT(0)
+#define RV3032_CTRL2_EIE BIT(2)
+#define RV3032_CTRL2_AIE BIT(3)
+#define RV3032_CTRL2_TIE BIT(4)
+#define RV3032_CTRL2_UIE BIT(5)
+#define RV3032_CTRL2_CLKIE BIT(6)
+#define RV3032_CTRL2_TSE BIT(7)
+
+#define RV3032_PMU_TCM GENMASK(1, 0)
+#define RV3032_PMU_TCR GENMASK(3, 2)
+#define RV3032_PMU_BSM GENMASK(5, 4)
+#define RV3032_PMU_NCLKE BIT(6)
+
+#define RV3032_PMU_BSM_DSM 1
+#define RV3032_PMU_BSM_LSM 2
+
+#define RV3032_OFFSET_MSK GENMASK(5, 0)
+
+#define RV3032_EVT_CTRL_TSR BIT(2)
+
+#define RV3032_EEPROM_CMD_UPDATE 0x11
+#define RV3032_EEPROM_CMD_WRITE 0x21
+#define RV3032_EEPROM_CMD_READ 0x22
+
+#define RV3032_EEPROM_USER 0xCB
+
+#define RV3032_EEBUSY_POLL 10000
+#define RV3032_EEBUSY_TIMEOUT 100000
+
+#define OFFSET_STEP_PPT 238419
+
+struct rv3032_data {
+ struct regmap *regmap;
+ struct rtc_device *rtc;
+#ifdef CONFIG_COMMON_CLK
+ struct clk_hw clkout_hw;
+#endif
+};
+
+static u16 rv3032_trickle_resistors[] = {1000, 2000, 7000, 11000};
+static u16 rv3032_trickle_voltages[] = {0, 1750, 3000, 4400};
+
+static int rv3032_exit_eerd(struct rv3032_data *rv3032, u32 eerd)
+{
+ if (eerd)
+ return 0;
+
+ return regmap_update_bits(rv3032->regmap, RV3032_CTRL1, RV3032_CTRL1_EERD, 0);
+}
+
+static int rv3032_enter_eerd(struct rv3032_data *rv3032, u32 *eerd)
+{
+ u32 ctrl1, status;
+ int ret;
+
+ ret = regmap_read(rv3032->regmap, RV3032_CTRL1, &ctrl1);
+ if (ret)
+ return ret;
+
+ *eerd = ctrl1 & RV3032_CTRL1_EERD;
+ if (*eerd)
+ return 0;
+
+ ret = regmap_update_bits(rv3032->regmap, RV3032_CTRL1,
+ RV3032_CTRL1_EERD, RV3032_CTRL1_EERD);
+ if (ret)
+ return ret;
+
+ ret = regmap_read_poll_timeout(rv3032->regmap, RV3032_TLSB, status,
+ !(status & RV3032_TLSB_EEBUSY),
+ RV3032_EEBUSY_POLL, RV3032_EEBUSY_TIMEOUT);
+ if (ret) {
+ rv3032_exit_eerd(rv3032, *eerd);
+
+ return ret;
+ }
+
+ return 0;
+}
+
+static int rv3032_update_cfg(struct rv3032_data *rv3032, unsigned int reg,
+ unsigned int mask, unsigned int val)
+{
+ u32 status, eerd;
+ int ret;
+
+ ret = rv3032_enter_eerd(rv3032, &eerd);
+ if (ret)
+ return ret;
+
+ ret = regmap_update_bits(rv3032->regmap, reg, mask, val);
+ if (ret)
+ goto exit_eerd;
+
+ ret = regmap_write(rv3032->regmap, RV3032_EEPROM_CMD, RV3032_EEPROM_CMD_UPDATE);
+ if (ret)
+ goto exit_eerd;
+
+ usleep_range(46000, RV3032_EEBUSY_TIMEOUT);
+
+ ret = regmap_read_poll_timeout(rv3032->regmap, RV3032_TLSB, status,
+ !(status & RV3032_TLSB_EEBUSY),
+ RV3032_EEBUSY_POLL, RV3032_EEBUSY_TIMEOUT);
+
+exit_eerd:
+ rv3032_exit_eerd(rv3032, eerd);
+
+ return ret;
+}
+
+static irqreturn_t rv3032_handle_irq(int irq, void *dev_id)
+{
+ struct rv3032_data *rv3032 = dev_id;
+ unsigned long events = 0;
+ u32 status = 0, ctrl = 0;
+
+ if (regmap_read(rv3032->regmap, RV3032_STATUS, &status) < 0 ||
+ status == 0) {
+ return IRQ_NONE;
+ }
+
+ if (status & RV3032_STATUS_TF) {
+ status |= RV3032_STATUS_TF;
+ ctrl |= RV3032_CTRL2_TIE;
+ events |= RTC_PF;
+ }
+
+ if (status & RV3032_STATUS_AF) {
+ status |= RV3032_STATUS_AF;
+ ctrl |= RV3032_CTRL2_AIE;
+ events |= RTC_AF;
+ }
+
+ if (status & RV3032_STATUS_UF) {
+ status |= RV3032_STATUS_UF;
+ ctrl |= RV3032_CTRL2_UIE;
+ events |= RTC_UF;
+ }
+
+ if (events) {
+ rtc_update_irq(rv3032->rtc, 1, events);
+ regmap_update_bits(rv3032->regmap, RV3032_STATUS, status, 0);
+ regmap_update_bits(rv3032->regmap, RV3032_CTRL2, ctrl, 0);
+ }
+
+ return IRQ_HANDLED;
+}
+
+static int rv3032_get_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rv3032_data *rv3032 = dev_get_drvdata(dev);
+ u8 date[7];
+ int ret, status;
+
+ ret = regmap_read(rv3032->regmap, RV3032_STATUS, &status);
+ if (ret < 0)
+ return ret;
+
+ if (status & (RV3032_STATUS_PORF | RV3032_STATUS_VLF))
+ return -EINVAL;
+
+ ret = regmap_bulk_read(rv3032->regmap, RV3032_SEC, date, sizeof(date));
+ if (ret)
+ return ret;
+
+ tm->tm_sec = bcd2bin(date[0] & 0x7f);
+ tm->tm_min = bcd2bin(date[1] & 0x7f);
+ tm->tm_hour = bcd2bin(date[2] & 0x3f);
+ tm->tm_wday = date[3] & 0x7;
+ tm->tm_mday = bcd2bin(date[4] & 0x3f);
+ tm->tm_mon = bcd2bin(date[5] & 0x1f) - 1;
+ tm->tm_year = bcd2bin(date[6]) + 100;
+
+ return 0;
+}
+
+static int rv3032_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rv3032_data *rv3032 = dev_get_drvdata(dev);
+ u8 date[7];
+ int ret;
+
+ date[0] = bin2bcd(tm->tm_sec);
+ date[1] = bin2bcd(tm->tm_min);
+ date[2] = bin2bcd(tm->tm_hour);
+ date[3] = tm->tm_wday;
+ date[4] = bin2bcd(tm->tm_mday);
+ date[5] = bin2bcd(tm->tm_mon + 1);
+ date[6] = bin2bcd(tm->tm_year - 100);
+
+ ret = regmap_bulk_write(rv3032->regmap, RV3032_SEC, date,
+ sizeof(date));
+ if (ret)
+ return ret;
+
+ ret = regmap_update_bits(rv3032->regmap, RV3032_STATUS,
+ RV3032_STATUS_PORF | RV3032_STATUS_VLF, 0);
+
+ return ret;
+}
+
+static int rv3032_get_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rv3032_data *rv3032 = dev_get_drvdata(dev);
+ u8 alarmvals[3];
+ int status, ctrl, ret;
+
+ ret = regmap_bulk_read(rv3032->regmap, RV3032_ALARM_MIN, alarmvals,
+ sizeof(alarmvals));
+ if (ret)
+ return ret;
+
+ ret = regmap_read(rv3032->regmap, RV3032_STATUS, &status);
+ if (ret < 0)
+ return ret;
+
+ ret = regmap_read(rv3032->regmap, RV3032_CTRL2, &ctrl);
+ if (ret < 0)
+ return ret;
+
+ alrm->time.tm_sec = 0;
+ alrm->time.tm_min = bcd2bin(alarmvals[0] & 0x7f);
+ alrm->time.tm_hour = bcd2bin(alarmvals[1] & 0x3f);
+ alrm->time.tm_mday = bcd2bin(alarmvals[2] & 0x3f);
+
+ alrm->enabled = !!(ctrl & RV3032_CTRL2_AIE);
+ alrm->pending = (status & RV3032_STATUS_AF) && alrm->enabled;
+
+ return 0;
+}
+
+static int rv3032_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rv3032_data *rv3032 = dev_get_drvdata(dev);
+ u8 alarmvals[3];
+ u8 ctrl = 0;
+ int ret;
+
+ /* The alarm has no seconds, round up to nearest minute */
+ if (alrm->time.tm_sec) {
+ time64_t alarm_time = rtc_tm_to_time64(&alrm->time);
+
+ alarm_time += 60 - alrm->time.tm_sec;
+ rtc_time64_to_tm(alarm_time, &alrm->time);
+ }
+
+ ret = regmap_update_bits(rv3032->regmap, RV3032_CTRL2,
+ RV3032_CTRL2_AIE | RV3032_CTRL2_UIE, 0);
+ if (ret)
+ return ret;
+
+ alarmvals[0] = bin2bcd(alrm->time.tm_min);
+ alarmvals[1] = bin2bcd(alrm->time.tm_hour);
+ alarmvals[2] = bin2bcd(alrm->time.tm_mday);
+
+ ret = regmap_update_bits(rv3032->regmap, RV3032_STATUS,
+ RV3032_STATUS_AF, 0);
+ if (ret)
+ return ret;
+
+ ret = regmap_bulk_write(rv3032->regmap, RV3032_ALARM_MIN, alarmvals,
+ sizeof(alarmvals));
+ if (ret)
+ return ret;
+
+ if (alrm->enabled) {
+ if (rv3032->rtc->uie_rtctimer.enabled)
+ ctrl |= RV3032_CTRL2_UIE;
+ if (rv3032->rtc->aie_timer.enabled)
+ ctrl |= RV3032_CTRL2_AIE;
+ }
+
+ ret = regmap_update_bits(rv3032->regmap, RV3032_CTRL2,
+ RV3032_CTRL2_UIE | RV3032_CTRL2_AIE, ctrl);
+
+ return ret;
+}
+
+static int rv3032_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct rv3032_data *rv3032 = dev_get_drvdata(dev);
+ int ctrl = 0, ret;
+
+ if (enabled) {
+ if (rv3032->rtc->uie_rtctimer.enabled)
+ ctrl |= RV3032_CTRL2_UIE;
+ if (rv3032->rtc->aie_timer.enabled)
+ ctrl |= RV3032_CTRL2_AIE;
+ }
+
+ ret = regmap_update_bits(rv3032->regmap, RV3032_STATUS,
+ RV3032_STATUS_AF | RV3032_STATUS_UF, 0);
+ if (ret)
+ return ret;
+
+ ret = regmap_update_bits(rv3032->regmap, RV3032_CTRL2,
+ RV3032_CTRL2_UIE | RV3032_CTRL2_AIE, ctrl);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+static int rv3032_read_offset(struct device *dev, long *offset)
+{
+ struct rv3032_data *rv3032 = dev_get_drvdata(dev);
+ int ret, value, steps;
+
+ ret = regmap_read(rv3032->regmap, RV3032_OFFSET, &value);
+ if (ret < 0)
+ return ret;
+
+ steps = sign_extend32(FIELD_GET(RV3032_OFFSET_MSK, value), 5);
+
+ *offset = DIV_ROUND_CLOSEST(steps * OFFSET_STEP_PPT, 1000);
+
+ return 0;
+}
+
+static int rv3032_set_offset(struct device *dev, long offset)
+{
+ struct rv3032_data *rv3032 = dev_get_drvdata(dev);
+
+ offset = clamp(offset, -7629L, 7391L) * 1000;
+ offset = DIV_ROUND_CLOSEST(offset, OFFSET_STEP_PPT);
+
+ return rv3032_update_cfg(rv3032, RV3032_OFFSET, RV3032_OFFSET_MSK,
+ FIELD_PREP(RV3032_OFFSET_MSK, offset));
+}
+
+static int rv3032_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
+{
+ struct rv3032_data *rv3032 = dev_get_drvdata(dev);
+ int status, val = 0, ret = 0;
+
+ switch (cmd) {
+ case RTC_VL_READ:
+ ret = regmap_read(rv3032->regmap, RV3032_STATUS, &status);
+ if (ret < 0)
+ return ret;
+
+ if (status & (RV3032_STATUS_PORF | RV3032_STATUS_VLF))
+ val = RTC_VL_DATA_INVALID;
+ return put_user(val, (unsigned int __user *)arg);
+
+ default:
+ return -ENOIOCTLCMD;
+ }
+}
+
+static int rv3032_nvram_write(void *priv, unsigned int offset, void *val, size_t bytes)
+{
+ return regmap_bulk_write(priv, RV3032_RAM1 + offset, val, bytes);
+}
+
+static int rv3032_nvram_read(void *priv, unsigned int offset, void *val, size_t bytes)
+{
+ return regmap_bulk_read(priv, RV3032_RAM1 + offset, val, bytes);
+}
+
+static int rv3032_eeprom_write(void *priv, unsigned int offset, void *val, size_t bytes)
+{
+ struct rv3032_data *rv3032 = priv;
+ u32 status, eerd;
+ int i, ret;
+ u8 *buf = val;
+
+ ret = rv3032_enter_eerd(rv3032, &eerd);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < bytes; i++) {
+ ret = regmap_write(rv3032->regmap, RV3032_EEPROM_ADDR,
+ RV3032_EEPROM_USER + offset + i);
+ if (ret)
+ goto exit_eerd;
+
+ ret = regmap_write(rv3032->regmap, RV3032_EEPROM_DATA, buf[i]);
+ if (ret)
+ goto exit_eerd;
+
+ ret = regmap_write(rv3032->regmap, RV3032_EEPROM_CMD,
+ RV3032_EEPROM_CMD_WRITE);
+ if (ret)
+ goto exit_eerd;
+
+ usleep_range(RV3032_EEBUSY_POLL, RV3032_EEBUSY_TIMEOUT);
+
+ ret = regmap_read_poll_timeout(rv3032->regmap, RV3032_TLSB, status,
+ !(status & RV3032_TLSB_EEBUSY),
+ RV3032_EEBUSY_POLL, RV3032_EEBUSY_TIMEOUT);
+ if (ret)
+ goto exit_eerd;
+ }
+
+exit_eerd:
+ rv3032_exit_eerd(rv3032, eerd);
+
+ return ret;
+}
+
+static int rv3032_eeprom_read(void *priv, unsigned int offset, void *val, size_t bytes)
+{
+ struct rv3032_data *rv3032 = priv;
+ u32 status, eerd, data;
+ int i, ret;
+ u8 *buf = val;
+
+ ret = rv3032_enter_eerd(rv3032, &eerd);
+ if (ret)
+ return ret;
+
+ for (i = 0; i < bytes; i++) {
+ ret = regmap_write(rv3032->regmap, RV3032_EEPROM_ADDR,
+ RV3032_EEPROM_USER + offset + i);
+ if (ret)
+ goto exit_eerd;
+
+ ret = regmap_write(rv3032->regmap, RV3032_EEPROM_CMD,
+ RV3032_EEPROM_CMD_READ);
+ if (ret)
+ goto exit_eerd;
+
+ ret = regmap_read_poll_timeout(rv3032->regmap, RV3032_TLSB, status,
+ !(status & RV3032_TLSB_EEBUSY),
+ RV3032_EEBUSY_POLL, RV3032_EEBUSY_TIMEOUT);
+ if (ret)
+ goto exit_eerd;
+
+ ret = regmap_read(rv3032->regmap, RV3032_EEPROM_DATA, &data);
+ if (ret)
+ goto exit_eerd;
+ buf[i] = data;
+ }
+
+exit_eerd:
+ rv3032_exit_eerd(rv3032, eerd);
+
+ return ret;
+}
+
+static int rv3032_trickle_charger_setup(struct device *dev, struct rv3032_data *rv3032)
+{
+ u32 val, ohms, voltage;
+ int i;
+
+ val = FIELD_PREP(RV3032_PMU_TCM, 1) | FIELD_PREP(RV3032_PMU_BSM, RV3032_PMU_BSM_DSM);
+ if (!device_property_read_u32(dev, "trickle-voltage-millivolt", &voltage)) {
+ for (i = 0; i < ARRAY_SIZE(rv3032_trickle_voltages); i++)
+ if (voltage == rv3032_trickle_voltages[i])
+ break;
+ if (i < ARRAY_SIZE(rv3032_trickle_voltages))
+ val = FIELD_PREP(RV3032_PMU_TCM, i) |
+ FIELD_PREP(RV3032_PMU_BSM, RV3032_PMU_BSM_LSM);
+ }
+
+ if (device_property_read_u32(dev, "trickle-resistor-ohms", &ohms))
+ return 0;
+
+ for (i = 0; i < ARRAY_SIZE(rv3032_trickle_resistors); i++)
+ if (ohms == rv3032_trickle_resistors[i])
+ break;
+
+ if (i >= ARRAY_SIZE(rv3032_trickle_resistors)) {
+ dev_warn(dev, "invalid trickle resistor value\n");
+
+ return 0;
+ }
+
+ return rv3032_update_cfg(rv3032, RV3032_PMU,
+ RV3032_PMU_TCR | RV3032_PMU_TCM | RV3032_PMU_BSM,
+ val | FIELD_PREP(RV3032_PMU_TCR, i));
+}
+
+#ifdef CONFIG_COMMON_CLK
+#define clkout_hw_to_rv3032(hw) container_of(hw, struct rv3032_data, clkout_hw)
+
+static int clkout_xtal_rates[] = {
+ 32768,
+ 1024,
+ 64,
+ 1,
+};
+
+#define RV3032_HFD_STEP 8192
+
+static unsigned long rv3032_clkout_recalc_rate(struct clk_hw *hw,
+ unsigned long parent_rate)
+{
+ int clkout, ret;
+ struct rv3032_data *rv3032 = clkout_hw_to_rv3032(hw);
+
+ ret = regmap_read(rv3032->regmap, RV3032_CLKOUT2, &clkout);
+ if (ret < 0)
+ return 0;
+
+ if (clkout & RV3032_CLKOUT2_OS) {
+ unsigned long rate = FIELD_GET(RV3032_CLKOUT2_HFD_MSK, clkout) << 8;
+
+ ret = regmap_read(rv3032->regmap, RV3032_CLKOUT1, &clkout);
+ if (ret < 0)
+ return 0;
+
+ rate += clkout + 1;
+
+ return rate * RV3032_HFD_STEP;
+ }
+
+ return clkout_xtal_rates[FIELD_GET(RV3032_CLKOUT2_FD_MSK, clkout)];
+}
+
+static long rv3032_clkout_round_rate(struct clk_hw *hw, unsigned long rate,
+ unsigned long *prate)
+{
+ int i, hfd;
+
+ if (rate < RV3032_HFD_STEP)
+ for (i = 0; i < ARRAY_SIZE(clkout_xtal_rates); i++)
+ if (clkout_xtal_rates[i] <= rate)
+ return clkout_xtal_rates[i];
+
+ hfd = DIV_ROUND_CLOSEST(rate, RV3032_HFD_STEP);
+
+ return RV3032_HFD_STEP * clamp(hfd, 0, 8192);
+}
+
+static int rv3032_clkout_set_rate(struct clk_hw *hw, unsigned long rate,
+ unsigned long parent_rate)
+{
+ struct rv3032_data *rv3032 = clkout_hw_to_rv3032(hw);
+ u32 status, eerd;
+ int i, hfd, ret;
+
+ for (i = 0; i < ARRAY_SIZE(clkout_xtal_rates); i++) {
+ if (clkout_xtal_rates[i] == rate) {
+ return rv3032_update_cfg(rv3032, RV3032_CLKOUT2, 0xff,
+ FIELD_PREP(RV3032_CLKOUT2_FD_MSK, i));
+ }
+ }
+
+ hfd = DIV_ROUND_CLOSEST(rate, RV3032_HFD_STEP);
+ hfd = clamp(hfd, 1, 8192) - 1;
+
+ ret = rv3032_enter_eerd(rv3032, &eerd);
+ if (ret)
+ return ret;
+
+ ret = regmap_write(rv3032->regmap, RV3032_CLKOUT1, hfd & 0xff);
+ if (ret)
+ goto exit_eerd;
+
+ ret = regmap_write(rv3032->regmap, RV3032_CLKOUT2, RV3032_CLKOUT2_OS |
+ FIELD_PREP(RV3032_CLKOUT2_HFD_MSK, hfd >> 8));
+ if (ret)
+ goto exit_eerd;
+
+ ret = regmap_write(rv3032->regmap, RV3032_EEPROM_CMD, RV3032_EEPROM_CMD_UPDATE);
+ if (ret)
+ goto exit_eerd;
+
+ usleep_range(46000, RV3032_EEBUSY_TIMEOUT);
+
+ ret = regmap_read_poll_timeout(rv3032->regmap, RV3032_TLSB, status,
+ !(status & RV3032_TLSB_EEBUSY),
+ RV3032_EEBUSY_POLL, RV3032_EEBUSY_TIMEOUT);
+
+exit_eerd:
+ rv3032_exit_eerd(rv3032, eerd);
+
+ return ret;
+}
+
+static int rv3032_clkout_prepare(struct clk_hw *hw)
+{
+ struct rv3032_data *rv3032 = clkout_hw_to_rv3032(hw);
+
+ return rv3032_update_cfg(rv3032, RV3032_PMU, RV3032_PMU_NCLKE, 0);
+}
+
+static void rv3032_clkout_unprepare(struct clk_hw *hw)
+{
+ struct rv3032_data *rv3032 = clkout_hw_to_rv3032(hw);
+
+ rv3032_update_cfg(rv3032, RV3032_PMU, RV3032_PMU_NCLKE, RV3032_PMU_NCLKE);
+}
+
+static int rv3032_clkout_is_prepared(struct clk_hw *hw)
+{
+ int val, ret;
+ struct rv3032_data *rv3032 = clkout_hw_to_rv3032(hw);
+
+ ret = regmap_read(rv3032->regmap, RV3032_PMU, &val);
+ if (ret < 0)
+ return ret;
+
+ return !(val & RV3032_PMU_NCLKE);
+}
+
+static const struct clk_ops rv3032_clkout_ops = {
+ .prepare = rv3032_clkout_prepare,
+ .unprepare = rv3032_clkout_unprepare,
+ .is_prepared = rv3032_clkout_is_prepared,
+ .recalc_rate = rv3032_clkout_recalc_rate,
+ .round_rate = rv3032_clkout_round_rate,
+ .set_rate = rv3032_clkout_set_rate,
+};
+
+static int rv3032_clkout_register_clk(struct rv3032_data *rv3032,
+ struct i2c_client *client)
+{
+ int ret;
+ struct clk *clk;
+ struct clk_init_data init;
+ struct device_node *node = client->dev.of_node;
+
+ ret = regmap_update_bits(rv3032->regmap, RV3032_TLSB, RV3032_TLSB_CLKF, 0);
+ if (ret < 0)
+ return ret;
+
+ ret = regmap_update_bits(rv3032->regmap, RV3032_CTRL2, RV3032_CTRL2_CLKIE, 0);
+ if (ret < 0)
+ return ret;
+
+ ret = regmap_write(rv3032->regmap, RV3032_CLK_IRQ, 0);
+ if (ret < 0)
+ return ret;
+
+ init.name = "rv3032-clkout";
+ init.ops = &rv3032_clkout_ops;
+ init.flags = 0;
+ init.parent_names = NULL;
+ init.num_parents = 0;
+ rv3032->clkout_hw.init = &init;
+
+ of_property_read_string(node, "clock-output-names", &init.name);
+
+ clk = devm_clk_register(&client->dev, &rv3032->clkout_hw);
+ if (!IS_ERR(clk))
+ of_clk_add_provider(node, of_clk_src_simple_get, clk);
+
+ return 0;
+}
+#endif
+
+static int rv3032_hwmon_read_temp(struct device *dev, long *mC)
+{
+ struct rv3032_data *rv3032 = dev_get_drvdata(dev);
+ u8 buf[2];
+ int temp, prev = 0;
+ int ret;
+
+ ret = regmap_bulk_read(rv3032->regmap, RV3032_TLSB, buf, sizeof(buf));
+ if (ret)
+ return ret;
+
+ temp = sign_extend32(buf[1], 7) << 4;
+ temp |= FIELD_GET(RV3032_TLSB_TEMP, buf[0]);
+
+ /* No blocking or shadowing on RV3032_TLSB and RV3032_TMSB */
+ do {
+ prev = temp;
+
+ ret = regmap_bulk_read(rv3032->regmap, RV3032_TLSB, buf, sizeof(buf));
+ if (ret)
+ return ret;
+
+ temp = sign_extend32(buf[1], 7) << 4;
+ temp |= FIELD_GET(RV3032_TLSB_TEMP, buf[0]);
+ } while (temp != prev);
+
+ *mC = (temp * 1000) / 16;
+
+ return 0;
+}
+
+static umode_t rv3032_hwmon_is_visible(const void *data, enum hwmon_sensor_types type,
+ u32 attr, int channel)
+{
+ if (type != hwmon_temp)
+ return 0;
+
+ switch (attr) {
+ case hwmon_temp_input:
+ return 0444;
+ default:
+ return 0;
+ }
+}
+
+static int rv3032_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
+ u32 attr, int channel, long *temp)
+{
+ int err;
+
+ switch (attr) {
+ case hwmon_temp_input:
+ err = rv3032_hwmon_read_temp(dev, temp);
+ break;
+ default:
+ err = -EOPNOTSUPP;
+ break;
+ }
+
+ return err;
+}
+
+static const struct hwmon_channel_info *rv3032_hwmon_info[] = {
+ HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ),
+ HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MAX_HYST),
+ NULL
+};
+
+static const struct hwmon_ops rv3032_hwmon_hwmon_ops = {
+ .is_visible = rv3032_hwmon_is_visible,
+ .read = rv3032_hwmon_read,
+};
+
+static const struct hwmon_chip_info rv3032_hwmon_chip_info = {
+ .ops = &rv3032_hwmon_hwmon_ops,
+ .info = rv3032_hwmon_info,
+};
+
+static void rv3032_hwmon_register(struct device *dev)
+{
+ struct rv3032_data *rv3032 = dev_get_drvdata(dev);
+
+ if (!IS_REACHABLE(CONFIG_HWMON))
+ return;
+
+ devm_hwmon_device_register_with_info(dev, "rv3032", rv3032, &rv3032_hwmon_chip_info, NULL);
+}
+
+static struct rtc_class_ops rv3032_rtc_ops = {
+ .read_time = rv3032_get_time,
+ .set_time = rv3032_set_time,
+ .read_offset = rv3032_read_offset,
+ .set_offset = rv3032_set_offset,
+ .ioctl = rv3032_ioctl,
+};
+
+static const struct regmap_config regmap_config = {
+ .reg_bits = 8,
+ .val_bits = 8,
+ .max_register = 0xCA,
+};
+
+static int rv3032_probe(struct i2c_client *client)
+{
+ struct rv3032_data *rv3032;
+ int ret, status;
+ struct nvmem_config nvmem_cfg = {
+ .name = "rv3032_nvram",
+ .word_size = 1,
+ .stride = 1,
+ .size = 16,
+ .type = NVMEM_TYPE_BATTERY_BACKED,
+ .reg_read = rv3032_nvram_read,
+ .reg_write = rv3032_nvram_write,
+ };
+ struct nvmem_config eeprom_cfg = {
+ .name = "rv3032_eeprom",
+ .word_size = 1,
+ .stride = 1,
+ .size = 32,
+ .type = NVMEM_TYPE_EEPROM,
+ .reg_read = rv3032_eeprom_read,
+ .reg_write = rv3032_eeprom_write,
+ };
+
+ rv3032 = devm_kzalloc(&client->dev, sizeof(struct rv3032_data),
+ GFP_KERNEL);
+ if (!rv3032)
+ return -ENOMEM;
+
+ rv3032->regmap = devm_regmap_init_i2c(client, &regmap_config);
+ if (IS_ERR(rv3032->regmap))
+ return PTR_ERR(rv3032->regmap);
+
+ i2c_set_clientdata(client, rv3032);
+
+ ret = regmap_read(rv3032->regmap, RV3032_STATUS, &status);
+ if (ret < 0)
+ return ret;
+
+ rv3032->rtc = devm_rtc_allocate_device(&client->dev);
+ if (IS_ERR(rv3032->rtc))
+ return PTR_ERR(rv3032->rtc);
+
+ if (client->irq > 0) {
+ ret = devm_request_threaded_irq(&client->dev, client->irq,
+ NULL, rv3032_handle_irq,
+ IRQF_TRIGGER_LOW | IRQF_ONESHOT,
+ "rv3032", rv3032);
+ if (ret) {
+ dev_warn(&client->dev, "unable to request IRQ, alarms disabled\n");
+ client->irq = 0;
+ } else {
+ rv3032_rtc_ops.read_alarm = rv3032_get_alarm;
+ rv3032_rtc_ops.set_alarm = rv3032_set_alarm;
+ rv3032_rtc_ops.alarm_irq_enable = rv3032_alarm_irq_enable;
+ }
+ }
+
+ ret = regmap_update_bits(rv3032->regmap, RV3032_CTRL1,
+ RV3032_CTRL1_WADA, RV3032_CTRL1_WADA);
+ if (ret)
+ return ret;
+
+ rv3032_trickle_charger_setup(&client->dev, rv3032);
+
+ rv3032->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ rv3032->rtc->range_max = RTC_TIMESTAMP_END_2099;
+ rv3032->rtc->ops = &rv3032_rtc_ops;
+ ret = rtc_register_device(rv3032->rtc);
+ if (ret)
+ return ret;
+
+ nvmem_cfg.priv = rv3032;
+ rtc_nvmem_register(rv3032->rtc, &nvmem_cfg);
+ eeprom_cfg.priv = rv3032;
+ rtc_nvmem_register(rv3032->rtc, &eeprom_cfg);
+
+ rv3032->rtc->max_user_freq = 1;
+
+#ifdef CONFIG_COMMON_CLK
+ rv3032_clkout_register_clk(rv3032, client);
+#endif
+
+ rv3032_hwmon_register(&client->dev);
+
+ return 0;
+}
+
+static const struct of_device_id rv3032_of_match[] = {
+ { .compatible = "microcrystal,rv3032", },
+ { }
+};
+MODULE_DEVICE_TABLE(of, rv3032_of_match);
+
+static struct i2c_driver rv3032_driver = {
+ .driver = {
+ .name = "rtc-rv3032",
+ .of_match_table = of_match_ptr(rv3032_of_match),
+ },
+ .probe_new = rv3032_probe,
+};
+module_i2c_driver(rv3032_driver);
+
+MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@bootlin.com>");
+MODULE_DESCRIPTION("Micro Crystal RV3032 RTC driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-rv8803.c b/drivers/rtc/rtc-rv8803.c
new file mode 100644
index 000000000..c6d8e3425
--- /dev/null
+++ b/drivers/rtc/rtc-rv8803.c
@@ -0,0 +1,639 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * RTC driver for the Micro Crystal RV8803
+ *
+ * Copyright (C) 2015 Micro Crystal SA
+ * Alexandre Belloni <alexandre.belloni@bootlin.com>
+ *
+ */
+
+#include <linux/bcd.h>
+#include <linux/bitops.h>
+#include <linux/log2.h>
+#include <linux/i2c.h>
+#include <linux/interrupt.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of_device.h>
+#include <linux/rtc.h>
+
+#define RV8803_I2C_TRY_COUNT 4
+
+#define RV8803_SEC 0x00
+#define RV8803_MIN 0x01
+#define RV8803_HOUR 0x02
+#define RV8803_WEEK 0x03
+#define RV8803_DAY 0x04
+#define RV8803_MONTH 0x05
+#define RV8803_YEAR 0x06
+#define RV8803_RAM 0x07
+#define RV8803_ALARM_MIN 0x08
+#define RV8803_ALARM_HOUR 0x09
+#define RV8803_ALARM_WEEK_OR_DAY 0x0A
+#define RV8803_EXT 0x0D
+#define RV8803_FLAG 0x0E
+#define RV8803_CTRL 0x0F
+
+#define RV8803_EXT_WADA BIT(6)
+
+#define RV8803_FLAG_V1F BIT(0)
+#define RV8803_FLAG_V2F BIT(1)
+#define RV8803_FLAG_AF BIT(3)
+#define RV8803_FLAG_TF BIT(4)
+#define RV8803_FLAG_UF BIT(5)
+
+#define RV8803_CTRL_RESET BIT(0)
+
+#define RV8803_CTRL_EIE BIT(2)
+#define RV8803_CTRL_AIE BIT(3)
+#define RV8803_CTRL_TIE BIT(4)
+#define RV8803_CTRL_UIE BIT(5)
+
+#define RX8900_BACKUP_CTRL 0x18
+#define RX8900_FLAG_SWOFF BIT(2)
+#define RX8900_FLAG_VDETOFF BIT(3)
+
+enum rv8803_type {
+ rv_8803,
+ rx_8900
+};
+
+struct rv8803_data {
+ struct i2c_client *client;
+ struct rtc_device *rtc;
+ struct mutex flags_lock;
+ u8 ctrl;
+ enum rv8803_type type;
+};
+
+static int rv8803_read_reg(const struct i2c_client *client, u8 reg)
+{
+ int try = RV8803_I2C_TRY_COUNT;
+ s32 ret;
+
+ /*
+ * There is a 61µs window during which the RTC does not acknowledge I2C
+ * transfers. In that case, ensure that there are multiple attempts.
+ */
+ do
+ ret = i2c_smbus_read_byte_data(client, reg);
+ while ((ret == -ENXIO || ret == -EIO) && --try);
+ if (ret < 0)
+ dev_err(&client->dev, "Unable to read register 0x%02x\n", reg);
+
+ return ret;
+}
+
+static int rv8803_read_regs(const struct i2c_client *client,
+ u8 reg, u8 count, u8 *values)
+{
+ int try = RV8803_I2C_TRY_COUNT;
+ s32 ret;
+
+ do
+ ret = i2c_smbus_read_i2c_block_data(client, reg, count, values);
+ while ((ret == -ENXIO || ret == -EIO) && --try);
+ if (ret != count) {
+ dev_err(&client->dev,
+ "Unable to read registers 0x%02x..0x%02x\n",
+ reg, reg + count - 1);
+ return ret < 0 ? ret : -EIO;
+ }
+
+ return 0;
+}
+
+static int rv8803_write_reg(const struct i2c_client *client, u8 reg, u8 value)
+{
+ int try = RV8803_I2C_TRY_COUNT;
+ s32 ret;
+
+ do
+ ret = i2c_smbus_write_byte_data(client, reg, value);
+ while ((ret == -ENXIO || ret == -EIO) && --try);
+ if (ret)
+ dev_err(&client->dev, "Unable to write register 0x%02x\n", reg);
+
+ return ret;
+}
+
+static int rv8803_write_regs(const struct i2c_client *client,
+ u8 reg, u8 count, const u8 *values)
+{
+ int try = RV8803_I2C_TRY_COUNT;
+ s32 ret;
+
+ do
+ ret = i2c_smbus_write_i2c_block_data(client, reg, count,
+ values);
+ while ((ret == -ENXIO || ret == -EIO) && --try);
+ if (ret)
+ dev_err(&client->dev,
+ "Unable to write registers 0x%02x..0x%02x\n",
+ reg, reg + count - 1);
+
+ return ret;
+}
+
+static irqreturn_t rv8803_handle_irq(int irq, void *dev_id)
+{
+ struct i2c_client *client = dev_id;
+ struct rv8803_data *rv8803 = i2c_get_clientdata(client);
+ unsigned long events = 0;
+ int flags;
+
+ mutex_lock(&rv8803->flags_lock);
+
+ flags = rv8803_read_reg(client, RV8803_FLAG);
+ if (flags <= 0) {
+ mutex_unlock(&rv8803->flags_lock);
+ return IRQ_NONE;
+ }
+
+ if (flags & RV8803_FLAG_V1F)
+ dev_warn(&client->dev, "Voltage low, temperature compensation stopped.\n");
+
+ if (flags & RV8803_FLAG_V2F)
+ dev_warn(&client->dev, "Voltage low, data loss detected.\n");
+
+ if (flags & RV8803_FLAG_TF) {
+ flags &= ~RV8803_FLAG_TF;
+ rv8803->ctrl &= ~RV8803_CTRL_TIE;
+ events |= RTC_PF;
+ }
+
+ if (flags & RV8803_FLAG_AF) {
+ flags &= ~RV8803_FLAG_AF;
+ rv8803->ctrl &= ~RV8803_CTRL_AIE;
+ events |= RTC_AF;
+ }
+
+ if (flags & RV8803_FLAG_UF) {
+ flags &= ~RV8803_FLAG_UF;
+ rv8803->ctrl &= ~RV8803_CTRL_UIE;
+ events |= RTC_UF;
+ }
+
+ if (events) {
+ rtc_update_irq(rv8803->rtc, 1, events);
+ rv8803_write_reg(client, RV8803_FLAG, flags);
+ rv8803_write_reg(rv8803->client, RV8803_CTRL, rv8803->ctrl);
+ }
+
+ mutex_unlock(&rv8803->flags_lock);
+
+ return IRQ_HANDLED;
+}
+
+static int rv8803_get_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rv8803_data *rv8803 = dev_get_drvdata(dev);
+ u8 date1[7];
+ u8 date2[7];
+ u8 *date = date1;
+ int ret, flags;
+
+ flags = rv8803_read_reg(rv8803->client, RV8803_FLAG);
+ if (flags < 0)
+ return flags;
+
+ if (flags & RV8803_FLAG_V2F) {
+ dev_warn(dev, "Voltage low, data is invalid.\n");
+ return -EINVAL;
+ }
+
+ ret = rv8803_read_regs(rv8803->client, RV8803_SEC, 7, date);
+ if (ret)
+ return ret;
+
+ if ((date1[RV8803_SEC] & 0x7f) == bin2bcd(59)) {
+ ret = rv8803_read_regs(rv8803->client, RV8803_SEC, 7, date2);
+ if (ret)
+ return ret;
+
+ if ((date2[RV8803_SEC] & 0x7f) != bin2bcd(59))
+ date = date2;
+ }
+
+ tm->tm_sec = bcd2bin(date[RV8803_SEC] & 0x7f);
+ tm->tm_min = bcd2bin(date[RV8803_MIN] & 0x7f);
+ tm->tm_hour = bcd2bin(date[RV8803_HOUR] & 0x3f);
+ tm->tm_wday = ilog2(date[RV8803_WEEK] & 0x7f);
+ tm->tm_mday = bcd2bin(date[RV8803_DAY] & 0x3f);
+ tm->tm_mon = bcd2bin(date[RV8803_MONTH] & 0x1f) - 1;
+ tm->tm_year = bcd2bin(date[RV8803_YEAR]) + 100;
+
+ return 0;
+}
+
+static int rv8803_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rv8803_data *rv8803 = dev_get_drvdata(dev);
+ u8 date[7];
+ int ctrl, flags, ret;
+
+ ctrl = rv8803_read_reg(rv8803->client, RV8803_CTRL);
+ if (ctrl < 0)
+ return ctrl;
+
+ /* Stop the clock */
+ ret = rv8803_write_reg(rv8803->client, RV8803_CTRL,
+ ctrl | RV8803_CTRL_RESET);
+ if (ret)
+ return ret;
+
+ date[RV8803_SEC] = bin2bcd(tm->tm_sec);
+ date[RV8803_MIN] = bin2bcd(tm->tm_min);
+ date[RV8803_HOUR] = bin2bcd(tm->tm_hour);
+ date[RV8803_WEEK] = 1 << (tm->tm_wday);
+ date[RV8803_DAY] = bin2bcd(tm->tm_mday);
+ date[RV8803_MONTH] = bin2bcd(tm->tm_mon + 1);
+ date[RV8803_YEAR] = bin2bcd(tm->tm_year - 100);
+
+ ret = rv8803_write_regs(rv8803->client, RV8803_SEC, 7, date);
+ if (ret)
+ return ret;
+
+ /* Restart the clock */
+ ret = rv8803_write_reg(rv8803->client, RV8803_CTRL,
+ ctrl & ~RV8803_CTRL_RESET);
+ if (ret)
+ return ret;
+
+ mutex_lock(&rv8803->flags_lock);
+
+ flags = rv8803_read_reg(rv8803->client, RV8803_FLAG);
+ if (flags < 0) {
+ mutex_unlock(&rv8803->flags_lock);
+ return flags;
+ }
+
+ ret = rv8803_write_reg(rv8803->client, RV8803_FLAG,
+ flags & ~(RV8803_FLAG_V1F | RV8803_FLAG_V2F));
+
+ mutex_unlock(&rv8803->flags_lock);
+
+ return ret;
+}
+
+static int rv8803_get_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rv8803_data *rv8803 = dev_get_drvdata(dev);
+ struct i2c_client *client = rv8803->client;
+ u8 alarmvals[3];
+ int flags, ret;
+
+ ret = rv8803_read_regs(client, RV8803_ALARM_MIN, 3, alarmvals);
+ if (ret)
+ return ret;
+
+ flags = rv8803_read_reg(client, RV8803_FLAG);
+ if (flags < 0)
+ return flags;
+
+ alrm->time.tm_sec = 0;
+ alrm->time.tm_min = bcd2bin(alarmvals[0] & 0x7f);
+ alrm->time.tm_hour = bcd2bin(alarmvals[1] & 0x3f);
+ alrm->time.tm_mday = bcd2bin(alarmvals[2] & 0x3f);
+
+ alrm->enabled = !!(rv8803->ctrl & RV8803_CTRL_AIE);
+ alrm->pending = (flags & RV8803_FLAG_AF) && alrm->enabled;
+
+ return 0;
+}
+
+static int rv8803_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct rv8803_data *rv8803 = dev_get_drvdata(dev);
+ u8 alarmvals[3];
+ u8 ctrl[2];
+ int ret, err;
+
+ /* The alarm has no seconds, round up to nearest minute */
+ if (alrm->time.tm_sec) {
+ time64_t alarm_time = rtc_tm_to_time64(&alrm->time);
+
+ alarm_time += 60 - alrm->time.tm_sec;
+ rtc_time64_to_tm(alarm_time, &alrm->time);
+ }
+
+ mutex_lock(&rv8803->flags_lock);
+
+ ret = rv8803_read_regs(client, RV8803_FLAG, 2, ctrl);
+ if (ret) {
+ mutex_unlock(&rv8803->flags_lock);
+ return ret;
+ }
+
+ alarmvals[0] = bin2bcd(alrm->time.tm_min);
+ alarmvals[1] = bin2bcd(alrm->time.tm_hour);
+ alarmvals[2] = bin2bcd(alrm->time.tm_mday);
+
+ if (rv8803->ctrl & (RV8803_CTRL_AIE | RV8803_CTRL_UIE)) {
+ rv8803->ctrl &= ~(RV8803_CTRL_AIE | RV8803_CTRL_UIE);
+ err = rv8803_write_reg(rv8803->client, RV8803_CTRL,
+ rv8803->ctrl);
+ if (err) {
+ mutex_unlock(&rv8803->flags_lock);
+ return err;
+ }
+ }
+
+ ctrl[1] &= ~RV8803_FLAG_AF;
+ err = rv8803_write_reg(rv8803->client, RV8803_FLAG, ctrl[1]);
+ mutex_unlock(&rv8803->flags_lock);
+ if (err)
+ return err;
+
+ err = rv8803_write_regs(rv8803->client, RV8803_ALARM_MIN, 3, alarmvals);
+ if (err)
+ return err;
+
+ if (alrm->enabled) {
+ if (rv8803->rtc->uie_rtctimer.enabled)
+ rv8803->ctrl |= RV8803_CTRL_UIE;
+ if (rv8803->rtc->aie_timer.enabled)
+ rv8803->ctrl |= RV8803_CTRL_AIE;
+
+ err = rv8803_write_reg(rv8803->client, RV8803_CTRL,
+ rv8803->ctrl);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+static int rv8803_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct rv8803_data *rv8803 = dev_get_drvdata(dev);
+ int ctrl, flags, err;
+
+ ctrl = rv8803->ctrl;
+
+ if (enabled) {
+ if (rv8803->rtc->uie_rtctimer.enabled)
+ ctrl |= RV8803_CTRL_UIE;
+ if (rv8803->rtc->aie_timer.enabled)
+ ctrl |= RV8803_CTRL_AIE;
+ } else {
+ if (!rv8803->rtc->uie_rtctimer.enabled)
+ ctrl &= ~RV8803_CTRL_UIE;
+ if (!rv8803->rtc->aie_timer.enabled)
+ ctrl &= ~RV8803_CTRL_AIE;
+ }
+
+ mutex_lock(&rv8803->flags_lock);
+ flags = rv8803_read_reg(client, RV8803_FLAG);
+ if (flags < 0) {
+ mutex_unlock(&rv8803->flags_lock);
+ return flags;
+ }
+ flags &= ~(RV8803_FLAG_AF | RV8803_FLAG_UF);
+ err = rv8803_write_reg(client, RV8803_FLAG, flags);
+ mutex_unlock(&rv8803->flags_lock);
+ if (err)
+ return err;
+
+ if (ctrl != rv8803->ctrl) {
+ rv8803->ctrl = ctrl;
+ err = rv8803_write_reg(client, RV8803_CTRL, rv8803->ctrl);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+static int rv8803_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct rv8803_data *rv8803 = dev_get_drvdata(dev);
+ unsigned int vl = 0;
+ int flags, ret = 0;
+
+ switch (cmd) {
+ case RTC_VL_READ:
+ flags = rv8803_read_reg(client, RV8803_FLAG);
+ if (flags < 0)
+ return flags;
+
+ if (flags & RV8803_FLAG_V1F) {
+ dev_warn(&client->dev, "Voltage low, temperature compensation stopped.\n");
+ vl = RTC_VL_ACCURACY_LOW;
+ }
+
+ if (flags & RV8803_FLAG_V2F)
+ vl |= RTC_VL_DATA_INVALID;
+
+ return put_user(vl, (unsigned int __user *)arg);
+
+ case RTC_VL_CLR:
+ mutex_lock(&rv8803->flags_lock);
+ flags = rv8803_read_reg(client, RV8803_FLAG);
+ if (flags < 0) {
+ mutex_unlock(&rv8803->flags_lock);
+ return flags;
+ }
+
+ flags &= ~RV8803_FLAG_V1F;
+ ret = rv8803_write_reg(client, RV8803_FLAG, flags);
+ mutex_unlock(&rv8803->flags_lock);
+ if (ret)
+ return ret;
+
+ return 0;
+
+ default:
+ return -ENOIOCTLCMD;
+ }
+}
+
+static int rv8803_nvram_write(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ return rv8803_write_reg(priv, RV8803_RAM, *(u8 *)val);
+}
+
+static int rv8803_nvram_read(void *priv, unsigned int offset,
+ void *val, size_t bytes)
+{
+ int ret;
+
+ ret = rv8803_read_reg(priv, RV8803_RAM);
+ if (ret < 0)
+ return ret;
+
+ *(u8 *)val = ret;
+
+ return 0;
+}
+
+static struct rtc_class_ops rv8803_rtc_ops = {
+ .read_time = rv8803_get_time,
+ .set_time = rv8803_set_time,
+ .ioctl = rv8803_ioctl,
+};
+
+static int rx8900_trickle_charger_init(struct rv8803_data *rv8803)
+{
+ struct i2c_client *client = rv8803->client;
+ struct device_node *node = client->dev.of_node;
+ int err;
+ u8 flags;
+
+ if (!node)
+ return 0;
+
+ if (rv8803->type != rx_8900)
+ return 0;
+
+ err = i2c_smbus_read_byte_data(rv8803->client, RX8900_BACKUP_CTRL);
+ if (err < 0)
+ return err;
+
+ flags = ~(RX8900_FLAG_VDETOFF | RX8900_FLAG_SWOFF) & (u8)err;
+
+ if (of_property_read_bool(node, "epson,vdet-disable"))
+ flags |= RX8900_FLAG_VDETOFF;
+
+ if (of_property_read_bool(node, "trickle-diode-disable"))
+ flags |= RX8900_FLAG_SWOFF;
+
+ return i2c_smbus_write_byte_data(rv8803->client, RX8900_BACKUP_CTRL,
+ flags);
+}
+
+static int rv8803_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct i2c_adapter *adapter = client->adapter;
+ struct rv8803_data *rv8803;
+ int err, flags;
+ struct nvmem_config nvmem_cfg = {
+ .name = "rv8803_nvram",
+ .word_size = 1,
+ .stride = 1,
+ .size = 1,
+ .reg_read = rv8803_nvram_read,
+ .reg_write = rv8803_nvram_write,
+ .priv = client,
+ };
+
+ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA |
+ I2C_FUNC_SMBUS_I2C_BLOCK)) {
+ dev_err(&adapter->dev, "doesn't support I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_I2C_BLOCK\n");
+ return -EIO;
+ }
+
+ rv8803 = devm_kzalloc(&client->dev, sizeof(struct rv8803_data),
+ GFP_KERNEL);
+ if (!rv8803)
+ return -ENOMEM;
+
+ mutex_init(&rv8803->flags_lock);
+ rv8803->client = client;
+ if (client->dev.of_node)
+ rv8803->type = (enum rv8803_type)
+ of_device_get_match_data(&client->dev);
+ else
+ rv8803->type = id->driver_data;
+ i2c_set_clientdata(client, rv8803);
+
+ flags = rv8803_read_reg(client, RV8803_FLAG);
+ if (flags < 0)
+ return flags;
+
+ if (flags & RV8803_FLAG_V1F)
+ dev_warn(&client->dev, "Voltage low, temperature compensation stopped.\n");
+
+ if (flags & RV8803_FLAG_V2F)
+ dev_warn(&client->dev, "Voltage low, data loss detected.\n");
+
+ if (flags & RV8803_FLAG_AF)
+ dev_warn(&client->dev, "An alarm maybe have been missed.\n");
+
+ rv8803->rtc = devm_rtc_allocate_device(&client->dev);
+ if (IS_ERR(rv8803->rtc))
+ return PTR_ERR(rv8803->rtc);
+
+ if (client->irq > 0) {
+ err = devm_request_threaded_irq(&client->dev, client->irq,
+ NULL, rv8803_handle_irq,
+ IRQF_TRIGGER_LOW | IRQF_ONESHOT,
+ "rv8803", client);
+ if (err) {
+ dev_warn(&client->dev, "unable to request IRQ, alarms disabled\n");
+ client->irq = 0;
+ } else {
+ rv8803_rtc_ops.read_alarm = rv8803_get_alarm;
+ rv8803_rtc_ops.set_alarm = rv8803_set_alarm;
+ rv8803_rtc_ops.alarm_irq_enable = rv8803_alarm_irq_enable;
+ }
+ }
+
+ err = rv8803_write_reg(rv8803->client, RV8803_EXT, RV8803_EXT_WADA);
+ if (err)
+ return err;
+
+ err = rx8900_trickle_charger_init(rv8803);
+ if (err) {
+ dev_err(&client->dev, "failed to init charger\n");
+ return err;
+ }
+
+ rv8803->rtc->ops = &rv8803_rtc_ops;
+ rv8803->rtc->nvram_old_abi = true;
+ rv8803->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ rv8803->rtc->range_max = RTC_TIMESTAMP_END_2099;
+ err = rtc_register_device(rv8803->rtc);
+ if (err)
+ return err;
+
+ rtc_nvmem_register(rv8803->rtc, &nvmem_cfg);
+
+ rv8803->rtc->max_user_freq = 1;
+
+ return 0;
+}
+
+static const struct i2c_device_id rv8803_id[] = {
+ { "rv8803", rv_8803 },
+ { "rx8803", rv_8803 },
+ { "rx8900", rx_8900 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, rv8803_id);
+
+static const struct of_device_id rv8803_of_match[] = {
+ {
+ .compatible = "microcrystal,rv8803",
+ .data = (void *)rv_8803
+ },
+ {
+ .compatible = "epson,rx8803",
+ .data = (void *)rv_8803
+ },
+ {
+ .compatible = "epson,rx8900",
+ .data = (void *)rx_8900
+ },
+ { }
+};
+MODULE_DEVICE_TABLE(of, rv8803_of_match);
+
+static struct i2c_driver rv8803_driver = {
+ .driver = {
+ .name = "rtc-rv8803",
+ .of_match_table = of_match_ptr(rv8803_of_match),
+ },
+ .probe = rv8803_probe,
+ .id_table = rv8803_id,
+};
+module_i2c_driver(rv8803_driver);
+
+MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@bootlin.com>");
+MODULE_DESCRIPTION("Micro Crystal RV8803 RTC driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-rx4581.c b/drivers/rtc/rtc-rx4581.c
new file mode 100644
index 000000000..c092e0452
--- /dev/null
+++ b/drivers/rtc/rtc-rx4581.c
@@ -0,0 +1,292 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* drivers/rtc/rtc-rx4581.c
+ *
+ * written by Torben Hohn <torbenh@linutronix.de>
+ *
+ * Based on:
+ * drivers/rtc/rtc-max6902.c
+ *
+ * Copyright (C) 2006 8D Technologies inc.
+ * Copyright (C) 2004 Compulab Ltd.
+ *
+ * Driver for MAX6902 spi RTC
+ *
+ * and based on:
+ * drivers/rtc/rtc-rx8581.c
+ *
+ * An I2C driver for the Epson RX8581 RTC
+ *
+ * Author: Martyn Welch <martyn.welch@ge.com>
+ * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
+ *
+ * Based on: rtc-pcf8563.c (An I2C driver for the Philips PCF8563 RTC)
+ * Copyright 2005-06 Tower Technologies
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/platform_device.h>
+#include <linux/init.h>
+#include <linux/rtc.h>
+#include <linux/spi/spi.h>
+#include <linux/bcd.h>
+
+#define RX4581_REG_SC 0x00 /* Second in BCD */
+#define RX4581_REG_MN 0x01 /* Minute in BCD */
+#define RX4581_REG_HR 0x02 /* Hour in BCD */
+#define RX4581_REG_DW 0x03 /* Day of Week */
+#define RX4581_REG_DM 0x04 /* Day of Month in BCD */
+#define RX4581_REG_MO 0x05 /* Month in BCD */
+#define RX4581_REG_YR 0x06 /* Year in BCD */
+#define RX4581_REG_RAM 0x07 /* RAM */
+#define RX4581_REG_AMN 0x08 /* Alarm Min in BCD*/
+#define RX4581_REG_AHR 0x09 /* Alarm Hour in BCD */
+#define RX4581_REG_ADM 0x0A
+#define RX4581_REG_ADW 0x0A
+#define RX4581_REG_TMR0 0x0B
+#define RX4581_REG_TMR1 0x0C
+#define RX4581_REG_EXT 0x0D /* Extension Register */
+#define RX4581_REG_FLAG 0x0E /* Flag Register */
+#define RX4581_REG_CTRL 0x0F /* Control Register */
+
+
+/* Flag Register bit definitions */
+#define RX4581_FLAG_UF 0x20 /* Update */
+#define RX4581_FLAG_TF 0x10 /* Timer */
+#define RX4581_FLAG_AF 0x08 /* Alarm */
+#define RX4581_FLAG_VLF 0x02 /* Voltage Low */
+
+/* Control Register bit definitions */
+#define RX4581_CTRL_UIE 0x20 /* Update Interrupt Enable */
+#define RX4581_CTRL_TIE 0x10 /* Timer Interrupt Enable */
+#define RX4581_CTRL_AIE 0x08 /* Alarm Interrupt Enable */
+#define RX4581_CTRL_STOP 0x02 /* STOP bit */
+#define RX4581_CTRL_RESET 0x01 /* RESET bit */
+
+static int rx4581_set_reg(struct device *dev, unsigned char address,
+ unsigned char data)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ unsigned char buf[2];
+
+ /* high nibble must be '0' to write */
+ buf[0] = address & 0x0f;
+ buf[1] = data;
+
+ return spi_write_then_read(spi, buf, 2, NULL, 0);
+}
+
+static int rx4581_get_reg(struct device *dev, unsigned char address,
+ unsigned char *data)
+{
+ struct spi_device *spi = to_spi_device(dev);
+
+ /* Set MSB to indicate read */
+ *data = address | 0x80;
+
+ return spi_write_then_read(spi, data, 1, data, 1);
+}
+
+/*
+ * In the routines that deal directly with the rx8581 hardware, we use
+ * rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch.
+ */
+static int rx4581_get_datetime(struct device *dev, struct rtc_time *tm)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ unsigned char date[7];
+ unsigned char data;
+ int err;
+
+ /* First we ensure that the "update flag" is not set, we read the
+ * time and date then re-read the "update flag". If the update flag
+ * has been set, we know that the time has changed during the read so
+ * we repeat the whole process again.
+ */
+ err = rx4581_get_reg(dev, RX4581_REG_FLAG, &data);
+ if (err != 0) {
+ dev_err(dev, "Unable to read device flags\n");
+ return -EIO;
+ }
+
+ do {
+ /* If update flag set, clear it */
+ if (data & RX4581_FLAG_UF) {
+ err = rx4581_set_reg(dev,
+ RX4581_REG_FLAG, (data & ~RX4581_FLAG_UF));
+ if (err != 0) {
+ dev_err(dev, "Unable to write device "
+ "flags\n");
+ return -EIO;
+ }
+ }
+
+ /* Now read time and date */
+ date[0] = 0x80;
+ err = spi_write_then_read(spi, date, 1, date, 7);
+ if (err < 0) {
+ dev_err(dev, "Unable to read date\n");
+ return -EIO;
+ }
+
+ /* Check flag register */
+ err = rx4581_get_reg(dev, RX4581_REG_FLAG, &data);
+ if (err != 0) {
+ dev_err(dev, "Unable to read device flags\n");
+ return -EIO;
+ }
+ } while (data & RX4581_FLAG_UF);
+
+ if (data & RX4581_FLAG_VLF)
+ dev_info(dev,
+ "low voltage detected, date/time is not reliable.\n");
+
+ dev_dbg(dev,
+ "%s: raw data is sec=%02x, min=%02x, hr=%02x, "
+ "wday=%02x, mday=%02x, mon=%02x, year=%02x\n",
+ __func__,
+ date[0], date[1], date[2], date[3], date[4], date[5], date[6]);
+
+ tm->tm_sec = bcd2bin(date[RX4581_REG_SC] & 0x7F);
+ tm->tm_min = bcd2bin(date[RX4581_REG_MN] & 0x7F);
+ tm->tm_hour = bcd2bin(date[RX4581_REG_HR] & 0x3F); /* rtc hr 0-23 */
+ tm->tm_wday = ilog2(date[RX4581_REG_DW] & 0x7F);
+ tm->tm_mday = bcd2bin(date[RX4581_REG_DM] & 0x3F);
+ tm->tm_mon = bcd2bin(date[RX4581_REG_MO] & 0x1F) - 1; /* rtc mn 1-12 */
+ tm->tm_year = bcd2bin(date[RX4581_REG_YR]);
+ if (tm->tm_year < 70)
+ tm->tm_year += 100; /* assume we are in 1970...2069 */
+
+
+ dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
+ "mday=%d, mon=%d, year=%d, wday=%d\n",
+ __func__,
+ tm->tm_sec, tm->tm_min, tm->tm_hour,
+ tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ return 0;
+}
+
+static int rx4581_set_datetime(struct device *dev, struct rtc_time *tm)
+{
+ struct spi_device *spi = to_spi_device(dev);
+ int err;
+ unsigned char buf[8], data;
+
+ dev_dbg(dev, "%s: secs=%d, mins=%d, hours=%d, "
+ "mday=%d, mon=%d, year=%d, wday=%d\n",
+ __func__,
+ tm->tm_sec, tm->tm_min, tm->tm_hour,
+ tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ buf[0] = 0x00;
+ /* hours, minutes and seconds */
+ buf[RX4581_REG_SC+1] = bin2bcd(tm->tm_sec);
+ buf[RX4581_REG_MN+1] = bin2bcd(tm->tm_min);
+ buf[RX4581_REG_HR+1] = bin2bcd(tm->tm_hour);
+
+ buf[RX4581_REG_DM+1] = bin2bcd(tm->tm_mday);
+
+ /* month, 1 - 12 */
+ buf[RX4581_REG_MO+1] = bin2bcd(tm->tm_mon + 1);
+
+ /* year and century */
+ buf[RX4581_REG_YR+1] = bin2bcd(tm->tm_year % 100);
+ buf[RX4581_REG_DW+1] = (0x1 << tm->tm_wday);
+
+ /* Stop the clock */
+ err = rx4581_get_reg(dev, RX4581_REG_CTRL, &data);
+ if (err != 0) {
+ dev_err(dev, "Unable to read control register\n");
+ return -EIO;
+ }
+
+ err = rx4581_set_reg(dev, RX4581_REG_CTRL,
+ (data | RX4581_CTRL_STOP));
+ if (err != 0) {
+ dev_err(dev, "Unable to write control register\n");
+ return -EIO;
+ }
+
+ /* write register's data */
+ err = spi_write_then_read(spi, buf, 8, NULL, 0);
+ if (err != 0) {
+ dev_err(dev, "Unable to write to date registers\n");
+ return -EIO;
+ }
+
+ /* get VLF and clear it */
+ err = rx4581_get_reg(dev, RX4581_REG_FLAG, &data);
+ if (err != 0) {
+ dev_err(dev, "Unable to read flag register\n");
+ return -EIO;
+ }
+
+ err = rx4581_set_reg(dev, RX4581_REG_FLAG,
+ (data & ~(RX4581_FLAG_VLF)));
+ if (err != 0) {
+ dev_err(dev, "Unable to write flag register\n");
+ return -EIO;
+ }
+
+ /* Restart the clock */
+ err = rx4581_get_reg(dev, RX4581_REG_CTRL, &data);
+ if (err != 0) {
+ dev_err(dev, "Unable to read control register\n");
+ return -EIO;
+ }
+
+ err = rx4581_set_reg(dev, RX4581_REG_CTRL,
+ (data & ~(RX4581_CTRL_STOP)));
+ if (err != 0) {
+ dev_err(dev, "Unable to write control register\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static const struct rtc_class_ops rx4581_rtc_ops = {
+ .read_time = rx4581_get_datetime,
+ .set_time = rx4581_set_datetime,
+};
+
+static int rx4581_probe(struct spi_device *spi)
+{
+ struct rtc_device *rtc;
+ unsigned char tmp;
+ int res;
+
+ res = rx4581_get_reg(&spi->dev, RX4581_REG_SC, &tmp);
+ if (res != 0)
+ return res;
+
+ rtc = devm_rtc_device_register(&spi->dev, "rx4581",
+ &rx4581_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ spi_set_drvdata(spi, rtc);
+ return 0;
+}
+
+static const struct spi_device_id rx4581_id[] = {
+ { "rx4581", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(spi, rx4581_id);
+
+static struct spi_driver rx4581_driver = {
+ .driver = {
+ .name = "rtc-rx4581",
+ },
+ .probe = rx4581_probe,
+ .id_table = rx4581_id,
+};
+
+module_spi_driver(rx4581_driver);
+
+MODULE_DESCRIPTION("rx4581 spi RTC driver");
+MODULE_AUTHOR("Torben Hohn");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("spi:rtc-rx4581");
diff --git a/drivers/rtc/rtc-rx6110.c b/drivers/rtc/rtc-rx6110.c
new file mode 100644
index 000000000..3a9eb7043
--- /dev/null
+++ b/drivers/rtc/rtc-rx6110.c
@@ -0,0 +1,390 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Driver for the Epson RTC module RX-6110 SA
+ *
+ * Copyright(C) 2015 Pengutronix, Steffen Trumtrar <kernel@pengutronix.de>
+ * Copyright(C) SEIKO EPSON CORPORATION 2013. All rights reserved.
+ */
+
+#include <linux/bcd.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of_gpio.h>
+#include <linux/regmap.h>
+#include <linux/rtc.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/spi/spi.h>
+
+/* RX-6110 Register definitions */
+#define RX6110_REG_SEC 0x10
+#define RX6110_REG_MIN 0x11
+#define RX6110_REG_HOUR 0x12
+#define RX6110_REG_WDAY 0x13
+#define RX6110_REG_MDAY 0x14
+#define RX6110_REG_MONTH 0x15
+#define RX6110_REG_YEAR 0x16
+#define RX6110_REG_RES1 0x17
+#define RX6110_REG_ALMIN 0x18
+#define RX6110_REG_ALHOUR 0x19
+#define RX6110_REG_ALWDAY 0x1A
+#define RX6110_REG_TCOUNT0 0x1B
+#define RX6110_REG_TCOUNT1 0x1C
+#define RX6110_REG_EXT 0x1D
+#define RX6110_REG_FLAG 0x1E
+#define RX6110_REG_CTRL 0x1F
+#define RX6110_REG_USER0 0x20
+#define RX6110_REG_USER1 0x21
+#define RX6110_REG_USER2 0x22
+#define RX6110_REG_USER3 0x23
+#define RX6110_REG_USER4 0x24
+#define RX6110_REG_USER5 0x25
+#define RX6110_REG_USER6 0x26
+#define RX6110_REG_USER7 0x27
+#define RX6110_REG_USER8 0x28
+#define RX6110_REG_USER9 0x29
+#define RX6110_REG_USERA 0x2A
+#define RX6110_REG_USERB 0x2B
+#define RX6110_REG_USERC 0x2C
+#define RX6110_REG_USERD 0x2D
+#define RX6110_REG_USERE 0x2E
+#define RX6110_REG_USERF 0x2F
+#define RX6110_REG_RES2 0x30
+#define RX6110_REG_RES3 0x31
+#define RX6110_REG_IRQ 0x32
+
+#define RX6110_BIT_ALARM_EN BIT(7)
+
+/* Extension Register (1Dh) bit positions */
+#define RX6110_BIT_EXT_TSEL0 BIT(0)
+#define RX6110_BIT_EXT_TSEL1 BIT(1)
+#define RX6110_BIT_EXT_TSEL2 BIT(2)
+#define RX6110_BIT_EXT_WADA BIT(3)
+#define RX6110_BIT_EXT_TE BIT(4)
+#define RX6110_BIT_EXT_USEL BIT(5)
+#define RX6110_BIT_EXT_FSEL0 BIT(6)
+#define RX6110_BIT_EXT_FSEL1 BIT(7)
+
+/* Flag Register (1Eh) bit positions */
+#define RX6110_BIT_FLAG_VLF BIT(1)
+#define RX6110_BIT_FLAG_AF BIT(3)
+#define RX6110_BIT_FLAG_TF BIT(4)
+#define RX6110_BIT_FLAG_UF BIT(5)
+
+/* Control Register (1Fh) bit positions */
+#define RX6110_BIT_CTRL_TBKE BIT(0)
+#define RX6110_BIT_CTRL_TBKON BIT(1)
+#define RX6110_BIT_CTRL_TSTP BIT(2)
+#define RX6110_BIT_CTRL_AIE BIT(3)
+#define RX6110_BIT_CTRL_TIE BIT(4)
+#define RX6110_BIT_CTRL_UIE BIT(5)
+#define RX6110_BIT_CTRL_STOP BIT(6)
+#define RX6110_BIT_CTRL_TEST BIT(7)
+
+enum {
+ RTC_SEC = 0,
+ RTC_MIN,
+ RTC_HOUR,
+ RTC_WDAY,
+ RTC_MDAY,
+ RTC_MONTH,
+ RTC_YEAR,
+ RTC_NR_TIME
+};
+
+#define RX6110_DRIVER_NAME "rx6110"
+
+struct rx6110_data {
+ struct rtc_device *rtc;
+ struct regmap *regmap;
+};
+
+/**
+ * rx6110_rtc_tm_to_data - convert rtc_time to native time encoding
+ *
+ * @tm: holds date and time
+ * @data: holds the encoding in rx6110 native form
+ */
+static int rx6110_rtc_tm_to_data(struct rtc_time *tm, u8 *data)
+{
+ pr_debug("%s: date %ptRr\n", __func__, tm);
+
+ /*
+ * The year in the RTC is a value between 0 and 99.
+ * Assume that this represents the current century
+ * and disregard all other values.
+ */
+ if (tm->tm_year < 100 || tm->tm_year >= 200)
+ return -EINVAL;
+
+ data[RTC_SEC] = bin2bcd(tm->tm_sec);
+ data[RTC_MIN] = bin2bcd(tm->tm_min);
+ data[RTC_HOUR] = bin2bcd(tm->tm_hour);
+ data[RTC_WDAY] = BIT(bin2bcd(tm->tm_wday));
+ data[RTC_MDAY] = bin2bcd(tm->tm_mday);
+ data[RTC_MONTH] = bin2bcd(tm->tm_mon + 1);
+ data[RTC_YEAR] = bin2bcd(tm->tm_year % 100);
+
+ return 0;
+}
+
+/**
+ * rx6110_data_to_rtc_tm - convert native time encoding to rtc_time
+ *
+ * @data: holds the encoding in rx6110 native form
+ * @tm: holds date and time
+ */
+static int rx6110_data_to_rtc_tm(u8 *data, struct rtc_time *tm)
+{
+ tm->tm_sec = bcd2bin(data[RTC_SEC] & 0x7f);
+ tm->tm_min = bcd2bin(data[RTC_MIN] & 0x7f);
+ /* only 24-hour clock */
+ tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
+ tm->tm_wday = ffs(data[RTC_WDAY] & 0x7f);
+ tm->tm_mday = bcd2bin(data[RTC_MDAY] & 0x3f);
+ tm->tm_mon = bcd2bin(data[RTC_MONTH] & 0x1f) - 1;
+ tm->tm_year = bcd2bin(data[RTC_YEAR]) + 100;
+
+ pr_debug("%s: date %ptRr\n", __func__, tm);
+
+ /*
+ * The year in the RTC is a value between 0 and 99.
+ * Assume that this represents the current century
+ * and disregard all other values.
+ */
+ if (tm->tm_year < 100 || tm->tm_year >= 200)
+ return -EINVAL;
+
+ return 0;
+}
+
+/**
+ * rx6110_set_time - set the current time in the rx6110 registers
+ *
+ * @dev: the rtc device in use
+ * @tm: holds date and time
+ *
+ * BUG: The HW assumes every year that is a multiple of 4 to be a leap
+ * year. Next time this is wrong is 2100, which will not be a leap year
+ *
+ * Note: If STOP is not set/cleared, the clock will start when the seconds
+ * register is written
+ *
+ */
+static int rx6110_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rx6110_data *rx6110 = dev_get_drvdata(dev);
+ u8 data[RTC_NR_TIME];
+ int ret;
+
+ ret = rx6110_rtc_tm_to_data(tm, data);
+ if (ret < 0)
+ return ret;
+
+ /* set STOP bit before changing clock/calendar */
+ ret = regmap_update_bits(rx6110->regmap, RX6110_REG_CTRL,
+ RX6110_BIT_CTRL_STOP, RX6110_BIT_CTRL_STOP);
+ if (ret)
+ return ret;
+
+ ret = regmap_bulk_write(rx6110->regmap, RX6110_REG_SEC, data,
+ RTC_NR_TIME);
+ if (ret)
+ return ret;
+
+ /* The time in the RTC is valid. Be sure to have VLF cleared. */
+ ret = regmap_update_bits(rx6110->regmap, RX6110_REG_FLAG,
+ RX6110_BIT_FLAG_VLF, 0);
+ if (ret)
+ return ret;
+
+ /* clear STOP bit after changing clock/calendar */
+ ret = regmap_update_bits(rx6110->regmap, RX6110_REG_CTRL,
+ RX6110_BIT_CTRL_STOP, 0);
+
+ return ret;
+}
+
+/**
+ * rx6110_get_time - get the current time from the rx6110 registers
+ * @dev: the rtc device in use
+ * @tm: holds date and time
+ */
+static int rx6110_get_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rx6110_data *rx6110 = dev_get_drvdata(dev);
+ u8 data[RTC_NR_TIME];
+ int flags;
+ int ret;
+
+ ret = regmap_read(rx6110->regmap, RX6110_REG_FLAG, &flags);
+ if (ret)
+ return -EINVAL;
+
+ /* check for VLF Flag (set at power-on) */
+ if ((flags & RX6110_BIT_FLAG_VLF)) {
+ dev_warn(dev, "Voltage low, data is invalid.\n");
+ return -EINVAL;
+ }
+
+ /* read registers to date */
+ ret = regmap_bulk_read(rx6110->regmap, RX6110_REG_SEC, data,
+ RTC_NR_TIME);
+ if (ret)
+ return ret;
+
+ ret = rx6110_data_to_rtc_tm(data, tm);
+ if (ret)
+ return ret;
+
+ dev_dbg(dev, "%s: date %ptRr\n", __func__, tm);
+
+ return 0;
+}
+
+static const struct reg_sequence rx6110_default_regs[] = {
+ { RX6110_REG_RES1, 0xB8 },
+ { RX6110_REG_RES2, 0x00 },
+ { RX6110_REG_RES3, 0x10 },
+ { RX6110_REG_IRQ, 0x00 },
+ { RX6110_REG_ALMIN, 0x00 },
+ { RX6110_REG_ALHOUR, 0x00 },
+ { RX6110_REG_ALWDAY, 0x00 },
+};
+
+/**
+ * rx6110_init - initialize the rx6110 registers
+ *
+ * @rx6110: pointer to the rx6110 struct in use
+ *
+ */
+static int rx6110_init(struct rx6110_data *rx6110)
+{
+ struct rtc_device *rtc = rx6110->rtc;
+ int flags;
+ int ret;
+
+ ret = regmap_update_bits(rx6110->regmap, RX6110_REG_EXT,
+ RX6110_BIT_EXT_TE, 0);
+ if (ret)
+ return ret;
+
+ ret = regmap_register_patch(rx6110->regmap, rx6110_default_regs,
+ ARRAY_SIZE(rx6110_default_regs));
+ if (ret)
+ return ret;
+
+ ret = regmap_read(rx6110->regmap, RX6110_REG_FLAG, &flags);
+ if (ret)
+ return ret;
+
+ /* check for VLF Flag (set at power-on) */
+ if ((flags & RX6110_BIT_FLAG_VLF))
+ dev_warn(&rtc->dev, "Voltage low, data loss detected.\n");
+
+ /* check for Alarm Flag */
+ if (flags & RX6110_BIT_FLAG_AF)
+ dev_warn(&rtc->dev, "An alarm may have been missed.\n");
+
+ /* check for Periodic Timer Flag */
+ if (flags & RX6110_BIT_FLAG_TF)
+ dev_warn(&rtc->dev, "Periodic timer was detected\n");
+
+ /* check for Update Timer Flag */
+ if (flags & RX6110_BIT_FLAG_UF)
+ dev_warn(&rtc->dev, "Update timer was detected\n");
+
+ /* clear all flags BUT VLF */
+ ret = regmap_update_bits(rx6110->regmap, RX6110_REG_FLAG,
+ RX6110_BIT_FLAG_AF |
+ RX6110_BIT_FLAG_UF |
+ RX6110_BIT_FLAG_TF,
+ 0);
+
+ return ret;
+}
+
+static const struct rtc_class_ops rx6110_rtc_ops = {
+ .read_time = rx6110_get_time,
+ .set_time = rx6110_set_time,
+};
+
+static struct regmap_config regmap_spi_config = {
+ .reg_bits = 8,
+ .val_bits = 8,
+ .max_register = RX6110_REG_IRQ,
+ .read_flag_mask = 0x80,
+};
+
+/**
+ * rx6110_probe - initialize rtc driver
+ * @spi: pointer to spi device
+ */
+static int rx6110_probe(struct spi_device *spi)
+{
+ struct rx6110_data *rx6110;
+ int err;
+
+ if ((spi->bits_per_word && spi->bits_per_word != 8) ||
+ (spi->max_speed_hz > 2000000) ||
+ (spi->mode != (SPI_CS_HIGH | SPI_CPOL | SPI_CPHA))) {
+ dev_warn(&spi->dev, "SPI settings: bits_per_word: %d, max_speed_hz: %d, mode: %xh\n",
+ spi->bits_per_word, spi->max_speed_hz, spi->mode);
+ dev_warn(&spi->dev, "driving device in an unsupported mode");
+ }
+
+ rx6110 = devm_kzalloc(&spi->dev, sizeof(*rx6110), GFP_KERNEL);
+ if (!rx6110)
+ return -ENOMEM;
+
+ rx6110->regmap = devm_regmap_init_spi(spi, &regmap_spi_config);
+ if (IS_ERR(rx6110->regmap)) {
+ dev_err(&spi->dev, "regmap init failed for rtc rx6110\n");
+ return PTR_ERR(rx6110->regmap);
+ }
+
+ spi_set_drvdata(spi, rx6110);
+
+ rx6110->rtc = devm_rtc_device_register(&spi->dev,
+ RX6110_DRIVER_NAME,
+ &rx6110_rtc_ops, THIS_MODULE);
+
+ if (IS_ERR(rx6110->rtc))
+ return PTR_ERR(rx6110->rtc);
+
+ err = rx6110_init(rx6110);
+ if (err)
+ return err;
+
+ rx6110->rtc->max_user_freq = 1;
+
+ return 0;
+}
+
+static const struct spi_device_id rx6110_id[] = {
+ { "rx6110", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(spi, rx6110_id);
+
+static const struct of_device_id rx6110_spi_of_match[] = {
+ { .compatible = "epson,rx6110" },
+ { },
+};
+MODULE_DEVICE_TABLE(of, rx6110_spi_of_match);
+
+static struct spi_driver rx6110_driver = {
+ .driver = {
+ .name = RX6110_DRIVER_NAME,
+ .of_match_table = of_match_ptr(rx6110_spi_of_match),
+ },
+ .probe = rx6110_probe,
+ .id_table = rx6110_id,
+};
+
+module_spi_driver(rx6110_driver);
+
+MODULE_AUTHOR("Val Krutov <val.krutov@erd.epson.com>");
+MODULE_DESCRIPTION("RX-6110 SA RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-rx8010.c b/drivers/rtc/rtc-rx8010.c
new file mode 100644
index 000000000..dca41a2a3
--- /dev/null
+++ b/drivers/rtc/rtc-rx8010.c
@@ -0,0 +1,438 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Driver for the Epson RTC module RX-8010 SJ
+ *
+ * Copyright(C) Timesys Corporation 2015
+ * Copyright(C) General Electric Company 2015
+ */
+
+#include <linux/bcd.h>
+#include <linux/bitops.h>
+#include <linux/i2c.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/regmap.h>
+#include <linux/rtc.h>
+
+#define RX8010_SEC 0x10
+#define RX8010_MIN 0x11
+#define RX8010_HOUR 0x12
+#define RX8010_WDAY 0x13
+#define RX8010_MDAY 0x14
+#define RX8010_MONTH 0x15
+#define RX8010_YEAR 0x16
+#define RX8010_RESV17 0x17
+#define RX8010_ALMIN 0x18
+#define RX8010_ALHOUR 0x19
+#define RX8010_ALWDAY 0x1A
+#define RX8010_TCOUNT0 0x1B
+#define RX8010_TCOUNT1 0x1C
+#define RX8010_EXT 0x1D
+#define RX8010_FLAG 0x1E
+#define RX8010_CTRL 0x1F
+/* 0x20 to 0x2F are user registers */
+#define RX8010_RESV30 0x30
+#define RX8010_RESV31 0x31
+#define RX8010_IRQ 0x32
+
+#define RX8010_EXT_WADA BIT(3)
+
+#define RX8010_FLAG_VLF BIT(1)
+#define RX8010_FLAG_AF BIT(3)
+#define RX8010_FLAG_TF BIT(4)
+#define RX8010_FLAG_UF BIT(5)
+
+#define RX8010_CTRL_AIE BIT(3)
+#define RX8010_CTRL_UIE BIT(5)
+#define RX8010_CTRL_STOP BIT(6)
+#define RX8010_CTRL_TEST BIT(7)
+
+#define RX8010_ALARM_AE BIT(7)
+
+static const struct i2c_device_id rx8010_id[] = {
+ { "rx8010", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, rx8010_id);
+
+static const struct of_device_id rx8010_of_match[] = {
+ { .compatible = "epson,rx8010" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, rx8010_of_match);
+
+struct rx8010_data {
+ struct regmap *regs;
+ struct rtc_device *rtc;
+ u8 ctrlreg;
+};
+
+static irqreturn_t rx8010_irq_1_handler(int irq, void *dev_id)
+{
+ struct i2c_client *client = dev_id;
+ struct rx8010_data *rx8010 = i2c_get_clientdata(client);
+ int flagreg, err;
+
+ mutex_lock(&rx8010->rtc->ops_lock);
+
+ err = regmap_read(rx8010->regs, RX8010_FLAG, &flagreg);
+ if (err) {
+ mutex_unlock(&rx8010->rtc->ops_lock);
+ return IRQ_NONE;
+ }
+
+ if (flagreg & RX8010_FLAG_VLF)
+ dev_warn(&client->dev, "Frequency stop detected\n");
+
+ if (flagreg & RX8010_FLAG_TF) {
+ flagreg &= ~RX8010_FLAG_TF;
+ rtc_update_irq(rx8010->rtc, 1, RTC_PF | RTC_IRQF);
+ }
+
+ if (flagreg & RX8010_FLAG_AF) {
+ flagreg &= ~RX8010_FLAG_AF;
+ rtc_update_irq(rx8010->rtc, 1, RTC_AF | RTC_IRQF);
+ }
+
+ if (flagreg & RX8010_FLAG_UF) {
+ flagreg &= ~RX8010_FLAG_UF;
+ rtc_update_irq(rx8010->rtc, 1, RTC_UF | RTC_IRQF);
+ }
+
+ err = regmap_write(rx8010->regs, RX8010_FLAG, flagreg);
+ mutex_unlock(&rx8010->rtc->ops_lock);
+ return err ? IRQ_NONE : IRQ_HANDLED;
+}
+
+static int rx8010_get_time(struct device *dev, struct rtc_time *dt)
+{
+ struct rx8010_data *rx8010 = dev_get_drvdata(dev);
+ u8 date[RX8010_YEAR - RX8010_SEC + 1];
+ int flagreg, err;
+
+ err = regmap_read(rx8010->regs, RX8010_FLAG, &flagreg);
+ if (err)
+ return err;
+
+ if (flagreg & RX8010_FLAG_VLF) {
+ dev_warn(dev, "Frequency stop detected\n");
+ return -EINVAL;
+ }
+
+ err = regmap_bulk_read(rx8010->regs, RX8010_SEC, date, sizeof(date));
+ if (err)
+ return err;
+
+ dt->tm_sec = bcd2bin(date[RX8010_SEC - RX8010_SEC] & 0x7f);
+ dt->tm_min = bcd2bin(date[RX8010_MIN - RX8010_SEC] & 0x7f);
+ dt->tm_hour = bcd2bin(date[RX8010_HOUR - RX8010_SEC] & 0x3f);
+ dt->tm_mday = bcd2bin(date[RX8010_MDAY - RX8010_SEC] & 0x3f);
+ dt->tm_mon = bcd2bin(date[RX8010_MONTH - RX8010_SEC] & 0x1f) - 1;
+ dt->tm_year = bcd2bin(date[RX8010_YEAR - RX8010_SEC]) + 100;
+ dt->tm_wday = ffs(date[RX8010_WDAY - RX8010_SEC] & 0x7f);
+
+ return 0;
+}
+
+static int rx8010_set_time(struct device *dev, struct rtc_time *dt)
+{
+ struct rx8010_data *rx8010 = dev_get_drvdata(dev);
+ u8 date[RX8010_YEAR - RX8010_SEC + 1];
+ int err;
+
+ /* set STOP bit before changing clock/calendar */
+ err = regmap_set_bits(rx8010->regs, RX8010_CTRL, RX8010_CTRL_STOP);
+ if (err)
+ return err;
+
+ date[RX8010_SEC - RX8010_SEC] = bin2bcd(dt->tm_sec);
+ date[RX8010_MIN - RX8010_SEC] = bin2bcd(dt->tm_min);
+ date[RX8010_HOUR - RX8010_SEC] = bin2bcd(dt->tm_hour);
+ date[RX8010_MDAY - RX8010_SEC] = bin2bcd(dt->tm_mday);
+ date[RX8010_MONTH - RX8010_SEC] = bin2bcd(dt->tm_mon + 1);
+ date[RX8010_YEAR - RX8010_SEC] = bin2bcd(dt->tm_year - 100);
+ date[RX8010_WDAY - RX8010_SEC] = bin2bcd(1 << dt->tm_wday);
+
+ err = regmap_bulk_write(rx8010->regs, RX8010_SEC, date, sizeof(date));
+ if (err)
+ return err;
+
+ /* clear STOP bit after changing clock/calendar */
+ err = regmap_clear_bits(rx8010->regs, RX8010_CTRL, RX8010_CTRL_STOP);
+ if (err)
+ return err;
+
+ err = regmap_clear_bits(rx8010->regs, RX8010_FLAG, RX8010_FLAG_VLF);
+ if (err)
+ return err;
+
+ return 0;
+}
+
+static int rx8010_init(struct device *dev)
+{
+ struct rx8010_data *rx8010 = dev_get_drvdata(dev);
+ u8 ctrl[2];
+ int need_clear = 0, err;
+
+ /* Initialize reserved registers as specified in datasheet */
+ err = regmap_write(rx8010->regs, RX8010_RESV17, 0xD8);
+ if (err)
+ return err;
+
+ err = regmap_write(rx8010->regs, RX8010_RESV30, 0x00);
+ if (err)
+ return err;
+
+ err = regmap_write(rx8010->regs, RX8010_RESV31, 0x08);
+ if (err)
+ return err;
+
+ err = regmap_write(rx8010->regs, RX8010_IRQ, 0x00);
+ if (err)
+ return err;
+
+ err = regmap_bulk_read(rx8010->regs, RX8010_FLAG, ctrl, 2);
+ if (err)
+ return err;
+
+ if (ctrl[0] & RX8010_FLAG_VLF)
+ dev_warn(dev, "Frequency stop was detected\n");
+
+ if (ctrl[0] & RX8010_FLAG_AF) {
+ dev_warn(dev, "Alarm was detected\n");
+ need_clear = 1;
+ }
+
+ if (ctrl[0] & RX8010_FLAG_TF)
+ need_clear = 1;
+
+ if (ctrl[0] & RX8010_FLAG_UF)
+ need_clear = 1;
+
+ if (need_clear) {
+ ctrl[0] &= ~(RX8010_FLAG_AF | RX8010_FLAG_TF | RX8010_FLAG_UF);
+ err = regmap_write(rx8010->regs, RX8010_FLAG, ctrl[0]);
+ if (err)
+ return err;
+ }
+
+ rx8010->ctrlreg = (ctrl[1] & ~RX8010_CTRL_TEST);
+
+ return 0;
+}
+
+static int rx8010_read_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct rx8010_data *rx8010 = dev_get_drvdata(dev);
+ u8 alarmvals[3];
+ int flagreg, err;
+
+ err = regmap_bulk_read(rx8010->regs, RX8010_ALMIN, alarmvals, 3);
+ if (err)
+ return err;
+
+ err = regmap_read(rx8010->regs, RX8010_FLAG, &flagreg);
+ if (err)
+ return err;
+
+ t->time.tm_sec = 0;
+ t->time.tm_min = bcd2bin(alarmvals[0] & 0x7f);
+ t->time.tm_hour = bcd2bin(alarmvals[1] & 0x3f);
+
+ if (!(alarmvals[2] & RX8010_ALARM_AE))
+ t->time.tm_mday = bcd2bin(alarmvals[2] & 0x7f);
+
+ t->enabled = !!(rx8010->ctrlreg & RX8010_CTRL_AIE);
+ t->pending = (flagreg & RX8010_FLAG_AF) && t->enabled;
+
+ return 0;
+}
+
+static int rx8010_set_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct rx8010_data *rx8010 = dev_get_drvdata(dev);
+ u8 alarmvals[3];
+ int err;
+
+ if (rx8010->ctrlreg & (RX8010_CTRL_AIE | RX8010_CTRL_UIE)) {
+ rx8010->ctrlreg &= ~(RX8010_CTRL_AIE | RX8010_CTRL_UIE);
+ err = regmap_write(rx8010->regs, RX8010_CTRL, rx8010->ctrlreg);
+ if (err)
+ return err;
+ }
+
+ err = regmap_clear_bits(rx8010->regs, RX8010_FLAG, RX8010_FLAG_AF);
+ if (err)
+ return err;
+
+ alarmvals[0] = bin2bcd(t->time.tm_min);
+ alarmvals[1] = bin2bcd(t->time.tm_hour);
+ alarmvals[2] = bin2bcd(t->time.tm_mday);
+
+ err = regmap_bulk_write(rx8010->regs, RX8010_ALMIN, alarmvals, 2);
+ if (err)
+ return err;
+
+ err = regmap_clear_bits(rx8010->regs, RX8010_EXT, RX8010_EXT_WADA);
+ if (err)
+ return err;
+
+ if (alarmvals[2] == 0)
+ alarmvals[2] |= RX8010_ALARM_AE;
+
+ err = regmap_write(rx8010->regs, RX8010_ALWDAY, alarmvals[2]);
+ if (err)
+ return err;
+
+ if (t->enabled) {
+ if (rx8010->rtc->uie_rtctimer.enabled)
+ rx8010->ctrlreg |= RX8010_CTRL_UIE;
+ if (rx8010->rtc->aie_timer.enabled)
+ rx8010->ctrlreg |=
+ (RX8010_CTRL_AIE | RX8010_CTRL_UIE);
+
+ err = regmap_write(rx8010->regs, RX8010_CTRL, rx8010->ctrlreg);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+static int rx8010_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct rx8010_data *rx8010 = dev_get_drvdata(dev);
+ int err;
+ u8 ctrl;
+
+ ctrl = rx8010->ctrlreg;
+
+ if (enabled) {
+ if (rx8010->rtc->uie_rtctimer.enabled)
+ ctrl |= RX8010_CTRL_UIE;
+ if (rx8010->rtc->aie_timer.enabled)
+ ctrl |= (RX8010_CTRL_AIE | RX8010_CTRL_UIE);
+ } else {
+ if (!rx8010->rtc->uie_rtctimer.enabled)
+ ctrl &= ~RX8010_CTRL_UIE;
+ if (!rx8010->rtc->aie_timer.enabled)
+ ctrl &= ~RX8010_CTRL_AIE;
+ }
+
+ err = regmap_clear_bits(rx8010->regs, RX8010_FLAG, RX8010_FLAG_AF);
+ if (err)
+ return err;
+
+ if (ctrl != rx8010->ctrlreg) {
+ rx8010->ctrlreg = ctrl;
+ err = regmap_write(rx8010->regs, RX8010_CTRL, rx8010->ctrlreg);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+static int rx8010_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
+{
+ struct rx8010_data *rx8010 = dev_get_drvdata(dev);
+ int tmp, flagreg, err;
+
+ switch (cmd) {
+ case RTC_VL_READ:
+ err = regmap_read(rx8010->regs, RX8010_FLAG, &flagreg);
+ if (err)
+ return err;
+
+ tmp = flagreg & RX8010_FLAG_VLF ? RTC_VL_DATA_INVALID : 0;
+ return put_user(tmp, (unsigned int __user *)arg);
+
+ default:
+ return -ENOIOCTLCMD;
+ }
+}
+
+static const struct rtc_class_ops rx8010_rtc_ops_default = {
+ .read_time = rx8010_get_time,
+ .set_time = rx8010_set_time,
+ .ioctl = rx8010_ioctl,
+};
+
+static const struct rtc_class_ops rx8010_rtc_ops_alarm = {
+ .read_time = rx8010_get_time,
+ .set_time = rx8010_set_time,
+ .ioctl = rx8010_ioctl,
+ .read_alarm = rx8010_read_alarm,
+ .set_alarm = rx8010_set_alarm,
+ .alarm_irq_enable = rx8010_alarm_irq_enable,
+};
+
+static const struct regmap_config rx8010_regmap_config = {
+ .name = "rx8010-rtc",
+ .reg_bits = 8,
+ .val_bits = 8,
+};
+
+static int rx8010_probe(struct i2c_client *client)
+{
+ struct device *dev = &client->dev;
+ struct rx8010_data *rx8010;
+ int err = 0;
+
+ rx8010 = devm_kzalloc(dev, sizeof(*rx8010), GFP_KERNEL);
+ if (!rx8010)
+ return -ENOMEM;
+
+ i2c_set_clientdata(client, rx8010);
+
+ rx8010->regs = devm_regmap_init_i2c(client, &rx8010_regmap_config);
+ if (IS_ERR(rx8010->regs))
+ return PTR_ERR(rx8010->regs);
+
+ err = rx8010_init(dev);
+ if (err)
+ return err;
+
+ rx8010->rtc = devm_rtc_allocate_device(dev);
+ if (IS_ERR(rx8010->rtc))
+ return PTR_ERR(rx8010->rtc);
+
+ if (client->irq > 0) {
+ dev_info(dev, "IRQ %d supplied\n", client->irq);
+ err = devm_request_threaded_irq(dev, client->irq, NULL,
+ rx8010_irq_1_handler,
+ IRQF_TRIGGER_LOW | IRQF_ONESHOT,
+ "rx8010", client);
+ if (err) {
+ dev_err(dev, "unable to request IRQ\n");
+ return err;
+ }
+
+ rx8010->rtc->ops = &rx8010_rtc_ops_alarm;
+ } else {
+ rx8010->rtc->ops = &rx8010_rtc_ops_default;
+ }
+
+ rx8010->rtc->max_user_freq = 1;
+ rx8010->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ rx8010->rtc->range_max = RTC_TIMESTAMP_END_2099;
+
+ return rtc_register_device(rx8010->rtc);
+}
+
+static struct i2c_driver rx8010_driver = {
+ .driver = {
+ .name = "rtc-rx8010",
+ .of_match_table = of_match_ptr(rx8010_of_match),
+ },
+ .probe_new = rx8010_probe,
+ .id_table = rx8010_id,
+};
+
+module_i2c_driver(rx8010_driver);
+
+MODULE_AUTHOR("Akshay Bhat <akshay.bhat@timesys.com>");
+MODULE_DESCRIPTION("Epson RX8010SJ RTC driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-rx8025.c b/drivers/rtc/rtc-rx8025.c
new file mode 100644
index 000000000..a24f85893
--- /dev/null
+++ b/drivers/rtc/rtc-rx8025.c
@@ -0,0 +1,574 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Driver for Epson's RTC module RX-8025 SA/NB
+ *
+ * Copyright (C) 2009 Wolfgang Grandegger <wg@grandegger.com>
+ *
+ * Copyright (C) 2005 by Digi International Inc.
+ * All rights reserved.
+ *
+ * Modified by fengjh at rising.com.cn
+ * <lm-sensors@lm-sensors.org>
+ * 2006.11
+ *
+ * Code cleanup by Sergei Poselenov, <sposelenov@emcraft.com>
+ * Converted to new style by Wolfgang Grandegger <wg@grandegger.com>
+ * Alarm and periodic interrupt added by Dmitry Rakhchev <rda@emcraft.com>
+ */
+#include <linux/bcd.h>
+#include <linux/bitops.h>
+#include <linux/i2c.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/rtc.h>
+
+/* Register definitions */
+#define RX8025_REG_SEC 0x00
+#define RX8025_REG_MIN 0x01
+#define RX8025_REG_HOUR 0x02
+#define RX8025_REG_WDAY 0x03
+#define RX8025_REG_MDAY 0x04
+#define RX8025_REG_MONTH 0x05
+#define RX8025_REG_YEAR 0x06
+#define RX8025_REG_DIGOFF 0x07
+#define RX8025_REG_ALWMIN 0x08
+#define RX8025_REG_ALWHOUR 0x09
+#define RX8025_REG_ALWWDAY 0x0a
+#define RX8025_REG_ALDMIN 0x0b
+#define RX8025_REG_ALDHOUR 0x0c
+/* 0x0d is reserved */
+#define RX8025_REG_CTRL1 0x0e
+#define RX8025_REG_CTRL2 0x0f
+
+#define RX8025_BIT_CTRL1_CT (7 << 0)
+/* 1 Hz periodic level irq */
+#define RX8025_BIT_CTRL1_CT_1HZ 4
+#define RX8025_BIT_CTRL1_TEST BIT(3)
+#define RX8025_BIT_CTRL1_1224 BIT(5)
+#define RX8025_BIT_CTRL1_DALE BIT(6)
+#define RX8025_BIT_CTRL1_WALE BIT(7)
+
+#define RX8025_BIT_CTRL2_DAFG BIT(0)
+#define RX8025_BIT_CTRL2_WAFG BIT(1)
+#define RX8025_BIT_CTRL2_CTFG BIT(2)
+#define RX8025_BIT_CTRL2_PON BIT(4)
+#define RX8025_BIT_CTRL2_XST BIT(5)
+#define RX8025_BIT_CTRL2_VDET BIT(6)
+
+/* Clock precision adjustment */
+#define RX8025_ADJ_RESOLUTION 3050 /* in ppb */
+#define RX8025_ADJ_DATA_MAX 62
+#define RX8025_ADJ_DATA_MIN -62
+
+static const struct i2c_device_id rx8025_id[] = {
+ { "rx8025", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, rx8025_id);
+
+struct rx8025_data {
+ struct rtc_device *rtc;
+ u8 ctrl1;
+};
+
+static s32 rx8025_read_reg(const struct i2c_client *client, u8 number)
+{
+ return i2c_smbus_read_byte_data(client, number << 4);
+}
+
+static int rx8025_read_regs(const struct i2c_client *client,
+ u8 number, u8 length, u8 *values)
+{
+ int ret = i2c_smbus_read_i2c_block_data(client, number << 4, length,
+ values);
+ if (ret != length)
+ return ret < 0 ? ret : -EIO;
+
+ return 0;
+}
+
+static s32 rx8025_write_reg(const struct i2c_client *client, u8 number,
+ u8 value)
+{
+ return i2c_smbus_write_byte_data(client, number << 4, value);
+}
+
+static s32 rx8025_write_regs(const struct i2c_client *client,
+ u8 number, u8 length, const u8 *values)
+{
+ return i2c_smbus_write_i2c_block_data(client, number << 4,
+ length, values);
+}
+
+static int rx8025_check_validity(struct device *dev)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ int ctrl2;
+
+ ctrl2 = rx8025_read_reg(client, RX8025_REG_CTRL2);
+ if (ctrl2 < 0)
+ return ctrl2;
+
+ if (ctrl2 & RX8025_BIT_CTRL2_VDET)
+ dev_warn(dev, "power voltage drop detected\n");
+
+ if (ctrl2 & RX8025_BIT_CTRL2_PON) {
+ dev_warn(dev, "power-on reset detected, date is invalid\n");
+ return -EINVAL;
+ }
+
+ if (!(ctrl2 & RX8025_BIT_CTRL2_XST)) {
+ dev_warn(dev, "crystal stopped, date is invalid\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int rx8025_reset_validity(struct i2c_client *client)
+{
+ int ctrl2 = rx8025_read_reg(client, RX8025_REG_CTRL2);
+
+ if (ctrl2 < 0)
+ return ctrl2;
+
+ ctrl2 &= ~(RX8025_BIT_CTRL2_PON | RX8025_BIT_CTRL2_VDET);
+
+ return rx8025_write_reg(client, RX8025_REG_CTRL2,
+ ctrl2 | RX8025_BIT_CTRL2_XST);
+}
+
+static irqreturn_t rx8025_handle_irq(int irq, void *dev_id)
+{
+ struct i2c_client *client = dev_id;
+ struct rx8025_data *rx8025 = i2c_get_clientdata(client);
+ struct mutex *lock = &rx8025->rtc->ops_lock;
+ int status;
+
+ mutex_lock(lock);
+ status = rx8025_read_reg(client, RX8025_REG_CTRL2);
+ if (status < 0)
+ goto out;
+
+ if (!(status & RX8025_BIT_CTRL2_XST))
+ dev_warn(&client->dev, "Oscillation stop was detected,"
+ "you may have to readjust the clock\n");
+
+ if (status & RX8025_BIT_CTRL2_CTFG) {
+ /* periodic */
+ status &= ~RX8025_BIT_CTRL2_CTFG;
+ rtc_update_irq(rx8025->rtc, 1, RTC_PF | RTC_IRQF);
+ }
+
+ if (status & RX8025_BIT_CTRL2_DAFG) {
+ /* alarm */
+ status &= RX8025_BIT_CTRL2_DAFG;
+ if (rx8025_write_reg(client, RX8025_REG_CTRL1,
+ rx8025->ctrl1 & ~RX8025_BIT_CTRL1_DALE))
+ goto out;
+ rtc_update_irq(rx8025->rtc, 1, RTC_AF | RTC_IRQF);
+ }
+
+out:
+ mutex_unlock(lock);
+
+ return IRQ_HANDLED;
+}
+
+static int rx8025_get_time(struct device *dev, struct rtc_time *dt)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct rx8025_data *rx8025 = dev_get_drvdata(dev);
+ u8 date[7];
+ int err;
+
+ err = rx8025_check_validity(dev);
+ if (err)
+ return err;
+
+ err = rx8025_read_regs(client, RX8025_REG_SEC, 7, date);
+ if (err)
+ return err;
+
+ dev_dbg(dev, "%s: read %7ph\n", __func__, date);
+
+ dt->tm_sec = bcd2bin(date[RX8025_REG_SEC] & 0x7f);
+ dt->tm_min = bcd2bin(date[RX8025_REG_MIN] & 0x7f);
+ if (rx8025->ctrl1 & RX8025_BIT_CTRL1_1224)
+ dt->tm_hour = bcd2bin(date[RX8025_REG_HOUR] & 0x3f);
+ else
+ dt->tm_hour = bcd2bin(date[RX8025_REG_HOUR] & 0x1f) % 12
+ + (date[RX8025_REG_HOUR] & 0x20 ? 12 : 0);
+
+ dt->tm_mday = bcd2bin(date[RX8025_REG_MDAY] & 0x3f);
+ dt->tm_mon = bcd2bin(date[RX8025_REG_MONTH] & 0x1f) - 1;
+ dt->tm_year = bcd2bin(date[RX8025_REG_YEAR]) + 100;
+
+ dev_dbg(dev, "%s: date %ptRr\n", __func__, dt);
+
+ return 0;
+}
+
+static int rx8025_set_time(struct device *dev, struct rtc_time *dt)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct rx8025_data *rx8025 = dev_get_drvdata(dev);
+ u8 date[7];
+ int ret;
+
+ if ((dt->tm_year < 100) || (dt->tm_year > 199))
+ return -EINVAL;
+
+ /*
+ * Here the read-only bits are written as "0". I'm not sure if that
+ * is sound.
+ */
+ date[RX8025_REG_SEC] = bin2bcd(dt->tm_sec);
+ date[RX8025_REG_MIN] = bin2bcd(dt->tm_min);
+ if (rx8025->ctrl1 & RX8025_BIT_CTRL1_1224)
+ date[RX8025_REG_HOUR] = bin2bcd(dt->tm_hour);
+ else
+ date[RX8025_REG_HOUR] = (dt->tm_hour >= 12 ? 0x20 : 0)
+ | bin2bcd((dt->tm_hour + 11) % 12 + 1);
+
+ date[RX8025_REG_WDAY] = bin2bcd(dt->tm_wday);
+ date[RX8025_REG_MDAY] = bin2bcd(dt->tm_mday);
+ date[RX8025_REG_MONTH] = bin2bcd(dt->tm_mon + 1);
+ date[RX8025_REG_YEAR] = bin2bcd(dt->tm_year - 100);
+
+ dev_dbg(dev, "%s: write %7ph\n", __func__, date);
+
+ ret = rx8025_write_regs(client, RX8025_REG_SEC, 7, date);
+ if (ret < 0)
+ return ret;
+
+ return rx8025_reset_validity(client);
+}
+
+static int rx8025_init_client(struct i2c_client *client)
+{
+ struct rx8025_data *rx8025 = i2c_get_clientdata(client);
+ u8 ctrl[2], ctrl2;
+ int need_clear = 0;
+ int err;
+
+ err = rx8025_read_regs(client, RX8025_REG_CTRL1, 2, ctrl);
+ if (err)
+ goto out;
+
+ /* Keep test bit zero ! */
+ rx8025->ctrl1 = ctrl[0] & ~RX8025_BIT_CTRL1_TEST;
+
+ if (ctrl[1] & (RX8025_BIT_CTRL2_DAFG | RX8025_BIT_CTRL2_WAFG)) {
+ dev_warn(&client->dev, "Alarm was detected\n");
+ need_clear = 1;
+ }
+
+ if (ctrl[1] & RX8025_BIT_CTRL2_CTFG)
+ need_clear = 1;
+
+ if (need_clear) {
+ ctrl2 = ctrl[1];
+ ctrl2 &= ~(RX8025_BIT_CTRL2_CTFG | RX8025_BIT_CTRL2_WAFG |
+ RX8025_BIT_CTRL2_DAFG);
+
+ err = rx8025_write_reg(client, RX8025_REG_CTRL2, ctrl2);
+ }
+out:
+ return err;
+}
+
+/* Alarm support */
+static int rx8025_read_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct rx8025_data *rx8025 = dev_get_drvdata(dev);
+ u8 ald[2];
+ int ctrl2, err;
+
+ if (client->irq <= 0)
+ return -EINVAL;
+
+ err = rx8025_read_regs(client, RX8025_REG_ALDMIN, 2, ald);
+ if (err)
+ return err;
+
+ ctrl2 = rx8025_read_reg(client, RX8025_REG_CTRL2);
+ if (ctrl2 < 0)
+ return ctrl2;
+
+ dev_dbg(dev, "%s: read alarm 0x%02x 0x%02x ctrl2 %02x\n",
+ __func__, ald[0], ald[1], ctrl2);
+
+ /* Hardware alarms precision is 1 minute! */
+ t->time.tm_sec = 0;
+ t->time.tm_min = bcd2bin(ald[0] & 0x7f);
+ if (rx8025->ctrl1 & RX8025_BIT_CTRL1_1224)
+ t->time.tm_hour = bcd2bin(ald[1] & 0x3f);
+ else
+ t->time.tm_hour = bcd2bin(ald[1] & 0x1f) % 12
+ + (ald[1] & 0x20 ? 12 : 0);
+
+ dev_dbg(dev, "%s: date: %ptRr\n", __func__, &t->time);
+ t->enabled = !!(rx8025->ctrl1 & RX8025_BIT_CTRL1_DALE);
+ t->pending = (ctrl2 & RX8025_BIT_CTRL2_DAFG) && t->enabled;
+
+ return err;
+}
+
+static int rx8025_set_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct rx8025_data *rx8025 = dev_get_drvdata(dev);
+ u8 ald[2];
+ int err;
+
+ if (client->irq <= 0)
+ return -EINVAL;
+
+ /*
+ * Hardware alarm precision is 1 minute!
+ * round up to nearest minute
+ */
+ if (t->time.tm_sec) {
+ time64_t alarm_time = rtc_tm_to_time64(&t->time);
+
+ alarm_time += 60 - t->time.tm_sec;
+ rtc_time64_to_tm(alarm_time, &t->time);
+ }
+
+ ald[0] = bin2bcd(t->time.tm_min);
+ if (rx8025->ctrl1 & RX8025_BIT_CTRL1_1224)
+ ald[1] = bin2bcd(t->time.tm_hour);
+ else
+ ald[1] = (t->time.tm_hour >= 12 ? 0x20 : 0)
+ | bin2bcd((t->time.tm_hour + 11) % 12 + 1);
+
+ dev_dbg(dev, "%s: write 0x%02x 0x%02x\n", __func__, ald[0], ald[1]);
+
+ if (rx8025->ctrl1 & RX8025_BIT_CTRL1_DALE) {
+ rx8025->ctrl1 &= ~RX8025_BIT_CTRL1_DALE;
+ err = rx8025_write_reg(client, RX8025_REG_CTRL1,
+ rx8025->ctrl1);
+ if (err)
+ return err;
+ }
+ err = rx8025_write_regs(client, RX8025_REG_ALDMIN, 2, ald);
+ if (err)
+ return err;
+
+ if (t->enabled) {
+ rx8025->ctrl1 |= RX8025_BIT_CTRL1_DALE;
+ err = rx8025_write_reg(client, RX8025_REG_CTRL1,
+ rx8025->ctrl1);
+ if (err)
+ return err;
+ }
+
+ return 0;
+}
+
+static int rx8025_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct rx8025_data *rx8025 = dev_get_drvdata(dev);
+ u8 ctrl1;
+ int err;
+
+ ctrl1 = rx8025->ctrl1;
+ if (enabled)
+ ctrl1 |= RX8025_BIT_CTRL1_DALE;
+ else
+ ctrl1 &= ~RX8025_BIT_CTRL1_DALE;
+
+ if (ctrl1 != rx8025->ctrl1) {
+ rx8025->ctrl1 = ctrl1;
+ err = rx8025_write_reg(client, RX8025_REG_CTRL1,
+ rx8025->ctrl1);
+ if (err)
+ return err;
+ }
+ return 0;
+}
+
+static const struct rtc_class_ops rx8025_rtc_ops = {
+ .read_time = rx8025_get_time,
+ .set_time = rx8025_set_time,
+ .read_alarm = rx8025_read_alarm,
+ .set_alarm = rx8025_set_alarm,
+ .alarm_irq_enable = rx8025_alarm_irq_enable,
+};
+
+/*
+ * Clock precision adjustment support
+ *
+ * According to the RX8025 SA/NB application manual the frequency and
+ * temperature characteristics can be approximated using the following
+ * equation:
+ *
+ * df = a * (ut - t)**2
+ *
+ * df: Frequency deviation in any temperature
+ * a : Coefficient = (-35 +-5) * 10**-9
+ * ut: Ultimate temperature in degree = +25 +-5 degree
+ * t : Any temperature in degree
+ *
+ * Note that the clock adjustment in ppb must be entered (which is
+ * the negative value of the deviation).
+ */
+static int rx8025_get_clock_adjust(struct device *dev, int *adj)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ int digoff;
+
+ digoff = rx8025_read_reg(client, RX8025_REG_DIGOFF);
+ if (digoff < 0)
+ return digoff;
+
+ *adj = digoff >= 64 ? digoff - 128 : digoff;
+ if (*adj > 0)
+ (*adj)--;
+ *adj *= -RX8025_ADJ_RESOLUTION;
+
+ return 0;
+}
+
+static int rx8025_set_clock_adjust(struct device *dev, int adj)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ u8 digoff;
+ int err;
+
+ adj /= -RX8025_ADJ_RESOLUTION;
+ if (adj > RX8025_ADJ_DATA_MAX)
+ adj = RX8025_ADJ_DATA_MAX;
+ else if (adj < RX8025_ADJ_DATA_MIN)
+ adj = RX8025_ADJ_DATA_MIN;
+ else if (adj > 0)
+ adj++;
+ else if (adj < 0)
+ adj += 128;
+ digoff = adj;
+
+ err = rx8025_write_reg(client, RX8025_REG_DIGOFF, digoff);
+ if (err)
+ return err;
+
+ dev_dbg(dev, "%s: write 0x%02x\n", __func__, digoff);
+
+ return 0;
+}
+
+static ssize_t rx8025_sysfs_show_clock_adjust(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ int err, adj;
+
+ err = rx8025_get_clock_adjust(dev, &adj);
+ if (err)
+ return err;
+
+ return sprintf(buf, "%d\n", adj);
+}
+
+static ssize_t rx8025_sysfs_store_clock_adjust(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ int adj, err;
+
+ if (sscanf(buf, "%i", &adj) != 1)
+ return -EINVAL;
+
+ err = rx8025_set_clock_adjust(dev, adj);
+
+ return err ? err : count;
+}
+
+static DEVICE_ATTR(clock_adjust_ppb, S_IRUGO | S_IWUSR,
+ rx8025_sysfs_show_clock_adjust,
+ rx8025_sysfs_store_clock_adjust);
+
+static int rx8025_sysfs_register(struct device *dev)
+{
+ return device_create_file(dev, &dev_attr_clock_adjust_ppb);
+}
+
+static void rx8025_sysfs_unregister(struct device *dev)
+{
+ device_remove_file(dev, &dev_attr_clock_adjust_ppb);
+}
+
+static int rx8025_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct i2c_adapter *adapter = client->adapter;
+ struct rx8025_data *rx8025;
+ int err = 0;
+
+ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA
+ | I2C_FUNC_SMBUS_I2C_BLOCK)) {
+ dev_err(&adapter->dev,
+ "doesn't support required functionality\n");
+ return -EIO;
+ }
+
+ rx8025 = devm_kzalloc(&client->dev, sizeof(*rx8025), GFP_KERNEL);
+ if (!rx8025)
+ return -ENOMEM;
+
+ i2c_set_clientdata(client, rx8025);
+
+ err = rx8025_init_client(client);
+ if (err)
+ return err;
+
+ rx8025->rtc = devm_rtc_device_register(&client->dev, client->name,
+ &rx8025_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rx8025->rtc)) {
+ dev_err(&client->dev, "unable to register the class device\n");
+ return PTR_ERR(rx8025->rtc);
+ }
+
+ if (client->irq > 0) {
+ dev_info(&client->dev, "IRQ %d supplied\n", client->irq);
+ err = devm_request_threaded_irq(&client->dev, client->irq, NULL,
+ rx8025_handle_irq,
+ IRQF_ONESHOT,
+ "rx8025", client);
+ if (err) {
+ dev_err(&client->dev, "unable to request IRQ, alarms disabled\n");
+ client->irq = 0;
+ }
+ }
+
+ rx8025->rtc->max_user_freq = 1;
+
+ /* the rx8025 alarm only supports a minute accuracy */
+ rx8025->rtc->uie_unsupported = 1;
+
+ err = rx8025_sysfs_register(&client->dev);
+ return err;
+}
+
+static int rx8025_remove(struct i2c_client *client)
+{
+ rx8025_sysfs_unregister(&client->dev);
+ return 0;
+}
+
+static struct i2c_driver rx8025_driver = {
+ .driver = {
+ .name = "rtc-rx8025",
+ },
+ .probe = rx8025_probe,
+ .remove = rx8025_remove,
+ .id_table = rx8025_id,
+};
+
+module_i2c_driver(rx8025_driver);
+
+MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
+MODULE_DESCRIPTION("RX-8025 SA/NB RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-rx8581.c b/drivers/rtc/rtc-rx8581.c
new file mode 100644
index 000000000..490f70f57
--- /dev/null
+++ b/drivers/rtc/rtc-rx8581.c
@@ -0,0 +1,337 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * An I2C driver for the Epson RX8581 RTC
+ *
+ * Author: Martyn Welch <martyn.welch@ge.com>
+ * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
+ *
+ * Based on: rtc-pcf8563.c (An I2C driver for the Philips PCF8563 RTC)
+ * Copyright 2005-06 Tower Technologies
+ */
+
+#include <linux/module.h>
+#include <linux/i2c.h>
+#include <linux/bcd.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/regmap.h>
+#include <linux/rtc.h>
+#include <linux/log2.h>
+
+#define RX8581_REG_SC 0x00 /* Second in BCD */
+#define RX8581_REG_MN 0x01 /* Minute in BCD */
+#define RX8581_REG_HR 0x02 /* Hour in BCD */
+#define RX8581_REG_DW 0x03 /* Day of Week */
+#define RX8581_REG_DM 0x04 /* Day of Month in BCD */
+#define RX8581_REG_MO 0x05 /* Month in BCD */
+#define RX8581_REG_YR 0x06 /* Year in BCD */
+#define RX8581_REG_RAM 0x07 /* RAM */
+#define RX8581_REG_AMN 0x08 /* Alarm Min in BCD*/
+#define RX8581_REG_AHR 0x09 /* Alarm Hour in BCD */
+#define RX8581_REG_ADM 0x0A
+#define RX8581_REG_ADW 0x0A
+#define RX8581_REG_TMR0 0x0B
+#define RX8581_REG_TMR1 0x0C
+#define RX8581_REG_EXT 0x0D /* Extension Register */
+#define RX8581_REG_FLAG 0x0E /* Flag Register */
+#define RX8581_REG_CTRL 0x0F /* Control Register */
+
+
+/* Flag Register bit definitions */
+#define RX8581_FLAG_UF 0x20 /* Update */
+#define RX8581_FLAG_TF 0x10 /* Timer */
+#define RX8581_FLAG_AF 0x08 /* Alarm */
+#define RX8581_FLAG_VLF 0x02 /* Voltage Low */
+
+/* Control Register bit definitions */
+#define RX8581_CTRL_UIE 0x20 /* Update Interrupt Enable */
+#define RX8581_CTRL_TIE 0x10 /* Timer Interrupt Enable */
+#define RX8581_CTRL_AIE 0x08 /* Alarm Interrupt Enable */
+#define RX8581_CTRL_STOP 0x02 /* STOP bit */
+#define RX8581_CTRL_RESET 0x01 /* RESET bit */
+
+#define RX8571_USER_RAM 0x10
+#define RX8571_NVRAM_SIZE 0x10
+
+struct rx8581 {
+ struct regmap *regmap;
+ struct rtc_device *rtc;
+};
+
+struct rx85x1_config {
+ struct regmap_config regmap;
+ unsigned int num_nvram;
+};
+
+/*
+ * In the routines that deal directly with the rx8581 hardware, we use
+ * rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch.
+ */
+static int rx8581_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ unsigned char date[7];
+ unsigned int data;
+ int err;
+ struct rx8581 *rx8581 = i2c_get_clientdata(client);
+
+ /* First we ensure that the "update flag" is not set, we read the
+ * time and date then re-read the "update flag". If the update flag
+ * has been set, we know that the time has changed during the read so
+ * we repeat the whole process again.
+ */
+ err = regmap_read(rx8581->regmap, RX8581_REG_FLAG, &data);
+ if (err < 0)
+ return err;
+
+ if (data & RX8581_FLAG_VLF) {
+ dev_warn(dev,
+ "low voltage detected, date/time is not reliable.\n");
+ return -EINVAL;
+ }
+
+ do {
+ /* If update flag set, clear it */
+ if (data & RX8581_FLAG_UF) {
+ err = regmap_write(rx8581->regmap, RX8581_REG_FLAG,
+ data & ~RX8581_FLAG_UF);
+ if (err < 0)
+ return err;
+ }
+
+ /* Now read time and date */
+ err = regmap_bulk_read(rx8581->regmap, RX8581_REG_SC, date,
+ sizeof(date));
+ if (err < 0)
+ return err;
+
+ /* Check flag register */
+ err = regmap_read(rx8581->regmap, RX8581_REG_FLAG, &data);
+ if (err < 0)
+ return err;
+ } while (data & RX8581_FLAG_UF);
+
+ dev_dbg(dev, "%s: raw data is sec=%02x, min=%02x, hr=%02x, "
+ "wday=%02x, mday=%02x, mon=%02x, year=%02x\n",
+ __func__,
+ date[0], date[1], date[2], date[3], date[4], date[5], date[6]);
+
+ tm->tm_sec = bcd2bin(date[RX8581_REG_SC] & 0x7F);
+ tm->tm_min = bcd2bin(date[RX8581_REG_MN] & 0x7F);
+ tm->tm_hour = bcd2bin(date[RX8581_REG_HR] & 0x3F); /* rtc hr 0-23 */
+ tm->tm_wday = ilog2(date[RX8581_REG_DW] & 0x7F);
+ tm->tm_mday = bcd2bin(date[RX8581_REG_DM] & 0x3F);
+ tm->tm_mon = bcd2bin(date[RX8581_REG_MO] & 0x1F) - 1; /* rtc mn 1-12 */
+ tm->tm_year = bcd2bin(date[RX8581_REG_YR]) + 100;
+
+ dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
+ "mday=%d, mon=%d, year=%d, wday=%d\n",
+ __func__,
+ tm->tm_sec, tm->tm_min, tm->tm_hour,
+ tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ return 0;
+}
+
+static int rx8581_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ int err;
+ unsigned char buf[7];
+ struct rx8581 *rx8581 = i2c_get_clientdata(client);
+
+ dev_dbg(dev, "%s: secs=%d, mins=%d, hours=%d, "
+ "mday=%d, mon=%d, year=%d, wday=%d\n",
+ __func__,
+ tm->tm_sec, tm->tm_min, tm->tm_hour,
+ tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ /* hours, minutes and seconds */
+ buf[RX8581_REG_SC] = bin2bcd(tm->tm_sec);
+ buf[RX8581_REG_MN] = bin2bcd(tm->tm_min);
+ buf[RX8581_REG_HR] = bin2bcd(tm->tm_hour);
+
+ buf[RX8581_REG_DM] = bin2bcd(tm->tm_mday);
+
+ /* month, 1 - 12 */
+ buf[RX8581_REG_MO] = bin2bcd(tm->tm_mon + 1);
+
+ /* year and century */
+ buf[RX8581_REG_YR] = bin2bcd(tm->tm_year - 100);
+ buf[RX8581_REG_DW] = (0x1 << tm->tm_wday);
+
+ /* Stop the clock */
+ err = regmap_update_bits(rx8581->regmap, RX8581_REG_CTRL,
+ RX8581_CTRL_STOP, RX8581_CTRL_STOP);
+ if (err < 0)
+ return err;
+
+ /* write register's data */
+ err = regmap_bulk_write(rx8581->regmap, RX8581_REG_SC,
+ buf, sizeof(buf));
+ if (err < 0)
+ return err;
+
+ /* get VLF and clear it */
+ err = regmap_update_bits(rx8581->regmap, RX8581_REG_FLAG,
+ RX8581_FLAG_VLF, 0);
+ if (err < 0)
+ return err;
+
+ /* Restart the clock */
+ return regmap_update_bits(rx8581->regmap, RX8581_REG_CTRL,
+ RX8581_CTRL_STOP, 0);
+}
+
+static const struct rtc_class_ops rx8581_rtc_ops = {
+ .read_time = rx8581_rtc_read_time,
+ .set_time = rx8581_rtc_set_time,
+};
+
+static int rx8571_nvram_read(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ struct rx8581 *rx8581 = priv;
+
+ return regmap_bulk_read(rx8581->regmap, RX8571_USER_RAM + offset,
+ val, bytes);
+}
+
+static int rx8571_nvram_write(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ struct rx8581 *rx8581 = priv;
+
+ return regmap_bulk_write(rx8581->regmap, RX8571_USER_RAM + offset,
+ val, bytes);
+}
+
+static int rx85x1_nvram_read(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ struct rx8581 *rx8581 = priv;
+ unsigned int tmp_val;
+ int ret;
+
+ ret = regmap_read(rx8581->regmap, RX8581_REG_RAM, &tmp_val);
+ (*(unsigned char *)val) = (unsigned char) tmp_val;
+
+ return ret;
+}
+
+static int rx85x1_nvram_write(void *priv, unsigned int offset, void *val,
+ size_t bytes)
+{
+ struct rx8581 *rx8581 = priv;
+ unsigned char tmp_val;
+
+ tmp_val = *((unsigned char *)val);
+ return regmap_write(rx8581->regmap, RX8581_REG_RAM,
+ (unsigned int)tmp_val);
+}
+
+static const struct rx85x1_config rx8581_config = {
+ .regmap = {
+ .reg_bits = 8,
+ .val_bits = 8,
+ .max_register = 0xf,
+ },
+ .num_nvram = 1
+};
+
+static const struct rx85x1_config rx8571_config = {
+ .regmap = {
+ .reg_bits = 8,
+ .val_bits = 8,
+ .max_register = 0x1f,
+ },
+ .num_nvram = 2
+};
+
+static int rx8581_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct rx8581 *rx8581;
+ const struct rx85x1_config *config = &rx8581_config;
+ const void *data = of_device_get_match_data(&client->dev);
+ static struct nvmem_config nvmem_cfg[] = {
+ {
+ .name = "rx85x1-",
+ .word_size = 1,
+ .stride = 1,
+ .size = 1,
+ .reg_read = rx85x1_nvram_read,
+ .reg_write = rx85x1_nvram_write,
+ }, {
+ .name = "rx8571-",
+ .word_size = 1,
+ .stride = 1,
+ .size = RX8571_NVRAM_SIZE,
+ .reg_read = rx8571_nvram_read,
+ .reg_write = rx8571_nvram_write,
+ },
+ };
+ int ret, i;
+
+ dev_dbg(&client->dev, "%s\n", __func__);
+
+ if (data)
+ config = data;
+
+ rx8581 = devm_kzalloc(&client->dev, sizeof(struct rx8581), GFP_KERNEL);
+ if (!rx8581)
+ return -ENOMEM;
+
+ i2c_set_clientdata(client, rx8581);
+
+ rx8581->regmap = devm_regmap_init_i2c(client, &config->regmap);
+ if (IS_ERR(rx8581->regmap))
+ return PTR_ERR(rx8581->regmap);
+
+ rx8581->rtc = devm_rtc_allocate_device(&client->dev);
+ if (IS_ERR(rx8581->rtc))
+ return PTR_ERR(rx8581->rtc);
+
+ rx8581->rtc->ops = &rx8581_rtc_ops;
+ rx8581->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ rx8581->rtc->range_max = RTC_TIMESTAMP_END_2099;
+ rx8581->rtc->start_secs = 0;
+ rx8581->rtc->set_start_time = true;
+
+ ret = rtc_register_device(rx8581->rtc);
+
+ for (i = 0; i < config->num_nvram; i++) {
+ nvmem_cfg[i].priv = rx8581;
+ rtc_nvmem_register(rx8581->rtc, &nvmem_cfg[i]);
+ }
+
+ return ret;
+}
+
+static const struct i2c_device_id rx8581_id[] = {
+ { "rx8581", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, rx8581_id);
+
+static const struct of_device_id rx8581_of_match[] = {
+ { .compatible = "epson,rx8571", .data = &rx8571_config },
+ { .compatible = "epson,rx8581", .data = &rx8581_config },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, rx8581_of_match);
+
+static struct i2c_driver rx8581_driver = {
+ .driver = {
+ .name = "rtc-rx8581",
+ .of_match_table = of_match_ptr(rx8581_of_match),
+ },
+ .probe = rx8581_probe,
+ .id_table = rx8581_id,
+};
+
+module_i2c_driver(rx8581_driver);
+
+MODULE_AUTHOR("Martyn Welch <martyn.welch@ge.com>");
+MODULE_DESCRIPTION("Epson RX-8571/RX-8581 RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-s35390a.c b/drivers/rtc/rtc-s35390a.c
new file mode 100644
index 000000000..03672a246
--- /dev/null
+++ b/drivers/rtc/rtc-s35390a.c
@@ -0,0 +1,516 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Seiko Instruments S-35390A RTC Driver
+ *
+ * Copyright (c) 2007 Byron Bradley
+ */
+
+#include <linux/module.h>
+#include <linux/rtc.h>
+#include <linux/i2c.h>
+#include <linux/bitrev.h>
+#include <linux/bcd.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+
+#define S35390A_CMD_STATUS1 0
+#define S35390A_CMD_STATUS2 1
+#define S35390A_CMD_TIME1 2
+#define S35390A_CMD_TIME2 3
+#define S35390A_CMD_INT2_REG1 5
+
+#define S35390A_BYTE_YEAR 0
+#define S35390A_BYTE_MONTH 1
+#define S35390A_BYTE_DAY 2
+#define S35390A_BYTE_WDAY 3
+#define S35390A_BYTE_HOURS 4
+#define S35390A_BYTE_MINS 5
+#define S35390A_BYTE_SECS 6
+
+#define S35390A_ALRM_BYTE_WDAY 0
+#define S35390A_ALRM_BYTE_HOURS 1
+#define S35390A_ALRM_BYTE_MINS 2
+
+/* flags for STATUS1 */
+#define S35390A_FLAG_POC BIT(0)
+#define S35390A_FLAG_BLD BIT(1)
+#define S35390A_FLAG_INT2 BIT(2)
+#define S35390A_FLAG_24H BIT(6)
+#define S35390A_FLAG_RESET BIT(7)
+
+/* flag for STATUS2 */
+#define S35390A_FLAG_TEST BIT(0)
+
+/* INT2 pin output mode */
+#define S35390A_INT2_MODE_MASK 0x0E
+#define S35390A_INT2_MODE_NOINTR 0x00
+#define S35390A_INT2_MODE_ALARM BIT(1) /* INT2AE */
+#define S35390A_INT2_MODE_PMIN_EDG BIT(2) /* INT2ME */
+#define S35390A_INT2_MODE_FREQ BIT(3) /* INT2FE */
+#define S35390A_INT2_MODE_PMIN (BIT(3) | BIT(2)) /* INT2FE | INT2ME */
+
+static const struct i2c_device_id s35390a_id[] = {
+ { "s35390a", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, s35390a_id);
+
+static const struct of_device_id s35390a_of_match[] = {
+ { .compatible = "s35390a" },
+ { .compatible = "sii,s35390a" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, s35390a_of_match);
+
+struct s35390a {
+ struct i2c_client *client[8];
+ struct rtc_device *rtc;
+ int twentyfourhour;
+};
+
+static int s35390a_set_reg(struct s35390a *s35390a, int reg, char *buf, int len)
+{
+ struct i2c_client *client = s35390a->client[reg];
+ struct i2c_msg msg[] = {
+ {
+ .addr = client->addr,
+ .len = len,
+ .buf = buf
+ },
+ };
+
+ if ((i2c_transfer(client->adapter, msg, 1)) != 1)
+ return -EIO;
+
+ return 0;
+}
+
+static int s35390a_get_reg(struct s35390a *s35390a, int reg, char *buf, int len)
+{
+ struct i2c_client *client = s35390a->client[reg];
+ struct i2c_msg msg[] = {
+ {
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = len,
+ .buf = buf
+ },
+ };
+
+ if ((i2c_transfer(client->adapter, msg, 1)) != 1)
+ return -EIO;
+
+ return 0;
+}
+
+static int s35390a_init(struct s35390a *s35390a)
+{
+ u8 buf;
+ int ret;
+ unsigned initcount = 0;
+
+ /*
+ * At least one of POC and BLD are set, so reinitialise chip. Keeping
+ * this information in the hardware to know later that the time isn't
+ * valid is unfortunately not possible because POC and BLD are cleared
+ * on read. So the reset is best done now.
+ *
+ * The 24H bit is kept over reset, so set it already here.
+ */
+initialize:
+ buf = S35390A_FLAG_RESET | S35390A_FLAG_24H;
+ ret = s35390a_set_reg(s35390a, S35390A_CMD_STATUS1, &buf, 1);
+
+ if (ret < 0)
+ return ret;
+
+ ret = s35390a_get_reg(s35390a, S35390A_CMD_STATUS1, &buf, 1);
+ if (ret < 0)
+ return ret;
+
+ if (buf & (S35390A_FLAG_POC | S35390A_FLAG_BLD)) {
+ /* Try up to five times to reset the chip */
+ if (initcount < 5) {
+ ++initcount;
+ goto initialize;
+ } else
+ return -EIO;
+ }
+
+ return 1;
+}
+
+/*
+ * Returns <0 on error, 0 if rtc is setup fine and 1 if the chip was reset.
+ * To keep the information if an irq is pending, pass the value read from
+ * STATUS1 to the caller.
+ */
+static int s35390a_read_status(struct s35390a *s35390a, char *status1)
+{
+ int ret;
+
+ ret = s35390a_get_reg(s35390a, S35390A_CMD_STATUS1, status1, 1);
+ if (ret < 0)
+ return ret;
+
+ if (*status1 & S35390A_FLAG_POC) {
+ /*
+ * Do not communicate for 0.5 seconds since the power-on
+ * detection circuit is in operation.
+ */
+ msleep(500);
+ return 1;
+ } else if (*status1 & S35390A_FLAG_BLD)
+ return 1;
+ /*
+ * If both POC and BLD are unset everything is fine.
+ */
+ return 0;
+}
+
+static int s35390a_disable_test_mode(struct s35390a *s35390a)
+{
+ char buf[1];
+
+ if (s35390a_get_reg(s35390a, S35390A_CMD_STATUS2, buf, sizeof(buf)) < 0)
+ return -EIO;
+
+ if (!(buf[0] & S35390A_FLAG_TEST))
+ return 0;
+
+ buf[0] &= ~S35390A_FLAG_TEST;
+ return s35390a_set_reg(s35390a, S35390A_CMD_STATUS2, buf, sizeof(buf));
+}
+
+static char s35390a_hr2reg(struct s35390a *s35390a, int hour)
+{
+ if (s35390a->twentyfourhour)
+ return bin2bcd(hour);
+
+ if (hour < 12)
+ return bin2bcd(hour);
+
+ return 0x40 | bin2bcd(hour - 12);
+}
+
+static int s35390a_reg2hr(struct s35390a *s35390a, char reg)
+{
+ unsigned hour;
+
+ if (s35390a->twentyfourhour)
+ return bcd2bin(reg & 0x3f);
+
+ hour = bcd2bin(reg & 0x3f);
+ if (reg & 0x40)
+ hour += 12;
+
+ return hour;
+}
+
+static int s35390a_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct s35390a *s35390a = i2c_get_clientdata(client);
+ int i, err;
+ char buf[7], status;
+
+ dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d mday=%d, "
+ "mon=%d, year=%d, wday=%d\n", __func__, tm->tm_sec,
+ tm->tm_min, tm->tm_hour, tm->tm_mday, tm->tm_mon, tm->tm_year,
+ tm->tm_wday);
+
+ if (s35390a_read_status(s35390a, &status) == 1)
+ s35390a_init(s35390a);
+
+ buf[S35390A_BYTE_YEAR] = bin2bcd(tm->tm_year - 100);
+ buf[S35390A_BYTE_MONTH] = bin2bcd(tm->tm_mon + 1);
+ buf[S35390A_BYTE_DAY] = bin2bcd(tm->tm_mday);
+ buf[S35390A_BYTE_WDAY] = bin2bcd(tm->tm_wday);
+ buf[S35390A_BYTE_HOURS] = s35390a_hr2reg(s35390a, tm->tm_hour);
+ buf[S35390A_BYTE_MINS] = bin2bcd(tm->tm_min);
+ buf[S35390A_BYTE_SECS] = bin2bcd(tm->tm_sec);
+
+ /* This chip expects the bits of each byte to be in reverse order */
+ for (i = 0; i < 7; ++i)
+ buf[i] = bitrev8(buf[i]);
+
+ err = s35390a_set_reg(s35390a, S35390A_CMD_TIME1, buf, sizeof(buf));
+
+ return err;
+}
+
+static int s35390a_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct s35390a *s35390a = i2c_get_clientdata(client);
+ char buf[7], status;
+ int i, err;
+
+ if (s35390a_read_status(s35390a, &status) == 1)
+ return -EINVAL;
+
+ err = s35390a_get_reg(s35390a, S35390A_CMD_TIME1, buf, sizeof(buf));
+ if (err < 0)
+ return err;
+
+ /* This chip returns the bits of each byte in reverse order */
+ for (i = 0; i < 7; ++i)
+ buf[i] = bitrev8(buf[i]);
+
+ tm->tm_sec = bcd2bin(buf[S35390A_BYTE_SECS]);
+ tm->tm_min = bcd2bin(buf[S35390A_BYTE_MINS]);
+ tm->tm_hour = s35390a_reg2hr(s35390a, buf[S35390A_BYTE_HOURS]);
+ tm->tm_wday = bcd2bin(buf[S35390A_BYTE_WDAY]);
+ tm->tm_mday = bcd2bin(buf[S35390A_BYTE_DAY]);
+ tm->tm_mon = bcd2bin(buf[S35390A_BYTE_MONTH]) - 1;
+ tm->tm_year = bcd2bin(buf[S35390A_BYTE_YEAR]) + 100;
+
+ dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d, mday=%d, "
+ "mon=%d, year=%d, wday=%d\n", __func__, tm->tm_sec,
+ tm->tm_min, tm->tm_hour, tm->tm_mday, tm->tm_mon, tm->tm_year,
+ tm->tm_wday);
+
+ return 0;
+}
+
+static int s35390a_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct s35390a *s35390a = i2c_get_clientdata(client);
+ char buf[3], sts = 0;
+ int err, i;
+
+ dev_dbg(&client->dev, "%s: alm is secs=%d, mins=%d, hours=%d mday=%d, "\
+ "mon=%d, year=%d, wday=%d\n", __func__, alm->time.tm_sec,
+ alm->time.tm_min, alm->time.tm_hour, alm->time.tm_mday,
+ alm->time.tm_mon, alm->time.tm_year, alm->time.tm_wday);
+
+ if (alm->time.tm_sec != 0)
+ dev_warn(&client->dev, "Alarms are only supported on a per minute basis!\n");
+
+ /* disable interrupt (which deasserts the irq line) */
+ err = s35390a_set_reg(s35390a, S35390A_CMD_STATUS2, &sts, sizeof(sts));
+ if (err < 0)
+ return err;
+
+ /* clear pending interrupt (in STATUS1 only), if any */
+ err = s35390a_get_reg(s35390a, S35390A_CMD_STATUS1, &sts, sizeof(sts));
+ if (err < 0)
+ return err;
+
+ if (alm->enabled)
+ sts = S35390A_INT2_MODE_ALARM;
+ else
+ sts = S35390A_INT2_MODE_NOINTR;
+
+ /* set interupt mode*/
+ err = s35390a_set_reg(s35390a, S35390A_CMD_STATUS2, &sts, sizeof(sts));
+ if (err < 0)
+ return err;
+
+ if (alm->time.tm_wday != -1)
+ buf[S35390A_ALRM_BYTE_WDAY] = bin2bcd(alm->time.tm_wday) | 0x80;
+ else
+ buf[S35390A_ALRM_BYTE_WDAY] = 0;
+
+ buf[S35390A_ALRM_BYTE_HOURS] = s35390a_hr2reg(s35390a,
+ alm->time.tm_hour) | 0x80;
+ buf[S35390A_ALRM_BYTE_MINS] = bin2bcd(alm->time.tm_min) | 0x80;
+
+ if (alm->time.tm_hour >= 12)
+ buf[S35390A_ALRM_BYTE_HOURS] |= 0x40;
+
+ for (i = 0; i < 3; ++i)
+ buf[i] = bitrev8(buf[i]);
+
+ err = s35390a_set_reg(s35390a, S35390A_CMD_INT2_REG1, buf,
+ sizeof(buf));
+
+ return err;
+}
+
+static int s35390a_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct s35390a *s35390a = i2c_get_clientdata(client);
+ char buf[3], sts;
+ int i, err;
+
+ err = s35390a_get_reg(s35390a, S35390A_CMD_STATUS2, &sts, sizeof(sts));
+ if (err < 0)
+ return err;
+
+ if ((sts & S35390A_INT2_MODE_MASK) != S35390A_INT2_MODE_ALARM) {
+ /*
+ * When the alarm isn't enabled, the register to configure
+ * the alarm time isn't accessible.
+ */
+ alm->enabled = 0;
+ return 0;
+ } else {
+ alm->enabled = 1;
+ }
+
+ err = s35390a_get_reg(s35390a, S35390A_CMD_INT2_REG1, buf, sizeof(buf));
+ if (err < 0)
+ return err;
+
+ /* This chip returns the bits of each byte in reverse order */
+ for (i = 0; i < 3; ++i)
+ buf[i] = bitrev8(buf[i]);
+
+ /*
+ * B0 of the three matching registers is an enable flag. Iff it is set
+ * the configured value is used for matching.
+ */
+ if (buf[S35390A_ALRM_BYTE_WDAY] & 0x80)
+ alm->time.tm_wday =
+ bcd2bin(buf[S35390A_ALRM_BYTE_WDAY] & ~0x80);
+
+ if (buf[S35390A_ALRM_BYTE_HOURS] & 0x80)
+ alm->time.tm_hour =
+ s35390a_reg2hr(s35390a,
+ buf[S35390A_ALRM_BYTE_HOURS] & ~0x80);
+
+ if (buf[S35390A_ALRM_BYTE_MINS] & 0x80)
+ alm->time.tm_min = bcd2bin(buf[S35390A_ALRM_BYTE_MINS] & ~0x80);
+
+ /* alarm triggers always at s=0 */
+ alm->time.tm_sec = 0;
+
+ dev_dbg(&client->dev, "%s: alm is mins=%d, hours=%d, wday=%d\n",
+ __func__, alm->time.tm_min, alm->time.tm_hour,
+ alm->time.tm_wday);
+
+ return 0;
+}
+
+static int s35390a_rtc_ioctl(struct device *dev, unsigned int cmd,
+ unsigned long arg)
+{
+ struct i2c_client *client = to_i2c_client(dev);
+ struct s35390a *s35390a = i2c_get_clientdata(client);
+ char sts;
+ int err;
+
+ switch (cmd) {
+ case RTC_VL_READ:
+ /* s35390a_reset set lowvoltage flag and init RTC if needed */
+ err = s35390a_read_status(s35390a, &sts);
+ if (err < 0)
+ return err;
+ if (copy_to_user((void __user *)arg, &err, sizeof(int)))
+ return -EFAULT;
+ break;
+ case RTC_VL_CLR:
+ /* update flag and clear register */
+ err = s35390a_init(s35390a);
+ if (err < 0)
+ return err;
+ break;
+ default:
+ return -ENOIOCTLCMD;
+ }
+
+ return 0;
+}
+
+static const struct rtc_class_ops s35390a_rtc_ops = {
+ .read_time = s35390a_rtc_read_time,
+ .set_time = s35390a_rtc_set_time,
+ .set_alarm = s35390a_rtc_set_alarm,
+ .read_alarm = s35390a_rtc_read_alarm,
+ .ioctl = s35390a_rtc_ioctl,
+};
+
+static int s35390a_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ int err, err_read;
+ unsigned int i;
+ struct s35390a *s35390a;
+ char buf, status1;
+ struct device *dev = &client->dev;
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
+ return -ENODEV;
+
+ s35390a = devm_kzalloc(dev, sizeof(struct s35390a), GFP_KERNEL);
+ if (!s35390a)
+ return -ENOMEM;
+
+ s35390a->client[0] = client;
+ i2c_set_clientdata(client, s35390a);
+
+ /* This chip uses multiple addresses, use dummy devices for them */
+ for (i = 1; i < 8; ++i) {
+ s35390a->client[i] = devm_i2c_new_dummy_device(dev,
+ client->adapter,
+ client->addr + i);
+ if (IS_ERR(s35390a->client[i])) {
+ dev_err(dev, "Address %02x unavailable\n",
+ client->addr + i);
+ return PTR_ERR(s35390a->client[i]);
+ }
+ }
+
+ s35390a->rtc = devm_rtc_allocate_device(dev);
+ if (IS_ERR(s35390a->rtc))
+ return PTR_ERR(s35390a->rtc);
+
+ err_read = s35390a_read_status(s35390a, &status1);
+ if (err_read < 0) {
+ dev_err(dev, "error resetting chip\n");
+ return err_read;
+ }
+
+ if (status1 & S35390A_FLAG_24H)
+ s35390a->twentyfourhour = 1;
+ else
+ s35390a->twentyfourhour = 0;
+
+ if (status1 & S35390A_FLAG_INT2) {
+ /* disable alarm (and maybe test mode) */
+ buf = 0;
+ err = s35390a_set_reg(s35390a, S35390A_CMD_STATUS2, &buf, 1);
+ if (err < 0) {
+ dev_err(dev, "error disabling alarm");
+ return err;
+ }
+ } else {
+ err = s35390a_disable_test_mode(s35390a);
+ if (err < 0) {
+ dev_err(dev, "error disabling test mode\n");
+ return err;
+ }
+ }
+
+ device_set_wakeup_capable(dev, 1);
+
+ s35390a->rtc->ops = &s35390a_rtc_ops;
+ s35390a->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ s35390a->rtc->range_max = RTC_TIMESTAMP_END_2099;
+
+ /* supports per-minute alarms only, therefore set uie_unsupported */
+ s35390a->rtc->uie_unsupported = 1;
+
+ if (status1 & S35390A_FLAG_INT2)
+ rtc_update_irq(s35390a->rtc, 1, RTC_AF);
+
+ return rtc_register_device(s35390a->rtc);
+}
+
+static struct i2c_driver s35390a_driver = {
+ .driver = {
+ .name = "rtc-s35390a",
+ .of_match_table = of_match_ptr(s35390a_of_match),
+ },
+ .probe = s35390a_probe,
+ .id_table = s35390a_id,
+};
+
+module_i2c_driver(s35390a_driver);
+
+MODULE_AUTHOR("Byron Bradley <byron.bbradley@gmail.com>");
+MODULE_DESCRIPTION("S35390A RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-s3c.c b/drivers/rtc/rtc-s3c.c
new file mode 100644
index 000000000..24a41909f
--- /dev/null
+++ b/drivers/rtc/rtc-s3c.c
@@ -0,0 +1,829 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* drivers/rtc/rtc-s3c.c
+ *
+ * Copyright (c) 2010 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * Copyright (c) 2004,2006 Simtec Electronics
+ * Ben Dooks, <ben@simtec.co.uk>
+ * http://armlinux.simtec.co.uk/
+ *
+ * S3C2410/S3C2440/S3C24XX Internal RTC Driver
+*/
+
+#include <linux/module.h>
+#include <linux/fs.h>
+#include <linux/string.h>
+#include <linux/init.h>
+#include <linux/platform_device.h>
+#include <linux/interrupt.h>
+#include <linux/rtc.h>
+#include <linux/bcd.h>
+#include <linux/clk.h>
+#include <linux/log2.h>
+#include <linux/slab.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/uaccess.h>
+#include <linux/io.h>
+
+#include <asm/irq.h>
+#include "rtc-s3c.h"
+
+struct s3c_rtc {
+ struct device *dev;
+ struct rtc_device *rtc;
+
+ void __iomem *base;
+ struct clk *rtc_clk;
+ struct clk *rtc_src_clk;
+ bool alarm_enabled;
+
+ const struct s3c_rtc_data *data;
+
+ int irq_alarm;
+ int irq_tick;
+
+ spinlock_t pie_lock;
+ spinlock_t alarm_lock;
+
+ int ticnt_save;
+ int ticnt_en_save;
+ bool wake_en;
+};
+
+struct s3c_rtc_data {
+ int max_user_freq;
+ bool needs_src_clk;
+
+ void (*irq_handler) (struct s3c_rtc *info, int mask);
+ void (*set_freq) (struct s3c_rtc *info, int freq);
+ void (*enable_tick) (struct s3c_rtc *info, struct seq_file *seq);
+ void (*select_tick_clk) (struct s3c_rtc *info);
+ void (*save_tick_cnt) (struct s3c_rtc *info);
+ void (*restore_tick_cnt) (struct s3c_rtc *info);
+ void (*enable) (struct s3c_rtc *info);
+ void (*disable) (struct s3c_rtc *info);
+};
+
+static int s3c_rtc_enable_clk(struct s3c_rtc *info)
+{
+ int ret;
+
+ ret = clk_enable(info->rtc_clk);
+ if (ret)
+ return ret;
+
+ if (info->data->needs_src_clk) {
+ ret = clk_enable(info->rtc_src_clk);
+ if (ret) {
+ clk_disable(info->rtc_clk);
+ return ret;
+ }
+ }
+ return 0;
+}
+
+static void s3c_rtc_disable_clk(struct s3c_rtc *info)
+{
+ if (info->data->needs_src_clk)
+ clk_disable(info->rtc_src_clk);
+ clk_disable(info->rtc_clk);
+}
+
+/* IRQ Handlers */
+static irqreturn_t s3c_rtc_tickirq(int irq, void *id)
+{
+ struct s3c_rtc *info = (struct s3c_rtc *)id;
+
+ if (info->data->irq_handler)
+ info->data->irq_handler(info, S3C2410_INTP_TIC);
+
+ return IRQ_HANDLED;
+}
+
+static irqreturn_t s3c_rtc_alarmirq(int irq, void *id)
+{
+ struct s3c_rtc *info = (struct s3c_rtc *)id;
+
+ if (info->data->irq_handler)
+ info->data->irq_handler(info, S3C2410_INTP_ALM);
+
+ return IRQ_HANDLED;
+}
+
+/* Update control registers */
+static int s3c_rtc_setaie(struct device *dev, unsigned int enabled)
+{
+ struct s3c_rtc *info = dev_get_drvdata(dev);
+ unsigned long flags;
+ unsigned int tmp;
+ int ret;
+
+ dev_dbg(info->dev, "%s: aie=%d\n", __func__, enabled);
+
+ ret = s3c_rtc_enable_clk(info);
+ if (ret)
+ return ret;
+
+ tmp = readb(info->base + S3C2410_RTCALM) & ~S3C2410_RTCALM_ALMEN;
+
+ if (enabled)
+ tmp |= S3C2410_RTCALM_ALMEN;
+
+ writeb(tmp, info->base + S3C2410_RTCALM);
+
+ spin_lock_irqsave(&info->alarm_lock, flags);
+
+ if (info->alarm_enabled && !enabled)
+ s3c_rtc_disable_clk(info);
+ else if (!info->alarm_enabled && enabled)
+ ret = s3c_rtc_enable_clk(info);
+
+ info->alarm_enabled = enabled;
+ spin_unlock_irqrestore(&info->alarm_lock, flags);
+
+ s3c_rtc_disable_clk(info);
+
+ return ret;
+}
+
+/* Set RTC frequency */
+static int s3c_rtc_setfreq(struct s3c_rtc *info, int freq)
+{
+ int ret;
+
+ if (!is_power_of_2(freq))
+ return -EINVAL;
+
+ ret = s3c_rtc_enable_clk(info);
+ if (ret)
+ return ret;
+ spin_lock_irq(&info->pie_lock);
+
+ if (info->data->set_freq)
+ info->data->set_freq(info, freq);
+
+ spin_unlock_irq(&info->pie_lock);
+ s3c_rtc_disable_clk(info);
+
+ return 0;
+}
+
+/* Time read/write */
+static int s3c_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
+{
+ struct s3c_rtc *info = dev_get_drvdata(dev);
+ unsigned int have_retried = 0;
+ int ret;
+
+ ret = s3c_rtc_enable_clk(info);
+ if (ret)
+ return ret;
+
+retry_get_time:
+ rtc_tm->tm_min = readb(info->base + S3C2410_RTCMIN);
+ rtc_tm->tm_hour = readb(info->base + S3C2410_RTCHOUR);
+ rtc_tm->tm_mday = readb(info->base + S3C2410_RTCDATE);
+ rtc_tm->tm_mon = readb(info->base + S3C2410_RTCMON);
+ rtc_tm->tm_year = readb(info->base + S3C2410_RTCYEAR);
+ rtc_tm->tm_sec = readb(info->base + S3C2410_RTCSEC);
+
+ /* the only way to work out whether the system was mid-update
+ * when we read it is to check the second counter, and if it
+ * is zero, then we re-try the entire read
+ */
+
+ if (rtc_tm->tm_sec == 0 && !have_retried) {
+ have_retried = 1;
+ goto retry_get_time;
+ }
+
+ rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
+ rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
+ rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
+ rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
+ rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
+ rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
+
+ s3c_rtc_disable_clk(info);
+
+ rtc_tm->tm_year += 100;
+ rtc_tm->tm_mon -= 1;
+
+ dev_dbg(dev, "read time %ptR\n", rtc_tm);
+ return 0;
+}
+
+static int s3c_rtc_settime(struct device *dev, struct rtc_time *tm)
+{
+ struct s3c_rtc *info = dev_get_drvdata(dev);
+ int year = tm->tm_year - 100;
+ int ret;
+
+ dev_dbg(dev, "set time %ptR\n", tm);
+
+ /* we get around y2k by simply not supporting it */
+
+ if (year < 0 || year >= 100) {
+ dev_err(dev, "rtc only supports 100 years\n");
+ return -EINVAL;
+ }
+
+ ret = s3c_rtc_enable_clk(info);
+ if (ret)
+ return ret;
+
+ writeb(bin2bcd(tm->tm_sec), info->base + S3C2410_RTCSEC);
+ writeb(bin2bcd(tm->tm_min), info->base + S3C2410_RTCMIN);
+ writeb(bin2bcd(tm->tm_hour), info->base + S3C2410_RTCHOUR);
+ writeb(bin2bcd(tm->tm_mday), info->base + S3C2410_RTCDATE);
+ writeb(bin2bcd(tm->tm_mon + 1), info->base + S3C2410_RTCMON);
+ writeb(bin2bcd(year), info->base + S3C2410_RTCYEAR);
+
+ s3c_rtc_disable_clk(info);
+
+ return 0;
+}
+
+static int s3c_rtc_getalarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct s3c_rtc *info = dev_get_drvdata(dev);
+ struct rtc_time *alm_tm = &alrm->time;
+ unsigned int alm_en;
+ int ret;
+
+ ret = s3c_rtc_enable_clk(info);
+ if (ret)
+ return ret;
+
+ alm_tm->tm_sec = readb(info->base + S3C2410_ALMSEC);
+ alm_tm->tm_min = readb(info->base + S3C2410_ALMMIN);
+ alm_tm->tm_hour = readb(info->base + S3C2410_ALMHOUR);
+ alm_tm->tm_mon = readb(info->base + S3C2410_ALMMON);
+ alm_tm->tm_mday = readb(info->base + S3C2410_ALMDATE);
+ alm_tm->tm_year = readb(info->base + S3C2410_ALMYEAR);
+
+ alm_en = readb(info->base + S3C2410_RTCALM);
+
+ s3c_rtc_disable_clk(info);
+
+ alrm->enabled = (alm_en & S3C2410_RTCALM_ALMEN) ? 1 : 0;
+
+ dev_dbg(dev, "read alarm %d, %ptR\n", alm_en, alm_tm);
+
+ /* decode the alarm enable field */
+ if (alm_en & S3C2410_RTCALM_SECEN)
+ alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
+
+ if (alm_en & S3C2410_RTCALM_MINEN)
+ alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
+
+ if (alm_en & S3C2410_RTCALM_HOUREN)
+ alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
+
+ if (alm_en & S3C2410_RTCALM_DAYEN)
+ alm_tm->tm_mday = bcd2bin(alm_tm->tm_mday);
+
+ if (alm_en & S3C2410_RTCALM_MONEN) {
+ alm_tm->tm_mon = bcd2bin(alm_tm->tm_mon);
+ alm_tm->tm_mon -= 1;
+ }
+
+ if (alm_en & S3C2410_RTCALM_YEAREN)
+ alm_tm->tm_year = bcd2bin(alm_tm->tm_year);
+
+ return 0;
+}
+
+static int s3c_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct s3c_rtc *info = dev_get_drvdata(dev);
+ struct rtc_time *tm = &alrm->time;
+ unsigned int alrm_en;
+ int ret;
+
+ dev_dbg(dev, "s3c_rtc_setalarm: %d, %ptR\n", alrm->enabled, tm);
+
+ ret = s3c_rtc_enable_clk(info);
+ if (ret)
+ return ret;
+
+ alrm_en = readb(info->base + S3C2410_RTCALM) & S3C2410_RTCALM_ALMEN;
+ writeb(0x00, info->base + S3C2410_RTCALM);
+
+ if (tm->tm_sec < 60 && tm->tm_sec >= 0) {
+ alrm_en |= S3C2410_RTCALM_SECEN;
+ writeb(bin2bcd(tm->tm_sec), info->base + S3C2410_ALMSEC);
+ }
+
+ if (tm->tm_min < 60 && tm->tm_min >= 0) {
+ alrm_en |= S3C2410_RTCALM_MINEN;
+ writeb(bin2bcd(tm->tm_min), info->base + S3C2410_ALMMIN);
+ }
+
+ if (tm->tm_hour < 24 && tm->tm_hour >= 0) {
+ alrm_en |= S3C2410_RTCALM_HOUREN;
+ writeb(bin2bcd(tm->tm_hour), info->base + S3C2410_ALMHOUR);
+ }
+
+ if (tm->tm_mon < 12 && tm->tm_mon >= 0) {
+ alrm_en |= S3C2410_RTCALM_MONEN;
+ writeb(bin2bcd(tm->tm_mon + 1), info->base + S3C2410_ALMMON);
+ }
+
+ if (tm->tm_mday <= 31 && tm->tm_mday >= 1) {
+ alrm_en |= S3C2410_RTCALM_DAYEN;
+ writeb(bin2bcd(tm->tm_mday), info->base + S3C2410_ALMDATE);
+ }
+
+ dev_dbg(dev, "setting S3C2410_RTCALM to %08x\n", alrm_en);
+
+ writeb(alrm_en, info->base + S3C2410_RTCALM);
+
+ s3c_rtc_setaie(dev, alrm->enabled);
+
+ s3c_rtc_disable_clk(info);
+
+ return 0;
+}
+
+static int s3c_rtc_proc(struct device *dev, struct seq_file *seq)
+{
+ struct s3c_rtc *info = dev_get_drvdata(dev);
+ int ret;
+
+ ret = s3c_rtc_enable_clk(info);
+ if (ret)
+ return ret;
+
+ if (info->data->enable_tick)
+ info->data->enable_tick(info, seq);
+
+ s3c_rtc_disable_clk(info);
+
+ return 0;
+}
+
+static const struct rtc_class_ops s3c_rtcops = {
+ .read_time = s3c_rtc_gettime,
+ .set_time = s3c_rtc_settime,
+ .read_alarm = s3c_rtc_getalarm,
+ .set_alarm = s3c_rtc_setalarm,
+ .proc = s3c_rtc_proc,
+ .alarm_irq_enable = s3c_rtc_setaie,
+};
+
+static void s3c24xx_rtc_enable(struct s3c_rtc *info)
+{
+ unsigned int con, tmp;
+
+ con = readw(info->base + S3C2410_RTCCON);
+ /* re-enable the device, and check it is ok */
+ if ((con & S3C2410_RTCCON_RTCEN) == 0) {
+ dev_info(info->dev, "rtc disabled, re-enabling\n");
+
+ tmp = readw(info->base + S3C2410_RTCCON);
+ writew(tmp | S3C2410_RTCCON_RTCEN, info->base + S3C2410_RTCCON);
+ }
+
+ if (con & S3C2410_RTCCON_CNTSEL) {
+ dev_info(info->dev, "removing RTCCON_CNTSEL\n");
+
+ tmp = readw(info->base + S3C2410_RTCCON);
+ writew(tmp & ~S3C2410_RTCCON_CNTSEL,
+ info->base + S3C2410_RTCCON);
+ }
+
+ if (con & S3C2410_RTCCON_CLKRST) {
+ dev_info(info->dev, "removing RTCCON_CLKRST\n");
+
+ tmp = readw(info->base + S3C2410_RTCCON);
+ writew(tmp & ~S3C2410_RTCCON_CLKRST,
+ info->base + S3C2410_RTCCON);
+ }
+}
+
+static void s3c24xx_rtc_disable(struct s3c_rtc *info)
+{
+ unsigned int con;
+
+ con = readw(info->base + S3C2410_RTCCON);
+ con &= ~S3C2410_RTCCON_RTCEN;
+ writew(con, info->base + S3C2410_RTCCON);
+
+ con = readb(info->base + S3C2410_TICNT);
+ con &= ~S3C2410_TICNT_ENABLE;
+ writeb(con, info->base + S3C2410_TICNT);
+}
+
+static void s3c6410_rtc_disable(struct s3c_rtc *info)
+{
+ unsigned int con;
+
+ con = readw(info->base + S3C2410_RTCCON);
+ con &= ~S3C64XX_RTCCON_TICEN;
+ con &= ~S3C2410_RTCCON_RTCEN;
+ writew(con, info->base + S3C2410_RTCCON);
+}
+
+static int s3c_rtc_remove(struct platform_device *pdev)
+{
+ struct s3c_rtc *info = platform_get_drvdata(pdev);
+
+ s3c_rtc_setaie(info->dev, 0);
+
+ if (info->data->needs_src_clk)
+ clk_unprepare(info->rtc_src_clk);
+ clk_unprepare(info->rtc_clk);
+
+ return 0;
+}
+
+static int s3c_rtc_probe(struct platform_device *pdev)
+{
+ struct s3c_rtc *info = NULL;
+ struct rtc_time rtc_tm;
+ int ret;
+
+ info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ /* find the IRQs */
+ info->irq_tick = platform_get_irq(pdev, 1);
+ if (info->irq_tick < 0)
+ return info->irq_tick;
+
+ info->dev = &pdev->dev;
+ info->data = of_device_get_match_data(&pdev->dev);
+ if (!info->data) {
+ dev_err(&pdev->dev, "failed getting s3c_rtc_data\n");
+ return -EINVAL;
+ }
+ spin_lock_init(&info->pie_lock);
+ spin_lock_init(&info->alarm_lock);
+
+ platform_set_drvdata(pdev, info);
+
+ info->irq_alarm = platform_get_irq(pdev, 0);
+ if (info->irq_alarm < 0)
+ return info->irq_alarm;
+
+ dev_dbg(&pdev->dev, "s3c2410_rtc: tick irq %d, alarm irq %d\n",
+ info->irq_tick, info->irq_alarm);
+
+ /* get the memory region */
+ info->base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(info->base))
+ return PTR_ERR(info->base);
+
+ info->rtc_clk = devm_clk_get(&pdev->dev, "rtc");
+ if (IS_ERR(info->rtc_clk)) {
+ ret = PTR_ERR(info->rtc_clk);
+ if (ret != -EPROBE_DEFER)
+ dev_err(&pdev->dev, "failed to find rtc clock\n");
+ else
+ dev_dbg(&pdev->dev, "probe deferred due to missing rtc clk\n");
+ return ret;
+ }
+ ret = clk_prepare_enable(info->rtc_clk);
+ if (ret)
+ return ret;
+
+ if (info->data->needs_src_clk) {
+ info->rtc_src_clk = devm_clk_get(&pdev->dev, "rtc_src");
+ if (IS_ERR(info->rtc_src_clk)) {
+ ret = dev_err_probe(&pdev->dev, PTR_ERR(info->rtc_src_clk),
+ "failed to find rtc source clock\n");
+ goto err_src_clk;
+ }
+ ret = clk_prepare_enable(info->rtc_src_clk);
+ if (ret)
+ goto err_src_clk;
+ }
+
+ /* check to see if everything is setup correctly */
+ if (info->data->enable)
+ info->data->enable(info);
+
+ dev_dbg(&pdev->dev, "s3c2410_rtc: RTCCON=%02x\n",
+ readw(info->base + S3C2410_RTCCON));
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ /* Check RTC Time */
+ if (s3c_rtc_gettime(&pdev->dev, &rtc_tm)) {
+ rtc_tm.tm_year = 100;
+ rtc_tm.tm_mon = 0;
+ rtc_tm.tm_mday = 1;
+ rtc_tm.tm_hour = 0;
+ rtc_tm.tm_min = 0;
+ rtc_tm.tm_sec = 0;
+
+ s3c_rtc_settime(&pdev->dev, &rtc_tm);
+
+ dev_warn(&pdev->dev, "warning: invalid RTC value so initializing it\n");
+ }
+
+ /* register RTC and exit */
+ info->rtc = devm_rtc_device_register(&pdev->dev, "s3c", &s3c_rtcops,
+ THIS_MODULE);
+ if (IS_ERR(info->rtc)) {
+ dev_err(&pdev->dev, "cannot attach rtc\n");
+ ret = PTR_ERR(info->rtc);
+ goto err_nortc;
+ }
+
+ ret = devm_request_irq(&pdev->dev, info->irq_alarm, s3c_rtc_alarmirq,
+ 0, "s3c2410-rtc alarm", info);
+ if (ret) {
+ dev_err(&pdev->dev, "IRQ%d error %d\n", info->irq_alarm, ret);
+ goto err_nortc;
+ }
+
+ ret = devm_request_irq(&pdev->dev, info->irq_tick, s3c_rtc_tickirq,
+ 0, "s3c2410-rtc tick", info);
+ if (ret) {
+ dev_err(&pdev->dev, "IRQ%d error %d\n", info->irq_tick, ret);
+ goto err_nortc;
+ }
+
+ if (info->data->select_tick_clk)
+ info->data->select_tick_clk(info);
+
+ s3c_rtc_setfreq(info, 1);
+
+ s3c_rtc_disable_clk(info);
+
+ return 0;
+
+err_nortc:
+ if (info->data->disable)
+ info->data->disable(info);
+
+ if (info->data->needs_src_clk)
+ clk_disable_unprepare(info->rtc_src_clk);
+err_src_clk:
+ clk_disable_unprepare(info->rtc_clk);
+
+ return ret;
+}
+
+#ifdef CONFIG_PM_SLEEP
+
+static int s3c_rtc_suspend(struct device *dev)
+{
+ struct s3c_rtc *info = dev_get_drvdata(dev);
+ int ret;
+
+ ret = s3c_rtc_enable_clk(info);
+ if (ret)
+ return ret;
+
+ /* save TICNT for anyone using periodic interrupts */
+ if (info->data->save_tick_cnt)
+ info->data->save_tick_cnt(info);
+
+ if (info->data->disable)
+ info->data->disable(info);
+
+ if (device_may_wakeup(dev) && !info->wake_en) {
+ if (enable_irq_wake(info->irq_alarm) == 0)
+ info->wake_en = true;
+ else
+ dev_err(dev, "enable_irq_wake failed\n");
+ }
+
+ return 0;
+}
+
+static int s3c_rtc_resume(struct device *dev)
+{
+ struct s3c_rtc *info = dev_get_drvdata(dev);
+
+ if (info->data->enable)
+ info->data->enable(info);
+
+ if (info->data->restore_tick_cnt)
+ info->data->restore_tick_cnt(info);
+
+ s3c_rtc_disable_clk(info);
+
+ if (device_may_wakeup(dev) && info->wake_en) {
+ disable_irq_wake(info->irq_alarm);
+ info->wake_en = false;
+ }
+
+ return 0;
+}
+#endif
+static SIMPLE_DEV_PM_OPS(s3c_rtc_pm_ops, s3c_rtc_suspend, s3c_rtc_resume);
+
+static void s3c24xx_rtc_irq(struct s3c_rtc *info, int mask)
+{
+ rtc_update_irq(info->rtc, 1, RTC_AF | RTC_IRQF);
+}
+
+static void s3c6410_rtc_irq(struct s3c_rtc *info, int mask)
+{
+ rtc_update_irq(info->rtc, 1, RTC_AF | RTC_IRQF);
+ writeb(mask, info->base + S3C2410_INTP);
+}
+
+static void s3c2410_rtc_setfreq(struct s3c_rtc *info, int freq)
+{
+ unsigned int tmp = 0;
+ int val;
+
+ tmp = readb(info->base + S3C2410_TICNT);
+ tmp &= S3C2410_TICNT_ENABLE;
+
+ val = (info->rtc->max_user_freq / freq) - 1;
+ tmp |= val;
+
+ writel(tmp, info->base + S3C2410_TICNT);
+}
+
+static void s3c2416_rtc_setfreq(struct s3c_rtc *info, int freq)
+{
+ unsigned int tmp = 0;
+ int val;
+
+ tmp = readb(info->base + S3C2410_TICNT);
+ tmp &= S3C2410_TICNT_ENABLE;
+
+ val = (info->rtc->max_user_freq / freq) - 1;
+
+ tmp |= S3C2443_TICNT_PART(val);
+ writel(S3C2443_TICNT1_PART(val), info->base + S3C2443_TICNT1);
+
+ writel(S3C2416_TICNT2_PART(val), info->base + S3C2416_TICNT2);
+
+ writel(tmp, info->base + S3C2410_TICNT);
+}
+
+static void s3c2443_rtc_setfreq(struct s3c_rtc *info, int freq)
+{
+ unsigned int tmp = 0;
+ int val;
+
+ tmp = readb(info->base + S3C2410_TICNT);
+ tmp &= S3C2410_TICNT_ENABLE;
+
+ val = (info->rtc->max_user_freq / freq) - 1;
+
+ tmp |= S3C2443_TICNT_PART(val);
+ writel(S3C2443_TICNT1_PART(val), info->base + S3C2443_TICNT1);
+
+ writel(tmp, info->base + S3C2410_TICNT);
+}
+
+static void s3c6410_rtc_setfreq(struct s3c_rtc *info, int freq)
+{
+ int val;
+
+ val = (info->rtc->max_user_freq / freq) - 1;
+ writel(val, info->base + S3C2410_TICNT);
+}
+
+static void s3c24xx_rtc_enable_tick(struct s3c_rtc *info, struct seq_file *seq)
+{
+ unsigned int ticnt;
+
+ ticnt = readb(info->base + S3C2410_TICNT);
+ ticnt &= S3C2410_TICNT_ENABLE;
+
+ seq_printf(seq, "periodic_IRQ\t: %s\n", ticnt ? "yes" : "no");
+}
+
+static void s3c2416_rtc_select_tick_clk(struct s3c_rtc *info)
+{
+ unsigned int con;
+
+ con = readw(info->base + S3C2410_RTCCON);
+ con |= S3C2443_RTCCON_TICSEL;
+ writew(con, info->base + S3C2410_RTCCON);
+}
+
+static void s3c6410_rtc_enable_tick(struct s3c_rtc *info, struct seq_file *seq)
+{
+ unsigned int ticnt;
+
+ ticnt = readw(info->base + S3C2410_RTCCON);
+ ticnt &= S3C64XX_RTCCON_TICEN;
+
+ seq_printf(seq, "periodic_IRQ\t: %s\n", ticnt ? "yes" : "no");
+}
+
+static void s3c24xx_rtc_save_tick_cnt(struct s3c_rtc *info)
+{
+ info->ticnt_save = readb(info->base + S3C2410_TICNT);
+}
+
+static void s3c24xx_rtc_restore_tick_cnt(struct s3c_rtc *info)
+{
+ writeb(info->ticnt_save, info->base + S3C2410_TICNT);
+}
+
+static void s3c6410_rtc_save_tick_cnt(struct s3c_rtc *info)
+{
+ info->ticnt_en_save = readw(info->base + S3C2410_RTCCON);
+ info->ticnt_en_save &= S3C64XX_RTCCON_TICEN;
+ info->ticnt_save = readl(info->base + S3C2410_TICNT);
+}
+
+static void s3c6410_rtc_restore_tick_cnt(struct s3c_rtc *info)
+{
+ unsigned int con;
+
+ writel(info->ticnt_save, info->base + S3C2410_TICNT);
+ if (info->ticnt_en_save) {
+ con = readw(info->base + S3C2410_RTCCON);
+ writew(con | info->ticnt_en_save, info->base + S3C2410_RTCCON);
+ }
+}
+
+static struct s3c_rtc_data const s3c2410_rtc_data = {
+ .max_user_freq = 128,
+ .irq_handler = s3c24xx_rtc_irq,
+ .set_freq = s3c2410_rtc_setfreq,
+ .enable_tick = s3c24xx_rtc_enable_tick,
+ .save_tick_cnt = s3c24xx_rtc_save_tick_cnt,
+ .restore_tick_cnt = s3c24xx_rtc_restore_tick_cnt,
+ .enable = s3c24xx_rtc_enable,
+ .disable = s3c24xx_rtc_disable,
+};
+
+static struct s3c_rtc_data const s3c2416_rtc_data = {
+ .max_user_freq = 32768,
+ .irq_handler = s3c24xx_rtc_irq,
+ .set_freq = s3c2416_rtc_setfreq,
+ .enable_tick = s3c24xx_rtc_enable_tick,
+ .select_tick_clk = s3c2416_rtc_select_tick_clk,
+ .save_tick_cnt = s3c24xx_rtc_save_tick_cnt,
+ .restore_tick_cnt = s3c24xx_rtc_restore_tick_cnt,
+ .enable = s3c24xx_rtc_enable,
+ .disable = s3c24xx_rtc_disable,
+};
+
+static struct s3c_rtc_data const s3c2443_rtc_data = {
+ .max_user_freq = 32768,
+ .irq_handler = s3c24xx_rtc_irq,
+ .set_freq = s3c2443_rtc_setfreq,
+ .enable_tick = s3c24xx_rtc_enable_tick,
+ .select_tick_clk = s3c2416_rtc_select_tick_clk,
+ .save_tick_cnt = s3c24xx_rtc_save_tick_cnt,
+ .restore_tick_cnt = s3c24xx_rtc_restore_tick_cnt,
+ .enable = s3c24xx_rtc_enable,
+ .disable = s3c24xx_rtc_disable,
+};
+
+static struct s3c_rtc_data const s3c6410_rtc_data = {
+ .max_user_freq = 32768,
+ .needs_src_clk = true,
+ .irq_handler = s3c6410_rtc_irq,
+ .set_freq = s3c6410_rtc_setfreq,
+ .enable_tick = s3c6410_rtc_enable_tick,
+ .save_tick_cnt = s3c6410_rtc_save_tick_cnt,
+ .restore_tick_cnt = s3c6410_rtc_restore_tick_cnt,
+ .enable = s3c24xx_rtc_enable,
+ .disable = s3c6410_rtc_disable,
+};
+
+static const struct of_device_id s3c_rtc_dt_match[] = {
+ {
+ .compatible = "samsung,s3c2410-rtc",
+ .data = &s3c2410_rtc_data,
+ }, {
+ .compatible = "samsung,s3c2416-rtc",
+ .data = &s3c2416_rtc_data,
+ }, {
+ .compatible = "samsung,s3c2443-rtc",
+ .data = &s3c2443_rtc_data,
+ }, {
+ .compatible = "samsung,s3c6410-rtc",
+ .data = &s3c6410_rtc_data,
+ }, {
+ .compatible = "samsung,exynos3250-rtc",
+ .data = &s3c6410_rtc_data,
+ },
+ { /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(of, s3c_rtc_dt_match);
+
+static struct platform_driver s3c_rtc_driver = {
+ .probe = s3c_rtc_probe,
+ .remove = s3c_rtc_remove,
+ .driver = {
+ .name = "s3c-rtc",
+ .pm = &s3c_rtc_pm_ops,
+ .of_match_table = of_match_ptr(s3c_rtc_dt_match),
+ },
+};
+module_platform_driver(s3c_rtc_driver);
+
+MODULE_DESCRIPTION("Samsung S3C RTC Driver");
+MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:s3c2410-rtc");
diff --git a/drivers/rtc/rtc-s3c.h b/drivers/rtc/rtc-s3c.h
new file mode 100644
index 000000000..3552914aa
--- /dev/null
+++ b/drivers/rtc/rtc-s3c.h
@@ -0,0 +1,67 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (c) 2003 Simtec Electronics <linux@simtec.co.uk>
+ * http://www.simtec.co.uk/products/SWLINUX/
+ *
+ * S3C2410 Internal RTC register definition
+*/
+
+#ifndef __ASM_ARCH_REGS_RTC_H
+#define __ASM_ARCH_REGS_RTC_H __FILE__
+
+#define S3C2410_RTCREG(x) (x)
+#define S3C2410_INTP S3C2410_RTCREG(0x30)
+#define S3C2410_INTP_ALM (1 << 1)
+#define S3C2410_INTP_TIC (1 << 0)
+
+#define S3C2410_RTCCON S3C2410_RTCREG(0x40)
+#define S3C2410_RTCCON_RTCEN (1 << 0)
+#define S3C2410_RTCCON_CNTSEL (1 << 2)
+#define S3C2410_RTCCON_CLKRST (1 << 3)
+#define S3C2443_RTCCON_TICSEL (1 << 4)
+#define S3C64XX_RTCCON_TICEN (1 << 8)
+
+#define S3C2410_TICNT S3C2410_RTCREG(0x44)
+#define S3C2410_TICNT_ENABLE (1 << 7)
+
+/* S3C2443: tick count is 15 bit wide
+ * TICNT[6:0] contains upper 7 bits
+ * TICNT1[7:0] contains lower 8 bits
+ */
+#define S3C2443_TICNT_PART(x) ((x & 0x7f00) >> 8)
+#define S3C2443_TICNT1 S3C2410_RTCREG(0x4C)
+#define S3C2443_TICNT1_PART(x) (x & 0xff)
+
+/* S3C2416: tick count is 32 bit wide
+ * TICNT[6:0] contains bits [14:8]
+ * TICNT1[7:0] contains lower 8 bits
+ * TICNT2[16:0] contains upper 17 bits
+ */
+#define S3C2416_TICNT2 S3C2410_RTCREG(0x48)
+#define S3C2416_TICNT2_PART(x) ((x & 0xffff8000) >> 15)
+
+#define S3C2410_RTCALM S3C2410_RTCREG(0x50)
+#define S3C2410_RTCALM_ALMEN (1 << 6)
+#define S3C2410_RTCALM_YEAREN (1 << 5)
+#define S3C2410_RTCALM_MONEN (1 << 4)
+#define S3C2410_RTCALM_DAYEN (1 << 3)
+#define S3C2410_RTCALM_HOUREN (1 << 2)
+#define S3C2410_RTCALM_MINEN (1 << 1)
+#define S3C2410_RTCALM_SECEN (1 << 0)
+
+#define S3C2410_ALMSEC S3C2410_RTCREG(0x54)
+#define S3C2410_ALMMIN S3C2410_RTCREG(0x58)
+#define S3C2410_ALMHOUR S3C2410_RTCREG(0x5c)
+
+#define S3C2410_ALMDATE S3C2410_RTCREG(0x60)
+#define S3C2410_ALMMON S3C2410_RTCREG(0x64)
+#define S3C2410_ALMYEAR S3C2410_RTCREG(0x68)
+
+#define S3C2410_RTCSEC S3C2410_RTCREG(0x70)
+#define S3C2410_RTCMIN S3C2410_RTCREG(0x74)
+#define S3C2410_RTCHOUR S3C2410_RTCREG(0x78)
+#define S3C2410_RTCDATE S3C2410_RTCREG(0x7c)
+#define S3C2410_RTCMON S3C2410_RTCREG(0x84)
+#define S3C2410_RTCYEAR S3C2410_RTCREG(0x88)
+
+#endif /* __ASM_ARCH_REGS_RTC_H */
diff --git a/drivers/rtc/rtc-s5m.c b/drivers/rtc/rtc-s5m.c
new file mode 100644
index 000000000..eb9dde409
--- /dev/null
+++ b/drivers/rtc/rtc-s5m.c
@@ -0,0 +1,887 @@
+// SPDX-License-Identifier: GPL-2.0+
+//
+// Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
+// http://www.samsung.com
+//
+// Copyright (C) 2013 Google, Inc
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/module.h>
+#include <linux/i2c.h>
+#include <linux/bcd.h>
+#include <linux/regmap.h>
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+#include <linux/mfd/samsung/core.h>
+#include <linux/mfd/samsung/irq.h>
+#include <linux/mfd/samsung/rtc.h>
+#include <linux/mfd/samsung/s2mps14.h>
+
+/*
+ * Maximum number of retries for checking changes in UDR field
+ * of S5M_RTC_UDR_CON register (to limit possible endless loop).
+ *
+ * After writing to RTC registers (setting time or alarm) read the UDR field
+ * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
+ * been transferred.
+ */
+#define UDR_READ_RETRY_CNT 5
+
+enum {
+ RTC_SEC = 0,
+ RTC_MIN,
+ RTC_HOUR,
+ RTC_WEEKDAY,
+ RTC_DATE,
+ RTC_MONTH,
+ RTC_YEAR1,
+ RTC_YEAR2,
+ /* Make sure this is always the last enum name. */
+ RTC_MAX_NUM_TIME_REGS
+};
+
+/*
+ * Registers used by the driver which are different between chipsets.
+ *
+ * Operations like read time and write alarm/time require updating
+ * specific fields in UDR register. These fields usually are auto-cleared
+ * (with some exceptions).
+ *
+ * Table of operations per device:
+ *
+ * Device | Write time | Read time | Write alarm
+ * =================================================
+ * S5M8767 | UDR + TIME | | UDR
+ * S2MPS11/14 | WUDR | RUDR | WUDR + RUDR
+ * S2MPS13 | WUDR | RUDR | WUDR + AUDR
+ * S2MPS15 | WUDR | RUDR | AUDR
+ */
+struct s5m_rtc_reg_config {
+ /* Number of registers used for setting time/alarm0/alarm1 */
+ unsigned int regs_count;
+ /* First register for time, seconds */
+ unsigned int time;
+ /* RTC control register */
+ unsigned int ctrl;
+ /* First register for alarm 0, seconds */
+ unsigned int alarm0;
+ /* First register for alarm 1, seconds */
+ unsigned int alarm1;
+ /*
+ * Register for update flag (UDR). Typically setting UDR field to 1
+ * will enable update of time or alarm register. Then it will be
+ * auto-cleared after successful update.
+ */
+ unsigned int udr_update;
+ /* Auto-cleared mask in UDR field for writing time and alarm */
+ unsigned int autoclear_udr_mask;
+ /*
+ * Masks in UDR field for time and alarm operations.
+ * The read time mask can be 0. Rest should not.
+ */
+ unsigned int read_time_udr_mask;
+ unsigned int write_time_udr_mask;
+ unsigned int write_alarm_udr_mask;
+};
+
+/* Register map for S5M8763 and S5M8767 */
+static const struct s5m_rtc_reg_config s5m_rtc_regs = {
+ .regs_count = 8,
+ .time = S5M_RTC_SEC,
+ .ctrl = S5M_ALARM1_CONF,
+ .alarm0 = S5M_ALARM0_SEC,
+ .alarm1 = S5M_ALARM1_SEC,
+ .udr_update = S5M_RTC_UDR_CON,
+ .autoclear_udr_mask = S5M_RTC_UDR_MASK,
+ .read_time_udr_mask = 0, /* Not needed */
+ .write_time_udr_mask = S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
+ .write_alarm_udr_mask = S5M_RTC_UDR_MASK,
+};
+
+/* Register map for S2MPS13 */
+static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
+ .regs_count = 7,
+ .time = S2MPS_RTC_SEC,
+ .ctrl = S2MPS_RTC_CTRL,
+ .alarm0 = S2MPS_ALARM0_SEC,
+ .alarm1 = S2MPS_ALARM1_SEC,
+ .udr_update = S2MPS_RTC_UDR_CON,
+ .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
+ .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
+ .write_time_udr_mask = S2MPS_RTC_WUDR_MASK,
+ .write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
+};
+
+/* Register map for S2MPS11/14 */
+static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
+ .regs_count = 7,
+ .time = S2MPS_RTC_SEC,
+ .ctrl = S2MPS_RTC_CTRL,
+ .alarm0 = S2MPS_ALARM0_SEC,
+ .alarm1 = S2MPS_ALARM1_SEC,
+ .udr_update = S2MPS_RTC_UDR_CON,
+ .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
+ .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
+ .write_time_udr_mask = S2MPS_RTC_WUDR_MASK,
+ .write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
+};
+
+/*
+ * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
+ * are swapped.
+ */
+static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
+ .regs_count = 7,
+ .time = S2MPS_RTC_SEC,
+ .ctrl = S2MPS_RTC_CTRL,
+ .alarm0 = S2MPS_ALARM0_SEC,
+ .alarm1 = S2MPS_ALARM1_SEC,
+ .udr_update = S2MPS_RTC_UDR_CON,
+ .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
+ .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
+ .write_time_udr_mask = S2MPS15_RTC_WUDR_MASK,
+ .write_alarm_udr_mask = S2MPS15_RTC_AUDR_MASK,
+};
+
+struct s5m_rtc_info {
+ struct device *dev;
+ struct i2c_client *i2c;
+ struct sec_pmic_dev *s5m87xx;
+ struct regmap *regmap;
+ struct rtc_device *rtc_dev;
+ int irq;
+ enum sec_device_type device_type;
+ int rtc_24hr_mode;
+ const struct s5m_rtc_reg_config *regs;
+};
+
+static const struct regmap_config s5m_rtc_regmap_config = {
+ .reg_bits = 8,
+ .val_bits = 8,
+
+ .max_register = S5M_RTC_REG_MAX,
+};
+
+static const struct regmap_config s2mps14_rtc_regmap_config = {
+ .reg_bits = 8,
+ .val_bits = 8,
+
+ .max_register = S2MPS_RTC_REG_MAX,
+};
+
+static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
+ int rtc_24hr_mode)
+{
+ tm->tm_sec = data[RTC_SEC] & 0x7f;
+ tm->tm_min = data[RTC_MIN] & 0x7f;
+ if (rtc_24hr_mode) {
+ tm->tm_hour = data[RTC_HOUR] & 0x1f;
+ } else {
+ tm->tm_hour = data[RTC_HOUR] & 0x0f;
+ if (data[RTC_HOUR] & HOUR_PM_MASK)
+ tm->tm_hour += 12;
+ }
+
+ tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
+ tm->tm_mday = data[RTC_DATE] & 0x1f;
+ tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
+ tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
+ tm->tm_yday = 0;
+ tm->tm_isdst = 0;
+}
+
+static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
+{
+ data[RTC_SEC] = tm->tm_sec;
+ data[RTC_MIN] = tm->tm_min;
+
+ if (tm->tm_hour >= 12)
+ data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
+ else
+ data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
+
+ data[RTC_WEEKDAY] = 1 << tm->tm_wday;
+ data[RTC_DATE] = tm->tm_mday;
+ data[RTC_MONTH] = tm->tm_mon + 1;
+ data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0;
+
+ if (tm->tm_year < 100) {
+ pr_err("RTC cannot handle the year %d\n",
+ 1900 + tm->tm_year);
+ return -EINVAL;
+ } else {
+ return 0;
+ }
+}
+
+/*
+ * Read RTC_UDR_CON register and wait till UDR field is cleared.
+ * This indicates that time/alarm update ended.
+ */
+static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
+{
+ int ret, retry = UDR_READ_RETRY_CNT;
+ unsigned int data;
+
+ do {
+ ret = regmap_read(info->regmap, info->regs->udr_update, &data);
+ } while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
+
+ if (!retry)
+ dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
+
+ return ret;
+}
+
+static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info,
+ struct rtc_wkalrm *alarm)
+{
+ int ret;
+ unsigned int val;
+
+ switch (info->device_type) {
+ case S5M8767X:
+ case S5M8763X:
+ ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
+ val &= S5M_ALARM0_STATUS;
+ break;
+ case S2MPS15X:
+ case S2MPS14X:
+ case S2MPS13X:
+ ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
+ &val);
+ val &= S2MPS_ALARM0_STATUS;
+ break;
+ default:
+ return -EINVAL;
+ }
+ if (ret < 0)
+ return ret;
+
+ if (val)
+ alarm->pending = 1;
+ else
+ alarm->pending = 0;
+
+ return 0;
+}
+
+static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
+{
+ int ret;
+ unsigned int data;
+
+ ret = regmap_read(info->regmap, info->regs->udr_update, &data);
+ if (ret < 0) {
+ dev_err(info->dev, "failed to read update reg(%d)\n", ret);
+ return ret;
+ }
+
+ data |= info->regs->write_time_udr_mask;
+
+ ret = regmap_write(info->regmap, info->regs->udr_update, data);
+ if (ret < 0) {
+ dev_err(info->dev, "failed to write update reg(%d)\n", ret);
+ return ret;
+ }
+
+ ret = s5m8767_wait_for_udr_update(info);
+
+ return ret;
+}
+
+static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
+{
+ int ret;
+ unsigned int data;
+
+ ret = regmap_read(info->regmap, info->regs->udr_update, &data);
+ if (ret < 0) {
+ dev_err(info->dev, "%s: fail to read update reg(%d)\n",
+ __func__, ret);
+ return ret;
+ }
+
+ data |= info->regs->write_alarm_udr_mask;
+ switch (info->device_type) {
+ case S5M8763X:
+ case S5M8767X:
+ data &= ~S5M_RTC_TIME_EN_MASK;
+ break;
+ case S2MPS15X:
+ case S2MPS14X:
+ case S2MPS13X:
+ /* No exceptions needed */
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ ret = regmap_write(info->regmap, info->regs->udr_update, data);
+ if (ret < 0) {
+ dev_err(info->dev, "%s: fail to write update reg(%d)\n",
+ __func__, ret);
+ return ret;
+ }
+
+ ret = s5m8767_wait_for_udr_update(info);
+
+ /* On S2MPS13 the AUDR is not auto-cleared */
+ if (info->device_type == S2MPS13X)
+ regmap_update_bits(info->regmap, info->regs->udr_update,
+ S2MPS13_RTC_AUDR_MASK, 0);
+
+ return ret;
+}
+
+static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm)
+{
+ tm->tm_sec = bcd2bin(data[RTC_SEC]);
+ tm->tm_min = bcd2bin(data[RTC_MIN]);
+
+ if (data[RTC_HOUR] & HOUR_12) {
+ tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
+ if (data[RTC_HOUR] & HOUR_PM)
+ tm->tm_hour += 12;
+ } else {
+ tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
+ }
+
+ tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
+ tm->tm_mday = bcd2bin(data[RTC_DATE]);
+ tm->tm_mon = bcd2bin(data[RTC_MONTH]);
+ tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
+ tm->tm_year -= 1900;
+}
+
+static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
+{
+ data[RTC_SEC] = bin2bcd(tm->tm_sec);
+ data[RTC_MIN] = bin2bcd(tm->tm_min);
+ data[RTC_HOUR] = bin2bcd(tm->tm_hour);
+ data[RTC_WEEKDAY] = tm->tm_wday;
+ data[RTC_DATE] = bin2bcd(tm->tm_mday);
+ data[RTC_MONTH] = bin2bcd(tm->tm_mon);
+ data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
+ data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
+}
+
+static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct s5m_rtc_info *info = dev_get_drvdata(dev);
+ u8 data[RTC_MAX_NUM_TIME_REGS];
+ int ret;
+
+ if (info->regs->read_time_udr_mask) {
+ ret = regmap_update_bits(info->regmap,
+ info->regs->udr_update,
+ info->regs->read_time_udr_mask,
+ info->regs->read_time_udr_mask);
+ if (ret) {
+ dev_err(dev,
+ "Failed to prepare registers for time reading: %d\n",
+ ret);
+ return ret;
+ }
+ }
+ ret = regmap_bulk_read(info->regmap, info->regs->time, data,
+ info->regs->regs_count);
+ if (ret < 0)
+ return ret;
+
+ switch (info->device_type) {
+ case S5M8763X:
+ s5m8763_data_to_tm(data, tm);
+ break;
+
+ case S5M8767X:
+ case S2MPS15X:
+ case S2MPS14X:
+ case S2MPS13X:
+ s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
+
+ return 0;
+}
+
+static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct s5m_rtc_info *info = dev_get_drvdata(dev);
+ u8 data[RTC_MAX_NUM_TIME_REGS];
+ int ret = 0;
+
+ switch (info->device_type) {
+ case S5M8763X:
+ s5m8763_tm_to_data(tm, data);
+ break;
+ case S5M8767X:
+ case S2MPS15X:
+ case S2MPS14X:
+ case S2MPS13X:
+ ret = s5m8767_tm_to_data(tm, data);
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ if (ret < 0)
+ return ret;
+
+ dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
+
+ ret = regmap_raw_write(info->regmap, info->regs->time, data,
+ info->regs->regs_count);
+ if (ret < 0)
+ return ret;
+
+ ret = s5m8767_rtc_set_time_reg(info);
+
+ return ret;
+}
+
+static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct s5m_rtc_info *info = dev_get_drvdata(dev);
+ u8 data[RTC_MAX_NUM_TIME_REGS];
+ unsigned int val;
+ int ret, i;
+
+ ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
+ info->regs->regs_count);
+ if (ret < 0)
+ return ret;
+
+ switch (info->device_type) {
+ case S5M8763X:
+ s5m8763_data_to_tm(data, &alrm->time);
+ ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val);
+ if (ret < 0)
+ return ret;
+
+ alrm->enabled = !!val;
+ break;
+
+ case S5M8767X:
+ case S2MPS15X:
+ case S2MPS14X:
+ case S2MPS13X:
+ s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
+ alrm->enabled = 0;
+ for (i = 0; i < info->regs->regs_count; i++) {
+ if (data[i] & ALARM_ENABLE_MASK) {
+ alrm->enabled = 1;
+ break;
+ }
+ }
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
+
+ ret = s5m_check_peding_alarm_interrupt(info, alrm);
+
+ return 0;
+}
+
+static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
+{
+ u8 data[RTC_MAX_NUM_TIME_REGS];
+ int ret, i;
+ struct rtc_time tm;
+
+ ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
+ info->regs->regs_count);
+ if (ret < 0)
+ return ret;
+
+ s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
+ dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
+
+ switch (info->device_type) {
+ case S5M8763X:
+ ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0);
+ break;
+
+ case S5M8767X:
+ case S2MPS15X:
+ case S2MPS14X:
+ case S2MPS13X:
+ for (i = 0; i < info->regs->regs_count; i++)
+ data[i] &= ~ALARM_ENABLE_MASK;
+
+ ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
+ info->regs->regs_count);
+ if (ret < 0)
+ return ret;
+
+ ret = s5m8767_rtc_set_alarm_reg(info);
+
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ return ret;
+}
+
+static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
+{
+ int ret;
+ u8 data[RTC_MAX_NUM_TIME_REGS];
+ u8 alarm0_conf;
+ struct rtc_time tm;
+
+ ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
+ info->regs->regs_count);
+ if (ret < 0)
+ return ret;
+
+ s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
+ dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
+
+ switch (info->device_type) {
+ case S5M8763X:
+ alarm0_conf = 0x77;
+ ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf);
+ break;
+
+ case S5M8767X:
+ case S2MPS15X:
+ case S2MPS14X:
+ case S2MPS13X:
+ data[RTC_SEC] |= ALARM_ENABLE_MASK;
+ data[RTC_MIN] |= ALARM_ENABLE_MASK;
+ data[RTC_HOUR] |= ALARM_ENABLE_MASK;
+ data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
+ if (data[RTC_DATE] & 0x1f)
+ data[RTC_DATE] |= ALARM_ENABLE_MASK;
+ if (data[RTC_MONTH] & 0xf)
+ data[RTC_MONTH] |= ALARM_ENABLE_MASK;
+ if (data[RTC_YEAR1] & 0x7f)
+ data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
+
+ ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
+ info->regs->regs_count);
+ if (ret < 0)
+ return ret;
+ ret = s5m8767_rtc_set_alarm_reg(info);
+
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ return ret;
+}
+
+static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct s5m_rtc_info *info = dev_get_drvdata(dev);
+ u8 data[RTC_MAX_NUM_TIME_REGS];
+ int ret;
+
+ switch (info->device_type) {
+ case S5M8763X:
+ s5m8763_tm_to_data(&alrm->time, data);
+ break;
+
+ case S5M8767X:
+ case S2MPS15X:
+ case S2MPS14X:
+ case S2MPS13X:
+ s5m8767_tm_to_data(&alrm->time, data);
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
+
+ ret = s5m_rtc_stop_alarm(info);
+ if (ret < 0)
+ return ret;
+
+ ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
+ info->regs->regs_count);
+ if (ret < 0)
+ return ret;
+
+ ret = s5m8767_rtc_set_alarm_reg(info);
+ if (ret < 0)
+ return ret;
+
+ if (alrm->enabled)
+ ret = s5m_rtc_start_alarm(info);
+
+ return ret;
+}
+
+static int s5m_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct s5m_rtc_info *info = dev_get_drvdata(dev);
+
+ if (enabled)
+ return s5m_rtc_start_alarm(info);
+ else
+ return s5m_rtc_stop_alarm(info);
+}
+
+static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
+{
+ struct s5m_rtc_info *info = data;
+
+ rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops s5m_rtc_ops = {
+ .read_time = s5m_rtc_read_time,
+ .set_time = s5m_rtc_set_time,
+ .read_alarm = s5m_rtc_read_alarm,
+ .set_alarm = s5m_rtc_set_alarm,
+ .alarm_irq_enable = s5m_rtc_alarm_irq_enable,
+};
+
+static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
+{
+ u8 data[2];
+ int ret;
+
+ switch (info->device_type) {
+ case S5M8763X:
+ case S5M8767X:
+ /* UDR update time. Default of 7.32 ms is too long. */
+ ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
+ S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
+ if (ret < 0)
+ dev_err(info->dev, "%s: fail to change UDR time: %d\n",
+ __func__, ret);
+
+ /* Set RTC control register : Binary mode, 24hour mode */
+ data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
+ data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
+
+ ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
+ break;
+
+ case S2MPS15X:
+ case S2MPS14X:
+ case S2MPS13X:
+ data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
+ ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
+ if (ret < 0)
+ break;
+
+ /*
+ * Should set WUDR & (RUDR or AUDR) bits to high after writing
+ * RTC_CTRL register like writing Alarm registers. We can't find
+ * the description from datasheet but vendor code does that
+ * really.
+ */
+ ret = s5m8767_rtc_set_alarm_reg(info);
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ info->rtc_24hr_mode = 1;
+ if (ret < 0) {
+ dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
+ __func__, ret);
+ return ret;
+ }
+
+ return ret;
+}
+
+static int s5m_rtc_probe(struct platform_device *pdev)
+{
+ struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
+ struct sec_platform_data *pdata = s5m87xx->pdata;
+ struct s5m_rtc_info *info;
+ const struct regmap_config *regmap_cfg;
+ int ret, alarm_irq;
+
+ if (!pdata) {
+ dev_err(pdev->dev.parent, "Platform data not supplied\n");
+ return -ENODEV;
+ }
+
+ info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ switch (platform_get_device_id(pdev)->driver_data) {
+ case S2MPS15X:
+ regmap_cfg = &s2mps14_rtc_regmap_config;
+ info->regs = &s2mps15_rtc_regs;
+ alarm_irq = S2MPS14_IRQ_RTCA0;
+ break;
+ case S2MPS14X:
+ regmap_cfg = &s2mps14_rtc_regmap_config;
+ info->regs = &s2mps14_rtc_regs;
+ alarm_irq = S2MPS14_IRQ_RTCA0;
+ break;
+ case S2MPS13X:
+ regmap_cfg = &s2mps14_rtc_regmap_config;
+ info->regs = &s2mps13_rtc_regs;
+ alarm_irq = S2MPS14_IRQ_RTCA0;
+ break;
+ case S5M8763X:
+ regmap_cfg = &s5m_rtc_regmap_config;
+ info->regs = &s5m_rtc_regs;
+ alarm_irq = S5M8763_IRQ_ALARM0;
+ break;
+ case S5M8767X:
+ regmap_cfg = &s5m_rtc_regmap_config;
+ info->regs = &s5m_rtc_regs;
+ alarm_irq = S5M8767_IRQ_RTCA1;
+ break;
+ default:
+ dev_err(&pdev->dev,
+ "Device type %lu is not supported by RTC driver\n",
+ platform_get_device_id(pdev)->driver_data);
+ return -ENODEV;
+ }
+
+ info->i2c = i2c_new_dummy_device(s5m87xx->i2c->adapter, RTC_I2C_ADDR);
+ if (IS_ERR(info->i2c)) {
+ dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n");
+ return PTR_ERR(info->i2c);
+ }
+
+ info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg);
+ if (IS_ERR(info->regmap)) {
+ ret = PTR_ERR(info->regmap);
+ dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n",
+ ret);
+ goto err;
+ }
+
+ info->dev = &pdev->dev;
+ info->s5m87xx = s5m87xx;
+ info->device_type = platform_get_device_id(pdev)->driver_data;
+
+ if (s5m87xx->irq_data) {
+ info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq);
+ if (info->irq <= 0) {
+ ret = -EINVAL;
+ dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n",
+ alarm_irq);
+ goto err;
+ }
+ }
+
+ platform_set_drvdata(pdev, info);
+
+ ret = s5m8767_rtc_init_reg(info);
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc",
+ &s5m_rtc_ops, THIS_MODULE);
+
+ if (IS_ERR(info->rtc_dev)) {
+ ret = PTR_ERR(info->rtc_dev);
+ goto err;
+ }
+
+ if (!info->irq) {
+ dev_info(&pdev->dev, "Alarm IRQ not available\n");
+ return 0;
+ }
+
+ ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
+ s5m_rtc_alarm_irq, 0, "rtc-alarm0",
+ info);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
+ info->irq, ret);
+ goto err;
+ }
+
+ return 0;
+
+err:
+ i2c_unregister_device(info->i2c);
+
+ return ret;
+}
+
+static int s5m_rtc_remove(struct platform_device *pdev)
+{
+ struct s5m_rtc_info *info = platform_get_drvdata(pdev);
+
+ i2c_unregister_device(info->i2c);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int s5m_rtc_resume(struct device *dev)
+{
+ struct s5m_rtc_info *info = dev_get_drvdata(dev);
+ int ret = 0;
+
+ if (info->irq && device_may_wakeup(dev))
+ ret = disable_irq_wake(info->irq);
+
+ return ret;
+}
+
+static int s5m_rtc_suspend(struct device *dev)
+{
+ struct s5m_rtc_info *info = dev_get_drvdata(dev);
+ int ret = 0;
+
+ if (info->irq && device_may_wakeup(dev))
+ ret = enable_irq_wake(info->irq);
+
+ return ret;
+}
+#endif /* CONFIG_PM_SLEEP */
+
+static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
+
+static const struct platform_device_id s5m_rtc_id[] = {
+ { "s5m-rtc", S5M8767X },
+ { "s2mps13-rtc", S2MPS13X },
+ { "s2mps14-rtc", S2MPS14X },
+ { "s2mps15-rtc", S2MPS15X },
+ { },
+};
+MODULE_DEVICE_TABLE(platform, s5m_rtc_id);
+
+static struct platform_driver s5m_rtc_driver = {
+ .driver = {
+ .name = "s5m-rtc",
+ .pm = &s5m_rtc_pm_ops,
+ },
+ .probe = s5m_rtc_probe,
+ .remove = s5m_rtc_remove,
+ .id_table = s5m_rtc_id,
+};
+
+module_platform_driver(s5m_rtc_driver);
+
+/* Module information */
+MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
+MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:s5m-rtc");
diff --git a/drivers/rtc/rtc-sa1100.c b/drivers/rtc/rtc-sa1100.c
new file mode 100644
index 000000000..9ccc97cf5
--- /dev/null
+++ b/drivers/rtc/rtc-sa1100.c
@@ -0,0 +1,359 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx
+ *
+ * Copyright (c) 2000 Nils Faerber
+ *
+ * Based on rtc.c by Paul Gortmaker
+ *
+ * Original Driver by Nils Faerber <nils@kernelconcepts.de>
+ *
+ * Modifications from:
+ * CIH <cih@coventive.com>
+ * Nicolas Pitre <nico@fluxnic.net>
+ * Andrew Christian <andrew.christian@hp.com>
+ *
+ * Converted to the RTC subsystem and Driver Model
+ * by Richard Purdie <rpurdie@rpsys.net>
+ */
+
+#include <linux/platform_device.h>
+#include <linux/module.h>
+#include <linux/clk.h>
+#include <linux/rtc.h>
+#include <linux/init.h>
+#include <linux/fs.h>
+#include <linux/interrupt.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/of.h>
+#include <linux/pm.h>
+#include <linux/bitops.h>
+#include <linux/io.h>
+
+#define RTSR_HZE BIT(3) /* HZ interrupt enable */
+#define RTSR_ALE BIT(2) /* RTC alarm interrupt enable */
+#define RTSR_HZ BIT(1) /* HZ rising-edge detected */
+#define RTSR_AL BIT(0) /* RTC alarm detected */
+
+#include "rtc-sa1100.h"
+
+#define RTC_DEF_DIVIDER (32768 - 1)
+#define RTC_DEF_TRIM 0
+#define RTC_FREQ 1024
+
+
+static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
+{
+ struct sa1100_rtc *info = dev_get_drvdata(dev_id);
+ struct rtc_device *rtc = info->rtc;
+ unsigned int rtsr;
+ unsigned long events = 0;
+
+ spin_lock(&info->lock);
+
+ rtsr = readl_relaxed(info->rtsr);
+ /* clear interrupt sources */
+ writel_relaxed(0, info->rtsr);
+ /* Fix for a nasty initialization problem the in SA11xx RTSR register.
+ * See also the comments in sa1100_rtc_probe(). */
+ if (rtsr & (RTSR_ALE | RTSR_HZE)) {
+ /* This is the original code, before there was the if test
+ * above. This code does not clear interrupts that were not
+ * enabled. */
+ writel_relaxed((RTSR_AL | RTSR_HZ) & (rtsr >> 2), info->rtsr);
+ } else {
+ /* For some reason, it is possible to enter this routine
+ * without interruptions enabled, it has been tested with
+ * several units (Bug in SA11xx chip?).
+ *
+ * This situation leads to an infinite "loop" of interrupt
+ * routine calling and as a result the processor seems to
+ * lock on its first call to open(). */
+ writel_relaxed(RTSR_AL | RTSR_HZ, info->rtsr);
+ }
+
+ /* clear alarm interrupt if it has occurred */
+ if (rtsr & RTSR_AL)
+ rtsr &= ~RTSR_ALE;
+ writel_relaxed(rtsr & (RTSR_ALE | RTSR_HZE), info->rtsr);
+
+ /* update irq data & counter */
+ if (rtsr & RTSR_AL)
+ events |= RTC_AF | RTC_IRQF;
+ if (rtsr & RTSR_HZ)
+ events |= RTC_UF | RTC_IRQF;
+
+ rtc_update_irq(rtc, 1, events);
+
+ spin_unlock(&info->lock);
+
+ return IRQ_HANDLED;
+}
+
+static int sa1100_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ u32 rtsr;
+ struct sa1100_rtc *info = dev_get_drvdata(dev);
+
+ spin_lock_irq(&info->lock);
+ rtsr = readl_relaxed(info->rtsr);
+ if (enabled)
+ rtsr |= RTSR_ALE;
+ else
+ rtsr &= ~RTSR_ALE;
+ writel_relaxed(rtsr, info->rtsr);
+ spin_unlock_irq(&info->lock);
+ return 0;
+}
+
+static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct sa1100_rtc *info = dev_get_drvdata(dev);
+
+ rtc_time64_to_tm(readl_relaxed(info->rcnr), tm);
+ return 0;
+}
+
+static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct sa1100_rtc *info = dev_get_drvdata(dev);
+
+ writel_relaxed(rtc_tm_to_time64(tm), info->rcnr);
+
+ return 0;
+}
+
+static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ u32 rtsr;
+ struct sa1100_rtc *info = dev_get_drvdata(dev);
+
+ rtsr = readl_relaxed(info->rtsr);
+ alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
+ alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
+ return 0;
+}
+
+static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct sa1100_rtc *info = dev_get_drvdata(dev);
+
+ spin_lock_irq(&info->lock);
+ writel_relaxed(readl_relaxed(info->rtsr) &
+ (RTSR_HZE | RTSR_ALE | RTSR_AL), info->rtsr);
+ writel_relaxed(rtc_tm_to_time64(&alrm->time), info->rtar);
+ if (alrm->enabled)
+ writel_relaxed(readl_relaxed(info->rtsr) | RTSR_ALE, info->rtsr);
+ else
+ writel_relaxed(readl_relaxed(info->rtsr) & ~RTSR_ALE, info->rtsr);
+ spin_unlock_irq(&info->lock);
+
+ return 0;
+}
+
+static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
+{
+ struct sa1100_rtc *info = dev_get_drvdata(dev);
+
+ seq_printf(seq, "trim/divider\t\t: 0x%08x\n", readl_relaxed(info->rttr));
+ seq_printf(seq, "RTSR\t\t\t: 0x%08x\n", readl_relaxed(info->rtsr));
+
+ return 0;
+}
+
+static const struct rtc_class_ops sa1100_rtc_ops = {
+ .read_time = sa1100_rtc_read_time,
+ .set_time = sa1100_rtc_set_time,
+ .read_alarm = sa1100_rtc_read_alarm,
+ .set_alarm = sa1100_rtc_set_alarm,
+ .proc = sa1100_rtc_proc,
+ .alarm_irq_enable = sa1100_rtc_alarm_irq_enable,
+};
+
+int sa1100_rtc_init(struct platform_device *pdev, struct sa1100_rtc *info)
+{
+ int ret;
+
+ spin_lock_init(&info->lock);
+
+ info->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(info->clk)) {
+ dev_err(&pdev->dev, "failed to find rtc clock source\n");
+ return PTR_ERR(info->clk);
+ }
+
+ ret = clk_prepare_enable(info->clk);
+ if (ret)
+ return ret;
+ /*
+ * According to the manual we should be able to let RTTR be zero
+ * and then a default diviser for a 32.768KHz clock is used.
+ * Apparently this doesn't work, at least for my SA1110 rev 5.
+ * If the clock divider is uninitialized then reset it to the
+ * default value to get the 1Hz clock.
+ */
+ if (readl_relaxed(info->rttr) == 0) {
+ writel_relaxed(RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16), info->rttr);
+ dev_warn(&pdev->dev, "warning: "
+ "initializing default clock divider/trim value\n");
+ /* The current RTC value probably doesn't make sense either */
+ writel_relaxed(0, info->rcnr);
+ }
+
+ info->rtc->ops = &sa1100_rtc_ops;
+ info->rtc->max_user_freq = RTC_FREQ;
+ info->rtc->range_max = U32_MAX;
+
+ ret = rtc_register_device(info->rtc);
+ if (ret) {
+ clk_disable_unprepare(info->clk);
+ return ret;
+ }
+
+ /* Fix for a nasty initialization problem the in SA11xx RTSR register.
+ * See also the comments in sa1100_rtc_interrupt().
+ *
+ * Sometimes bit 1 of the RTSR (RTSR_HZ) will wake up 1, which means an
+ * interrupt pending, even though interrupts were never enabled.
+ * In this case, this bit it must be reset before enabling
+ * interruptions to avoid a nonexistent interrupt to occur.
+ *
+ * In principle, the same problem would apply to bit 0, although it has
+ * never been observed to happen.
+ *
+ * This issue is addressed both here and in sa1100_rtc_interrupt().
+ * If the issue is not addressed here, in the times when the processor
+ * wakes up with the bit set there will be one spurious interrupt.
+ *
+ * The issue is also dealt with in sa1100_rtc_interrupt() to be on the
+ * safe side, once the condition that lead to this strange
+ * initialization is unknown and could in principle happen during
+ * normal processing.
+ *
+ * Notice that clearing bit 1 and 0 is accomplished by writting ONES to
+ * the corresponding bits in RTSR. */
+ writel_relaxed(RTSR_AL | RTSR_HZ, info->rtsr);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(sa1100_rtc_init);
+
+static int sa1100_rtc_probe(struct platform_device *pdev)
+{
+ struct sa1100_rtc *info;
+ void __iomem *base;
+ int irq_1hz, irq_alarm;
+ int ret;
+
+ irq_1hz = platform_get_irq_byname(pdev, "rtc 1Hz");
+ irq_alarm = platform_get_irq_byname(pdev, "rtc alarm");
+ if (irq_1hz < 0 || irq_alarm < 0)
+ return -ENODEV;
+
+ info = devm_kzalloc(&pdev->dev, sizeof(struct sa1100_rtc), GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+ info->irq_1hz = irq_1hz;
+ info->irq_alarm = irq_alarm;
+
+ info->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(info->rtc))
+ return PTR_ERR(info->rtc);
+
+ ret = devm_request_irq(&pdev->dev, irq_1hz, sa1100_rtc_interrupt, 0,
+ "rtc 1Hz", &pdev->dev);
+ if (ret) {
+ dev_err(&pdev->dev, "IRQ %d already in use.\n", irq_1hz);
+ return ret;
+ }
+ ret = devm_request_irq(&pdev->dev, irq_alarm, sa1100_rtc_interrupt, 0,
+ "rtc Alrm", &pdev->dev);
+ if (ret) {
+ dev_err(&pdev->dev, "IRQ %d already in use.\n", irq_alarm);
+ return ret;
+ }
+
+ base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(base))
+ return PTR_ERR(base);
+
+ if (IS_ENABLED(CONFIG_ARCH_SA1100) ||
+ of_device_is_compatible(pdev->dev.of_node, "mrvl,sa1100-rtc")) {
+ info->rcnr = base + 0x04;
+ info->rtsr = base + 0x10;
+ info->rtar = base + 0x00;
+ info->rttr = base + 0x08;
+ } else {
+ info->rcnr = base + 0x0;
+ info->rtsr = base + 0x8;
+ info->rtar = base + 0x4;
+ info->rttr = base + 0xc;
+ }
+
+ platform_set_drvdata(pdev, info);
+ device_init_wakeup(&pdev->dev, 1);
+
+ return sa1100_rtc_init(pdev, info);
+}
+
+static int sa1100_rtc_remove(struct platform_device *pdev)
+{
+ struct sa1100_rtc *info = platform_get_drvdata(pdev);
+
+ if (info) {
+ spin_lock_irq(&info->lock);
+ writel_relaxed(0, info->rtsr);
+ spin_unlock_irq(&info->lock);
+ clk_disable_unprepare(info->clk);
+ }
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int sa1100_rtc_suspend(struct device *dev)
+{
+ struct sa1100_rtc *info = dev_get_drvdata(dev);
+ if (device_may_wakeup(dev))
+ enable_irq_wake(info->irq_alarm);
+ return 0;
+}
+
+static int sa1100_rtc_resume(struct device *dev)
+{
+ struct sa1100_rtc *info = dev_get_drvdata(dev);
+ if (device_may_wakeup(dev))
+ disable_irq_wake(info->irq_alarm);
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(sa1100_rtc_pm_ops, sa1100_rtc_suspend,
+ sa1100_rtc_resume);
+
+#ifdef CONFIG_OF
+static const struct of_device_id sa1100_rtc_dt_ids[] = {
+ { .compatible = "mrvl,sa1100-rtc", },
+ { .compatible = "mrvl,mmp-rtc", },
+ {}
+};
+MODULE_DEVICE_TABLE(of, sa1100_rtc_dt_ids);
+#endif
+
+static struct platform_driver sa1100_rtc_driver = {
+ .probe = sa1100_rtc_probe,
+ .remove = sa1100_rtc_remove,
+ .driver = {
+ .name = "sa1100-rtc",
+ .pm = &sa1100_rtc_pm_ops,
+ .of_match_table = of_match_ptr(sa1100_rtc_dt_ids),
+ },
+};
+
+module_platform_driver(sa1100_rtc_driver);
+
+MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
+MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:sa1100-rtc");
diff --git a/drivers/rtc/rtc-sa1100.h b/drivers/rtc/rtc-sa1100.h
new file mode 100644
index 000000000..cc724f5b0
--- /dev/null
+++ b/drivers/rtc/rtc-sa1100.h
@@ -0,0 +1,24 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __RTC_SA1100_H__
+#define __RTC_SA1100_H__
+
+#include <linux/kernel.h>
+
+struct clk;
+struct platform_device;
+
+struct sa1100_rtc {
+ spinlock_t lock;
+ void __iomem *rcnr;
+ void __iomem *rtar;
+ void __iomem *rtsr;
+ void __iomem *rttr;
+ int irq_1hz;
+ int irq_alarm;
+ struct rtc_device *rtc;
+ struct clk *clk;
+};
+
+int sa1100_rtc_init(struct platform_device *pdev, struct sa1100_rtc *info);
+
+#endif
diff --git a/drivers/rtc/rtc-sc27xx.c b/drivers/rtc/rtc-sc27xx.c
new file mode 100644
index 000000000..36810dd40
--- /dev/null
+++ b/drivers/rtc/rtc-sc27xx.c
@@ -0,0 +1,681 @@
+/*
+ * Copyright (C) 2017 Spreadtrum Communications Inc.
+ *
+ * SPDX-License-Identifier: GPL-2.0
+ */
+
+#include <linux/bitops.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/regmap.h>
+#include <linux/rtc.h>
+
+#define SPRD_RTC_SEC_CNT_VALUE 0x0
+#define SPRD_RTC_MIN_CNT_VALUE 0x4
+#define SPRD_RTC_HOUR_CNT_VALUE 0x8
+#define SPRD_RTC_DAY_CNT_VALUE 0xc
+#define SPRD_RTC_SEC_CNT_UPD 0x10
+#define SPRD_RTC_MIN_CNT_UPD 0x14
+#define SPRD_RTC_HOUR_CNT_UPD 0x18
+#define SPRD_RTC_DAY_CNT_UPD 0x1c
+#define SPRD_RTC_SEC_ALM_UPD 0x20
+#define SPRD_RTC_MIN_ALM_UPD 0x24
+#define SPRD_RTC_HOUR_ALM_UPD 0x28
+#define SPRD_RTC_DAY_ALM_UPD 0x2c
+#define SPRD_RTC_INT_EN 0x30
+#define SPRD_RTC_INT_RAW_STS 0x34
+#define SPRD_RTC_INT_CLR 0x38
+#define SPRD_RTC_INT_MASK_STS 0x3C
+#define SPRD_RTC_SEC_ALM_VALUE 0x40
+#define SPRD_RTC_MIN_ALM_VALUE 0x44
+#define SPRD_RTC_HOUR_ALM_VALUE 0x48
+#define SPRD_RTC_DAY_ALM_VALUE 0x4c
+#define SPRD_RTC_SPG_VALUE 0x50
+#define SPRD_RTC_SPG_UPD 0x54
+#define SPRD_RTC_PWR_CTRL 0x58
+#define SPRD_RTC_PWR_STS 0x5c
+#define SPRD_RTC_SEC_AUXALM_UPD 0x60
+#define SPRD_RTC_MIN_AUXALM_UPD 0x64
+#define SPRD_RTC_HOUR_AUXALM_UPD 0x68
+#define SPRD_RTC_DAY_AUXALM_UPD 0x6c
+
+/* BIT & MASK definition for SPRD_RTC_INT_* registers */
+#define SPRD_RTC_SEC_EN BIT(0)
+#define SPRD_RTC_MIN_EN BIT(1)
+#define SPRD_RTC_HOUR_EN BIT(2)
+#define SPRD_RTC_DAY_EN BIT(3)
+#define SPRD_RTC_ALARM_EN BIT(4)
+#define SPRD_RTC_HRS_FORMAT_EN BIT(5)
+#define SPRD_RTC_AUXALM_EN BIT(6)
+#define SPRD_RTC_SPG_UPD_EN BIT(7)
+#define SPRD_RTC_SEC_UPD_EN BIT(8)
+#define SPRD_RTC_MIN_UPD_EN BIT(9)
+#define SPRD_RTC_HOUR_UPD_EN BIT(10)
+#define SPRD_RTC_DAY_UPD_EN BIT(11)
+#define SPRD_RTC_ALMSEC_UPD_EN BIT(12)
+#define SPRD_RTC_ALMMIN_UPD_EN BIT(13)
+#define SPRD_RTC_ALMHOUR_UPD_EN BIT(14)
+#define SPRD_RTC_ALMDAY_UPD_EN BIT(15)
+#define SPRD_RTC_INT_MASK GENMASK(15, 0)
+
+#define SPRD_RTC_TIME_INT_MASK \
+ (SPRD_RTC_SEC_UPD_EN | SPRD_RTC_MIN_UPD_EN | \
+ SPRD_RTC_HOUR_UPD_EN | SPRD_RTC_DAY_UPD_EN)
+
+#define SPRD_RTC_ALMTIME_INT_MASK \
+ (SPRD_RTC_ALMSEC_UPD_EN | SPRD_RTC_ALMMIN_UPD_EN | \
+ SPRD_RTC_ALMHOUR_UPD_EN | SPRD_RTC_ALMDAY_UPD_EN)
+
+#define SPRD_RTC_ALM_INT_MASK \
+ (SPRD_RTC_SEC_EN | SPRD_RTC_MIN_EN | \
+ SPRD_RTC_HOUR_EN | SPRD_RTC_DAY_EN | \
+ SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN)
+
+/* second/minute/hour/day values mask definition */
+#define SPRD_RTC_SEC_MASK GENMASK(5, 0)
+#define SPRD_RTC_MIN_MASK GENMASK(5, 0)
+#define SPRD_RTC_HOUR_MASK GENMASK(4, 0)
+#define SPRD_RTC_DAY_MASK GENMASK(15, 0)
+
+/* alarm lock definition for SPRD_RTC_SPG_UPD register */
+#define SPRD_RTC_ALMLOCK_MASK GENMASK(7, 0)
+#define SPRD_RTC_ALM_UNLOCK 0xa5
+#define SPRD_RTC_ALM_LOCK (~SPRD_RTC_ALM_UNLOCK & \
+ SPRD_RTC_ALMLOCK_MASK)
+
+/* SPG values definition for SPRD_RTC_SPG_UPD register */
+#define SPRD_RTC_POWEROFF_ALM_FLAG BIT(8)
+
+/* power control/status definition */
+#define SPRD_RTC_POWER_RESET_VALUE 0x96
+#define SPRD_RTC_POWER_STS_CLEAR GENMASK(7, 0)
+#define SPRD_RTC_POWER_STS_SHIFT 8
+#define SPRD_RTC_POWER_STS_VALID \
+ (~SPRD_RTC_POWER_RESET_VALUE << SPRD_RTC_POWER_STS_SHIFT)
+
+/* timeout of synchronizing time and alarm registers (us) */
+#define SPRD_RTC_POLL_TIMEOUT 200000
+#define SPRD_RTC_POLL_DELAY_US 20000
+
+struct sprd_rtc {
+ struct rtc_device *rtc;
+ struct regmap *regmap;
+ struct device *dev;
+ u32 base;
+ int irq;
+ bool valid;
+};
+
+/*
+ * The Spreadtrum RTC controller has 3 groups registers, including time, normal
+ * alarm and auxiliary alarm. The time group registers are used to set RTC time,
+ * the normal alarm registers are used to set normal alarm, and the auxiliary
+ * alarm registers are used to set auxiliary alarm. Both alarm event and
+ * auxiliary alarm event can wake up system from deep sleep, but only alarm
+ * event can power up system from power down status.
+ */
+enum sprd_rtc_reg_types {
+ SPRD_RTC_TIME,
+ SPRD_RTC_ALARM,
+ SPRD_RTC_AUX_ALARM,
+};
+
+static int sprd_rtc_clear_alarm_ints(struct sprd_rtc *rtc)
+{
+ return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
+ SPRD_RTC_ALM_INT_MASK);
+}
+
+static int sprd_rtc_lock_alarm(struct sprd_rtc *rtc, bool lock)
+{
+ int ret;
+ u32 val;
+
+ ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_SPG_VALUE, &val);
+ if (ret)
+ return ret;
+
+ val &= ~SPRD_RTC_ALMLOCK_MASK;
+ if (lock)
+ val |= SPRD_RTC_ALM_LOCK;
+ else
+ val |= SPRD_RTC_ALM_UNLOCK | SPRD_RTC_POWEROFF_ALM_FLAG;
+
+ ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_SPG_UPD, val);
+ if (ret)
+ return ret;
+
+ /* wait until the SPG value is updated successfully */
+ ret = regmap_read_poll_timeout(rtc->regmap,
+ rtc->base + SPRD_RTC_INT_RAW_STS, val,
+ (val & SPRD_RTC_SPG_UPD_EN),
+ SPRD_RTC_POLL_DELAY_US,
+ SPRD_RTC_POLL_TIMEOUT);
+ if (ret) {
+ dev_err(rtc->dev, "failed to update SPG value:%d\n", ret);
+ return ret;
+ }
+
+ return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
+ SPRD_RTC_SPG_UPD_EN);
+}
+
+static int sprd_rtc_get_secs(struct sprd_rtc *rtc, enum sprd_rtc_reg_types type,
+ time64_t *secs)
+{
+ u32 sec_reg, min_reg, hour_reg, day_reg;
+ u32 val, sec, min, hour, day;
+ int ret;
+
+ switch (type) {
+ case SPRD_RTC_TIME:
+ sec_reg = SPRD_RTC_SEC_CNT_VALUE;
+ min_reg = SPRD_RTC_MIN_CNT_VALUE;
+ hour_reg = SPRD_RTC_HOUR_CNT_VALUE;
+ day_reg = SPRD_RTC_DAY_CNT_VALUE;
+ break;
+ case SPRD_RTC_ALARM:
+ sec_reg = SPRD_RTC_SEC_ALM_VALUE;
+ min_reg = SPRD_RTC_MIN_ALM_VALUE;
+ hour_reg = SPRD_RTC_HOUR_ALM_VALUE;
+ day_reg = SPRD_RTC_DAY_ALM_VALUE;
+ break;
+ case SPRD_RTC_AUX_ALARM:
+ sec_reg = SPRD_RTC_SEC_AUXALM_UPD;
+ min_reg = SPRD_RTC_MIN_AUXALM_UPD;
+ hour_reg = SPRD_RTC_HOUR_AUXALM_UPD;
+ day_reg = SPRD_RTC_DAY_AUXALM_UPD;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ ret = regmap_read(rtc->regmap, rtc->base + sec_reg, &val);
+ if (ret)
+ return ret;
+
+ sec = val & SPRD_RTC_SEC_MASK;
+
+ ret = regmap_read(rtc->regmap, rtc->base + min_reg, &val);
+ if (ret)
+ return ret;
+
+ min = val & SPRD_RTC_MIN_MASK;
+
+ ret = regmap_read(rtc->regmap, rtc->base + hour_reg, &val);
+ if (ret)
+ return ret;
+
+ hour = val & SPRD_RTC_HOUR_MASK;
+
+ ret = regmap_read(rtc->regmap, rtc->base + day_reg, &val);
+ if (ret)
+ return ret;
+
+ day = val & SPRD_RTC_DAY_MASK;
+ *secs = (((time64_t)(day * 24) + hour) * 60 + min) * 60 + sec;
+ return 0;
+}
+
+static int sprd_rtc_set_secs(struct sprd_rtc *rtc, enum sprd_rtc_reg_types type,
+ time64_t secs)
+{
+ u32 sec_reg, min_reg, hour_reg, day_reg, sts_mask;
+ u32 sec, min, hour, day, val;
+ int ret, rem;
+
+ /* convert seconds to RTC time format */
+ day = div_s64_rem(secs, 86400, &rem);
+ hour = rem / 3600;
+ rem -= hour * 3600;
+ min = rem / 60;
+ sec = rem - min * 60;
+
+ switch (type) {
+ case SPRD_RTC_TIME:
+ sec_reg = SPRD_RTC_SEC_CNT_UPD;
+ min_reg = SPRD_RTC_MIN_CNT_UPD;
+ hour_reg = SPRD_RTC_HOUR_CNT_UPD;
+ day_reg = SPRD_RTC_DAY_CNT_UPD;
+ sts_mask = SPRD_RTC_TIME_INT_MASK;
+ break;
+ case SPRD_RTC_ALARM:
+ sec_reg = SPRD_RTC_SEC_ALM_UPD;
+ min_reg = SPRD_RTC_MIN_ALM_UPD;
+ hour_reg = SPRD_RTC_HOUR_ALM_UPD;
+ day_reg = SPRD_RTC_DAY_ALM_UPD;
+ sts_mask = SPRD_RTC_ALMTIME_INT_MASK;
+ break;
+ case SPRD_RTC_AUX_ALARM:
+ sec_reg = SPRD_RTC_SEC_AUXALM_UPD;
+ min_reg = SPRD_RTC_MIN_AUXALM_UPD;
+ hour_reg = SPRD_RTC_HOUR_AUXALM_UPD;
+ day_reg = SPRD_RTC_DAY_AUXALM_UPD;
+ sts_mask = 0;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ ret = regmap_write(rtc->regmap, rtc->base + sec_reg, sec);
+ if (ret)
+ return ret;
+
+ ret = regmap_write(rtc->regmap, rtc->base + min_reg, min);
+ if (ret)
+ return ret;
+
+ ret = regmap_write(rtc->regmap, rtc->base + hour_reg, hour);
+ if (ret)
+ return ret;
+
+ ret = regmap_write(rtc->regmap, rtc->base + day_reg, day);
+ if (ret)
+ return ret;
+
+ if (type == SPRD_RTC_AUX_ALARM)
+ return 0;
+
+ /*
+ * Since the time and normal alarm registers are put in always-power-on
+ * region supplied by VDDRTC, then these registers changing time will
+ * be very long, about 125ms. Thus here we should wait until all
+ * values are updated successfully.
+ */
+ ret = regmap_read_poll_timeout(rtc->regmap,
+ rtc->base + SPRD_RTC_INT_RAW_STS, val,
+ ((val & sts_mask) == sts_mask),
+ SPRD_RTC_POLL_DELAY_US,
+ SPRD_RTC_POLL_TIMEOUT);
+ if (ret < 0) {
+ dev_err(rtc->dev, "set time/alarm values timeout\n");
+ return ret;
+ }
+
+ return regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
+ sts_mask);
+}
+
+static int sprd_rtc_read_aux_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct sprd_rtc *rtc = dev_get_drvdata(dev);
+ time64_t secs;
+ u32 val;
+ int ret;
+
+ ret = sprd_rtc_get_secs(rtc, SPRD_RTC_AUX_ALARM, &secs);
+ if (ret)
+ return ret;
+
+ rtc_time64_to_tm(secs, &alrm->time);
+
+ ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_EN, &val);
+ if (ret)
+ return ret;
+
+ alrm->enabled = !!(val & SPRD_RTC_AUXALM_EN);
+
+ ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_RAW_STS, &val);
+ if (ret)
+ return ret;
+
+ alrm->pending = !!(val & SPRD_RTC_AUXALM_EN);
+ return 0;
+}
+
+static int sprd_rtc_set_aux_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct sprd_rtc *rtc = dev_get_drvdata(dev);
+ time64_t secs = rtc_tm_to_time64(&alrm->time);
+ int ret;
+
+ /* clear the auxiliary alarm interrupt status */
+ ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
+ SPRD_RTC_AUXALM_EN);
+ if (ret)
+ return ret;
+
+ ret = sprd_rtc_set_secs(rtc, SPRD_RTC_AUX_ALARM, secs);
+ if (ret)
+ return ret;
+
+ if (alrm->enabled) {
+ ret = regmap_update_bits(rtc->regmap,
+ rtc->base + SPRD_RTC_INT_EN,
+ SPRD_RTC_AUXALM_EN,
+ SPRD_RTC_AUXALM_EN);
+ } else {
+ ret = regmap_update_bits(rtc->regmap,
+ rtc->base + SPRD_RTC_INT_EN,
+ SPRD_RTC_AUXALM_EN, 0);
+ }
+
+ return ret;
+}
+
+static int sprd_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct sprd_rtc *rtc = dev_get_drvdata(dev);
+ time64_t secs;
+ int ret;
+
+ if (!rtc->valid) {
+ dev_warn(dev, "RTC values are invalid\n");
+ return -EINVAL;
+ }
+
+ ret = sprd_rtc_get_secs(rtc, SPRD_RTC_TIME, &secs);
+ if (ret)
+ return ret;
+
+ rtc_time64_to_tm(secs, tm);
+ return 0;
+}
+
+static int sprd_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct sprd_rtc *rtc = dev_get_drvdata(dev);
+ time64_t secs = rtc_tm_to_time64(tm);
+ int ret;
+
+ ret = sprd_rtc_set_secs(rtc, SPRD_RTC_TIME, secs);
+ if (ret)
+ return ret;
+
+ if (!rtc->valid) {
+ /* Clear RTC power status firstly */
+ ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_PWR_CTRL,
+ SPRD_RTC_POWER_STS_CLEAR);
+ if (ret)
+ return ret;
+
+ /*
+ * Set RTC power status to indicate now RTC has valid time
+ * values.
+ */
+ ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_PWR_CTRL,
+ SPRD_RTC_POWER_STS_VALID);
+ if (ret)
+ return ret;
+
+ rtc->valid = true;
+ }
+
+ return 0;
+}
+
+static int sprd_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct sprd_rtc *rtc = dev_get_drvdata(dev);
+ time64_t secs;
+ int ret;
+ u32 val;
+
+ /*
+ * Before RTC device is registered, it will check to see if there is an
+ * alarm already set in RTC hardware, and we always read the normal
+ * alarm at this time.
+ *
+ * Or if aie_timer is enabled, we should get the normal alarm time.
+ * Otherwise we should get auxiliary alarm time.
+ */
+ if (rtc->rtc && rtc->rtc->registered && rtc->rtc->aie_timer.enabled == 0)
+ return sprd_rtc_read_aux_alarm(dev, alrm);
+
+ ret = sprd_rtc_get_secs(rtc, SPRD_RTC_ALARM, &secs);
+ if (ret)
+ return ret;
+
+ rtc_time64_to_tm(secs, &alrm->time);
+
+ ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_EN, &val);
+ if (ret)
+ return ret;
+
+ alrm->enabled = !!(val & SPRD_RTC_ALARM_EN);
+
+ ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_INT_RAW_STS, &val);
+ if (ret)
+ return ret;
+
+ alrm->pending = !!(val & SPRD_RTC_ALARM_EN);
+ return 0;
+}
+
+static int sprd_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct sprd_rtc *rtc = dev_get_drvdata(dev);
+ time64_t secs = rtc_tm_to_time64(&alrm->time);
+ struct rtc_time aie_time =
+ rtc_ktime_to_tm(rtc->rtc->aie_timer.node.expires);
+ int ret;
+
+ /*
+ * We have 2 groups alarms: normal alarm and auxiliary alarm. Since
+ * both normal alarm event and auxiliary alarm event can wake up system
+ * from deep sleep, but only alarm event can power up system from power
+ * down status. Moreover we do not need to poll about 125ms when
+ * updating auxiliary alarm registers. Thus we usually set auxiliary
+ * alarm when wake up system from deep sleep, and for other scenarios,
+ * we should set normal alarm with polling status.
+ *
+ * So here we check if the alarm time is set by aie_timer, if yes, we
+ * should set normal alarm, if not, we should set auxiliary alarm which
+ * means it is just a wake event.
+ */
+ if (!rtc->rtc->aie_timer.enabled || rtc_tm_sub(&aie_time, &alrm->time))
+ return sprd_rtc_set_aux_alarm(dev, alrm);
+
+ /* clear the alarm interrupt status firstly */
+ ret = regmap_write(rtc->regmap, rtc->base + SPRD_RTC_INT_CLR,
+ SPRD_RTC_ALARM_EN);
+ if (ret)
+ return ret;
+
+ ret = sprd_rtc_set_secs(rtc, SPRD_RTC_ALARM, secs);
+ if (ret)
+ return ret;
+
+ if (alrm->enabled) {
+ ret = regmap_update_bits(rtc->regmap,
+ rtc->base + SPRD_RTC_INT_EN,
+ SPRD_RTC_ALARM_EN,
+ SPRD_RTC_ALARM_EN);
+ if (ret)
+ return ret;
+
+ /* unlock the alarm to enable the alarm function. */
+ ret = sprd_rtc_lock_alarm(rtc, false);
+ } else {
+ regmap_update_bits(rtc->regmap,
+ rtc->base + SPRD_RTC_INT_EN,
+ SPRD_RTC_ALARM_EN, 0);
+
+ /*
+ * Lock the alarm function in case fake alarm event will power
+ * up systems.
+ */
+ ret = sprd_rtc_lock_alarm(rtc, true);
+ }
+
+ return ret;
+}
+
+static int sprd_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct sprd_rtc *rtc = dev_get_drvdata(dev);
+ int ret;
+
+ if (enabled) {
+ ret = regmap_update_bits(rtc->regmap,
+ rtc->base + SPRD_RTC_INT_EN,
+ SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN,
+ SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN);
+ if (ret)
+ return ret;
+
+ ret = sprd_rtc_lock_alarm(rtc, false);
+ } else {
+ regmap_update_bits(rtc->regmap, rtc->base + SPRD_RTC_INT_EN,
+ SPRD_RTC_ALARM_EN | SPRD_RTC_AUXALM_EN, 0);
+
+ ret = sprd_rtc_lock_alarm(rtc, true);
+ }
+
+ return ret;
+}
+
+static const struct rtc_class_ops sprd_rtc_ops = {
+ .read_time = sprd_rtc_read_time,
+ .set_time = sprd_rtc_set_time,
+ .read_alarm = sprd_rtc_read_alarm,
+ .set_alarm = sprd_rtc_set_alarm,
+ .alarm_irq_enable = sprd_rtc_alarm_irq_enable,
+};
+
+static irqreturn_t sprd_rtc_handler(int irq, void *dev_id)
+{
+ struct sprd_rtc *rtc = dev_id;
+ int ret;
+
+ ret = sprd_rtc_clear_alarm_ints(rtc);
+ if (ret)
+ return IRQ_RETVAL(ret);
+
+ rtc_update_irq(rtc->rtc, 1, RTC_AF | RTC_IRQF);
+ return IRQ_HANDLED;
+}
+
+static int sprd_rtc_check_power_down(struct sprd_rtc *rtc)
+{
+ u32 val;
+ int ret;
+
+ ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_PWR_STS, &val);
+ if (ret)
+ return ret;
+
+ /*
+ * If the RTC power status value is SPRD_RTC_POWER_RESET_VALUE, which
+ * means the RTC has been powered down, so the RTC time values are
+ * invalid.
+ */
+ rtc->valid = val == SPRD_RTC_POWER_RESET_VALUE ? false : true;
+ return 0;
+}
+
+static int sprd_rtc_check_alarm_int(struct sprd_rtc *rtc)
+{
+ u32 val;
+ int ret;
+
+ ret = regmap_read(rtc->regmap, rtc->base + SPRD_RTC_SPG_VALUE, &val);
+ if (ret)
+ return ret;
+
+ /*
+ * The SPRD_RTC_INT_EN register is not put in always-power-on region
+ * supplied by VDDRTC, so we should check if we need enable the alarm
+ * interrupt when system booting.
+ *
+ * If we have set SPRD_RTC_POWEROFF_ALM_FLAG which is saved in
+ * always-power-on region, that means we have set one alarm last time,
+ * so we should enable the alarm interrupt to help RTC core to see if
+ * there is an alarm already set in RTC hardware.
+ */
+ if (!(val & SPRD_RTC_POWEROFF_ALM_FLAG))
+ return 0;
+
+ return regmap_update_bits(rtc->regmap, rtc->base + SPRD_RTC_INT_EN,
+ SPRD_RTC_ALARM_EN, SPRD_RTC_ALARM_EN);
+}
+
+static int sprd_rtc_probe(struct platform_device *pdev)
+{
+ struct device_node *node = pdev->dev.of_node;
+ struct sprd_rtc *rtc;
+ int ret;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->regmap = dev_get_regmap(pdev->dev.parent, NULL);
+ if (!rtc->regmap)
+ return -ENODEV;
+
+ ret = of_property_read_u32(node, "reg", &rtc->base);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to get RTC base address\n");
+ return ret;
+ }
+
+ rtc->irq = platform_get_irq(pdev, 0);
+ if (rtc->irq < 0)
+ return rtc->irq;
+
+ rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc->rtc))
+ return PTR_ERR(rtc->rtc);
+
+ rtc->dev = &pdev->dev;
+ platform_set_drvdata(pdev, rtc);
+
+ /* check if we need set the alarm interrupt */
+ ret = sprd_rtc_check_alarm_int(rtc);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to check RTC alarm interrupt\n");
+ return ret;
+ }
+
+ /* check if RTC time values are valid */
+ ret = sprd_rtc_check_power_down(rtc);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to check RTC time values\n");
+ return ret;
+ }
+
+ ret = devm_request_threaded_irq(&pdev->dev, rtc->irq, NULL,
+ sprd_rtc_handler,
+ IRQF_ONESHOT | IRQF_EARLY_RESUME,
+ pdev->name, rtc);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "failed to request RTC irq\n");
+ return ret;
+ }
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ rtc->rtc->ops = &sprd_rtc_ops;
+ rtc->rtc->range_min = 0;
+ rtc->rtc->range_max = 5662310399LL;
+ ret = rtc_register_device(rtc->rtc);
+ if (ret) {
+ device_init_wakeup(&pdev->dev, 0);
+ return ret;
+ }
+
+ return 0;
+}
+
+static const struct of_device_id sprd_rtc_of_match[] = {
+ { .compatible = "sprd,sc2731-rtc", },
+ { },
+};
+MODULE_DEVICE_TABLE(of, sprd_rtc_of_match);
+
+static struct platform_driver sprd_rtc_driver = {
+ .driver = {
+ .name = "sprd-rtc",
+ .of_match_table = sprd_rtc_of_match,
+ },
+ .probe = sprd_rtc_probe,
+};
+module_platform_driver(sprd_rtc_driver);
+
+MODULE_LICENSE("GPL v2");
+MODULE_DESCRIPTION("Spreadtrum RTC Device Driver");
+MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>");
diff --git a/drivers/rtc/rtc-sd3078.c b/drivers/rtc/rtc-sd3078.c
new file mode 100644
index 000000000..a7aa943c1
--- /dev/null
+++ b/drivers/rtc/rtc-sd3078.c
@@ -0,0 +1,229 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Real Time Clock (RTC) Driver for sd3078
+ * Copyright (C) 2018 Zoro Li
+ */
+
+#include <linux/bcd.h>
+#include <linux/i2c.h>
+#include <linux/module.h>
+#include <linux/regmap.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+
+#define SD3078_REG_SC 0x00
+#define SD3078_REG_MN 0x01
+#define SD3078_REG_HR 0x02
+#define SD3078_REG_DW 0x03
+#define SD3078_REG_DM 0x04
+#define SD3078_REG_MO 0x05
+#define SD3078_REG_YR 0x06
+
+#define SD3078_REG_CTRL1 0x0f
+#define SD3078_REG_CTRL2 0x10
+#define SD3078_REG_CTRL3 0x11
+
+#define KEY_WRITE1 0x80
+#define KEY_WRITE2 0x04
+#define KEY_WRITE3 0x80
+
+#define NUM_TIME_REGS (SD3078_REG_YR - SD3078_REG_SC + 1)
+
+/*
+ * The sd3078 has write protection
+ * and we can choose whether or not to use it.
+ * Write protection is turned off by default.
+ */
+#define WRITE_PROTECT_EN 0
+
+struct sd3078 {
+ struct rtc_device *rtc;
+ struct regmap *regmap;
+};
+
+/*
+ * In order to prevent arbitrary modification of the time register,
+ * when modification of the register,
+ * the "write" bit needs to be written in a certain order.
+ * 1. set WRITE1 bit
+ * 2. set WRITE2 bit
+ * 3. set WRITE3 bit
+ */
+static void sd3078_enable_reg_write(struct sd3078 *sd3078)
+{
+ regmap_update_bits(sd3078->regmap, SD3078_REG_CTRL2,
+ KEY_WRITE1, KEY_WRITE1);
+ regmap_update_bits(sd3078->regmap, SD3078_REG_CTRL1,
+ KEY_WRITE2, KEY_WRITE2);
+ regmap_update_bits(sd3078->regmap, SD3078_REG_CTRL1,
+ KEY_WRITE3, KEY_WRITE3);
+}
+
+#if WRITE_PROTECT_EN
+/*
+ * In order to prevent arbitrary modification of the time register,
+ * we should disable the write function.
+ * when disable write,
+ * the "write" bit needs to be clear in a certain order.
+ * 1. clear WRITE2 bit
+ * 2. clear WRITE3 bit
+ * 3. clear WRITE1 bit
+ */
+static void sd3078_disable_reg_write(struct sd3078 *sd3078)
+{
+ regmap_update_bits(sd3078->regmap, SD3078_REG_CTRL1,
+ KEY_WRITE2, 0);
+ regmap_update_bits(sd3078->regmap, SD3078_REG_CTRL1,
+ KEY_WRITE3, 0);
+ regmap_update_bits(sd3078->regmap, SD3078_REG_CTRL2,
+ KEY_WRITE1, 0);
+}
+#endif
+
+static int sd3078_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ unsigned char hour;
+ unsigned char rtc_data[NUM_TIME_REGS] = {0};
+ struct i2c_client *client = to_i2c_client(dev);
+ struct sd3078 *sd3078 = i2c_get_clientdata(client);
+ int ret;
+
+ ret = regmap_bulk_read(sd3078->regmap, SD3078_REG_SC, rtc_data,
+ NUM_TIME_REGS);
+ if (ret < 0) {
+ dev_err(dev, "reading from RTC failed with err:%d\n", ret);
+ return ret;
+ }
+
+ tm->tm_sec = bcd2bin(rtc_data[SD3078_REG_SC] & 0x7F);
+ tm->tm_min = bcd2bin(rtc_data[SD3078_REG_MN] & 0x7F);
+
+ /*
+ * The sd3078 supports 12/24 hour mode.
+ * When getting time,
+ * we need to convert the 12 hour mode to the 24 hour mode.
+ */
+ hour = rtc_data[SD3078_REG_HR];
+ if (hour & 0x80) /* 24H MODE */
+ tm->tm_hour = bcd2bin(rtc_data[SD3078_REG_HR] & 0x3F);
+ else if (hour & 0x20) /* 12H MODE PM */
+ tm->tm_hour = bcd2bin(rtc_data[SD3078_REG_HR] & 0x1F) + 12;
+ else /* 12H MODE AM */
+ tm->tm_hour = bcd2bin(rtc_data[SD3078_REG_HR] & 0x1F);
+
+ tm->tm_mday = bcd2bin(rtc_data[SD3078_REG_DM] & 0x3F);
+ tm->tm_wday = rtc_data[SD3078_REG_DW] & 0x07;
+ tm->tm_mon = bcd2bin(rtc_data[SD3078_REG_MO] & 0x1F) - 1;
+ tm->tm_year = bcd2bin(rtc_data[SD3078_REG_YR]) + 100;
+
+ return 0;
+}
+
+static int sd3078_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ unsigned char rtc_data[NUM_TIME_REGS];
+ struct i2c_client *client = to_i2c_client(dev);
+ struct sd3078 *sd3078 = i2c_get_clientdata(client);
+ int ret;
+
+ rtc_data[SD3078_REG_SC] = bin2bcd(tm->tm_sec);
+ rtc_data[SD3078_REG_MN] = bin2bcd(tm->tm_min);
+ rtc_data[SD3078_REG_HR] = bin2bcd(tm->tm_hour) | 0x80;
+ rtc_data[SD3078_REG_DM] = bin2bcd(tm->tm_mday);
+ rtc_data[SD3078_REG_DW] = tm->tm_wday & 0x07;
+ rtc_data[SD3078_REG_MO] = bin2bcd(tm->tm_mon) + 1;
+ rtc_data[SD3078_REG_YR] = bin2bcd(tm->tm_year - 100);
+
+#if WRITE_PROTECT_EN
+ sd3078_enable_reg_write(sd3078);
+#endif
+
+ ret = regmap_bulk_write(sd3078->regmap, SD3078_REG_SC, rtc_data,
+ NUM_TIME_REGS);
+ if (ret < 0) {
+ dev_err(dev, "writing to RTC failed with err:%d\n", ret);
+ return ret;
+ }
+
+#if WRITE_PROTECT_EN
+ sd3078_disable_reg_write(sd3078);
+#endif
+
+ return 0;
+}
+
+static const struct rtc_class_ops sd3078_rtc_ops = {
+ .read_time = sd3078_rtc_read_time,
+ .set_time = sd3078_rtc_set_time,
+};
+
+static const struct regmap_config regmap_config = {
+ .reg_bits = 8,
+ .val_bits = 8,
+ .max_register = 0x11,
+};
+
+static int sd3078_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ int ret;
+ struct sd3078 *sd3078;
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
+ return -ENODEV;
+
+ sd3078 = devm_kzalloc(&client->dev, sizeof(*sd3078), GFP_KERNEL);
+ if (!sd3078)
+ return -ENOMEM;
+
+ sd3078->regmap = devm_regmap_init_i2c(client, &regmap_config);
+ if (IS_ERR(sd3078->regmap)) {
+ dev_err(&client->dev, "regmap allocation failed\n");
+ return PTR_ERR(sd3078->regmap);
+ }
+
+ i2c_set_clientdata(client, sd3078);
+
+ sd3078->rtc = devm_rtc_allocate_device(&client->dev);
+ if (IS_ERR(sd3078->rtc))
+ return PTR_ERR(sd3078->rtc);
+
+ sd3078->rtc->ops = &sd3078_rtc_ops;
+ sd3078->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ sd3078->rtc->range_max = RTC_TIMESTAMP_END_2099;
+
+ ret = rtc_register_device(sd3078->rtc);
+ if (ret)
+ return ret;
+
+ sd3078_enable_reg_write(sd3078);
+
+ return 0;
+}
+
+static const struct i2c_device_id sd3078_id[] = {
+ {"sd3078", 0},
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, sd3078_id);
+
+static const struct of_device_id rtc_dt_match[] = {
+ { .compatible = "whwave,sd3078" },
+ {},
+};
+MODULE_DEVICE_TABLE(of, rtc_dt_match);
+
+static struct i2c_driver sd3078_driver = {
+ .driver = {
+ .name = "sd3078",
+ .of_match_table = of_match_ptr(rtc_dt_match),
+ },
+ .probe = sd3078_probe,
+ .id_table = sd3078_id,
+};
+
+module_i2c_driver(sd3078_driver);
+
+MODULE_AUTHOR("Dianlong Li <long17.cool@163.com>");
+MODULE_DESCRIPTION("SD3078 RTC driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-sh.c b/drivers/rtc/rtc-sh.c
new file mode 100644
index 000000000..9167b4801
--- /dev/null
+++ b/drivers/rtc/rtc-sh.c
@@ -0,0 +1,687 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * SuperH On-Chip RTC Support
+ *
+ * Copyright (C) 2006 - 2009 Paul Mundt
+ * Copyright (C) 2006 Jamie Lenehan
+ * Copyright (C) 2008 Angelo Castello
+ *
+ * Based on the old arch/sh/kernel/cpu/rtc.c by:
+ *
+ * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
+ * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
+ */
+#include <linux/module.h>
+#include <linux/mod_devicetable.h>
+#include <linux/kernel.h>
+#include <linux/bcd.h>
+#include <linux/rtc.h>
+#include <linux/init.h>
+#include <linux/platform_device.h>
+#include <linux/seq_file.h>
+#include <linux/interrupt.h>
+#include <linux/spinlock.h>
+#include <linux/io.h>
+#include <linux/log2.h>
+#include <linux/clk.h>
+#include <linux/slab.h>
+#ifdef CONFIG_SUPERH
+#include <asm/rtc.h>
+#else
+/* Default values for RZ/A RTC */
+#define rtc_reg_size sizeof(u16)
+#define RTC_BIT_INVERTED 0 /* no chip bugs */
+#define RTC_CAP_4_DIGIT_YEAR (1 << 0)
+#define RTC_DEF_CAPABILITIES RTC_CAP_4_DIGIT_YEAR
+#endif
+
+#define DRV_NAME "sh-rtc"
+
+#define RTC_REG(r) ((r) * rtc_reg_size)
+
+#define R64CNT RTC_REG(0)
+
+#define RSECCNT RTC_REG(1) /* RTC sec */
+#define RMINCNT RTC_REG(2) /* RTC min */
+#define RHRCNT RTC_REG(3) /* RTC hour */
+#define RWKCNT RTC_REG(4) /* RTC week */
+#define RDAYCNT RTC_REG(5) /* RTC day */
+#define RMONCNT RTC_REG(6) /* RTC month */
+#define RYRCNT RTC_REG(7) /* RTC year */
+#define RSECAR RTC_REG(8) /* ALARM sec */
+#define RMINAR RTC_REG(9) /* ALARM min */
+#define RHRAR RTC_REG(10) /* ALARM hour */
+#define RWKAR RTC_REG(11) /* ALARM week */
+#define RDAYAR RTC_REG(12) /* ALARM day */
+#define RMONAR RTC_REG(13) /* ALARM month */
+#define RCR1 RTC_REG(14) /* Control */
+#define RCR2 RTC_REG(15) /* Control */
+
+/*
+ * Note on RYRAR and RCR3: Up until this point most of the register
+ * definitions are consistent across all of the available parts. However,
+ * the placement of the optional RYRAR and RCR3 (the RYRAR control
+ * register used to control RYRCNT/RYRAR compare) varies considerably
+ * across various parts, occasionally being mapped in to a completely
+ * unrelated address space. For proper RYRAR support a separate resource
+ * would have to be handed off, but as this is purely optional in
+ * practice, we simply opt not to support it, thereby keeping the code
+ * quite a bit more simplified.
+ */
+
+/* ALARM Bits - or with BCD encoded value */
+#define AR_ENB 0x80 /* Enable for alarm cmp */
+
+/* Period Bits */
+#define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */
+#define PF_COUNT 0x200 /* Half periodic counter */
+#define PF_OXS 0x400 /* Periodic One x Second */
+#define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */
+#define PF_MASK 0xf00
+
+/* RCR1 Bits */
+#define RCR1_CF 0x80 /* Carry Flag */
+#define RCR1_CIE 0x10 /* Carry Interrupt Enable */
+#define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
+#define RCR1_AF 0x01 /* Alarm Flag */
+
+/* RCR2 Bits */
+#define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
+#define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
+#define RCR2_RTCEN 0x08 /* ENable RTC */
+#define RCR2_ADJ 0x04 /* ADJustment (30-second) */
+#define RCR2_RESET 0x02 /* Reset bit */
+#define RCR2_START 0x01 /* Start bit */
+
+struct sh_rtc {
+ void __iomem *regbase;
+ unsigned long regsize;
+ struct resource *res;
+ int alarm_irq;
+ int periodic_irq;
+ int carry_irq;
+ struct clk *clk;
+ struct rtc_device *rtc_dev;
+ spinlock_t lock;
+ unsigned long capabilities; /* See asm/rtc.h for cap bits */
+ unsigned short periodic_freq;
+};
+
+static int __sh_rtc_interrupt(struct sh_rtc *rtc)
+{
+ unsigned int tmp, pending;
+
+ tmp = readb(rtc->regbase + RCR1);
+ pending = tmp & RCR1_CF;
+ tmp &= ~RCR1_CF;
+ writeb(tmp, rtc->regbase + RCR1);
+
+ /* Users have requested One x Second IRQ */
+ if (pending && rtc->periodic_freq & PF_OXS)
+ rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
+
+ return pending;
+}
+
+static int __sh_rtc_alarm(struct sh_rtc *rtc)
+{
+ unsigned int tmp, pending;
+
+ tmp = readb(rtc->regbase + RCR1);
+ pending = tmp & RCR1_AF;
+ tmp &= ~(RCR1_AF | RCR1_AIE);
+ writeb(tmp, rtc->regbase + RCR1);
+
+ if (pending)
+ rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
+
+ return pending;
+}
+
+static int __sh_rtc_periodic(struct sh_rtc *rtc)
+{
+ unsigned int tmp, pending;
+
+ tmp = readb(rtc->regbase + RCR2);
+ pending = tmp & RCR2_PEF;
+ tmp &= ~RCR2_PEF;
+ writeb(tmp, rtc->regbase + RCR2);
+
+ if (!pending)
+ return 0;
+
+ /* Half period enabled than one skipped and the next notified */
+ if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
+ rtc->periodic_freq &= ~PF_COUNT;
+ else {
+ if (rtc->periodic_freq & PF_HP)
+ rtc->periodic_freq |= PF_COUNT;
+ rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
+ }
+
+ return pending;
+}
+
+static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
+{
+ struct sh_rtc *rtc = dev_id;
+ int ret;
+
+ spin_lock(&rtc->lock);
+ ret = __sh_rtc_interrupt(rtc);
+ spin_unlock(&rtc->lock);
+
+ return IRQ_RETVAL(ret);
+}
+
+static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
+{
+ struct sh_rtc *rtc = dev_id;
+ int ret;
+
+ spin_lock(&rtc->lock);
+ ret = __sh_rtc_alarm(rtc);
+ spin_unlock(&rtc->lock);
+
+ return IRQ_RETVAL(ret);
+}
+
+static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
+{
+ struct sh_rtc *rtc = dev_id;
+ int ret;
+
+ spin_lock(&rtc->lock);
+ ret = __sh_rtc_periodic(rtc);
+ spin_unlock(&rtc->lock);
+
+ return IRQ_RETVAL(ret);
+}
+
+static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
+{
+ struct sh_rtc *rtc = dev_id;
+ int ret;
+
+ spin_lock(&rtc->lock);
+ ret = __sh_rtc_interrupt(rtc);
+ ret |= __sh_rtc_alarm(rtc);
+ ret |= __sh_rtc_periodic(rtc);
+ spin_unlock(&rtc->lock);
+
+ return IRQ_RETVAL(ret);
+}
+
+static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
+{
+ struct sh_rtc *rtc = dev_get_drvdata(dev);
+ unsigned int tmp;
+
+ spin_lock_irq(&rtc->lock);
+
+ tmp = readb(rtc->regbase + RCR1);
+
+ if (enable)
+ tmp |= RCR1_AIE;
+ else
+ tmp &= ~RCR1_AIE;
+
+ writeb(tmp, rtc->regbase + RCR1);
+
+ spin_unlock_irq(&rtc->lock);
+}
+
+static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
+{
+ struct sh_rtc *rtc = dev_get_drvdata(dev);
+ unsigned int tmp;
+
+ tmp = readb(rtc->regbase + RCR1);
+ seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
+
+ tmp = readb(rtc->regbase + RCR2);
+ seq_printf(seq, "periodic_IRQ\t: %s\n",
+ (tmp & RCR2_PESMASK) ? "yes" : "no");
+
+ return 0;
+}
+
+static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
+{
+ struct sh_rtc *rtc = dev_get_drvdata(dev);
+ unsigned int tmp;
+
+ spin_lock_irq(&rtc->lock);
+
+ tmp = readb(rtc->regbase + RCR1);
+
+ if (!enable)
+ tmp &= ~RCR1_CIE;
+ else
+ tmp |= RCR1_CIE;
+
+ writeb(tmp, rtc->regbase + RCR1);
+
+ spin_unlock_irq(&rtc->lock);
+}
+
+static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ sh_rtc_setaie(dev, enabled);
+ return 0;
+}
+
+static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct sh_rtc *rtc = dev_get_drvdata(dev);
+ unsigned int sec128, sec2, yr, yr100, cf_bit;
+
+ if (!(readb(rtc->regbase + RCR2) & RCR2_RTCEN))
+ return -EINVAL;
+
+ do {
+ unsigned int tmp;
+
+ spin_lock_irq(&rtc->lock);
+
+ tmp = readb(rtc->regbase + RCR1);
+ tmp &= ~RCR1_CF; /* Clear CF-bit */
+ tmp |= RCR1_CIE;
+ writeb(tmp, rtc->regbase + RCR1);
+
+ sec128 = readb(rtc->regbase + R64CNT);
+
+ tm->tm_sec = bcd2bin(readb(rtc->regbase + RSECCNT));
+ tm->tm_min = bcd2bin(readb(rtc->regbase + RMINCNT));
+ tm->tm_hour = bcd2bin(readb(rtc->regbase + RHRCNT));
+ tm->tm_wday = bcd2bin(readb(rtc->regbase + RWKCNT));
+ tm->tm_mday = bcd2bin(readb(rtc->regbase + RDAYCNT));
+ tm->tm_mon = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
+
+ if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
+ yr = readw(rtc->regbase + RYRCNT);
+ yr100 = bcd2bin(yr >> 8);
+ yr &= 0xff;
+ } else {
+ yr = readb(rtc->regbase + RYRCNT);
+ yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
+ }
+
+ tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
+
+ sec2 = readb(rtc->regbase + R64CNT);
+ cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
+
+ spin_unlock_irq(&rtc->lock);
+ } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
+
+#if RTC_BIT_INVERTED != 0
+ if ((sec128 & RTC_BIT_INVERTED))
+ tm->tm_sec--;
+#endif
+
+ /* only keep the carry interrupt enabled if UIE is on */
+ if (!(rtc->periodic_freq & PF_OXS))
+ sh_rtc_setcie(dev, 0);
+
+ dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
+ "mday=%d, mon=%d, year=%d, wday=%d\n",
+ __func__,
+ tm->tm_sec, tm->tm_min, tm->tm_hour,
+ tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
+
+ return 0;
+}
+
+static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct sh_rtc *rtc = dev_get_drvdata(dev);
+ unsigned int tmp;
+ int year;
+
+ spin_lock_irq(&rtc->lock);
+
+ /* Reset pre-scaler & stop RTC */
+ tmp = readb(rtc->regbase + RCR2);
+ tmp |= RCR2_RESET;
+ tmp &= ~RCR2_START;
+ writeb(tmp, rtc->regbase + RCR2);
+
+ writeb(bin2bcd(tm->tm_sec), rtc->regbase + RSECCNT);
+ writeb(bin2bcd(tm->tm_min), rtc->regbase + RMINCNT);
+ writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
+ writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
+ writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
+ writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
+
+ if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
+ year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
+ bin2bcd(tm->tm_year % 100);
+ writew(year, rtc->regbase + RYRCNT);
+ } else {
+ year = tm->tm_year % 100;
+ writeb(bin2bcd(year), rtc->regbase + RYRCNT);
+ }
+
+ /* Start RTC */
+ tmp = readb(rtc->regbase + RCR2);
+ tmp &= ~RCR2_RESET;
+ tmp |= RCR2_RTCEN | RCR2_START;
+ writeb(tmp, rtc->regbase + RCR2);
+
+ spin_unlock_irq(&rtc->lock);
+
+ return 0;
+}
+
+static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
+{
+ unsigned int byte;
+ int value = -1; /* return -1 for ignored values */
+
+ byte = readb(rtc->regbase + reg_off);
+ if (byte & AR_ENB) {
+ byte &= ~AR_ENB; /* strip the enable bit */
+ value = bcd2bin(byte);
+ }
+
+ return value;
+}
+
+static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
+{
+ struct sh_rtc *rtc = dev_get_drvdata(dev);
+ struct rtc_time *tm = &wkalrm->time;
+
+ spin_lock_irq(&rtc->lock);
+
+ tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
+ tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
+ tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
+ tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
+ tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
+ tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
+ if (tm->tm_mon > 0)
+ tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
+
+ wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
+
+ spin_unlock_irq(&rtc->lock);
+
+ return 0;
+}
+
+static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
+ int value, int reg_off)
+{
+ /* < 0 for a value that is ignored */
+ if (value < 0)
+ writeb(0, rtc->regbase + reg_off);
+ else
+ writeb(bin2bcd(value) | AR_ENB, rtc->regbase + reg_off);
+}
+
+static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
+{
+ struct sh_rtc *rtc = dev_get_drvdata(dev);
+ unsigned int rcr1;
+ struct rtc_time *tm = &wkalrm->time;
+ int mon;
+
+ spin_lock_irq(&rtc->lock);
+
+ /* disable alarm interrupt and clear the alarm flag */
+ rcr1 = readb(rtc->regbase + RCR1);
+ rcr1 &= ~(RCR1_AF | RCR1_AIE);
+ writeb(rcr1, rtc->regbase + RCR1);
+
+ /* set alarm time */
+ sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR);
+ sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR);
+ sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
+ sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
+ sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
+ mon = tm->tm_mon;
+ if (mon >= 0)
+ mon += 1;
+ sh_rtc_write_alarm_value(rtc, mon, RMONAR);
+
+ if (wkalrm->enabled) {
+ rcr1 |= RCR1_AIE;
+ writeb(rcr1, rtc->regbase + RCR1);
+ }
+
+ spin_unlock_irq(&rtc->lock);
+
+ return 0;
+}
+
+static const struct rtc_class_ops sh_rtc_ops = {
+ .read_time = sh_rtc_read_time,
+ .set_time = sh_rtc_set_time,
+ .read_alarm = sh_rtc_read_alarm,
+ .set_alarm = sh_rtc_set_alarm,
+ .proc = sh_rtc_proc,
+ .alarm_irq_enable = sh_rtc_alarm_irq_enable,
+};
+
+static int __init sh_rtc_probe(struct platform_device *pdev)
+{
+ struct sh_rtc *rtc;
+ struct resource *res;
+ char clk_name[6];
+ int clk_id, ret;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
+ if (unlikely(!rtc))
+ return -ENOMEM;
+
+ spin_lock_init(&rtc->lock);
+
+ /* get periodic/carry/alarm irqs */
+ ret = platform_get_irq(pdev, 0);
+ if (unlikely(ret <= 0)) {
+ dev_err(&pdev->dev, "No IRQ resource\n");
+ return -ENOENT;
+ }
+
+ rtc->periodic_irq = ret;
+ rtc->carry_irq = platform_get_irq(pdev, 1);
+ rtc->alarm_irq = platform_get_irq(pdev, 2);
+
+ res = platform_get_resource(pdev, IORESOURCE_IO, 0);
+ if (!res)
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (unlikely(res == NULL)) {
+ dev_err(&pdev->dev, "No IO resource\n");
+ return -ENOENT;
+ }
+
+ rtc->regsize = resource_size(res);
+
+ rtc->res = devm_request_mem_region(&pdev->dev, res->start,
+ rtc->regsize, pdev->name);
+ if (unlikely(!rtc->res))
+ return -EBUSY;
+
+ rtc->regbase = devm_ioremap(&pdev->dev, rtc->res->start, rtc->regsize);
+ if (unlikely(!rtc->regbase))
+ return -EINVAL;
+
+ if (!pdev->dev.of_node) {
+ clk_id = pdev->id;
+ /* With a single device, the clock id is still "rtc0" */
+ if (clk_id < 0)
+ clk_id = 0;
+
+ snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
+ } else
+ snprintf(clk_name, sizeof(clk_name), "fck");
+
+ rtc->clk = devm_clk_get(&pdev->dev, clk_name);
+ if (IS_ERR(rtc->clk)) {
+ /*
+ * No error handling for rtc->clk intentionally, not all
+ * platforms will have a unique clock for the RTC, and
+ * the clk API can handle the struct clk pointer being
+ * NULL.
+ */
+ rtc->clk = NULL;
+ }
+
+ rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc->rtc_dev))
+ return PTR_ERR(rtc->rtc_dev);
+
+ clk_enable(rtc->clk);
+
+ rtc->capabilities = RTC_DEF_CAPABILITIES;
+
+#ifdef CONFIG_SUPERH
+ if (dev_get_platdata(&pdev->dev)) {
+ struct sh_rtc_platform_info *pinfo =
+ dev_get_platdata(&pdev->dev);
+
+ /*
+ * Some CPUs have special capabilities in addition to the
+ * default set. Add those in here.
+ */
+ rtc->capabilities |= pinfo->capabilities;
+ }
+#endif
+
+ if (rtc->carry_irq <= 0) {
+ /* register shared periodic/carry/alarm irq */
+ ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
+ sh_rtc_shared, 0, "sh-rtc", rtc);
+ if (unlikely(ret)) {
+ dev_err(&pdev->dev,
+ "request IRQ failed with %d, IRQ %d\n", ret,
+ rtc->periodic_irq);
+ goto err_unmap;
+ }
+ } else {
+ /* register periodic/carry/alarm irqs */
+ ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
+ sh_rtc_periodic, 0, "sh-rtc period", rtc);
+ if (unlikely(ret)) {
+ dev_err(&pdev->dev,
+ "request period IRQ failed with %d, IRQ %d\n",
+ ret, rtc->periodic_irq);
+ goto err_unmap;
+ }
+
+ ret = devm_request_irq(&pdev->dev, rtc->carry_irq,
+ sh_rtc_interrupt, 0, "sh-rtc carry", rtc);
+ if (unlikely(ret)) {
+ dev_err(&pdev->dev,
+ "request carry IRQ failed with %d, IRQ %d\n",
+ ret, rtc->carry_irq);
+ goto err_unmap;
+ }
+
+ ret = devm_request_irq(&pdev->dev, rtc->alarm_irq,
+ sh_rtc_alarm, 0, "sh-rtc alarm", rtc);
+ if (unlikely(ret)) {
+ dev_err(&pdev->dev,
+ "request alarm IRQ failed with %d, IRQ %d\n",
+ ret, rtc->alarm_irq);
+ goto err_unmap;
+ }
+ }
+
+ platform_set_drvdata(pdev, rtc);
+
+ /* everything disabled by default */
+ sh_rtc_setaie(&pdev->dev, 0);
+ sh_rtc_setcie(&pdev->dev, 0);
+
+ rtc->rtc_dev->ops = &sh_rtc_ops;
+ rtc->rtc_dev->max_user_freq = 256;
+
+ if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
+ rtc->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_1900;
+ rtc->rtc_dev->range_max = RTC_TIMESTAMP_END_9999;
+ } else {
+ rtc->rtc_dev->range_min = mktime64(1999, 1, 1, 0, 0, 0);
+ rtc->rtc_dev->range_max = mktime64(2098, 12, 31, 23, 59, 59);
+ }
+
+ ret = rtc_register_device(rtc->rtc_dev);
+ if (ret)
+ goto err_unmap;
+
+ device_init_wakeup(&pdev->dev, 1);
+ return 0;
+
+err_unmap:
+ clk_disable(rtc->clk);
+
+ return ret;
+}
+
+static int __exit sh_rtc_remove(struct platform_device *pdev)
+{
+ struct sh_rtc *rtc = platform_get_drvdata(pdev);
+
+ sh_rtc_setaie(&pdev->dev, 0);
+ sh_rtc_setcie(&pdev->dev, 0);
+
+ clk_disable(rtc->clk);
+
+ return 0;
+}
+
+static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
+{
+ struct sh_rtc *rtc = dev_get_drvdata(dev);
+
+ irq_set_irq_wake(rtc->periodic_irq, enabled);
+
+ if (rtc->carry_irq > 0) {
+ irq_set_irq_wake(rtc->carry_irq, enabled);
+ irq_set_irq_wake(rtc->alarm_irq, enabled);
+ }
+}
+
+static int __maybe_unused sh_rtc_suspend(struct device *dev)
+{
+ if (device_may_wakeup(dev))
+ sh_rtc_set_irq_wake(dev, 1);
+
+ return 0;
+}
+
+static int __maybe_unused sh_rtc_resume(struct device *dev)
+{
+ if (device_may_wakeup(dev))
+ sh_rtc_set_irq_wake(dev, 0);
+
+ return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(sh_rtc_pm_ops, sh_rtc_suspend, sh_rtc_resume);
+
+static const struct of_device_id sh_rtc_of_match[] = {
+ { .compatible = "renesas,sh-rtc", },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, sh_rtc_of_match);
+
+static struct platform_driver sh_rtc_platform_driver = {
+ .driver = {
+ .name = DRV_NAME,
+ .pm = &sh_rtc_pm_ops,
+ .of_match_table = sh_rtc_of_match,
+ },
+ .remove = __exit_p(sh_rtc_remove),
+};
+
+module_platform_driver_probe(sh_rtc_platform_driver, sh_rtc_probe);
+
+MODULE_DESCRIPTION("SuperH on-chip RTC driver");
+MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
+ "Jamie Lenehan <lenehan@twibble.org>, "
+ "Angelo Castello <angelo.castello@st.com>");
+MODULE_LICENSE("GPL v2");
+MODULE_ALIAS("platform:" DRV_NAME);
diff --git a/drivers/rtc/rtc-sirfsoc.c b/drivers/rtc/rtc-sirfsoc.c
new file mode 100644
index 000000000..abf19435d
--- /dev/null
+++ b/drivers/rtc/rtc-sirfsoc.c
@@ -0,0 +1,446 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * SiRFSoC Real Time Clock interface for Linux
+ *
+ * Copyright (c) 2013 Cambridge Silicon Radio Limited, a CSR plc group company.
+ */
+
+#include <linux/module.h>
+#include <linux/err.h>
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/io.h>
+#include <linux/of.h>
+#include <linux/regmap.h>
+#include <linux/rtc/sirfsoc_rtciobrg.h>
+
+
+#define RTC_CN 0x00
+#define RTC_ALARM0 0x04
+#define RTC_ALARM1 0x18
+#define RTC_STATUS 0x08
+#define RTC_SW_VALUE 0x40
+#define SIRFSOC_RTC_AL1E (1<<6)
+#define SIRFSOC_RTC_AL1 (1<<4)
+#define SIRFSOC_RTC_HZE (1<<3)
+#define SIRFSOC_RTC_AL0E (1<<2)
+#define SIRFSOC_RTC_HZ (1<<1)
+#define SIRFSOC_RTC_AL0 (1<<0)
+#define RTC_DIV 0x0c
+#define RTC_DEEP_CTRL 0x14
+#define RTC_CLOCK_SWITCH 0x1c
+#define SIRFSOC_RTC_CLK 0x03 /* others are reserved */
+
+/* Refer to RTC DIV switch */
+#define RTC_HZ 16
+
+/* This macro is also defined in arch/arm/plat-sirfsoc/cpu.c */
+#define RTC_SHIFT 4
+
+#define INTR_SYSRTC_CN 0x48
+
+struct sirfsoc_rtc_drv {
+ struct rtc_device *rtc;
+ u32 rtc_base;
+ u32 irq;
+ unsigned irq_wake;
+ /* Overflow for every 8 years extra time */
+ u32 overflow_rtc;
+ spinlock_t lock;
+ struct regmap *regmap;
+#ifdef CONFIG_PM
+ u32 saved_counter;
+ u32 saved_overflow_rtc;
+#endif
+};
+
+static u32 sirfsoc_rtc_readl(struct sirfsoc_rtc_drv *rtcdrv, u32 offset)
+{
+ u32 val;
+
+ regmap_read(rtcdrv->regmap, rtcdrv->rtc_base + offset, &val);
+ return val;
+}
+
+static void sirfsoc_rtc_writel(struct sirfsoc_rtc_drv *rtcdrv,
+ u32 offset, u32 val)
+{
+ regmap_write(rtcdrv->regmap, rtcdrv->rtc_base + offset, val);
+}
+
+static int sirfsoc_rtc_read_alarm(struct device *dev,
+ struct rtc_wkalrm *alrm)
+{
+ unsigned long rtc_alarm, rtc_count;
+ struct sirfsoc_rtc_drv *rtcdrv;
+
+ rtcdrv = dev_get_drvdata(dev);
+
+ spin_lock_irq(&rtcdrv->lock);
+
+ rtc_count = sirfsoc_rtc_readl(rtcdrv, RTC_CN);
+
+ rtc_alarm = sirfsoc_rtc_readl(rtcdrv, RTC_ALARM0);
+ memset(alrm, 0, sizeof(struct rtc_wkalrm));
+
+ /*
+ * assume alarm interval not beyond one round counter overflow_rtc:
+ * 0->0xffffffff
+ */
+ /* if alarm is in next overflow cycle */
+ if (rtc_count > rtc_alarm)
+ rtc_time64_to_tm((rtcdrv->overflow_rtc + 1)
+ << (BITS_PER_LONG - RTC_SHIFT)
+ | rtc_alarm >> RTC_SHIFT, &alrm->time);
+ else
+ rtc_time64_to_tm(rtcdrv->overflow_rtc
+ << (BITS_PER_LONG - RTC_SHIFT)
+ | rtc_alarm >> RTC_SHIFT, &alrm->time);
+ if (sirfsoc_rtc_readl(rtcdrv, RTC_STATUS) & SIRFSOC_RTC_AL0E)
+ alrm->enabled = 1;
+
+ spin_unlock_irq(&rtcdrv->lock);
+
+ return 0;
+}
+
+static int sirfsoc_rtc_set_alarm(struct device *dev,
+ struct rtc_wkalrm *alrm)
+{
+ unsigned long rtc_status_reg, rtc_alarm;
+ struct sirfsoc_rtc_drv *rtcdrv;
+ rtcdrv = dev_get_drvdata(dev);
+
+ if (alrm->enabled) {
+ rtc_alarm = rtc_tm_to_time64(&alrm->time);
+
+ spin_lock_irq(&rtcdrv->lock);
+
+ rtc_status_reg = sirfsoc_rtc_readl(rtcdrv, RTC_STATUS);
+ if (rtc_status_reg & SIRFSOC_RTC_AL0E) {
+ /*
+ * An ongoing alarm in progress - ingore it and not
+ * to return EBUSY
+ */
+ dev_info(dev, "An old alarm was set, will be replaced by a new one\n");
+ }
+
+ sirfsoc_rtc_writel(rtcdrv, RTC_ALARM0, rtc_alarm << RTC_SHIFT);
+ rtc_status_reg &= ~0x07; /* mask out the lower status bits */
+ /*
+ * This bit RTC_AL sets it as a wake-up source for Sleep Mode
+ * Writing 1 into this bit will clear it
+ */
+ rtc_status_reg |= SIRFSOC_RTC_AL0;
+ /* enable the RTC alarm interrupt */
+ rtc_status_reg |= SIRFSOC_RTC_AL0E;
+ sirfsoc_rtc_writel(rtcdrv, RTC_STATUS, rtc_status_reg);
+
+ spin_unlock_irq(&rtcdrv->lock);
+ } else {
+ /*
+ * if this function was called with enabled=0
+ * then it could mean that the application is
+ * trying to cancel an ongoing alarm
+ */
+ spin_lock_irq(&rtcdrv->lock);
+
+ rtc_status_reg = sirfsoc_rtc_readl(rtcdrv, RTC_STATUS);
+ if (rtc_status_reg & SIRFSOC_RTC_AL0E) {
+ /* clear the RTC status register's alarm bit */
+ rtc_status_reg &= ~0x07;
+ /* write 1 into SIRFSOC_RTC_AL0 to force a clear */
+ rtc_status_reg |= (SIRFSOC_RTC_AL0);
+ /* Clear the Alarm enable bit */
+ rtc_status_reg &= ~(SIRFSOC_RTC_AL0E);
+
+ sirfsoc_rtc_writel(rtcdrv, RTC_STATUS,
+ rtc_status_reg);
+ }
+
+ spin_unlock_irq(&rtcdrv->lock);
+ }
+
+ return 0;
+}
+
+static int sirfsoc_rtc_read_time(struct device *dev,
+ struct rtc_time *tm)
+{
+ unsigned long tmp_rtc = 0;
+ struct sirfsoc_rtc_drv *rtcdrv;
+ rtcdrv = dev_get_drvdata(dev);
+ /*
+ * This patch is taken from WinCE - Need to validate this for
+ * correctness. To work around sirfsoc RTC counter double sync logic
+ * fail, read several times to make sure get stable value.
+ */
+ do {
+ tmp_rtc = sirfsoc_rtc_readl(rtcdrv, RTC_CN);
+ cpu_relax();
+ } while (tmp_rtc != sirfsoc_rtc_readl(rtcdrv, RTC_CN));
+
+ rtc_time64_to_tm(rtcdrv->overflow_rtc << (BITS_PER_LONG - RTC_SHIFT)
+ | tmp_rtc >> RTC_SHIFT, tm);
+ return 0;
+}
+
+static int sirfsoc_rtc_set_time(struct device *dev,
+ struct rtc_time *tm)
+{
+ unsigned long rtc_time;
+ struct sirfsoc_rtc_drv *rtcdrv;
+ rtcdrv = dev_get_drvdata(dev);
+
+ rtc_time = rtc_tm_to_time64(tm);
+
+ rtcdrv->overflow_rtc = rtc_time >> (BITS_PER_LONG - RTC_SHIFT);
+
+ sirfsoc_rtc_writel(rtcdrv, RTC_SW_VALUE, rtcdrv->overflow_rtc);
+ sirfsoc_rtc_writel(rtcdrv, RTC_CN, rtc_time << RTC_SHIFT);
+
+ return 0;
+}
+
+static int sirfsoc_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ unsigned long rtc_status_reg = 0x0;
+ struct sirfsoc_rtc_drv *rtcdrv;
+
+ rtcdrv = dev_get_drvdata(dev);
+
+ spin_lock_irq(&rtcdrv->lock);
+
+ rtc_status_reg = sirfsoc_rtc_readl(rtcdrv, RTC_STATUS);
+ if (enabled)
+ rtc_status_reg |= SIRFSOC_RTC_AL0E;
+ else
+ rtc_status_reg &= ~SIRFSOC_RTC_AL0E;
+
+ sirfsoc_rtc_writel(rtcdrv, RTC_STATUS, rtc_status_reg);
+
+ spin_unlock_irq(&rtcdrv->lock);
+
+ return 0;
+
+}
+
+static const struct rtc_class_ops sirfsoc_rtc_ops = {
+ .read_time = sirfsoc_rtc_read_time,
+ .set_time = sirfsoc_rtc_set_time,
+ .read_alarm = sirfsoc_rtc_read_alarm,
+ .set_alarm = sirfsoc_rtc_set_alarm,
+ .alarm_irq_enable = sirfsoc_rtc_alarm_irq_enable
+};
+
+static irqreturn_t sirfsoc_rtc_irq_handler(int irq, void *pdata)
+{
+ struct sirfsoc_rtc_drv *rtcdrv = pdata;
+ unsigned long rtc_status_reg = 0x0;
+ unsigned long events = 0x0;
+
+ spin_lock(&rtcdrv->lock);
+
+ rtc_status_reg = sirfsoc_rtc_readl(rtcdrv, RTC_STATUS);
+ /* this bit will be set ONLY if an alarm was active
+ * and it expired NOW
+ * So this is being used as an ASSERT
+ */
+ if (rtc_status_reg & SIRFSOC_RTC_AL0) {
+ /*
+ * clear the RTC status register's alarm bit
+ * mask out the lower status bits
+ */
+ rtc_status_reg &= ~0x07;
+ /* write 1 into SIRFSOC_RTC_AL0 to ACK the alarm interrupt */
+ rtc_status_reg |= (SIRFSOC_RTC_AL0);
+ /* Clear the Alarm enable bit */
+ rtc_status_reg &= ~(SIRFSOC_RTC_AL0E);
+ }
+
+ sirfsoc_rtc_writel(rtcdrv, RTC_STATUS, rtc_status_reg);
+
+ spin_unlock(&rtcdrv->lock);
+
+ /* this should wake up any apps polling/waiting on the read
+ * after setting the alarm
+ */
+ events |= RTC_IRQF | RTC_AF;
+ rtc_update_irq(rtcdrv->rtc, 1, events);
+
+ return IRQ_HANDLED;
+}
+
+static const struct of_device_id sirfsoc_rtc_of_match[] = {
+ { .compatible = "sirf,prima2-sysrtc"},
+ {},
+};
+
+static const struct regmap_config sysrtc_regmap_config = {
+ .reg_bits = 32,
+ .val_bits = 32,
+ .fast_io = true,
+};
+
+MODULE_DEVICE_TABLE(of, sirfsoc_rtc_of_match);
+
+static int sirfsoc_rtc_probe(struct platform_device *pdev)
+{
+ int err;
+ unsigned long rtc_div;
+ struct sirfsoc_rtc_drv *rtcdrv;
+ struct device_node *np = pdev->dev.of_node;
+
+ rtcdrv = devm_kzalloc(&pdev->dev,
+ sizeof(struct sirfsoc_rtc_drv), GFP_KERNEL);
+ if (rtcdrv == NULL)
+ return -ENOMEM;
+
+ spin_lock_init(&rtcdrv->lock);
+
+ err = of_property_read_u32(np, "reg", &rtcdrv->rtc_base);
+ if (err) {
+ dev_err(&pdev->dev, "unable to find base address of rtc node in dtb\n");
+ return err;
+ }
+
+ platform_set_drvdata(pdev, rtcdrv);
+
+ /* Register rtc alarm as a wakeup source */
+ device_init_wakeup(&pdev->dev, 1);
+
+ rtcdrv->regmap = devm_regmap_init_iobg(&pdev->dev,
+ &sysrtc_regmap_config);
+ if (IS_ERR(rtcdrv->regmap)) {
+ err = PTR_ERR(rtcdrv->regmap);
+ dev_err(&pdev->dev, "Failed to allocate register map: %d\n",
+ err);
+ return err;
+ }
+
+ /*
+ * Set SYS_RTC counter in RTC_HZ HZ Units
+ * We are using 32K RTC crystal (32768 / RTC_HZ / 2) -1
+ * If 16HZ, therefore RTC_DIV = 1023;
+ */
+ rtc_div = ((32768 / RTC_HZ) / 2) - 1;
+ sirfsoc_rtc_writel(rtcdrv, RTC_DIV, rtc_div);
+
+ /* 0x3 -> RTC_CLK */
+ sirfsoc_rtc_writel(rtcdrv, RTC_CLOCK_SWITCH, SIRFSOC_RTC_CLK);
+
+ /* reset SYS RTC ALARM0 */
+ sirfsoc_rtc_writel(rtcdrv, RTC_ALARM0, 0x0);
+
+ /* reset SYS RTC ALARM1 */
+ sirfsoc_rtc_writel(rtcdrv, RTC_ALARM1, 0x0);
+
+ /* Restore RTC Overflow From Register After Command Reboot */
+ rtcdrv->overflow_rtc =
+ sirfsoc_rtc_readl(rtcdrv, RTC_SW_VALUE);
+
+ rtcdrv->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtcdrv->rtc))
+ return PTR_ERR(rtcdrv->rtc);
+
+ rtcdrv->rtc->ops = &sirfsoc_rtc_ops;
+ rtcdrv->rtc->range_max = (1ULL << 60) - 1;
+
+ rtcdrv->irq = platform_get_irq(pdev, 0);
+ err = devm_request_irq(&pdev->dev, rtcdrv->irq, sirfsoc_rtc_irq_handler,
+ IRQF_SHARED, pdev->name, rtcdrv);
+ if (err) {
+ dev_err(&pdev->dev, "Unable to register for the SiRF SOC RTC IRQ\n");
+ return err;
+ }
+
+ return rtc_register_device(rtcdrv->rtc);
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int sirfsoc_rtc_suspend(struct device *dev)
+{
+ struct sirfsoc_rtc_drv *rtcdrv = dev_get_drvdata(dev);
+ rtcdrv->overflow_rtc =
+ sirfsoc_rtc_readl(rtcdrv, RTC_SW_VALUE);
+
+ rtcdrv->saved_counter =
+ sirfsoc_rtc_readl(rtcdrv, RTC_CN);
+ rtcdrv->saved_overflow_rtc = rtcdrv->overflow_rtc;
+ if (device_may_wakeup(dev) && !enable_irq_wake(rtcdrv->irq))
+ rtcdrv->irq_wake = 1;
+
+ return 0;
+}
+
+static int sirfsoc_rtc_resume(struct device *dev)
+{
+ u32 tmp;
+ struct sirfsoc_rtc_drv *rtcdrv = dev_get_drvdata(dev);
+
+ /*
+ * if resume from snapshot and the rtc power is lost,
+ * restroe the rtc settings
+ */
+ if (SIRFSOC_RTC_CLK != sirfsoc_rtc_readl(rtcdrv, RTC_CLOCK_SWITCH)) {
+ u32 rtc_div;
+ /* 0x3 -> RTC_CLK */
+ sirfsoc_rtc_writel(rtcdrv, RTC_CLOCK_SWITCH, SIRFSOC_RTC_CLK);
+ /*
+ * Set SYS_RTC counter in RTC_HZ HZ Units
+ * We are using 32K RTC crystal (32768 / RTC_HZ / 2) -1
+ * If 16HZ, therefore RTC_DIV = 1023;
+ */
+ rtc_div = ((32768 / RTC_HZ) / 2) - 1;
+
+ sirfsoc_rtc_writel(rtcdrv, RTC_DIV, rtc_div);
+
+ /* reset SYS RTC ALARM0 */
+ sirfsoc_rtc_writel(rtcdrv, RTC_ALARM0, 0x0);
+
+ /* reset SYS RTC ALARM1 */
+ sirfsoc_rtc_writel(rtcdrv, RTC_ALARM1, 0x0);
+ }
+ rtcdrv->overflow_rtc = rtcdrv->saved_overflow_rtc;
+
+ /*
+ * if current counter is small than previous,
+ * it means overflow in sleep
+ */
+ tmp = sirfsoc_rtc_readl(rtcdrv, RTC_CN);
+ if (tmp <= rtcdrv->saved_counter)
+ rtcdrv->overflow_rtc++;
+ /*
+ *PWRC Value Be Changed When Suspend, Restore Overflow
+ * In Memory To Register
+ */
+ sirfsoc_rtc_writel(rtcdrv, RTC_SW_VALUE, rtcdrv->overflow_rtc);
+
+ if (device_may_wakeup(dev) && rtcdrv->irq_wake) {
+ disable_irq_wake(rtcdrv->irq);
+ rtcdrv->irq_wake = 0;
+ }
+
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(sirfsoc_rtc_pm_ops,
+ sirfsoc_rtc_suspend, sirfsoc_rtc_resume);
+
+static struct platform_driver sirfsoc_rtc_driver = {
+ .driver = {
+ .name = "sirfsoc-rtc",
+ .pm = &sirfsoc_rtc_pm_ops,
+ .of_match_table = sirfsoc_rtc_of_match,
+ },
+ .probe = sirfsoc_rtc_probe,
+};
+module_platform_driver(sirfsoc_rtc_driver);
+
+MODULE_DESCRIPTION("SiRF SoC rtc driver");
+MODULE_AUTHOR("Xianglong Du <Xianglong.Du@csr.com>");
+MODULE_LICENSE("GPL v2");
+MODULE_ALIAS("platform:sirfsoc-rtc");
diff --git a/drivers/rtc/rtc-snvs.c b/drivers/rtc/rtc-snvs.c
new file mode 100644
index 000000000..cc7f6c421
--- /dev/null
+++ b/drivers/rtc/rtc-snvs.c
@@ -0,0 +1,465 @@
+// SPDX-License-Identifier: GPL-2.0+
+//
+// Copyright (C) 2011-2012 Freescale Semiconductor, Inc.
+
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/pm_wakeirq.h>
+#include <linux/rtc.h>
+#include <linux/clk.h>
+#include <linux/mfd/syscon.h>
+#include <linux/regmap.h>
+
+#define SNVS_LPREGISTER_OFFSET 0x34
+
+/* These register offsets are relative to LP (Low Power) range */
+#define SNVS_LPCR 0x04
+#define SNVS_LPSR 0x18
+#define SNVS_LPSRTCMR 0x1c
+#define SNVS_LPSRTCLR 0x20
+#define SNVS_LPTAR 0x24
+#define SNVS_LPPGDR 0x30
+
+#define SNVS_LPCR_SRTC_ENV (1 << 0)
+#define SNVS_LPCR_LPTA_EN (1 << 1)
+#define SNVS_LPCR_LPWUI_EN (1 << 3)
+#define SNVS_LPSR_LPTA (1 << 0)
+
+#define SNVS_LPPGDR_INIT 0x41736166
+#define CNTR_TO_SECS_SH 15
+
+/* The maximum RTC clock cycles that are allowed to pass between two
+ * consecutive clock counter register reads. If the values are corrupted a
+ * bigger difference is expected. The RTC frequency is 32kHz. With 320 cycles
+ * we end at 10ms which should be enough for most cases. If it once takes
+ * longer than expected we do a retry.
+ */
+#define MAX_RTC_READ_DIFF_CYCLES 320
+
+struct snvs_rtc_data {
+ struct rtc_device *rtc;
+ struct regmap *regmap;
+ int offset;
+ int irq;
+ struct clk *clk;
+};
+
+/* Read 64 bit timer register, which could be in inconsistent state */
+static u64 rtc_read_lpsrt(struct snvs_rtc_data *data)
+{
+ u32 msb, lsb;
+
+ regmap_read(data->regmap, data->offset + SNVS_LPSRTCMR, &msb);
+ regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &lsb);
+ return (u64)msb << 32 | lsb;
+}
+
+/* Read the secure real time counter, taking care to deal with the cases of the
+ * counter updating while being read.
+ */
+static u32 rtc_read_lp_counter(struct snvs_rtc_data *data)
+{
+ u64 read1, read2;
+ s64 diff;
+ unsigned int timeout = 100;
+
+ /* As expected, the registers might update between the read of the LSB
+ * reg and the MSB reg. It's also possible that one register might be
+ * in partially modified state as well.
+ */
+ read1 = rtc_read_lpsrt(data);
+ do {
+ read2 = read1;
+ read1 = rtc_read_lpsrt(data);
+ diff = read1 - read2;
+ } while (((diff < 0) || (diff > MAX_RTC_READ_DIFF_CYCLES)) && --timeout);
+ if (!timeout)
+ dev_err(&data->rtc->dev, "Timeout trying to get valid LPSRT Counter read\n");
+
+ /* Convert 47-bit counter to 32-bit raw second count */
+ return (u32) (read1 >> CNTR_TO_SECS_SH);
+}
+
+/* Just read the lsb from the counter, dealing with inconsistent state */
+static int rtc_read_lp_counter_lsb(struct snvs_rtc_data *data, u32 *lsb)
+{
+ u32 count1, count2;
+ s32 diff;
+ unsigned int timeout = 100;
+
+ regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &count1);
+ do {
+ count2 = count1;
+ regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &count1);
+ diff = count1 - count2;
+ } while (((diff < 0) || (diff > MAX_RTC_READ_DIFF_CYCLES)) && --timeout);
+ if (!timeout) {
+ dev_err(&data->rtc->dev, "Timeout trying to get valid LPSRT Counter read\n");
+ return -ETIMEDOUT;
+ }
+
+ *lsb = count1;
+ return 0;
+}
+
+static int rtc_write_sync_lp(struct snvs_rtc_data *data)
+{
+ u32 count1, count2;
+ u32 elapsed;
+ unsigned int timeout = 1000;
+ int ret;
+
+ ret = rtc_read_lp_counter_lsb(data, &count1);
+ if (ret)
+ return ret;
+
+ /* Wait for 3 CKIL cycles, about 61.0-91.5 µs */
+ do {
+ ret = rtc_read_lp_counter_lsb(data, &count2);
+ if (ret)
+ return ret;
+ elapsed = count2 - count1; /* wrap around _is_ handled! */
+ } while (elapsed < 3 && --timeout);
+ if (!timeout) {
+ dev_err(&data->rtc->dev, "Timeout waiting for LPSRT Counter to change\n");
+ return -ETIMEDOUT;
+ }
+ return 0;
+}
+
+static int snvs_rtc_enable(struct snvs_rtc_data *data, bool enable)
+{
+ int timeout = 1000;
+ u32 lpcr;
+
+ regmap_update_bits(data->regmap, data->offset + SNVS_LPCR, SNVS_LPCR_SRTC_ENV,
+ enable ? SNVS_LPCR_SRTC_ENV : 0);
+
+ while (--timeout) {
+ regmap_read(data->regmap, data->offset + SNVS_LPCR, &lpcr);
+
+ if (enable) {
+ if (lpcr & SNVS_LPCR_SRTC_ENV)
+ break;
+ } else {
+ if (!(lpcr & SNVS_LPCR_SRTC_ENV))
+ break;
+ }
+ }
+
+ if (!timeout)
+ return -ETIMEDOUT;
+
+ return 0;
+}
+
+static int snvs_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct snvs_rtc_data *data = dev_get_drvdata(dev);
+ unsigned long time;
+ int ret;
+
+ if (data->clk) {
+ ret = clk_enable(data->clk);
+ if (ret)
+ return ret;
+ }
+
+ time = rtc_read_lp_counter(data);
+ rtc_time64_to_tm(time, tm);
+
+ if (data->clk)
+ clk_disable(data->clk);
+
+ return 0;
+}
+
+static int snvs_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct snvs_rtc_data *data = dev_get_drvdata(dev);
+ unsigned long time = rtc_tm_to_time64(tm);
+ int ret;
+
+ if (data->clk) {
+ ret = clk_enable(data->clk);
+ if (ret)
+ return ret;
+ }
+
+ /* Disable RTC first */
+ ret = snvs_rtc_enable(data, false);
+ if (ret)
+ return ret;
+
+ /* Write 32-bit time to 47-bit timer, leaving 15 LSBs blank */
+ regmap_write(data->regmap, data->offset + SNVS_LPSRTCLR, time << CNTR_TO_SECS_SH);
+ regmap_write(data->regmap, data->offset + SNVS_LPSRTCMR, time >> (32 - CNTR_TO_SECS_SH));
+
+ /* Enable RTC again */
+ ret = snvs_rtc_enable(data, true);
+
+ if (data->clk)
+ clk_disable(data->clk);
+
+ return ret;
+}
+
+static int snvs_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct snvs_rtc_data *data = dev_get_drvdata(dev);
+ u32 lptar, lpsr;
+ int ret;
+
+ if (data->clk) {
+ ret = clk_enable(data->clk);
+ if (ret)
+ return ret;
+ }
+
+ regmap_read(data->regmap, data->offset + SNVS_LPTAR, &lptar);
+ rtc_time64_to_tm(lptar, &alrm->time);
+
+ regmap_read(data->regmap, data->offset + SNVS_LPSR, &lpsr);
+ alrm->pending = (lpsr & SNVS_LPSR_LPTA) ? 1 : 0;
+
+ if (data->clk)
+ clk_disable(data->clk);
+
+ return 0;
+}
+
+static int snvs_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
+{
+ struct snvs_rtc_data *data = dev_get_drvdata(dev);
+ int ret;
+
+ if (data->clk) {
+ ret = clk_enable(data->clk);
+ if (ret)
+ return ret;
+ }
+
+ regmap_update_bits(data->regmap, data->offset + SNVS_LPCR,
+ (SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN),
+ enable ? (SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN) : 0);
+
+ ret = rtc_write_sync_lp(data);
+
+ if (data->clk)
+ clk_disable(data->clk);
+
+ return ret;
+}
+
+static int snvs_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct snvs_rtc_data *data = dev_get_drvdata(dev);
+ unsigned long time = rtc_tm_to_time64(&alrm->time);
+ int ret;
+
+ if (data->clk) {
+ ret = clk_enable(data->clk);
+ if (ret)
+ return ret;
+ }
+
+ regmap_update_bits(data->regmap, data->offset + SNVS_LPCR, SNVS_LPCR_LPTA_EN, 0);
+ ret = rtc_write_sync_lp(data);
+ if (ret)
+ return ret;
+ regmap_write(data->regmap, data->offset + SNVS_LPTAR, time);
+
+ /* Clear alarm interrupt status bit */
+ regmap_write(data->regmap, data->offset + SNVS_LPSR, SNVS_LPSR_LPTA);
+
+ if (data->clk)
+ clk_disable(data->clk);
+
+ return snvs_rtc_alarm_irq_enable(dev, alrm->enabled);
+}
+
+static const struct rtc_class_ops snvs_rtc_ops = {
+ .read_time = snvs_rtc_read_time,
+ .set_time = snvs_rtc_set_time,
+ .read_alarm = snvs_rtc_read_alarm,
+ .set_alarm = snvs_rtc_set_alarm,
+ .alarm_irq_enable = snvs_rtc_alarm_irq_enable,
+};
+
+static irqreturn_t snvs_rtc_irq_handler(int irq, void *dev_id)
+{
+ struct device *dev = dev_id;
+ struct snvs_rtc_data *data = dev_get_drvdata(dev);
+ u32 lpsr;
+ u32 events = 0;
+
+ if (data->clk)
+ clk_enable(data->clk);
+
+ regmap_read(data->regmap, data->offset + SNVS_LPSR, &lpsr);
+
+ if (lpsr & SNVS_LPSR_LPTA) {
+ events |= (RTC_AF | RTC_IRQF);
+
+ /* RTC alarm should be one-shot */
+ snvs_rtc_alarm_irq_enable(dev, 0);
+
+ rtc_update_irq(data->rtc, 1, events);
+ }
+
+ /* clear interrupt status */
+ regmap_write(data->regmap, data->offset + SNVS_LPSR, lpsr);
+
+ if (data->clk)
+ clk_disable(data->clk);
+
+ return events ? IRQ_HANDLED : IRQ_NONE;
+}
+
+static const struct regmap_config snvs_rtc_config = {
+ .reg_bits = 32,
+ .val_bits = 32,
+ .reg_stride = 4,
+};
+
+static void snvs_rtc_action(void *data)
+{
+ if (data)
+ clk_disable_unprepare(data);
+}
+
+static int snvs_rtc_probe(struct platform_device *pdev)
+{
+ struct snvs_rtc_data *data;
+ int ret;
+ void __iomem *mmio;
+
+ data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
+ if (!data)
+ return -ENOMEM;
+
+ data->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(data->rtc))
+ return PTR_ERR(data->rtc);
+
+ data->regmap = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "regmap");
+
+ if (IS_ERR(data->regmap)) {
+ dev_warn(&pdev->dev, "snvs rtc: you use old dts file, please update it\n");
+
+ mmio = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(mmio))
+ return PTR_ERR(mmio);
+
+ data->regmap = devm_regmap_init_mmio(&pdev->dev, mmio, &snvs_rtc_config);
+ } else {
+ data->offset = SNVS_LPREGISTER_OFFSET;
+ of_property_read_u32(pdev->dev.of_node, "offset", &data->offset);
+ }
+
+ if (IS_ERR(data->regmap)) {
+ dev_err(&pdev->dev, "Can't find snvs syscon\n");
+ return -ENODEV;
+ }
+
+ data->irq = platform_get_irq(pdev, 0);
+ if (data->irq < 0)
+ return data->irq;
+
+ data->clk = devm_clk_get(&pdev->dev, "snvs-rtc");
+ if (IS_ERR(data->clk)) {
+ data->clk = NULL;
+ } else {
+ ret = clk_prepare_enable(data->clk);
+ if (ret) {
+ dev_err(&pdev->dev,
+ "Could not prepare or enable the snvs clock\n");
+ return ret;
+ }
+ }
+
+ ret = devm_add_action_or_reset(&pdev->dev, snvs_rtc_action, data->clk);
+ if (ret)
+ return ret;
+
+ platform_set_drvdata(pdev, data);
+
+ /* Initialize glitch detect */
+ regmap_write(data->regmap, data->offset + SNVS_LPPGDR, SNVS_LPPGDR_INIT);
+
+ /* Clear interrupt status */
+ regmap_write(data->regmap, data->offset + SNVS_LPSR, 0xffffffff);
+
+ /* Enable RTC */
+ ret = snvs_rtc_enable(data, true);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to enable rtc %d\n", ret);
+ return ret;
+ }
+
+ device_init_wakeup(&pdev->dev, true);
+ ret = dev_pm_set_wake_irq(&pdev->dev, data->irq);
+ if (ret)
+ dev_err(&pdev->dev, "failed to enable irq wake\n");
+
+ ret = devm_request_irq(&pdev->dev, data->irq, snvs_rtc_irq_handler,
+ IRQF_SHARED, "rtc alarm", &pdev->dev);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to request irq %d: %d\n",
+ data->irq, ret);
+ return ret;
+ }
+
+ data->rtc->ops = &snvs_rtc_ops;
+ data->rtc->range_max = U32_MAX;
+
+ return rtc_register_device(data->rtc);
+}
+
+static int __maybe_unused snvs_rtc_suspend_noirq(struct device *dev)
+{
+ struct snvs_rtc_data *data = dev_get_drvdata(dev);
+
+ if (data->clk)
+ clk_disable(data->clk);
+
+ return 0;
+}
+
+static int __maybe_unused snvs_rtc_resume_noirq(struct device *dev)
+{
+ struct snvs_rtc_data *data = dev_get_drvdata(dev);
+
+ if (data->clk)
+ return clk_enable(data->clk);
+
+ return 0;
+}
+
+static const struct dev_pm_ops snvs_rtc_pm_ops = {
+ SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(snvs_rtc_suspend_noirq, snvs_rtc_resume_noirq)
+};
+
+static const struct of_device_id snvs_dt_ids[] = {
+ { .compatible = "fsl,sec-v4.0-mon-rtc-lp", },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, snvs_dt_ids);
+
+static struct platform_driver snvs_rtc_driver = {
+ .driver = {
+ .name = "snvs_rtc",
+ .pm = &snvs_rtc_pm_ops,
+ .of_match_table = snvs_dt_ids,
+ },
+ .probe = snvs_rtc_probe,
+};
+module_platform_driver(snvs_rtc_driver);
+
+MODULE_AUTHOR("Freescale Semiconductor, Inc.");
+MODULE_DESCRIPTION("Freescale SNVS RTC Driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-spear.c b/drivers/rtc/rtc-spear.c
new file mode 100644
index 000000000..833daeb7b
--- /dev/null
+++ b/drivers/rtc/rtc-spear.c
@@ -0,0 +1,494 @@
+/*
+ * drivers/rtc/rtc-spear.c
+ *
+ * Copyright (C) 2010 ST Microelectronics
+ * Rajeev Kumar<rajeev-dlh.kumar@st.com>
+ *
+ * This file is licensed under the terms of the GNU General Public
+ * License version 2. This program is licensed "as is" without any
+ * warranty of any kind, whether express or implied.
+ */
+
+#include <linux/bcd.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/irq.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+
+/* RTC registers */
+#define TIME_REG 0x00
+#define DATE_REG 0x04
+#define ALARM_TIME_REG 0x08
+#define ALARM_DATE_REG 0x0C
+#define CTRL_REG 0x10
+#define STATUS_REG 0x14
+
+/* TIME_REG & ALARM_TIME_REG */
+#define SECONDS_UNITS (0xf<<0) /* seconds units position */
+#define SECONDS_TENS (0x7<<4) /* seconds tens position */
+#define MINUTES_UNITS (0xf<<8) /* minutes units position */
+#define MINUTES_TENS (0x7<<12) /* minutes tens position */
+#define HOURS_UNITS (0xf<<16) /* hours units position */
+#define HOURS_TENS (0x3<<20) /* hours tens position */
+
+/* DATE_REG & ALARM_DATE_REG */
+#define DAYS_UNITS (0xf<<0) /* days units position */
+#define DAYS_TENS (0x3<<4) /* days tens position */
+#define MONTHS_UNITS (0xf<<8) /* months units position */
+#define MONTHS_TENS (0x1<<12) /* months tens position */
+#define YEARS_UNITS (0xf<<16) /* years units position */
+#define YEARS_TENS (0xf<<20) /* years tens position */
+#define YEARS_HUNDREDS (0xf<<24) /* years hundereds position */
+#define YEARS_MILLENIUMS (0xf<<28) /* years millenium position */
+
+/* MASK SHIFT TIME_REG & ALARM_TIME_REG*/
+#define SECOND_SHIFT 0x00 /* seconds units */
+#define MINUTE_SHIFT 0x08 /* minutes units position */
+#define HOUR_SHIFT 0x10 /* hours units position */
+#define MDAY_SHIFT 0x00 /* Month day shift */
+#define MONTH_SHIFT 0x08 /* Month shift */
+#define YEAR_SHIFT 0x10 /* Year shift */
+
+#define SECOND_MASK 0x7F
+#define MIN_MASK 0x7F
+#define HOUR_MASK 0x3F
+#define DAY_MASK 0x3F
+#define MONTH_MASK 0x7F
+#define YEAR_MASK 0xFFFF
+
+/* date reg equal to time reg, for debug only */
+#define TIME_BYP (1<<9)
+#define INT_ENABLE (1<<31) /* interrupt enable */
+
+/* STATUS_REG */
+#define CLK_UNCONNECTED (1<<0)
+#define PEND_WR_TIME (1<<2)
+#define PEND_WR_DATE (1<<3)
+#define LOST_WR_TIME (1<<4)
+#define LOST_WR_DATE (1<<5)
+#define RTC_INT_MASK (1<<31)
+#define STATUS_BUSY (PEND_WR_TIME | PEND_WR_DATE)
+#define STATUS_FAIL (LOST_WR_TIME | LOST_WR_DATE)
+
+struct spear_rtc_config {
+ struct rtc_device *rtc;
+ struct clk *clk;
+ spinlock_t lock;
+ void __iomem *ioaddr;
+ unsigned int irq_wake;
+};
+
+static inline void spear_rtc_clear_interrupt(struct spear_rtc_config *config)
+{
+ unsigned int val;
+ unsigned long flags;
+
+ spin_lock_irqsave(&config->lock, flags);
+ val = readl(config->ioaddr + STATUS_REG);
+ val |= RTC_INT_MASK;
+ writel(val, config->ioaddr + STATUS_REG);
+ spin_unlock_irqrestore(&config->lock, flags);
+}
+
+static inline void spear_rtc_enable_interrupt(struct spear_rtc_config *config)
+{
+ unsigned int val;
+
+ val = readl(config->ioaddr + CTRL_REG);
+ if (!(val & INT_ENABLE)) {
+ spear_rtc_clear_interrupt(config);
+ val |= INT_ENABLE;
+ writel(val, config->ioaddr + CTRL_REG);
+ }
+}
+
+static inline void spear_rtc_disable_interrupt(struct spear_rtc_config *config)
+{
+ unsigned int val;
+
+ val = readl(config->ioaddr + CTRL_REG);
+ if (val & INT_ENABLE) {
+ val &= ~INT_ENABLE;
+ writel(val, config->ioaddr + CTRL_REG);
+ }
+}
+
+static inline int is_write_complete(struct spear_rtc_config *config)
+{
+ int ret = 0;
+ unsigned long flags;
+
+ spin_lock_irqsave(&config->lock, flags);
+ if ((readl(config->ioaddr + STATUS_REG)) & STATUS_FAIL)
+ ret = -EIO;
+ spin_unlock_irqrestore(&config->lock, flags);
+
+ return ret;
+}
+
+static void rtc_wait_not_busy(struct spear_rtc_config *config)
+{
+ int status, count = 0;
+ unsigned long flags;
+
+ /* Assuming BUSY may stay active for 80 msec) */
+ for (count = 0; count < 80; count++) {
+ spin_lock_irqsave(&config->lock, flags);
+ status = readl(config->ioaddr + STATUS_REG);
+ spin_unlock_irqrestore(&config->lock, flags);
+ if ((status & STATUS_BUSY) == 0)
+ break;
+ /* check status busy, after each msec */
+ msleep(1);
+ }
+}
+
+static irqreturn_t spear_rtc_irq(int irq, void *dev_id)
+{
+ struct spear_rtc_config *config = dev_id;
+ unsigned long flags, events = 0;
+ unsigned int irq_data;
+
+ spin_lock_irqsave(&config->lock, flags);
+ irq_data = readl(config->ioaddr + STATUS_REG);
+ spin_unlock_irqrestore(&config->lock, flags);
+
+ if ((irq_data & RTC_INT_MASK)) {
+ spear_rtc_clear_interrupt(config);
+ events = RTC_IRQF | RTC_AF;
+ rtc_update_irq(config->rtc, 1, events);
+ return IRQ_HANDLED;
+ } else
+ return IRQ_NONE;
+
+}
+
+static void tm2bcd(struct rtc_time *tm)
+{
+ tm->tm_sec = bin2bcd(tm->tm_sec);
+ tm->tm_min = bin2bcd(tm->tm_min);
+ tm->tm_hour = bin2bcd(tm->tm_hour);
+ tm->tm_mday = bin2bcd(tm->tm_mday);
+ tm->tm_mon = bin2bcd(tm->tm_mon + 1);
+ tm->tm_year = bin2bcd(tm->tm_year);
+}
+
+static void bcd2tm(struct rtc_time *tm)
+{
+ tm->tm_sec = bcd2bin(tm->tm_sec);
+ tm->tm_min = bcd2bin(tm->tm_min);
+ tm->tm_hour = bcd2bin(tm->tm_hour);
+ tm->tm_mday = bcd2bin(tm->tm_mday);
+ tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
+ /* epoch == 1900 */
+ tm->tm_year = bcd2bin(tm->tm_year);
+}
+
+/*
+ * spear_rtc_read_time - set the time
+ * @dev: rtc device in use
+ * @tm: holds date and time
+ *
+ * This function read time and date. On success it will return 0
+ * otherwise -ve error is returned.
+ */
+static int spear_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct spear_rtc_config *config = dev_get_drvdata(dev);
+ unsigned int time, date;
+
+ /* we don't report wday/yday/isdst ... */
+ rtc_wait_not_busy(config);
+
+ time = readl(config->ioaddr + TIME_REG);
+ date = readl(config->ioaddr + DATE_REG);
+ tm->tm_sec = (time >> SECOND_SHIFT) & SECOND_MASK;
+ tm->tm_min = (time >> MINUTE_SHIFT) & MIN_MASK;
+ tm->tm_hour = (time >> HOUR_SHIFT) & HOUR_MASK;
+ tm->tm_mday = (date >> MDAY_SHIFT) & DAY_MASK;
+ tm->tm_mon = (date >> MONTH_SHIFT) & MONTH_MASK;
+ tm->tm_year = (date >> YEAR_SHIFT) & YEAR_MASK;
+
+ bcd2tm(tm);
+ return 0;
+}
+
+/*
+ * spear_rtc_set_time - set the time
+ * @dev: rtc device in use
+ * @tm: holds date and time
+ *
+ * This function set time and date. On success it will return 0
+ * otherwise -ve error is returned.
+ */
+static int spear_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct spear_rtc_config *config = dev_get_drvdata(dev);
+ unsigned int time, date;
+
+ tm2bcd(tm);
+
+ rtc_wait_not_busy(config);
+ time = (tm->tm_sec << SECOND_SHIFT) | (tm->tm_min << MINUTE_SHIFT) |
+ (tm->tm_hour << HOUR_SHIFT);
+ date = (tm->tm_mday << MDAY_SHIFT) | (tm->tm_mon << MONTH_SHIFT) |
+ (tm->tm_year << YEAR_SHIFT);
+ writel(time, config->ioaddr + TIME_REG);
+ writel(date, config->ioaddr + DATE_REG);
+
+ return is_write_complete(config);
+}
+
+/*
+ * spear_rtc_read_alarm - read the alarm time
+ * @dev: rtc device in use
+ * @alm: holds alarm date and time
+ *
+ * This function read alarm time and date. On success it will return 0
+ * otherwise -ve error is returned.
+ */
+static int spear_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct spear_rtc_config *config = dev_get_drvdata(dev);
+ unsigned int time, date;
+
+ rtc_wait_not_busy(config);
+
+ time = readl(config->ioaddr + ALARM_TIME_REG);
+ date = readl(config->ioaddr + ALARM_DATE_REG);
+ alm->time.tm_sec = (time >> SECOND_SHIFT) & SECOND_MASK;
+ alm->time.tm_min = (time >> MINUTE_SHIFT) & MIN_MASK;
+ alm->time.tm_hour = (time >> HOUR_SHIFT) & HOUR_MASK;
+ alm->time.tm_mday = (date >> MDAY_SHIFT) & DAY_MASK;
+ alm->time.tm_mon = (date >> MONTH_SHIFT) & MONTH_MASK;
+ alm->time.tm_year = (date >> YEAR_SHIFT) & YEAR_MASK;
+
+ bcd2tm(&alm->time);
+ alm->enabled = readl(config->ioaddr + CTRL_REG) & INT_ENABLE;
+
+ return 0;
+}
+
+/*
+ * spear_rtc_set_alarm - set the alarm time
+ * @dev: rtc device in use
+ * @alm: holds alarm date and time
+ *
+ * This function set alarm time and date. On success it will return 0
+ * otherwise -ve error is returned.
+ */
+static int spear_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct spear_rtc_config *config = dev_get_drvdata(dev);
+ unsigned int time, date;
+ int err;
+
+ tm2bcd(&alm->time);
+
+ rtc_wait_not_busy(config);
+
+ time = (alm->time.tm_sec << SECOND_SHIFT) | (alm->time.tm_min <<
+ MINUTE_SHIFT) | (alm->time.tm_hour << HOUR_SHIFT);
+ date = (alm->time.tm_mday << MDAY_SHIFT) | (alm->time.tm_mon <<
+ MONTH_SHIFT) | (alm->time.tm_year << YEAR_SHIFT);
+
+ writel(time, config->ioaddr + ALARM_TIME_REG);
+ writel(date, config->ioaddr + ALARM_DATE_REG);
+ err = is_write_complete(config);
+ if (err < 0)
+ return err;
+
+ if (alm->enabled)
+ spear_rtc_enable_interrupt(config);
+ else
+ spear_rtc_disable_interrupt(config);
+
+ return 0;
+}
+
+static int spear_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct spear_rtc_config *config = dev_get_drvdata(dev);
+ int ret = 0;
+
+ spear_rtc_clear_interrupt(config);
+
+ switch (enabled) {
+ case 0:
+ /* alarm off */
+ spear_rtc_disable_interrupt(config);
+ break;
+ case 1:
+ /* alarm on */
+ spear_rtc_enable_interrupt(config);
+ break;
+ default:
+ ret = -EINVAL;
+ break;
+ }
+
+ return ret;
+}
+
+static const struct rtc_class_ops spear_rtc_ops = {
+ .read_time = spear_rtc_read_time,
+ .set_time = spear_rtc_set_time,
+ .read_alarm = spear_rtc_read_alarm,
+ .set_alarm = spear_rtc_set_alarm,
+ .alarm_irq_enable = spear_alarm_irq_enable,
+};
+
+static int spear_rtc_probe(struct platform_device *pdev)
+{
+ struct spear_rtc_config *config;
+ int status = 0;
+ int irq;
+
+ config = devm_kzalloc(&pdev->dev, sizeof(*config), GFP_KERNEL);
+ if (!config)
+ return -ENOMEM;
+
+ /* alarm irqs */
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return irq;
+
+ status = devm_request_irq(&pdev->dev, irq, spear_rtc_irq, 0, pdev->name,
+ config);
+ if (status) {
+ dev_err(&pdev->dev, "Alarm interrupt IRQ%d already claimed\n",
+ irq);
+ return status;
+ }
+
+ config->ioaddr = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(config->ioaddr))
+ return PTR_ERR(config->ioaddr);
+
+ config->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(config->clk))
+ return PTR_ERR(config->clk);
+
+ status = clk_prepare_enable(config->clk);
+ if (status < 0)
+ return status;
+
+ spin_lock_init(&config->lock);
+ platform_set_drvdata(pdev, config);
+
+ config->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
+ &spear_rtc_ops, THIS_MODULE);
+ if (IS_ERR(config->rtc)) {
+ dev_err(&pdev->dev, "can't register RTC device, err %ld\n",
+ PTR_ERR(config->rtc));
+ status = PTR_ERR(config->rtc);
+ goto err_disable_clock;
+ }
+
+ config->rtc->uie_unsupported = 1;
+
+ if (!device_can_wakeup(&pdev->dev))
+ device_init_wakeup(&pdev->dev, 1);
+
+ return 0;
+
+err_disable_clock:
+ clk_disable_unprepare(config->clk);
+
+ return status;
+}
+
+static int spear_rtc_remove(struct platform_device *pdev)
+{
+ struct spear_rtc_config *config = platform_get_drvdata(pdev);
+
+ spear_rtc_disable_interrupt(config);
+ clk_disable_unprepare(config->clk);
+ device_init_wakeup(&pdev->dev, 0);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int spear_rtc_suspend(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct spear_rtc_config *config = platform_get_drvdata(pdev);
+ int irq;
+
+ irq = platform_get_irq(pdev, 0);
+ if (device_may_wakeup(&pdev->dev)) {
+ if (!enable_irq_wake(irq))
+ config->irq_wake = 1;
+ } else {
+ spear_rtc_disable_interrupt(config);
+ clk_disable(config->clk);
+ }
+
+ return 0;
+}
+
+static int spear_rtc_resume(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct spear_rtc_config *config = platform_get_drvdata(pdev);
+ int irq;
+
+ irq = platform_get_irq(pdev, 0);
+
+ if (device_may_wakeup(&pdev->dev)) {
+ if (config->irq_wake) {
+ disable_irq_wake(irq);
+ config->irq_wake = 0;
+ }
+ } else {
+ clk_enable(config->clk);
+ spear_rtc_enable_interrupt(config);
+ }
+
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(spear_rtc_pm_ops, spear_rtc_suspend, spear_rtc_resume);
+
+static void spear_rtc_shutdown(struct platform_device *pdev)
+{
+ struct spear_rtc_config *config = platform_get_drvdata(pdev);
+
+ spear_rtc_disable_interrupt(config);
+ clk_disable(config->clk);
+}
+
+#ifdef CONFIG_OF
+static const struct of_device_id spear_rtc_id_table[] = {
+ { .compatible = "st,spear600-rtc" },
+ {}
+};
+MODULE_DEVICE_TABLE(of, spear_rtc_id_table);
+#endif
+
+static struct platform_driver spear_rtc_driver = {
+ .probe = spear_rtc_probe,
+ .remove = spear_rtc_remove,
+ .shutdown = spear_rtc_shutdown,
+ .driver = {
+ .name = "rtc-spear",
+ .pm = &spear_rtc_pm_ops,
+ .of_match_table = of_match_ptr(spear_rtc_id_table),
+ },
+};
+
+module_platform_driver(spear_rtc_driver);
+
+MODULE_ALIAS("platform:rtc-spear");
+MODULE_AUTHOR("Rajeev Kumar <rajeev-dlh.kumar@st.com>");
+MODULE_DESCRIPTION("ST SPEAr Realtime Clock Driver (RTC)");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-st-lpc.c b/drivers/rtc/rtc-st-lpc.c
new file mode 100644
index 000000000..c4ea3f3f0
--- /dev/null
+++ b/drivers/rtc/rtc-st-lpc.c
@@ -0,0 +1,321 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * rtc-st-lpc.c - ST's LPC RTC, powered by the Low Power Timer
+ *
+ * Copyright (C) 2014 STMicroelectronics Limited
+ *
+ * Author: David Paris <david.paris@st.com> for STMicroelectronics
+ * Lee Jones <lee.jones@linaro.org> for STMicroelectronics
+ *
+ * Based on the original driver written by Stuart Menefy.
+ */
+
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/irq.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_irq.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+
+#include <dt-bindings/mfd/st-lpc.h>
+
+/* Low Power Timer */
+#define LPC_LPT_LSB_OFF 0x400
+#define LPC_LPT_MSB_OFF 0x404
+#define LPC_LPT_START_OFF 0x408
+
+/* Low Power Alarm */
+#define LPC_LPA_LSB_OFF 0x410
+#define LPC_LPA_MSB_OFF 0x414
+#define LPC_LPA_START_OFF 0x418
+
+/* LPC as WDT */
+#define LPC_WDT_OFF 0x510
+#define LPC_WDT_FLAG_OFF 0x514
+
+struct st_rtc {
+ struct rtc_device *rtc_dev;
+ struct rtc_wkalrm alarm;
+ struct clk *clk;
+ unsigned long clkrate;
+ void __iomem *ioaddr;
+ bool irq_enabled:1;
+ spinlock_t lock;
+ short irq;
+};
+
+static void st_rtc_set_hw_alarm(struct st_rtc *rtc,
+ unsigned long msb, unsigned long lsb)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&rtc->lock, flags);
+
+ writel_relaxed(1, rtc->ioaddr + LPC_WDT_OFF);
+
+ writel_relaxed(msb, rtc->ioaddr + LPC_LPA_MSB_OFF);
+ writel_relaxed(lsb, rtc->ioaddr + LPC_LPA_LSB_OFF);
+ writel_relaxed(1, rtc->ioaddr + LPC_LPA_START_OFF);
+
+ writel_relaxed(0, rtc->ioaddr + LPC_WDT_OFF);
+
+ spin_unlock_irqrestore(&rtc->lock, flags);
+}
+
+static irqreturn_t st_rtc_handler(int this_irq, void *data)
+{
+ struct st_rtc *rtc = (struct st_rtc *)data;
+
+ rtc_update_irq(rtc->rtc_dev, 1, RTC_AF);
+
+ return IRQ_HANDLED;
+}
+
+static int st_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct st_rtc *rtc = dev_get_drvdata(dev);
+ unsigned long lpt_lsb, lpt_msb;
+ unsigned long long lpt;
+ unsigned long flags;
+
+ spin_lock_irqsave(&rtc->lock, flags);
+
+ do {
+ lpt_msb = readl_relaxed(rtc->ioaddr + LPC_LPT_MSB_OFF);
+ lpt_lsb = readl_relaxed(rtc->ioaddr + LPC_LPT_LSB_OFF);
+ } while (readl_relaxed(rtc->ioaddr + LPC_LPT_MSB_OFF) != lpt_msb);
+
+ spin_unlock_irqrestore(&rtc->lock, flags);
+
+ lpt = ((unsigned long long)lpt_msb << 32) | lpt_lsb;
+ do_div(lpt, rtc->clkrate);
+ rtc_time64_to_tm(lpt, tm);
+
+ return 0;
+}
+
+static int st_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct st_rtc *rtc = dev_get_drvdata(dev);
+ unsigned long long lpt, secs;
+ unsigned long flags;
+
+ secs = rtc_tm_to_time64(tm);
+
+ lpt = (unsigned long long)secs * rtc->clkrate;
+
+ spin_lock_irqsave(&rtc->lock, flags);
+
+ writel_relaxed(lpt >> 32, rtc->ioaddr + LPC_LPT_MSB_OFF);
+ writel_relaxed(lpt, rtc->ioaddr + LPC_LPT_LSB_OFF);
+ writel_relaxed(1, rtc->ioaddr + LPC_LPT_START_OFF);
+
+ spin_unlock_irqrestore(&rtc->lock, flags);
+
+ return 0;
+}
+
+static int st_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
+{
+ struct st_rtc *rtc = dev_get_drvdata(dev);
+ unsigned long flags;
+
+ spin_lock_irqsave(&rtc->lock, flags);
+
+ memcpy(wkalrm, &rtc->alarm, sizeof(struct rtc_wkalrm));
+
+ spin_unlock_irqrestore(&rtc->lock, flags);
+
+ return 0;
+}
+
+static int st_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct st_rtc *rtc = dev_get_drvdata(dev);
+
+ if (enabled && !rtc->irq_enabled) {
+ enable_irq(rtc->irq);
+ rtc->irq_enabled = true;
+ } else if (!enabled && rtc->irq_enabled) {
+ disable_irq(rtc->irq);
+ rtc->irq_enabled = false;
+ }
+
+ return 0;
+}
+
+static int st_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *t)
+{
+ struct st_rtc *rtc = dev_get_drvdata(dev);
+ struct rtc_time now;
+ unsigned long long now_secs;
+ unsigned long long alarm_secs;
+ unsigned long long lpa;
+
+ st_rtc_read_time(dev, &now);
+ now_secs = rtc_tm_to_time64(&now);
+ alarm_secs = rtc_tm_to_time64(&t->time);
+
+ memcpy(&rtc->alarm, t, sizeof(struct rtc_wkalrm));
+
+ /* Now many secs to fire */
+ alarm_secs -= now_secs;
+ lpa = (unsigned long long)alarm_secs * rtc->clkrate;
+
+ st_rtc_set_hw_alarm(rtc, lpa >> 32, lpa);
+ st_rtc_alarm_irq_enable(dev, t->enabled);
+
+ return 0;
+}
+
+static const struct rtc_class_ops st_rtc_ops = {
+ .read_time = st_rtc_read_time,
+ .set_time = st_rtc_set_time,
+ .read_alarm = st_rtc_read_alarm,
+ .set_alarm = st_rtc_set_alarm,
+ .alarm_irq_enable = st_rtc_alarm_irq_enable,
+};
+
+static int st_rtc_probe(struct platform_device *pdev)
+{
+ struct device_node *np = pdev->dev.of_node;
+ struct st_rtc *rtc;
+ uint32_t mode;
+ int ret = 0;
+
+ ret = of_property_read_u32(np, "st,lpc-mode", &mode);
+ if (ret) {
+ dev_err(&pdev->dev, "An LPC mode must be provided\n");
+ return -EINVAL;
+ }
+
+ /* LPC can either run as a Clocksource or in RTC or WDT mode */
+ if (mode != ST_LPC_MODE_RTC)
+ return -ENODEV;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(struct st_rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc->rtc_dev))
+ return PTR_ERR(rtc->rtc_dev);
+
+ spin_lock_init(&rtc->lock);
+
+ rtc->ioaddr = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(rtc->ioaddr))
+ return PTR_ERR(rtc->ioaddr);
+
+ rtc->irq = irq_of_parse_and_map(np, 0);
+ if (!rtc->irq) {
+ dev_err(&pdev->dev, "IRQ missing or invalid\n");
+ return -EINVAL;
+ }
+
+ ret = devm_request_irq(&pdev->dev, rtc->irq, st_rtc_handler, 0,
+ pdev->name, rtc);
+ if (ret) {
+ dev_err(&pdev->dev, "Failed to request irq %i\n", rtc->irq);
+ return ret;
+ }
+
+ enable_irq_wake(rtc->irq);
+ disable_irq(rtc->irq);
+
+ rtc->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(rtc->clk)) {
+ dev_err(&pdev->dev, "Unable to request clock\n");
+ return PTR_ERR(rtc->clk);
+ }
+
+ clk_prepare_enable(rtc->clk);
+
+ rtc->clkrate = clk_get_rate(rtc->clk);
+ if (!rtc->clkrate) {
+ clk_disable_unprepare(rtc->clk);
+ dev_err(&pdev->dev, "Unable to fetch clock rate\n");
+ return -EINVAL;
+ }
+
+ device_set_wakeup_capable(&pdev->dev, 1);
+
+ platform_set_drvdata(pdev, rtc);
+
+ rtc->rtc_dev->ops = &st_rtc_ops;
+ rtc->rtc_dev->range_max = U64_MAX;
+ do_div(rtc->rtc_dev->range_max, rtc->clkrate);
+
+ ret = rtc_register_device(rtc->rtc_dev);
+ if (ret) {
+ clk_disable_unprepare(rtc->clk);
+ return ret;
+ }
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int st_rtc_suspend(struct device *dev)
+{
+ struct st_rtc *rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ return 0;
+
+ writel_relaxed(1, rtc->ioaddr + LPC_WDT_OFF);
+ writel_relaxed(0, rtc->ioaddr + LPC_LPA_START_OFF);
+ writel_relaxed(0, rtc->ioaddr + LPC_WDT_OFF);
+
+ return 0;
+}
+
+static int st_rtc_resume(struct device *dev)
+{
+ struct st_rtc *rtc = dev_get_drvdata(dev);
+
+ rtc_alarm_irq_enable(rtc->rtc_dev, 0);
+
+ /*
+ * clean 'rtc->alarm' to allow a new
+ * .set_alarm to the upper RTC layer
+ */
+ memset(&rtc->alarm, 0, sizeof(struct rtc_wkalrm));
+
+ writel_relaxed(0, rtc->ioaddr + LPC_LPA_MSB_OFF);
+ writel_relaxed(0, rtc->ioaddr + LPC_LPA_LSB_OFF);
+ writel_relaxed(1, rtc->ioaddr + LPC_WDT_OFF);
+ writel_relaxed(1, rtc->ioaddr + LPC_LPA_START_OFF);
+ writel_relaxed(0, rtc->ioaddr + LPC_WDT_OFF);
+
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(st_rtc_pm_ops, st_rtc_suspend, st_rtc_resume);
+
+static const struct of_device_id st_rtc_match[] = {
+ { .compatible = "st,stih407-lpc" },
+ {}
+};
+MODULE_DEVICE_TABLE(of, st_rtc_match);
+
+static struct platform_driver st_rtc_platform_driver = {
+ .driver = {
+ .name = "st-lpc-rtc",
+ .pm = &st_rtc_pm_ops,
+ .of_match_table = st_rtc_match,
+ },
+ .probe = st_rtc_probe,
+};
+
+module_platform_driver(st_rtc_platform_driver);
+
+MODULE_DESCRIPTION("STMicroelectronics LPC RTC driver");
+MODULE_AUTHOR("David Paris <david.paris@st.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-starfire.c b/drivers/rtc/rtc-starfire.c
new file mode 100644
index 000000000..37a26279e
--- /dev/null
+++ b/drivers/rtc/rtc-starfire.c
@@ -0,0 +1,60 @@
+/* rtc-starfire.c: Starfire platform RTC driver.
+ *
+ * Author: David S. Miller
+ * License: GPL
+ *
+ * Copyright (C) 2008 David S. Miller <davem@davemloft.net>
+ */
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+
+#include <asm/oplib.h>
+
+static u32 starfire_get_time(void)
+{
+ static char obp_gettod[32];
+ static u32 unix_tod;
+
+ sprintf(obp_gettod, "h# %08x unix-gettod",
+ (unsigned int) (long) &unix_tod);
+ prom_feval(obp_gettod);
+
+ return unix_tod;
+}
+
+static int starfire_read_time(struct device *dev, struct rtc_time *tm)
+{
+ rtc_time64_to_tm(starfire_get_time(), tm);
+ return 0;
+}
+
+static const struct rtc_class_ops starfire_rtc_ops = {
+ .read_time = starfire_read_time,
+};
+
+static int __init starfire_rtc_probe(struct platform_device *pdev)
+{
+ struct rtc_device *rtc;
+
+ rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ rtc->ops = &starfire_rtc_ops;
+ rtc->range_max = U32_MAX;
+
+ platform_set_drvdata(pdev, rtc);
+
+ return rtc_register_device(rtc);
+}
+
+static struct platform_driver starfire_rtc_driver = {
+ .driver = {
+ .name = "rtc-starfire",
+ },
+};
+
+builtin_platform_driver_probe(starfire_rtc_driver, starfire_rtc_probe);
diff --git a/drivers/rtc/rtc-stk17ta8.c b/drivers/rtc/rtc-stk17ta8.c
new file mode 100644
index 000000000..01a45044f
--- /dev/null
+++ b/drivers/rtc/rtc-stk17ta8.c
@@ -0,0 +1,338 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * A RTC driver for the Simtek STK17TA8
+ *
+ * By Thomas Hommel <thomas.hommel@ge.com>
+ *
+ * Based on the DS1553 driver from
+ * Atsushi Nemoto <anemo@mba.ocn.ne.jp>
+ */
+
+#include <linux/bcd.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/gfp.h>
+#include <linux/delay.h>
+#include <linux/jiffies.h>
+#include <linux/interrupt.h>
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+#include <linux/io.h>
+#include <linux/module.h>
+
+#define RTC_REG_SIZE 0x20000
+#define RTC_OFFSET 0x1fff0
+
+#define RTC_FLAGS (RTC_OFFSET + 0)
+#define RTC_CENTURY (RTC_OFFSET + 1)
+#define RTC_SECONDS_ALARM (RTC_OFFSET + 2)
+#define RTC_MINUTES_ALARM (RTC_OFFSET + 3)
+#define RTC_HOURS_ALARM (RTC_OFFSET + 4)
+#define RTC_DATE_ALARM (RTC_OFFSET + 5)
+#define RTC_INTERRUPTS (RTC_OFFSET + 6)
+#define RTC_WATCHDOG (RTC_OFFSET + 7)
+#define RTC_CALIBRATION (RTC_OFFSET + 8)
+#define RTC_SECONDS (RTC_OFFSET + 9)
+#define RTC_MINUTES (RTC_OFFSET + 10)
+#define RTC_HOURS (RTC_OFFSET + 11)
+#define RTC_DAY (RTC_OFFSET + 12)
+#define RTC_DATE (RTC_OFFSET + 13)
+#define RTC_MONTH (RTC_OFFSET + 14)
+#define RTC_YEAR (RTC_OFFSET + 15)
+
+#define RTC_SECONDS_MASK 0x7f
+#define RTC_DAY_MASK 0x07
+#define RTC_CAL_MASK 0x3f
+
+/* Bits in the Calibration register */
+#define RTC_STOP 0x80
+
+/* Bits in the Flags register */
+#define RTC_FLAGS_AF 0x40
+#define RTC_FLAGS_PF 0x20
+#define RTC_WRITE 0x02
+#define RTC_READ 0x01
+
+/* Bits in the Interrupts register */
+#define RTC_INTS_AIE 0x40
+
+struct rtc_plat_data {
+ struct rtc_device *rtc;
+ void __iomem *ioaddr;
+ unsigned long last_jiffies;
+ int irq;
+ unsigned int irqen;
+ int alrm_sec;
+ int alrm_min;
+ int alrm_hour;
+ int alrm_mday;
+ spinlock_t lock;
+};
+
+static int stk17ta8_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+ void __iomem *ioaddr = pdata->ioaddr;
+ u8 flags;
+
+ flags = readb(pdata->ioaddr + RTC_FLAGS);
+ writeb(flags | RTC_WRITE, pdata->ioaddr + RTC_FLAGS);
+
+ writeb(bin2bcd(tm->tm_year % 100), ioaddr + RTC_YEAR);
+ writeb(bin2bcd(tm->tm_mon + 1), ioaddr + RTC_MONTH);
+ writeb(bin2bcd(tm->tm_wday) & RTC_DAY_MASK, ioaddr + RTC_DAY);
+ writeb(bin2bcd(tm->tm_mday), ioaddr + RTC_DATE);
+ writeb(bin2bcd(tm->tm_hour), ioaddr + RTC_HOURS);
+ writeb(bin2bcd(tm->tm_min), ioaddr + RTC_MINUTES);
+ writeb(bin2bcd(tm->tm_sec) & RTC_SECONDS_MASK, ioaddr + RTC_SECONDS);
+ writeb(bin2bcd((tm->tm_year + 1900) / 100), ioaddr + RTC_CENTURY);
+
+ writeb(flags & ~RTC_WRITE, pdata->ioaddr + RTC_FLAGS);
+ return 0;
+}
+
+static int stk17ta8_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+ void __iomem *ioaddr = pdata->ioaddr;
+ unsigned int year, month, day, hour, minute, second, week;
+ unsigned int century;
+ u8 flags;
+
+ /* give enough time to update RTC in case of continuous read */
+ if (pdata->last_jiffies == jiffies)
+ msleep(1);
+ pdata->last_jiffies = jiffies;
+
+ flags = readb(pdata->ioaddr + RTC_FLAGS);
+ writeb(flags | RTC_READ, ioaddr + RTC_FLAGS);
+ second = readb(ioaddr + RTC_SECONDS) & RTC_SECONDS_MASK;
+ minute = readb(ioaddr + RTC_MINUTES);
+ hour = readb(ioaddr + RTC_HOURS);
+ day = readb(ioaddr + RTC_DATE);
+ week = readb(ioaddr + RTC_DAY) & RTC_DAY_MASK;
+ month = readb(ioaddr + RTC_MONTH);
+ year = readb(ioaddr + RTC_YEAR);
+ century = readb(ioaddr + RTC_CENTURY);
+ writeb(flags & ~RTC_READ, ioaddr + RTC_FLAGS);
+ tm->tm_sec = bcd2bin(second);
+ tm->tm_min = bcd2bin(minute);
+ tm->tm_hour = bcd2bin(hour);
+ tm->tm_mday = bcd2bin(day);
+ tm->tm_wday = bcd2bin(week);
+ tm->tm_mon = bcd2bin(month) - 1;
+ /* year is 1900 + tm->tm_year */
+ tm->tm_year = bcd2bin(year) + bcd2bin(century) * 100 - 1900;
+
+ return 0;
+}
+
+static void stk17ta8_rtc_update_alarm(struct rtc_plat_data *pdata)
+{
+ void __iomem *ioaddr = pdata->ioaddr;
+ unsigned long irqflags;
+ u8 flags;
+
+ spin_lock_irqsave(&pdata->lock, irqflags);
+
+ flags = readb(ioaddr + RTC_FLAGS);
+ writeb(flags | RTC_WRITE, ioaddr + RTC_FLAGS);
+
+ writeb(pdata->alrm_mday < 0 || (pdata->irqen & RTC_UF) ?
+ 0x80 : bin2bcd(pdata->alrm_mday),
+ ioaddr + RTC_DATE_ALARM);
+ writeb(pdata->alrm_hour < 0 || (pdata->irqen & RTC_UF) ?
+ 0x80 : bin2bcd(pdata->alrm_hour),
+ ioaddr + RTC_HOURS_ALARM);
+ writeb(pdata->alrm_min < 0 || (pdata->irqen & RTC_UF) ?
+ 0x80 : bin2bcd(pdata->alrm_min),
+ ioaddr + RTC_MINUTES_ALARM);
+ writeb(pdata->alrm_sec < 0 || (pdata->irqen & RTC_UF) ?
+ 0x80 : bin2bcd(pdata->alrm_sec),
+ ioaddr + RTC_SECONDS_ALARM);
+ writeb(pdata->irqen ? RTC_INTS_AIE : 0, ioaddr + RTC_INTERRUPTS);
+ readb(ioaddr + RTC_FLAGS); /* clear interrupts */
+ writeb(flags & ~RTC_WRITE, ioaddr + RTC_FLAGS);
+ spin_unlock_irqrestore(&pdata->lock, irqflags);
+}
+
+static int stk17ta8_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+
+ if (pdata->irq <= 0)
+ return -EINVAL;
+ pdata->alrm_mday = alrm->time.tm_mday;
+ pdata->alrm_hour = alrm->time.tm_hour;
+ pdata->alrm_min = alrm->time.tm_min;
+ pdata->alrm_sec = alrm->time.tm_sec;
+ if (alrm->enabled)
+ pdata->irqen |= RTC_AF;
+ stk17ta8_rtc_update_alarm(pdata);
+ return 0;
+}
+
+static int stk17ta8_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+
+ if (pdata->irq <= 0)
+ return -EINVAL;
+ alrm->time.tm_mday = pdata->alrm_mday < 0 ? 0 : pdata->alrm_mday;
+ alrm->time.tm_hour = pdata->alrm_hour < 0 ? 0 : pdata->alrm_hour;
+ alrm->time.tm_min = pdata->alrm_min < 0 ? 0 : pdata->alrm_min;
+ alrm->time.tm_sec = pdata->alrm_sec < 0 ? 0 : pdata->alrm_sec;
+ alrm->enabled = (pdata->irqen & RTC_AF) ? 1 : 0;
+ return 0;
+}
+
+static irqreturn_t stk17ta8_rtc_interrupt(int irq, void *dev_id)
+{
+ struct platform_device *pdev = dev_id;
+ struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
+ void __iomem *ioaddr = pdata->ioaddr;
+ unsigned long events = 0;
+
+ spin_lock(&pdata->lock);
+ /* read and clear interrupt */
+ if (readb(ioaddr + RTC_FLAGS) & RTC_FLAGS_AF) {
+ events = RTC_IRQF;
+ if (readb(ioaddr + RTC_SECONDS_ALARM) & 0x80)
+ events |= RTC_UF;
+ else
+ events |= RTC_AF;
+ rtc_update_irq(pdata->rtc, 1, events);
+ }
+ spin_unlock(&pdata->lock);
+ return events ? IRQ_HANDLED : IRQ_NONE;
+}
+
+static int stk17ta8_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct rtc_plat_data *pdata = dev_get_drvdata(dev);
+
+ if (pdata->irq <= 0)
+ return -EINVAL;
+ if (enabled)
+ pdata->irqen |= RTC_AF;
+ else
+ pdata->irqen &= ~RTC_AF;
+ stk17ta8_rtc_update_alarm(pdata);
+ return 0;
+}
+
+static const struct rtc_class_ops stk17ta8_rtc_ops = {
+ .read_time = stk17ta8_rtc_read_time,
+ .set_time = stk17ta8_rtc_set_time,
+ .read_alarm = stk17ta8_rtc_read_alarm,
+ .set_alarm = stk17ta8_rtc_set_alarm,
+ .alarm_irq_enable = stk17ta8_rtc_alarm_irq_enable,
+};
+
+static int stk17ta8_nvram_read(void *priv, unsigned int pos, void *val,
+ size_t bytes)
+{
+ struct rtc_plat_data *pdata = priv;
+ void __iomem *ioaddr = pdata->ioaddr;
+ u8 *buf = val;
+
+ for (; bytes; bytes--)
+ *buf++ = readb(ioaddr + pos++);
+ return 0;
+}
+
+static int stk17ta8_nvram_write(void *priv, unsigned int pos, void *val,
+ size_t bytes)
+{
+ struct rtc_plat_data *pdata = priv;
+ void __iomem *ioaddr = pdata->ioaddr;
+ u8 *buf = val;
+
+ for (; bytes; bytes--)
+ writeb(*buf++, ioaddr + pos++);
+ return 0;
+}
+
+static int stk17ta8_rtc_probe(struct platform_device *pdev)
+{
+ unsigned int cal;
+ unsigned int flags;
+ struct rtc_plat_data *pdata;
+ void __iomem *ioaddr;
+ int ret = 0;
+ struct nvmem_config nvmem_cfg = {
+ .name = "stk17ta8_nvram",
+ .word_size = 1,
+ .stride = 1,
+ .size = RTC_OFFSET,
+ .reg_read = stk17ta8_nvram_read,
+ .reg_write = stk17ta8_nvram_write,
+ };
+
+ pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
+ if (!pdata)
+ return -ENOMEM;
+
+ ioaddr = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(ioaddr))
+ return PTR_ERR(ioaddr);
+ pdata->ioaddr = ioaddr;
+ pdata->irq = platform_get_irq(pdev, 0);
+
+ /* turn RTC on if it was not on */
+ cal = readb(ioaddr + RTC_CALIBRATION);
+ if (cal & RTC_STOP) {
+ cal &= RTC_CAL_MASK;
+ flags = readb(ioaddr + RTC_FLAGS);
+ writeb(flags | RTC_WRITE, ioaddr + RTC_FLAGS);
+ writeb(cal, ioaddr + RTC_CALIBRATION);
+ writeb(flags & ~RTC_WRITE, ioaddr + RTC_FLAGS);
+ }
+ if (readb(ioaddr + RTC_FLAGS) & RTC_FLAGS_PF)
+ dev_warn(&pdev->dev, "voltage-low detected.\n");
+
+ spin_lock_init(&pdata->lock);
+ pdata->last_jiffies = jiffies;
+ platform_set_drvdata(pdev, pdata);
+ if (pdata->irq > 0) {
+ writeb(0, ioaddr + RTC_INTERRUPTS);
+ if (devm_request_irq(&pdev->dev, pdata->irq,
+ stk17ta8_rtc_interrupt,
+ IRQF_SHARED,
+ pdev->name, pdev) < 0) {
+ dev_warn(&pdev->dev, "interrupt not available.\n");
+ pdata->irq = 0;
+ }
+ }
+
+ pdata->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(pdata->rtc))
+ return PTR_ERR(pdata->rtc);
+
+ pdata->rtc->ops = &stk17ta8_rtc_ops;
+ pdata->rtc->nvram_old_abi = true;
+
+ nvmem_cfg.priv = pdata;
+ ret = rtc_nvmem_register(pdata->rtc, &nvmem_cfg);
+ if (ret)
+ return ret;
+
+ return rtc_register_device(pdata->rtc);
+}
+
+/* work with hotplug and coldplug */
+MODULE_ALIAS("platform:stk17ta8");
+
+static struct platform_driver stk17ta8_rtc_driver = {
+ .probe = stk17ta8_rtc_probe,
+ .driver = {
+ .name = "stk17ta8",
+ },
+};
+
+module_platform_driver(stk17ta8_rtc_driver);
+
+MODULE_AUTHOR("Thomas Hommel <thomas.hommel@ge.com>");
+MODULE_DESCRIPTION("Simtek STK17TA8 RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-stm32.c b/drivers/rtc/rtc-stm32.c
new file mode 100644
index 000000000..d096b58cd
--- /dev/null
+++ b/drivers/rtc/rtc-stm32.c
@@ -0,0 +1,933 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) STMicroelectronics 2017
+ * Author: Amelie Delaunay <amelie.delaunay@st.com>
+ */
+
+#include <linux/bcd.h>
+#include <linux/clk.h>
+#include <linux/iopoll.h>
+#include <linux/ioport.h>
+#include <linux/mfd/syscon.h>
+#include <linux/module.h>
+#include <linux/of_device.h>
+#include <linux/pm_wakeirq.h>
+#include <linux/regmap.h>
+#include <linux/rtc.h>
+
+#define DRIVER_NAME "stm32_rtc"
+
+/* STM32_RTC_TR bit fields */
+#define STM32_RTC_TR_SEC_SHIFT 0
+#define STM32_RTC_TR_SEC GENMASK(6, 0)
+#define STM32_RTC_TR_MIN_SHIFT 8
+#define STM32_RTC_TR_MIN GENMASK(14, 8)
+#define STM32_RTC_TR_HOUR_SHIFT 16
+#define STM32_RTC_TR_HOUR GENMASK(21, 16)
+
+/* STM32_RTC_DR bit fields */
+#define STM32_RTC_DR_DATE_SHIFT 0
+#define STM32_RTC_DR_DATE GENMASK(5, 0)
+#define STM32_RTC_DR_MONTH_SHIFT 8
+#define STM32_RTC_DR_MONTH GENMASK(12, 8)
+#define STM32_RTC_DR_WDAY_SHIFT 13
+#define STM32_RTC_DR_WDAY GENMASK(15, 13)
+#define STM32_RTC_DR_YEAR_SHIFT 16
+#define STM32_RTC_DR_YEAR GENMASK(23, 16)
+
+/* STM32_RTC_CR bit fields */
+#define STM32_RTC_CR_FMT BIT(6)
+#define STM32_RTC_CR_ALRAE BIT(8)
+#define STM32_RTC_CR_ALRAIE BIT(12)
+
+/* STM32_RTC_ISR/STM32_RTC_ICSR bit fields */
+#define STM32_RTC_ISR_ALRAWF BIT(0)
+#define STM32_RTC_ISR_INITS BIT(4)
+#define STM32_RTC_ISR_RSF BIT(5)
+#define STM32_RTC_ISR_INITF BIT(6)
+#define STM32_RTC_ISR_INIT BIT(7)
+#define STM32_RTC_ISR_ALRAF BIT(8)
+
+/* STM32_RTC_PRER bit fields */
+#define STM32_RTC_PRER_PRED_S_SHIFT 0
+#define STM32_RTC_PRER_PRED_S GENMASK(14, 0)
+#define STM32_RTC_PRER_PRED_A_SHIFT 16
+#define STM32_RTC_PRER_PRED_A GENMASK(22, 16)
+
+/* STM32_RTC_ALRMAR and STM32_RTC_ALRMBR bit fields */
+#define STM32_RTC_ALRMXR_SEC_SHIFT 0
+#define STM32_RTC_ALRMXR_SEC GENMASK(6, 0)
+#define STM32_RTC_ALRMXR_SEC_MASK BIT(7)
+#define STM32_RTC_ALRMXR_MIN_SHIFT 8
+#define STM32_RTC_ALRMXR_MIN GENMASK(14, 8)
+#define STM32_RTC_ALRMXR_MIN_MASK BIT(15)
+#define STM32_RTC_ALRMXR_HOUR_SHIFT 16
+#define STM32_RTC_ALRMXR_HOUR GENMASK(21, 16)
+#define STM32_RTC_ALRMXR_PM BIT(22)
+#define STM32_RTC_ALRMXR_HOUR_MASK BIT(23)
+#define STM32_RTC_ALRMXR_DATE_SHIFT 24
+#define STM32_RTC_ALRMXR_DATE GENMASK(29, 24)
+#define STM32_RTC_ALRMXR_WDSEL BIT(30)
+#define STM32_RTC_ALRMXR_WDAY_SHIFT 24
+#define STM32_RTC_ALRMXR_WDAY GENMASK(27, 24)
+#define STM32_RTC_ALRMXR_DATE_MASK BIT(31)
+
+/* STM32_RTC_SR/_SCR bit fields */
+#define STM32_RTC_SR_ALRA BIT(0)
+
+/* STM32_RTC_VERR bit fields */
+#define STM32_RTC_VERR_MINREV_SHIFT 0
+#define STM32_RTC_VERR_MINREV GENMASK(3, 0)
+#define STM32_RTC_VERR_MAJREV_SHIFT 4
+#define STM32_RTC_VERR_MAJREV GENMASK(7, 4)
+
+/* STM32_RTC_WPR key constants */
+#define RTC_WPR_1ST_KEY 0xCA
+#define RTC_WPR_2ND_KEY 0x53
+#define RTC_WPR_WRONG_KEY 0xFF
+
+/* Max STM32 RTC register offset is 0x3FC */
+#define UNDEF_REG 0xFFFF
+
+struct stm32_rtc;
+
+struct stm32_rtc_registers {
+ u16 tr;
+ u16 dr;
+ u16 cr;
+ u16 isr;
+ u16 prer;
+ u16 alrmar;
+ u16 wpr;
+ u16 sr;
+ u16 scr;
+ u16 verr;
+};
+
+struct stm32_rtc_events {
+ u32 alra;
+};
+
+struct stm32_rtc_data {
+ const struct stm32_rtc_registers regs;
+ const struct stm32_rtc_events events;
+ void (*clear_events)(struct stm32_rtc *rtc, unsigned int flags);
+ bool has_pclk;
+ bool need_dbp;
+ bool has_wakeirq;
+};
+
+struct stm32_rtc {
+ struct rtc_device *rtc_dev;
+ void __iomem *base;
+ struct regmap *dbp;
+ unsigned int dbp_reg;
+ unsigned int dbp_mask;
+ struct clk *pclk;
+ struct clk *rtc_ck;
+ const struct stm32_rtc_data *data;
+ int irq_alarm;
+ int wakeirq_alarm;
+};
+
+static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc)
+{
+ const struct stm32_rtc_registers *regs = &rtc->data->regs;
+
+ writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + regs->wpr);
+ writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + regs->wpr);
+}
+
+static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc)
+{
+ const struct stm32_rtc_registers *regs = &rtc->data->regs;
+
+ writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + regs->wpr);
+}
+
+static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc)
+{
+ const struct stm32_rtc_registers *regs = &rtc->data->regs;
+ unsigned int isr = readl_relaxed(rtc->base + regs->isr);
+
+ if (!(isr & STM32_RTC_ISR_INITF)) {
+ isr |= STM32_RTC_ISR_INIT;
+ writel_relaxed(isr, rtc->base + regs->isr);
+
+ /*
+ * It takes around 2 rtc_ck clock cycles to enter in
+ * initialization phase mode (and have INITF flag set). As
+ * slowest rtc_ck frequency may be 32kHz and highest should be
+ * 1MHz, we poll every 10 us with a timeout of 100ms.
+ */
+ return readl_relaxed_poll_timeout_atomic(
+ rtc->base + regs->isr,
+ isr, (isr & STM32_RTC_ISR_INITF),
+ 10, 100000);
+ }
+
+ return 0;
+}
+
+static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc)
+{
+ const struct stm32_rtc_registers *regs = &rtc->data->regs;
+ unsigned int isr = readl_relaxed(rtc->base + regs->isr);
+
+ isr &= ~STM32_RTC_ISR_INIT;
+ writel_relaxed(isr, rtc->base + regs->isr);
+}
+
+static int stm32_rtc_wait_sync(struct stm32_rtc *rtc)
+{
+ const struct stm32_rtc_registers *regs = &rtc->data->regs;
+ unsigned int isr = readl_relaxed(rtc->base + regs->isr);
+
+ isr &= ~STM32_RTC_ISR_RSF;
+ writel_relaxed(isr, rtc->base + regs->isr);
+
+ /*
+ * Wait for RSF to be set to ensure the calendar registers are
+ * synchronised, it takes around 2 rtc_ck clock cycles
+ */
+ return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
+ isr,
+ (isr & STM32_RTC_ISR_RSF),
+ 10, 100000);
+}
+
+static void stm32_rtc_clear_event_flags(struct stm32_rtc *rtc,
+ unsigned int flags)
+{
+ rtc->data->clear_events(rtc, flags);
+}
+
+static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id)
+{
+ struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id;
+ const struct stm32_rtc_registers *regs = &rtc->data->regs;
+ const struct stm32_rtc_events *evts = &rtc->data->events;
+ unsigned int status, cr;
+
+ mutex_lock(&rtc->rtc_dev->ops_lock);
+
+ status = readl_relaxed(rtc->base + regs->sr);
+ cr = readl_relaxed(rtc->base + regs->cr);
+
+ if ((status & evts->alra) &&
+ (cr & STM32_RTC_CR_ALRAIE)) {
+ /* Alarm A flag - Alarm interrupt */
+ dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n");
+
+ /* Pass event to the kernel */
+ rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
+
+ /* Clear event flags, otherwise new events won't be received */
+ stm32_rtc_clear_event_flags(rtc, evts->alra);
+ }
+
+ mutex_unlock(&rtc->rtc_dev->ops_lock);
+
+ return IRQ_HANDLED;
+}
+
+/* Convert rtc_time structure from bin to bcd format */
+static void tm2bcd(struct rtc_time *tm)
+{
+ tm->tm_sec = bin2bcd(tm->tm_sec);
+ tm->tm_min = bin2bcd(tm->tm_min);
+ tm->tm_hour = bin2bcd(tm->tm_hour);
+
+ tm->tm_mday = bin2bcd(tm->tm_mday);
+ tm->tm_mon = bin2bcd(tm->tm_mon + 1);
+ tm->tm_year = bin2bcd(tm->tm_year - 100);
+ /*
+ * Number of days since Sunday
+ * - on kernel side, 0=Sunday...6=Saturday
+ * - on rtc side, 0=invalid,1=Monday...7=Sunday
+ */
+ tm->tm_wday = (!tm->tm_wday) ? 7 : tm->tm_wday;
+}
+
+/* Convert rtc_time structure from bcd to bin format */
+static void bcd2tm(struct rtc_time *tm)
+{
+ tm->tm_sec = bcd2bin(tm->tm_sec);
+ tm->tm_min = bcd2bin(tm->tm_min);
+ tm->tm_hour = bcd2bin(tm->tm_hour);
+
+ tm->tm_mday = bcd2bin(tm->tm_mday);
+ tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
+ tm->tm_year = bcd2bin(tm->tm_year) + 100;
+ /*
+ * Number of days since Sunday
+ * - on kernel side, 0=Sunday...6=Saturday
+ * - on rtc side, 0=invalid,1=Monday...7=Sunday
+ */
+ tm->tm_wday %= 7;
+}
+
+static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct stm32_rtc *rtc = dev_get_drvdata(dev);
+ const struct stm32_rtc_registers *regs = &rtc->data->regs;
+ unsigned int tr, dr;
+
+ /* Time and Date in BCD format */
+ tr = readl_relaxed(rtc->base + regs->tr);
+ dr = readl_relaxed(rtc->base + regs->dr);
+
+ tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
+ tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
+ tm->tm_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
+
+ tm->tm_mday = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
+ tm->tm_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
+ tm->tm_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
+ tm->tm_wday = (dr & STM32_RTC_DR_WDAY) >> STM32_RTC_DR_WDAY_SHIFT;
+
+ /* We don't report tm_yday and tm_isdst */
+
+ bcd2tm(tm);
+
+ return 0;
+}
+
+static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct stm32_rtc *rtc = dev_get_drvdata(dev);
+ const struct stm32_rtc_registers *regs = &rtc->data->regs;
+ unsigned int tr, dr;
+ int ret = 0;
+
+ tm2bcd(tm);
+
+ /* Time in BCD format */
+ tr = ((tm->tm_sec << STM32_RTC_TR_SEC_SHIFT) & STM32_RTC_TR_SEC) |
+ ((tm->tm_min << STM32_RTC_TR_MIN_SHIFT) & STM32_RTC_TR_MIN) |
+ ((tm->tm_hour << STM32_RTC_TR_HOUR_SHIFT) & STM32_RTC_TR_HOUR);
+
+ /* Date in BCD format */
+ dr = ((tm->tm_mday << STM32_RTC_DR_DATE_SHIFT) & STM32_RTC_DR_DATE) |
+ ((tm->tm_mon << STM32_RTC_DR_MONTH_SHIFT) & STM32_RTC_DR_MONTH) |
+ ((tm->tm_year << STM32_RTC_DR_YEAR_SHIFT) & STM32_RTC_DR_YEAR) |
+ ((tm->tm_wday << STM32_RTC_DR_WDAY_SHIFT) & STM32_RTC_DR_WDAY);
+
+ stm32_rtc_wpr_unlock(rtc);
+
+ ret = stm32_rtc_enter_init_mode(rtc);
+ if (ret) {
+ dev_err(dev, "Can't enter in init mode. Set time aborted.\n");
+ goto end;
+ }
+
+ writel_relaxed(tr, rtc->base + regs->tr);
+ writel_relaxed(dr, rtc->base + regs->dr);
+
+ stm32_rtc_exit_init_mode(rtc);
+
+ ret = stm32_rtc_wait_sync(rtc);
+end:
+ stm32_rtc_wpr_lock(rtc);
+
+ return ret;
+}
+
+static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct stm32_rtc *rtc = dev_get_drvdata(dev);
+ const struct stm32_rtc_registers *regs = &rtc->data->regs;
+ const struct stm32_rtc_events *evts = &rtc->data->events;
+ struct rtc_time *tm = &alrm->time;
+ unsigned int alrmar, cr, status;
+
+ alrmar = readl_relaxed(rtc->base + regs->alrmar);
+ cr = readl_relaxed(rtc->base + regs->cr);
+ status = readl_relaxed(rtc->base + regs->sr);
+
+ if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) {
+ /*
+ * Date/day doesn't matter in Alarm comparison so alarm
+ * triggers every day
+ */
+ tm->tm_mday = -1;
+ tm->tm_wday = -1;
+ } else {
+ if (alrmar & STM32_RTC_ALRMXR_WDSEL) {
+ /* Alarm is set to a day of week */
+ tm->tm_mday = -1;
+ tm->tm_wday = (alrmar & STM32_RTC_ALRMXR_WDAY) >>
+ STM32_RTC_ALRMXR_WDAY_SHIFT;
+ tm->tm_wday %= 7;
+ } else {
+ /* Alarm is set to a day of month */
+ tm->tm_wday = -1;
+ tm->tm_mday = (alrmar & STM32_RTC_ALRMXR_DATE) >>
+ STM32_RTC_ALRMXR_DATE_SHIFT;
+ }
+ }
+
+ if (alrmar & STM32_RTC_ALRMXR_HOUR_MASK) {
+ /* Hours don't matter in Alarm comparison */
+ tm->tm_hour = -1;
+ } else {
+ tm->tm_hour = (alrmar & STM32_RTC_ALRMXR_HOUR) >>
+ STM32_RTC_ALRMXR_HOUR_SHIFT;
+ if (alrmar & STM32_RTC_ALRMXR_PM)
+ tm->tm_hour += 12;
+ }
+
+ if (alrmar & STM32_RTC_ALRMXR_MIN_MASK) {
+ /* Minutes don't matter in Alarm comparison */
+ tm->tm_min = -1;
+ } else {
+ tm->tm_min = (alrmar & STM32_RTC_ALRMXR_MIN) >>
+ STM32_RTC_ALRMXR_MIN_SHIFT;
+ }
+
+ if (alrmar & STM32_RTC_ALRMXR_SEC_MASK) {
+ /* Seconds don't matter in Alarm comparison */
+ tm->tm_sec = -1;
+ } else {
+ tm->tm_sec = (alrmar & STM32_RTC_ALRMXR_SEC) >>
+ STM32_RTC_ALRMXR_SEC_SHIFT;
+ }
+
+ bcd2tm(tm);
+
+ alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0;
+ alrm->pending = (status & evts->alra) ? 1 : 0;
+
+ return 0;
+}
+
+static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct stm32_rtc *rtc = dev_get_drvdata(dev);
+ const struct stm32_rtc_registers *regs = &rtc->data->regs;
+ const struct stm32_rtc_events *evts = &rtc->data->events;
+ unsigned int cr;
+
+ cr = readl_relaxed(rtc->base + regs->cr);
+
+ stm32_rtc_wpr_unlock(rtc);
+
+ /* We expose Alarm A to the kernel */
+ if (enabled)
+ cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
+ else
+ cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
+ writel_relaxed(cr, rtc->base + regs->cr);
+
+ /* Clear event flags, otherwise new events won't be received */
+ stm32_rtc_clear_event_flags(rtc, evts->alra);
+
+ stm32_rtc_wpr_lock(rtc);
+
+ return 0;
+}
+
+static int stm32_rtc_valid_alrm(struct stm32_rtc *rtc, struct rtc_time *tm)
+{
+ const struct stm32_rtc_registers *regs = &rtc->data->regs;
+ int cur_day, cur_mon, cur_year, cur_hour, cur_min, cur_sec;
+ unsigned int dr = readl_relaxed(rtc->base + regs->dr);
+ unsigned int tr = readl_relaxed(rtc->base + regs->tr);
+
+ cur_day = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
+ cur_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
+ cur_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
+ cur_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
+ cur_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
+ cur_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
+
+ /*
+ * Assuming current date is M-D-Y H:M:S.
+ * RTC alarm can't be set on a specific month and year.
+ * So the valid alarm range is:
+ * M-D-Y H:M:S < alarm <= (M+1)-D-Y H:M:S
+ * with a specific case for December...
+ */
+ if ((((tm->tm_year > cur_year) &&
+ (tm->tm_mon == 0x1) && (cur_mon == 0x12)) ||
+ ((tm->tm_year == cur_year) &&
+ (tm->tm_mon <= cur_mon + 1))) &&
+ ((tm->tm_mday > cur_day) ||
+ ((tm->tm_mday == cur_day) &&
+ ((tm->tm_hour > cur_hour) ||
+ ((tm->tm_hour == cur_hour) && (tm->tm_min > cur_min)) ||
+ ((tm->tm_hour == cur_hour) && (tm->tm_min == cur_min) &&
+ (tm->tm_sec >= cur_sec))))))
+ return 0;
+
+ return -EINVAL;
+}
+
+static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct stm32_rtc *rtc = dev_get_drvdata(dev);
+ const struct stm32_rtc_registers *regs = &rtc->data->regs;
+ struct rtc_time *tm = &alrm->time;
+ unsigned int cr, isr, alrmar;
+ int ret = 0;
+
+ tm2bcd(tm);
+
+ /*
+ * RTC alarm can't be set on a specific date, unless this date is
+ * up to the same day of month next month.
+ */
+ if (stm32_rtc_valid_alrm(rtc, tm) < 0) {
+ dev_err(dev, "Alarm can be set only on upcoming month.\n");
+ return -EINVAL;
+ }
+
+ alrmar = 0;
+ /* tm_year and tm_mon are not used because not supported by RTC */
+ alrmar |= (tm->tm_mday << STM32_RTC_ALRMXR_DATE_SHIFT) &
+ STM32_RTC_ALRMXR_DATE;
+ /* 24-hour format */
+ alrmar &= ~STM32_RTC_ALRMXR_PM;
+ alrmar |= (tm->tm_hour << STM32_RTC_ALRMXR_HOUR_SHIFT) &
+ STM32_RTC_ALRMXR_HOUR;
+ alrmar |= (tm->tm_min << STM32_RTC_ALRMXR_MIN_SHIFT) &
+ STM32_RTC_ALRMXR_MIN;
+ alrmar |= (tm->tm_sec << STM32_RTC_ALRMXR_SEC_SHIFT) &
+ STM32_RTC_ALRMXR_SEC;
+
+ stm32_rtc_wpr_unlock(rtc);
+
+ /* Disable Alarm */
+ cr = readl_relaxed(rtc->base + regs->cr);
+ cr &= ~STM32_RTC_CR_ALRAE;
+ writel_relaxed(cr, rtc->base + regs->cr);
+
+ /*
+ * Poll Alarm write flag to be sure that Alarm update is allowed: it
+ * takes around 2 rtc_ck clock cycles
+ */
+ ret = readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
+ isr,
+ (isr & STM32_RTC_ISR_ALRAWF),
+ 10, 100000);
+
+ if (ret) {
+ dev_err(dev, "Alarm update not allowed\n");
+ goto end;
+ }
+
+ /* Write to Alarm register */
+ writel_relaxed(alrmar, rtc->base + regs->alrmar);
+
+ stm32_rtc_alarm_irq_enable(dev, alrm->enabled);
+end:
+ stm32_rtc_wpr_lock(rtc);
+
+ return ret;
+}
+
+static const struct rtc_class_ops stm32_rtc_ops = {
+ .read_time = stm32_rtc_read_time,
+ .set_time = stm32_rtc_set_time,
+ .read_alarm = stm32_rtc_read_alarm,
+ .set_alarm = stm32_rtc_set_alarm,
+ .alarm_irq_enable = stm32_rtc_alarm_irq_enable,
+};
+
+static void stm32_rtc_clear_events(struct stm32_rtc *rtc,
+ unsigned int flags)
+{
+ const struct stm32_rtc_registers *regs = &rtc->data->regs;
+
+ /* Flags are cleared by writing 0 in RTC_ISR */
+ writel_relaxed(readl_relaxed(rtc->base + regs->isr) & ~flags,
+ rtc->base + regs->isr);
+}
+
+static const struct stm32_rtc_data stm32_rtc_data = {
+ .has_pclk = false,
+ .need_dbp = true,
+ .has_wakeirq = false,
+ .regs = {
+ .tr = 0x00,
+ .dr = 0x04,
+ .cr = 0x08,
+ .isr = 0x0C,
+ .prer = 0x10,
+ .alrmar = 0x1C,
+ .wpr = 0x24,
+ .sr = 0x0C, /* set to ISR offset to ease alarm management */
+ .scr = UNDEF_REG,
+ .verr = UNDEF_REG,
+ },
+ .events = {
+ .alra = STM32_RTC_ISR_ALRAF,
+ },
+ .clear_events = stm32_rtc_clear_events,
+};
+
+static const struct stm32_rtc_data stm32h7_rtc_data = {
+ .has_pclk = true,
+ .need_dbp = true,
+ .has_wakeirq = false,
+ .regs = {
+ .tr = 0x00,
+ .dr = 0x04,
+ .cr = 0x08,
+ .isr = 0x0C,
+ .prer = 0x10,
+ .alrmar = 0x1C,
+ .wpr = 0x24,
+ .sr = 0x0C, /* set to ISR offset to ease alarm management */
+ .scr = UNDEF_REG,
+ .verr = UNDEF_REG,
+ },
+ .events = {
+ .alra = STM32_RTC_ISR_ALRAF,
+ },
+ .clear_events = stm32_rtc_clear_events,
+};
+
+static void stm32mp1_rtc_clear_events(struct stm32_rtc *rtc,
+ unsigned int flags)
+{
+ struct stm32_rtc_registers regs = rtc->data->regs;
+
+ /* Flags are cleared by writing 1 in RTC_SCR */
+ writel_relaxed(flags, rtc->base + regs.scr);
+}
+
+static const struct stm32_rtc_data stm32mp1_data = {
+ .has_pclk = true,
+ .need_dbp = false,
+ .has_wakeirq = true,
+ .regs = {
+ .tr = 0x00,
+ .dr = 0x04,
+ .cr = 0x18,
+ .isr = 0x0C, /* named RTC_ICSR on stm32mp1 */
+ .prer = 0x10,
+ .alrmar = 0x40,
+ .wpr = 0x24,
+ .sr = 0x50,
+ .scr = 0x5C,
+ .verr = 0x3F4,
+ },
+ .events = {
+ .alra = STM32_RTC_SR_ALRA,
+ },
+ .clear_events = stm32mp1_rtc_clear_events,
+};
+
+static const struct of_device_id stm32_rtc_of_match[] = {
+ { .compatible = "st,stm32-rtc", .data = &stm32_rtc_data },
+ { .compatible = "st,stm32h7-rtc", .data = &stm32h7_rtc_data },
+ { .compatible = "st,stm32mp1-rtc", .data = &stm32mp1_data },
+ {}
+};
+MODULE_DEVICE_TABLE(of, stm32_rtc_of_match);
+
+static int stm32_rtc_init(struct platform_device *pdev,
+ struct stm32_rtc *rtc)
+{
+ const struct stm32_rtc_registers *regs = &rtc->data->regs;
+ unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
+ unsigned int rate;
+ int ret = 0;
+
+ rate = clk_get_rate(rtc->rtc_ck);
+
+ /* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
+ pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT;
+ pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT;
+
+ for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) {
+ pred_s = (rate / (pred_a + 1)) - 1;
+
+ if (((pred_s + 1) * (pred_a + 1)) == rate)
+ break;
+ }
+
+ /*
+ * Can't find a 1Hz, so give priority to RTC power consumption
+ * by choosing the higher possible value for prediv_a
+ */
+ if ((pred_s > pred_s_max) || (pred_a > pred_a_max)) {
+ pred_a = pred_a_max;
+ pred_s = (rate / (pred_a + 1)) - 1;
+
+ dev_warn(&pdev->dev, "rtc_ck is %s\n",
+ (rate < ((pred_a + 1) * (pred_s + 1))) ?
+ "fast" : "slow");
+ }
+
+ stm32_rtc_wpr_unlock(rtc);
+
+ ret = stm32_rtc_enter_init_mode(rtc);
+ if (ret) {
+ dev_err(&pdev->dev,
+ "Can't enter in init mode. Prescaler config failed.\n");
+ goto end;
+ }
+
+ prer = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & STM32_RTC_PRER_PRED_S;
+ writel_relaxed(prer, rtc->base + regs->prer);
+ prer |= (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & STM32_RTC_PRER_PRED_A;
+ writel_relaxed(prer, rtc->base + regs->prer);
+
+ /* Force 24h time format */
+ cr = readl_relaxed(rtc->base + regs->cr);
+ cr &= ~STM32_RTC_CR_FMT;
+ writel_relaxed(cr, rtc->base + regs->cr);
+
+ stm32_rtc_exit_init_mode(rtc);
+
+ ret = stm32_rtc_wait_sync(rtc);
+end:
+ stm32_rtc_wpr_lock(rtc);
+
+ return ret;
+}
+
+static int stm32_rtc_probe(struct platform_device *pdev)
+{
+ struct stm32_rtc *rtc;
+ const struct stm32_rtc_registers *regs;
+ int ret;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(rtc->base))
+ return PTR_ERR(rtc->base);
+
+ rtc->data = (struct stm32_rtc_data *)
+ of_device_get_match_data(&pdev->dev);
+ regs = &rtc->data->regs;
+
+ if (rtc->data->need_dbp) {
+ rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
+ "st,syscfg");
+ if (IS_ERR(rtc->dbp)) {
+ dev_err(&pdev->dev, "no st,syscfg\n");
+ return PTR_ERR(rtc->dbp);
+ }
+
+ ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
+ 1, &rtc->dbp_reg);
+ if (ret) {
+ dev_err(&pdev->dev, "can't read DBP register offset\n");
+ return ret;
+ }
+
+ ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
+ 2, &rtc->dbp_mask);
+ if (ret) {
+ dev_err(&pdev->dev, "can't read DBP register mask\n");
+ return ret;
+ }
+ }
+
+ if (!rtc->data->has_pclk) {
+ rtc->pclk = NULL;
+ rtc->rtc_ck = devm_clk_get(&pdev->dev, NULL);
+ } else {
+ rtc->pclk = devm_clk_get(&pdev->dev, "pclk");
+ if (IS_ERR(rtc->pclk)) {
+ dev_err(&pdev->dev, "no pclk clock");
+ return PTR_ERR(rtc->pclk);
+ }
+ rtc->rtc_ck = devm_clk_get(&pdev->dev, "rtc_ck");
+ }
+ if (IS_ERR(rtc->rtc_ck)) {
+ dev_err(&pdev->dev, "no rtc_ck clock");
+ return PTR_ERR(rtc->rtc_ck);
+ }
+
+ if (rtc->data->has_pclk) {
+ ret = clk_prepare_enable(rtc->pclk);
+ if (ret)
+ return ret;
+ }
+
+ ret = clk_prepare_enable(rtc->rtc_ck);
+ if (ret)
+ goto err_no_rtc_ck;
+
+ if (rtc->data->need_dbp)
+ regmap_update_bits(rtc->dbp, rtc->dbp_reg,
+ rtc->dbp_mask, rtc->dbp_mask);
+
+ /*
+ * After a system reset, RTC_ISR.INITS flag can be read to check if
+ * the calendar has been initialized or not. INITS flag is reset by a
+ * power-on reset (no vbat, no power-supply). It is not reset if
+ * rtc_ck parent clock has changed (so RTC prescalers need to be
+ * changed). That's why we cannot rely on this flag to know if RTC
+ * init has to be done.
+ */
+ ret = stm32_rtc_init(pdev, rtc);
+ if (ret)
+ goto err;
+
+ rtc->irq_alarm = platform_get_irq(pdev, 0);
+ if (rtc->irq_alarm <= 0) {
+ ret = rtc->irq_alarm;
+ goto err;
+ }
+
+ ret = device_init_wakeup(&pdev->dev, true);
+ if (rtc->data->has_wakeirq) {
+ rtc->wakeirq_alarm = platform_get_irq(pdev, 1);
+ if (rtc->wakeirq_alarm > 0) {
+ ret = dev_pm_set_dedicated_wake_irq(&pdev->dev,
+ rtc->wakeirq_alarm);
+ } else {
+ ret = rtc->wakeirq_alarm;
+ if (rtc->wakeirq_alarm == -EPROBE_DEFER)
+ goto err;
+ }
+ }
+ if (ret)
+ dev_warn(&pdev->dev, "alarm can't wake up the system: %d", ret);
+
+ platform_set_drvdata(pdev, rtc);
+
+ rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name,
+ &stm32_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rtc->rtc_dev)) {
+ ret = PTR_ERR(rtc->rtc_dev);
+ dev_err(&pdev->dev, "rtc device registration failed, err=%d\n",
+ ret);
+ goto err;
+ }
+
+ /* Handle RTC alarm interrupts */
+ ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_alarm, NULL,
+ stm32_rtc_alarm_irq, IRQF_ONESHOT,
+ pdev->name, rtc);
+ if (ret) {
+ dev_err(&pdev->dev, "IRQ%d (alarm interrupt) already claimed\n",
+ rtc->irq_alarm);
+ goto err;
+ }
+
+ /*
+ * If INITS flag is reset (calendar year field set to 0x00), calendar
+ * must be initialized
+ */
+ if (!(readl_relaxed(rtc->base + regs->isr) & STM32_RTC_ISR_INITS))
+ dev_warn(&pdev->dev, "Date/Time must be initialized\n");
+
+ if (regs->verr != UNDEF_REG) {
+ u32 ver = readl_relaxed(rtc->base + regs->verr);
+
+ dev_info(&pdev->dev, "registered rev:%d.%d\n",
+ (ver >> STM32_RTC_VERR_MAJREV_SHIFT) & 0xF,
+ (ver >> STM32_RTC_VERR_MINREV_SHIFT) & 0xF);
+ }
+
+ return 0;
+
+err:
+ clk_disable_unprepare(rtc->rtc_ck);
+err_no_rtc_ck:
+ if (rtc->data->has_pclk)
+ clk_disable_unprepare(rtc->pclk);
+
+ if (rtc->data->need_dbp)
+ regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
+
+ dev_pm_clear_wake_irq(&pdev->dev);
+ device_init_wakeup(&pdev->dev, false);
+
+ return ret;
+}
+
+static int stm32_rtc_remove(struct platform_device *pdev)
+{
+ struct stm32_rtc *rtc = platform_get_drvdata(pdev);
+ const struct stm32_rtc_registers *regs = &rtc->data->regs;
+ unsigned int cr;
+
+ /* Disable interrupts */
+ stm32_rtc_wpr_unlock(rtc);
+ cr = readl_relaxed(rtc->base + regs->cr);
+ cr &= ~STM32_RTC_CR_ALRAIE;
+ writel_relaxed(cr, rtc->base + regs->cr);
+ stm32_rtc_wpr_lock(rtc);
+
+ clk_disable_unprepare(rtc->rtc_ck);
+ if (rtc->data->has_pclk)
+ clk_disable_unprepare(rtc->pclk);
+
+ /* Enable backup domain write protection if needed */
+ if (rtc->data->need_dbp)
+ regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
+
+ dev_pm_clear_wake_irq(&pdev->dev);
+ device_init_wakeup(&pdev->dev, false);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int stm32_rtc_suspend(struct device *dev)
+{
+ struct stm32_rtc *rtc = dev_get_drvdata(dev);
+
+ if (rtc->data->has_pclk)
+ clk_disable_unprepare(rtc->pclk);
+
+ if (device_may_wakeup(dev))
+ return enable_irq_wake(rtc->irq_alarm);
+
+ return 0;
+}
+
+static int stm32_rtc_resume(struct device *dev)
+{
+ struct stm32_rtc *rtc = dev_get_drvdata(dev);
+ int ret = 0;
+
+ if (rtc->data->has_pclk) {
+ ret = clk_prepare_enable(rtc->pclk);
+ if (ret)
+ return ret;
+ }
+
+ ret = stm32_rtc_wait_sync(rtc);
+ if (ret < 0) {
+ if (rtc->data->has_pclk)
+ clk_disable_unprepare(rtc->pclk);
+ return ret;
+ }
+
+ if (device_may_wakeup(dev))
+ return disable_irq_wake(rtc->irq_alarm);
+
+ return ret;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(stm32_rtc_pm_ops,
+ stm32_rtc_suspend, stm32_rtc_resume);
+
+static struct platform_driver stm32_rtc_driver = {
+ .probe = stm32_rtc_probe,
+ .remove = stm32_rtc_remove,
+ .driver = {
+ .name = DRIVER_NAME,
+ .pm = &stm32_rtc_pm_ops,
+ .of_match_table = stm32_rtc_of_match,
+ },
+};
+
+module_platform_driver(stm32_rtc_driver);
+
+MODULE_ALIAS("platform:" DRIVER_NAME);
+MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
+MODULE_DESCRIPTION("STMicroelectronics STM32 Real Time Clock driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-stmp3xxx.c b/drivers/rtc/rtc-stmp3xxx.c
new file mode 100644
index 000000000..0a969af80
--- /dev/null
+++ b/drivers/rtc/rtc-stmp3xxx.c
@@ -0,0 +1,420 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Freescale STMP37XX/STMP378X Real Time Clock driver
+ *
+ * Copyright (c) 2007 Sigmatel, Inc.
+ * Peter Hartley, <peter.hartley@sigmatel.com>
+ *
+ * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved.
+ * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
+ * Copyright 2011 Wolfram Sang, Pengutronix e.K.
+ */
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/io.h>
+#include <linux/init.h>
+#include <linux/platform_device.h>
+#include <linux/interrupt.h>
+#include <linux/delay.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+#include <linux/of_device.h>
+#include <linux/of.h>
+#include <linux/stmp_device.h>
+#include <linux/stmp3xxx_rtc_wdt.h>
+
+#define STMP3XXX_RTC_CTRL 0x0
+#define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN 0x00000001
+#define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN 0x00000002
+#define STMP3XXX_RTC_CTRL_ALARM_IRQ 0x00000004
+#define STMP3XXX_RTC_CTRL_WATCHDOGEN 0x00000010
+
+#define STMP3XXX_RTC_STAT 0x10
+#define STMP3XXX_RTC_STAT_STALE_SHIFT 16
+#define STMP3XXX_RTC_STAT_RTC_PRESENT 0x80000000
+#define STMP3XXX_RTC_STAT_XTAL32000_PRESENT 0x10000000
+#define STMP3XXX_RTC_STAT_XTAL32768_PRESENT 0x08000000
+
+#define STMP3XXX_RTC_SECONDS 0x30
+
+#define STMP3XXX_RTC_ALARM 0x40
+
+#define STMP3XXX_RTC_WATCHDOG 0x50
+
+#define STMP3XXX_RTC_PERSISTENT0 0x60
+#define STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE (1 << 0)
+#define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN (1 << 1)
+#define STMP3XXX_RTC_PERSISTENT0_ALARM_EN (1 << 2)
+#define STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP (1 << 4)
+#define STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP (1 << 5)
+#define STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ (1 << 6)
+#define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE (1 << 7)
+
+#define STMP3XXX_RTC_PERSISTENT1 0x70
+/* missing bitmask in headers */
+#define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER 0x80000000
+
+struct stmp3xxx_rtc_data {
+ struct rtc_device *rtc;
+ void __iomem *io;
+ int irq_alarm;
+};
+
+#if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG)
+/**
+ * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC
+ * @dev: the parent device of the watchdog (= the RTC)
+ * @timeout: the desired value for the timeout register of the watchdog.
+ * 0 disables the watchdog
+ *
+ * The watchdog needs one register and two bits which are in the RTC domain.
+ * To handle the resource conflict, the RTC driver will create another
+ * platform_device for the watchdog driver as a child of the RTC device.
+ * The watchdog driver is passed the below accessor function via platform_data
+ * to configure the watchdog. Locking is not needed because accessing SET/CLR
+ * registers is atomic.
+ */
+
+static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout)
+{
+ struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
+
+ if (timeout) {
+ writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG);
+ writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
+ rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
+ writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
+ rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET);
+ } else {
+ writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
+ rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
+ writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
+ rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR);
+ }
+}
+
+static struct stmp3xxx_wdt_pdata wdt_pdata = {
+ .wdt_set_timeout = stmp3xxx_wdt_set_timeout,
+};
+
+static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
+{
+ int rc = -1;
+ struct platform_device *wdt_pdev =
+ platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id);
+
+ if (wdt_pdev) {
+ wdt_pdev->dev.parent = &rtc_pdev->dev;
+ wdt_pdev->dev.platform_data = &wdt_pdata;
+ rc = platform_device_add(wdt_pdev);
+ }
+
+ if (rc)
+ dev_err(&rtc_pdev->dev,
+ "failed to register stmp3xxx_rtc_wdt\n");
+}
+#else
+static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
+{
+}
+#endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */
+
+static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data)
+{
+ int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */
+ /*
+ * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010
+ * states:
+ * | The order in which registers are updated is
+ * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds.
+ * | (This list is in bitfield order, from LSB to MSB, as they would
+ * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT
+ * | register. For example, the Seconds register corresponds to
+ * | STALE_REGS or NEW_REGS containing 0x80.)
+ */
+ do {
+ if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) &
+ (0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)))
+ return 0;
+ udelay(1);
+ } while (--timeout > 0);
+ return (readl(rtc_data->io + STMP3XXX_RTC_STAT) &
+ (0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0;
+}
+
+/* Time read/write */
+static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
+{
+ int ret;
+ struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
+
+ ret = stmp3xxx_wait_time(rtc_data);
+ if (ret)
+ return ret;
+
+ rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm);
+ return 0;
+}
+
+static int stmp3xxx_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
+{
+ struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
+
+ writel(rtc_tm_to_time64(rtc_tm), rtc_data->io + STMP3XXX_RTC_SECONDS);
+ return stmp3xxx_wait_time(rtc_data);
+}
+
+/* interrupt(s) handler */
+static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id)
+{
+ struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id);
+ u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL);
+
+ if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) {
+ writel(STMP3XXX_RTC_CTRL_ALARM_IRQ,
+ rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
+ rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF);
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
+
+ if (enabled) {
+ writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
+ STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
+ rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
+ STMP_OFFSET_REG_SET);
+ writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
+ rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
+ } else {
+ writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
+ STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
+ rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
+ STMP_OFFSET_REG_CLR);
+ writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
+ rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
+ }
+ return 0;
+}
+
+static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
+
+ rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time);
+ return 0;
+}
+
+static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
+
+ writel(rtc_tm_to_time64(&alm->time), rtc_data->io + STMP3XXX_RTC_ALARM);
+
+ stmp3xxx_alarm_irq_enable(dev, alm->enabled);
+
+ return 0;
+}
+
+static const struct rtc_class_ops stmp3xxx_rtc_ops = {
+ .alarm_irq_enable =
+ stmp3xxx_alarm_irq_enable,
+ .read_time = stmp3xxx_rtc_gettime,
+ .set_time = stmp3xxx_rtc_settime,
+ .read_alarm = stmp3xxx_rtc_read_alarm,
+ .set_alarm = stmp3xxx_rtc_set_alarm,
+};
+
+static int stmp3xxx_rtc_remove(struct platform_device *pdev)
+{
+ struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev);
+
+ if (!rtc_data)
+ return 0;
+
+ writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
+ rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
+
+ return 0;
+}
+
+static int stmp3xxx_rtc_probe(struct platform_device *pdev)
+{
+ struct stmp3xxx_rtc_data *rtc_data;
+ struct resource *r;
+ u32 rtc_stat;
+ u32 pers0_set, pers0_clr;
+ u32 crystalfreq = 0;
+ int err;
+
+ rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL);
+ if (!rtc_data)
+ return -ENOMEM;
+
+ r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!r) {
+ dev_err(&pdev->dev, "failed to get resource\n");
+ return -ENXIO;
+ }
+
+ rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r));
+ if (!rtc_data->io) {
+ dev_err(&pdev->dev, "ioremap failed\n");
+ return -EIO;
+ }
+
+ rtc_data->irq_alarm = platform_get_irq(pdev, 0);
+
+ rtc_stat = readl(rtc_data->io + STMP3XXX_RTC_STAT);
+ if (!(rtc_stat & STMP3XXX_RTC_STAT_RTC_PRESENT)) {
+ dev_err(&pdev->dev, "no device onboard\n");
+ return -ENODEV;
+ }
+
+ platform_set_drvdata(pdev, rtc_data);
+
+ /*
+ * Resetting the rtc stops the watchdog timer that is potentially
+ * running. So (assuming it is running on purpose) don't reset if the
+ * watchdog is enabled.
+ */
+ if (readl(rtc_data->io + STMP3XXX_RTC_CTRL) &
+ STMP3XXX_RTC_CTRL_WATCHDOGEN) {
+ dev_info(&pdev->dev,
+ "Watchdog is running, skip resetting rtc\n");
+ } else {
+ err = stmp_reset_block(rtc_data->io);
+ if (err) {
+ dev_err(&pdev->dev, "stmp_reset_block failed: %d\n",
+ err);
+ return err;
+ }
+ }
+
+ /*
+ * Obviously the rtc needs a clock input to be able to run.
+ * This clock can be provided by an external 32k crystal. If that one is
+ * missing XTAL must not be disabled in suspend which consumes a
+ * lot of power. Normally the presence and exact frequency (supported
+ * are 32000 Hz and 32768 Hz) is detectable from fuses, but as reality
+ * proves these fuses are not blown correctly on all machines, so the
+ * frequency can be overridden in the device tree.
+ */
+ if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32000_PRESENT)
+ crystalfreq = 32000;
+ else if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32768_PRESENT)
+ crystalfreq = 32768;
+
+ of_property_read_u32(pdev->dev.of_node, "stmp,crystal-freq",
+ &crystalfreq);
+
+ switch (crystalfreq) {
+ case 32000:
+ /* keep 32kHz crystal running in low-power mode */
+ pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ |
+ STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
+ STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
+ pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
+ break;
+ case 32768:
+ /* keep 32.768kHz crystal running in low-power mode */
+ pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
+ STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
+ pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP |
+ STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ;
+ break;
+ default:
+ dev_warn(&pdev->dev,
+ "invalid crystal-freq specified in device-tree. Assuming no crystal\n");
+ fallthrough;
+ case 0:
+ /* keep XTAL on in low-power mode */
+ pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
+ pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
+ STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
+ }
+
+ writel(pers0_set, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
+ STMP_OFFSET_REG_SET);
+
+ writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
+ STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
+ STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE | pers0_clr,
+ rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
+
+ writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN |
+ STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
+ rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
+
+ rtc_data->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc_data->rtc))
+ return PTR_ERR(rtc_data->rtc);
+
+ err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm,
+ stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev);
+ if (err) {
+ dev_err(&pdev->dev, "Cannot claim IRQ%d\n",
+ rtc_data->irq_alarm);
+ return err;
+ }
+
+ rtc_data->rtc->ops = &stmp3xxx_rtc_ops;
+ rtc_data->rtc->range_max = U32_MAX;
+
+ err = rtc_register_device(rtc_data->rtc);
+ if (err)
+ return err;
+
+ stmp3xxx_wdt_register(pdev);
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int stmp3xxx_rtc_suspend(struct device *dev)
+{
+ return 0;
+}
+
+static int stmp3xxx_rtc_resume(struct device *dev)
+{
+ struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
+
+ stmp_reset_block(rtc_data->io);
+ writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
+ STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
+ STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE,
+ rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend,
+ stmp3xxx_rtc_resume);
+
+static const struct of_device_id rtc_dt_ids[] = {
+ { .compatible = "fsl,stmp3xxx-rtc", },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, rtc_dt_ids);
+
+static struct platform_driver stmp3xxx_rtcdrv = {
+ .probe = stmp3xxx_rtc_probe,
+ .remove = stmp3xxx_rtc_remove,
+ .driver = {
+ .name = "stmp3xxx-rtc",
+ .pm = &stmp3xxx_rtc_pm_ops,
+ .of_match_table = rtc_dt_ids,
+ },
+};
+
+module_platform_driver(stmp3xxx_rtcdrv);
+
+MODULE_DESCRIPTION("STMP3xxx RTC Driver");
+MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and "
+ "Wolfram Sang <kernel@pengutronix.de>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-sun4v.c b/drivers/rtc/rtc-sun4v.c
new file mode 100644
index 000000000..036463dfa
--- /dev/null
+++ b/drivers/rtc/rtc-sun4v.c
@@ -0,0 +1,98 @@
+// SPDX-License-Identifier: GPL-2.0
+/* rtc-sun4v.c: Hypervisor based RTC for SUN4V systems.
+ *
+ * Author: David S. Miller
+ *
+ * Copyright (C) 2008 David S. Miller <davem@davemloft.net>
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/kernel.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+
+#include <asm/hypervisor.h>
+
+static unsigned long hypervisor_get_time(void)
+{
+ unsigned long ret, time;
+ int retries = 10000;
+
+retry:
+ ret = sun4v_tod_get(&time);
+ if (ret == HV_EOK)
+ return time;
+ if (ret == HV_EWOULDBLOCK) {
+ if (--retries > 0) {
+ udelay(100);
+ goto retry;
+ }
+ pr_warn("tod_get() timed out.\n");
+ return 0;
+ }
+ pr_warn("tod_get() not supported.\n");
+ return 0;
+}
+
+static int sun4v_read_time(struct device *dev, struct rtc_time *tm)
+{
+ rtc_time64_to_tm(hypervisor_get_time(), tm);
+ return 0;
+}
+
+static int hypervisor_set_time(unsigned long secs)
+{
+ unsigned long ret;
+ int retries = 10000;
+
+retry:
+ ret = sun4v_tod_set(secs);
+ if (ret == HV_EOK)
+ return 0;
+ if (ret == HV_EWOULDBLOCK) {
+ if (--retries > 0) {
+ udelay(100);
+ goto retry;
+ }
+ pr_warn("tod_set() timed out.\n");
+ return -EAGAIN;
+ }
+ pr_warn("tod_set() not supported.\n");
+ return -EOPNOTSUPP;
+}
+
+static int sun4v_set_time(struct device *dev, struct rtc_time *tm)
+{
+ return hypervisor_set_time(rtc_tm_to_time64(tm));
+}
+
+static const struct rtc_class_ops sun4v_rtc_ops = {
+ .read_time = sun4v_read_time,
+ .set_time = sun4v_set_time,
+};
+
+static int __init sun4v_rtc_probe(struct platform_device *pdev)
+{
+ struct rtc_device *rtc;
+
+ rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ rtc->ops = &sun4v_rtc_ops;
+ rtc->range_max = U64_MAX;
+ platform_set_drvdata(pdev, rtc);
+
+ return rtc_register_device(rtc);
+}
+
+static struct platform_driver sun4v_rtc_driver = {
+ .driver = {
+ .name = "rtc-sun4v",
+ },
+};
+
+builtin_platform_driver_probe(sun4v_rtc_driver, sun4v_rtc_probe);
diff --git a/drivers/rtc/rtc-sun6i.c b/drivers/rtc/rtc-sun6i.c
new file mode 100644
index 000000000..a72856fb5
--- /dev/null
+++ b/drivers/rtc/rtc-sun6i.c
@@ -0,0 +1,752 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * An RTC driver for Allwinner A31/A23
+ *
+ * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
+ *
+ * based on rtc-sunxi.c
+ *
+ * An RTC driver for Allwinner A10/A20
+ *
+ * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
+ */
+
+#include <linux/clk.h>
+#include <linux/clk-provider.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/fs.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+
+/* Control register */
+#define SUN6I_LOSC_CTRL 0x0000
+#define SUN6I_LOSC_CTRL_KEY (0x16aa << 16)
+#define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS BIT(15)
+#define SUN6I_LOSC_CTRL_ALM_DHMS_ACC BIT(9)
+#define SUN6I_LOSC_CTRL_RTC_HMS_ACC BIT(8)
+#define SUN6I_LOSC_CTRL_RTC_YMD_ACC BIT(7)
+#define SUN6I_LOSC_CTRL_EXT_LOSC_EN BIT(4)
+#define SUN6I_LOSC_CTRL_EXT_OSC BIT(0)
+#define SUN6I_LOSC_CTRL_ACC_MASK GENMASK(9, 7)
+
+#define SUN6I_LOSC_CLK_PRESCAL 0x0008
+
+/* RTC */
+#define SUN6I_RTC_YMD 0x0010
+#define SUN6I_RTC_HMS 0x0014
+
+/* Alarm 0 (counter) */
+#define SUN6I_ALRM_COUNTER 0x0020
+#define SUN6I_ALRM_CUR_VAL 0x0024
+#define SUN6I_ALRM_EN 0x0028
+#define SUN6I_ALRM_EN_CNT_EN BIT(0)
+#define SUN6I_ALRM_IRQ_EN 0x002c
+#define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN BIT(0)
+#define SUN6I_ALRM_IRQ_STA 0x0030
+#define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND BIT(0)
+
+/* Alarm 1 (wall clock) */
+#define SUN6I_ALRM1_EN 0x0044
+#define SUN6I_ALRM1_IRQ_EN 0x0048
+#define SUN6I_ALRM1_IRQ_STA 0x004c
+#define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND BIT(0)
+
+/* Alarm config */
+#define SUN6I_ALARM_CONFIG 0x0050
+#define SUN6I_ALARM_CONFIG_WAKEUP BIT(0)
+
+#define SUN6I_LOSC_OUT_GATING 0x0060
+#define SUN6I_LOSC_OUT_GATING_EN_OFFSET 0
+
+/*
+ * Get date values
+ */
+#define SUN6I_DATE_GET_DAY_VALUE(x) ((x) & 0x0000001f)
+#define SUN6I_DATE_GET_MON_VALUE(x) (((x) & 0x00000f00) >> 8)
+#define SUN6I_DATE_GET_YEAR_VALUE(x) (((x) & 0x003f0000) >> 16)
+#define SUN6I_LEAP_GET_VALUE(x) (((x) & 0x00400000) >> 22)
+
+/*
+ * Get time values
+ */
+#define SUN6I_TIME_GET_SEC_VALUE(x) ((x) & 0x0000003f)
+#define SUN6I_TIME_GET_MIN_VALUE(x) (((x) & 0x00003f00) >> 8)
+#define SUN6I_TIME_GET_HOUR_VALUE(x) (((x) & 0x001f0000) >> 16)
+
+/*
+ * Set date values
+ */
+#define SUN6I_DATE_SET_DAY_VALUE(x) ((x) & 0x0000001f)
+#define SUN6I_DATE_SET_MON_VALUE(x) ((x) << 8 & 0x00000f00)
+#define SUN6I_DATE_SET_YEAR_VALUE(x) ((x) << 16 & 0x003f0000)
+#define SUN6I_LEAP_SET_VALUE(x) ((x) << 22 & 0x00400000)
+
+/*
+ * Set time values
+ */
+#define SUN6I_TIME_SET_SEC_VALUE(x) ((x) & 0x0000003f)
+#define SUN6I_TIME_SET_MIN_VALUE(x) ((x) << 8 & 0x00003f00)
+#define SUN6I_TIME_SET_HOUR_VALUE(x) ((x) << 16 & 0x001f0000)
+
+/*
+ * The year parameter passed to the driver is usually an offset relative to
+ * the year 1900. This macro is used to convert this offset to another one
+ * relative to the minimum year allowed by the hardware.
+ *
+ * The year range is 1970 - 2033. This range is selected to match Allwinner's
+ * driver, even though it is somewhat limited.
+ */
+#define SUN6I_YEAR_MIN 1970
+#define SUN6I_YEAR_OFF (SUN6I_YEAR_MIN - 1900)
+
+/*
+ * There are other differences between models, including:
+ *
+ * - number of GPIO pins that can be configured to hold a certain level
+ * - crypto-key related registers (H5, H6)
+ * - boot process related (super standby, secondary processor entry address)
+ * registers (R40, H6)
+ * - SYS power domain controls (R40)
+ * - DCXO controls (H6)
+ * - RC oscillator calibration (H6)
+ *
+ * These functions are not covered by this driver.
+ */
+struct sun6i_rtc_clk_data {
+ unsigned long rc_osc_rate;
+ unsigned int fixed_prescaler : 16;
+ unsigned int has_prescaler : 1;
+ unsigned int has_out_clk : 1;
+ unsigned int has_losc_en : 1;
+ unsigned int has_auto_swt : 1;
+};
+
+struct sun6i_rtc_dev {
+ struct rtc_device *rtc;
+ const struct sun6i_rtc_clk_data *data;
+ void __iomem *base;
+ int irq;
+ time64_t alarm;
+
+ struct clk_hw hw;
+ struct clk_hw *int_osc;
+ struct clk *losc;
+ struct clk *ext_losc;
+
+ spinlock_t lock;
+};
+
+static struct sun6i_rtc_dev *sun6i_rtc;
+
+static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
+ unsigned long parent_rate)
+{
+ struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
+ u32 val = 0;
+
+ val = readl(rtc->base + SUN6I_LOSC_CTRL);
+ if (val & SUN6I_LOSC_CTRL_EXT_OSC)
+ return parent_rate;
+
+ if (rtc->data->fixed_prescaler)
+ parent_rate /= rtc->data->fixed_prescaler;
+
+ if (rtc->data->has_prescaler) {
+ val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
+ val &= GENMASK(4, 0);
+ }
+
+ return parent_rate / (val + 1);
+}
+
+static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
+{
+ struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
+
+ return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
+}
+
+static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
+{
+ struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
+ unsigned long flags;
+ u32 val;
+
+ if (index > 1)
+ return -EINVAL;
+
+ spin_lock_irqsave(&rtc->lock, flags);
+ val = readl(rtc->base + SUN6I_LOSC_CTRL);
+ val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
+ val |= SUN6I_LOSC_CTRL_KEY;
+ val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
+ if (rtc->data->has_losc_en) {
+ val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
+ val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
+ }
+ writel(val, rtc->base + SUN6I_LOSC_CTRL);
+ spin_unlock_irqrestore(&rtc->lock, flags);
+
+ return 0;
+}
+
+static const struct clk_ops sun6i_rtc_osc_ops = {
+ .recalc_rate = sun6i_rtc_osc_recalc_rate,
+
+ .get_parent = sun6i_rtc_osc_get_parent,
+ .set_parent = sun6i_rtc_osc_set_parent,
+};
+
+static void __init sun6i_rtc_clk_init(struct device_node *node,
+ const struct sun6i_rtc_clk_data *data)
+{
+ struct clk_hw_onecell_data *clk_data;
+ struct sun6i_rtc_dev *rtc;
+ struct clk_init_data init = {
+ .ops = &sun6i_rtc_osc_ops,
+ .name = "losc",
+ };
+ const char *iosc_name = "rtc-int-osc";
+ const char *clkout_name = "osc32k-out";
+ const char *parents[2];
+ u32 reg;
+
+ rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return;
+
+ rtc->data = data;
+ clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
+ if (!clk_data) {
+ kfree(rtc);
+ return;
+ }
+
+ spin_lock_init(&rtc->lock);
+
+ rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
+ if (IS_ERR(rtc->base)) {
+ pr_crit("Can't map RTC registers");
+ goto err;
+ }
+
+ reg = SUN6I_LOSC_CTRL_KEY;
+ if (rtc->data->has_auto_swt) {
+ /* Bypass auto-switch to int osc, on ext losc failure */
+ reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
+ writel(reg, rtc->base + SUN6I_LOSC_CTRL);
+ }
+
+ /* Switch to the external, more precise, oscillator, if present */
+ if (of_get_property(node, "clocks", NULL)) {
+ reg |= SUN6I_LOSC_CTRL_EXT_OSC;
+ if (rtc->data->has_losc_en)
+ reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
+ }
+ writel(reg, rtc->base + SUN6I_LOSC_CTRL);
+
+ /* Yes, I know, this is ugly. */
+ sun6i_rtc = rtc;
+
+ of_property_read_string_index(node, "clock-output-names", 2,
+ &iosc_name);
+
+ rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
+ iosc_name,
+ NULL, 0,
+ rtc->data->rc_osc_rate,
+ 300000000);
+ if (IS_ERR(rtc->int_osc)) {
+ pr_crit("Couldn't register the internal oscillator\n");
+ goto err;
+ }
+
+ parents[0] = clk_hw_get_name(rtc->int_osc);
+ /* If there is no external oscillator, this will be NULL and ... */
+ parents[1] = of_clk_get_parent_name(node, 0);
+
+ rtc->hw.init = &init;
+
+ init.parent_names = parents;
+ /* ... number of clock parents will be 1. */
+ init.num_parents = of_clk_get_parent_count(node) + 1;
+ of_property_read_string_index(node, "clock-output-names", 0,
+ &init.name);
+
+ rtc->losc = clk_register(NULL, &rtc->hw);
+ if (IS_ERR(rtc->losc)) {
+ pr_crit("Couldn't register the LOSC clock\n");
+ goto err_register;
+ }
+
+ of_property_read_string_index(node, "clock-output-names", 1,
+ &clkout_name);
+ rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
+ 0, rtc->base + SUN6I_LOSC_OUT_GATING,
+ SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
+ &rtc->lock);
+ if (IS_ERR(rtc->ext_losc)) {
+ pr_crit("Couldn't register the LOSC external gate\n");
+ goto err_register;
+ }
+
+ clk_data->num = 3;
+ clk_data->hws[0] = &rtc->hw;
+ clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
+ clk_data->hws[2] = rtc->int_osc;
+ of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
+ return;
+
+err_register:
+ clk_hw_unregister_fixed_rate(rtc->int_osc);
+err:
+ kfree(clk_data);
+}
+
+static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
+ .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
+ .has_prescaler = 1,
+};
+
+static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
+{
+ sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
+}
+CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
+ sun6i_a31_rtc_clk_init);
+
+static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
+ .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
+ .has_prescaler = 1,
+ .has_out_clk = 1,
+};
+
+static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
+{
+ sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
+}
+CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
+ sun8i_a23_rtc_clk_init);
+
+static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
+ .rc_osc_rate = 16000000,
+ .fixed_prescaler = 32,
+ .has_prescaler = 1,
+ .has_out_clk = 1,
+};
+
+static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
+{
+ sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
+}
+CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
+ sun8i_h3_rtc_clk_init);
+/* As far as we are concerned, clocks for H5 are the same as H3 */
+CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
+ sun8i_h3_rtc_clk_init);
+
+static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = {
+ .rc_osc_rate = 16000000,
+ .fixed_prescaler = 32,
+ .has_prescaler = 1,
+ .has_out_clk = 1,
+ .has_losc_en = 1,
+ .has_auto_swt = 1,
+};
+
+static void __init sun50i_h6_rtc_clk_init(struct device_node *node)
+{
+ sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data);
+}
+CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc",
+ sun50i_h6_rtc_clk_init);
+
+/*
+ * The R40 user manual is self-conflicting on whether the prescaler is
+ * fixed or configurable. The clock diagram shows it as fixed, but there
+ * is also a configurable divider in the RTC block.
+ */
+static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = {
+ .rc_osc_rate = 16000000,
+ .fixed_prescaler = 512,
+};
+static void __init sun8i_r40_rtc_clk_init(struct device_node *node)
+{
+ sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data);
+}
+CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc",
+ sun8i_r40_rtc_clk_init);
+
+static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
+ .rc_osc_rate = 32000,
+ .has_out_clk = 1,
+};
+
+static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
+{
+ sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
+}
+CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
+ sun8i_v3_rtc_clk_init);
+
+static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
+{
+ struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
+ irqreturn_t ret = IRQ_NONE;
+ u32 val;
+
+ spin_lock(&chip->lock);
+ val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
+
+ if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
+ val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
+ writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
+
+ rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
+
+ ret = IRQ_HANDLED;
+ }
+ spin_unlock(&chip->lock);
+
+ return ret;
+}
+
+static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
+{
+ u32 alrm_val = 0;
+ u32 alrm_irq_val = 0;
+ u32 alrm_wake_val = 0;
+ unsigned long flags;
+
+ if (to) {
+ alrm_val = SUN6I_ALRM_EN_CNT_EN;
+ alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
+ alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
+ } else {
+ writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
+ chip->base + SUN6I_ALRM_IRQ_STA);
+ }
+
+ spin_lock_irqsave(&chip->lock, flags);
+ writel(alrm_val, chip->base + SUN6I_ALRM_EN);
+ writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
+ writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
+ spin_unlock_irqrestore(&chip->lock, flags);
+}
+
+static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
+{
+ struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
+ u32 date, time;
+
+ /*
+ * read again in case it changes
+ */
+ do {
+ date = readl(chip->base + SUN6I_RTC_YMD);
+ time = readl(chip->base + SUN6I_RTC_HMS);
+ } while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
+ (time != readl(chip->base + SUN6I_RTC_HMS)));
+
+ rtc_tm->tm_sec = SUN6I_TIME_GET_SEC_VALUE(time);
+ rtc_tm->tm_min = SUN6I_TIME_GET_MIN_VALUE(time);
+ rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
+
+ rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
+ rtc_tm->tm_mon = SUN6I_DATE_GET_MON_VALUE(date);
+ rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
+
+ rtc_tm->tm_mon -= 1;
+
+ /*
+ * switch from (data_year->min)-relative offset to
+ * a (1900)-relative one
+ */
+ rtc_tm->tm_year += SUN6I_YEAR_OFF;
+
+ return 0;
+}
+
+static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
+{
+ struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
+ unsigned long flags;
+ u32 alrm_st;
+ u32 alrm_en;
+
+ spin_lock_irqsave(&chip->lock, flags);
+ alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
+ alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
+ spin_unlock_irqrestore(&chip->lock, flags);
+
+ wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
+ wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
+ rtc_time64_to_tm(chip->alarm, &wkalrm->time);
+
+ return 0;
+}
+
+static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
+{
+ struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
+ struct rtc_time *alrm_tm = &wkalrm->time;
+ struct rtc_time tm_now;
+ time64_t time_now, time_set;
+ int ret;
+
+ ret = sun6i_rtc_gettime(dev, &tm_now);
+ if (ret < 0) {
+ dev_err(dev, "Error in getting time\n");
+ return -EINVAL;
+ }
+
+ time_set = rtc_tm_to_time64(alrm_tm);
+ time_now = rtc_tm_to_time64(&tm_now);
+ if (time_set <= time_now) {
+ dev_err(dev, "Date to set in the past\n");
+ return -EINVAL;
+ }
+
+ if ((time_set - time_now) > U32_MAX) {
+ dev_err(dev, "Date too far in the future\n");
+ return -EINVAL;
+ }
+
+ sun6i_rtc_setaie(0, chip);
+ writel(0, chip->base + SUN6I_ALRM_COUNTER);
+ usleep_range(100, 300);
+
+ writel(time_set - time_now, chip->base + SUN6I_ALRM_COUNTER);
+ chip->alarm = time_set;
+
+ sun6i_rtc_setaie(wkalrm->enabled, chip);
+
+ return 0;
+}
+
+static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
+ unsigned int mask, unsigned int ms_timeout)
+{
+ const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
+ u32 reg;
+
+ do {
+ reg = readl(chip->base + offset);
+ reg &= mask;
+
+ if (!reg)
+ return 0;
+
+ } while (time_before(jiffies, timeout));
+
+ return -ETIMEDOUT;
+}
+
+static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
+{
+ struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
+ u32 date = 0;
+ u32 time = 0;
+
+ rtc_tm->tm_year -= SUN6I_YEAR_OFF;
+ rtc_tm->tm_mon += 1;
+
+ date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
+ SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon) |
+ SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
+
+ if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN))
+ date |= SUN6I_LEAP_SET_VALUE(1);
+
+ time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec) |
+ SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min) |
+ SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
+
+ /* Check whether registers are writable */
+ if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
+ SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
+ dev_err(dev, "rtc is still busy.\n");
+ return -EBUSY;
+ }
+
+ writel(time, chip->base + SUN6I_RTC_HMS);
+
+ /*
+ * After writing the RTC HH-MM-SS register, the
+ * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
+ * be cleared until the real writing operation is finished
+ */
+
+ if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
+ SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
+ dev_err(dev, "Failed to set rtc time.\n");
+ return -ETIMEDOUT;
+ }
+
+ writel(date, chip->base + SUN6I_RTC_YMD);
+
+ /*
+ * After writing the RTC YY-MM-DD register, the
+ * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
+ * be cleared until the real writing operation is finished
+ */
+
+ if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
+ SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
+ dev_err(dev, "Failed to set rtc time.\n");
+ return -ETIMEDOUT;
+ }
+
+ return 0;
+}
+
+static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
+
+ if (!enabled)
+ sun6i_rtc_setaie(enabled, chip);
+
+ return 0;
+}
+
+static const struct rtc_class_ops sun6i_rtc_ops = {
+ .read_time = sun6i_rtc_gettime,
+ .set_time = sun6i_rtc_settime,
+ .read_alarm = sun6i_rtc_getalarm,
+ .set_alarm = sun6i_rtc_setalarm,
+ .alarm_irq_enable = sun6i_rtc_alarm_irq_enable
+};
+
+#ifdef CONFIG_PM_SLEEP
+/* Enable IRQ wake on suspend, to wake up from RTC. */
+static int sun6i_rtc_suspend(struct device *dev)
+{
+ struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ enable_irq_wake(chip->irq);
+
+ return 0;
+}
+
+/* Disable IRQ wake on resume. */
+static int sun6i_rtc_resume(struct device *dev)
+{
+ struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ disable_irq_wake(chip->irq);
+
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
+ sun6i_rtc_suspend, sun6i_rtc_resume);
+
+static int sun6i_rtc_probe(struct platform_device *pdev)
+{
+ struct sun6i_rtc_dev *chip = sun6i_rtc;
+ int ret;
+
+ if (!chip)
+ return -ENODEV;
+
+ platform_set_drvdata(pdev, chip);
+
+ chip->irq = platform_get_irq(pdev, 0);
+ if (chip->irq < 0)
+ return chip->irq;
+
+ ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
+ 0, dev_name(&pdev->dev), chip);
+ if (ret) {
+ dev_err(&pdev->dev, "Could not request IRQ\n");
+ return ret;
+ }
+
+ /* clear the alarm counter value */
+ writel(0, chip->base + SUN6I_ALRM_COUNTER);
+
+ /* disable counter alarm */
+ writel(0, chip->base + SUN6I_ALRM_EN);
+
+ /* disable counter alarm interrupt */
+ writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
+
+ /* disable week alarm */
+ writel(0, chip->base + SUN6I_ALRM1_EN);
+
+ /* disable week alarm interrupt */
+ writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
+
+ /* clear counter alarm pending interrupts */
+ writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
+ chip->base + SUN6I_ALRM_IRQ_STA);
+
+ /* clear week alarm pending interrupts */
+ writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
+ chip->base + SUN6I_ALRM1_IRQ_STA);
+
+ /* disable alarm wakeup */
+ writel(0, chip->base + SUN6I_ALARM_CONFIG);
+
+ clk_prepare_enable(chip->losc);
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ chip->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(chip->rtc))
+ return PTR_ERR(chip->rtc);
+
+ chip->rtc->ops = &sun6i_rtc_ops;
+ chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */
+
+ ret = rtc_register_device(chip->rtc);
+ if (ret)
+ return ret;
+
+ dev_info(&pdev->dev, "RTC enabled\n");
+
+ return 0;
+}
+
+/*
+ * As far as RTC functionality goes, all models are the same. The
+ * datasheets claim that different models have different number of
+ * registers available for non-volatile storage, but experiments show
+ * that all SoCs have 16 registers available for this purpose.
+ */
+static const struct of_device_id sun6i_rtc_dt_ids[] = {
+ { .compatible = "allwinner,sun6i-a31-rtc" },
+ { .compatible = "allwinner,sun8i-a23-rtc" },
+ { .compatible = "allwinner,sun8i-h3-rtc" },
+ { .compatible = "allwinner,sun8i-r40-rtc" },
+ { .compatible = "allwinner,sun8i-v3-rtc" },
+ { .compatible = "allwinner,sun50i-h5-rtc" },
+ { .compatible = "allwinner,sun50i-h6-rtc" },
+ { /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
+
+static struct platform_driver sun6i_rtc_driver = {
+ .probe = sun6i_rtc_probe,
+ .driver = {
+ .name = "sun6i-rtc",
+ .of_match_table = sun6i_rtc_dt_ids,
+ .pm = &sun6i_rtc_pm_ops,
+ },
+};
+builtin_platform_driver(sun6i_rtc_driver);
diff --git a/drivers/rtc/rtc-sunxi.c b/drivers/rtc/rtc-sunxi.c
new file mode 100644
index 000000000..f5d7f4455
--- /dev/null
+++ b/drivers/rtc/rtc-sunxi.c
@@ -0,0 +1,488 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * An RTC driver for Allwinner A10/A20
+ *
+ * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
+ */
+
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/fs.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/types.h>
+
+#define SUNXI_LOSC_CTRL 0x0000
+#define SUNXI_LOSC_CTRL_RTC_HMS_ACC BIT(8)
+#define SUNXI_LOSC_CTRL_RTC_YMD_ACC BIT(7)
+
+#define SUNXI_RTC_YMD 0x0004
+
+#define SUNXI_RTC_HMS 0x0008
+
+#define SUNXI_ALRM_DHMS 0x000c
+
+#define SUNXI_ALRM_EN 0x0014
+#define SUNXI_ALRM_EN_CNT_EN BIT(8)
+
+#define SUNXI_ALRM_IRQ_EN 0x0018
+#define SUNXI_ALRM_IRQ_EN_CNT_IRQ_EN BIT(0)
+
+#define SUNXI_ALRM_IRQ_STA 0x001c
+#define SUNXI_ALRM_IRQ_STA_CNT_IRQ_PEND BIT(0)
+
+#define SUNXI_MASK_DH 0x0000001f
+#define SUNXI_MASK_SM 0x0000003f
+#define SUNXI_MASK_M 0x0000000f
+#define SUNXI_MASK_LY 0x00000001
+#define SUNXI_MASK_D 0x00000ffe
+#define SUNXI_MASK_M 0x0000000f
+
+#define SUNXI_GET(x, mask, shift) (((x) & ((mask) << (shift))) \
+ >> (shift))
+
+#define SUNXI_SET(x, mask, shift) (((x) & (mask)) << (shift))
+
+/*
+ * Get date values
+ */
+#define SUNXI_DATE_GET_DAY_VALUE(x) SUNXI_GET(x, SUNXI_MASK_DH, 0)
+#define SUNXI_DATE_GET_MON_VALUE(x) SUNXI_GET(x, SUNXI_MASK_M, 8)
+#define SUNXI_DATE_GET_YEAR_VALUE(x, mask) SUNXI_GET(x, mask, 16)
+
+/*
+ * Get time values
+ */
+#define SUNXI_TIME_GET_SEC_VALUE(x) SUNXI_GET(x, SUNXI_MASK_SM, 0)
+#define SUNXI_TIME_GET_MIN_VALUE(x) SUNXI_GET(x, SUNXI_MASK_SM, 8)
+#define SUNXI_TIME_GET_HOUR_VALUE(x) SUNXI_GET(x, SUNXI_MASK_DH, 16)
+
+/*
+ * Get alarm values
+ */
+#define SUNXI_ALRM_GET_SEC_VALUE(x) SUNXI_GET(x, SUNXI_MASK_SM, 0)
+#define SUNXI_ALRM_GET_MIN_VALUE(x) SUNXI_GET(x, SUNXI_MASK_SM, 8)
+#define SUNXI_ALRM_GET_HOUR_VALUE(x) SUNXI_GET(x, SUNXI_MASK_DH, 16)
+
+/*
+ * Set date values
+ */
+#define SUNXI_DATE_SET_DAY_VALUE(x) SUNXI_DATE_GET_DAY_VALUE(x)
+#define SUNXI_DATE_SET_MON_VALUE(x) SUNXI_SET(x, SUNXI_MASK_M, 8)
+#define SUNXI_DATE_SET_YEAR_VALUE(x, mask) SUNXI_SET(x, mask, 16)
+#define SUNXI_LEAP_SET_VALUE(x, shift) SUNXI_SET(x, SUNXI_MASK_LY, shift)
+
+/*
+ * Set time values
+ */
+#define SUNXI_TIME_SET_SEC_VALUE(x) SUNXI_TIME_GET_SEC_VALUE(x)
+#define SUNXI_TIME_SET_MIN_VALUE(x) SUNXI_SET(x, SUNXI_MASK_SM, 8)
+#define SUNXI_TIME_SET_HOUR_VALUE(x) SUNXI_SET(x, SUNXI_MASK_DH, 16)
+
+/*
+ * Set alarm values
+ */
+#define SUNXI_ALRM_SET_SEC_VALUE(x) SUNXI_ALRM_GET_SEC_VALUE(x)
+#define SUNXI_ALRM_SET_MIN_VALUE(x) SUNXI_SET(x, SUNXI_MASK_SM, 8)
+#define SUNXI_ALRM_SET_HOUR_VALUE(x) SUNXI_SET(x, SUNXI_MASK_DH, 16)
+#define SUNXI_ALRM_SET_DAY_VALUE(x) SUNXI_SET(x, SUNXI_MASK_D, 21)
+
+/*
+ * Time unit conversions
+ */
+#define SEC_IN_MIN 60
+#define SEC_IN_HOUR (60 * SEC_IN_MIN)
+#define SEC_IN_DAY (24 * SEC_IN_HOUR)
+
+/*
+ * The year parameter passed to the driver is usually an offset relative to
+ * the year 1900. This macro is used to convert this offset to another one
+ * relative to the minimum year allowed by the hardware.
+ */
+#define SUNXI_YEAR_OFF(x) ((x)->min - 1900)
+
+/*
+ * min and max year are arbitrary set considering the limited range of the
+ * hardware register field
+ */
+struct sunxi_rtc_data_year {
+ unsigned int min; /* min year allowed */
+ unsigned int max; /* max year allowed */
+ unsigned int mask; /* mask for the year field */
+ unsigned char leap_shift; /* bit shift to get the leap year */
+};
+
+static const struct sunxi_rtc_data_year data_year_param[] = {
+ [0] = {
+ .min = 2010,
+ .max = 2073,
+ .mask = 0x3f,
+ .leap_shift = 22,
+ },
+ [1] = {
+ .min = 1970,
+ .max = 2225,
+ .mask = 0xff,
+ .leap_shift = 24,
+ },
+};
+
+struct sunxi_rtc_dev {
+ struct rtc_device *rtc;
+ struct device *dev;
+ const struct sunxi_rtc_data_year *data_year;
+ void __iomem *base;
+ int irq;
+};
+
+static irqreturn_t sunxi_rtc_alarmirq(int irq, void *id)
+{
+ struct sunxi_rtc_dev *chip = (struct sunxi_rtc_dev *) id;
+ u32 val;
+
+ val = readl(chip->base + SUNXI_ALRM_IRQ_STA);
+
+ if (val & SUNXI_ALRM_IRQ_STA_CNT_IRQ_PEND) {
+ val |= SUNXI_ALRM_IRQ_STA_CNT_IRQ_PEND;
+ writel(val, chip->base + SUNXI_ALRM_IRQ_STA);
+
+ rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
+
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+static void sunxi_rtc_setaie(unsigned int to, struct sunxi_rtc_dev *chip)
+{
+ u32 alrm_val = 0;
+ u32 alrm_irq_val = 0;
+
+ if (to) {
+ alrm_val = readl(chip->base + SUNXI_ALRM_EN);
+ alrm_val |= SUNXI_ALRM_EN_CNT_EN;
+
+ alrm_irq_val = readl(chip->base + SUNXI_ALRM_IRQ_EN);
+ alrm_irq_val |= SUNXI_ALRM_IRQ_EN_CNT_IRQ_EN;
+ } else {
+ writel(SUNXI_ALRM_IRQ_STA_CNT_IRQ_PEND,
+ chip->base + SUNXI_ALRM_IRQ_STA);
+ }
+
+ writel(alrm_val, chip->base + SUNXI_ALRM_EN);
+ writel(alrm_irq_val, chip->base + SUNXI_ALRM_IRQ_EN);
+}
+
+static int sunxi_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
+{
+ struct sunxi_rtc_dev *chip = dev_get_drvdata(dev);
+ struct rtc_time *alrm_tm = &wkalrm->time;
+ u32 alrm;
+ u32 alrm_en;
+ u32 date;
+
+ alrm = readl(chip->base + SUNXI_ALRM_DHMS);
+ date = readl(chip->base + SUNXI_RTC_YMD);
+
+ alrm_tm->tm_sec = SUNXI_ALRM_GET_SEC_VALUE(alrm);
+ alrm_tm->tm_min = SUNXI_ALRM_GET_MIN_VALUE(alrm);
+ alrm_tm->tm_hour = SUNXI_ALRM_GET_HOUR_VALUE(alrm);
+
+ alrm_tm->tm_mday = SUNXI_DATE_GET_DAY_VALUE(date);
+ alrm_tm->tm_mon = SUNXI_DATE_GET_MON_VALUE(date);
+ alrm_tm->tm_year = SUNXI_DATE_GET_YEAR_VALUE(date,
+ chip->data_year->mask);
+
+ alrm_tm->tm_mon -= 1;
+
+ /*
+ * switch from (data_year->min)-relative offset to
+ * a (1900)-relative one
+ */
+ alrm_tm->tm_year += SUNXI_YEAR_OFF(chip->data_year);
+
+ alrm_en = readl(chip->base + SUNXI_ALRM_IRQ_EN);
+ if (alrm_en & SUNXI_ALRM_EN_CNT_EN)
+ wkalrm->enabled = 1;
+
+ return 0;
+}
+
+static int sunxi_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
+{
+ struct sunxi_rtc_dev *chip = dev_get_drvdata(dev);
+ u32 date, time;
+
+ /*
+ * read again in case it changes
+ */
+ do {
+ date = readl(chip->base + SUNXI_RTC_YMD);
+ time = readl(chip->base + SUNXI_RTC_HMS);
+ } while ((date != readl(chip->base + SUNXI_RTC_YMD)) ||
+ (time != readl(chip->base + SUNXI_RTC_HMS)));
+
+ rtc_tm->tm_sec = SUNXI_TIME_GET_SEC_VALUE(time);
+ rtc_tm->tm_min = SUNXI_TIME_GET_MIN_VALUE(time);
+ rtc_tm->tm_hour = SUNXI_TIME_GET_HOUR_VALUE(time);
+
+ rtc_tm->tm_mday = SUNXI_DATE_GET_DAY_VALUE(date);
+ rtc_tm->tm_mon = SUNXI_DATE_GET_MON_VALUE(date);
+ rtc_tm->tm_year = SUNXI_DATE_GET_YEAR_VALUE(date,
+ chip->data_year->mask);
+
+ rtc_tm->tm_mon -= 1;
+
+ /*
+ * switch from (data_year->min)-relative offset to
+ * a (1900)-relative one
+ */
+ rtc_tm->tm_year += SUNXI_YEAR_OFF(chip->data_year);
+
+ return 0;
+}
+
+static int sunxi_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
+{
+ struct sunxi_rtc_dev *chip = dev_get_drvdata(dev);
+ struct rtc_time *alrm_tm = &wkalrm->time;
+ struct rtc_time tm_now;
+ u32 alrm;
+ time64_t diff;
+ unsigned long time_gap;
+ unsigned long time_gap_day;
+ unsigned long time_gap_hour;
+ unsigned long time_gap_min;
+ int ret;
+
+ ret = sunxi_rtc_gettime(dev, &tm_now);
+ if (ret < 0) {
+ dev_err(dev, "Error in getting time\n");
+ return -EINVAL;
+ }
+
+ diff = rtc_tm_sub(alrm_tm, &tm_now);
+ if (diff <= 0) {
+ dev_err(dev, "Date to set in the past\n");
+ return -EINVAL;
+ }
+
+ if (diff > 255 * SEC_IN_DAY) {
+ dev_err(dev, "Day must be in the range 0 - 255\n");
+ return -EINVAL;
+ }
+
+ time_gap = diff;
+ time_gap_day = time_gap / SEC_IN_DAY;
+ time_gap -= time_gap_day * SEC_IN_DAY;
+ time_gap_hour = time_gap / SEC_IN_HOUR;
+ time_gap -= time_gap_hour * SEC_IN_HOUR;
+ time_gap_min = time_gap / SEC_IN_MIN;
+ time_gap -= time_gap_min * SEC_IN_MIN;
+
+ sunxi_rtc_setaie(0, chip);
+ writel(0, chip->base + SUNXI_ALRM_DHMS);
+ usleep_range(100, 300);
+
+ alrm = SUNXI_ALRM_SET_SEC_VALUE(time_gap) |
+ SUNXI_ALRM_SET_MIN_VALUE(time_gap_min) |
+ SUNXI_ALRM_SET_HOUR_VALUE(time_gap_hour) |
+ SUNXI_ALRM_SET_DAY_VALUE(time_gap_day);
+ writel(alrm, chip->base + SUNXI_ALRM_DHMS);
+
+ writel(0, chip->base + SUNXI_ALRM_IRQ_EN);
+ writel(SUNXI_ALRM_IRQ_EN_CNT_IRQ_EN, chip->base + SUNXI_ALRM_IRQ_EN);
+
+ sunxi_rtc_setaie(wkalrm->enabled, chip);
+
+ return 0;
+}
+
+static int sunxi_rtc_wait(struct sunxi_rtc_dev *chip, int offset,
+ unsigned int mask, unsigned int ms_timeout)
+{
+ const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
+ u32 reg;
+
+ do {
+ reg = readl(chip->base + offset);
+ reg &= mask;
+
+ if (reg == mask)
+ return 0;
+
+ } while (time_before(jiffies, timeout));
+
+ return -ETIMEDOUT;
+}
+
+static int sunxi_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
+{
+ struct sunxi_rtc_dev *chip = dev_get_drvdata(dev);
+ u32 date = 0;
+ u32 time = 0;
+ unsigned int year;
+
+ /*
+ * the input rtc_tm->tm_year is the offset relative to 1900. We use
+ * the SUNXI_YEAR_OFF macro to rebase it with respect to the min year
+ * allowed by the hardware
+ */
+
+ year = rtc_tm->tm_year + 1900;
+ if (year < chip->data_year->min || year > chip->data_year->max) {
+ dev_err(dev, "rtc only supports year in range %u - %u\n",
+ chip->data_year->min, chip->data_year->max);
+ return -EINVAL;
+ }
+
+ rtc_tm->tm_year -= SUNXI_YEAR_OFF(chip->data_year);
+ rtc_tm->tm_mon += 1;
+
+ date = SUNXI_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
+ SUNXI_DATE_SET_MON_VALUE(rtc_tm->tm_mon) |
+ SUNXI_DATE_SET_YEAR_VALUE(rtc_tm->tm_year,
+ chip->data_year->mask);
+
+ if (is_leap_year(year))
+ date |= SUNXI_LEAP_SET_VALUE(1, chip->data_year->leap_shift);
+
+ time = SUNXI_TIME_SET_SEC_VALUE(rtc_tm->tm_sec) |
+ SUNXI_TIME_SET_MIN_VALUE(rtc_tm->tm_min) |
+ SUNXI_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
+
+ writel(0, chip->base + SUNXI_RTC_HMS);
+ writel(0, chip->base + SUNXI_RTC_YMD);
+
+ writel(time, chip->base + SUNXI_RTC_HMS);
+
+ /*
+ * After writing the RTC HH-MM-SS register, the
+ * SUNXI_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
+ * be cleared until the real writing operation is finished
+ */
+
+ if (sunxi_rtc_wait(chip, SUNXI_LOSC_CTRL,
+ SUNXI_LOSC_CTRL_RTC_HMS_ACC, 50)) {
+ dev_err(dev, "Failed to set rtc time.\n");
+ return -1;
+ }
+
+ writel(date, chip->base + SUNXI_RTC_YMD);
+
+ /*
+ * After writing the RTC YY-MM-DD register, the
+ * SUNXI_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
+ * be cleared until the real writing operation is finished
+ */
+
+ if (sunxi_rtc_wait(chip, SUNXI_LOSC_CTRL,
+ SUNXI_LOSC_CTRL_RTC_YMD_ACC, 50)) {
+ dev_err(dev, "Failed to set rtc time.\n");
+ return -1;
+ }
+
+ return 0;
+}
+
+static int sunxi_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct sunxi_rtc_dev *chip = dev_get_drvdata(dev);
+
+ if (!enabled)
+ sunxi_rtc_setaie(enabled, chip);
+
+ return 0;
+}
+
+static const struct rtc_class_ops sunxi_rtc_ops = {
+ .read_time = sunxi_rtc_gettime,
+ .set_time = sunxi_rtc_settime,
+ .read_alarm = sunxi_rtc_getalarm,
+ .set_alarm = sunxi_rtc_setalarm,
+ .alarm_irq_enable = sunxi_rtc_alarm_irq_enable
+};
+
+static const struct of_device_id sunxi_rtc_dt_ids[] = {
+ { .compatible = "allwinner,sun4i-a10-rtc", .data = &data_year_param[0] },
+ { .compatible = "allwinner,sun7i-a20-rtc", .data = &data_year_param[1] },
+ { /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(of, sunxi_rtc_dt_ids);
+
+static int sunxi_rtc_probe(struct platform_device *pdev)
+{
+ struct sunxi_rtc_dev *chip;
+ int ret;
+
+ chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
+ if (!chip)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, chip);
+ chip->dev = &pdev->dev;
+
+ chip->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(chip->rtc))
+ return PTR_ERR(chip->rtc);
+
+ chip->base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(chip->base))
+ return PTR_ERR(chip->base);
+
+ chip->irq = platform_get_irq(pdev, 0);
+ if (chip->irq < 0)
+ return chip->irq;
+ ret = devm_request_irq(&pdev->dev, chip->irq, sunxi_rtc_alarmirq,
+ 0, dev_name(&pdev->dev), chip);
+ if (ret) {
+ dev_err(&pdev->dev, "Could not request IRQ\n");
+ return ret;
+ }
+
+ chip->data_year = of_device_get_match_data(&pdev->dev);
+ if (!chip->data_year) {
+ dev_err(&pdev->dev, "Unable to setup RTC data\n");
+ return -ENODEV;
+ }
+
+ /* clear the alarm count value */
+ writel(0, chip->base + SUNXI_ALRM_DHMS);
+
+ /* disable alarm, not generate irq pending */
+ writel(0, chip->base + SUNXI_ALRM_EN);
+
+ /* disable alarm week/cnt irq, unset to cpu */
+ writel(0, chip->base + SUNXI_ALRM_IRQ_EN);
+
+ /* clear alarm week/cnt irq pending */
+ writel(SUNXI_ALRM_IRQ_STA_CNT_IRQ_PEND, chip->base +
+ SUNXI_ALRM_IRQ_STA);
+
+ chip->rtc->ops = &sunxi_rtc_ops;
+
+ return rtc_register_device(chip->rtc);
+}
+
+static struct platform_driver sunxi_rtc_driver = {
+ .probe = sunxi_rtc_probe,
+ .driver = {
+ .name = "sunxi-rtc",
+ .of_match_table = sunxi_rtc_dt_ids,
+ },
+};
+
+module_platform_driver(sunxi_rtc_driver);
+
+MODULE_DESCRIPTION("sunxi RTC driver");
+MODULE_AUTHOR("Carlo Caione <carlo.caione@gmail.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-tegra.c b/drivers/rtc/rtc-tegra.c
new file mode 100644
index 000000000..7fbb17416
--- /dev/null
+++ b/drivers/rtc/rtc-tegra.c
@@ -0,0 +1,416 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * An RTC driver for the NVIDIA Tegra 200 series internal RTC.
+ *
+ * Copyright (c) 2010-2019, NVIDIA Corporation.
+ */
+
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/irq.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/mod_devicetable.h>
+#include <linux/platform_device.h>
+#include <linux/pm.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+
+/* Set to 1 = busy every eight 32 kHz clocks during copy of sec+msec to AHB. */
+#define TEGRA_RTC_REG_BUSY 0x004
+#define TEGRA_RTC_REG_SECONDS 0x008
+/* When msec is read, the seconds are buffered into shadow seconds. */
+#define TEGRA_RTC_REG_SHADOW_SECONDS 0x00c
+#define TEGRA_RTC_REG_MILLI_SECONDS 0x010
+#define TEGRA_RTC_REG_SECONDS_ALARM0 0x014
+#define TEGRA_RTC_REG_SECONDS_ALARM1 0x018
+#define TEGRA_RTC_REG_MILLI_SECONDS_ALARM0 0x01c
+#define TEGRA_RTC_REG_INTR_MASK 0x028
+/* write 1 bits to clear status bits */
+#define TEGRA_RTC_REG_INTR_STATUS 0x02c
+
+/* bits in INTR_MASK */
+#define TEGRA_RTC_INTR_MASK_MSEC_CDN_ALARM (1<<4)
+#define TEGRA_RTC_INTR_MASK_SEC_CDN_ALARM (1<<3)
+#define TEGRA_RTC_INTR_MASK_MSEC_ALARM (1<<2)
+#define TEGRA_RTC_INTR_MASK_SEC_ALARM1 (1<<1)
+#define TEGRA_RTC_INTR_MASK_SEC_ALARM0 (1<<0)
+
+/* bits in INTR_STATUS */
+#define TEGRA_RTC_INTR_STATUS_MSEC_CDN_ALARM (1<<4)
+#define TEGRA_RTC_INTR_STATUS_SEC_CDN_ALARM (1<<3)
+#define TEGRA_RTC_INTR_STATUS_MSEC_ALARM (1<<2)
+#define TEGRA_RTC_INTR_STATUS_SEC_ALARM1 (1<<1)
+#define TEGRA_RTC_INTR_STATUS_SEC_ALARM0 (1<<0)
+
+struct tegra_rtc_info {
+ struct platform_device *pdev;
+ struct rtc_device *rtc;
+ void __iomem *base; /* NULL if not initialized */
+ struct clk *clk;
+ int irq; /* alarm and periodic IRQ */
+ spinlock_t lock;
+};
+
+/*
+ * RTC hardware is busy when it is updating its values over AHB once every
+ * eight 32 kHz clocks (~250 us). Outside of these updates the CPU is free to
+ * write. CPU is always free to read.
+ */
+static inline u32 tegra_rtc_check_busy(struct tegra_rtc_info *info)
+{
+ return readl(info->base + TEGRA_RTC_REG_BUSY) & 1;
+}
+
+/*
+ * Wait for hardware to be ready for writing. This function tries to maximize
+ * the amount of time before the next update. It does this by waiting for the
+ * RTC to become busy with its periodic update, then returning once the RTC
+ * first becomes not busy.
+ *
+ * This periodic update (where the seconds and milliseconds are copied to the
+ * AHB side) occurs every eight 32 kHz clocks (~250 us). The behavior of this
+ * function allows us to make some assumptions without introducing a race,
+ * because 250 us is plenty of time to read/write a value.
+ */
+static int tegra_rtc_wait_while_busy(struct device *dev)
+{
+ struct tegra_rtc_info *info = dev_get_drvdata(dev);
+ int retries = 500; /* ~490 us is the worst case, ~250 us is best */
+
+ /*
+ * First wait for the RTC to become busy. This is when it posts its
+ * updated seconds+msec registers to AHB side.
+ */
+ while (tegra_rtc_check_busy(info)) {
+ if (!retries--)
+ goto retry_failed;
+
+ udelay(1);
+ }
+
+ /* now we have about 250 us to manipulate registers */
+ return 0;
+
+retry_failed:
+ dev_err(dev, "write failed: retry count exceeded\n");
+ return -ETIMEDOUT;
+}
+
+static int tegra_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct tegra_rtc_info *info = dev_get_drvdata(dev);
+ unsigned long flags;
+ u32 sec;
+
+ /*
+ * RTC hardware copies seconds to shadow seconds when a read of
+ * milliseconds occurs. use a lock to keep other threads out.
+ */
+ spin_lock_irqsave(&info->lock, flags);
+
+ readl(info->base + TEGRA_RTC_REG_MILLI_SECONDS);
+ sec = readl(info->base + TEGRA_RTC_REG_SHADOW_SECONDS);
+
+ spin_unlock_irqrestore(&info->lock, flags);
+
+ rtc_time64_to_tm(sec, tm);
+
+ dev_vdbg(dev, "time read as %u, %ptR\n", sec, tm);
+
+ return 0;
+}
+
+static int tegra_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct tegra_rtc_info *info = dev_get_drvdata(dev);
+ u32 sec;
+ int ret;
+
+ /* convert tm to seconds */
+ sec = rtc_tm_to_time64(tm);
+
+ dev_vdbg(dev, "time set to %u, %ptR\n", sec, tm);
+
+ /* seconds only written if wait succeeded */
+ ret = tegra_rtc_wait_while_busy(dev);
+ if (!ret)
+ writel(sec, info->base + TEGRA_RTC_REG_SECONDS);
+
+ dev_vdbg(dev, "time read back as %d\n",
+ readl(info->base + TEGRA_RTC_REG_SECONDS));
+
+ return ret;
+}
+
+static int tegra_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct tegra_rtc_info *info = dev_get_drvdata(dev);
+ u32 sec, value;
+
+ sec = readl(info->base + TEGRA_RTC_REG_SECONDS_ALARM0);
+
+ if (sec == 0) {
+ /* alarm is disabled */
+ alarm->enabled = 0;
+ } else {
+ /* alarm is enabled */
+ alarm->enabled = 1;
+ rtc_time64_to_tm(sec, &alarm->time);
+ }
+
+ value = readl(info->base + TEGRA_RTC_REG_INTR_STATUS);
+ alarm->pending = (value & TEGRA_RTC_INTR_STATUS_SEC_ALARM0) != 0;
+
+ return 0;
+}
+
+static int tegra_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct tegra_rtc_info *info = dev_get_drvdata(dev);
+ unsigned long flags;
+ u32 status;
+
+ tegra_rtc_wait_while_busy(dev);
+ spin_lock_irqsave(&info->lock, flags);
+
+ /* read the original value, and OR in the flag */
+ status = readl(info->base + TEGRA_RTC_REG_INTR_MASK);
+ if (enabled)
+ status |= TEGRA_RTC_INTR_MASK_SEC_ALARM0; /* set it */
+ else
+ status &= ~TEGRA_RTC_INTR_MASK_SEC_ALARM0; /* clear it */
+
+ writel(status, info->base + TEGRA_RTC_REG_INTR_MASK);
+
+ spin_unlock_irqrestore(&info->lock, flags);
+
+ return 0;
+}
+
+static int tegra_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
+{
+ struct tegra_rtc_info *info = dev_get_drvdata(dev);
+ u32 sec;
+
+ if (alarm->enabled)
+ sec = rtc_tm_to_time64(&alarm->time);
+ else
+ sec = 0;
+
+ tegra_rtc_wait_while_busy(dev);
+ writel(sec, info->base + TEGRA_RTC_REG_SECONDS_ALARM0);
+ dev_vdbg(dev, "alarm read back as %d\n",
+ readl(info->base + TEGRA_RTC_REG_SECONDS_ALARM0));
+
+ /* if successfully written and alarm is enabled ... */
+ if (sec) {
+ tegra_rtc_alarm_irq_enable(dev, 1);
+ dev_vdbg(dev, "alarm set as %u, %ptR\n", sec, &alarm->time);
+ } else {
+ /* disable alarm if 0 or write error */
+ dev_vdbg(dev, "alarm disabled\n");
+ tegra_rtc_alarm_irq_enable(dev, 0);
+ }
+
+ return 0;
+}
+
+static int tegra_rtc_proc(struct device *dev, struct seq_file *seq)
+{
+ if (!dev || !dev->driver)
+ return 0;
+
+ seq_printf(seq, "name\t\t: %s\n", dev_name(dev));
+
+ return 0;
+}
+
+static irqreturn_t tegra_rtc_irq_handler(int irq, void *data)
+{
+ struct device *dev = data;
+ struct tegra_rtc_info *info = dev_get_drvdata(dev);
+ unsigned long events = 0, flags;
+ u32 status;
+
+ status = readl(info->base + TEGRA_RTC_REG_INTR_STATUS);
+ if (status) {
+ /* clear the interrupt masks and status on any IRQ */
+ tegra_rtc_wait_while_busy(dev);
+
+ spin_lock_irqsave(&info->lock, flags);
+ writel(0, info->base + TEGRA_RTC_REG_INTR_MASK);
+ writel(status, info->base + TEGRA_RTC_REG_INTR_STATUS);
+ spin_unlock_irqrestore(&info->lock, flags);
+ }
+
+ /* check if alarm */
+ if (status & TEGRA_RTC_INTR_STATUS_SEC_ALARM0)
+ events |= RTC_IRQF | RTC_AF;
+
+ /* check if periodic */
+ if (status & TEGRA_RTC_INTR_STATUS_SEC_CDN_ALARM)
+ events |= RTC_IRQF | RTC_PF;
+
+ rtc_update_irq(info->rtc, 1, events);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops tegra_rtc_ops = {
+ .read_time = tegra_rtc_read_time,
+ .set_time = tegra_rtc_set_time,
+ .read_alarm = tegra_rtc_read_alarm,
+ .set_alarm = tegra_rtc_set_alarm,
+ .proc = tegra_rtc_proc,
+ .alarm_irq_enable = tegra_rtc_alarm_irq_enable,
+};
+
+static const struct of_device_id tegra_rtc_dt_match[] = {
+ { .compatible = "nvidia,tegra20-rtc", },
+ {}
+};
+MODULE_DEVICE_TABLE(of, tegra_rtc_dt_match);
+
+static int tegra_rtc_probe(struct platform_device *pdev)
+{
+ struct tegra_rtc_info *info;
+ int ret;
+
+ info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ info->base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(info->base))
+ return PTR_ERR(info->base);
+
+ ret = platform_get_irq(pdev, 0);
+ if (ret <= 0)
+ return ret;
+
+ info->irq = ret;
+
+ info->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(info->rtc))
+ return PTR_ERR(info->rtc);
+
+ info->rtc->ops = &tegra_rtc_ops;
+ info->rtc->range_max = U32_MAX;
+
+ info->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(info->clk))
+ return PTR_ERR(info->clk);
+
+ ret = clk_prepare_enable(info->clk);
+ if (ret < 0)
+ return ret;
+
+ /* set context info */
+ info->pdev = pdev;
+ spin_lock_init(&info->lock);
+
+ platform_set_drvdata(pdev, info);
+
+ /* clear out the hardware */
+ writel(0, info->base + TEGRA_RTC_REG_SECONDS_ALARM0);
+ writel(0xffffffff, info->base + TEGRA_RTC_REG_INTR_STATUS);
+ writel(0, info->base + TEGRA_RTC_REG_INTR_MASK);
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ ret = devm_request_irq(&pdev->dev, info->irq, tegra_rtc_irq_handler,
+ IRQF_TRIGGER_HIGH, dev_name(&pdev->dev),
+ &pdev->dev);
+ if (ret) {
+ dev_err(&pdev->dev, "failed to request interrupt: %d\n", ret);
+ goto disable_clk;
+ }
+
+ ret = rtc_register_device(info->rtc);
+ if (ret)
+ goto disable_clk;
+
+ dev_notice(&pdev->dev, "Tegra internal Real Time Clock\n");
+
+ return 0;
+
+disable_clk:
+ clk_disable_unprepare(info->clk);
+ return ret;
+}
+
+static int tegra_rtc_remove(struct platform_device *pdev)
+{
+ struct tegra_rtc_info *info = platform_get_drvdata(pdev);
+
+ clk_disable_unprepare(info->clk);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int tegra_rtc_suspend(struct device *dev)
+{
+ struct tegra_rtc_info *info = dev_get_drvdata(dev);
+
+ tegra_rtc_wait_while_busy(dev);
+
+ /* only use ALARM0 as a wake source */
+ writel(0xffffffff, info->base + TEGRA_RTC_REG_INTR_STATUS);
+ writel(TEGRA_RTC_INTR_STATUS_SEC_ALARM0,
+ info->base + TEGRA_RTC_REG_INTR_MASK);
+
+ dev_vdbg(dev, "alarm sec = %d\n",
+ readl(info->base + TEGRA_RTC_REG_SECONDS_ALARM0));
+
+ dev_vdbg(dev, "Suspend (device_may_wakeup=%d) IRQ:%d\n",
+ device_may_wakeup(dev), info->irq);
+
+ /* leave the alarms on as a wake source */
+ if (device_may_wakeup(dev))
+ enable_irq_wake(info->irq);
+
+ return 0;
+}
+
+static int tegra_rtc_resume(struct device *dev)
+{
+ struct tegra_rtc_info *info = dev_get_drvdata(dev);
+
+ dev_vdbg(dev, "Resume (device_may_wakeup=%d)\n",
+ device_may_wakeup(dev));
+
+ /* alarms were left on as a wake source, turn them off */
+ if (device_may_wakeup(dev))
+ disable_irq_wake(info->irq);
+
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(tegra_rtc_pm_ops, tegra_rtc_suspend, tegra_rtc_resume);
+
+static void tegra_rtc_shutdown(struct platform_device *pdev)
+{
+ dev_vdbg(&pdev->dev, "disabling interrupts\n");
+ tegra_rtc_alarm_irq_enable(&pdev->dev, 0);
+}
+
+static struct platform_driver tegra_rtc_driver = {
+ .probe = tegra_rtc_probe,
+ .remove = tegra_rtc_remove,
+ .shutdown = tegra_rtc_shutdown,
+ .driver = {
+ .name = "tegra_rtc",
+ .of_match_table = tegra_rtc_dt_match,
+ .pm = &tegra_rtc_pm_ops,
+ },
+};
+module_platform_driver(tegra_rtc_driver);
+
+MODULE_AUTHOR("Jon Mayo <jmayo@nvidia.com>");
+MODULE_DESCRIPTION("driver for Tegra internal RTC");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-test.c b/drivers/rtc/rtc-test.c
new file mode 100644
index 000000000..74b3a0603
--- /dev/null
+++ b/drivers/rtc/rtc-test.c
@@ -0,0 +1,202 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * An RTC test device/driver
+ * Copyright (C) 2005 Tower Technologies
+ * Author: Alessandro Zummo <a.zummo@towertech.it>
+ */
+
+#include <linux/module.h>
+#include <linux/err.h>
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+
+#define MAX_RTC_TEST 3
+
+struct rtc_test_data {
+ struct rtc_device *rtc;
+ time64_t offset;
+ struct timer_list alarm;
+ bool alarm_en;
+};
+
+static struct platform_device *pdev[MAX_RTC_TEST];
+
+static int test_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rtc_test_data *rtd = dev_get_drvdata(dev);
+ time64_t alarm;
+
+ alarm = (rtd->alarm.expires - jiffies) / HZ;
+ alarm += ktime_get_real_seconds() + rtd->offset;
+
+ rtc_time64_to_tm(alarm, &alrm->time);
+ alrm->enabled = rtd->alarm_en;
+
+ return 0;
+}
+
+static int test_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct rtc_test_data *rtd = dev_get_drvdata(dev);
+ ktime_t timeout;
+ u64 expires;
+
+ timeout = rtc_tm_to_time64(&alrm->time) - ktime_get_real_seconds();
+ timeout -= rtd->offset;
+
+ del_timer(&rtd->alarm);
+
+ expires = jiffies + timeout * HZ;
+ if (expires > U32_MAX)
+ expires = U32_MAX;
+
+ pr_err("ABE: %s +%d %s\n", __FILE__, __LINE__, __func__);
+ rtd->alarm.expires = expires;
+
+ if (alrm->enabled)
+ add_timer(&rtd->alarm);
+
+ rtd->alarm_en = alrm->enabled;
+
+ return 0;
+}
+
+static int test_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rtc_test_data *rtd = dev_get_drvdata(dev);
+
+ rtc_time64_to_tm(ktime_get_real_seconds() + rtd->offset, tm);
+
+ return 0;
+}
+
+static int test_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct rtc_test_data *rtd = dev_get_drvdata(dev);
+
+ rtd->offset = rtc_tm_to_time64(tm) - ktime_get_real_seconds();
+
+ return 0;
+}
+
+static int test_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
+{
+ struct rtc_test_data *rtd = dev_get_drvdata(dev);
+
+ rtd->alarm_en = enable;
+ if (enable)
+ add_timer(&rtd->alarm);
+ else
+ del_timer(&rtd->alarm);
+
+ return 0;
+}
+
+static const struct rtc_class_ops test_rtc_ops_noalm = {
+ .read_time = test_rtc_read_time,
+ .set_time = test_rtc_set_time,
+ .alarm_irq_enable = test_rtc_alarm_irq_enable,
+};
+
+static const struct rtc_class_ops test_rtc_ops = {
+ .read_time = test_rtc_read_time,
+ .set_time = test_rtc_set_time,
+ .read_alarm = test_rtc_read_alarm,
+ .set_alarm = test_rtc_set_alarm,
+ .alarm_irq_enable = test_rtc_alarm_irq_enable,
+};
+
+static void test_rtc_alarm_handler(struct timer_list *t)
+{
+ struct rtc_test_data *rtd = from_timer(rtd, t, alarm);
+
+ rtc_update_irq(rtd->rtc, 1, RTC_AF | RTC_IRQF);
+}
+
+static int test_probe(struct platform_device *plat_dev)
+{
+ struct rtc_test_data *rtd;
+
+ rtd = devm_kzalloc(&plat_dev->dev, sizeof(*rtd), GFP_KERNEL);
+ if (!rtd)
+ return -ENOMEM;
+
+ platform_set_drvdata(plat_dev, rtd);
+
+ rtd->rtc = devm_rtc_allocate_device(&plat_dev->dev);
+ if (IS_ERR(rtd->rtc))
+ return PTR_ERR(rtd->rtc);
+
+ switch (plat_dev->id) {
+ case 0:
+ rtd->rtc->ops = &test_rtc_ops_noalm;
+ break;
+ default:
+ rtd->rtc->ops = &test_rtc_ops;
+ device_init_wakeup(&plat_dev->dev, 1);
+ }
+
+ timer_setup(&rtd->alarm, test_rtc_alarm_handler, 0);
+ rtd->alarm.expires = 0;
+
+ return rtc_register_device(rtd->rtc);
+}
+
+static struct platform_driver test_driver = {
+ .probe = test_probe,
+ .driver = {
+ .name = "rtc-test",
+ },
+};
+
+static int __init test_init(void)
+{
+ int i, err;
+
+ err = platform_driver_register(&test_driver);
+ if (err)
+ return err;
+
+ err = -ENOMEM;
+ for (i = 0; i < MAX_RTC_TEST; i++) {
+ pdev[i] = platform_device_alloc("rtc-test", i);
+ if (!pdev[i])
+ goto exit_free_mem;
+ }
+
+ for (i = 0; i < MAX_RTC_TEST; i++) {
+ err = platform_device_add(pdev[i]);
+ if (err)
+ goto exit_device_del;
+ }
+
+ return 0;
+
+exit_device_del:
+ for (; i > 0; i--)
+ platform_device_del(pdev[i - 1]);
+
+exit_free_mem:
+ for (i = 0; i < MAX_RTC_TEST; i++)
+ platform_device_put(pdev[i]);
+
+ platform_driver_unregister(&test_driver);
+ return err;
+}
+
+static void __exit test_exit(void)
+{
+ int i;
+
+ for (i = 0; i < MAX_RTC_TEST; i++)
+ platform_device_unregister(pdev[i]);
+
+ platform_driver_unregister(&test_driver);
+}
+
+MODULE_AUTHOR("Alessandro Zummo <a.zummo@towertech.it>");
+MODULE_DESCRIPTION("RTC test driver/device");
+MODULE_LICENSE("GPL v2");
+
+module_init(test_init);
+module_exit(test_exit);
diff --git a/drivers/rtc/rtc-tps6586x.c b/drivers/rtc/rtc-tps6586x.c
new file mode 100644
index 000000000..e39af2d67
--- /dev/null
+++ b/drivers/rtc/rtc-tps6586x.c
@@ -0,0 +1,340 @@
+/*
+ * rtc-tps6586x.c: RTC driver for TI PMIC TPS6586X
+ *
+ * Copyright (c) 2012, NVIDIA Corporation.
+ *
+ * Author: Laxman Dewangan <ldewangan@nvidia.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation version 2.
+ *
+ * This program is distributed "as is" WITHOUT ANY WARRANTY of any kind,
+ * whether express or implied; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ * 02111-1307, USA
+ */
+
+#include <linux/device.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/irq.h>
+#include <linux/kernel.h>
+#include <linux/mfd/tps6586x.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/pm_runtime.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+
+#define RTC_CTRL 0xc0
+#define POR_RESET_N BIT(7)
+#define OSC_SRC_SEL BIT(6)
+#define RTC_ENABLE BIT(5) /* enables alarm */
+#define RTC_BUF_ENABLE BIT(4) /* 32 KHz buffer enable */
+#define PRE_BYPASS BIT(3) /* 0=1KHz or 1=32KHz updates */
+#define CL_SEL_MASK (BIT(2)|BIT(1))
+#define CL_SEL_POS 1
+#define RTC_ALARM1_HI 0xc1
+#define RTC_COUNT4 0xc6
+
+/* start a PMU RTC access by reading the register prior to the RTC_COUNT4 */
+#define RTC_COUNT4_DUMMYREAD 0xc5
+
+/*only 14-bits width in second*/
+#define ALM1_VALID_RANGE_IN_SEC 0x3FFF
+
+#define TPS6586X_RTC_CL_SEL_1_5PF 0x0
+#define TPS6586X_RTC_CL_SEL_6_5PF 0x1
+#define TPS6586X_RTC_CL_SEL_7_5PF 0x2
+#define TPS6586X_RTC_CL_SEL_12_5PF 0x3
+
+struct tps6586x_rtc {
+ struct device *dev;
+ struct rtc_device *rtc;
+ int irq;
+ bool irq_en;
+};
+
+static inline struct device *to_tps6586x_dev(struct device *dev)
+{
+ return dev->parent;
+}
+
+static int tps6586x_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct device *tps_dev = to_tps6586x_dev(dev);
+ unsigned long long ticks = 0;
+ time64_t seconds;
+ u8 buff[6];
+ int ret;
+ int i;
+
+ ret = tps6586x_reads(tps_dev, RTC_COUNT4_DUMMYREAD, sizeof(buff), buff);
+ if (ret < 0) {
+ dev_err(dev, "read counter failed with err %d\n", ret);
+ return ret;
+ }
+
+ for (i = 1; i < sizeof(buff); i++) {
+ ticks <<= 8;
+ ticks |= buff[i];
+ }
+
+ seconds = ticks >> 10;
+ rtc_time64_to_tm(seconds, tm);
+
+ return 0;
+}
+
+static int tps6586x_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct device *tps_dev = to_tps6586x_dev(dev);
+ unsigned long long ticks;
+ time64_t seconds;
+ u8 buff[5];
+ int ret;
+
+ seconds = rtc_tm_to_time64(tm);
+
+ ticks = (unsigned long long)seconds << 10;
+ buff[0] = (ticks >> 32) & 0xff;
+ buff[1] = (ticks >> 24) & 0xff;
+ buff[2] = (ticks >> 16) & 0xff;
+ buff[3] = (ticks >> 8) & 0xff;
+ buff[4] = ticks & 0xff;
+
+ /* Disable RTC before changing time */
+ ret = tps6586x_clr_bits(tps_dev, RTC_CTRL, RTC_ENABLE);
+ if (ret < 0) {
+ dev_err(dev, "failed to clear RTC_ENABLE\n");
+ return ret;
+ }
+
+ ret = tps6586x_writes(tps_dev, RTC_COUNT4, sizeof(buff), buff);
+ if (ret < 0) {
+ dev_err(dev, "failed to program new time\n");
+ return ret;
+ }
+
+ /* Enable RTC */
+ ret = tps6586x_set_bits(tps_dev, RTC_CTRL, RTC_ENABLE);
+ if (ret < 0) {
+ dev_err(dev, "failed to set RTC_ENABLE\n");
+ return ret;
+ }
+ return 0;
+}
+
+static int tps6586x_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct tps6586x_rtc *rtc = dev_get_drvdata(dev);
+
+ if (enabled && !rtc->irq_en) {
+ enable_irq(rtc->irq);
+ rtc->irq_en = true;
+ } else if (!enabled && rtc->irq_en) {
+ disable_irq(rtc->irq);
+ rtc->irq_en = false;
+ }
+ return 0;
+}
+
+static int tps6586x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct device *tps_dev = to_tps6586x_dev(dev);
+ time64_t seconds;
+ unsigned long ticks;
+ unsigned long rtc_current_time;
+ unsigned long long rticks = 0;
+ u8 buff[3];
+ u8 rbuff[6];
+ int ret;
+ int i;
+
+ seconds = rtc_tm_to_time64(&alrm->time);
+
+ ret = tps6586x_rtc_alarm_irq_enable(dev, alrm->enabled);
+ if (ret < 0) {
+ dev_err(dev, "can't set alarm irq, err %d\n", ret);
+ return ret;
+ }
+
+ ret = tps6586x_reads(tps_dev, RTC_COUNT4_DUMMYREAD,
+ sizeof(rbuff), rbuff);
+ if (ret < 0) {
+ dev_err(dev, "read counter failed with err %d\n", ret);
+ return ret;
+ }
+
+ for (i = 1; i < sizeof(rbuff); i++) {
+ rticks <<= 8;
+ rticks |= rbuff[i];
+ }
+
+ rtc_current_time = rticks >> 10;
+ if ((seconds - rtc_current_time) > ALM1_VALID_RANGE_IN_SEC)
+ seconds = rtc_current_time - 1;
+
+ ticks = (unsigned long long)seconds << 10;
+ buff[0] = (ticks >> 16) & 0xff;
+ buff[1] = (ticks >> 8) & 0xff;
+ buff[2] = ticks & 0xff;
+
+ ret = tps6586x_writes(tps_dev, RTC_ALARM1_HI, sizeof(buff), buff);
+ if (ret)
+ dev_err(dev, "programming alarm failed with err %d\n", ret);
+
+ return ret;
+}
+
+static int tps6586x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct device *tps_dev = to_tps6586x_dev(dev);
+ unsigned long ticks;
+ time64_t seconds;
+ u8 buff[3];
+ int ret;
+
+ ret = tps6586x_reads(tps_dev, RTC_ALARM1_HI, sizeof(buff), buff);
+ if (ret) {
+ dev_err(dev, "read RTC_ALARM1_HI failed with err %d\n", ret);
+ return ret;
+ }
+
+ ticks = (buff[0] << 16) | (buff[1] << 8) | buff[2];
+ seconds = ticks >> 10;
+
+ rtc_time64_to_tm(seconds, &alrm->time);
+ return 0;
+}
+
+static const struct rtc_class_ops tps6586x_rtc_ops = {
+ .read_time = tps6586x_rtc_read_time,
+ .set_time = tps6586x_rtc_set_time,
+ .set_alarm = tps6586x_rtc_set_alarm,
+ .read_alarm = tps6586x_rtc_read_alarm,
+ .alarm_irq_enable = tps6586x_rtc_alarm_irq_enable,
+};
+
+static irqreturn_t tps6586x_rtc_irq(int irq, void *data)
+{
+ struct tps6586x_rtc *rtc = data;
+
+ rtc_update_irq(rtc->rtc, 1, RTC_IRQF | RTC_AF);
+ return IRQ_HANDLED;
+}
+
+static int tps6586x_rtc_probe(struct platform_device *pdev)
+{
+ struct device *tps_dev = to_tps6586x_dev(&pdev->dev);
+ struct tps6586x_rtc *rtc;
+ int ret;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->dev = &pdev->dev;
+ rtc->irq = platform_get_irq(pdev, 0);
+
+ /* 1 kHz tick mode, enable tick counting */
+ ret = tps6586x_update(tps_dev, RTC_CTRL,
+ RTC_ENABLE | OSC_SRC_SEL |
+ ((TPS6586X_RTC_CL_SEL_1_5PF << CL_SEL_POS) & CL_SEL_MASK),
+ RTC_ENABLE | OSC_SRC_SEL | PRE_BYPASS | CL_SEL_MASK);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "unable to start counter\n");
+ return ret;
+ }
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ platform_set_drvdata(pdev, rtc);
+ rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc->rtc)) {
+ ret = PTR_ERR(rtc->rtc);
+ goto fail_rtc_register;
+ }
+
+ rtc->rtc->ops = &tps6586x_rtc_ops;
+ rtc->rtc->range_max = (1ULL << 30) - 1; /* 30-bit seconds */
+ rtc->rtc->start_secs = mktime64(2009, 1, 1, 0, 0, 0);
+ rtc->rtc->set_start_time = true;
+
+ irq_set_status_flags(rtc->irq, IRQ_NOAUTOEN);
+
+ ret = devm_request_threaded_irq(&pdev->dev, rtc->irq, NULL,
+ tps6586x_rtc_irq,
+ IRQF_ONESHOT,
+ dev_name(&pdev->dev), rtc);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "request IRQ(%d) failed with ret %d\n",
+ rtc->irq, ret);
+ goto fail_rtc_register;
+ }
+
+ ret = rtc_register_device(rtc->rtc);
+ if (ret)
+ goto fail_rtc_register;
+
+ return 0;
+
+fail_rtc_register:
+ tps6586x_update(tps_dev, RTC_CTRL, 0,
+ RTC_ENABLE | OSC_SRC_SEL | PRE_BYPASS | CL_SEL_MASK);
+ return ret;
+};
+
+static int tps6586x_rtc_remove(struct platform_device *pdev)
+{
+ struct device *tps_dev = to_tps6586x_dev(&pdev->dev);
+
+ tps6586x_update(tps_dev, RTC_CTRL, 0,
+ RTC_ENABLE | OSC_SRC_SEL | PRE_BYPASS | CL_SEL_MASK);
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int tps6586x_rtc_suspend(struct device *dev)
+{
+ struct tps6586x_rtc *rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ enable_irq_wake(rtc->irq);
+ return 0;
+}
+
+static int tps6586x_rtc_resume(struct device *dev)
+{
+ struct tps6586x_rtc *rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ disable_irq_wake(rtc->irq);
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(tps6586x_pm_ops, tps6586x_rtc_suspend,
+ tps6586x_rtc_resume);
+
+static struct platform_driver tps6586x_rtc_driver = {
+ .driver = {
+ .name = "tps6586x-rtc",
+ .pm = &tps6586x_pm_ops,
+ },
+ .probe = tps6586x_rtc_probe,
+ .remove = tps6586x_rtc_remove,
+};
+module_platform_driver(tps6586x_rtc_driver);
+
+MODULE_ALIAS("platform:tps6586x-rtc");
+MODULE_DESCRIPTION("TI TPS6586x RTC driver");
+MODULE_AUTHOR("Laxman dewangan <ldewangan@nvidia.com>");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-tps65910.c b/drivers/rtc/rtc-tps65910.c
new file mode 100644
index 000000000..6eec86b0b
--- /dev/null
+++ b/drivers/rtc/rtc-tps65910.c
@@ -0,0 +1,474 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * rtc-tps65910.c -- TPS65910 Real Time Clock interface
+ *
+ * Copyright (c) 2012, NVIDIA CORPORATION. All rights reserved.
+ * Author: Venu Byravarasu <vbyravarasu@nvidia.com>
+ *
+ * Based on original TI driver rtc-twl.c
+ * Copyright (C) 2007 MontaVista Software, Inc
+ * Author: Alexandre Rusev <source@mvista.com>
+ */
+
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/rtc.h>
+#include <linux/bcd.h>
+#include <linux/math64.h>
+#include <linux/platform_device.h>
+#include <linux/interrupt.h>
+#include <linux/mfd/tps65910.h>
+
+struct tps65910_rtc {
+ struct rtc_device *rtc;
+ int irq;
+};
+
+/* Total number of RTC registers needed to set time*/
+#define NUM_TIME_REGS (TPS65910_YEARS - TPS65910_SECONDS + 1)
+
+/* Total number of RTC registers needed to set compensation registers */
+#define NUM_COMP_REGS (TPS65910_RTC_COMP_MSB - TPS65910_RTC_COMP_LSB + 1)
+
+/* Min and max values supported with 'offset' interface (swapped sign) */
+#define MIN_OFFSET (-277761)
+#define MAX_OFFSET (277778)
+
+/* Number of ticks per hour */
+#define TICKS_PER_HOUR (32768 * 3600)
+
+/* Multiplier for ppb conversions */
+#define PPB_MULT (1000000000LL)
+
+static int tps65910_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct tps65910 *tps = dev_get_drvdata(dev->parent);
+ u8 val = 0;
+
+ if (enabled)
+ val = TPS65910_RTC_INTERRUPTS_IT_ALARM;
+
+ return regmap_write(tps->regmap, TPS65910_RTC_INTERRUPTS, val);
+}
+
+/*
+ * Gets current tps65910 RTC time and date parameters.
+ *
+ * The RTC's time/alarm representation is not what gmtime(3) requires
+ * Linux to use:
+ *
+ * - Months are 1..12 vs Linux 0-11
+ * - Years are 0..99 vs Linux 1900..N (we assume 21st century)
+ */
+static int tps65910_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ unsigned char rtc_data[NUM_TIME_REGS];
+ struct tps65910 *tps = dev_get_drvdata(dev->parent);
+ int ret;
+
+ /* Copy RTC counting registers to static registers or latches */
+ ret = regmap_update_bits(tps->regmap, TPS65910_RTC_CTRL,
+ TPS65910_RTC_CTRL_GET_TIME, TPS65910_RTC_CTRL_GET_TIME);
+ if (ret < 0) {
+ dev_err(dev, "RTC CTRL reg update failed with err:%d\n", ret);
+ return ret;
+ }
+
+ ret = regmap_bulk_read(tps->regmap, TPS65910_SECONDS, rtc_data,
+ NUM_TIME_REGS);
+ if (ret < 0) {
+ dev_err(dev, "reading from RTC failed with err:%d\n", ret);
+ return ret;
+ }
+
+ tm->tm_sec = bcd2bin(rtc_data[0]);
+ tm->tm_min = bcd2bin(rtc_data[1]);
+ tm->tm_hour = bcd2bin(rtc_data[2]);
+ tm->tm_mday = bcd2bin(rtc_data[3]);
+ tm->tm_mon = bcd2bin(rtc_data[4]) - 1;
+ tm->tm_year = bcd2bin(rtc_data[5]) + 100;
+
+ return ret;
+}
+
+static int tps65910_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ unsigned char rtc_data[NUM_TIME_REGS];
+ struct tps65910 *tps = dev_get_drvdata(dev->parent);
+ int ret;
+
+ rtc_data[0] = bin2bcd(tm->tm_sec);
+ rtc_data[1] = bin2bcd(tm->tm_min);
+ rtc_data[2] = bin2bcd(tm->tm_hour);
+ rtc_data[3] = bin2bcd(tm->tm_mday);
+ rtc_data[4] = bin2bcd(tm->tm_mon + 1);
+ rtc_data[5] = bin2bcd(tm->tm_year - 100);
+
+ /* Stop RTC while updating the RTC time registers */
+ ret = regmap_update_bits(tps->regmap, TPS65910_RTC_CTRL,
+ TPS65910_RTC_CTRL_STOP_RTC, 0);
+ if (ret < 0) {
+ dev_err(dev, "RTC stop failed with err:%d\n", ret);
+ return ret;
+ }
+
+ /* update all the time registers in one shot */
+ ret = regmap_bulk_write(tps->regmap, TPS65910_SECONDS, rtc_data,
+ NUM_TIME_REGS);
+ if (ret < 0) {
+ dev_err(dev, "rtc_set_time error %d\n", ret);
+ return ret;
+ }
+
+ /* Start back RTC */
+ ret = regmap_update_bits(tps->regmap, TPS65910_RTC_CTRL,
+ TPS65910_RTC_CTRL_STOP_RTC, 1);
+ if (ret < 0)
+ dev_err(dev, "RTC start failed with err:%d\n", ret);
+
+ return ret;
+}
+
+/*
+ * Gets current tps65910 RTC alarm time.
+ */
+static int tps65910_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ unsigned char alarm_data[NUM_TIME_REGS];
+ u32 int_val;
+ struct tps65910 *tps = dev_get_drvdata(dev->parent);
+ int ret;
+
+ ret = regmap_bulk_read(tps->regmap, TPS65910_ALARM_SECONDS, alarm_data,
+ NUM_TIME_REGS);
+ if (ret < 0) {
+ dev_err(dev, "rtc_read_alarm error %d\n", ret);
+ return ret;
+ }
+
+ alm->time.tm_sec = bcd2bin(alarm_data[0]);
+ alm->time.tm_min = bcd2bin(alarm_data[1]);
+ alm->time.tm_hour = bcd2bin(alarm_data[2]);
+ alm->time.tm_mday = bcd2bin(alarm_data[3]);
+ alm->time.tm_mon = bcd2bin(alarm_data[4]) - 1;
+ alm->time.tm_year = bcd2bin(alarm_data[5]) + 100;
+
+ ret = regmap_read(tps->regmap, TPS65910_RTC_INTERRUPTS, &int_val);
+ if (ret < 0)
+ return ret;
+
+ if (int_val & TPS65910_RTC_INTERRUPTS_IT_ALARM)
+ alm->enabled = 1;
+
+ return ret;
+}
+
+static int tps65910_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ unsigned char alarm_data[NUM_TIME_REGS];
+ struct tps65910 *tps = dev_get_drvdata(dev->parent);
+ int ret;
+
+ ret = tps65910_rtc_alarm_irq_enable(dev, 0);
+ if (ret)
+ return ret;
+
+ alarm_data[0] = bin2bcd(alm->time.tm_sec);
+ alarm_data[1] = bin2bcd(alm->time.tm_min);
+ alarm_data[2] = bin2bcd(alm->time.tm_hour);
+ alarm_data[3] = bin2bcd(alm->time.tm_mday);
+ alarm_data[4] = bin2bcd(alm->time.tm_mon + 1);
+ alarm_data[5] = bin2bcd(alm->time.tm_year - 100);
+
+ /* update all the alarm registers in one shot */
+ ret = regmap_bulk_write(tps->regmap, TPS65910_ALARM_SECONDS,
+ alarm_data, NUM_TIME_REGS);
+ if (ret) {
+ dev_err(dev, "rtc_set_alarm error %d\n", ret);
+ return ret;
+ }
+
+ if (alm->enabled)
+ ret = tps65910_rtc_alarm_irq_enable(dev, 1);
+
+ return ret;
+}
+
+static int tps65910_rtc_set_calibration(struct device *dev, int calibration)
+{
+ unsigned char comp_data[NUM_COMP_REGS];
+ struct tps65910 *tps = dev_get_drvdata(dev->parent);
+ s16 value;
+ int ret;
+
+ /*
+ * TPS65910 uses two's complement 16 bit value for compensation for RTC
+ * crystal inaccuracies. One time every hour when seconds counter
+ * increments from 0 to 1 compensation value will be added to internal
+ * RTC counter value.
+ *
+ * Compensation value 0x7FFF is prohibited value.
+ *
+ * Valid range for compensation value: [-32768 .. 32766]
+ */
+ if ((calibration < -32768) || (calibration > 32766)) {
+ dev_err(dev, "RTC calibration value out of range: %d\n",
+ calibration);
+ return -EINVAL;
+ }
+
+ value = (s16)calibration;
+
+ comp_data[0] = (u16)value & 0xFF;
+ comp_data[1] = ((u16)value >> 8) & 0xFF;
+
+ /* Update all the compensation registers in one shot */
+ ret = regmap_bulk_write(tps->regmap, TPS65910_RTC_COMP_LSB,
+ comp_data, NUM_COMP_REGS);
+ if (ret < 0) {
+ dev_err(dev, "rtc_set_calibration error: %d\n", ret);
+ return ret;
+ }
+
+ /* Enable automatic compensation */
+ ret = regmap_update_bits(tps->regmap, TPS65910_RTC_CTRL,
+ TPS65910_RTC_CTRL_AUTO_COMP, TPS65910_RTC_CTRL_AUTO_COMP);
+ if (ret < 0)
+ dev_err(dev, "auto_comp enable failed with error: %d\n", ret);
+
+ return ret;
+}
+
+static int tps65910_rtc_get_calibration(struct device *dev, int *calibration)
+{
+ unsigned char comp_data[NUM_COMP_REGS];
+ struct tps65910 *tps = dev_get_drvdata(dev->parent);
+ unsigned int ctrl;
+ u16 value;
+ int ret;
+
+ ret = regmap_read(tps->regmap, TPS65910_RTC_CTRL, &ctrl);
+ if (ret < 0)
+ return ret;
+
+ /* If automatic compensation is not enabled report back zero */
+ if (!(ctrl & TPS65910_RTC_CTRL_AUTO_COMP)) {
+ *calibration = 0;
+ return 0;
+ }
+
+ ret = regmap_bulk_read(tps->regmap, TPS65910_RTC_COMP_LSB, comp_data,
+ NUM_COMP_REGS);
+ if (ret < 0) {
+ dev_err(dev, "rtc_get_calibration error: %d\n", ret);
+ return ret;
+ }
+
+ value = (u16)comp_data[0] | ((u16)comp_data[1] << 8);
+
+ *calibration = (s16)value;
+
+ return 0;
+}
+
+static int tps65910_read_offset(struct device *dev, long *offset)
+{
+ int calibration;
+ s64 tmp;
+ int ret;
+
+ ret = tps65910_rtc_get_calibration(dev, &calibration);
+ if (ret < 0)
+ return ret;
+
+ /* Convert from RTC calibration register format to ppb format */
+ tmp = calibration * (s64)PPB_MULT;
+ if (tmp < 0)
+ tmp -= TICKS_PER_HOUR / 2LL;
+ else
+ tmp += TICKS_PER_HOUR / 2LL;
+ tmp = div_s64(tmp, TICKS_PER_HOUR);
+
+ /* Offset value operates in negative way, so swap sign */
+ *offset = (long)-tmp;
+
+ return 0;
+}
+
+static int tps65910_set_offset(struct device *dev, long offset)
+{
+ int calibration;
+ s64 tmp;
+ int ret;
+
+ /* Make sure offset value is within supported range */
+ if (offset < MIN_OFFSET || offset > MAX_OFFSET)
+ return -ERANGE;
+
+ /* Convert from ppb format to RTC calibration register format */
+ tmp = offset * (s64)TICKS_PER_HOUR;
+ if (tmp < 0)
+ tmp -= PPB_MULT / 2LL;
+ else
+ tmp += PPB_MULT / 2LL;
+ tmp = div_s64(tmp, PPB_MULT);
+
+ /* Offset value operates in negative way, so swap sign */
+ calibration = (int)-tmp;
+
+ ret = tps65910_rtc_set_calibration(dev, calibration);
+
+ return ret;
+}
+
+static irqreturn_t tps65910_rtc_interrupt(int irq, void *rtc)
+{
+ struct device *dev = rtc;
+ unsigned long events = 0;
+ struct tps65910 *tps = dev_get_drvdata(dev->parent);
+ struct tps65910_rtc *tps_rtc = dev_get_drvdata(dev);
+ int ret;
+ u32 rtc_reg;
+
+ ret = regmap_read(tps->regmap, TPS65910_RTC_STATUS, &rtc_reg);
+ if (ret)
+ return IRQ_NONE;
+
+ if (rtc_reg & TPS65910_RTC_STATUS_ALARM)
+ events = RTC_IRQF | RTC_AF;
+
+ ret = regmap_write(tps->regmap, TPS65910_RTC_STATUS, rtc_reg);
+ if (ret)
+ return IRQ_NONE;
+
+ /* Notify RTC core on event */
+ rtc_update_irq(tps_rtc->rtc, 1, events);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops tps65910_rtc_ops = {
+ .read_time = tps65910_rtc_read_time,
+ .set_time = tps65910_rtc_set_time,
+ .read_alarm = tps65910_rtc_read_alarm,
+ .set_alarm = tps65910_rtc_set_alarm,
+ .alarm_irq_enable = tps65910_rtc_alarm_irq_enable,
+ .read_offset = tps65910_read_offset,
+ .set_offset = tps65910_set_offset,
+};
+
+static const struct rtc_class_ops tps65910_rtc_ops_noirq = {
+ .read_time = tps65910_rtc_read_time,
+ .set_time = tps65910_rtc_set_time,
+ .read_offset = tps65910_read_offset,
+ .set_offset = tps65910_set_offset,
+};
+
+static int tps65910_rtc_probe(struct platform_device *pdev)
+{
+ struct tps65910 *tps65910 = NULL;
+ struct tps65910_rtc *tps_rtc = NULL;
+ int ret;
+ int irq;
+ u32 rtc_reg;
+
+ tps65910 = dev_get_drvdata(pdev->dev.parent);
+
+ tps_rtc = devm_kzalloc(&pdev->dev, sizeof(struct tps65910_rtc),
+ GFP_KERNEL);
+ if (!tps_rtc)
+ return -ENOMEM;
+
+ tps_rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(tps_rtc->rtc))
+ return PTR_ERR(tps_rtc->rtc);
+
+ /* Clear pending interrupts */
+ ret = regmap_read(tps65910->regmap, TPS65910_RTC_STATUS, &rtc_reg);
+ if (ret < 0)
+ return ret;
+
+ ret = regmap_write(tps65910->regmap, TPS65910_RTC_STATUS, rtc_reg);
+ if (ret < 0)
+ return ret;
+
+ dev_dbg(&pdev->dev, "Enabling rtc-tps65910.\n");
+
+ /* Enable RTC digital power domain */
+ ret = regmap_update_bits(tps65910->regmap, TPS65910_DEVCTRL,
+ DEVCTRL_RTC_PWDN_MASK, 0 << DEVCTRL_RTC_PWDN_SHIFT);
+ if (ret < 0)
+ return ret;
+
+ rtc_reg = TPS65910_RTC_CTRL_STOP_RTC;
+ ret = regmap_write(tps65910->regmap, TPS65910_RTC_CTRL, rtc_reg);
+ if (ret < 0)
+ return ret;
+
+ platform_set_drvdata(pdev, tps_rtc);
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq <= 0) {
+ dev_warn(&pdev->dev, "Wake up is not possible as irq = %d\n",
+ irq);
+ return -ENXIO;
+ }
+
+ ret = devm_request_threaded_irq(&pdev->dev, irq, NULL,
+ tps65910_rtc_interrupt, IRQF_TRIGGER_LOW,
+ dev_name(&pdev->dev), &pdev->dev);
+ if (ret < 0)
+ irq = -1;
+
+ tps_rtc->irq = irq;
+ if (irq != -1) {
+ device_set_wakeup_capable(&pdev->dev, 1);
+ tps_rtc->rtc->ops = &tps65910_rtc_ops;
+ } else
+ tps_rtc->rtc->ops = &tps65910_rtc_ops_noirq;
+
+ tps_rtc->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ tps_rtc->rtc->range_max = RTC_TIMESTAMP_END_2099;
+
+ return rtc_register_device(tps_rtc->rtc);
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int tps65910_rtc_suspend(struct device *dev)
+{
+ struct tps65910_rtc *tps_rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ enable_irq_wake(tps_rtc->irq);
+ return 0;
+}
+
+static int tps65910_rtc_resume(struct device *dev)
+{
+ struct tps65910_rtc *tps_rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ disable_irq_wake(tps_rtc->irq);
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(tps65910_rtc_pm_ops, tps65910_rtc_suspend,
+ tps65910_rtc_resume);
+
+static struct platform_driver tps65910_rtc_driver = {
+ .probe = tps65910_rtc_probe,
+ .driver = {
+ .name = "tps65910-rtc",
+ .pm = &tps65910_rtc_pm_ops,
+ },
+};
+
+module_platform_driver(tps65910_rtc_driver);
+MODULE_ALIAS("platform:tps65910-rtc");
+MODULE_AUTHOR("Venu Byravarasu <vbyravarasu@nvidia.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-tps80031.c b/drivers/rtc/rtc-tps80031.c
new file mode 100644
index 000000000..737f26eb2
--- /dev/null
+++ b/drivers/rtc/rtc-tps80031.c
@@ -0,0 +1,337 @@
+/*
+ * rtc-tps80031.c -- TI TPS80031/TPS80032 RTC driver
+ *
+ * RTC driver for TI TPS80031/TPS80032 Fully Integrated
+ * Power Management with Power Path and Battery Charger
+ *
+ * Copyright (c) 2012, NVIDIA Corporation.
+ *
+ * Author: Laxman Dewangan <ldewangan@nvidia.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation version 2.
+ *
+ * This program is distributed "as is" WITHOUT ANY WARRANTY of any kind,
+ * whether express or implied; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ * 02111-1307, USA
+ */
+
+#include <linux/bcd.h>
+#include <linux/device.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/mfd/tps80031.h>
+#include <linux/platform_device.h>
+#include <linux/pm.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+
+#define ENABLE_ALARM_INT 0x08
+#define ALARM_INT_STATUS 0x40
+
+/**
+ * Setting bit to 1 in STOP_RTC will run the RTC and
+ * setting this bit to 0 will freeze RTC.
+ */
+#define STOP_RTC 0x1
+
+/* Power on reset Values of RTC registers */
+#define TPS80031_RTC_POR_YEAR 0
+#define TPS80031_RTC_POR_MONTH 1
+#define TPS80031_RTC_POR_DAY 1
+
+/* Numbers of registers for time and alarms */
+#define TPS80031_RTC_TIME_NUM_REGS 7
+#define TPS80031_RTC_ALARM_NUM_REGS 6
+
+/**
+ * PMU RTC have only 2 nibbles to store year information, so using an
+ * offset of 100 to set the base year as 2000 for our driver.
+ */
+#define RTC_YEAR_OFFSET 100
+
+struct tps80031_rtc {
+ struct rtc_device *rtc;
+ int irq;
+};
+
+static int tps80031_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ u8 buff[TPS80031_RTC_TIME_NUM_REGS];
+ int ret;
+
+ ret = tps80031_reads(dev->parent, TPS80031_SLAVE_ID1,
+ TPS80031_SECONDS_REG, TPS80031_RTC_TIME_NUM_REGS, buff);
+ if (ret < 0) {
+ dev_err(dev, "reading RTC_SECONDS_REG failed, err = %d\n", ret);
+ return ret;
+ }
+
+ tm->tm_sec = bcd2bin(buff[0]);
+ tm->tm_min = bcd2bin(buff[1]);
+ tm->tm_hour = bcd2bin(buff[2]);
+ tm->tm_mday = bcd2bin(buff[3]);
+ tm->tm_mon = bcd2bin(buff[4]) - 1;
+ tm->tm_year = bcd2bin(buff[5]) + RTC_YEAR_OFFSET;
+ tm->tm_wday = bcd2bin(buff[6]);
+ return 0;
+}
+
+static int tps80031_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ u8 buff[7];
+ int ret;
+
+ buff[0] = bin2bcd(tm->tm_sec);
+ buff[1] = bin2bcd(tm->tm_min);
+ buff[2] = bin2bcd(tm->tm_hour);
+ buff[3] = bin2bcd(tm->tm_mday);
+ buff[4] = bin2bcd(tm->tm_mon + 1);
+ buff[5] = bin2bcd(tm->tm_year % RTC_YEAR_OFFSET);
+ buff[6] = bin2bcd(tm->tm_wday);
+
+ /* Stop RTC while updating the RTC time registers */
+ ret = tps80031_clr_bits(dev->parent, TPS80031_SLAVE_ID1,
+ TPS80031_RTC_CTRL_REG, STOP_RTC);
+ if (ret < 0) {
+ dev_err(dev->parent, "Stop RTC failed, err = %d\n", ret);
+ return ret;
+ }
+
+ ret = tps80031_writes(dev->parent, TPS80031_SLAVE_ID1,
+ TPS80031_SECONDS_REG,
+ TPS80031_RTC_TIME_NUM_REGS, buff);
+ if (ret < 0) {
+ dev_err(dev, "writing RTC_SECONDS_REG failed, err %d\n", ret);
+ return ret;
+ }
+
+ ret = tps80031_set_bits(dev->parent, TPS80031_SLAVE_ID1,
+ TPS80031_RTC_CTRL_REG, STOP_RTC);
+ if (ret < 0)
+ dev_err(dev->parent, "Start RTC failed, err = %d\n", ret);
+ return ret;
+}
+
+static int tps80031_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enable)
+{
+ int ret;
+
+ if (enable)
+ ret = tps80031_set_bits(dev->parent, TPS80031_SLAVE_ID1,
+ TPS80031_RTC_INTERRUPTS_REG, ENABLE_ALARM_INT);
+ else
+ ret = tps80031_clr_bits(dev->parent, TPS80031_SLAVE_ID1,
+ TPS80031_RTC_INTERRUPTS_REG, ENABLE_ALARM_INT);
+ if (ret < 0) {
+ dev_err(dev, "Update on RTC_INT failed, err = %d\n", ret);
+ return ret;
+ }
+ return 0;
+}
+
+static int tps80031_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ u8 buff[TPS80031_RTC_ALARM_NUM_REGS];
+ int ret;
+
+ buff[0] = bin2bcd(alrm->time.tm_sec);
+ buff[1] = bin2bcd(alrm->time.tm_min);
+ buff[2] = bin2bcd(alrm->time.tm_hour);
+ buff[3] = bin2bcd(alrm->time.tm_mday);
+ buff[4] = bin2bcd(alrm->time.tm_mon + 1);
+ buff[5] = bin2bcd(alrm->time.tm_year % RTC_YEAR_OFFSET);
+ ret = tps80031_writes(dev->parent, TPS80031_SLAVE_ID1,
+ TPS80031_ALARM_SECONDS_REG,
+ TPS80031_RTC_ALARM_NUM_REGS, buff);
+ if (ret < 0) {
+ dev_err(dev, "Writing RTC_ALARM failed, err %d\n", ret);
+ return ret;
+ }
+ return tps80031_rtc_alarm_irq_enable(dev, alrm->enabled);
+}
+
+static int tps80031_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ u8 buff[6];
+ int ret;
+
+ ret = tps80031_reads(dev->parent, TPS80031_SLAVE_ID1,
+ TPS80031_ALARM_SECONDS_REG,
+ TPS80031_RTC_ALARM_NUM_REGS, buff);
+ if (ret < 0) {
+ dev_err(dev->parent,
+ "reading RTC_ALARM failed, err = %d\n", ret);
+ return ret;
+ }
+
+ alrm->time.tm_sec = bcd2bin(buff[0]);
+ alrm->time.tm_min = bcd2bin(buff[1]);
+ alrm->time.tm_hour = bcd2bin(buff[2]);
+ alrm->time.tm_mday = bcd2bin(buff[3]);
+ alrm->time.tm_mon = bcd2bin(buff[4]) - 1;
+ alrm->time.tm_year = bcd2bin(buff[5]) + RTC_YEAR_OFFSET;
+ return 0;
+}
+
+static int clear_alarm_int_status(struct device *dev, struct tps80031_rtc *rtc)
+{
+ int ret;
+ u8 buf;
+
+ /**
+ * As per datasheet, A dummy read of this RTC_STATUS_REG register
+ * is necessary before each I2C read in order to update the status
+ * register value.
+ */
+ ret = tps80031_read(dev->parent, TPS80031_SLAVE_ID1,
+ TPS80031_RTC_STATUS_REG, &buf);
+ if (ret < 0) {
+ dev_err(dev, "reading RTC_STATUS failed. err = %d\n", ret);
+ return ret;
+ }
+
+ /* clear Alarm status bits.*/
+ ret = tps80031_set_bits(dev->parent, TPS80031_SLAVE_ID1,
+ TPS80031_RTC_STATUS_REG, ALARM_INT_STATUS);
+ if (ret < 0) {
+ dev_err(dev, "clear Alarm INT failed, err = %d\n", ret);
+ return ret;
+ }
+ return 0;
+}
+
+static irqreturn_t tps80031_rtc_irq(int irq, void *data)
+{
+ struct device *dev = data;
+ struct tps80031_rtc *rtc = dev_get_drvdata(dev);
+ int ret;
+
+ ret = clear_alarm_int_status(dev, rtc);
+ if (ret < 0)
+ return ret;
+
+ rtc_update_irq(rtc->rtc, 1, RTC_IRQF | RTC_AF);
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops tps80031_rtc_ops = {
+ .read_time = tps80031_rtc_read_time,
+ .set_time = tps80031_rtc_set_time,
+ .set_alarm = tps80031_rtc_set_alarm,
+ .read_alarm = tps80031_rtc_read_alarm,
+ .alarm_irq_enable = tps80031_rtc_alarm_irq_enable,
+};
+
+static int tps80031_rtc_probe(struct platform_device *pdev)
+{
+ struct tps80031_rtc *rtc;
+ struct rtc_time tm;
+ int ret;
+
+ rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
+ if (!rtc)
+ return -ENOMEM;
+
+ rtc->irq = platform_get_irq(pdev, 0);
+ platform_set_drvdata(pdev, rtc);
+
+ /* Start RTC */
+ ret = tps80031_set_bits(pdev->dev.parent, TPS80031_SLAVE_ID1,
+ TPS80031_RTC_CTRL_REG, STOP_RTC);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "failed to start RTC. err = %d\n", ret);
+ return ret;
+ }
+
+ /* If RTC have POR values, set time 01:01:2000 */
+ tps80031_rtc_read_time(&pdev->dev, &tm);
+ if ((tm.tm_year == RTC_YEAR_OFFSET + TPS80031_RTC_POR_YEAR) &&
+ (tm.tm_mon == (TPS80031_RTC_POR_MONTH - 1)) &&
+ (tm.tm_mday == TPS80031_RTC_POR_DAY)) {
+ tm.tm_year = 2000;
+ tm.tm_mday = 1;
+ tm.tm_mon = 1;
+ ret = tps80031_rtc_set_time(&pdev->dev, &tm);
+ if (ret < 0) {
+ dev_err(&pdev->dev,
+ "RTC set time failed, err = %d\n", ret);
+ return ret;
+ }
+ }
+
+ /* Clear alarm intretupt status if it is there */
+ ret = clear_alarm_int_status(&pdev->dev, rtc);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "Clear alarm int failed, err = %d\n", ret);
+ return ret;
+ }
+
+ rtc->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
+ &tps80031_rtc_ops, THIS_MODULE);
+ if (IS_ERR(rtc->rtc)) {
+ ret = PTR_ERR(rtc->rtc);
+ dev_err(&pdev->dev, "RTC registration failed, err %d\n", ret);
+ return ret;
+ }
+
+ ret = devm_request_threaded_irq(&pdev->dev, rtc->irq, NULL,
+ tps80031_rtc_irq,
+ IRQF_ONESHOT,
+ dev_name(&pdev->dev), rtc);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "request IRQ:%d failed, err = %d\n",
+ rtc->irq, ret);
+ return ret;
+ }
+ device_set_wakeup_capable(&pdev->dev, 1);
+ return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int tps80031_rtc_suspend(struct device *dev)
+{
+ struct tps80031_rtc *rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ enable_irq_wake(rtc->irq);
+ return 0;
+}
+
+static int tps80031_rtc_resume(struct device *dev)
+{
+ struct tps80031_rtc *rtc = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ disable_irq_wake(rtc->irq);
+ return 0;
+};
+#endif
+
+static SIMPLE_DEV_PM_OPS(tps80031_pm_ops, tps80031_rtc_suspend,
+ tps80031_rtc_resume);
+
+static struct platform_driver tps80031_rtc_driver = {
+ .driver = {
+ .name = "tps80031-rtc",
+ .pm = &tps80031_pm_ops,
+ },
+ .probe = tps80031_rtc_probe,
+};
+
+module_platform_driver(tps80031_rtc_driver);
+
+MODULE_ALIAS("platform:tps80031-rtc");
+MODULE_DESCRIPTION("TI TPS80031/TPS80032 RTC driver");
+MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/rtc-twl.c b/drivers/rtc/rtc-twl.c
new file mode 100644
index 000000000..c24d1e18f
--- /dev/null
+++ b/drivers/rtc/rtc-twl.c
@@ -0,0 +1,657 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * rtc-twl.c -- TWL Real Time Clock interface
+ *
+ * Copyright (C) 2007 MontaVista Software, Inc
+ * Author: Alexandre Rusev <source@mvista.com>
+ *
+ * Based on original TI driver twl4030-rtc.c
+ * Copyright (C) 2006 Texas Instruments, Inc.
+ *
+ * Based on rtc-omap.c
+ * Copyright (C) 2003 MontaVista Software, Inc.
+ * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
+ * Copyright (C) 2006 David Brownell
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/rtc.h>
+#include <linux/bcd.h>
+#include <linux/platform_device.h>
+#include <linux/interrupt.h>
+#include <linux/of.h>
+
+#include <linux/mfd/twl.h>
+
+enum twl_class {
+ TWL_4030 = 0,
+ TWL_6030,
+};
+
+/*
+ * RTC block register offsets (use TWL_MODULE_RTC)
+ */
+enum {
+ REG_SECONDS_REG = 0,
+ REG_MINUTES_REG,
+ REG_HOURS_REG,
+ REG_DAYS_REG,
+ REG_MONTHS_REG,
+ REG_YEARS_REG,
+ REG_WEEKS_REG,
+
+ REG_ALARM_SECONDS_REG,
+ REG_ALARM_MINUTES_REG,
+ REG_ALARM_HOURS_REG,
+ REG_ALARM_DAYS_REG,
+ REG_ALARM_MONTHS_REG,
+ REG_ALARM_YEARS_REG,
+
+ REG_RTC_CTRL_REG,
+ REG_RTC_STATUS_REG,
+ REG_RTC_INTERRUPTS_REG,
+
+ REG_RTC_COMP_LSB_REG,
+ REG_RTC_COMP_MSB_REG,
+};
+static const u8 twl4030_rtc_reg_map[] = {
+ [REG_SECONDS_REG] = 0x00,
+ [REG_MINUTES_REG] = 0x01,
+ [REG_HOURS_REG] = 0x02,
+ [REG_DAYS_REG] = 0x03,
+ [REG_MONTHS_REG] = 0x04,
+ [REG_YEARS_REG] = 0x05,
+ [REG_WEEKS_REG] = 0x06,
+
+ [REG_ALARM_SECONDS_REG] = 0x07,
+ [REG_ALARM_MINUTES_REG] = 0x08,
+ [REG_ALARM_HOURS_REG] = 0x09,
+ [REG_ALARM_DAYS_REG] = 0x0A,
+ [REG_ALARM_MONTHS_REG] = 0x0B,
+ [REG_ALARM_YEARS_REG] = 0x0C,
+
+ [REG_RTC_CTRL_REG] = 0x0D,
+ [REG_RTC_STATUS_REG] = 0x0E,
+ [REG_RTC_INTERRUPTS_REG] = 0x0F,
+
+ [REG_RTC_COMP_LSB_REG] = 0x10,
+ [REG_RTC_COMP_MSB_REG] = 0x11,
+};
+static const u8 twl6030_rtc_reg_map[] = {
+ [REG_SECONDS_REG] = 0x00,
+ [REG_MINUTES_REG] = 0x01,
+ [REG_HOURS_REG] = 0x02,
+ [REG_DAYS_REG] = 0x03,
+ [REG_MONTHS_REG] = 0x04,
+ [REG_YEARS_REG] = 0x05,
+ [REG_WEEKS_REG] = 0x06,
+
+ [REG_ALARM_SECONDS_REG] = 0x08,
+ [REG_ALARM_MINUTES_REG] = 0x09,
+ [REG_ALARM_HOURS_REG] = 0x0A,
+ [REG_ALARM_DAYS_REG] = 0x0B,
+ [REG_ALARM_MONTHS_REG] = 0x0C,
+ [REG_ALARM_YEARS_REG] = 0x0D,
+
+ [REG_RTC_CTRL_REG] = 0x10,
+ [REG_RTC_STATUS_REG] = 0x11,
+ [REG_RTC_INTERRUPTS_REG] = 0x12,
+
+ [REG_RTC_COMP_LSB_REG] = 0x13,
+ [REG_RTC_COMP_MSB_REG] = 0x14,
+};
+
+/* RTC_CTRL_REG bitfields */
+#define BIT_RTC_CTRL_REG_STOP_RTC_M 0x01
+#define BIT_RTC_CTRL_REG_ROUND_30S_M 0x02
+#define BIT_RTC_CTRL_REG_AUTO_COMP_M 0x04
+#define BIT_RTC_CTRL_REG_MODE_12_24_M 0x08
+#define BIT_RTC_CTRL_REG_TEST_MODE_M 0x10
+#define BIT_RTC_CTRL_REG_SET_32_COUNTER_M 0x20
+#define BIT_RTC_CTRL_REG_GET_TIME_M 0x40
+#define BIT_RTC_CTRL_REG_RTC_V_OPT 0x80
+
+/* RTC_STATUS_REG bitfields */
+#define BIT_RTC_STATUS_REG_RUN_M 0x02
+#define BIT_RTC_STATUS_REG_1S_EVENT_M 0x04
+#define BIT_RTC_STATUS_REG_1M_EVENT_M 0x08
+#define BIT_RTC_STATUS_REG_1H_EVENT_M 0x10
+#define BIT_RTC_STATUS_REG_1D_EVENT_M 0x20
+#define BIT_RTC_STATUS_REG_ALARM_M 0x40
+#define BIT_RTC_STATUS_REG_POWER_UP_M 0x80
+
+/* RTC_INTERRUPTS_REG bitfields */
+#define BIT_RTC_INTERRUPTS_REG_EVERY_M 0x03
+#define BIT_RTC_INTERRUPTS_REG_IT_TIMER_M 0x04
+#define BIT_RTC_INTERRUPTS_REG_IT_ALARM_M 0x08
+
+
+/* REG_SECONDS_REG through REG_YEARS_REG is how many registers? */
+#define ALL_TIME_REGS 6
+
+/*----------------------------------------------------------------------*/
+struct twl_rtc {
+ struct device *dev;
+ struct rtc_device *rtc;
+ u8 *reg_map;
+ /*
+ * Cache the value for timer/alarm interrupts register; this is
+ * only changed by callers holding rtc ops lock (or resume).
+ */
+ unsigned char rtc_irq_bits;
+ bool wake_enabled;
+#ifdef CONFIG_PM_SLEEP
+ unsigned char irqstat;
+#endif
+ enum twl_class class;
+};
+
+/*
+ * Supports 1 byte read from TWL RTC register.
+ */
+static int twl_rtc_read_u8(struct twl_rtc *twl_rtc, u8 *data, u8 reg)
+{
+ int ret;
+
+ ret = twl_i2c_read_u8(TWL_MODULE_RTC, data, (twl_rtc->reg_map[reg]));
+ if (ret < 0)
+ pr_err("Could not read TWL register %X - error %d\n", reg, ret);
+ return ret;
+}
+
+/*
+ * Supports 1 byte write to TWL RTC registers.
+ */
+static int twl_rtc_write_u8(struct twl_rtc *twl_rtc, u8 data, u8 reg)
+{
+ int ret;
+
+ ret = twl_i2c_write_u8(TWL_MODULE_RTC, data, (twl_rtc->reg_map[reg]));
+ if (ret < 0)
+ pr_err("Could not write TWL register %X - error %d\n",
+ reg, ret);
+ return ret;
+}
+
+/*
+ * Enable 1/second update and/or alarm interrupts.
+ */
+static int set_rtc_irq_bit(struct twl_rtc *twl_rtc, unsigned char bit)
+{
+ unsigned char val;
+ int ret;
+
+ /* if the bit is set, return from here */
+ if (twl_rtc->rtc_irq_bits & bit)
+ return 0;
+
+ val = twl_rtc->rtc_irq_bits | bit;
+ val &= ~BIT_RTC_INTERRUPTS_REG_EVERY_M;
+ ret = twl_rtc_write_u8(twl_rtc, val, REG_RTC_INTERRUPTS_REG);
+ if (ret == 0)
+ twl_rtc->rtc_irq_bits = val;
+
+ return ret;
+}
+
+/*
+ * Disable update and/or alarm interrupts.
+ */
+static int mask_rtc_irq_bit(struct twl_rtc *twl_rtc, unsigned char bit)
+{
+ unsigned char val;
+ int ret;
+
+ /* if the bit is clear, return from here */
+ if (!(twl_rtc->rtc_irq_bits & bit))
+ return 0;
+
+ val = twl_rtc->rtc_irq_bits & ~bit;
+ ret = twl_rtc_write_u8(twl_rtc, val, REG_RTC_INTERRUPTS_REG);
+ if (ret == 0)
+ twl_rtc->rtc_irq_bits = val;
+
+ return ret;
+}
+
+static int twl_rtc_alarm_irq_enable(struct device *dev, unsigned enabled)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct twl_rtc *twl_rtc = dev_get_drvdata(dev);
+ int irq = platform_get_irq(pdev, 0);
+ int ret;
+
+ if (enabled) {
+ ret = set_rtc_irq_bit(twl_rtc,
+ BIT_RTC_INTERRUPTS_REG_IT_ALARM_M);
+ if (device_can_wakeup(dev) && !twl_rtc->wake_enabled) {
+ enable_irq_wake(irq);
+ twl_rtc->wake_enabled = true;
+ }
+ } else {
+ ret = mask_rtc_irq_bit(twl_rtc,
+ BIT_RTC_INTERRUPTS_REG_IT_ALARM_M);
+ if (twl_rtc->wake_enabled) {
+ disable_irq_wake(irq);
+ twl_rtc->wake_enabled = false;
+ }
+ }
+
+ return ret;
+}
+
+/*
+ * Gets current TWL RTC time and date parameters.
+ *
+ * The RTC's time/alarm representation is not what gmtime(3) requires
+ * Linux to use:
+ *
+ * - Months are 1..12 vs Linux 0-11
+ * - Years are 0..99 vs Linux 1900..N (we assume 21st century)
+ */
+static int twl_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct twl_rtc *twl_rtc = dev_get_drvdata(dev);
+ unsigned char rtc_data[ALL_TIME_REGS];
+ int ret;
+ u8 save_control;
+ u8 rtc_control;
+
+ ret = twl_rtc_read_u8(twl_rtc, &save_control, REG_RTC_CTRL_REG);
+ if (ret < 0) {
+ dev_err(dev, "%s: reading CTRL_REG, error %d\n", __func__, ret);
+ return ret;
+ }
+ /* for twl6030/32 make sure BIT_RTC_CTRL_REG_GET_TIME_M is clear */
+ if (twl_rtc->class == TWL_6030) {
+ if (save_control & BIT_RTC_CTRL_REG_GET_TIME_M) {
+ save_control &= ~BIT_RTC_CTRL_REG_GET_TIME_M;
+ ret = twl_rtc_write_u8(twl_rtc, save_control,
+ REG_RTC_CTRL_REG);
+ if (ret < 0) {
+ dev_err(dev, "%s clr GET_TIME, error %d\n",
+ __func__, ret);
+ return ret;
+ }
+ }
+ }
+
+ /* Copy RTC counting registers to static registers or latches */
+ rtc_control = save_control | BIT_RTC_CTRL_REG_GET_TIME_M;
+
+ /* for twl6030/32 enable read access to static shadowed registers */
+ if (twl_rtc->class == TWL_6030)
+ rtc_control |= BIT_RTC_CTRL_REG_RTC_V_OPT;
+
+ ret = twl_rtc_write_u8(twl_rtc, rtc_control, REG_RTC_CTRL_REG);
+ if (ret < 0) {
+ dev_err(dev, "%s: writing CTRL_REG, error %d\n", __func__, ret);
+ return ret;
+ }
+
+ ret = twl_i2c_read(TWL_MODULE_RTC, rtc_data,
+ (twl_rtc->reg_map[REG_SECONDS_REG]), ALL_TIME_REGS);
+
+ if (ret < 0) {
+ dev_err(dev, "%s: reading data, error %d\n", __func__, ret);
+ return ret;
+ }
+
+ /* for twl6030 restore original state of rtc control register */
+ if (twl_rtc->class == TWL_6030) {
+ ret = twl_rtc_write_u8(twl_rtc, save_control, REG_RTC_CTRL_REG);
+ if (ret < 0) {
+ dev_err(dev, "%s: restore CTRL_REG, error %d\n",
+ __func__, ret);
+ return ret;
+ }
+ }
+
+ tm->tm_sec = bcd2bin(rtc_data[0]);
+ tm->tm_min = bcd2bin(rtc_data[1]);
+ tm->tm_hour = bcd2bin(rtc_data[2]);
+ tm->tm_mday = bcd2bin(rtc_data[3]);
+ tm->tm_mon = bcd2bin(rtc_data[4]) - 1;
+ tm->tm_year = bcd2bin(rtc_data[5]) + 100;
+
+ return ret;
+}
+
+static int twl_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct twl_rtc *twl_rtc = dev_get_drvdata(dev);
+ unsigned char save_control;
+ unsigned char rtc_data[ALL_TIME_REGS];
+ int ret;
+
+ rtc_data[0] = bin2bcd(tm->tm_sec);
+ rtc_data[1] = bin2bcd(tm->tm_min);
+ rtc_data[2] = bin2bcd(tm->tm_hour);
+ rtc_data[3] = bin2bcd(tm->tm_mday);
+ rtc_data[4] = bin2bcd(tm->tm_mon + 1);
+ rtc_data[5] = bin2bcd(tm->tm_year - 100);
+
+ /* Stop RTC while updating the TC registers */
+ ret = twl_rtc_read_u8(twl_rtc, &save_control, REG_RTC_CTRL_REG);
+ if (ret < 0)
+ goto out;
+
+ save_control &= ~BIT_RTC_CTRL_REG_STOP_RTC_M;
+ ret = twl_rtc_write_u8(twl_rtc, save_control, REG_RTC_CTRL_REG);
+ if (ret < 0)
+ goto out;
+
+ /* update all the time registers in one shot */
+ ret = twl_i2c_write(TWL_MODULE_RTC, rtc_data,
+ (twl_rtc->reg_map[REG_SECONDS_REG]), ALL_TIME_REGS);
+ if (ret < 0) {
+ dev_err(dev, "rtc_set_time error %d\n", ret);
+ goto out;
+ }
+
+ /* Start back RTC */
+ save_control |= BIT_RTC_CTRL_REG_STOP_RTC_M;
+ ret = twl_rtc_write_u8(twl_rtc, save_control, REG_RTC_CTRL_REG);
+
+out:
+ return ret;
+}
+
+/*
+ * Gets current TWL RTC alarm time.
+ */
+static int twl_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct twl_rtc *twl_rtc = dev_get_drvdata(dev);
+ unsigned char rtc_data[ALL_TIME_REGS];
+ int ret;
+
+ ret = twl_i2c_read(TWL_MODULE_RTC, rtc_data,
+ twl_rtc->reg_map[REG_ALARM_SECONDS_REG], ALL_TIME_REGS);
+ if (ret < 0) {
+ dev_err(dev, "rtc_read_alarm error %d\n", ret);
+ return ret;
+ }
+
+ /* some of these fields may be wildcard/"match all" */
+ alm->time.tm_sec = bcd2bin(rtc_data[0]);
+ alm->time.tm_min = bcd2bin(rtc_data[1]);
+ alm->time.tm_hour = bcd2bin(rtc_data[2]);
+ alm->time.tm_mday = bcd2bin(rtc_data[3]);
+ alm->time.tm_mon = bcd2bin(rtc_data[4]) - 1;
+ alm->time.tm_year = bcd2bin(rtc_data[5]) + 100;
+
+ /* report cached alarm enable state */
+ if (twl_rtc->rtc_irq_bits & BIT_RTC_INTERRUPTS_REG_IT_ALARM_M)
+ alm->enabled = 1;
+
+ return ret;
+}
+
+static int twl_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
+{
+ struct twl_rtc *twl_rtc = dev_get_drvdata(dev);
+
+ unsigned char alarm_data[ALL_TIME_REGS];
+ int ret;
+
+ ret = twl_rtc_alarm_irq_enable(dev, 0);
+ if (ret)
+ goto out;
+
+ alarm_data[0] = bin2bcd(alm->time.tm_sec);
+ alarm_data[1] = bin2bcd(alm->time.tm_min);
+ alarm_data[2] = bin2bcd(alm->time.tm_hour);
+ alarm_data[3] = bin2bcd(alm->time.tm_mday);
+ alarm_data[4] = bin2bcd(alm->time.tm_mon + 1);
+ alarm_data[5] = bin2bcd(alm->time.tm_year - 100);
+
+ /* update all the alarm registers in one shot */
+ ret = twl_i2c_write(TWL_MODULE_RTC, alarm_data,
+ twl_rtc->reg_map[REG_ALARM_SECONDS_REG], ALL_TIME_REGS);
+ if (ret) {
+ dev_err(dev, "rtc_set_alarm error %d\n", ret);
+ goto out;
+ }
+
+ if (alm->enabled)
+ ret = twl_rtc_alarm_irq_enable(dev, 1);
+out:
+ return ret;
+}
+
+static irqreturn_t twl_rtc_interrupt(int irq, void *data)
+{
+ struct twl_rtc *twl_rtc = data;
+ unsigned long events;
+ int ret = IRQ_NONE;
+ int res;
+ u8 rd_reg;
+
+ res = twl_rtc_read_u8(twl_rtc, &rd_reg, REG_RTC_STATUS_REG);
+ if (res)
+ goto out;
+ /*
+ * Figure out source of interrupt: ALARM or TIMER in RTC_STATUS_REG.
+ * only one (ALARM or RTC) interrupt source may be enabled
+ * at time, we also could check our results
+ * by reading RTS_INTERRUPTS_REGISTER[IT_TIMER,IT_ALARM]
+ */
+ if (rd_reg & BIT_RTC_STATUS_REG_ALARM_M)
+ events = RTC_IRQF | RTC_AF;
+ else
+ events = RTC_IRQF | RTC_PF;
+
+ res = twl_rtc_write_u8(twl_rtc, BIT_RTC_STATUS_REG_ALARM_M,
+ REG_RTC_STATUS_REG);
+ if (res)
+ goto out;
+
+ if (twl_rtc->class == TWL_4030) {
+ /* Clear on Read enabled. RTC_IT bit of TWL4030_INT_PWR_ISR1
+ * needs 2 reads to clear the interrupt. One read is done in
+ * do_twl_pwrirq(). Doing the second read, to clear
+ * the bit.
+ *
+ * FIXME the reason PWR_ISR1 needs an extra read is that
+ * RTC_IF retriggered until we cleared REG_ALARM_M above.
+ * But re-reading like this is a bad hack; by doing so we
+ * risk wrongly clearing status for some other IRQ (losing
+ * the interrupt). Be smarter about handling RTC_UF ...
+ */
+ res = twl_i2c_read_u8(TWL4030_MODULE_INT,
+ &rd_reg, TWL4030_INT_PWR_ISR1);
+ if (res)
+ goto out;
+ }
+
+ /* Notify RTC core on event */
+ rtc_update_irq(twl_rtc->rtc, 1, events);
+
+ ret = IRQ_HANDLED;
+out:
+ return ret;
+}
+
+static const struct rtc_class_ops twl_rtc_ops = {
+ .read_time = twl_rtc_read_time,
+ .set_time = twl_rtc_set_time,
+ .read_alarm = twl_rtc_read_alarm,
+ .set_alarm = twl_rtc_set_alarm,
+ .alarm_irq_enable = twl_rtc_alarm_irq_enable,
+};
+
+/*----------------------------------------------------------------------*/
+
+static int twl_rtc_probe(struct platform_device *pdev)
+{
+ struct twl_rtc *twl_rtc;
+ struct device_node *np = pdev->dev.of_node;
+ int ret = -EINVAL;
+ int irq = platform_get_irq(pdev, 0);
+ u8 rd_reg;
+
+ if (!np) {
+ dev_err(&pdev->dev, "no DT info\n");
+ return -EINVAL;
+ }
+
+ if (irq <= 0)
+ return ret;
+
+ twl_rtc = devm_kzalloc(&pdev->dev, sizeof(*twl_rtc), GFP_KERNEL);
+ if (!twl_rtc)
+ return -ENOMEM;
+
+ if (twl_class_is_4030()) {
+ twl_rtc->class = TWL_4030;
+ twl_rtc->reg_map = (u8 *)twl4030_rtc_reg_map;
+ } else if (twl_class_is_6030()) {
+ twl_rtc->class = TWL_6030;
+ twl_rtc->reg_map = (u8 *)twl6030_rtc_reg_map;
+ } else {
+ dev_err(&pdev->dev, "TWL Class not supported.\n");
+ return -EINVAL;
+ }
+
+ ret = twl_rtc_read_u8(twl_rtc, &rd_reg, REG_RTC_STATUS_REG);
+ if (ret < 0)
+ return ret;
+
+ if (rd_reg & BIT_RTC_STATUS_REG_POWER_UP_M)
+ dev_warn(&pdev->dev, "Power up reset detected.\n");
+
+ if (rd_reg & BIT_RTC_STATUS_REG_ALARM_M)
+ dev_warn(&pdev->dev, "Pending Alarm interrupt detected.\n");
+
+ /* Clear RTC Power up reset and pending alarm interrupts */
+ ret = twl_rtc_write_u8(twl_rtc, rd_reg, REG_RTC_STATUS_REG);
+ if (ret < 0)
+ return ret;
+
+ if (twl_rtc->class == TWL_6030) {
+ twl6030_interrupt_unmask(TWL6030_RTC_INT_MASK,
+ REG_INT_MSK_LINE_A);
+ twl6030_interrupt_unmask(TWL6030_RTC_INT_MASK,
+ REG_INT_MSK_STS_A);
+ }
+
+ dev_info(&pdev->dev, "Enabling TWL-RTC\n");
+ ret = twl_rtc_write_u8(twl_rtc, BIT_RTC_CTRL_REG_STOP_RTC_M,
+ REG_RTC_CTRL_REG);
+ if (ret < 0)
+ return ret;
+
+ /* ensure interrupts are disabled, bootloaders can be strange */
+ ret = twl_rtc_write_u8(twl_rtc, 0, REG_RTC_INTERRUPTS_REG);
+ if (ret < 0)
+ dev_warn(&pdev->dev, "unable to disable interrupt\n");
+
+ /* init cached IRQ enable bits */
+ ret = twl_rtc_read_u8(twl_rtc, &twl_rtc->rtc_irq_bits,
+ REG_RTC_INTERRUPTS_REG);
+ if (ret < 0)
+ return ret;
+
+ platform_set_drvdata(pdev, twl_rtc);
+ device_init_wakeup(&pdev->dev, 1);
+
+ twl_rtc->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
+ &twl_rtc_ops, THIS_MODULE);
+ if (IS_ERR(twl_rtc->rtc)) {
+ dev_err(&pdev->dev, "can't register RTC device, err %ld\n",
+ PTR_ERR(twl_rtc->rtc));
+ return PTR_ERR(twl_rtc->rtc);
+ }
+
+ ret = devm_request_threaded_irq(&pdev->dev, irq, NULL,
+ twl_rtc_interrupt,
+ IRQF_TRIGGER_RISING | IRQF_ONESHOT,
+ dev_name(&twl_rtc->rtc->dev), twl_rtc);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "IRQ is not free.\n");
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * Disable all TWL RTC module interrupts.
+ * Sets status flag to free.
+ */
+static int twl_rtc_remove(struct platform_device *pdev)
+{
+ struct twl_rtc *twl_rtc = platform_get_drvdata(pdev);
+
+ /* leave rtc running, but disable irqs */
+ mask_rtc_irq_bit(twl_rtc, BIT_RTC_INTERRUPTS_REG_IT_ALARM_M);
+ mask_rtc_irq_bit(twl_rtc, BIT_RTC_INTERRUPTS_REG_IT_TIMER_M);
+ if (twl_rtc->class == TWL_6030) {
+ twl6030_interrupt_mask(TWL6030_RTC_INT_MASK,
+ REG_INT_MSK_LINE_A);
+ twl6030_interrupt_mask(TWL6030_RTC_INT_MASK,
+ REG_INT_MSK_STS_A);
+ }
+
+ return 0;
+}
+
+static void twl_rtc_shutdown(struct platform_device *pdev)
+{
+ struct twl_rtc *twl_rtc = platform_get_drvdata(pdev);
+
+ /* mask timer interrupts, but leave alarm interrupts on to enable
+ power-on when alarm is triggered */
+ mask_rtc_irq_bit(twl_rtc, BIT_RTC_INTERRUPTS_REG_IT_TIMER_M);
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int twl_rtc_suspend(struct device *dev)
+{
+ struct twl_rtc *twl_rtc = dev_get_drvdata(dev);
+
+ twl_rtc->irqstat = twl_rtc->rtc_irq_bits;
+
+ mask_rtc_irq_bit(twl_rtc, BIT_RTC_INTERRUPTS_REG_IT_TIMER_M);
+ return 0;
+}
+
+static int twl_rtc_resume(struct device *dev)
+{
+ struct twl_rtc *twl_rtc = dev_get_drvdata(dev);
+
+ set_rtc_irq_bit(twl_rtc, twl_rtc->irqstat);
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(twl_rtc_pm_ops, twl_rtc_suspend, twl_rtc_resume);
+
+static const struct of_device_id twl_rtc_of_match[] = {
+ {.compatible = "ti,twl4030-rtc", },
+ { },
+};
+MODULE_DEVICE_TABLE(of, twl_rtc_of_match);
+
+static struct platform_driver twl4030rtc_driver = {
+ .probe = twl_rtc_probe,
+ .remove = twl_rtc_remove,
+ .shutdown = twl_rtc_shutdown,
+ .driver = {
+ .name = "twl_rtc",
+ .pm = &twl_rtc_pm_ops,
+ .of_match_table = twl_rtc_of_match,
+ },
+};
+
+module_platform_driver(twl4030rtc_driver);
+
+MODULE_AUTHOR("Texas Instruments, MontaVista Software");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-tx4939.c b/drivers/rtc/rtc-tx4939.c
new file mode 100644
index 000000000..715b82981
--- /dev/null
+++ b/drivers/rtc/rtc-tx4939.c
@@ -0,0 +1,304 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * TX4939 internal RTC driver
+ * Based on RBTX49xx patch from CELF patch archive.
+ *
+ * (C) Copyright TOSHIBA CORPORATION 2005-2007
+ */
+#include <linux/rtc.h>
+#include <linux/platform_device.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/io.h>
+#include <linux/gfp.h>
+
+#define TX4939_RTCCTL_ALME 0x00000080
+#define TX4939_RTCCTL_ALMD 0x00000040
+#define TX4939_RTCCTL_BUSY 0x00000020
+
+#define TX4939_RTCCTL_COMMAND 0x00000007
+#define TX4939_RTCCTL_COMMAND_NOP 0x00000000
+#define TX4939_RTCCTL_COMMAND_GETTIME 0x00000001
+#define TX4939_RTCCTL_COMMAND_SETTIME 0x00000002
+#define TX4939_RTCCTL_COMMAND_GETALARM 0x00000003
+#define TX4939_RTCCTL_COMMAND_SETALARM 0x00000004
+
+#define TX4939_RTCTBC_PM 0x00000080
+#define TX4939_RTCTBC_COMP 0x0000007f
+
+#define TX4939_RTC_REG_RAMSIZE 0x00000100
+#define TX4939_RTC_REG_RWBSIZE 0x00000006
+
+struct tx4939_rtc_reg {
+ __u32 ctl;
+ __u32 adr;
+ __u32 dat;
+ __u32 tbc;
+};
+
+struct tx4939rtc_plat_data {
+ struct rtc_device *rtc;
+ struct tx4939_rtc_reg __iomem *rtcreg;
+ spinlock_t lock;
+};
+
+static int tx4939_rtc_cmd(struct tx4939_rtc_reg __iomem *rtcreg, int cmd)
+{
+ int i = 0;
+
+ __raw_writel(cmd, &rtcreg->ctl);
+ /* This might take 30us (next 32.768KHz clock) */
+ while (__raw_readl(&rtcreg->ctl) & TX4939_RTCCTL_BUSY) {
+ /* timeout on approx. 100us (@ GBUS200MHz) */
+ if (i++ > 200 * 100)
+ return -EBUSY;
+ cpu_relax();
+ }
+ return 0;
+}
+
+static int tx4939_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct tx4939rtc_plat_data *pdata = dev_get_drvdata(dev);
+ struct tx4939_rtc_reg __iomem *rtcreg = pdata->rtcreg;
+ unsigned long secs = rtc_tm_to_time64(tm);
+ int i, ret;
+ unsigned char buf[6];
+
+ buf[0] = 0;
+ buf[1] = 0;
+ buf[2] = secs;
+ buf[3] = secs >> 8;
+ buf[4] = secs >> 16;
+ buf[5] = secs >> 24;
+ spin_lock_irq(&pdata->lock);
+ __raw_writel(0, &rtcreg->adr);
+ for (i = 0; i < 6; i++)
+ __raw_writel(buf[i], &rtcreg->dat);
+ ret = tx4939_rtc_cmd(rtcreg,
+ TX4939_RTCCTL_COMMAND_SETTIME |
+ (__raw_readl(&rtcreg->ctl) & TX4939_RTCCTL_ALME));
+ spin_unlock_irq(&pdata->lock);
+ return ret;
+}
+
+static int tx4939_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct tx4939rtc_plat_data *pdata = dev_get_drvdata(dev);
+ struct tx4939_rtc_reg __iomem *rtcreg = pdata->rtcreg;
+ int i, ret;
+ unsigned long sec;
+ unsigned char buf[6];
+
+ spin_lock_irq(&pdata->lock);
+ ret = tx4939_rtc_cmd(rtcreg,
+ TX4939_RTCCTL_COMMAND_GETTIME |
+ (__raw_readl(&rtcreg->ctl) & TX4939_RTCCTL_ALME));
+ if (ret) {
+ spin_unlock_irq(&pdata->lock);
+ return ret;
+ }
+ __raw_writel(2, &rtcreg->adr);
+ for (i = 2; i < 6; i++)
+ buf[i] = __raw_readl(&rtcreg->dat);
+ spin_unlock_irq(&pdata->lock);
+ sec = ((unsigned long)buf[5] << 24) | (buf[4] << 16) |
+ (buf[3] << 8) | buf[2];
+ rtc_time64_to_tm(sec, tm);
+ return 0;
+}
+
+static int tx4939_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct tx4939rtc_plat_data *pdata = dev_get_drvdata(dev);
+ struct tx4939_rtc_reg __iomem *rtcreg = pdata->rtcreg;
+ int i, ret;
+ unsigned long sec;
+ unsigned char buf[6];
+
+ sec = rtc_tm_to_time64(&alrm->time);
+ buf[0] = 0;
+ buf[1] = 0;
+ buf[2] = sec;
+ buf[3] = sec >> 8;
+ buf[4] = sec >> 16;
+ buf[5] = sec >> 24;
+ spin_lock_irq(&pdata->lock);
+ __raw_writel(0, &rtcreg->adr);
+ for (i = 0; i < 6; i++)
+ __raw_writel(buf[i], &rtcreg->dat);
+ ret = tx4939_rtc_cmd(rtcreg, TX4939_RTCCTL_COMMAND_SETALARM |
+ (alrm->enabled ? TX4939_RTCCTL_ALME : 0));
+ spin_unlock_irq(&pdata->lock);
+ return ret;
+}
+
+static int tx4939_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct tx4939rtc_plat_data *pdata = dev_get_drvdata(dev);
+ struct tx4939_rtc_reg __iomem *rtcreg = pdata->rtcreg;
+ int i, ret;
+ unsigned long sec;
+ unsigned char buf[6];
+ u32 ctl;
+
+ spin_lock_irq(&pdata->lock);
+ ret = tx4939_rtc_cmd(rtcreg,
+ TX4939_RTCCTL_COMMAND_GETALARM |
+ (__raw_readl(&rtcreg->ctl) & TX4939_RTCCTL_ALME));
+ if (ret) {
+ spin_unlock_irq(&pdata->lock);
+ return ret;
+ }
+ __raw_writel(2, &rtcreg->adr);
+ for (i = 2; i < 6; i++)
+ buf[i] = __raw_readl(&rtcreg->dat);
+ ctl = __raw_readl(&rtcreg->ctl);
+ alrm->enabled = (ctl & TX4939_RTCCTL_ALME) ? 1 : 0;
+ alrm->pending = (ctl & TX4939_RTCCTL_ALMD) ? 1 : 0;
+ spin_unlock_irq(&pdata->lock);
+ sec = ((unsigned long)buf[5] << 24) | (buf[4] << 16) |
+ (buf[3] << 8) | buf[2];
+ rtc_time64_to_tm(sec, &alrm->time);
+ return rtc_valid_tm(&alrm->time);
+}
+
+static int tx4939_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct tx4939rtc_plat_data *pdata = dev_get_drvdata(dev);
+
+ spin_lock_irq(&pdata->lock);
+ tx4939_rtc_cmd(pdata->rtcreg,
+ TX4939_RTCCTL_COMMAND_NOP |
+ (enabled ? TX4939_RTCCTL_ALME : 0));
+ spin_unlock_irq(&pdata->lock);
+ return 0;
+}
+
+static irqreturn_t tx4939_rtc_interrupt(int irq, void *dev_id)
+{
+ struct tx4939rtc_plat_data *pdata = dev_get_drvdata(dev_id);
+ struct tx4939_rtc_reg __iomem *rtcreg = pdata->rtcreg;
+ unsigned long events = RTC_IRQF;
+
+ spin_lock(&pdata->lock);
+ if (__raw_readl(&rtcreg->ctl) & TX4939_RTCCTL_ALMD) {
+ events |= RTC_AF;
+ tx4939_rtc_cmd(rtcreg, TX4939_RTCCTL_COMMAND_NOP);
+ }
+ spin_unlock(&pdata->lock);
+ rtc_update_irq(pdata->rtc, 1, events);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops tx4939_rtc_ops = {
+ .read_time = tx4939_rtc_read_time,
+ .read_alarm = tx4939_rtc_read_alarm,
+ .set_alarm = tx4939_rtc_set_alarm,
+ .set_time = tx4939_rtc_set_time,
+ .alarm_irq_enable = tx4939_rtc_alarm_irq_enable,
+};
+
+static int tx4939_nvram_read(void *priv, unsigned int pos, void *val,
+ size_t bytes)
+{
+ struct tx4939rtc_plat_data *pdata = priv;
+ struct tx4939_rtc_reg __iomem *rtcreg = pdata->rtcreg;
+ u8 *buf = val;
+
+ spin_lock_irq(&pdata->lock);
+ for (; bytes; bytes--) {
+ __raw_writel(pos++, &rtcreg->adr);
+ *buf++ = __raw_readl(&rtcreg->dat);
+ }
+ spin_unlock_irq(&pdata->lock);
+ return 0;
+}
+
+static int tx4939_nvram_write(void *priv, unsigned int pos, void *val,
+ size_t bytes)
+{
+ struct tx4939rtc_plat_data *pdata = priv;
+ struct tx4939_rtc_reg __iomem *rtcreg = pdata->rtcreg;
+ u8 *buf = val;
+
+ spin_lock_irq(&pdata->lock);
+ for (; bytes; bytes--) {
+ __raw_writel(pos++, &rtcreg->adr);
+ __raw_writel(*buf++, &rtcreg->dat);
+ }
+ spin_unlock_irq(&pdata->lock);
+ return 0;
+}
+
+static int __init tx4939_rtc_probe(struct platform_device *pdev)
+{
+ struct rtc_device *rtc;
+ struct tx4939rtc_plat_data *pdata;
+ int irq, ret;
+ struct nvmem_config nvmem_cfg = {
+ .name = "tx4939_nvram",
+ .size = TX4939_RTC_REG_RAMSIZE,
+ .reg_read = tx4939_nvram_read,
+ .reg_write = tx4939_nvram_write,
+ };
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return -ENODEV;
+ pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
+ if (!pdata)
+ return -ENOMEM;
+ platform_set_drvdata(pdev, pdata);
+
+ pdata->rtcreg = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(pdata->rtcreg))
+ return PTR_ERR(pdata->rtcreg);
+
+ spin_lock_init(&pdata->lock);
+ tx4939_rtc_cmd(pdata->rtcreg, TX4939_RTCCTL_COMMAND_NOP);
+ if (devm_request_irq(&pdev->dev, irq, tx4939_rtc_interrupt,
+ 0, pdev->name, &pdev->dev) < 0)
+ return -EBUSY;
+ rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ rtc->ops = &tx4939_rtc_ops;
+ rtc->nvram_old_abi = true;
+ rtc->range_max = U32_MAX;
+
+ pdata->rtc = rtc;
+
+ nvmem_cfg.priv = pdata;
+ ret = rtc_nvmem_register(rtc, &nvmem_cfg);
+ if (ret)
+ return ret;
+
+ return rtc_register_device(rtc);
+}
+
+static int __exit tx4939_rtc_remove(struct platform_device *pdev)
+{
+ struct tx4939rtc_plat_data *pdata = platform_get_drvdata(pdev);
+
+ spin_lock_irq(&pdata->lock);
+ tx4939_rtc_cmd(pdata->rtcreg, TX4939_RTCCTL_COMMAND_NOP);
+ spin_unlock_irq(&pdata->lock);
+ return 0;
+}
+
+static struct platform_driver tx4939_rtc_driver = {
+ .remove = __exit_p(tx4939_rtc_remove),
+ .driver = {
+ .name = "tx4939rtc",
+ },
+};
+
+module_platform_driver_probe(tx4939_rtc_driver, tx4939_rtc_probe);
+
+MODULE_AUTHOR("Atsushi Nemoto <anemo@mba.ocn.ne.jp>");
+MODULE_DESCRIPTION("TX4939 internal RTC driver");
+MODULE_LICENSE("GPL v2");
+MODULE_ALIAS("platform:tx4939rtc");
diff --git a/drivers/rtc/rtc-v3020.c b/drivers/rtc/rtc-v3020.c
new file mode 100644
index 000000000..d2da92187
--- /dev/null
+++ b/drivers/rtc/rtc-v3020.c
@@ -0,0 +1,369 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/* drivers/rtc/rtc-v3020.c
+ *
+ * Copyright (C) 2006 8D Technologies inc.
+ * Copyright (C) 2004 Compulab Ltd.
+ *
+ * Driver for the V3020 RTC
+ *
+ * Changelog:
+ *
+ * 10-May-2006: Raphael Assenat <raph@8d.com>
+ * - Converted to platform driver
+ * - Use the generic rtc class
+ *
+ * ??-???-2004: Someone at Compulab
+ * - Initial driver creation.
+ */
+#include <linux/platform_device.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/rtc.h>
+#include <linux/types.h>
+#include <linux/bcd.h>
+#include <linux/platform_data/rtc-v3020.h>
+#include <linux/delay.h>
+#include <linux/gpio.h>
+#include <linux/slab.h>
+
+#include <linux/io.h>
+
+#undef DEBUG
+
+struct v3020;
+
+struct v3020_chip_ops {
+ int (*map_io)(struct v3020 *chip, struct platform_device *pdev,
+ struct v3020_platform_data *pdata);
+ void (*unmap_io)(struct v3020 *chip);
+ unsigned char (*read_bit)(struct v3020 *chip);
+ void (*write_bit)(struct v3020 *chip, unsigned char bit);
+};
+
+#define V3020_CS 0
+#define V3020_WR 1
+#define V3020_RD 2
+#define V3020_IO 3
+
+struct v3020 {
+ /* MMIO access */
+ void __iomem *ioaddress;
+ int leftshift;
+
+ /* GPIO access */
+ struct gpio *gpio;
+
+ const struct v3020_chip_ops *ops;
+
+ struct rtc_device *rtc;
+};
+
+
+static int v3020_mmio_map(struct v3020 *chip, struct platform_device *pdev,
+ struct v3020_platform_data *pdata)
+{
+ if (pdev->num_resources != 1)
+ return -EBUSY;
+
+ if (pdev->resource[0].flags != IORESOURCE_MEM)
+ return -EBUSY;
+
+ chip->leftshift = pdata->leftshift;
+ chip->ioaddress = ioremap(pdev->resource[0].start, 1);
+ if (chip->ioaddress == NULL)
+ return -EBUSY;
+
+ return 0;
+}
+
+static void v3020_mmio_unmap(struct v3020 *chip)
+{
+ iounmap(chip->ioaddress);
+}
+
+static void v3020_mmio_write_bit(struct v3020 *chip, unsigned char bit)
+{
+ writel(bit << chip->leftshift, chip->ioaddress);
+}
+
+static unsigned char v3020_mmio_read_bit(struct v3020 *chip)
+{
+ return !!(readl(chip->ioaddress) & (1 << chip->leftshift));
+}
+
+static const struct v3020_chip_ops v3020_mmio_ops = {
+ .map_io = v3020_mmio_map,
+ .unmap_io = v3020_mmio_unmap,
+ .read_bit = v3020_mmio_read_bit,
+ .write_bit = v3020_mmio_write_bit,
+};
+
+static struct gpio v3020_gpio[] = {
+ { 0, GPIOF_OUT_INIT_HIGH, "RTC CS"},
+ { 0, GPIOF_OUT_INIT_HIGH, "RTC WR"},
+ { 0, GPIOF_OUT_INIT_HIGH, "RTC RD"},
+ { 0, GPIOF_OUT_INIT_HIGH, "RTC IO"},
+};
+
+static int v3020_gpio_map(struct v3020 *chip, struct platform_device *pdev,
+ struct v3020_platform_data *pdata)
+{
+ int err;
+
+ v3020_gpio[V3020_CS].gpio = pdata->gpio_cs;
+ v3020_gpio[V3020_WR].gpio = pdata->gpio_wr;
+ v3020_gpio[V3020_RD].gpio = pdata->gpio_rd;
+ v3020_gpio[V3020_IO].gpio = pdata->gpio_io;
+
+ err = gpio_request_array(v3020_gpio, ARRAY_SIZE(v3020_gpio));
+
+ if (!err)
+ chip->gpio = v3020_gpio;
+
+ return err;
+}
+
+static void v3020_gpio_unmap(struct v3020 *chip)
+{
+ gpio_free_array(v3020_gpio, ARRAY_SIZE(v3020_gpio));
+}
+
+static void v3020_gpio_write_bit(struct v3020 *chip, unsigned char bit)
+{
+ gpio_direction_output(chip->gpio[V3020_IO].gpio, bit);
+ gpio_set_value(chip->gpio[V3020_CS].gpio, 0);
+ gpio_set_value(chip->gpio[V3020_WR].gpio, 0);
+ udelay(1);
+ gpio_set_value(chip->gpio[V3020_WR].gpio, 1);
+ gpio_set_value(chip->gpio[V3020_CS].gpio, 1);
+}
+
+static unsigned char v3020_gpio_read_bit(struct v3020 *chip)
+{
+ int bit;
+
+ gpio_direction_input(chip->gpio[V3020_IO].gpio);
+ gpio_set_value(chip->gpio[V3020_CS].gpio, 0);
+ gpio_set_value(chip->gpio[V3020_RD].gpio, 0);
+ udelay(1);
+ bit = !!gpio_get_value(chip->gpio[V3020_IO].gpio);
+ udelay(1);
+ gpio_set_value(chip->gpio[V3020_RD].gpio, 1);
+ gpio_set_value(chip->gpio[V3020_CS].gpio, 1);
+
+ return bit;
+}
+
+static const struct v3020_chip_ops v3020_gpio_ops = {
+ .map_io = v3020_gpio_map,
+ .unmap_io = v3020_gpio_unmap,
+ .read_bit = v3020_gpio_read_bit,
+ .write_bit = v3020_gpio_write_bit,
+};
+
+static void v3020_set_reg(struct v3020 *chip, unsigned char address,
+ unsigned char data)
+{
+ int i;
+ unsigned char tmp;
+
+ tmp = address;
+ for (i = 0; i < 4; i++) {
+ chip->ops->write_bit(chip, (tmp & 1));
+ tmp >>= 1;
+ udelay(1);
+ }
+
+ /* Commands dont have data */
+ if (!V3020_IS_COMMAND(address)) {
+ for (i = 0; i < 8; i++) {
+ chip->ops->write_bit(chip, (data & 1));
+ data >>= 1;
+ udelay(1);
+ }
+ }
+}
+
+static unsigned char v3020_get_reg(struct v3020 *chip, unsigned char address)
+{
+ unsigned int data = 0;
+ int i;
+
+ for (i = 0; i < 4; i++) {
+ chip->ops->write_bit(chip, (address & 1));
+ address >>= 1;
+ udelay(1);
+ }
+
+ for (i = 0; i < 8; i++) {
+ data >>= 1;
+ if (chip->ops->read_bit(chip))
+ data |= 0x80;
+ udelay(1);
+ }
+
+ return data;
+}
+
+static int v3020_read_time(struct device *dev, struct rtc_time *dt)
+{
+ struct v3020 *chip = dev_get_drvdata(dev);
+ int tmp;
+
+ /* Copy the current time to ram... */
+ v3020_set_reg(chip, V3020_CMD_CLOCK2RAM, 0);
+
+ /* ...and then read constant values. */
+ tmp = v3020_get_reg(chip, V3020_SECONDS);
+ dt->tm_sec = bcd2bin(tmp);
+ tmp = v3020_get_reg(chip, V3020_MINUTES);
+ dt->tm_min = bcd2bin(tmp);
+ tmp = v3020_get_reg(chip, V3020_HOURS);
+ dt->tm_hour = bcd2bin(tmp);
+ tmp = v3020_get_reg(chip, V3020_MONTH_DAY);
+ dt->tm_mday = bcd2bin(tmp);
+ tmp = v3020_get_reg(chip, V3020_MONTH);
+ dt->tm_mon = bcd2bin(tmp) - 1;
+ tmp = v3020_get_reg(chip, V3020_WEEK_DAY);
+ dt->tm_wday = bcd2bin(tmp);
+ tmp = v3020_get_reg(chip, V3020_YEAR);
+ dt->tm_year = bcd2bin(tmp)+100;
+
+ dev_dbg(dev, "\n%s : Read RTC values\n", __func__);
+ dev_dbg(dev, "tm_hour: %i\n", dt->tm_hour);
+ dev_dbg(dev, "tm_min : %i\n", dt->tm_min);
+ dev_dbg(dev, "tm_sec : %i\n", dt->tm_sec);
+ dev_dbg(dev, "tm_year: %i\n", dt->tm_year);
+ dev_dbg(dev, "tm_mon : %i\n", dt->tm_mon);
+ dev_dbg(dev, "tm_mday: %i\n", dt->tm_mday);
+ dev_dbg(dev, "tm_wday: %i\n", dt->tm_wday);
+
+ return 0;
+}
+
+
+static int v3020_set_time(struct device *dev, struct rtc_time *dt)
+{
+ struct v3020 *chip = dev_get_drvdata(dev);
+
+ dev_dbg(dev, "\n%s : Setting RTC values\n", __func__);
+ dev_dbg(dev, "tm_sec : %i\n", dt->tm_sec);
+ dev_dbg(dev, "tm_min : %i\n", dt->tm_min);
+ dev_dbg(dev, "tm_hour: %i\n", dt->tm_hour);
+ dev_dbg(dev, "tm_mday: %i\n", dt->tm_mday);
+ dev_dbg(dev, "tm_wday: %i\n", dt->tm_wday);
+ dev_dbg(dev, "tm_year: %i\n", dt->tm_year);
+
+ /* Write all the values to ram... */
+ v3020_set_reg(chip, V3020_SECONDS, bin2bcd(dt->tm_sec));
+ v3020_set_reg(chip, V3020_MINUTES, bin2bcd(dt->tm_min));
+ v3020_set_reg(chip, V3020_HOURS, bin2bcd(dt->tm_hour));
+ v3020_set_reg(chip, V3020_MONTH_DAY, bin2bcd(dt->tm_mday));
+ v3020_set_reg(chip, V3020_MONTH, bin2bcd(dt->tm_mon + 1));
+ v3020_set_reg(chip, V3020_WEEK_DAY, bin2bcd(dt->tm_wday));
+ v3020_set_reg(chip, V3020_YEAR, bin2bcd(dt->tm_year % 100));
+
+ /* ...and set the clock. */
+ v3020_set_reg(chip, V3020_CMD_RAM2CLOCK, 0);
+
+ /* Compulab used this delay here. I dont know why,
+ * the datasheet does not specify a delay. */
+ /*mdelay(5);*/
+
+ return 0;
+}
+
+static const struct rtc_class_ops v3020_rtc_ops = {
+ .read_time = v3020_read_time,
+ .set_time = v3020_set_time,
+};
+
+static int rtc_probe(struct platform_device *pdev)
+{
+ struct v3020_platform_data *pdata = dev_get_platdata(&pdev->dev);
+ struct v3020 *chip;
+ int retval = -EBUSY;
+ int i;
+
+ chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
+ if (!chip)
+ return -ENOMEM;
+
+ if (pdata->use_gpio)
+ chip->ops = &v3020_gpio_ops;
+ else
+ chip->ops = &v3020_mmio_ops;
+
+ retval = chip->ops->map_io(chip, pdev, pdata);
+ if (retval)
+ return retval;
+
+ /* Make sure the v3020 expects a communication cycle
+ * by reading 8 times */
+ for (i = 0; i < 8; i++)
+ chip->ops->read_bit(chip);
+
+ /* Test chip by doing a write/read sequence
+ * to the chip ram */
+ v3020_set_reg(chip, V3020_SECONDS, 0x33);
+ if (v3020_get_reg(chip, V3020_SECONDS) != 0x33) {
+ retval = -ENODEV;
+ goto err_io;
+ }
+
+ /* Make sure frequency measurement mode, test modes, and lock
+ * are all disabled */
+ v3020_set_reg(chip, V3020_STATUS_0, 0x0);
+
+ if (pdata->use_gpio)
+ dev_info(&pdev->dev, "Chip available at GPIOs "
+ "%d, %d, %d, %d\n",
+ chip->gpio[V3020_CS].gpio, chip->gpio[V3020_WR].gpio,
+ chip->gpio[V3020_RD].gpio, chip->gpio[V3020_IO].gpio);
+ else
+ dev_info(&pdev->dev, "Chip available at "
+ "physical address 0x%llx,"
+ "data connected to D%d\n",
+ (unsigned long long)pdev->resource[0].start,
+ chip->leftshift);
+
+ platform_set_drvdata(pdev, chip);
+
+ chip->rtc = devm_rtc_device_register(&pdev->dev, "v3020",
+ &v3020_rtc_ops, THIS_MODULE);
+ if (IS_ERR(chip->rtc)) {
+ retval = PTR_ERR(chip->rtc);
+ goto err_io;
+ }
+
+ return 0;
+
+err_io:
+ chip->ops->unmap_io(chip);
+
+ return retval;
+}
+
+static int rtc_remove(struct platform_device *dev)
+{
+ struct v3020 *chip = platform_get_drvdata(dev);
+
+ chip->ops->unmap_io(chip);
+
+ return 0;
+}
+
+static struct platform_driver rtc_device_driver = {
+ .probe = rtc_probe,
+ .remove = rtc_remove,
+ .driver = {
+ .name = "v3020",
+ },
+};
+
+module_platform_driver(rtc_device_driver);
+
+MODULE_DESCRIPTION("V3020 RTC");
+MODULE_AUTHOR("Raphael Assenat");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:v3020");
diff --git a/drivers/rtc/rtc-vr41xx.c b/drivers/rtc/rtc-vr41xx.c
new file mode 100644
index 000000000..c3671043a
--- /dev/null
+++ b/drivers/rtc/rtc-vr41xx.c
@@ -0,0 +1,363 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Driver for NEC VR4100 series Real Time Clock unit.
+ *
+ * Copyright (C) 2003-2008 Yoichi Yuasa <yuasa@linux-mips.org>
+ */
+#include <linux/compat.h>
+#include <linux/err.h>
+#include <linux/fs.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/spinlock.h>
+#include <linux/types.h>
+#include <linux/uaccess.h>
+#include <linux/log2.h>
+
+#include <asm/div64.h>
+
+MODULE_AUTHOR("Yoichi Yuasa <yuasa@linux-mips.org>");
+MODULE_DESCRIPTION("NEC VR4100 series RTC driver");
+MODULE_LICENSE("GPL v2");
+
+/* RTC 1 registers */
+#define ETIMELREG 0x00
+#define ETIMEMREG 0x02
+#define ETIMEHREG 0x04
+/* RFU */
+#define ECMPLREG 0x08
+#define ECMPMREG 0x0a
+#define ECMPHREG 0x0c
+/* RFU */
+#define RTCL1LREG 0x10
+#define RTCL1HREG 0x12
+#define RTCL1CNTLREG 0x14
+#define RTCL1CNTHREG 0x16
+#define RTCL2LREG 0x18
+#define RTCL2HREG 0x1a
+#define RTCL2CNTLREG 0x1c
+#define RTCL2CNTHREG 0x1e
+
+/* RTC 2 registers */
+#define TCLKLREG 0x00
+#define TCLKHREG 0x02
+#define TCLKCNTLREG 0x04
+#define TCLKCNTHREG 0x06
+/* RFU */
+#define RTCINTREG 0x1e
+ #define TCLOCK_INT 0x08
+ #define RTCLONG2_INT 0x04
+ #define RTCLONG1_INT 0x02
+ #define ELAPSEDTIME_INT 0x01
+
+#define RTC_FREQUENCY 32768
+#define MAX_PERIODIC_RATE 6553
+
+static void __iomem *rtc1_base;
+static void __iomem *rtc2_base;
+
+#define rtc1_read(offset) readw(rtc1_base + (offset))
+#define rtc1_write(offset, value) writew((value), rtc1_base + (offset))
+
+#define rtc2_read(offset) readw(rtc2_base + (offset))
+#define rtc2_write(offset, value) writew((value), rtc2_base + (offset))
+
+/* 32-bit compat for ioctls that nobody else uses */
+#define RTC_EPOCH_READ32 _IOR('p', 0x0d, __u32)
+
+static unsigned long epoch = 1970; /* Jan 1 1970 00:00:00 */
+
+static DEFINE_SPINLOCK(rtc_lock);
+static char rtc_name[] = "RTC";
+static unsigned long periodic_count;
+static unsigned int alarm_enabled;
+static int aie_irq;
+static int pie_irq;
+
+static inline time64_t read_elapsed_second(void)
+{
+
+ unsigned long first_low, first_mid, first_high;
+
+ unsigned long second_low, second_mid, second_high;
+
+ do {
+ first_low = rtc1_read(ETIMELREG);
+ first_mid = rtc1_read(ETIMEMREG);
+ first_high = rtc1_read(ETIMEHREG);
+ second_low = rtc1_read(ETIMELREG);
+ second_mid = rtc1_read(ETIMEMREG);
+ second_high = rtc1_read(ETIMEHREG);
+ } while (first_low != second_low || first_mid != second_mid ||
+ first_high != second_high);
+
+ return ((u64)first_high << 17) | (first_mid << 1) | (first_low >> 15);
+}
+
+static inline void write_elapsed_second(time64_t sec)
+{
+ spin_lock_irq(&rtc_lock);
+
+ rtc1_write(ETIMELREG, (uint16_t)(sec << 15));
+ rtc1_write(ETIMEMREG, (uint16_t)(sec >> 1));
+ rtc1_write(ETIMEHREG, (uint16_t)(sec >> 17));
+
+ spin_unlock_irq(&rtc_lock);
+}
+
+static int vr41xx_rtc_read_time(struct device *dev, struct rtc_time *time)
+{
+ time64_t epoch_sec, elapsed_sec;
+
+ epoch_sec = mktime64(epoch, 1, 1, 0, 0, 0);
+ elapsed_sec = read_elapsed_second();
+
+ rtc_time64_to_tm(epoch_sec + elapsed_sec, time);
+
+ return 0;
+}
+
+static int vr41xx_rtc_set_time(struct device *dev, struct rtc_time *time)
+{
+ time64_t epoch_sec, current_sec;
+
+ epoch_sec = mktime64(epoch, 1, 1, 0, 0, 0);
+ current_sec = rtc_tm_to_time64(time);
+
+ write_elapsed_second(current_sec - epoch_sec);
+
+ return 0;
+}
+
+static int vr41xx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
+{
+ unsigned long low, mid, high;
+ struct rtc_time *time = &wkalrm->time;
+
+ spin_lock_irq(&rtc_lock);
+
+ low = rtc1_read(ECMPLREG);
+ mid = rtc1_read(ECMPMREG);
+ high = rtc1_read(ECMPHREG);
+ wkalrm->enabled = alarm_enabled;
+
+ spin_unlock_irq(&rtc_lock);
+
+ rtc_time64_to_tm((high << 17) | (mid << 1) | (low >> 15), time);
+
+ return 0;
+}
+
+static int vr41xx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
+{
+ time64_t alarm_sec;
+
+ alarm_sec = rtc_tm_to_time64(&wkalrm->time);
+
+ spin_lock_irq(&rtc_lock);
+
+ if (alarm_enabled)
+ disable_irq(aie_irq);
+
+ rtc1_write(ECMPLREG, (uint16_t)(alarm_sec << 15));
+ rtc1_write(ECMPMREG, (uint16_t)(alarm_sec >> 1));
+ rtc1_write(ECMPHREG, (uint16_t)(alarm_sec >> 17));
+
+ if (wkalrm->enabled)
+ enable_irq(aie_irq);
+
+ alarm_enabled = wkalrm->enabled;
+
+ spin_unlock_irq(&rtc_lock);
+
+ return 0;
+}
+
+static int vr41xx_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
+{
+ switch (cmd) {
+ case RTC_EPOCH_READ:
+ return put_user(epoch, (unsigned long __user *)arg);
+#ifdef CONFIG_64BIT
+ case RTC_EPOCH_READ32:
+ return put_user(epoch, (unsigned int __user *)arg);
+#endif
+ case RTC_EPOCH_SET:
+ /* Doesn't support before 1900 */
+ if (arg < 1900)
+ return -EINVAL;
+ epoch = arg;
+ break;
+ default:
+ return -ENOIOCTLCMD;
+ }
+
+ return 0;
+}
+
+static int vr41xx_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ spin_lock_irq(&rtc_lock);
+ if (enabled) {
+ if (!alarm_enabled) {
+ enable_irq(aie_irq);
+ alarm_enabled = 1;
+ }
+ } else {
+ if (alarm_enabled) {
+ disable_irq(aie_irq);
+ alarm_enabled = 0;
+ }
+ }
+ spin_unlock_irq(&rtc_lock);
+ return 0;
+}
+
+static irqreturn_t elapsedtime_interrupt(int irq, void *dev_id)
+{
+ struct platform_device *pdev = (struct platform_device *)dev_id;
+ struct rtc_device *rtc = platform_get_drvdata(pdev);
+
+ rtc2_write(RTCINTREG, ELAPSEDTIME_INT);
+
+ rtc_update_irq(rtc, 1, RTC_AF);
+
+ return IRQ_HANDLED;
+}
+
+static irqreturn_t rtclong1_interrupt(int irq, void *dev_id)
+{
+ struct platform_device *pdev = (struct platform_device *)dev_id;
+ struct rtc_device *rtc = platform_get_drvdata(pdev);
+ unsigned long count = periodic_count;
+
+ rtc2_write(RTCINTREG, RTCLONG1_INT);
+
+ rtc1_write(RTCL1LREG, count);
+ rtc1_write(RTCL1HREG, count >> 16);
+
+ rtc_update_irq(rtc, 1, RTC_PF);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops vr41xx_rtc_ops = {
+ .ioctl = vr41xx_rtc_ioctl,
+ .read_time = vr41xx_rtc_read_time,
+ .set_time = vr41xx_rtc_set_time,
+ .read_alarm = vr41xx_rtc_read_alarm,
+ .set_alarm = vr41xx_rtc_set_alarm,
+ .alarm_irq_enable = vr41xx_rtc_alarm_irq_enable,
+};
+
+static int rtc_probe(struct platform_device *pdev)
+{
+ struct resource *res;
+ struct rtc_device *rtc;
+ int retval;
+
+ if (pdev->num_resources != 4)
+ return -EBUSY;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!res)
+ return -EBUSY;
+
+ rtc1_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
+ if (!rtc1_base)
+ return -EBUSY;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+ if (!res) {
+ retval = -EBUSY;
+ goto err_rtc1_iounmap;
+ }
+
+ rtc2_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
+ if (!rtc2_base) {
+ retval = -EBUSY;
+ goto err_rtc1_iounmap;
+ }
+
+ rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc)) {
+ retval = PTR_ERR(rtc);
+ goto err_iounmap_all;
+ }
+
+ rtc->ops = &vr41xx_rtc_ops;
+
+ /* 48-bit counter at 32.768 kHz */
+ rtc->range_max = (1ULL << 33) - 1;
+ rtc->max_user_freq = MAX_PERIODIC_RATE;
+
+ spin_lock_irq(&rtc_lock);
+
+ rtc1_write(ECMPLREG, 0);
+ rtc1_write(ECMPMREG, 0);
+ rtc1_write(ECMPHREG, 0);
+ rtc1_write(RTCL1LREG, 0);
+ rtc1_write(RTCL1HREG, 0);
+
+ spin_unlock_irq(&rtc_lock);
+
+ aie_irq = platform_get_irq(pdev, 0);
+ if (aie_irq <= 0) {
+ retval = -EBUSY;
+ goto err_iounmap_all;
+ }
+
+ retval = devm_request_irq(&pdev->dev, aie_irq, elapsedtime_interrupt, 0,
+ "elapsed_time", pdev);
+ if (retval < 0)
+ goto err_iounmap_all;
+
+ pie_irq = platform_get_irq(pdev, 1);
+ if (pie_irq <= 0) {
+ retval = -EBUSY;
+ goto err_iounmap_all;
+ }
+
+ retval = devm_request_irq(&pdev->dev, pie_irq, rtclong1_interrupt, 0,
+ "rtclong1", pdev);
+ if (retval < 0)
+ goto err_iounmap_all;
+
+ platform_set_drvdata(pdev, rtc);
+
+ disable_irq(aie_irq);
+ disable_irq(pie_irq);
+
+ dev_info(&pdev->dev, "Real Time Clock of NEC VR4100 series\n");
+
+ retval = rtc_register_device(rtc);
+ if (retval)
+ goto err_iounmap_all;
+
+ return 0;
+
+err_iounmap_all:
+ rtc2_base = NULL;
+
+err_rtc1_iounmap:
+ rtc1_base = NULL;
+
+ return retval;
+}
+
+/* work with hotplug and coldplug */
+MODULE_ALIAS("platform:RTC");
+
+static struct platform_driver rtc_platform_driver = {
+ .probe = rtc_probe,
+ .driver = {
+ .name = rtc_name,
+ },
+};
+
+module_platform_driver(rtc_platform_driver);
diff --git a/drivers/rtc/rtc-vt8500.c b/drivers/rtc/rtc-vt8500.c
new file mode 100644
index 000000000..e25886250
--- /dev/null
+++ b/drivers/rtc/rtc-vt8500.c
@@ -0,0 +1,268 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * drivers/rtc/rtc-vt8500.c
+ *
+ * Copyright (C) 2010 Alexey Charkov <alchark@gmail.com>
+ *
+ * Based on rtc-pxa.c
+ */
+
+#include <linux/module.h>
+#include <linux/rtc.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/bcd.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/of.h>
+
+/*
+ * Register definitions
+ */
+#define VT8500_RTC_TS 0x00 /* Time set */
+#define VT8500_RTC_DS 0x04 /* Date set */
+#define VT8500_RTC_AS 0x08 /* Alarm set */
+#define VT8500_RTC_CR 0x0c /* Control */
+#define VT8500_RTC_TR 0x10 /* Time read */
+#define VT8500_RTC_DR 0x14 /* Date read */
+#define VT8500_RTC_WS 0x18 /* Write status */
+#define VT8500_RTC_CL 0x20 /* Calibration */
+#define VT8500_RTC_IS 0x24 /* Interrupt status */
+#define VT8500_RTC_ST 0x28 /* Status */
+
+#define INVALID_TIME_BIT (1 << 31)
+
+#define DATE_CENTURY_S 19
+#define DATE_YEAR_S 11
+#define DATE_YEAR_MASK (0xff << DATE_YEAR_S)
+#define DATE_MONTH_S 6
+#define DATE_MONTH_MASK (0x1f << DATE_MONTH_S)
+#define DATE_DAY_MASK 0x3f
+
+#define TIME_DOW_S 20
+#define TIME_DOW_MASK (0x07 << TIME_DOW_S)
+#define TIME_HOUR_S 14
+#define TIME_HOUR_MASK (0x3f << TIME_HOUR_S)
+#define TIME_MIN_S 7
+#define TIME_MIN_MASK (0x7f << TIME_MIN_S)
+#define TIME_SEC_MASK 0x7f
+
+#define ALARM_DAY_S 20
+#define ALARM_DAY_MASK (0x3f << ALARM_DAY_S)
+
+#define ALARM_DAY_BIT (1 << 29)
+#define ALARM_HOUR_BIT (1 << 28)
+#define ALARM_MIN_BIT (1 << 27)
+#define ALARM_SEC_BIT (1 << 26)
+
+#define ALARM_ENABLE_MASK (ALARM_DAY_BIT \
+ | ALARM_HOUR_BIT \
+ | ALARM_MIN_BIT \
+ | ALARM_SEC_BIT)
+
+#define VT8500_RTC_CR_ENABLE (1 << 0) /* Enable RTC */
+#define VT8500_RTC_CR_12H (1 << 1) /* 12h time format */
+#define VT8500_RTC_CR_SM_ENABLE (1 << 2) /* Enable periodic irqs */
+#define VT8500_RTC_CR_SM_SEC (1 << 3) /* 0: 1Hz/60, 1: 1Hz */
+#define VT8500_RTC_CR_CALIB (1 << 4) /* Enable calibration */
+
+#define VT8500_RTC_IS_ALARM (1 << 0) /* Alarm interrupt status */
+
+struct vt8500_rtc {
+ void __iomem *regbase;
+ int irq_alarm;
+ struct rtc_device *rtc;
+ spinlock_t lock; /* Protects this structure */
+};
+
+static irqreturn_t vt8500_rtc_irq(int irq, void *dev_id)
+{
+ struct vt8500_rtc *vt8500_rtc = dev_id;
+ u32 isr;
+ unsigned long events = 0;
+
+ spin_lock(&vt8500_rtc->lock);
+
+ /* clear interrupt sources */
+ isr = readl(vt8500_rtc->regbase + VT8500_RTC_IS);
+ writel(isr, vt8500_rtc->regbase + VT8500_RTC_IS);
+
+ spin_unlock(&vt8500_rtc->lock);
+
+ if (isr & VT8500_RTC_IS_ALARM)
+ events |= RTC_AF | RTC_IRQF;
+
+ rtc_update_irq(vt8500_rtc->rtc, 1, events);
+
+ return IRQ_HANDLED;
+}
+
+static int vt8500_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct vt8500_rtc *vt8500_rtc = dev_get_drvdata(dev);
+ u32 date, time;
+
+ date = readl(vt8500_rtc->regbase + VT8500_RTC_DR);
+ time = readl(vt8500_rtc->regbase + VT8500_RTC_TR);
+
+ tm->tm_sec = bcd2bin(time & TIME_SEC_MASK);
+ tm->tm_min = bcd2bin((time & TIME_MIN_MASK) >> TIME_MIN_S);
+ tm->tm_hour = bcd2bin((time & TIME_HOUR_MASK) >> TIME_HOUR_S);
+ tm->tm_mday = bcd2bin(date & DATE_DAY_MASK);
+ tm->tm_mon = bcd2bin((date & DATE_MONTH_MASK) >> DATE_MONTH_S) - 1;
+ tm->tm_year = bcd2bin((date & DATE_YEAR_MASK) >> DATE_YEAR_S)
+ + ((date >> DATE_CENTURY_S) & 1 ? 200 : 100);
+ tm->tm_wday = (time & TIME_DOW_MASK) >> TIME_DOW_S;
+
+ return 0;
+}
+
+static int vt8500_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct vt8500_rtc *vt8500_rtc = dev_get_drvdata(dev);
+
+ writel((bin2bcd(tm->tm_year % 100) << DATE_YEAR_S)
+ | (bin2bcd(tm->tm_mon + 1) << DATE_MONTH_S)
+ | (bin2bcd(tm->tm_mday))
+ | ((tm->tm_year >= 200) << DATE_CENTURY_S),
+ vt8500_rtc->regbase + VT8500_RTC_DS);
+ writel((bin2bcd(tm->tm_wday) << TIME_DOW_S)
+ | (bin2bcd(tm->tm_hour) << TIME_HOUR_S)
+ | (bin2bcd(tm->tm_min) << TIME_MIN_S)
+ | (bin2bcd(tm->tm_sec)),
+ vt8500_rtc->regbase + VT8500_RTC_TS);
+
+ return 0;
+}
+
+static int vt8500_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct vt8500_rtc *vt8500_rtc = dev_get_drvdata(dev);
+ u32 isr, alarm;
+
+ alarm = readl(vt8500_rtc->regbase + VT8500_RTC_AS);
+ isr = readl(vt8500_rtc->regbase + VT8500_RTC_IS);
+
+ alrm->time.tm_mday = bcd2bin((alarm & ALARM_DAY_MASK) >> ALARM_DAY_S);
+ alrm->time.tm_hour = bcd2bin((alarm & TIME_HOUR_MASK) >> TIME_HOUR_S);
+ alrm->time.tm_min = bcd2bin((alarm & TIME_MIN_MASK) >> TIME_MIN_S);
+ alrm->time.tm_sec = bcd2bin((alarm & TIME_SEC_MASK));
+
+ alrm->enabled = (alarm & ALARM_ENABLE_MASK) ? 1 : 0;
+ alrm->pending = (isr & VT8500_RTC_IS_ALARM) ? 1 : 0;
+
+ return rtc_valid_tm(&alrm->time);
+}
+
+static int vt8500_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct vt8500_rtc *vt8500_rtc = dev_get_drvdata(dev);
+
+ writel((alrm->enabled ? ALARM_ENABLE_MASK : 0)
+ | (bin2bcd(alrm->time.tm_mday) << ALARM_DAY_S)
+ | (bin2bcd(alrm->time.tm_hour) << TIME_HOUR_S)
+ | (bin2bcd(alrm->time.tm_min) << TIME_MIN_S)
+ | (bin2bcd(alrm->time.tm_sec)),
+ vt8500_rtc->regbase + VT8500_RTC_AS);
+
+ return 0;
+}
+
+static int vt8500_alarm_irq_enable(struct device *dev, unsigned int enabled)
+{
+ struct vt8500_rtc *vt8500_rtc = dev_get_drvdata(dev);
+ unsigned long tmp = readl(vt8500_rtc->regbase + VT8500_RTC_AS);
+
+ if (enabled)
+ tmp |= ALARM_ENABLE_MASK;
+ else
+ tmp &= ~ALARM_ENABLE_MASK;
+
+ writel(tmp, vt8500_rtc->regbase + VT8500_RTC_AS);
+ return 0;
+}
+
+static const struct rtc_class_ops vt8500_rtc_ops = {
+ .read_time = vt8500_rtc_read_time,
+ .set_time = vt8500_rtc_set_time,
+ .read_alarm = vt8500_rtc_read_alarm,
+ .set_alarm = vt8500_rtc_set_alarm,
+ .alarm_irq_enable = vt8500_alarm_irq_enable,
+};
+
+static int vt8500_rtc_probe(struct platform_device *pdev)
+{
+ struct vt8500_rtc *vt8500_rtc;
+ int ret;
+
+ vt8500_rtc = devm_kzalloc(&pdev->dev,
+ sizeof(struct vt8500_rtc), GFP_KERNEL);
+ if (!vt8500_rtc)
+ return -ENOMEM;
+
+ spin_lock_init(&vt8500_rtc->lock);
+ platform_set_drvdata(pdev, vt8500_rtc);
+
+ vt8500_rtc->irq_alarm = platform_get_irq(pdev, 0);
+ if (vt8500_rtc->irq_alarm < 0)
+ return vt8500_rtc->irq_alarm;
+
+ vt8500_rtc->regbase = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(vt8500_rtc->regbase))
+ return PTR_ERR(vt8500_rtc->regbase);
+
+ /* Enable RTC and set it to 24-hour mode */
+ writel(VT8500_RTC_CR_ENABLE,
+ vt8500_rtc->regbase + VT8500_RTC_CR);
+
+ vt8500_rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(vt8500_rtc->rtc))
+ return PTR_ERR(vt8500_rtc->rtc);
+
+ vt8500_rtc->rtc->ops = &vt8500_rtc_ops;
+ vt8500_rtc->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ vt8500_rtc->rtc->range_max = RTC_TIMESTAMP_END_2199;
+
+ ret = devm_request_irq(&pdev->dev, vt8500_rtc->irq_alarm,
+ vt8500_rtc_irq, 0, "rtc alarm", vt8500_rtc);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "can't get irq %i, err %d\n",
+ vt8500_rtc->irq_alarm, ret);
+ return ret;
+ }
+
+ return rtc_register_device(vt8500_rtc->rtc);
+}
+
+static int vt8500_rtc_remove(struct platform_device *pdev)
+{
+ struct vt8500_rtc *vt8500_rtc = platform_get_drvdata(pdev);
+
+ /* Disable alarm matching */
+ writel(0, vt8500_rtc->regbase + VT8500_RTC_IS);
+
+ return 0;
+}
+
+static const struct of_device_id wmt_dt_ids[] = {
+ { .compatible = "via,vt8500-rtc", },
+ {}
+};
+MODULE_DEVICE_TABLE(of, wmt_dt_ids);
+
+static struct platform_driver vt8500_rtc_driver = {
+ .probe = vt8500_rtc_probe,
+ .remove = vt8500_rtc_remove,
+ .driver = {
+ .name = "vt8500-rtc",
+ .of_match_table = wmt_dt_ids,
+ },
+};
+
+module_platform_driver(vt8500_rtc_driver);
+
+MODULE_AUTHOR("Alexey Charkov <alchark@gmail.com>");
+MODULE_DESCRIPTION("VIA VT8500 SoC Realtime Clock Driver (RTC)");
+MODULE_LICENSE("GPL v2");
+MODULE_ALIAS("platform:vt8500-rtc");
diff --git a/drivers/rtc/rtc-wilco-ec.c b/drivers/rtc/rtc-wilco-ec.c
new file mode 100644
index 000000000..ff46066a6
--- /dev/null
+++ b/drivers/rtc/rtc-wilco-ec.c
@@ -0,0 +1,194 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * RTC interface for Wilco Embedded Controller with R/W abilities
+ *
+ * Copyright 2018 Google LLC
+ *
+ * The corresponding platform device is typically registered in
+ * drivers/platform/chrome/wilco_ec/core.c
+ */
+
+#include <linux/bcd.h>
+#include <linux/err.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/platform_data/wilco-ec.h>
+#include <linux/rtc.h>
+#include <linux/timekeeping.h>
+
+#define EC_COMMAND_CMOS 0x7c
+#define EC_CMOS_TOD_WRITE 0x02
+#define EC_CMOS_TOD_READ 0x08
+
+/* Message sent to the EC to request the current time. */
+struct ec_rtc_read_request {
+ u8 command;
+ u8 reserved;
+ u8 param;
+} __packed;
+static struct ec_rtc_read_request read_rq = {
+ .command = EC_COMMAND_CMOS,
+ .param = EC_CMOS_TOD_READ,
+};
+
+/**
+ * struct ec_rtc_read_response - Format of RTC returned by EC.
+ * @reserved: Unused byte
+ * @second: Second value (0..59)
+ * @minute: Minute value (0..59)
+ * @hour: Hour value (0..23)
+ * @day: Day value (1..31)
+ * @month: Month value (1..12)
+ * @year: Year value (full year % 100)
+ * @century: Century value (full year / 100)
+ *
+ * All values are presented in binary (not BCD).
+ */
+struct ec_rtc_read_response {
+ u8 reserved;
+ u8 second;
+ u8 minute;
+ u8 hour;
+ u8 day;
+ u8 month;
+ u8 year;
+ u8 century;
+} __packed;
+
+/**
+ * struct ec_rtc_write_request - Format of RTC sent to the EC.
+ * @command: Always EC_COMMAND_CMOS
+ * @reserved: Unused byte
+ * @param: Always EC_CMOS_TOD_WRITE
+ * @century: Century value (full year / 100)
+ * @year: Year value (full year % 100)
+ * @month: Month value (1..12)
+ * @day: Day value (1..31)
+ * @hour: Hour value (0..23)
+ * @minute: Minute value (0..59)
+ * @second: Second value (0..59)
+ * @weekday: Day of the week (0=Saturday)
+ *
+ * All values are presented in BCD.
+ */
+struct ec_rtc_write_request {
+ u8 command;
+ u8 reserved;
+ u8 param;
+ u8 century;
+ u8 year;
+ u8 month;
+ u8 day;
+ u8 hour;
+ u8 minute;
+ u8 second;
+ u8 weekday;
+} __packed;
+
+static int wilco_ec_rtc_read(struct device *dev, struct rtc_time *tm)
+{
+ struct wilco_ec_device *ec = dev_get_drvdata(dev->parent);
+ struct ec_rtc_read_response rtc;
+ struct wilco_ec_message msg;
+ int ret;
+
+ memset(&msg, 0, sizeof(msg));
+ msg.type = WILCO_EC_MSG_LEGACY;
+ msg.request_data = &read_rq;
+ msg.request_size = sizeof(read_rq);
+ msg.response_data = &rtc;
+ msg.response_size = sizeof(rtc);
+
+ ret = wilco_ec_mailbox(ec, &msg);
+ if (ret < 0)
+ return ret;
+
+ tm->tm_sec = rtc.second;
+ tm->tm_min = rtc.minute;
+ tm->tm_hour = rtc.hour;
+ tm->tm_mday = rtc.day;
+ tm->tm_mon = rtc.month - 1;
+ tm->tm_year = rtc.year + (rtc.century * 100) - 1900;
+ /* Ignore other tm fields, man rtc says userspace shouldn't use them. */
+
+ if (rtc_valid_tm(tm)) {
+ dev_err(dev, "Time from RTC is invalid: %ptRr\n", tm);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static int wilco_ec_rtc_write(struct device *dev, struct rtc_time *tm)
+{
+ struct wilco_ec_device *ec = dev_get_drvdata(dev->parent);
+ struct ec_rtc_write_request rtc;
+ struct wilco_ec_message msg;
+ int year = tm->tm_year + 1900;
+ /*
+ * Convert from 0=Sunday to 0=Saturday for the EC
+ * We DO need to set weekday because the EC controls battery charging
+ * schedules that depend on the day of the week.
+ */
+ int wday = tm->tm_wday == 6 ? 0 : tm->tm_wday + 1;
+ int ret;
+
+ rtc.command = EC_COMMAND_CMOS;
+ rtc.param = EC_CMOS_TOD_WRITE;
+ rtc.century = bin2bcd(year / 100);
+ rtc.year = bin2bcd(year % 100);
+ rtc.month = bin2bcd(tm->tm_mon + 1);
+ rtc.day = bin2bcd(tm->tm_mday);
+ rtc.hour = bin2bcd(tm->tm_hour);
+ rtc.minute = bin2bcd(tm->tm_min);
+ rtc.second = bin2bcd(tm->tm_sec);
+ rtc.weekday = bin2bcd(wday);
+
+ memset(&msg, 0, sizeof(msg));
+ msg.type = WILCO_EC_MSG_LEGACY;
+ msg.request_data = &rtc;
+ msg.request_size = sizeof(rtc);
+
+ ret = wilco_ec_mailbox(ec, &msg);
+ if (ret < 0)
+ return ret;
+
+ return 0;
+}
+
+static const struct rtc_class_ops wilco_ec_rtc_ops = {
+ .read_time = wilco_ec_rtc_read,
+ .set_time = wilco_ec_rtc_write,
+};
+
+static int wilco_ec_rtc_probe(struct platform_device *pdev)
+{
+ struct rtc_device *rtc;
+
+ rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ rtc->ops = &wilco_ec_rtc_ops;
+ /* EC only supports this century */
+ rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
+ rtc->range_max = RTC_TIMESTAMP_END_2099;
+ rtc->owner = THIS_MODULE;
+
+ return rtc_register_device(rtc);
+}
+
+static struct platform_driver wilco_ec_rtc_driver = {
+ .driver = {
+ .name = "rtc-wilco-ec",
+ },
+ .probe = wilco_ec_rtc_probe,
+};
+
+module_platform_driver(wilco_ec_rtc_driver);
+
+MODULE_ALIAS("platform:rtc-wilco-ec");
+MODULE_AUTHOR("Nick Crews <ncrews@chromium.org>");
+MODULE_LICENSE("GPL v2");
+MODULE_DESCRIPTION("Wilco EC RTC driver");
diff --git a/drivers/rtc/rtc-wm831x.c b/drivers/rtc/rtc-wm831x.c
new file mode 100644
index 000000000..ccef887d2
--- /dev/null
+++ b/drivers/rtc/rtc-wm831x.c
@@ -0,0 +1,475 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Real Time Clock driver for Wolfson Microelectronics WM831x
+ *
+ * Copyright (C) 2009 Wolfson Microelectronics PLC.
+ *
+ * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
+ *
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/time.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+#include <linux/bcd.h>
+#include <linux/interrupt.h>
+#include <linux/ioctl.h>
+#include <linux/completion.h>
+#include <linux/mfd/wm831x/core.h>
+#include <linux/delay.h>
+#include <linux/platform_device.h>
+#include <linux/random.h>
+
+/*
+ * R16416 (0x4020) - RTC Write Counter
+ */
+#define WM831X_RTC_WR_CNT_MASK 0xFFFF /* RTC_WR_CNT - [15:0] */
+#define WM831X_RTC_WR_CNT_SHIFT 0 /* RTC_WR_CNT - [15:0] */
+#define WM831X_RTC_WR_CNT_WIDTH 16 /* RTC_WR_CNT - [15:0] */
+
+/*
+ * R16417 (0x4021) - RTC Time 1
+ */
+#define WM831X_RTC_TIME_MASK 0xFFFF /* RTC_TIME - [15:0] */
+#define WM831X_RTC_TIME_SHIFT 0 /* RTC_TIME - [15:0] */
+#define WM831X_RTC_TIME_WIDTH 16 /* RTC_TIME - [15:0] */
+
+/*
+ * R16418 (0x4022) - RTC Time 2
+ */
+#define WM831X_RTC_TIME_MASK 0xFFFF /* RTC_TIME - [15:0] */
+#define WM831X_RTC_TIME_SHIFT 0 /* RTC_TIME - [15:0] */
+#define WM831X_RTC_TIME_WIDTH 16 /* RTC_TIME - [15:0] */
+
+/*
+ * R16419 (0x4023) - RTC Alarm 1
+ */
+#define WM831X_RTC_ALM_MASK 0xFFFF /* RTC_ALM - [15:0] */
+#define WM831X_RTC_ALM_SHIFT 0 /* RTC_ALM - [15:0] */
+#define WM831X_RTC_ALM_WIDTH 16 /* RTC_ALM - [15:0] */
+
+/*
+ * R16420 (0x4024) - RTC Alarm 2
+ */
+#define WM831X_RTC_ALM_MASK 0xFFFF /* RTC_ALM - [15:0] */
+#define WM831X_RTC_ALM_SHIFT 0 /* RTC_ALM - [15:0] */
+#define WM831X_RTC_ALM_WIDTH 16 /* RTC_ALM - [15:0] */
+
+/*
+ * R16421 (0x4025) - RTC Control
+ */
+#define WM831X_RTC_VALID 0x8000 /* RTC_VALID */
+#define WM831X_RTC_VALID_MASK 0x8000 /* RTC_VALID */
+#define WM831X_RTC_VALID_SHIFT 15 /* RTC_VALID */
+#define WM831X_RTC_VALID_WIDTH 1 /* RTC_VALID */
+#define WM831X_RTC_SYNC_BUSY 0x4000 /* RTC_SYNC_BUSY */
+#define WM831X_RTC_SYNC_BUSY_MASK 0x4000 /* RTC_SYNC_BUSY */
+#define WM831X_RTC_SYNC_BUSY_SHIFT 14 /* RTC_SYNC_BUSY */
+#define WM831X_RTC_SYNC_BUSY_WIDTH 1 /* RTC_SYNC_BUSY */
+#define WM831X_RTC_ALM_ENA 0x0400 /* RTC_ALM_ENA */
+#define WM831X_RTC_ALM_ENA_MASK 0x0400 /* RTC_ALM_ENA */
+#define WM831X_RTC_ALM_ENA_SHIFT 10 /* RTC_ALM_ENA */
+#define WM831X_RTC_ALM_ENA_WIDTH 1 /* RTC_ALM_ENA */
+#define WM831X_RTC_PINT_FREQ_MASK 0x0070 /* RTC_PINT_FREQ - [6:4] */
+#define WM831X_RTC_PINT_FREQ_SHIFT 4 /* RTC_PINT_FREQ - [6:4] */
+#define WM831X_RTC_PINT_FREQ_WIDTH 3 /* RTC_PINT_FREQ - [6:4] */
+
+/*
+ * R16422 (0x4026) - RTC Trim
+ */
+#define WM831X_RTC_TRIM_MASK 0x03FF /* RTC_TRIM - [9:0] */
+#define WM831X_RTC_TRIM_SHIFT 0 /* RTC_TRIM - [9:0] */
+#define WM831X_RTC_TRIM_WIDTH 10 /* RTC_TRIM - [9:0] */
+
+#define WM831X_SET_TIME_RETRIES 5
+#define WM831X_GET_TIME_RETRIES 5
+
+struct wm831x_rtc {
+ struct wm831x *wm831x;
+ struct rtc_device *rtc;
+ unsigned int alarm_enabled:1;
+};
+
+static void wm831x_rtc_add_randomness(struct wm831x *wm831x)
+{
+ int ret;
+ u16 reg;
+
+ /*
+ * The write counter contains a pseudo-random number which is
+ * regenerated every time we set the RTC so it should be a
+ * useful per-system source of entropy.
+ */
+ ret = wm831x_reg_read(wm831x, WM831X_RTC_WRITE_COUNTER);
+ if (ret >= 0) {
+ reg = ret;
+ add_device_randomness(&reg, sizeof(reg));
+ } else {
+ dev_warn(wm831x->dev, "Failed to read RTC write counter: %d\n",
+ ret);
+ }
+}
+
+/*
+ * Read current time and date in RTC
+ */
+static int wm831x_rtc_readtime(struct device *dev, struct rtc_time *tm)
+{
+ struct wm831x_rtc *wm831x_rtc = dev_get_drvdata(dev);
+ struct wm831x *wm831x = wm831x_rtc->wm831x;
+ u16 time1[2], time2[2];
+ int ret;
+ int count = 0;
+
+ /* Has the RTC been programmed? */
+ ret = wm831x_reg_read(wm831x, WM831X_RTC_CONTROL);
+ if (ret < 0) {
+ dev_err(dev, "Failed to read RTC control: %d\n", ret);
+ return ret;
+ }
+ if (!(ret & WM831X_RTC_VALID)) {
+ dev_dbg(dev, "RTC not yet configured\n");
+ return -EINVAL;
+ }
+
+ /* Read twice to make sure we don't read a corrupt, partially
+ * incremented, value.
+ */
+ do {
+ ret = wm831x_bulk_read(wm831x, WM831X_RTC_TIME_1,
+ 2, time1);
+ if (ret != 0)
+ continue;
+
+ ret = wm831x_bulk_read(wm831x, WM831X_RTC_TIME_1,
+ 2, time2);
+ if (ret != 0)
+ continue;
+
+ if (memcmp(time1, time2, sizeof(time1)) == 0) {
+ u32 time = (time1[0] << 16) | time1[1];
+
+ rtc_time64_to_tm(time, tm);
+ return 0;
+ }
+
+ } while (++count < WM831X_GET_TIME_RETRIES);
+
+ dev_err(dev, "Timed out reading current time\n");
+
+ return -EIO;
+}
+
+/*
+ * Set current time and date in RTC
+ */
+static int wm831x_rtc_settime(struct device *dev, struct rtc_time *tm)
+{
+ struct wm831x_rtc *wm831x_rtc = dev_get_drvdata(dev);
+ struct wm831x *wm831x = wm831x_rtc->wm831x;
+ struct rtc_time new_tm;
+ unsigned long time, new_time;
+ int ret;
+ int count = 0;
+
+ time = rtc_tm_to_time64(tm);
+
+ ret = wm831x_reg_write(wm831x, WM831X_RTC_TIME_1,
+ (time >> 16) & 0xffff);
+ if (ret < 0) {
+ dev_err(dev, "Failed to write TIME_1: %d\n", ret);
+ return ret;
+ }
+
+ ret = wm831x_reg_write(wm831x, WM831X_RTC_TIME_2, time & 0xffff);
+ if (ret < 0) {
+ dev_err(dev, "Failed to write TIME_2: %d\n", ret);
+ return ret;
+ }
+
+ /* Wait for the update to complete - should happen first time
+ * round but be conservative.
+ */
+ do {
+ msleep(1);
+
+ ret = wm831x_reg_read(wm831x, WM831X_RTC_CONTROL);
+ if (ret < 0)
+ ret = WM831X_RTC_SYNC_BUSY;
+ } while (!(ret & WM831X_RTC_SYNC_BUSY) &&
+ ++count < WM831X_SET_TIME_RETRIES);
+
+ if (ret & WM831X_RTC_SYNC_BUSY) {
+ dev_err(dev, "Timed out writing RTC update\n");
+ return -EIO;
+ }
+
+ /* Check that the update was accepted; security features may
+ * have caused the update to be ignored.
+ */
+ ret = wm831x_rtc_readtime(dev, &new_tm);
+ if (ret < 0)
+ return ret;
+
+ new_time = rtc_tm_to_time64(&new_tm);
+
+ /* Allow a second of change in case of tick */
+ if (new_time - time > 1) {
+ dev_err(dev, "RTC update not permitted by hardware\n");
+ return -EPERM;
+ }
+
+ return 0;
+}
+
+/*
+ * Read alarm time and date in RTC
+ */
+static int wm831x_rtc_readalarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct wm831x_rtc *wm831x_rtc = dev_get_drvdata(dev);
+ int ret;
+ u16 data[2];
+ u32 time;
+
+ ret = wm831x_bulk_read(wm831x_rtc->wm831x, WM831X_RTC_ALARM_1,
+ 2, data);
+ if (ret != 0) {
+ dev_err(dev, "Failed to read alarm time: %d\n", ret);
+ return ret;
+ }
+
+ time = (data[0] << 16) | data[1];
+
+ rtc_time64_to_tm(time, &alrm->time);
+
+ ret = wm831x_reg_read(wm831x_rtc->wm831x, WM831X_RTC_CONTROL);
+ if (ret < 0) {
+ dev_err(dev, "Failed to read RTC control: %d\n", ret);
+ return ret;
+ }
+
+ if (ret & WM831X_RTC_ALM_ENA)
+ alrm->enabled = 1;
+ else
+ alrm->enabled = 0;
+
+ return 0;
+}
+
+static int wm831x_rtc_stop_alarm(struct wm831x_rtc *wm831x_rtc)
+{
+ wm831x_rtc->alarm_enabled = 0;
+
+ return wm831x_set_bits(wm831x_rtc->wm831x, WM831X_RTC_CONTROL,
+ WM831X_RTC_ALM_ENA, 0);
+}
+
+static int wm831x_rtc_start_alarm(struct wm831x_rtc *wm831x_rtc)
+{
+ wm831x_rtc->alarm_enabled = 1;
+
+ return wm831x_set_bits(wm831x_rtc->wm831x, WM831X_RTC_CONTROL,
+ WM831X_RTC_ALM_ENA, WM831X_RTC_ALM_ENA);
+}
+
+static int wm831x_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct wm831x_rtc *wm831x_rtc = dev_get_drvdata(dev);
+ struct wm831x *wm831x = wm831x_rtc->wm831x;
+ int ret;
+ unsigned long time;
+
+ time = rtc_tm_to_time64(&alrm->time);
+
+ ret = wm831x_rtc_stop_alarm(wm831x_rtc);
+ if (ret < 0) {
+ dev_err(dev, "Failed to stop alarm: %d\n", ret);
+ return ret;
+ }
+
+ ret = wm831x_reg_write(wm831x, WM831X_RTC_ALARM_1,
+ (time >> 16) & 0xffff);
+ if (ret < 0) {
+ dev_err(dev, "Failed to write ALARM_1: %d\n", ret);
+ return ret;
+ }
+
+ ret = wm831x_reg_write(wm831x, WM831X_RTC_ALARM_2, time & 0xffff);
+ if (ret < 0) {
+ dev_err(dev, "Failed to write ALARM_2: %d\n", ret);
+ return ret;
+ }
+
+ if (alrm->enabled) {
+ ret = wm831x_rtc_start_alarm(wm831x_rtc);
+ if (ret < 0) {
+ dev_err(dev, "Failed to start alarm: %d\n", ret);
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+static int wm831x_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct wm831x_rtc *wm831x_rtc = dev_get_drvdata(dev);
+
+ if (enabled)
+ return wm831x_rtc_start_alarm(wm831x_rtc);
+ else
+ return wm831x_rtc_stop_alarm(wm831x_rtc);
+}
+
+static irqreturn_t wm831x_alm_irq(int irq, void *data)
+{
+ struct wm831x_rtc *wm831x_rtc = data;
+
+ rtc_update_irq(wm831x_rtc->rtc, 1, RTC_IRQF | RTC_AF);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops wm831x_rtc_ops = {
+ .read_time = wm831x_rtc_readtime,
+ .set_time = wm831x_rtc_settime,
+ .read_alarm = wm831x_rtc_readalarm,
+ .set_alarm = wm831x_rtc_setalarm,
+ .alarm_irq_enable = wm831x_rtc_alarm_irq_enable,
+};
+
+#ifdef CONFIG_PM
+/* Turn off the alarm if it should not be a wake source. */
+static int wm831x_rtc_suspend(struct device *dev)
+{
+ struct wm831x_rtc *wm831x_rtc = dev_get_drvdata(dev);
+ int ret, enable;
+
+ if (wm831x_rtc->alarm_enabled && device_may_wakeup(dev))
+ enable = WM831X_RTC_ALM_ENA;
+ else
+ enable = 0;
+
+ ret = wm831x_set_bits(wm831x_rtc->wm831x, WM831X_RTC_CONTROL,
+ WM831X_RTC_ALM_ENA, enable);
+ if (ret != 0)
+ dev_err(dev, "Failed to update RTC alarm: %d\n", ret);
+
+ return 0;
+}
+
+/* Enable the alarm if it should be enabled (in case it was disabled to
+ * prevent use as a wake source).
+ */
+static int wm831x_rtc_resume(struct device *dev)
+{
+ struct wm831x_rtc *wm831x_rtc = dev_get_drvdata(dev);
+ int ret;
+
+ if (wm831x_rtc->alarm_enabled) {
+ ret = wm831x_rtc_start_alarm(wm831x_rtc);
+ if (ret != 0)
+ dev_err(dev, "Failed to restart RTC alarm: %d\n", ret);
+ }
+
+ return 0;
+}
+
+/* Unconditionally disable the alarm */
+static int wm831x_rtc_freeze(struct device *dev)
+{
+ struct wm831x_rtc *wm831x_rtc = dev_get_drvdata(dev);
+ int ret;
+
+ ret = wm831x_set_bits(wm831x_rtc->wm831x, WM831X_RTC_CONTROL,
+ WM831X_RTC_ALM_ENA, 0);
+ if (ret != 0)
+ dev_err(dev, "Failed to stop RTC alarm: %d\n", ret);
+
+ return 0;
+}
+#else
+#define wm831x_rtc_suspend NULL
+#define wm831x_rtc_resume NULL
+#define wm831x_rtc_freeze NULL
+#endif
+
+static int wm831x_rtc_probe(struct platform_device *pdev)
+{
+ struct wm831x *wm831x = dev_get_drvdata(pdev->dev.parent);
+ struct wm831x_rtc *wm831x_rtc;
+ int alm_irq = wm831x_irq(wm831x, platform_get_irq_byname(pdev, "ALM"));
+ int ret = 0;
+
+ wm831x_rtc = devm_kzalloc(&pdev->dev, sizeof(*wm831x_rtc), GFP_KERNEL);
+ if (wm831x_rtc == NULL)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, wm831x_rtc);
+ wm831x_rtc->wm831x = wm831x;
+
+ ret = wm831x_reg_read(wm831x, WM831X_RTC_CONTROL);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "Failed to read RTC control: %d\n", ret);
+ return ret;
+ }
+ if (ret & WM831X_RTC_ALM_ENA)
+ wm831x_rtc->alarm_enabled = 1;
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ wm831x_rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(wm831x_rtc->rtc))
+ return PTR_ERR(wm831x_rtc->rtc);
+
+ wm831x_rtc->rtc->ops = &wm831x_rtc_ops;
+ wm831x_rtc->rtc->range_max = U32_MAX;
+
+ ret = rtc_register_device(wm831x_rtc->rtc);
+ if (ret)
+ return ret;
+
+ ret = devm_request_threaded_irq(&pdev->dev, alm_irq, NULL,
+ wm831x_alm_irq,
+ IRQF_TRIGGER_RISING | IRQF_ONESHOT,
+ "RTC alarm",
+ wm831x_rtc);
+ if (ret != 0) {
+ dev_err(&pdev->dev, "Failed to request alarm IRQ %d: %d\n",
+ alm_irq, ret);
+ }
+
+ wm831x_rtc_add_randomness(wm831x);
+
+ return 0;
+}
+
+static const struct dev_pm_ops wm831x_rtc_pm_ops = {
+ .suspend = wm831x_rtc_suspend,
+ .resume = wm831x_rtc_resume,
+
+ .freeze = wm831x_rtc_freeze,
+ .thaw = wm831x_rtc_resume,
+ .restore = wm831x_rtc_resume,
+
+ .poweroff = wm831x_rtc_suspend,
+};
+
+static struct platform_driver wm831x_rtc_driver = {
+ .probe = wm831x_rtc_probe,
+ .driver = {
+ .name = "wm831x-rtc",
+ .pm = &wm831x_rtc_pm_ops,
+ },
+};
+
+module_platform_driver(wm831x_rtc_driver);
+
+MODULE_AUTHOR("Mark Brown <broonie@opensource.wolfsonmicro.com>");
+MODULE_DESCRIPTION("RTC driver for the WM831x series PMICs");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:wm831x-rtc");
diff --git a/drivers/rtc/rtc-wm8350.c b/drivers/rtc/rtc-wm8350.c
new file mode 100644
index 000000000..6eaa9321c
--- /dev/null
+++ b/drivers/rtc/rtc-wm8350.c
@@ -0,0 +1,481 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Real Time Clock driver for Wolfson Microelectronics WM8350
+ *
+ * Copyright (C) 2007, 2008 Wolfson Microelectronics PLC.
+ *
+ * Author: Liam Girdwood
+ * linux@wolfsonmicro.com
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/time.h>
+#include <linux/rtc.h>
+#include <linux/bcd.h>
+#include <linux/interrupt.h>
+#include <linux/ioctl.h>
+#include <linux/completion.h>
+#include <linux/mfd/wm8350/rtc.h>
+#include <linux/mfd/wm8350/core.h>
+#include <linux/delay.h>
+#include <linux/platform_device.h>
+
+#define WM8350_SET_ALM_RETRIES 5
+#define WM8350_SET_TIME_RETRIES 5
+#define WM8350_GET_TIME_RETRIES 5
+
+/*
+ * Read current time and date in RTC
+ */
+static int wm8350_rtc_readtime(struct device *dev, struct rtc_time *tm)
+{
+ struct wm8350 *wm8350 = dev_get_drvdata(dev);
+ u16 time1[4], time2[4];
+ int retries = WM8350_GET_TIME_RETRIES, ret;
+
+ /*
+ * Read the time twice and compare.
+ * If time1 == time2, then time is valid else retry.
+ */
+ do {
+ ret = wm8350_block_read(wm8350, WM8350_RTC_SECONDS_MINUTES,
+ 4, time1);
+ if (ret < 0)
+ return ret;
+ ret = wm8350_block_read(wm8350, WM8350_RTC_SECONDS_MINUTES,
+ 4, time2);
+ if (ret < 0)
+ return ret;
+
+ if (memcmp(time1, time2, sizeof(time1)) == 0) {
+ tm->tm_sec = time1[0] & WM8350_RTC_SECS_MASK;
+
+ tm->tm_min = (time1[0] & WM8350_RTC_MINS_MASK)
+ >> WM8350_RTC_MINS_SHIFT;
+
+ tm->tm_hour = time1[1] & WM8350_RTC_HRS_MASK;
+
+ tm->tm_wday = ((time1[1] >> WM8350_RTC_DAY_SHIFT)
+ & 0x7) - 1;
+
+ tm->tm_mon = ((time1[2] & WM8350_RTC_MTH_MASK)
+ >> WM8350_RTC_MTH_SHIFT) - 1;
+
+ tm->tm_mday = (time1[2] & WM8350_RTC_DATE_MASK);
+
+ tm->tm_year = ((time1[3] & WM8350_RTC_YHUNDREDS_MASK)
+ >> WM8350_RTC_YHUNDREDS_SHIFT) * 100;
+ tm->tm_year += time1[3] & WM8350_RTC_YUNITS_MASK;
+
+ tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon,
+ tm->tm_year);
+ tm->tm_year -= 1900;
+
+ dev_dbg(dev, "Read (%d left): %04x %04x %04x %04x\n",
+ retries,
+ time1[0], time1[1], time1[2], time1[3]);
+
+ return 0;
+ }
+ } while (retries--);
+
+ dev_err(dev, "timed out reading RTC time\n");
+ return -EIO;
+}
+
+/*
+ * Set current time and date in RTC
+ */
+static int wm8350_rtc_settime(struct device *dev, struct rtc_time *tm)
+{
+ struct wm8350 *wm8350 = dev_get_drvdata(dev);
+ u16 time[4];
+ u16 rtc_ctrl;
+ int ret, retries = WM8350_SET_TIME_RETRIES;
+
+ time[0] = tm->tm_sec;
+ time[0] |= tm->tm_min << WM8350_RTC_MINS_SHIFT;
+ time[1] = tm->tm_hour;
+ time[1] |= (tm->tm_wday + 1) << WM8350_RTC_DAY_SHIFT;
+ time[2] = tm->tm_mday;
+ time[2] |= (tm->tm_mon + 1) << WM8350_RTC_MTH_SHIFT;
+ time[3] = ((tm->tm_year + 1900) / 100) << WM8350_RTC_YHUNDREDS_SHIFT;
+ time[3] |= (tm->tm_year + 1900) % 100;
+
+ dev_dbg(dev, "Setting: %04x %04x %04x %04x\n",
+ time[0], time[1], time[2], time[3]);
+
+ /* Set RTC_SET to stop the clock */
+ ret = wm8350_set_bits(wm8350, WM8350_RTC_TIME_CONTROL, WM8350_RTC_SET);
+ if (ret < 0)
+ return ret;
+
+ /* Wait until confirmation of stopping */
+ do {
+ rtc_ctrl = wm8350_reg_read(wm8350, WM8350_RTC_TIME_CONTROL);
+ schedule_timeout_uninterruptible(msecs_to_jiffies(1));
+ } while (--retries && !(rtc_ctrl & WM8350_RTC_STS));
+
+ if (!retries) {
+ dev_err(dev, "timed out on set confirmation\n");
+ return -EIO;
+ }
+
+ /* Write time to RTC */
+ ret = wm8350_block_write(wm8350, WM8350_RTC_SECONDS_MINUTES, 4, time);
+ if (ret < 0)
+ return ret;
+
+ /* Clear RTC_SET to start the clock */
+ ret = wm8350_clear_bits(wm8350, WM8350_RTC_TIME_CONTROL,
+ WM8350_RTC_SET);
+ return ret;
+}
+
+/*
+ * Read alarm time and date in RTC
+ */
+static int wm8350_rtc_readalarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct wm8350 *wm8350 = dev_get_drvdata(dev);
+ struct rtc_time *tm = &alrm->time;
+ u16 time[4];
+ int ret;
+
+ ret = wm8350_block_read(wm8350, WM8350_ALARM_SECONDS_MINUTES, 4, time);
+ if (ret < 0)
+ return ret;
+
+ tm->tm_sec = time[0] & WM8350_RTC_ALMSECS_MASK;
+ if (tm->tm_sec == WM8350_RTC_ALMSECS_MASK)
+ tm->tm_sec = -1;
+
+ tm->tm_min = time[0] & WM8350_RTC_ALMMINS_MASK;
+ if (tm->tm_min == WM8350_RTC_ALMMINS_MASK)
+ tm->tm_min = -1;
+ else
+ tm->tm_min >>= WM8350_RTC_ALMMINS_SHIFT;
+
+ tm->tm_hour = time[1] & WM8350_RTC_ALMHRS_MASK;
+ if (tm->tm_hour == WM8350_RTC_ALMHRS_MASK)
+ tm->tm_hour = -1;
+
+ tm->tm_wday = ((time[1] >> WM8350_RTC_ALMDAY_SHIFT) & 0x7) - 1;
+ if (tm->tm_wday > 7)
+ tm->tm_wday = -1;
+
+ tm->tm_mon = time[2] & WM8350_RTC_ALMMTH_MASK;
+ if (tm->tm_mon == WM8350_RTC_ALMMTH_MASK)
+ tm->tm_mon = -1;
+ else
+ tm->tm_mon = (tm->tm_mon >> WM8350_RTC_ALMMTH_SHIFT) - 1;
+
+ tm->tm_mday = (time[2] & WM8350_RTC_ALMDATE_MASK);
+ if (tm->tm_mday == WM8350_RTC_ALMDATE_MASK)
+ tm->tm_mday = -1;
+
+ tm->tm_year = -1;
+
+ alrm->enabled = !(time[3] & WM8350_RTC_ALMSTS);
+
+ return 0;
+}
+
+static int wm8350_rtc_stop_alarm(struct wm8350 *wm8350)
+{
+ int retries = WM8350_SET_ALM_RETRIES;
+ u16 rtc_ctrl;
+ int ret;
+
+ /* Set RTC_SET to stop the clock */
+ ret = wm8350_set_bits(wm8350, WM8350_RTC_TIME_CONTROL,
+ WM8350_RTC_ALMSET);
+ if (ret < 0)
+ return ret;
+
+ /* Wait until confirmation of stopping */
+ do {
+ rtc_ctrl = wm8350_reg_read(wm8350, WM8350_RTC_TIME_CONTROL);
+ schedule_timeout_uninterruptible(msecs_to_jiffies(1));
+ } while (retries-- && !(rtc_ctrl & WM8350_RTC_ALMSTS));
+
+ if (!(rtc_ctrl & WM8350_RTC_ALMSTS))
+ return -ETIMEDOUT;
+
+ return 0;
+}
+
+static int wm8350_rtc_start_alarm(struct wm8350 *wm8350)
+{
+ int ret;
+ int retries = WM8350_SET_ALM_RETRIES;
+ u16 rtc_ctrl;
+
+ ret = wm8350_clear_bits(wm8350, WM8350_RTC_TIME_CONTROL,
+ WM8350_RTC_ALMSET);
+ if (ret < 0)
+ return ret;
+
+ /* Wait until confirmation */
+ do {
+ rtc_ctrl = wm8350_reg_read(wm8350, WM8350_RTC_TIME_CONTROL);
+ schedule_timeout_uninterruptible(msecs_to_jiffies(1));
+ } while (retries-- && rtc_ctrl & WM8350_RTC_ALMSTS);
+
+ if (rtc_ctrl & WM8350_RTC_ALMSTS)
+ return -ETIMEDOUT;
+
+ return 0;
+}
+
+static int wm8350_rtc_alarm_irq_enable(struct device *dev,
+ unsigned int enabled)
+{
+ struct wm8350 *wm8350 = dev_get_drvdata(dev);
+
+ if (enabled)
+ return wm8350_rtc_start_alarm(wm8350);
+ else
+ return wm8350_rtc_stop_alarm(wm8350);
+}
+
+static int wm8350_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct wm8350 *wm8350 = dev_get_drvdata(dev);
+ struct rtc_time *tm = &alrm->time;
+ u16 time[3];
+ int ret;
+
+ memset(time, 0, sizeof(time));
+
+ if (tm->tm_sec != -1)
+ time[0] |= tm->tm_sec;
+ else
+ time[0] |= WM8350_RTC_ALMSECS_MASK;
+
+ if (tm->tm_min != -1)
+ time[0] |= tm->tm_min << WM8350_RTC_ALMMINS_SHIFT;
+ else
+ time[0] |= WM8350_RTC_ALMMINS_MASK;
+
+ if (tm->tm_hour != -1)
+ time[1] |= tm->tm_hour;
+ else
+ time[1] |= WM8350_RTC_ALMHRS_MASK;
+
+ if (tm->tm_wday != -1)
+ time[1] |= (tm->tm_wday + 1) << WM8350_RTC_ALMDAY_SHIFT;
+ else
+ time[1] |= WM8350_RTC_ALMDAY_MASK;
+
+ if (tm->tm_mday != -1)
+ time[2] |= tm->tm_mday;
+ else
+ time[2] |= WM8350_RTC_ALMDATE_MASK;
+
+ if (tm->tm_mon != -1)
+ time[2] |= (tm->tm_mon + 1) << WM8350_RTC_ALMMTH_SHIFT;
+ else
+ time[2] |= WM8350_RTC_ALMMTH_MASK;
+
+ ret = wm8350_rtc_stop_alarm(wm8350);
+ if (ret < 0)
+ return ret;
+
+ /* Write time to RTC */
+ ret = wm8350_block_write(wm8350, WM8350_ALARM_SECONDS_MINUTES,
+ 3, time);
+ if (ret < 0)
+ return ret;
+
+ if (alrm->enabled)
+ ret = wm8350_rtc_start_alarm(wm8350);
+
+ return ret;
+}
+
+static irqreturn_t wm8350_rtc_alarm_handler(int irq, void *data)
+{
+ struct wm8350 *wm8350 = data;
+ struct rtc_device *rtc = wm8350->rtc.rtc;
+ int ret;
+
+ rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
+
+ /* Make it one shot */
+ ret = wm8350_set_bits(wm8350, WM8350_RTC_TIME_CONTROL,
+ WM8350_RTC_ALMSET);
+ if (ret != 0) {
+ dev_err(&(wm8350->rtc.pdev->dev),
+ "Failed to disable alarm: %d\n", ret);
+ }
+
+ return IRQ_HANDLED;
+}
+
+static irqreturn_t wm8350_rtc_update_handler(int irq, void *data)
+{
+ struct wm8350 *wm8350 = data;
+ struct rtc_device *rtc = wm8350->rtc.rtc;
+
+ rtc_update_irq(rtc, 1, RTC_IRQF | RTC_UF);
+
+ return IRQ_HANDLED;
+}
+
+static const struct rtc_class_ops wm8350_rtc_ops = {
+ .read_time = wm8350_rtc_readtime,
+ .set_time = wm8350_rtc_settime,
+ .read_alarm = wm8350_rtc_readalarm,
+ .set_alarm = wm8350_rtc_setalarm,
+ .alarm_irq_enable = wm8350_rtc_alarm_irq_enable,
+};
+
+#ifdef CONFIG_PM_SLEEP
+static int wm8350_rtc_suspend(struct device *dev)
+{
+ struct wm8350 *wm8350 = dev_get_drvdata(dev);
+ int ret = 0;
+ u16 reg;
+
+ reg = wm8350_reg_read(wm8350, WM8350_RTC_TIME_CONTROL);
+
+ if (device_may_wakeup(&wm8350->rtc.pdev->dev) &&
+ reg & WM8350_RTC_ALMSTS) {
+ ret = wm8350_rtc_stop_alarm(wm8350);
+ if (ret != 0)
+ dev_err(dev, "Failed to stop RTC alarm: %d\n", ret);
+ }
+
+ return ret;
+}
+
+static int wm8350_rtc_resume(struct device *dev)
+{
+ struct wm8350 *wm8350 = dev_get_drvdata(dev);
+ int ret;
+
+ if (wm8350->rtc.alarm_enabled) {
+ ret = wm8350_rtc_start_alarm(wm8350);
+ if (ret != 0)
+ dev_err(dev, "Failed to restart RTC alarm: %d\n", ret);
+ }
+
+ return 0;
+}
+#endif
+
+static int wm8350_rtc_probe(struct platform_device *pdev)
+{
+ struct wm8350 *wm8350 = platform_get_drvdata(pdev);
+ struct wm8350_rtc *wm_rtc = &wm8350->rtc;
+ int ret = 0;
+ u16 timectl, power5;
+
+ timectl = wm8350_reg_read(wm8350, WM8350_RTC_TIME_CONTROL);
+ if (timectl & WM8350_RTC_BCD) {
+ dev_err(&pdev->dev, "RTC BCD mode not supported\n");
+ return -EINVAL;
+ }
+ if (timectl & WM8350_RTC_12HR) {
+ dev_err(&pdev->dev, "RTC 12 hour mode not supported\n");
+ return -EINVAL;
+ }
+
+ /* enable the RTC if it's not already enabled */
+ power5 = wm8350_reg_read(wm8350, WM8350_POWER_MGMT_5);
+ if (!(power5 & WM8350_RTC_TICK_ENA)) {
+ dev_info(wm8350->dev, "Starting RTC\n");
+
+ wm8350_reg_unlock(wm8350);
+
+ ret = wm8350_set_bits(wm8350, WM8350_POWER_MGMT_5,
+ WM8350_RTC_TICK_ENA);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "failed to enable RTC: %d\n", ret);
+ return ret;
+ }
+
+ wm8350_reg_lock(wm8350);
+ }
+
+ if (timectl & WM8350_RTC_STS) {
+ int retries;
+
+ ret = wm8350_clear_bits(wm8350, WM8350_RTC_TIME_CONTROL,
+ WM8350_RTC_SET);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "failed to start: %d\n", ret);
+ return ret;
+ }
+
+ retries = WM8350_SET_TIME_RETRIES;
+ do {
+ timectl = wm8350_reg_read(wm8350,
+ WM8350_RTC_TIME_CONTROL);
+ } while (timectl & WM8350_RTC_STS && --retries);
+
+ if (retries == 0) {
+ dev_err(&pdev->dev, "failed to start: timeout\n");
+ return -ENODEV;
+ }
+ }
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ wm_rtc->rtc = devm_rtc_device_register(&pdev->dev, "wm8350",
+ &wm8350_rtc_ops, THIS_MODULE);
+ if (IS_ERR(wm_rtc->rtc)) {
+ ret = PTR_ERR(wm_rtc->rtc);
+ dev_err(&pdev->dev, "failed to register RTC: %d\n", ret);
+ return ret;
+ }
+
+ ret = wm8350_register_irq(wm8350, WM8350_IRQ_RTC_SEC,
+ wm8350_rtc_update_handler, 0,
+ "RTC Seconds", wm8350);
+ if (ret)
+ return ret;
+
+ wm8350_mask_irq(wm8350, WM8350_IRQ_RTC_SEC);
+
+ ret = wm8350_register_irq(wm8350, WM8350_IRQ_RTC_ALM,
+ wm8350_rtc_alarm_handler, 0,
+ "RTC Alarm", wm8350);
+ if (ret) {
+ wm8350_free_irq(wm8350, WM8350_IRQ_RTC_SEC, wm8350);
+ return ret;
+ }
+
+ return 0;
+}
+
+static int wm8350_rtc_remove(struct platform_device *pdev)
+{
+ struct wm8350 *wm8350 = platform_get_drvdata(pdev);
+
+ wm8350_free_irq(wm8350, WM8350_IRQ_RTC_SEC, wm8350);
+ wm8350_free_irq(wm8350, WM8350_IRQ_RTC_ALM, wm8350);
+
+ return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(wm8350_rtc_pm_ops, wm8350_rtc_suspend,
+ wm8350_rtc_resume);
+
+static struct platform_driver wm8350_rtc_driver = {
+ .probe = wm8350_rtc_probe,
+ .remove = wm8350_rtc_remove,
+ .driver = {
+ .name = "wm8350-rtc",
+ .pm = &wm8350_rtc_pm_ops,
+ },
+};
+
+module_platform_driver(wm8350_rtc_driver);
+
+MODULE_AUTHOR("Mark Brown <broonie@opensource.wolfsonmicro.com>");
+MODULE_DESCRIPTION("RTC driver for the WM8350");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:wm8350-rtc");
diff --git a/drivers/rtc/rtc-x1205.c b/drivers/rtc/rtc-x1205.c
new file mode 100644
index 000000000..d1d5a44d9
--- /dev/null
+++ b/drivers/rtc/rtc-x1205.c
@@ -0,0 +1,695 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * An i2c driver for the Xicor/Intersil X1205 RTC
+ * Copyright 2004 Karen Spearel
+ * Copyright 2005 Alessandro Zummo
+ *
+ * please send all reports to:
+ * Karen Spearel <kas111 at gmail dot com>
+ * Alessandro Zummo <a.zummo@towertech.it>
+ *
+ * based on a lot of other RTC drivers.
+ *
+ * Information and datasheet:
+ * http://www.intersil.com/cda/deviceinfo/0,1477,X1205,00.html
+ */
+
+#include <linux/i2c.h>
+#include <linux/bcd.h>
+#include <linux/rtc.h>
+#include <linux/delay.h>
+#include <linux/module.h>
+#include <linux/bitops.h>
+
+/* offsets into CCR area */
+
+#define CCR_SEC 0
+#define CCR_MIN 1
+#define CCR_HOUR 2
+#define CCR_MDAY 3
+#define CCR_MONTH 4
+#define CCR_YEAR 5
+#define CCR_WDAY 6
+#define CCR_Y2K 7
+
+#define X1205_REG_SR 0x3F /* status register */
+#define X1205_REG_Y2K 0x37
+#define X1205_REG_DW 0x36
+#define X1205_REG_YR 0x35
+#define X1205_REG_MO 0x34
+#define X1205_REG_DT 0x33
+#define X1205_REG_HR 0x32
+#define X1205_REG_MN 0x31
+#define X1205_REG_SC 0x30
+#define X1205_REG_DTR 0x13
+#define X1205_REG_ATR 0x12
+#define X1205_REG_INT 0x11
+#define X1205_REG_0 0x10
+#define X1205_REG_Y2K1 0x0F
+#define X1205_REG_DWA1 0x0E
+#define X1205_REG_YRA1 0x0D
+#define X1205_REG_MOA1 0x0C
+#define X1205_REG_DTA1 0x0B
+#define X1205_REG_HRA1 0x0A
+#define X1205_REG_MNA1 0x09
+#define X1205_REG_SCA1 0x08
+#define X1205_REG_Y2K0 0x07
+#define X1205_REG_DWA0 0x06
+#define X1205_REG_YRA0 0x05
+#define X1205_REG_MOA0 0x04
+#define X1205_REG_DTA0 0x03
+#define X1205_REG_HRA0 0x02
+#define X1205_REG_MNA0 0x01
+#define X1205_REG_SCA0 0x00
+
+#define X1205_CCR_BASE 0x30 /* Base address of CCR */
+#define X1205_ALM0_BASE 0x00 /* Base address of ALARM0 */
+
+#define X1205_SR_RTCF 0x01 /* Clock failure */
+#define X1205_SR_WEL 0x02 /* Write Enable Latch */
+#define X1205_SR_RWEL 0x04 /* Register Write Enable */
+#define X1205_SR_AL0 0x20 /* Alarm 0 match */
+
+#define X1205_DTR_DTR0 0x01
+#define X1205_DTR_DTR1 0x02
+#define X1205_DTR_DTR2 0x04
+
+#define X1205_HR_MIL 0x80 /* Set in ccr.hour for 24 hr mode */
+
+#define X1205_INT_AL0E 0x20 /* Alarm 0 enable */
+
+static struct i2c_driver x1205_driver;
+
+/*
+ * In the routines that deal directly with the x1205 hardware, we use
+ * rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch
+ * Epoch is initialized as 2000. Time is set to UTC.
+ */
+static int x1205_get_datetime(struct i2c_client *client, struct rtc_time *tm,
+ unsigned char reg_base)
+{
+ unsigned char dt_addr[2] = { 0, reg_base };
+ unsigned char buf[8];
+ int i;
+
+ struct i2c_msg msgs[] = {
+ {/* setup read ptr */
+ .addr = client->addr,
+ .len = 2,
+ .buf = dt_addr
+ },
+ {/* read date */
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = 8,
+ .buf = buf
+ },
+ };
+
+ /* read date registers */
+ if (i2c_transfer(client->adapter, &msgs[0], 2) != 2) {
+ dev_err(&client->dev, "%s: read error\n", __func__);
+ return -EIO;
+ }
+
+ dev_dbg(&client->dev,
+ "%s: raw read data - sec=%02x, min=%02x, hr=%02x, "
+ "mday=%02x, mon=%02x, year=%02x, wday=%02x, y2k=%02x\n",
+ __func__,
+ buf[0], buf[1], buf[2], buf[3],
+ buf[4], buf[5], buf[6], buf[7]);
+
+ /* Mask out the enable bits if these are alarm registers */
+ if (reg_base < X1205_CCR_BASE)
+ for (i = 0; i <= 4; i++)
+ buf[i] &= 0x7F;
+
+ tm->tm_sec = bcd2bin(buf[CCR_SEC]);
+ tm->tm_min = bcd2bin(buf[CCR_MIN]);
+ tm->tm_hour = bcd2bin(buf[CCR_HOUR] & 0x3F); /* hr is 0-23 */
+ tm->tm_mday = bcd2bin(buf[CCR_MDAY]);
+ tm->tm_mon = bcd2bin(buf[CCR_MONTH]) - 1; /* mon is 0-11 */
+ tm->tm_year = bcd2bin(buf[CCR_YEAR])
+ + (bcd2bin(buf[CCR_Y2K]) * 100) - 1900;
+ tm->tm_wday = buf[CCR_WDAY];
+
+ dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
+ "mday=%d, mon=%d, year=%d, wday=%d\n",
+ __func__,
+ tm->tm_sec, tm->tm_min, tm->tm_hour,
+ tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ return 0;
+}
+
+static int x1205_get_status(struct i2c_client *client, unsigned char *sr)
+{
+ static unsigned char sr_addr[2] = { 0, X1205_REG_SR };
+
+ struct i2c_msg msgs[] = {
+ { /* setup read ptr */
+ .addr = client->addr,
+ .len = 2,
+ .buf = sr_addr
+ },
+ { /* read status */
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = 1,
+ .buf = sr
+ },
+ };
+
+ /* read status register */
+ if (i2c_transfer(client->adapter, &msgs[0], 2) != 2) {
+ dev_err(&client->dev, "%s: read error\n", __func__);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static int x1205_set_datetime(struct i2c_client *client, struct rtc_time *tm,
+ u8 reg_base, unsigned char alm_enable)
+{
+ int i, xfer;
+ unsigned char rdata[10] = { 0, reg_base };
+ unsigned char *buf = rdata + 2;
+
+ static const unsigned char wel[3] = { 0, X1205_REG_SR,
+ X1205_SR_WEL };
+
+ static const unsigned char rwel[3] = { 0, X1205_REG_SR,
+ X1205_SR_WEL | X1205_SR_RWEL };
+
+ static const unsigned char diswe[3] = { 0, X1205_REG_SR, 0 };
+
+ dev_dbg(&client->dev,
+ "%s: sec=%d min=%d hour=%d mday=%d mon=%d year=%d wday=%d\n",
+ __func__, tm->tm_sec, tm->tm_min, tm->tm_hour, tm->tm_mday,
+ tm->tm_mon, tm->tm_year, tm->tm_wday);
+
+ buf[CCR_SEC] = bin2bcd(tm->tm_sec);
+ buf[CCR_MIN] = bin2bcd(tm->tm_min);
+
+ /* set hour and 24hr bit */
+ buf[CCR_HOUR] = bin2bcd(tm->tm_hour) | X1205_HR_MIL;
+
+ buf[CCR_MDAY] = bin2bcd(tm->tm_mday);
+
+ /* month, 1 - 12 */
+ buf[CCR_MONTH] = bin2bcd(tm->tm_mon + 1);
+
+ /* year, since the rtc epoch*/
+ buf[CCR_YEAR] = bin2bcd(tm->tm_year % 100);
+ buf[CCR_WDAY] = tm->tm_wday & 0x07;
+ buf[CCR_Y2K] = bin2bcd((tm->tm_year + 1900) / 100);
+
+ /* If writing alarm registers, set compare bits on registers 0-4 */
+ if (reg_base < X1205_CCR_BASE)
+ for (i = 0; i <= 4; i++)
+ buf[i] |= 0x80;
+
+ /* this sequence is required to unlock the chip */
+ xfer = i2c_master_send(client, wel, 3);
+ if (xfer != 3) {
+ dev_err(&client->dev, "%s: wel - %d\n", __func__, xfer);
+ return -EIO;
+ }
+
+ xfer = i2c_master_send(client, rwel, 3);
+ if (xfer != 3) {
+ dev_err(&client->dev, "%s: rwel - %d\n", __func__, xfer);
+ return -EIO;
+ }
+
+ xfer = i2c_master_send(client, rdata, sizeof(rdata));
+ if (xfer != sizeof(rdata)) {
+ dev_err(&client->dev,
+ "%s: result=%d addr=%02x, data=%02x\n",
+ __func__,
+ xfer, rdata[1], rdata[2]);
+ return -EIO;
+ }
+
+ /* If we wrote to the nonvolatile region, wait 10msec for write cycle*/
+ if (reg_base < X1205_CCR_BASE) {
+ unsigned char al0e[3] = { 0, X1205_REG_INT, 0 };
+
+ msleep(10);
+
+ /* ...and set or clear the AL0E bit in the INT register */
+
+ /* Need to set RWEL again as the write has cleared it */
+ xfer = i2c_master_send(client, rwel, 3);
+ if (xfer != 3) {
+ dev_err(&client->dev,
+ "%s: aloe rwel - %d\n",
+ __func__,
+ xfer);
+ return -EIO;
+ }
+
+ if (alm_enable)
+ al0e[2] = X1205_INT_AL0E;
+
+ xfer = i2c_master_send(client, al0e, 3);
+ if (xfer != 3) {
+ dev_err(&client->dev,
+ "%s: al0e - %d\n",
+ __func__,
+ xfer);
+ return -EIO;
+ }
+
+ /* and wait 10msec again for this write to complete */
+ msleep(10);
+ }
+
+ /* disable further writes */
+ xfer = i2c_master_send(client, diswe, 3);
+ if (xfer != 3) {
+ dev_err(&client->dev, "%s: diswe - %d\n", __func__, xfer);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static int x1205_fix_osc(struct i2c_client *client)
+{
+ int err;
+ struct rtc_time tm;
+
+ memset(&tm, 0, sizeof(tm));
+
+ err = x1205_set_datetime(client, &tm, X1205_CCR_BASE, 0);
+ if (err < 0)
+ dev_err(&client->dev, "unable to restart the oscillator\n");
+
+ return err;
+}
+
+static int x1205_get_dtrim(struct i2c_client *client, int *trim)
+{
+ unsigned char dtr;
+ static unsigned char dtr_addr[2] = { 0, X1205_REG_DTR };
+
+ struct i2c_msg msgs[] = {
+ { /* setup read ptr */
+ .addr = client->addr,
+ .len = 2,
+ .buf = dtr_addr
+ },
+ { /* read dtr */
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = 1,
+ .buf = &dtr
+ },
+ };
+
+ /* read dtr register */
+ if (i2c_transfer(client->adapter, &msgs[0], 2) != 2) {
+ dev_err(&client->dev, "%s: read error\n", __func__);
+ return -EIO;
+ }
+
+ dev_dbg(&client->dev, "%s: raw dtr=%x\n", __func__, dtr);
+
+ *trim = 0;
+
+ if (dtr & X1205_DTR_DTR0)
+ *trim += 20;
+
+ if (dtr & X1205_DTR_DTR1)
+ *trim += 10;
+
+ if (dtr & X1205_DTR_DTR2)
+ *trim = -*trim;
+
+ return 0;
+}
+
+static int x1205_get_atrim(struct i2c_client *client, int *trim)
+{
+ s8 atr;
+ static unsigned char atr_addr[2] = { 0, X1205_REG_ATR };
+
+ struct i2c_msg msgs[] = {
+ {/* setup read ptr */
+ .addr = client->addr,
+ .len = 2,
+ .buf = atr_addr
+ },
+ {/* read atr */
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = 1,
+ .buf = &atr
+ },
+ };
+
+ /* read atr register */
+ if (i2c_transfer(client->adapter, &msgs[0], 2) != 2) {
+ dev_err(&client->dev, "%s: read error\n", __func__);
+ return -EIO;
+ }
+
+ dev_dbg(&client->dev, "%s: raw atr=%x\n", __func__, atr);
+
+ /* atr is a two's complement value on 6 bits,
+ * perform sign extension. The formula is
+ * Catr = (atr * 0.25pF) + 11.00pF.
+ */
+ atr = sign_extend32(atr, 5);
+
+ dev_dbg(&client->dev, "%s: raw atr=%x (%d)\n", __func__, atr, atr);
+
+ *trim = (atr * 250) + 11000;
+
+ dev_dbg(&client->dev, "%s: real=%d\n", __func__, *trim);
+
+ return 0;
+}
+
+struct x1205_limit {
+ unsigned char reg, mask, min, max;
+};
+
+static int x1205_validate_client(struct i2c_client *client)
+{
+ int i, xfer;
+
+ /* Probe array. We will read the register at the specified
+ * address and check if the given bits are zero.
+ */
+ static const unsigned char probe_zero_pattern[] = {
+ /* register, mask */
+ X1205_REG_SR, 0x18,
+ X1205_REG_DTR, 0xF8,
+ X1205_REG_ATR, 0xC0,
+ X1205_REG_INT, 0x18,
+ X1205_REG_0, 0xFF,
+ };
+
+ static const struct x1205_limit probe_limits_pattern[] = {
+ /* register, mask, min, max */
+ { X1205_REG_Y2K, 0xFF, 19, 20 },
+ { X1205_REG_DW, 0xFF, 0, 6 },
+ { X1205_REG_YR, 0xFF, 0, 99 },
+ { X1205_REG_MO, 0xFF, 0, 12 },
+ { X1205_REG_DT, 0xFF, 0, 31 },
+ { X1205_REG_HR, 0x7F, 0, 23 },
+ { X1205_REG_MN, 0xFF, 0, 59 },
+ { X1205_REG_SC, 0xFF, 0, 59 },
+ { X1205_REG_Y2K1, 0xFF, 19, 20 },
+ { X1205_REG_Y2K0, 0xFF, 19, 20 },
+ };
+
+ /* check that registers have bits a 0 where expected */
+ for (i = 0; i < ARRAY_SIZE(probe_zero_pattern); i += 2) {
+ unsigned char buf;
+
+ unsigned char addr[2] = { 0, probe_zero_pattern[i] };
+
+ struct i2c_msg msgs[2] = {
+ {
+ .addr = client->addr,
+ .len = 2,
+ .buf = addr
+ },
+ {
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = 1,
+ .buf = &buf
+ },
+ };
+
+ xfer = i2c_transfer(client->adapter, msgs, 2);
+ if (xfer != 2) {
+ dev_err(&client->dev,
+ "%s: could not read register %x\n",
+ __func__, probe_zero_pattern[i]);
+
+ return -EIO;
+ }
+
+ if ((buf & probe_zero_pattern[i+1]) != 0) {
+ dev_err(&client->dev,
+ "%s: register=%02x, zero pattern=%d, value=%x\n",
+ __func__, probe_zero_pattern[i], i, buf);
+
+ return -ENODEV;
+ }
+ }
+
+ /* check limits (only registers with bcd values) */
+ for (i = 0; i < ARRAY_SIZE(probe_limits_pattern); i++) {
+ unsigned char reg, value;
+
+ unsigned char addr[2] = { 0, probe_limits_pattern[i].reg };
+
+ struct i2c_msg msgs[2] = {
+ {
+ .addr = client->addr,
+ .len = 2,
+ .buf = addr
+ },
+ {
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = 1,
+ .buf = &reg
+ },
+ };
+
+ xfer = i2c_transfer(client->adapter, msgs, 2);
+ if (xfer != 2) {
+ dev_err(&client->dev,
+ "%s: could not read register %x\n",
+ __func__, probe_limits_pattern[i].reg);
+
+ return -EIO;
+ }
+
+ value = bcd2bin(reg & probe_limits_pattern[i].mask);
+
+ if (value > probe_limits_pattern[i].max ||
+ value < probe_limits_pattern[i].min) {
+ dev_dbg(&client->dev,
+ "%s: register=%x, lim pattern=%d, value=%d\n",
+ __func__, probe_limits_pattern[i].reg,
+ i, value);
+
+ return -ENODEV;
+ }
+ }
+
+ return 0;
+}
+
+static int x1205_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ int err;
+ unsigned char intreg, status;
+ static unsigned char int_addr[2] = { 0, X1205_REG_INT };
+ struct i2c_client *client = to_i2c_client(dev);
+ struct i2c_msg msgs[] = {
+ { /* setup read ptr */
+ .addr = client->addr,
+ .len = 2,
+ .buf = int_addr
+ },
+ {/* read INT register */
+
+ .addr = client->addr,
+ .flags = I2C_M_RD,
+ .len = 1,
+ .buf = &intreg
+ },
+ };
+
+ /* read interrupt register and status register */
+ if (i2c_transfer(client->adapter, &msgs[0], 2) != 2) {
+ dev_err(&client->dev, "%s: read error\n", __func__);
+ return -EIO;
+ }
+ err = x1205_get_status(client, &status);
+ if (err == 0) {
+ alrm->pending = (status & X1205_SR_AL0) ? 1 : 0;
+ alrm->enabled = (intreg & X1205_INT_AL0E) ? 1 : 0;
+ err = x1205_get_datetime(client, &alrm->time, X1205_ALM0_BASE);
+ }
+ return err;
+}
+
+static int x1205_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ return x1205_set_datetime(to_i2c_client(dev),
+ &alrm->time, X1205_ALM0_BASE, alrm->enabled);
+}
+
+static int x1205_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ return x1205_get_datetime(to_i2c_client(dev),
+ tm, X1205_CCR_BASE);
+}
+
+static int x1205_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ return x1205_set_datetime(to_i2c_client(dev),
+ tm, X1205_CCR_BASE, 0);
+}
+
+static int x1205_rtc_proc(struct device *dev, struct seq_file *seq)
+{
+ int err, dtrim, atrim;
+
+ err = x1205_get_dtrim(to_i2c_client(dev), &dtrim);
+ if (!err)
+ seq_printf(seq, "digital_trim\t: %d ppm\n", dtrim);
+
+ err = x1205_get_atrim(to_i2c_client(dev), &atrim);
+ if (!err)
+ seq_printf(seq, "analog_trim\t: %d.%02d pF\n",
+ atrim / 1000, atrim % 1000);
+ return 0;
+}
+
+static const struct rtc_class_ops x1205_rtc_ops = {
+ .proc = x1205_rtc_proc,
+ .read_time = x1205_rtc_read_time,
+ .set_time = x1205_rtc_set_time,
+ .read_alarm = x1205_rtc_read_alarm,
+ .set_alarm = x1205_rtc_set_alarm,
+};
+
+static ssize_t x1205_sysfs_show_atrim(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ int err, atrim;
+
+ err = x1205_get_atrim(to_i2c_client(dev), &atrim);
+ if (err)
+ return err;
+
+ return sprintf(buf, "%d.%02d pF\n", atrim / 1000, atrim % 1000);
+}
+static DEVICE_ATTR(atrim, S_IRUGO, x1205_sysfs_show_atrim, NULL);
+
+static ssize_t x1205_sysfs_show_dtrim(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ int err, dtrim;
+
+ err = x1205_get_dtrim(to_i2c_client(dev), &dtrim);
+ if (err)
+ return err;
+
+ return sprintf(buf, "%d ppm\n", dtrim);
+}
+static DEVICE_ATTR(dtrim, S_IRUGO, x1205_sysfs_show_dtrim, NULL);
+
+static int x1205_sysfs_register(struct device *dev)
+{
+ int err;
+
+ err = device_create_file(dev, &dev_attr_atrim);
+ if (err)
+ return err;
+
+ err = device_create_file(dev, &dev_attr_dtrim);
+ if (err)
+ device_remove_file(dev, &dev_attr_atrim);
+
+ return err;
+}
+
+static void x1205_sysfs_unregister(struct device *dev)
+{
+ device_remove_file(dev, &dev_attr_atrim);
+ device_remove_file(dev, &dev_attr_dtrim);
+}
+
+
+static int x1205_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ int err = 0;
+ unsigned char sr;
+ struct rtc_device *rtc;
+
+ dev_dbg(&client->dev, "%s\n", __func__);
+
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
+ return -ENODEV;
+
+ if (x1205_validate_client(client) < 0)
+ return -ENODEV;
+
+ rtc = devm_rtc_device_register(&client->dev, x1205_driver.driver.name,
+ &x1205_rtc_ops, THIS_MODULE);
+
+ if (IS_ERR(rtc))
+ return PTR_ERR(rtc);
+
+ i2c_set_clientdata(client, rtc);
+
+ /* Check for power failures and eventually enable the osc */
+ err = x1205_get_status(client, &sr);
+ if (!err) {
+ if (sr & X1205_SR_RTCF) {
+ dev_err(&client->dev,
+ "power failure detected, "
+ "please set the clock\n");
+ udelay(50);
+ x1205_fix_osc(client);
+ }
+ } else {
+ dev_err(&client->dev, "couldn't read status\n");
+ }
+
+ err = x1205_sysfs_register(&client->dev);
+ if (err)
+ dev_err(&client->dev, "Unable to create sysfs entries\n");
+
+ return 0;
+}
+
+static int x1205_remove(struct i2c_client *client)
+{
+ x1205_sysfs_unregister(&client->dev);
+ return 0;
+}
+
+static const struct i2c_device_id x1205_id[] = {
+ { "x1205", 0 },
+ { }
+};
+MODULE_DEVICE_TABLE(i2c, x1205_id);
+
+static const struct of_device_id x1205_dt_ids[] = {
+ { .compatible = "xircom,x1205", },
+ {},
+};
+MODULE_DEVICE_TABLE(of, x1205_dt_ids);
+
+static struct i2c_driver x1205_driver = {
+ .driver = {
+ .name = "rtc-x1205",
+ .of_match_table = x1205_dt_ids,
+ },
+ .probe = x1205_probe,
+ .remove = x1205_remove,
+ .id_table = x1205_id,
+};
+
+module_i2c_driver(x1205_driver);
+
+MODULE_AUTHOR(
+ "Karen Spearel <kas111 at gmail dot com>, "
+ "Alessandro Zummo <a.zummo@towertech.it>");
+MODULE_DESCRIPTION("Xicor/Intersil X1205 RTC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-xgene.c b/drivers/rtc/rtc-xgene.c
new file mode 100644
index 000000000..96db441f9
--- /dev/null
+++ b/drivers/rtc/rtc-xgene.c
@@ -0,0 +1,281 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * APM X-Gene SoC Real Time Clock Driver
+ *
+ * Copyright (c) 2014, Applied Micro Circuits Corporation
+ * Author: Rameshwar Prasad Sahu <rsahu@apm.com>
+ * Loc Ho <lho@apm.com>
+ */
+
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+#include <linux/slab.h>
+
+/* RTC CSR Registers */
+#define RTC_CCVR 0x00
+#define RTC_CMR 0x04
+#define RTC_CLR 0x08
+#define RTC_CCR 0x0C
+#define RTC_CCR_IE BIT(0)
+#define RTC_CCR_MASK BIT(1)
+#define RTC_CCR_EN BIT(2)
+#define RTC_CCR_WEN BIT(3)
+#define RTC_STAT 0x10
+#define RTC_STAT_BIT BIT(0)
+#define RTC_RSTAT 0x14
+#define RTC_EOI 0x18
+#define RTC_VER 0x1C
+
+struct xgene_rtc_dev {
+ struct rtc_device *rtc;
+ void __iomem *csr_base;
+ struct clk *clk;
+ unsigned int irq_wake;
+ unsigned int irq_enabled;
+};
+
+static int xgene_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ struct xgene_rtc_dev *pdata = dev_get_drvdata(dev);
+
+ rtc_time64_to_tm(readl(pdata->csr_base + RTC_CCVR), tm);
+ return 0;
+}
+
+static int xgene_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct xgene_rtc_dev *pdata = dev_get_drvdata(dev);
+
+ /*
+ * NOTE: After the following write, the RTC_CCVR is only reflected
+ * after the update cycle of 1 seconds.
+ */
+ writel((u32)rtc_tm_to_time64(tm), pdata->csr_base + RTC_CLR);
+ readl(pdata->csr_base + RTC_CLR); /* Force a barrier */
+
+ return 0;
+}
+
+static int xgene_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct xgene_rtc_dev *pdata = dev_get_drvdata(dev);
+
+ /* If possible, CMR should be read here */
+ rtc_time64_to_tm(0, &alrm->time);
+ alrm->enabled = readl(pdata->csr_base + RTC_CCR) & RTC_CCR_IE;
+
+ return 0;
+}
+
+static int xgene_rtc_alarm_irq_enable(struct device *dev, u32 enabled)
+{
+ struct xgene_rtc_dev *pdata = dev_get_drvdata(dev);
+ u32 ccr;
+
+ ccr = readl(pdata->csr_base + RTC_CCR);
+ if (enabled) {
+ ccr &= ~RTC_CCR_MASK;
+ ccr |= RTC_CCR_IE;
+ } else {
+ ccr &= ~RTC_CCR_IE;
+ ccr |= RTC_CCR_MASK;
+ }
+ writel(ccr, pdata->csr_base + RTC_CCR);
+
+ return 0;
+}
+
+static int xgene_rtc_alarm_irq_enabled(struct device *dev)
+{
+ struct xgene_rtc_dev *pdata = dev_get_drvdata(dev);
+
+ return readl(pdata->csr_base + RTC_CCR) & RTC_CCR_IE ? 1 : 0;
+}
+
+static int xgene_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct xgene_rtc_dev *pdata = dev_get_drvdata(dev);
+
+ writel((u32)rtc_tm_to_time64(&alrm->time), pdata->csr_base + RTC_CMR);
+
+ xgene_rtc_alarm_irq_enable(dev, alrm->enabled);
+
+ return 0;
+}
+
+static const struct rtc_class_ops xgene_rtc_ops = {
+ .read_time = xgene_rtc_read_time,
+ .set_time = xgene_rtc_set_time,
+ .read_alarm = xgene_rtc_read_alarm,
+ .set_alarm = xgene_rtc_set_alarm,
+ .alarm_irq_enable = xgene_rtc_alarm_irq_enable,
+};
+
+static irqreturn_t xgene_rtc_interrupt(int irq, void *id)
+{
+ struct xgene_rtc_dev *pdata = id;
+
+ /* Check if interrupt asserted */
+ if (!(readl(pdata->csr_base + RTC_STAT) & RTC_STAT_BIT))
+ return IRQ_NONE;
+
+ /* Clear interrupt */
+ readl(pdata->csr_base + RTC_EOI);
+
+ rtc_update_irq(pdata->rtc, 1, RTC_IRQF | RTC_AF);
+
+ return IRQ_HANDLED;
+}
+
+static int xgene_rtc_probe(struct platform_device *pdev)
+{
+ struct xgene_rtc_dev *pdata;
+ int ret;
+ int irq;
+
+ pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
+ if (!pdata)
+ return -ENOMEM;
+ platform_set_drvdata(pdev, pdata);
+
+ pdata->csr_base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(pdata->csr_base))
+ return PTR_ERR(pdata->csr_base);
+
+ pdata->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(pdata->rtc))
+ return PTR_ERR(pdata->rtc);
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return irq;
+ ret = devm_request_irq(&pdev->dev, irq, xgene_rtc_interrupt, 0,
+ dev_name(&pdev->dev), pdata);
+ if (ret) {
+ dev_err(&pdev->dev, "Could not request IRQ\n");
+ return ret;
+ }
+
+ pdata->clk = devm_clk_get(&pdev->dev, NULL);
+ if (IS_ERR(pdata->clk)) {
+ dev_err(&pdev->dev, "Couldn't get the clock for RTC\n");
+ return -ENODEV;
+ }
+ ret = clk_prepare_enable(pdata->clk);
+ if (ret)
+ return ret;
+
+ /* Turn on the clock and the crystal */
+ writel(RTC_CCR_EN, pdata->csr_base + RTC_CCR);
+
+ ret = device_init_wakeup(&pdev->dev, 1);
+ if (ret) {
+ clk_disable_unprepare(pdata->clk);
+ return ret;
+ }
+
+ /* HW does not support update faster than 1 seconds */
+ pdata->rtc->uie_unsupported = 1;
+ pdata->rtc->ops = &xgene_rtc_ops;
+ pdata->rtc->range_max = U32_MAX;
+
+ ret = rtc_register_device(pdata->rtc);
+ if (ret) {
+ clk_disable_unprepare(pdata->clk);
+ return ret;
+ }
+
+ return 0;
+}
+
+static int xgene_rtc_remove(struct platform_device *pdev)
+{
+ struct xgene_rtc_dev *pdata = platform_get_drvdata(pdev);
+
+ xgene_rtc_alarm_irq_enable(&pdev->dev, 0);
+ device_init_wakeup(&pdev->dev, 0);
+ clk_disable_unprepare(pdata->clk);
+ return 0;
+}
+
+static int __maybe_unused xgene_rtc_suspend(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct xgene_rtc_dev *pdata = platform_get_drvdata(pdev);
+ int irq;
+
+ irq = platform_get_irq(pdev, 0);
+
+ /*
+ * If this RTC alarm will be used for waking the system up,
+ * don't disable it of course. Else we just disable the alarm
+ * and await suspension.
+ */
+ if (device_may_wakeup(&pdev->dev)) {
+ if (!enable_irq_wake(irq))
+ pdata->irq_wake = 1;
+ } else {
+ pdata->irq_enabled = xgene_rtc_alarm_irq_enabled(dev);
+ xgene_rtc_alarm_irq_enable(dev, 0);
+ clk_disable_unprepare(pdata->clk);
+ }
+ return 0;
+}
+
+static int __maybe_unused xgene_rtc_resume(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct xgene_rtc_dev *pdata = platform_get_drvdata(pdev);
+ int irq;
+ int rc;
+
+ irq = platform_get_irq(pdev, 0);
+
+ if (device_may_wakeup(&pdev->dev)) {
+ if (pdata->irq_wake) {
+ disable_irq_wake(irq);
+ pdata->irq_wake = 0;
+ }
+ } else {
+ rc = clk_prepare_enable(pdata->clk);
+ if (rc) {
+ dev_err(dev, "Unable to enable clock error %d\n", rc);
+ return rc;
+ }
+ xgene_rtc_alarm_irq_enable(dev, pdata->irq_enabled);
+ }
+
+ return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(xgene_rtc_pm_ops, xgene_rtc_suspend, xgene_rtc_resume);
+
+#ifdef CONFIG_OF
+static const struct of_device_id xgene_rtc_of_match[] = {
+ {.compatible = "apm,xgene-rtc" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, xgene_rtc_of_match);
+#endif
+
+static struct platform_driver xgene_rtc_driver = {
+ .probe = xgene_rtc_probe,
+ .remove = xgene_rtc_remove,
+ .driver = {
+ .name = "xgene-rtc",
+ .pm = &xgene_rtc_pm_ops,
+ .of_match_table = of_match_ptr(xgene_rtc_of_match),
+ },
+};
+
+module_platform_driver(xgene_rtc_driver);
+
+MODULE_DESCRIPTION("APM X-Gene SoC RTC driver");
+MODULE_AUTHOR("Rameshwar Sahu <rsahu@apm.com>");
+MODULE_LICENSE("GPL");
diff --git a/drivers/rtc/rtc-zynqmp.c b/drivers/rtc/rtc-zynqmp.c
new file mode 100644
index 000000000..4b1077e2f
--- /dev/null
+++ b/drivers/rtc/rtc-zynqmp.c
@@ -0,0 +1,324 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Xilinx Zynq Ultrascale+ MPSoC Real Time Clock Driver
+ *
+ * Copyright (C) 2015 Xilinx, Inc.
+ *
+ */
+
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/rtc.h>
+
+/* RTC Registers */
+#define RTC_SET_TM_WR 0x00
+#define RTC_SET_TM_RD 0x04
+#define RTC_CALIB_WR 0x08
+#define RTC_CALIB_RD 0x0C
+#define RTC_CUR_TM 0x10
+#define RTC_CUR_TICK 0x14
+#define RTC_ALRM 0x18
+#define RTC_INT_STS 0x20
+#define RTC_INT_MASK 0x24
+#define RTC_INT_EN 0x28
+#define RTC_INT_DIS 0x2C
+#define RTC_CTRL 0x40
+
+#define RTC_FR_EN BIT(20)
+#define RTC_FR_DATSHIFT 16
+#define RTC_TICK_MASK 0xFFFF
+#define RTC_INT_SEC BIT(0)
+#define RTC_INT_ALRM BIT(1)
+#define RTC_OSC_EN BIT(24)
+#define RTC_BATT_EN BIT(31)
+
+#define RTC_CALIB_DEF 0x198233
+#define RTC_CALIB_MASK 0x1FFFFF
+#define RTC_ALRM_MASK BIT(1)
+#define RTC_MSEC 1000
+
+struct xlnx_rtc_dev {
+ struct rtc_device *rtc;
+ void __iomem *reg_base;
+ int alarm_irq;
+ int sec_irq;
+ unsigned int calibval;
+};
+
+static int xlnx_rtc_set_time(struct device *dev, struct rtc_time *tm)
+{
+ struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
+ unsigned long new_time;
+
+ /*
+ * The value written will be updated after 1 sec into the
+ * seconds read register, so we need to program time +1 sec
+ * to get the correct time on read.
+ */
+ new_time = rtc_tm_to_time64(tm) + 1;
+
+ /*
+ * Writing into calibration register will clear the Tick Counter and
+ * force the next second to be signaled exactly in 1 second period
+ */
+ xrtcdev->calibval &= RTC_CALIB_MASK;
+ writel(xrtcdev->calibval, (xrtcdev->reg_base + RTC_CALIB_WR));
+
+ writel(new_time, xrtcdev->reg_base + RTC_SET_TM_WR);
+
+ /*
+ * Clear the rtc interrupt status register after setting the
+ * time. During a read_time function, the code should read the
+ * RTC_INT_STATUS register and if bit 0 is still 0, it means
+ * that one second has not elapsed yet since RTC was set and
+ * the current time should be read from SET_TIME_READ register;
+ * otherwise, CURRENT_TIME register is read to report the time
+ */
+ writel(RTC_INT_SEC, xrtcdev->reg_base + RTC_INT_STS);
+
+ return 0;
+}
+
+static int xlnx_rtc_read_time(struct device *dev, struct rtc_time *tm)
+{
+ u32 status;
+ unsigned long read_time;
+ struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
+
+ status = readl(xrtcdev->reg_base + RTC_INT_STS);
+
+ if (status & RTC_INT_SEC) {
+ /*
+ * RTC has updated the CURRENT_TIME with the time written into
+ * SET_TIME_WRITE register.
+ */
+ read_time = readl(xrtcdev->reg_base + RTC_CUR_TM);
+ } else {
+ /*
+ * Time written in SET_TIME_WRITE has not yet updated into
+ * the seconds read register, so read the time from the
+ * SET_TIME_WRITE instead of CURRENT_TIME register.
+ * Since we add +1 sec while writing, we need to -1 sec while
+ * reading.
+ */
+ read_time = readl(xrtcdev->reg_base + RTC_SET_TM_RD) - 1;
+ }
+ rtc_time64_to_tm(read_time, tm);
+
+ return 0;
+}
+
+static int xlnx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
+
+ rtc_time64_to_tm(readl(xrtcdev->reg_base + RTC_ALRM), &alrm->time);
+ alrm->enabled = readl(xrtcdev->reg_base + RTC_INT_MASK) & RTC_INT_ALRM;
+
+ return 0;
+}
+
+static int xlnx_rtc_alarm_irq_enable(struct device *dev, u32 enabled)
+{
+ struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
+ unsigned int status;
+ ulong timeout;
+
+ timeout = jiffies + msecs_to_jiffies(RTC_MSEC);
+
+ if (enabled) {
+ while (1) {
+ status = readl(xrtcdev->reg_base + RTC_INT_STS);
+ if (!((status & RTC_ALRM_MASK) == RTC_ALRM_MASK))
+ break;
+
+ if (time_after_eq(jiffies, timeout)) {
+ dev_err(dev, "Time out occur, while clearing alarm status bit\n");
+ return -ETIMEDOUT;
+ }
+ writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_STS);
+ }
+
+ writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_EN);
+ } else {
+ writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_DIS);
+ }
+
+ return 0;
+}
+
+static int xlnx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
+{
+ struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
+ unsigned long alarm_time;
+
+ alarm_time = rtc_tm_to_time64(&alrm->time);
+
+ writel((u32)alarm_time, (xrtcdev->reg_base + RTC_ALRM));
+
+ xlnx_rtc_alarm_irq_enable(dev, alrm->enabled);
+
+ return 0;
+}
+
+static void xlnx_init_rtc(struct xlnx_rtc_dev *xrtcdev)
+{
+ u32 rtc_ctrl;
+
+ /* Enable RTC switch to battery when VCC_PSAUX is not available */
+ rtc_ctrl = readl(xrtcdev->reg_base + RTC_CTRL);
+ rtc_ctrl |= RTC_BATT_EN;
+ writel(rtc_ctrl, xrtcdev->reg_base + RTC_CTRL);
+
+ /*
+ * Based on crystal freq of 33.330 KHz
+ * set the seconds counter and enable, set fractions counter
+ * to default value suggested as per design spec
+ * to correct RTC delay in frequency over period of time.
+ */
+ xrtcdev->calibval &= RTC_CALIB_MASK;
+ writel(xrtcdev->calibval, (xrtcdev->reg_base + RTC_CALIB_WR));
+}
+
+static const struct rtc_class_ops xlnx_rtc_ops = {
+ .set_time = xlnx_rtc_set_time,
+ .read_time = xlnx_rtc_read_time,
+ .read_alarm = xlnx_rtc_read_alarm,
+ .set_alarm = xlnx_rtc_set_alarm,
+ .alarm_irq_enable = xlnx_rtc_alarm_irq_enable,
+};
+
+static irqreturn_t xlnx_rtc_interrupt(int irq, void *id)
+{
+ struct xlnx_rtc_dev *xrtcdev = (struct xlnx_rtc_dev *)id;
+ unsigned int status;
+
+ status = readl(xrtcdev->reg_base + RTC_INT_STS);
+ /* Check if interrupt asserted */
+ if (!(status & (RTC_INT_SEC | RTC_INT_ALRM)))
+ return IRQ_NONE;
+
+ /* Disable RTC_INT_ALRM interrupt only */
+ writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_DIS);
+
+ if (status & RTC_INT_ALRM)
+ rtc_update_irq(xrtcdev->rtc, 1, RTC_IRQF | RTC_AF);
+
+ return IRQ_HANDLED;
+}
+
+static int xlnx_rtc_probe(struct platform_device *pdev)
+{
+ struct xlnx_rtc_dev *xrtcdev;
+ int ret;
+
+ xrtcdev = devm_kzalloc(&pdev->dev, sizeof(*xrtcdev), GFP_KERNEL);
+ if (!xrtcdev)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, xrtcdev);
+
+ xrtcdev->rtc = devm_rtc_allocate_device(&pdev->dev);
+ if (IS_ERR(xrtcdev->rtc))
+ return PTR_ERR(xrtcdev->rtc);
+
+ xrtcdev->rtc->ops = &xlnx_rtc_ops;
+ xrtcdev->rtc->range_max = U32_MAX;
+
+ xrtcdev->reg_base = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(xrtcdev->reg_base))
+ return PTR_ERR(xrtcdev->reg_base);
+
+ xrtcdev->alarm_irq = platform_get_irq_byname(pdev, "alarm");
+ if (xrtcdev->alarm_irq < 0)
+ return xrtcdev->alarm_irq;
+ ret = devm_request_irq(&pdev->dev, xrtcdev->alarm_irq,
+ xlnx_rtc_interrupt, 0,
+ dev_name(&pdev->dev), xrtcdev);
+ if (ret) {
+ dev_err(&pdev->dev, "request irq failed\n");
+ return ret;
+ }
+
+ xrtcdev->sec_irq = platform_get_irq_byname(pdev, "sec");
+ if (xrtcdev->sec_irq < 0)
+ return xrtcdev->sec_irq;
+ ret = devm_request_irq(&pdev->dev, xrtcdev->sec_irq,
+ xlnx_rtc_interrupt, 0,
+ dev_name(&pdev->dev), xrtcdev);
+ if (ret) {
+ dev_err(&pdev->dev, "request irq failed\n");
+ return ret;
+ }
+
+ ret = of_property_read_u32(pdev->dev.of_node, "calibration",
+ &xrtcdev->calibval);
+ if (ret)
+ xrtcdev->calibval = RTC_CALIB_DEF;
+
+ xlnx_init_rtc(xrtcdev);
+
+ device_init_wakeup(&pdev->dev, 1);
+
+ return rtc_register_device(xrtcdev->rtc);
+}
+
+static int xlnx_rtc_remove(struct platform_device *pdev)
+{
+ xlnx_rtc_alarm_irq_enable(&pdev->dev, 0);
+ device_init_wakeup(&pdev->dev, 0);
+
+ return 0;
+}
+
+static int __maybe_unused xlnx_rtc_suspend(struct device *dev)
+{
+ struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ enable_irq_wake(xrtcdev->alarm_irq);
+ else
+ xlnx_rtc_alarm_irq_enable(dev, 0);
+
+ return 0;
+}
+
+static int __maybe_unused xlnx_rtc_resume(struct device *dev)
+{
+ struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
+
+ if (device_may_wakeup(dev))
+ disable_irq_wake(xrtcdev->alarm_irq);
+ else
+ xlnx_rtc_alarm_irq_enable(dev, 1);
+
+ return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(xlnx_rtc_pm_ops, xlnx_rtc_suspend, xlnx_rtc_resume);
+
+static const struct of_device_id xlnx_rtc_of_match[] = {
+ {.compatible = "xlnx,zynqmp-rtc" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, xlnx_rtc_of_match);
+
+static struct platform_driver xlnx_rtc_driver = {
+ .probe = xlnx_rtc_probe,
+ .remove = xlnx_rtc_remove,
+ .driver = {
+ .name = KBUILD_MODNAME,
+ .pm = &xlnx_rtc_pm_ops,
+ .of_match_table = xlnx_rtc_of_match,
+ },
+};
+
+module_platform_driver(xlnx_rtc_driver);
+
+MODULE_DESCRIPTION("Xilinx Zynq MPSoC RTC driver");
+MODULE_AUTHOR("Xilinx Inc.");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/rtc/sysfs.c b/drivers/rtc/sysfs.c
new file mode 100644
index 000000000..950fac0d4
--- /dev/null
+++ b/drivers/rtc/sysfs.c
@@ -0,0 +1,356 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * RTC subsystem, sysfs interface
+ *
+ * Copyright (C) 2005 Tower Technologies
+ * Author: Alessandro Zummo <a.zummo@towertech.it>
+ */
+
+#include <linux/module.h>
+#include <linux/rtc.h>
+
+#include "rtc-core.h"
+
+/* device attributes */
+
+/*
+ * NOTE: RTC times displayed in sysfs use the RTC's timezone. That's
+ * ideally UTC. However, PCs that also boot to MS-Windows normally use
+ * the local time and change to match daylight savings time. That affects
+ * attributes including date, time, since_epoch, and wakealarm.
+ */
+
+static ssize_t
+name_show(struct device *dev, struct device_attribute *attr, char *buf)
+{
+ return sprintf(buf, "%s %s\n", dev_driver_string(dev->parent),
+ dev_name(dev->parent));
+}
+static DEVICE_ATTR_RO(name);
+
+static ssize_t
+date_show(struct device *dev, struct device_attribute *attr, char *buf)
+{
+ ssize_t retval;
+ struct rtc_time tm;
+
+ retval = rtc_read_time(to_rtc_device(dev), &tm);
+ if (retval)
+ return retval;
+
+ return sprintf(buf, "%ptRd\n", &tm);
+}
+static DEVICE_ATTR_RO(date);
+
+static ssize_t
+time_show(struct device *dev, struct device_attribute *attr, char *buf)
+{
+ ssize_t retval;
+ struct rtc_time tm;
+
+ retval = rtc_read_time(to_rtc_device(dev), &tm);
+ if (retval)
+ return retval;
+
+ return sprintf(buf, "%ptRt\n", &tm);
+}
+static DEVICE_ATTR_RO(time);
+
+static ssize_t
+since_epoch_show(struct device *dev, struct device_attribute *attr, char *buf)
+{
+ ssize_t retval;
+ struct rtc_time tm;
+
+ retval = rtc_read_time(to_rtc_device(dev), &tm);
+ if (retval == 0) {
+ time64_t time;
+
+ time = rtc_tm_to_time64(&tm);
+ retval = sprintf(buf, "%lld\n", time);
+ }
+
+ return retval;
+}
+static DEVICE_ATTR_RO(since_epoch);
+
+static ssize_t
+max_user_freq_show(struct device *dev, struct device_attribute *attr, char *buf)
+{
+ return sprintf(buf, "%d\n", to_rtc_device(dev)->max_user_freq);
+}
+
+static ssize_t
+max_user_freq_store(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t n)
+{
+ struct rtc_device *rtc = to_rtc_device(dev);
+ unsigned long val;
+ int err;
+
+ err = kstrtoul(buf, 0, &val);
+ if (err)
+ return err;
+
+ if (val >= 4096 || val == 0)
+ return -EINVAL;
+
+ rtc->max_user_freq = (int)val;
+
+ return n;
+}
+static DEVICE_ATTR_RW(max_user_freq);
+
+/**
+ * rtc_sysfs_show_hctosys - indicate if the given RTC set the system time
+ * @dev: The device that the attribute belongs to.
+ * @attr: The attribute being read.
+ * @buf: The result buffer.
+ *
+ * buf is "1" if the system clock was set by this RTC at the last
+ * boot or resume event.
+ */
+static ssize_t
+hctosys_show(struct device *dev, struct device_attribute *attr, char *buf)
+{
+#ifdef CONFIG_RTC_HCTOSYS_DEVICE
+ if (rtc_hctosys_ret == 0 &&
+ strcmp(dev_name(&to_rtc_device(dev)->dev),
+ CONFIG_RTC_HCTOSYS_DEVICE) == 0)
+ return sprintf(buf, "1\n");
+#endif
+ return sprintf(buf, "0\n");
+}
+static DEVICE_ATTR_RO(hctosys);
+
+static ssize_t
+wakealarm_show(struct device *dev, struct device_attribute *attr, char *buf)
+{
+ ssize_t retval;
+ time64_t alarm;
+ struct rtc_wkalrm alm;
+
+ /* Don't show disabled alarms. For uniformity, RTC alarms are
+ * conceptually one-shot, even though some common RTCs (on PCs)
+ * don't actually work that way.
+ *
+ * NOTE: RTC implementations where the alarm doesn't match an
+ * exact YYYY-MM-DD HH:MM[:SS] date *must* disable their RTC
+ * alarms after they trigger, to ensure one-shot semantics.
+ */
+ retval = rtc_read_alarm(to_rtc_device(dev), &alm);
+ if (retval == 0 && alm.enabled) {
+ alarm = rtc_tm_to_time64(&alm.time);
+ retval = sprintf(buf, "%lld\n", alarm);
+ }
+
+ return retval;
+}
+
+static ssize_t
+wakealarm_store(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t n)
+{
+ ssize_t retval;
+ time64_t now, alarm;
+ time64_t push = 0;
+ struct rtc_wkalrm alm;
+ struct rtc_device *rtc = to_rtc_device(dev);
+ const char *buf_ptr;
+ int adjust = 0;
+
+ /* Only request alarms that trigger in the future. Disable them
+ * by writing another time, e.g. 0 meaning Jan 1 1970 UTC.
+ */
+ retval = rtc_read_time(rtc, &alm.time);
+ if (retval < 0)
+ return retval;
+ now = rtc_tm_to_time64(&alm.time);
+
+ buf_ptr = buf;
+ if (*buf_ptr == '+') {
+ buf_ptr++;
+ if (*buf_ptr == '=') {
+ buf_ptr++;
+ push = 1;
+ } else {
+ adjust = 1;
+ }
+ }
+ retval = kstrtos64(buf_ptr, 0, &alarm);
+ if (retval)
+ return retval;
+ if (adjust)
+ alarm += now;
+ if (alarm > now || push) {
+ /* Avoid accidentally clobbering active alarms; we can't
+ * entirely prevent that here, without even the minimal
+ * locking from the /dev/rtcN api.
+ */
+ retval = rtc_read_alarm(rtc, &alm);
+ if (retval < 0)
+ return retval;
+ if (alm.enabled) {
+ if (push) {
+ push = rtc_tm_to_time64(&alm.time);
+ alarm += push;
+ } else
+ return -EBUSY;
+ } else if (push)
+ return -EINVAL;
+ alm.enabled = 1;
+ } else {
+ alm.enabled = 0;
+
+ /* Provide a valid future alarm time. Linux isn't EFI,
+ * this time won't be ignored when disabling the alarm.
+ */
+ alarm = now + 300;
+ }
+ rtc_time64_to_tm(alarm, &alm.time);
+
+ retval = rtc_set_alarm(rtc, &alm);
+ return (retval < 0) ? retval : n;
+}
+static DEVICE_ATTR_RW(wakealarm);
+
+static ssize_t
+offset_show(struct device *dev, struct device_attribute *attr, char *buf)
+{
+ ssize_t retval;
+ long offset;
+
+ retval = rtc_read_offset(to_rtc_device(dev), &offset);
+ if (retval == 0)
+ retval = sprintf(buf, "%ld\n", offset);
+
+ return retval;
+}
+
+static ssize_t
+offset_store(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t n)
+{
+ ssize_t retval;
+ long offset;
+
+ retval = kstrtol(buf, 10, &offset);
+ if (retval == 0)
+ retval = rtc_set_offset(to_rtc_device(dev), offset);
+
+ return (retval < 0) ? retval : n;
+}
+static DEVICE_ATTR_RW(offset);
+
+static ssize_t
+range_show(struct device *dev, struct device_attribute *attr, char *buf)
+{
+ return sprintf(buf, "[%lld,%llu]\n", to_rtc_device(dev)->range_min,
+ to_rtc_device(dev)->range_max);
+}
+static DEVICE_ATTR_RO(range);
+
+static struct attribute *rtc_attrs[] = {
+ &dev_attr_name.attr,
+ &dev_attr_date.attr,
+ &dev_attr_time.attr,
+ &dev_attr_since_epoch.attr,
+ &dev_attr_max_user_freq.attr,
+ &dev_attr_hctosys.attr,
+ &dev_attr_wakealarm.attr,
+ &dev_attr_offset.attr,
+ &dev_attr_range.attr,
+ NULL,
+};
+
+/* The reason to trigger an alarm with no process watching it (via sysfs)
+ * is its side effect: waking from a system state like suspend-to-RAM or
+ * suspend-to-disk. So: no attribute unless that side effect is possible.
+ * (Userspace may disable that mechanism later.)
+ */
+static bool rtc_does_wakealarm(struct rtc_device *rtc)
+{
+ if (!device_can_wakeup(rtc->dev.parent))
+ return false;
+
+ return rtc->ops->set_alarm != NULL;
+}
+
+static umode_t rtc_attr_is_visible(struct kobject *kobj,
+ struct attribute *attr, int n)
+{
+ struct device *dev = kobj_to_dev(kobj);
+ struct rtc_device *rtc = to_rtc_device(dev);
+ umode_t mode = attr->mode;
+
+ if (attr == &dev_attr_wakealarm.attr) {
+ if (!rtc_does_wakealarm(rtc))
+ mode = 0;
+ } else if (attr == &dev_attr_offset.attr) {
+ if (!rtc->ops->set_offset)
+ mode = 0;
+ } else if (attr == &dev_attr_range.attr) {
+ if (!(rtc->range_max - rtc->range_min))
+ mode = 0;
+ }
+
+ return mode;
+}
+
+static struct attribute_group rtc_attr_group = {
+ .is_visible = rtc_attr_is_visible,
+ .attrs = rtc_attrs,
+};
+
+static const struct attribute_group *rtc_attr_groups[] = {
+ &rtc_attr_group,
+ NULL
+};
+
+const struct attribute_group **rtc_get_dev_attribute_groups(void)
+{
+ return rtc_attr_groups;
+}
+
+int rtc_add_groups(struct rtc_device *rtc, const struct attribute_group **grps)
+{
+ size_t old_cnt = 0, add_cnt = 0, new_cnt;
+ const struct attribute_group **groups, **old;
+
+ if (rtc->registered)
+ return -EINVAL;
+ if (!grps)
+ return -EINVAL;
+
+ groups = rtc->dev.groups;
+ if (groups)
+ for (; *groups; groups++)
+ old_cnt++;
+
+ for (groups = grps; *groups; groups++)
+ add_cnt++;
+
+ new_cnt = old_cnt + add_cnt + 1;
+ groups = devm_kcalloc(&rtc->dev, new_cnt, sizeof(*groups), GFP_KERNEL);
+ if (!groups)
+ return -ENOMEM;
+ memcpy(groups, rtc->dev.groups, old_cnt * sizeof(*groups));
+ memcpy(groups + old_cnt, grps, add_cnt * sizeof(*groups));
+ groups[old_cnt + add_cnt] = NULL;
+
+ old = rtc->dev.groups;
+ rtc->dev.groups = groups;
+ if (old && old != rtc_attr_groups)
+ devm_kfree(&rtc->dev, old);
+
+ return 0;
+}
+EXPORT_SYMBOL(rtc_add_groups);
+
+int rtc_add_group(struct rtc_device *rtc, const struct attribute_group *grp)
+{
+ const struct attribute_group *groups[] = { grp, NULL };
+
+ return rtc_add_groups(rtc, groups);
+}
+EXPORT_SYMBOL(rtc_add_group);
diff --git a/drivers/rtc/systohc.c b/drivers/rtc/systohc.c
new file mode 100644
index 000000000..8b70f0520
--- /dev/null
+++ b/drivers/rtc/systohc.c
@@ -0,0 +1,61 @@
+// SPDX-License-Identifier: GPL-2.0
+#include <linux/rtc.h>
+#include <linux/time.h>
+
+/**
+ * rtc_set_ntp_time - Save NTP synchronized time to the RTC
+ * @now: Current time of day
+ * @target_nsec: pointer for desired now->tv_nsec value
+ *
+ * Replacement for the NTP platform function update_persistent_clock64
+ * that stores time for later retrieval by rtc_hctosys.
+ *
+ * Returns 0 on successful RTC update, -ENODEV if a RTC update is not
+ * possible at all, and various other -errno for specific temporary failure
+ * cases.
+ *
+ * -EPROTO is returned if now.tv_nsec is not close enough to *target_nsec.
+ *
+ * If temporary failure is indicated the caller should try again 'soon'
+ */
+int rtc_set_ntp_time(struct timespec64 now, unsigned long *target_nsec)
+{
+ struct rtc_device *rtc;
+ struct rtc_time tm;
+ struct timespec64 to_set;
+ int err = -ENODEV;
+ bool ok;
+
+ rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE);
+ if (!rtc)
+ goto out_err;
+
+ if (!rtc->ops || !rtc->ops->set_time)
+ goto out_close;
+
+ /* Compute the value of tv_nsec we require the caller to supply in
+ * now.tv_nsec. This is the value such that (now +
+ * set_offset_nsec).tv_nsec == 0.
+ */
+ set_normalized_timespec64(&to_set, 0, -rtc->set_offset_nsec);
+ *target_nsec = to_set.tv_nsec;
+
+ /* The ntp code must call this with the correct value in tv_nsec, if
+ * it does not we update target_nsec and return EPROTO to make the ntp
+ * code try again later.
+ */
+ ok = rtc_tv_nsec_ok(rtc->set_offset_nsec, &to_set, &now);
+ if (!ok) {
+ err = -EPROTO;
+ goto out_close;
+ }
+
+ rtc_time64_to_tm(to_set.tv_sec, &tm);
+
+ err = rtc_set_time(rtc, &tm);
+
+out_close:
+ rtc_class_close(rtc);
+out_err:
+ return err;
+}