summaryrefslogtreecommitdiffstats
path: root/net/sched/sch_netem.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--net/sched/sch_netem.c1296
1 files changed, 1296 insertions, 0 deletions
diff --git a/net/sched/sch_netem.c b/net/sched/sch_netem.c
new file mode 100644
index 000000000..08aaa6efc
--- /dev/null
+++ b/net/sched/sch_netem.c
@@ -0,0 +1,1296 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * net/sched/sch_netem.c Network emulator
+ *
+ * Many of the algorithms and ideas for this came from
+ * NIST Net which is not copyrighted.
+ *
+ * Authors: Stephen Hemminger <shemminger@osdl.org>
+ * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
+ */
+
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/skbuff.h>
+#include <linux/vmalloc.h>
+#include <linux/rtnetlink.h>
+#include <linux/reciprocal_div.h>
+#include <linux/rbtree.h>
+
+#include <net/netlink.h>
+#include <net/pkt_sched.h>
+#include <net/inet_ecn.h>
+
+#define VERSION "1.3"
+
+/* Network Emulation Queuing algorithm.
+ ====================================
+
+ Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
+ Network Emulation Tool
+ [2] Luigi Rizzo, DummyNet for FreeBSD
+
+ ----------------------------------------------------------------
+
+ This started out as a simple way to delay outgoing packets to
+ test TCP but has grown to include most of the functionality
+ of a full blown network emulator like NISTnet. It can delay
+ packets and add random jitter (and correlation). The random
+ distribution can be loaded from a table as well to provide
+ normal, Pareto, or experimental curves. Packet loss,
+ duplication, and reordering can also be emulated.
+
+ This qdisc does not do classification that can be handled in
+ layering other disciplines. It does not need to do bandwidth
+ control either since that can be handled by using token
+ bucket or other rate control.
+
+ Correlated Loss Generator models
+
+ Added generation of correlated loss according to the
+ "Gilbert-Elliot" model, a 4-state markov model.
+
+ References:
+ [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
+ [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
+ and intuitive loss model for packet networks and its implementation
+ in the Netem module in the Linux kernel", available in [1]
+
+ Authors: Stefano Salsano <stefano.salsano at uniroma2.it
+ Fabio Ludovici <fabio.ludovici at yahoo.it>
+*/
+
+struct disttable {
+ u32 size;
+ s16 table[];
+};
+
+struct netem_sched_data {
+ /* internal t(ime)fifo qdisc uses t_root and sch->limit */
+ struct rb_root t_root;
+
+ /* a linear queue; reduces rbtree rebalancing when jitter is low */
+ struct sk_buff *t_head;
+ struct sk_buff *t_tail;
+
+ /* optional qdisc for classful handling (NULL at netem init) */
+ struct Qdisc *qdisc;
+
+ struct qdisc_watchdog watchdog;
+
+ s64 latency;
+ s64 jitter;
+
+ u32 loss;
+ u32 ecn;
+ u32 limit;
+ u32 counter;
+ u32 gap;
+ u32 duplicate;
+ u32 reorder;
+ u32 corrupt;
+ u64 rate;
+ s32 packet_overhead;
+ u32 cell_size;
+ struct reciprocal_value cell_size_reciprocal;
+ s32 cell_overhead;
+
+ struct crndstate {
+ u32 last;
+ u32 rho;
+ } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
+
+ struct disttable *delay_dist;
+
+ enum {
+ CLG_RANDOM,
+ CLG_4_STATES,
+ CLG_GILB_ELL,
+ } loss_model;
+
+ enum {
+ TX_IN_GAP_PERIOD = 1,
+ TX_IN_BURST_PERIOD,
+ LOST_IN_GAP_PERIOD,
+ LOST_IN_BURST_PERIOD,
+ } _4_state_model;
+
+ enum {
+ GOOD_STATE = 1,
+ BAD_STATE,
+ } GE_state_model;
+
+ /* Correlated Loss Generation models */
+ struct clgstate {
+ /* state of the Markov chain */
+ u8 state;
+
+ /* 4-states and Gilbert-Elliot models */
+ u32 a1; /* p13 for 4-states or p for GE */
+ u32 a2; /* p31 for 4-states or r for GE */
+ u32 a3; /* p32 for 4-states or h for GE */
+ u32 a4; /* p14 for 4-states or 1-k for GE */
+ u32 a5; /* p23 used only in 4-states */
+ } clg;
+
+ struct tc_netem_slot slot_config;
+ struct slotstate {
+ u64 slot_next;
+ s32 packets_left;
+ s32 bytes_left;
+ } slot;
+
+ struct disttable *slot_dist;
+};
+
+/* Time stamp put into socket buffer control block
+ * Only valid when skbs are in our internal t(ime)fifo queue.
+ *
+ * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
+ * and skb->next & skb->prev are scratch space for a qdisc,
+ * we save skb->tstamp value in skb->cb[] before destroying it.
+ */
+struct netem_skb_cb {
+ u64 time_to_send;
+};
+
+static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
+{
+ /* we assume we can use skb next/prev/tstamp as storage for rb_node */
+ qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
+ return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
+}
+
+/* init_crandom - initialize correlated random number generator
+ * Use entropy source for initial seed.
+ */
+static void init_crandom(struct crndstate *state, unsigned long rho)
+{
+ state->rho = rho;
+ state->last = prandom_u32();
+}
+
+/* get_crandom - correlated random number generator
+ * Next number depends on last value.
+ * rho is scaled to avoid floating point.
+ */
+static u32 get_crandom(struct crndstate *state)
+{
+ u64 value, rho;
+ unsigned long answer;
+
+ if (!state || state->rho == 0) /* no correlation */
+ return prandom_u32();
+
+ value = prandom_u32();
+ rho = (u64)state->rho + 1;
+ answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
+ state->last = answer;
+ return answer;
+}
+
+/* loss_4state - 4-state model loss generator
+ * Generates losses according to the 4-state Markov chain adopted in
+ * the GI (General and Intuitive) loss model.
+ */
+static bool loss_4state(struct netem_sched_data *q)
+{
+ struct clgstate *clg = &q->clg;
+ u32 rnd = prandom_u32();
+
+ /*
+ * Makes a comparison between rnd and the transition
+ * probabilities outgoing from the current state, then decides the
+ * next state and if the next packet has to be transmitted or lost.
+ * The four states correspond to:
+ * TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
+ * LOST_IN_BURST_PERIOD => isolated losses within a gap period
+ * LOST_IN_GAP_PERIOD => lost packets within a burst period
+ * TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
+ */
+ switch (clg->state) {
+ case TX_IN_GAP_PERIOD:
+ if (rnd < clg->a4) {
+ clg->state = LOST_IN_BURST_PERIOD;
+ return true;
+ } else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
+ clg->state = LOST_IN_GAP_PERIOD;
+ return true;
+ } else if (clg->a1 + clg->a4 < rnd) {
+ clg->state = TX_IN_GAP_PERIOD;
+ }
+
+ break;
+ case TX_IN_BURST_PERIOD:
+ if (rnd < clg->a5) {
+ clg->state = LOST_IN_GAP_PERIOD;
+ return true;
+ } else {
+ clg->state = TX_IN_BURST_PERIOD;
+ }
+
+ break;
+ case LOST_IN_GAP_PERIOD:
+ if (rnd < clg->a3)
+ clg->state = TX_IN_BURST_PERIOD;
+ else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
+ clg->state = TX_IN_GAP_PERIOD;
+ } else if (clg->a2 + clg->a3 < rnd) {
+ clg->state = LOST_IN_GAP_PERIOD;
+ return true;
+ }
+ break;
+ case LOST_IN_BURST_PERIOD:
+ clg->state = TX_IN_GAP_PERIOD;
+ break;
+ }
+
+ return false;
+}
+
+/* loss_gilb_ell - Gilbert-Elliot model loss generator
+ * Generates losses according to the Gilbert-Elliot loss model or
+ * its special cases (Gilbert or Simple Gilbert)
+ *
+ * Makes a comparison between random number and the transition
+ * probabilities outgoing from the current state, then decides the
+ * next state. A second random number is extracted and the comparison
+ * with the loss probability of the current state decides if the next
+ * packet will be transmitted or lost.
+ */
+static bool loss_gilb_ell(struct netem_sched_data *q)
+{
+ struct clgstate *clg = &q->clg;
+
+ switch (clg->state) {
+ case GOOD_STATE:
+ if (prandom_u32() < clg->a1)
+ clg->state = BAD_STATE;
+ if (prandom_u32() < clg->a4)
+ return true;
+ break;
+ case BAD_STATE:
+ if (prandom_u32() < clg->a2)
+ clg->state = GOOD_STATE;
+ if (prandom_u32() > clg->a3)
+ return true;
+ }
+
+ return false;
+}
+
+static bool loss_event(struct netem_sched_data *q)
+{
+ switch (q->loss_model) {
+ case CLG_RANDOM:
+ /* Random packet drop 0 => none, ~0 => all */
+ return q->loss && q->loss >= get_crandom(&q->loss_cor);
+
+ case CLG_4_STATES:
+ /* 4state loss model algorithm (used also for GI model)
+ * Extracts a value from the markov 4 state loss generator,
+ * if it is 1 drops a packet and if needed writes the event in
+ * the kernel logs
+ */
+ return loss_4state(q);
+
+ case CLG_GILB_ELL:
+ /* Gilbert-Elliot loss model algorithm
+ * Extracts a value from the Gilbert-Elliot loss generator,
+ * if it is 1 drops a packet and if needed writes the event in
+ * the kernel logs
+ */
+ return loss_gilb_ell(q);
+ }
+
+ return false; /* not reached */
+}
+
+
+/* tabledist - return a pseudo-randomly distributed value with mean mu and
+ * std deviation sigma. Uses table lookup to approximate the desired
+ * distribution, and a uniformly-distributed pseudo-random source.
+ */
+static s64 tabledist(s64 mu, s32 sigma,
+ struct crndstate *state,
+ const struct disttable *dist)
+{
+ s64 x;
+ long t;
+ u32 rnd;
+
+ if (sigma == 0)
+ return mu;
+
+ rnd = get_crandom(state);
+
+ /* default uniform distribution */
+ if (dist == NULL)
+ return ((rnd % (2 * (u32)sigma)) + mu) - sigma;
+
+ t = dist->table[rnd % dist->size];
+ x = (sigma % NETEM_DIST_SCALE) * t;
+ if (x >= 0)
+ x += NETEM_DIST_SCALE/2;
+ else
+ x -= NETEM_DIST_SCALE/2;
+
+ return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
+}
+
+static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
+{
+ len += q->packet_overhead;
+
+ if (q->cell_size) {
+ u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
+
+ if (len > cells * q->cell_size) /* extra cell needed for remainder */
+ cells++;
+ len = cells * (q->cell_size + q->cell_overhead);
+ }
+
+ return div64_u64(len * NSEC_PER_SEC, q->rate);
+}
+
+static void tfifo_reset(struct Qdisc *sch)
+{
+ struct netem_sched_data *q = qdisc_priv(sch);
+ struct rb_node *p = rb_first(&q->t_root);
+
+ while (p) {
+ struct sk_buff *skb = rb_to_skb(p);
+
+ p = rb_next(p);
+ rb_erase(&skb->rbnode, &q->t_root);
+ rtnl_kfree_skbs(skb, skb);
+ }
+
+ rtnl_kfree_skbs(q->t_head, q->t_tail);
+ q->t_head = NULL;
+ q->t_tail = NULL;
+}
+
+static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
+{
+ struct netem_sched_data *q = qdisc_priv(sch);
+ u64 tnext = netem_skb_cb(nskb)->time_to_send;
+
+ if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) {
+ if (q->t_tail)
+ q->t_tail->next = nskb;
+ else
+ q->t_head = nskb;
+ q->t_tail = nskb;
+ } else {
+ struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
+
+ while (*p) {
+ struct sk_buff *skb;
+
+ parent = *p;
+ skb = rb_to_skb(parent);
+ if (tnext >= netem_skb_cb(skb)->time_to_send)
+ p = &parent->rb_right;
+ else
+ p = &parent->rb_left;
+ }
+ rb_link_node(&nskb->rbnode, parent, p);
+ rb_insert_color(&nskb->rbnode, &q->t_root);
+ }
+ sch->q.qlen++;
+}
+
+/* netem can't properly corrupt a megapacket (like we get from GSO), so instead
+ * when we statistically choose to corrupt one, we instead segment it, returning
+ * the first packet to be corrupted, and re-enqueue the remaining frames
+ */
+static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
+ struct sk_buff **to_free)
+{
+ struct sk_buff *segs;
+ netdev_features_t features = netif_skb_features(skb);
+
+ segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
+
+ if (IS_ERR_OR_NULL(segs)) {
+ qdisc_drop(skb, sch, to_free);
+ return NULL;
+ }
+ consume_skb(skb);
+ return segs;
+}
+
+/*
+ * Insert one skb into qdisc.
+ * Note: parent depends on return value to account for queue length.
+ * NET_XMIT_DROP: queue length didn't change.
+ * NET_XMIT_SUCCESS: one skb was queued.
+ */
+static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
+ struct sk_buff **to_free)
+{
+ struct netem_sched_data *q = qdisc_priv(sch);
+ /* We don't fill cb now as skb_unshare() may invalidate it */
+ struct netem_skb_cb *cb;
+ struct sk_buff *skb2;
+ struct sk_buff *segs = NULL;
+ unsigned int prev_len = qdisc_pkt_len(skb);
+ int count = 1;
+ int rc = NET_XMIT_SUCCESS;
+ int rc_drop = NET_XMIT_DROP;
+
+ /* Do not fool qdisc_drop_all() */
+ skb->prev = NULL;
+
+ /* Random duplication */
+ if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
+ ++count;
+
+ /* Drop packet? */
+ if (loss_event(q)) {
+ if (q->ecn && INET_ECN_set_ce(skb))
+ qdisc_qstats_drop(sch); /* mark packet */
+ else
+ --count;
+ }
+ if (count == 0) {
+ qdisc_qstats_drop(sch);
+ __qdisc_drop(skb, to_free);
+ return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
+ }
+
+ /* If a delay is expected, orphan the skb. (orphaning usually takes
+ * place at TX completion time, so _before_ the link transit delay)
+ */
+ if (q->latency || q->jitter || q->rate)
+ skb_orphan_partial(skb);
+
+ /*
+ * If we need to duplicate packet, then re-insert at top of the
+ * qdisc tree, since parent queuer expects that only one
+ * skb will be queued.
+ */
+ if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
+ struct Qdisc *rootq = qdisc_root_bh(sch);
+ u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
+
+ q->duplicate = 0;
+ rootq->enqueue(skb2, rootq, to_free);
+ q->duplicate = dupsave;
+ rc_drop = NET_XMIT_SUCCESS;
+ }
+
+ /*
+ * Randomized packet corruption.
+ * Make copy if needed since we are modifying
+ * If packet is going to be hardware checksummed, then
+ * do it now in software before we mangle it.
+ */
+ if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
+ if (skb_is_gso(skb)) {
+ skb = netem_segment(skb, sch, to_free);
+ if (!skb)
+ return rc_drop;
+ segs = skb->next;
+ skb_mark_not_on_list(skb);
+ qdisc_skb_cb(skb)->pkt_len = skb->len;
+ }
+
+ skb = skb_unshare(skb, GFP_ATOMIC);
+ if (unlikely(!skb)) {
+ qdisc_qstats_drop(sch);
+ goto finish_segs;
+ }
+ if (skb->ip_summed == CHECKSUM_PARTIAL &&
+ skb_checksum_help(skb)) {
+ qdisc_drop(skb, sch, to_free);
+ skb = NULL;
+ goto finish_segs;
+ }
+
+ skb->data[prandom_u32() % skb_headlen(skb)] ^=
+ 1<<(prandom_u32() % 8);
+ }
+
+ if (unlikely(sch->q.qlen >= sch->limit)) {
+ /* re-link segs, so that qdisc_drop_all() frees them all */
+ skb->next = segs;
+ qdisc_drop_all(skb, sch, to_free);
+ return rc_drop;
+ }
+
+ qdisc_qstats_backlog_inc(sch, skb);
+
+ cb = netem_skb_cb(skb);
+ if (q->gap == 0 || /* not doing reordering */
+ q->counter < q->gap - 1 || /* inside last reordering gap */
+ q->reorder < get_crandom(&q->reorder_cor)) {
+ u64 now;
+ s64 delay;
+
+ delay = tabledist(q->latency, q->jitter,
+ &q->delay_cor, q->delay_dist);
+
+ now = ktime_get_ns();
+
+ if (q->rate) {
+ struct netem_skb_cb *last = NULL;
+
+ if (sch->q.tail)
+ last = netem_skb_cb(sch->q.tail);
+ if (q->t_root.rb_node) {
+ struct sk_buff *t_skb;
+ struct netem_skb_cb *t_last;
+
+ t_skb = skb_rb_last(&q->t_root);
+ t_last = netem_skb_cb(t_skb);
+ if (!last ||
+ t_last->time_to_send > last->time_to_send)
+ last = t_last;
+ }
+ if (q->t_tail) {
+ struct netem_skb_cb *t_last =
+ netem_skb_cb(q->t_tail);
+
+ if (!last ||
+ t_last->time_to_send > last->time_to_send)
+ last = t_last;
+ }
+
+ if (last) {
+ /*
+ * Last packet in queue is reference point (now),
+ * calculate this time bonus and subtract
+ * from delay.
+ */
+ delay -= last->time_to_send - now;
+ delay = max_t(s64, 0, delay);
+ now = last->time_to_send;
+ }
+
+ delay += packet_time_ns(qdisc_pkt_len(skb), q);
+ }
+
+ cb->time_to_send = now + delay;
+ ++q->counter;
+ tfifo_enqueue(skb, sch);
+ } else {
+ /*
+ * Do re-ordering by putting one out of N packets at the front
+ * of the queue.
+ */
+ cb->time_to_send = ktime_get_ns();
+ q->counter = 0;
+
+ __qdisc_enqueue_head(skb, &sch->q);
+ sch->qstats.requeues++;
+ }
+
+finish_segs:
+ if (segs) {
+ unsigned int len, last_len;
+ int nb;
+
+ len = skb ? skb->len : 0;
+ nb = skb ? 1 : 0;
+
+ while (segs) {
+ skb2 = segs->next;
+ skb_mark_not_on_list(segs);
+ qdisc_skb_cb(segs)->pkt_len = segs->len;
+ last_len = segs->len;
+ rc = qdisc_enqueue(segs, sch, to_free);
+ if (rc != NET_XMIT_SUCCESS) {
+ if (net_xmit_drop_count(rc))
+ qdisc_qstats_drop(sch);
+ } else {
+ nb++;
+ len += last_len;
+ }
+ segs = skb2;
+ }
+ /* Parent qdiscs accounted for 1 skb of size @prev_len */
+ qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len));
+ } else if (!skb) {
+ return NET_XMIT_DROP;
+ }
+ return NET_XMIT_SUCCESS;
+}
+
+/* Delay the next round with a new future slot with a
+ * correct number of bytes and packets.
+ */
+
+static void get_slot_next(struct netem_sched_data *q, u64 now)
+{
+ s64 next_delay;
+
+ if (!q->slot_dist)
+ next_delay = q->slot_config.min_delay +
+ (prandom_u32() *
+ (q->slot_config.max_delay -
+ q->slot_config.min_delay) >> 32);
+ else
+ next_delay = tabledist(q->slot_config.dist_delay,
+ (s32)(q->slot_config.dist_jitter),
+ NULL, q->slot_dist);
+
+ q->slot.slot_next = now + next_delay;
+ q->slot.packets_left = q->slot_config.max_packets;
+ q->slot.bytes_left = q->slot_config.max_bytes;
+}
+
+static struct sk_buff *netem_peek(struct netem_sched_data *q)
+{
+ struct sk_buff *skb = skb_rb_first(&q->t_root);
+ u64 t1, t2;
+
+ if (!skb)
+ return q->t_head;
+ if (!q->t_head)
+ return skb;
+
+ t1 = netem_skb_cb(skb)->time_to_send;
+ t2 = netem_skb_cb(q->t_head)->time_to_send;
+ if (t1 < t2)
+ return skb;
+ return q->t_head;
+}
+
+static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb)
+{
+ if (skb == q->t_head) {
+ q->t_head = skb->next;
+ if (!q->t_head)
+ q->t_tail = NULL;
+ } else {
+ rb_erase(&skb->rbnode, &q->t_root);
+ }
+}
+
+static struct sk_buff *netem_dequeue(struct Qdisc *sch)
+{
+ struct netem_sched_data *q = qdisc_priv(sch);
+ struct sk_buff *skb;
+
+tfifo_dequeue:
+ skb = __qdisc_dequeue_head(&sch->q);
+ if (skb) {
+ qdisc_qstats_backlog_dec(sch, skb);
+deliver:
+ qdisc_bstats_update(sch, skb);
+ return skb;
+ }
+ skb = netem_peek(q);
+ if (skb) {
+ u64 time_to_send;
+ u64 now = ktime_get_ns();
+
+ /* if more time remaining? */
+ time_to_send = netem_skb_cb(skb)->time_to_send;
+ if (q->slot.slot_next && q->slot.slot_next < time_to_send)
+ get_slot_next(q, now);
+
+ if (time_to_send <= now && q->slot.slot_next <= now) {
+ netem_erase_head(q, skb);
+ sch->q.qlen--;
+ qdisc_qstats_backlog_dec(sch, skb);
+ skb->next = NULL;
+ skb->prev = NULL;
+ /* skb->dev shares skb->rbnode area,
+ * we need to restore its value.
+ */
+ skb->dev = qdisc_dev(sch);
+
+ if (q->slot.slot_next) {
+ q->slot.packets_left--;
+ q->slot.bytes_left -= qdisc_pkt_len(skb);
+ if (q->slot.packets_left <= 0 ||
+ q->slot.bytes_left <= 0)
+ get_slot_next(q, now);
+ }
+
+ if (q->qdisc) {
+ unsigned int pkt_len = qdisc_pkt_len(skb);
+ struct sk_buff *to_free = NULL;
+ int err;
+
+ err = qdisc_enqueue(skb, q->qdisc, &to_free);
+ kfree_skb_list(to_free);
+ if (err != NET_XMIT_SUCCESS &&
+ net_xmit_drop_count(err)) {
+ qdisc_qstats_drop(sch);
+ qdisc_tree_reduce_backlog(sch, 1,
+ pkt_len);
+ }
+ goto tfifo_dequeue;
+ }
+ goto deliver;
+ }
+
+ if (q->qdisc) {
+ skb = q->qdisc->ops->dequeue(q->qdisc);
+ if (skb)
+ goto deliver;
+ }
+
+ qdisc_watchdog_schedule_ns(&q->watchdog,
+ max(time_to_send,
+ q->slot.slot_next));
+ }
+
+ if (q->qdisc) {
+ skb = q->qdisc->ops->dequeue(q->qdisc);
+ if (skb)
+ goto deliver;
+ }
+ return NULL;
+}
+
+static void netem_reset(struct Qdisc *sch)
+{
+ struct netem_sched_data *q = qdisc_priv(sch);
+
+ qdisc_reset_queue(sch);
+ tfifo_reset(sch);
+ if (q->qdisc)
+ qdisc_reset(q->qdisc);
+ qdisc_watchdog_cancel(&q->watchdog);
+}
+
+static void dist_free(struct disttable *d)
+{
+ kvfree(d);
+}
+
+/*
+ * Distribution data is a variable size payload containing
+ * signed 16 bit values.
+ */
+
+static int get_dist_table(struct disttable **tbl, const struct nlattr *attr)
+{
+ size_t n = nla_len(attr)/sizeof(__s16);
+ const __s16 *data = nla_data(attr);
+ struct disttable *d;
+ int i;
+
+ if (!n || n > NETEM_DIST_MAX)
+ return -EINVAL;
+
+ d = kvmalloc(sizeof(struct disttable) + n * sizeof(s16), GFP_KERNEL);
+ if (!d)
+ return -ENOMEM;
+
+ d->size = n;
+ for (i = 0; i < n; i++)
+ d->table[i] = data[i];
+
+ *tbl = d;
+ return 0;
+}
+
+static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
+{
+ const struct tc_netem_slot *c = nla_data(attr);
+
+ q->slot_config = *c;
+ if (q->slot_config.max_packets == 0)
+ q->slot_config.max_packets = INT_MAX;
+ if (q->slot_config.max_bytes == 0)
+ q->slot_config.max_bytes = INT_MAX;
+
+ /* capping dist_jitter to the range acceptable by tabledist() */
+ q->slot_config.dist_jitter = min_t(__s64, INT_MAX, abs(q->slot_config.dist_jitter));
+
+ q->slot.packets_left = q->slot_config.max_packets;
+ q->slot.bytes_left = q->slot_config.max_bytes;
+ if (q->slot_config.min_delay | q->slot_config.max_delay |
+ q->slot_config.dist_jitter)
+ q->slot.slot_next = ktime_get_ns();
+ else
+ q->slot.slot_next = 0;
+}
+
+static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
+{
+ const struct tc_netem_corr *c = nla_data(attr);
+
+ init_crandom(&q->delay_cor, c->delay_corr);
+ init_crandom(&q->loss_cor, c->loss_corr);
+ init_crandom(&q->dup_cor, c->dup_corr);
+}
+
+static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
+{
+ const struct tc_netem_reorder *r = nla_data(attr);
+
+ q->reorder = r->probability;
+ init_crandom(&q->reorder_cor, r->correlation);
+}
+
+static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
+{
+ const struct tc_netem_corrupt *r = nla_data(attr);
+
+ q->corrupt = r->probability;
+ init_crandom(&q->corrupt_cor, r->correlation);
+}
+
+static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
+{
+ const struct tc_netem_rate *r = nla_data(attr);
+
+ q->rate = r->rate;
+ q->packet_overhead = r->packet_overhead;
+ q->cell_size = r->cell_size;
+ q->cell_overhead = r->cell_overhead;
+ if (q->cell_size)
+ q->cell_size_reciprocal = reciprocal_value(q->cell_size);
+ else
+ q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
+}
+
+static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
+{
+ const struct nlattr *la;
+ int rem;
+
+ nla_for_each_nested(la, attr, rem) {
+ u16 type = nla_type(la);
+
+ switch (type) {
+ case NETEM_LOSS_GI: {
+ const struct tc_netem_gimodel *gi = nla_data(la);
+
+ if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
+ pr_info("netem: incorrect gi model size\n");
+ return -EINVAL;
+ }
+
+ q->loss_model = CLG_4_STATES;
+
+ q->clg.state = TX_IN_GAP_PERIOD;
+ q->clg.a1 = gi->p13;
+ q->clg.a2 = gi->p31;
+ q->clg.a3 = gi->p32;
+ q->clg.a4 = gi->p14;
+ q->clg.a5 = gi->p23;
+ break;
+ }
+
+ case NETEM_LOSS_GE: {
+ const struct tc_netem_gemodel *ge = nla_data(la);
+
+ if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
+ pr_info("netem: incorrect ge model size\n");
+ return -EINVAL;
+ }
+
+ q->loss_model = CLG_GILB_ELL;
+ q->clg.state = GOOD_STATE;
+ q->clg.a1 = ge->p;
+ q->clg.a2 = ge->r;
+ q->clg.a3 = ge->h;
+ q->clg.a4 = ge->k1;
+ break;
+ }
+
+ default:
+ pr_info("netem: unknown loss type %u\n", type);
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
+ [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) },
+ [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) },
+ [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) },
+ [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) },
+ [TCA_NETEM_LOSS] = { .type = NLA_NESTED },
+ [TCA_NETEM_ECN] = { .type = NLA_U32 },
+ [TCA_NETEM_RATE64] = { .type = NLA_U64 },
+ [TCA_NETEM_LATENCY64] = { .type = NLA_S64 },
+ [TCA_NETEM_JITTER64] = { .type = NLA_S64 },
+ [TCA_NETEM_SLOT] = { .len = sizeof(struct tc_netem_slot) },
+};
+
+static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
+ const struct nla_policy *policy, int len)
+{
+ int nested_len = nla_len(nla) - NLA_ALIGN(len);
+
+ if (nested_len < 0) {
+ pr_info("netem: invalid attributes len %d\n", nested_len);
+ return -EINVAL;
+ }
+
+ if (nested_len >= nla_attr_size(0))
+ return nla_parse_deprecated(tb, maxtype,
+ nla_data(nla) + NLA_ALIGN(len),
+ nested_len, policy, NULL);
+
+ memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
+ return 0;
+}
+
+/* Parse netlink message to set options */
+static int netem_change(struct Qdisc *sch, struct nlattr *opt,
+ struct netlink_ext_ack *extack)
+{
+ struct netem_sched_data *q = qdisc_priv(sch);
+ struct nlattr *tb[TCA_NETEM_MAX + 1];
+ struct disttable *delay_dist = NULL;
+ struct disttable *slot_dist = NULL;
+ struct tc_netem_qopt *qopt;
+ struct clgstate old_clg;
+ int old_loss_model = CLG_RANDOM;
+ int ret;
+
+ if (opt == NULL)
+ return -EINVAL;
+
+ qopt = nla_data(opt);
+ ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
+ if (ret < 0)
+ return ret;
+
+ if (tb[TCA_NETEM_DELAY_DIST]) {
+ ret = get_dist_table(&delay_dist, tb[TCA_NETEM_DELAY_DIST]);
+ if (ret)
+ goto table_free;
+ }
+
+ if (tb[TCA_NETEM_SLOT_DIST]) {
+ ret = get_dist_table(&slot_dist, tb[TCA_NETEM_SLOT_DIST]);
+ if (ret)
+ goto table_free;
+ }
+
+ sch_tree_lock(sch);
+ /* backup q->clg and q->loss_model */
+ old_clg = q->clg;
+ old_loss_model = q->loss_model;
+
+ if (tb[TCA_NETEM_LOSS]) {
+ ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
+ if (ret) {
+ q->loss_model = old_loss_model;
+ q->clg = old_clg;
+ goto unlock;
+ }
+ } else {
+ q->loss_model = CLG_RANDOM;
+ }
+
+ if (delay_dist)
+ swap(q->delay_dist, delay_dist);
+ if (slot_dist)
+ swap(q->slot_dist, slot_dist);
+ sch->limit = qopt->limit;
+
+ q->latency = PSCHED_TICKS2NS(qopt->latency);
+ q->jitter = PSCHED_TICKS2NS(qopt->jitter);
+ q->limit = qopt->limit;
+ q->gap = qopt->gap;
+ q->counter = 0;
+ q->loss = qopt->loss;
+ q->duplicate = qopt->duplicate;
+
+ /* for compatibility with earlier versions.
+ * if gap is set, need to assume 100% probability
+ */
+ if (q->gap)
+ q->reorder = ~0;
+
+ if (tb[TCA_NETEM_CORR])
+ get_correlation(q, tb[TCA_NETEM_CORR]);
+
+ if (tb[TCA_NETEM_REORDER])
+ get_reorder(q, tb[TCA_NETEM_REORDER]);
+
+ if (tb[TCA_NETEM_CORRUPT])
+ get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
+
+ if (tb[TCA_NETEM_RATE])
+ get_rate(q, tb[TCA_NETEM_RATE]);
+
+ if (tb[TCA_NETEM_RATE64])
+ q->rate = max_t(u64, q->rate,
+ nla_get_u64(tb[TCA_NETEM_RATE64]));
+
+ if (tb[TCA_NETEM_LATENCY64])
+ q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
+
+ if (tb[TCA_NETEM_JITTER64])
+ q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
+
+ if (tb[TCA_NETEM_ECN])
+ q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
+
+ if (tb[TCA_NETEM_SLOT])
+ get_slot(q, tb[TCA_NETEM_SLOT]);
+
+ /* capping jitter to the range acceptable by tabledist() */
+ q->jitter = min_t(s64, abs(q->jitter), INT_MAX);
+
+unlock:
+ sch_tree_unlock(sch);
+
+table_free:
+ dist_free(delay_dist);
+ dist_free(slot_dist);
+ return ret;
+}
+
+static int netem_init(struct Qdisc *sch, struct nlattr *opt,
+ struct netlink_ext_ack *extack)
+{
+ struct netem_sched_data *q = qdisc_priv(sch);
+ int ret;
+
+ qdisc_watchdog_init(&q->watchdog, sch);
+
+ if (!opt)
+ return -EINVAL;
+
+ q->loss_model = CLG_RANDOM;
+ ret = netem_change(sch, opt, extack);
+ if (ret)
+ pr_info("netem: change failed\n");
+ return ret;
+}
+
+static void netem_destroy(struct Qdisc *sch)
+{
+ struct netem_sched_data *q = qdisc_priv(sch);
+
+ qdisc_watchdog_cancel(&q->watchdog);
+ if (q->qdisc)
+ qdisc_put(q->qdisc);
+ dist_free(q->delay_dist);
+ dist_free(q->slot_dist);
+}
+
+static int dump_loss_model(const struct netem_sched_data *q,
+ struct sk_buff *skb)
+{
+ struct nlattr *nest;
+
+ nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS);
+ if (nest == NULL)
+ goto nla_put_failure;
+
+ switch (q->loss_model) {
+ case CLG_RANDOM:
+ /* legacy loss model */
+ nla_nest_cancel(skb, nest);
+ return 0; /* no data */
+
+ case CLG_4_STATES: {
+ struct tc_netem_gimodel gi = {
+ .p13 = q->clg.a1,
+ .p31 = q->clg.a2,
+ .p32 = q->clg.a3,
+ .p14 = q->clg.a4,
+ .p23 = q->clg.a5,
+ };
+
+ if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
+ goto nla_put_failure;
+ break;
+ }
+ case CLG_GILB_ELL: {
+ struct tc_netem_gemodel ge = {
+ .p = q->clg.a1,
+ .r = q->clg.a2,
+ .h = q->clg.a3,
+ .k1 = q->clg.a4,
+ };
+
+ if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
+ goto nla_put_failure;
+ break;
+ }
+ }
+
+ nla_nest_end(skb, nest);
+ return 0;
+
+nla_put_failure:
+ nla_nest_cancel(skb, nest);
+ return -1;
+}
+
+static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
+{
+ const struct netem_sched_data *q = qdisc_priv(sch);
+ struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
+ struct tc_netem_qopt qopt;
+ struct tc_netem_corr cor;
+ struct tc_netem_reorder reorder;
+ struct tc_netem_corrupt corrupt;
+ struct tc_netem_rate rate;
+ struct tc_netem_slot slot;
+
+ qopt.latency = min_t(psched_time_t, PSCHED_NS2TICKS(q->latency),
+ UINT_MAX);
+ qopt.jitter = min_t(psched_time_t, PSCHED_NS2TICKS(q->jitter),
+ UINT_MAX);
+ qopt.limit = q->limit;
+ qopt.loss = q->loss;
+ qopt.gap = q->gap;
+ qopt.duplicate = q->duplicate;
+ if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
+ goto nla_put_failure;
+
+ if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
+ goto nla_put_failure;
+
+ if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
+ goto nla_put_failure;
+
+ cor.delay_corr = q->delay_cor.rho;
+ cor.loss_corr = q->loss_cor.rho;
+ cor.dup_corr = q->dup_cor.rho;
+ if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
+ goto nla_put_failure;
+
+ reorder.probability = q->reorder;
+ reorder.correlation = q->reorder_cor.rho;
+ if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
+ goto nla_put_failure;
+
+ corrupt.probability = q->corrupt;
+ corrupt.correlation = q->corrupt_cor.rho;
+ if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
+ goto nla_put_failure;
+
+ if (q->rate >= (1ULL << 32)) {
+ if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
+ TCA_NETEM_PAD))
+ goto nla_put_failure;
+ rate.rate = ~0U;
+ } else {
+ rate.rate = q->rate;
+ }
+ rate.packet_overhead = q->packet_overhead;
+ rate.cell_size = q->cell_size;
+ rate.cell_overhead = q->cell_overhead;
+ if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
+ goto nla_put_failure;
+
+ if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
+ goto nla_put_failure;
+
+ if (dump_loss_model(q, skb) != 0)
+ goto nla_put_failure;
+
+ if (q->slot_config.min_delay | q->slot_config.max_delay |
+ q->slot_config.dist_jitter) {
+ slot = q->slot_config;
+ if (slot.max_packets == INT_MAX)
+ slot.max_packets = 0;
+ if (slot.max_bytes == INT_MAX)
+ slot.max_bytes = 0;
+ if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
+ goto nla_put_failure;
+ }
+
+ return nla_nest_end(skb, nla);
+
+nla_put_failure:
+ nlmsg_trim(skb, nla);
+ return -1;
+}
+
+static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
+ struct sk_buff *skb, struct tcmsg *tcm)
+{
+ struct netem_sched_data *q = qdisc_priv(sch);
+
+ if (cl != 1 || !q->qdisc) /* only one class */
+ return -ENOENT;
+
+ tcm->tcm_handle |= TC_H_MIN(1);
+ tcm->tcm_info = q->qdisc->handle;
+
+ return 0;
+}
+
+static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
+ struct Qdisc **old, struct netlink_ext_ack *extack)
+{
+ struct netem_sched_data *q = qdisc_priv(sch);
+
+ *old = qdisc_replace(sch, new, &q->qdisc);
+ return 0;
+}
+
+static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
+{
+ struct netem_sched_data *q = qdisc_priv(sch);
+ return q->qdisc;
+}
+
+static unsigned long netem_find(struct Qdisc *sch, u32 classid)
+{
+ return 1;
+}
+
+static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
+{
+ if (!walker->stop) {
+ if (walker->count >= walker->skip)
+ if (walker->fn(sch, 1, walker) < 0) {
+ walker->stop = 1;
+ return;
+ }
+ walker->count++;
+ }
+}
+
+static const struct Qdisc_class_ops netem_class_ops = {
+ .graft = netem_graft,
+ .leaf = netem_leaf,
+ .find = netem_find,
+ .walk = netem_walk,
+ .dump = netem_dump_class,
+};
+
+static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
+ .id = "netem",
+ .cl_ops = &netem_class_ops,
+ .priv_size = sizeof(struct netem_sched_data),
+ .enqueue = netem_enqueue,
+ .dequeue = netem_dequeue,
+ .peek = qdisc_peek_dequeued,
+ .init = netem_init,
+ .reset = netem_reset,
+ .destroy = netem_destroy,
+ .change = netem_change,
+ .dump = netem_dump,
+ .owner = THIS_MODULE,
+};
+
+
+static int __init netem_module_init(void)
+{
+ pr_info("netem: version " VERSION "\n");
+ return register_qdisc(&netem_qdisc_ops);
+}
+static void __exit netem_module_exit(void)
+{
+ unregister_qdisc(&netem_qdisc_ops);
+}
+module_init(netem_module_init)
+module_exit(netem_module_exit)
+MODULE_LICENSE("GPL");