diff options
Diffstat (limited to 'security/Kconfig.hardening')
-rw-r--r-- | security/Kconfig.hardening | 243 |
1 files changed, 243 insertions, 0 deletions
diff --git a/security/Kconfig.hardening b/security/Kconfig.hardening new file mode 100644 index 000000000..b54eb7177 --- /dev/null +++ b/security/Kconfig.hardening @@ -0,0 +1,243 @@ +# SPDX-License-Identifier: GPL-2.0-only +menu "Kernel hardening options" + +config GCC_PLUGIN_STRUCTLEAK + bool + help + While the kernel is built with warnings enabled for any missed + stack variable initializations, this warning is silenced for + anything passed by reference to another function, under the + occasionally misguided assumption that the function will do + the initialization. As this regularly leads to exploitable + flaws, this plugin is available to identify and zero-initialize + such variables, depending on the chosen level of coverage. + + This plugin was originally ported from grsecurity/PaX. More + information at: + * https://grsecurity.net/ + * https://pax.grsecurity.net/ + +menu "Memory initialization" + +config CC_HAS_AUTO_VAR_INIT_PATTERN + def_bool $(cc-option,-ftrivial-auto-var-init=pattern) + +config CC_HAS_AUTO_VAR_INIT_ZERO_BARE + def_bool $(cc-option,-ftrivial-auto-var-init=zero) + +config CC_HAS_AUTO_VAR_INIT_ZERO_ENABLER + # Clang 16 and later warn about using the -enable flag, but it + # is required before then. + def_bool $(cc-option,-ftrivial-auto-var-init=zero -enable-trivial-auto-var-init-zero-knowing-it-will-be-removed-from-clang) + depends on !CC_HAS_AUTO_VAR_INIT_ZERO_BARE + +config CC_HAS_AUTO_VAR_INIT_ZERO + def_bool CC_HAS_AUTO_VAR_INIT_ZERO_BARE || CC_HAS_AUTO_VAR_INIT_ZERO_ENABLER + +choice + prompt "Initialize kernel stack variables at function entry" + default GCC_PLUGIN_STRUCTLEAK_BYREF_ALL if COMPILE_TEST && GCC_PLUGINS + default INIT_STACK_ALL_PATTERN if COMPILE_TEST && CC_HAS_AUTO_VAR_INIT_PATTERN + default INIT_STACK_ALL_ZERO if CC_HAS_AUTO_VAR_INIT_ZERO + default INIT_STACK_NONE + help + This option enables initialization of stack variables at + function entry time. This has the possibility to have the + greatest coverage (since all functions can have their + variables initialized), but the performance impact depends + on the function calling complexity of a given workload's + syscalls. + + This chooses the level of coverage over classes of potentially + uninitialized variables. The selected class of variable will be + initialized before use in a function. + + config INIT_STACK_NONE + bool "no automatic stack variable initialization (weakest)" + help + Disable automatic stack variable initialization. + This leaves the kernel vulnerable to the standard + classes of uninitialized stack variable exploits + and information exposures. + + config GCC_PLUGIN_STRUCTLEAK_USER + bool "zero-init structs marked for userspace (weak)" + depends on GCC_PLUGINS + select GCC_PLUGIN_STRUCTLEAK + help + Zero-initialize any structures on the stack containing + a __user attribute. This can prevent some classes of + uninitialized stack variable exploits and information + exposures, like CVE-2013-2141: + https://git.kernel.org/linus/b9e146d8eb3b9eca + + config GCC_PLUGIN_STRUCTLEAK_BYREF + bool "zero-init structs passed by reference (strong)" + depends on GCC_PLUGINS + depends on !(KASAN && KASAN_STACK=1) + select GCC_PLUGIN_STRUCTLEAK + help + Zero-initialize any structures on the stack that may + be passed by reference and had not already been + explicitly initialized. This can prevent most classes + of uninitialized stack variable exploits and information + exposures, like CVE-2017-1000410: + https://git.kernel.org/linus/06e7e776ca4d3654 + + As a side-effect, this keeps a lot of variables on the + stack that can otherwise be optimized out, so combining + this with CONFIG_KASAN_STACK can lead to a stack overflow + and is disallowed. + + config GCC_PLUGIN_STRUCTLEAK_BYREF_ALL + bool "zero-init everything passed by reference (very strong)" + depends on GCC_PLUGINS + depends on !(KASAN && KASAN_STACK=1) + select GCC_PLUGIN_STRUCTLEAK + help + Zero-initialize any stack variables that may be passed + by reference and had not already been explicitly + initialized. This is intended to eliminate all classes + of uninitialized stack variable exploits and information + exposures. + + As a side-effect, this keeps a lot of variables on the + stack that can otherwise be optimized out, so combining + this with CONFIG_KASAN_STACK can lead to a stack overflow + and is disallowed. + + config INIT_STACK_ALL_PATTERN + bool "pattern-init everything (strongest)" + depends on CC_HAS_AUTO_VAR_INIT_PATTERN + help + Initializes everything on the stack (including padding) + with a specific debug value. This is intended to eliminate + all classes of uninitialized stack variable exploits and + information exposures, even variables that were warned about + having been left uninitialized. + + Pattern initialization is known to provoke many existing bugs + related to uninitialized locals, e.g. pointers receive + non-NULL values, buffer sizes and indices are very big. The + pattern is situation-specific; Clang on 64-bit uses 0xAA + repeating for all types and padding except float and double + which use 0xFF repeating (-NaN). Clang on 32-bit uses 0xFF + repeating for all types and padding. + + config INIT_STACK_ALL_ZERO + bool "zero-init everything (strongest and safest)" + depends on CC_HAS_AUTO_VAR_INIT_ZERO + help + Initializes everything on the stack (including padding) + with a zero value. This is intended to eliminate all + classes of uninitialized stack variable exploits and + information exposures, even variables that were warned + about having been left uninitialized. + + Zero initialization provides safe defaults for strings + (immediately NUL-terminated), pointers (NULL), indices + (index 0), and sizes (0 length), so it is therefore more + suitable as a production security mitigation than pattern + initialization. + +endchoice + +config GCC_PLUGIN_STRUCTLEAK_VERBOSE + bool "Report forcefully initialized variables" + depends on GCC_PLUGIN_STRUCTLEAK + depends on !COMPILE_TEST # too noisy + help + This option will cause a warning to be printed each time the + structleak plugin finds a variable it thinks needs to be + initialized. Since not all existing initializers are detected + by the plugin, this can produce false positive warnings. + +config GCC_PLUGIN_STACKLEAK + bool "Poison kernel stack before returning from syscalls" + depends on GCC_PLUGINS + depends on HAVE_ARCH_STACKLEAK + help + This option makes the kernel erase the kernel stack before + returning from system calls. This has the effect of leaving + the stack initialized to the poison value, which both reduces + the lifetime of any sensitive stack contents and reduces + potential for uninitialized stack variable exploits or information + exposures (it does not cover functions reaching the same stack + depth as prior functions during the same syscall). This blocks + most uninitialized stack variable attacks, with the performance + impact being driven by the depth of the stack usage, rather than + the function calling complexity. + + The performance impact on a single CPU system kernel compilation + sees a 1% slowdown, other systems and workloads may vary and you + are advised to test this feature on your expected workload before + deploying it. + + This plugin was ported from grsecurity/PaX. More information at: + * https://grsecurity.net/ + * https://pax.grsecurity.net/ + +config STACKLEAK_TRACK_MIN_SIZE + int "Minimum stack frame size of functions tracked by STACKLEAK" + default 100 + range 0 4096 + depends on GCC_PLUGIN_STACKLEAK + help + The STACKLEAK gcc plugin instruments the kernel code for tracking + the lowest border of the kernel stack (and for some other purposes). + It inserts the stackleak_track_stack() call for the functions with + a stack frame size greater than or equal to this parameter. + If unsure, leave the default value 100. + +config STACKLEAK_METRICS + bool "Show STACKLEAK metrics in the /proc file system" + depends on GCC_PLUGIN_STACKLEAK + depends on PROC_FS + help + If this is set, STACKLEAK metrics for every task are available in + the /proc file system. In particular, /proc/<pid>/stack_depth + shows the maximum kernel stack consumption for the current and + previous syscalls. Although this information is not precise, it + can be useful for estimating the STACKLEAK performance impact for + your workloads. + +config STACKLEAK_RUNTIME_DISABLE + bool "Allow runtime disabling of kernel stack erasing" + depends on GCC_PLUGIN_STACKLEAK + help + This option provides 'stack_erasing' sysctl, which can be used in + runtime to control kernel stack erasing for kernels built with + CONFIG_GCC_PLUGIN_STACKLEAK. + +config INIT_ON_ALLOC_DEFAULT_ON + bool "Enable heap memory zeroing on allocation by default" + help + This has the effect of setting "init_on_alloc=1" on the kernel + command line. This can be disabled with "init_on_alloc=0". + When "init_on_alloc" is enabled, all page allocator and slab + allocator memory will be zeroed when allocated, eliminating + many kinds of "uninitialized heap memory" flaws, especially + heap content exposures. The performance impact varies by + workload, but most cases see <1% impact. Some synthetic + workloads have measured as high as 7%. + +config INIT_ON_FREE_DEFAULT_ON + bool "Enable heap memory zeroing on free by default" + help + This has the effect of setting "init_on_free=1" on the kernel + command line. This can be disabled with "init_on_free=0". + Similar to "init_on_alloc", when "init_on_free" is enabled, + all page allocator and slab allocator memory will be zeroed + when freed, eliminating many kinds of "uninitialized heap memory" + flaws, especially heap content exposures. The primary difference + with "init_on_free" is that data lifetime in memory is reduced, + as anything freed is wiped immediately, making live forensics or + cold boot memory attacks unable to recover freed memory contents. + The performance impact varies by workload, but is more expensive + than "init_on_alloc" due to the negative cache effects of + touching "cold" memory areas. Most cases see 3-5% impact. Some + synthetic workloads have measured as high as 8%. + +endmenu + +endmenu |