diff options
Diffstat (limited to '')
-rw-r--r-- | kernel/sched/pelt.c | 473 |
1 files changed, 473 insertions, 0 deletions
diff --git a/kernel/sched/pelt.c b/kernel/sched/pelt.c new file mode 100644 index 000000000..2c613e1cf --- /dev/null +++ b/kernel/sched/pelt.c @@ -0,0 +1,473 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Per Entity Load Tracking + * + * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> + * + * Interactivity improvements by Mike Galbraith + * (C) 2007 Mike Galbraith <efault@gmx.de> + * + * Various enhancements by Dmitry Adamushko. + * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> + * + * Group scheduling enhancements by Srivatsa Vaddagiri + * Copyright IBM Corporation, 2007 + * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> + * + * Scaled math optimizations by Thomas Gleixner + * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> + * + * Adaptive scheduling granularity, math enhancements by Peter Zijlstra + * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra + * + * Move PELT related code from fair.c into this pelt.c file + * Author: Vincent Guittot <vincent.guittot@linaro.org> + */ + +#include <linux/sched.h> +#include "sched.h" +#include "pelt.h" + +/* + * Approximate: + * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) + */ +static u64 decay_load(u64 val, u64 n) +{ + unsigned int local_n; + + if (unlikely(n > LOAD_AVG_PERIOD * 63)) + return 0; + + /* after bounds checking we can collapse to 32-bit */ + local_n = n; + + /* + * As y^PERIOD = 1/2, we can combine + * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) + * With a look-up table which covers y^n (n<PERIOD) + * + * To achieve constant time decay_load. + */ + if (unlikely(local_n >= LOAD_AVG_PERIOD)) { + val >>= local_n / LOAD_AVG_PERIOD; + local_n %= LOAD_AVG_PERIOD; + } + + val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); + return val; +} + +static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) +{ + u32 c1, c2, c3 = d3; /* y^0 == 1 */ + + /* + * c1 = d1 y^p + */ + c1 = decay_load((u64)d1, periods); + + /* + * p-1 + * c2 = 1024 \Sum y^n + * n=1 + * + * inf inf + * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) + * n=0 n=p + */ + c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; + + return c1 + c2 + c3; +} + +/* + * Accumulate the three separate parts of the sum; d1 the remainder + * of the last (incomplete) period, d2 the span of full periods and d3 + * the remainder of the (incomplete) current period. + * + * d1 d2 d3 + * ^ ^ ^ + * | | | + * |<->|<----------------->|<--->| + * ... |---x---|------| ... |------|-----x (now) + * + * p-1 + * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 + * n=1 + * + * = u y^p + (Step 1) + * + * p-1 + * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) + * n=1 + */ +static __always_inline u32 +accumulate_sum(u64 delta, struct sched_avg *sa, + unsigned long load, unsigned long runnable, int running) +{ + u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ + u64 periods; + + delta += sa->period_contrib; + periods = delta / 1024; /* A period is 1024us (~1ms) */ + + /* + * Step 1: decay old *_sum if we crossed period boundaries. + */ + if (periods) { + sa->load_sum = decay_load(sa->load_sum, periods); + sa->runnable_sum = + decay_load(sa->runnable_sum, periods); + sa->util_sum = decay_load((u64)(sa->util_sum), periods); + + /* + * Step 2 + */ + delta %= 1024; + if (load) { + /* + * This relies on the: + * + * if (!load) + * runnable = running = 0; + * + * clause from ___update_load_sum(); this results in + * the below usage of @contrib to dissapear entirely, + * so no point in calculating it. + */ + contrib = __accumulate_pelt_segments(periods, + 1024 - sa->period_contrib, delta); + } + } + sa->period_contrib = delta; + + if (load) + sa->load_sum += load * contrib; + if (runnable) + sa->runnable_sum += runnable * contrib << SCHED_CAPACITY_SHIFT; + if (running) + sa->util_sum += contrib << SCHED_CAPACITY_SHIFT; + + return periods; +} + +/* + * We can represent the historical contribution to runnable average as the + * coefficients of a geometric series. To do this we sub-divide our runnable + * history into segments of approximately 1ms (1024us); label the segment that + * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. + * + * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... + * p0 p1 p2 + * (now) (~1ms ago) (~2ms ago) + * + * Let u_i denote the fraction of p_i that the entity was runnable. + * + * We then designate the fractions u_i as our co-efficients, yielding the + * following representation of historical load: + * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... + * + * We choose y based on the with of a reasonably scheduling period, fixing: + * y^32 = 0.5 + * + * This means that the contribution to load ~32ms ago (u_32) will be weighted + * approximately half as much as the contribution to load within the last ms + * (u_0). + * + * When a period "rolls over" and we have new u_0`, multiplying the previous + * sum again by y is sufficient to update: + * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) + * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] + */ +static __always_inline int +___update_load_sum(u64 now, struct sched_avg *sa, + unsigned long load, unsigned long runnable, int running) +{ + u64 delta; + + delta = now - sa->last_update_time; + /* + * This should only happen when time goes backwards, which it + * unfortunately does during sched clock init when we swap over to TSC. + */ + if ((s64)delta < 0) { + sa->last_update_time = now; + return 0; + } + + /* + * Use 1024ns as the unit of measurement since it's a reasonable + * approximation of 1us and fast to compute. + */ + delta >>= 10; + if (!delta) + return 0; + + sa->last_update_time += delta << 10; + + /* + * running is a subset of runnable (weight) so running can't be set if + * runnable is clear. But there are some corner cases where the current + * se has been already dequeued but cfs_rq->curr still points to it. + * This means that weight will be 0 but not running for a sched_entity + * but also for a cfs_rq if the latter becomes idle. As an example, + * this happens during idle_balance() which calls + * update_blocked_averages(). + * + * Also see the comment in accumulate_sum(). + */ + if (!load) + runnable = running = 0; + + /* + * Now we know we crossed measurement unit boundaries. The *_avg + * accrues by two steps: + * + * Step 1: accumulate *_sum since last_update_time. If we haven't + * crossed period boundaries, finish. + */ + if (!accumulate_sum(delta, sa, load, runnable, running)) + return 0; + + return 1; +} + +/* + * When syncing *_avg with *_sum, we must take into account the current + * position in the PELT segment otherwise the remaining part of the segment + * will be considered as idle time whereas it's not yet elapsed and this will + * generate unwanted oscillation in the range [1002..1024[. + * + * The max value of *_sum varies with the position in the time segment and is + * equals to : + * + * LOAD_AVG_MAX*y + sa->period_contrib + * + * which can be simplified into: + * + * LOAD_AVG_MAX - 1024 + sa->period_contrib + * + * because LOAD_AVG_MAX*y == LOAD_AVG_MAX-1024 + * + * The same care must be taken when a sched entity is added, updated or + * removed from a cfs_rq and we need to update sched_avg. Scheduler entities + * and the cfs rq, to which they are attached, have the same position in the + * time segment because they use the same clock. This means that we can use + * the period_contrib of cfs_rq when updating the sched_avg of a sched_entity + * if it's more convenient. + */ +static __always_inline void +___update_load_avg(struct sched_avg *sa, unsigned long load) +{ + u32 divider = get_pelt_divider(sa); + + /* + * Step 2: update *_avg. + */ + sa->load_avg = div_u64(load * sa->load_sum, divider); + sa->runnable_avg = div_u64(sa->runnable_sum, divider); + WRITE_ONCE(sa->util_avg, sa->util_sum / divider); +} + +/* + * sched_entity: + * + * task: + * se_weight() = se->load.weight + * se_runnable() = !!on_rq + * + * group: [ see update_cfs_group() ] + * se_weight() = tg->weight * grq->load_avg / tg->load_avg + * se_runnable() = grq->h_nr_running + * + * runnable_sum = se_runnable() * runnable = grq->runnable_sum + * runnable_avg = runnable_sum + * + * load_sum := runnable + * load_avg = se_weight(se) * load_sum + * + * cfq_rq: + * + * runnable_sum = \Sum se->avg.runnable_sum + * runnable_avg = \Sum se->avg.runnable_avg + * + * load_sum = \Sum se_weight(se) * se->avg.load_sum + * load_avg = \Sum se->avg.load_avg + */ + +int __update_load_avg_blocked_se(u64 now, struct sched_entity *se) +{ + if (___update_load_sum(now, &se->avg, 0, 0, 0)) { + ___update_load_avg(&se->avg, se_weight(se)); + trace_pelt_se_tp(se); + return 1; + } + + return 0; +} + +int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + if (___update_load_sum(now, &se->avg, !!se->on_rq, se_runnable(se), + cfs_rq->curr == se)) { + + ___update_load_avg(&se->avg, se_weight(se)); + cfs_se_util_change(&se->avg); + trace_pelt_se_tp(se); + return 1; + } + + return 0; +} + +int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq) +{ + if (___update_load_sum(now, &cfs_rq->avg, + scale_load_down(cfs_rq->load.weight), + cfs_rq->h_nr_running, + cfs_rq->curr != NULL)) { + + ___update_load_avg(&cfs_rq->avg, 1); + trace_pelt_cfs_tp(cfs_rq); + return 1; + } + + return 0; +} + +/* + * rt_rq: + * + * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked + * util_sum = cpu_scale * load_sum + * runnable_sum = util_sum + * + * load_avg and runnable_avg are not supported and meaningless. + * + */ + +int update_rt_rq_load_avg(u64 now, struct rq *rq, int running) +{ + if (___update_load_sum(now, &rq->avg_rt, + running, + running, + running)) { + + ___update_load_avg(&rq->avg_rt, 1); + trace_pelt_rt_tp(rq); + return 1; + } + + return 0; +} + +/* + * dl_rq: + * + * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked + * util_sum = cpu_scale * load_sum + * runnable_sum = util_sum + * + * load_avg and runnable_avg are not supported and meaningless. + * + */ + +int update_dl_rq_load_avg(u64 now, struct rq *rq, int running) +{ + if (___update_load_sum(now, &rq->avg_dl, + running, + running, + running)) { + + ___update_load_avg(&rq->avg_dl, 1); + trace_pelt_dl_tp(rq); + return 1; + } + + return 0; +} + +#ifdef CONFIG_SCHED_THERMAL_PRESSURE +/* + * thermal: + * + * load_sum = \Sum se->avg.load_sum but se->avg.load_sum is not tracked + * + * util_avg and runnable_load_avg are not supported and meaningless. + * + * Unlike rt/dl utilization tracking that track time spent by a cpu + * running a rt/dl task through util_avg, the average thermal pressure is + * tracked through load_avg. This is because thermal pressure signal is + * time weighted "delta" capacity unlike util_avg which is binary. + * "delta capacity" = actual capacity - + * capped capacity a cpu due to a thermal event. + */ + +int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity) +{ + if (___update_load_sum(now, &rq->avg_thermal, + capacity, + capacity, + capacity)) { + ___update_load_avg(&rq->avg_thermal, 1); + trace_pelt_thermal_tp(rq); + return 1; + } + + return 0; +} +#endif + +#ifdef CONFIG_HAVE_SCHED_AVG_IRQ +/* + * irq: + * + * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked + * util_sum = cpu_scale * load_sum + * runnable_sum = util_sum + * + * load_avg and runnable_avg are not supported and meaningless. + * + */ + +int update_irq_load_avg(struct rq *rq, u64 running) +{ + int ret = 0; + + /* + * We can't use clock_pelt because irq time is not accounted in + * clock_task. Instead we directly scale the running time to + * reflect the real amount of computation + */ + running = cap_scale(running, arch_scale_freq_capacity(cpu_of(rq))); + running = cap_scale(running, arch_scale_cpu_capacity(cpu_of(rq))); + + /* + * We know the time that has been used by interrupt since last update + * but we don't when. Let be pessimistic and assume that interrupt has + * happened just before the update. This is not so far from reality + * because interrupt will most probably wake up task and trig an update + * of rq clock during which the metric is updated. + * We start to decay with normal context time and then we add the + * interrupt context time. + * We can safely remove running from rq->clock because + * rq->clock += delta with delta >= running + */ + ret = ___update_load_sum(rq->clock - running, &rq->avg_irq, + 0, + 0, + 0); + ret += ___update_load_sum(rq->clock, &rq->avg_irq, + 1, + 1, + 1); + + if (ret) { + ___update_load_avg(&rq->avg_irq, 1); + trace_pelt_irq_tp(rq); + } + + return ret; +} +#endif |