From 5d1646d90e1f2cceb9f0828f4b28318cd0ec7744 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sat, 27 Apr 2024 12:05:51 +0200 Subject: Adding upstream version 5.10.209. Signed-off-by: Daniel Baumann --- mm/zsmalloc.c | 2581 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2581 insertions(+) create mode 100644 mm/zsmalloc.c (limited to 'mm/zsmalloc.c') diff --git a/mm/zsmalloc.c b/mm/zsmalloc.c new file mode 100644 index 000000000..c18dc8e61 --- /dev/null +++ b/mm/zsmalloc.c @@ -0,0 +1,2581 @@ +/* + * zsmalloc memory allocator + * + * Copyright (C) 2011 Nitin Gupta + * Copyright (C) 2012, 2013 Minchan Kim + * + * This code is released using a dual license strategy: BSD/GPL + * You can choose the license that better fits your requirements. + * + * Released under the terms of 3-clause BSD License + * Released under the terms of GNU General Public License Version 2.0 + */ + +/* + * Following is how we use various fields and flags of underlying + * struct page(s) to form a zspage. + * + * Usage of struct page fields: + * page->private: points to zspage + * page->freelist(index): links together all component pages of a zspage + * For the huge page, this is always 0, so we use this field + * to store handle. + * page->units: first object offset in a subpage of zspage + * + * Usage of struct page flags: + * PG_private: identifies the first component page + * PG_owner_priv_1: identifies the huge component page + * + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define ZSPAGE_MAGIC 0x58 + +/* + * This must be power of 2 and greater than of equal to sizeof(link_free). + * These two conditions ensure that any 'struct link_free' itself doesn't + * span more than 1 page which avoids complex case of mapping 2 pages simply + * to restore link_free pointer values. + */ +#define ZS_ALIGN 8 + +/* + * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) + * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. + */ +#define ZS_MAX_ZSPAGE_ORDER 2 +#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) + +#define ZS_HANDLE_SIZE (sizeof(unsigned long)) + +/* + * Object location (, ) is encoded as + * a single (unsigned long) handle value. + * + * Note that object index starts from 0. + * + * This is made more complicated by various memory models and PAE. + */ + +#ifndef MAX_POSSIBLE_PHYSMEM_BITS +#ifdef MAX_PHYSMEM_BITS +#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS +#else +/* + * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just + * be PAGE_SHIFT + */ +#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG +#endif +#endif + +#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) + +/* + * Memory for allocating for handle keeps object position by + * encoding and the encoded value has a room + * in least bit(ie, look at obj_to_location). + * We use the bit to synchronize between object access by + * user and migration. + */ +#define HANDLE_PIN_BIT 0 + +/* + * Head in allocated object should have OBJ_ALLOCATED_TAG + * to identify the object was allocated or not. + * It's okay to add the status bit in the least bit because + * header keeps handle which is 4byte-aligned address so we + * have room for two bit at least. + */ +#define OBJ_ALLOCATED_TAG 1 +#define OBJ_TAG_BITS 1 +#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) +#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) + +#define FULLNESS_BITS 2 +#define CLASS_BITS 8 +#define ISOLATED_BITS 3 +#define MAGIC_VAL_BITS 8 + +#define MAX(a, b) ((a) >= (b) ? (a) : (b)) +/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ +#define ZS_MIN_ALLOC_SIZE \ + MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) +/* each chunk includes extra space to keep handle */ +#define ZS_MAX_ALLOC_SIZE PAGE_SIZE + +/* + * On systems with 4K page size, this gives 255 size classes! There is a + * trader-off here: + * - Large number of size classes is potentially wasteful as free page are + * spread across these classes + * - Small number of size classes causes large internal fragmentation + * - Probably its better to use specific size classes (empirically + * determined). NOTE: all those class sizes must be set as multiple of + * ZS_ALIGN to make sure link_free itself never has to span 2 pages. + * + * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN + * (reason above) + */ +#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) +#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ + ZS_SIZE_CLASS_DELTA) + 1) + +enum fullness_group { + ZS_EMPTY, + ZS_ALMOST_EMPTY, + ZS_ALMOST_FULL, + ZS_FULL, + NR_ZS_FULLNESS, +}; + +enum zs_stat_type { + CLASS_EMPTY, + CLASS_ALMOST_EMPTY, + CLASS_ALMOST_FULL, + CLASS_FULL, + OBJ_ALLOCATED, + OBJ_USED, + NR_ZS_STAT_TYPE, +}; + +struct zs_size_stat { + unsigned long objs[NR_ZS_STAT_TYPE]; +}; + +#ifdef CONFIG_ZSMALLOC_STAT +static struct dentry *zs_stat_root; +#endif + +#ifdef CONFIG_COMPACTION +static struct vfsmount *zsmalloc_mnt; +#endif + +/* + * We assign a page to ZS_ALMOST_EMPTY fullness group when: + * n <= N / f, where + * n = number of allocated objects + * N = total number of objects zspage can store + * f = fullness_threshold_frac + * + * Similarly, we assign zspage to: + * ZS_ALMOST_FULL when n > N / f + * ZS_EMPTY when n == 0 + * ZS_FULL when n == N + * + * (see: fix_fullness_group()) + */ +static const int fullness_threshold_frac = 4; +static size_t huge_class_size; + +struct size_class { + spinlock_t lock; + struct list_head fullness_list[NR_ZS_FULLNESS]; + /* + * Size of objects stored in this class. Must be multiple + * of ZS_ALIGN. + */ + int size; + int objs_per_zspage; + /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ + int pages_per_zspage; + + unsigned int index; + struct zs_size_stat stats; +}; + +/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ +static void SetPageHugeObject(struct page *page) +{ + SetPageOwnerPriv1(page); +} + +static void ClearPageHugeObject(struct page *page) +{ + ClearPageOwnerPriv1(page); +} + +static int PageHugeObject(struct page *page) +{ + return PageOwnerPriv1(page); +} + +/* + * Placed within free objects to form a singly linked list. + * For every zspage, zspage->freeobj gives head of this list. + * + * This must be power of 2 and less than or equal to ZS_ALIGN + */ +struct link_free { + union { + /* + * Free object index; + * It's valid for non-allocated object + */ + unsigned long next; + /* + * Handle of allocated object. + */ + unsigned long handle; + }; +}; + +struct zs_pool { + const char *name; + + struct size_class *size_class[ZS_SIZE_CLASSES]; + struct kmem_cache *handle_cachep; + struct kmem_cache *zspage_cachep; + + atomic_long_t pages_allocated; + + struct zs_pool_stats stats; + + /* Compact classes */ + struct shrinker shrinker; + +#ifdef CONFIG_ZSMALLOC_STAT + struct dentry *stat_dentry; +#endif +#ifdef CONFIG_COMPACTION + struct inode *inode; + struct work_struct free_work; + /* A wait queue for when migration races with async_free_zspage() */ + struct wait_queue_head migration_wait; + atomic_long_t isolated_pages; + bool destroying; +#endif +}; + +struct zspage { + struct { + unsigned int fullness:FULLNESS_BITS; + unsigned int class:CLASS_BITS + 1; + unsigned int isolated:ISOLATED_BITS; + unsigned int magic:MAGIC_VAL_BITS; + }; + unsigned int inuse; + unsigned int freeobj; + struct page *first_page; + struct list_head list; /* fullness list */ +#ifdef CONFIG_COMPACTION + rwlock_t lock; +#endif +}; + +struct mapping_area { + char *vm_buf; /* copy buffer for objects that span pages */ + char *vm_addr; /* address of kmap_atomic()'ed pages */ + enum zs_mapmode vm_mm; /* mapping mode */ +}; + +#ifdef CONFIG_COMPACTION +static int zs_register_migration(struct zs_pool *pool); +static void zs_unregister_migration(struct zs_pool *pool); +static void migrate_lock_init(struct zspage *zspage); +static void migrate_read_lock(struct zspage *zspage); +static void migrate_read_unlock(struct zspage *zspage); +static void kick_deferred_free(struct zs_pool *pool); +static void init_deferred_free(struct zs_pool *pool); +static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); +#else +static int zsmalloc_mount(void) { return 0; } +static void zsmalloc_unmount(void) {} +static int zs_register_migration(struct zs_pool *pool) { return 0; } +static void zs_unregister_migration(struct zs_pool *pool) {} +static void migrate_lock_init(struct zspage *zspage) {} +static void migrate_read_lock(struct zspage *zspage) {} +static void migrate_read_unlock(struct zspage *zspage) {} +static void kick_deferred_free(struct zs_pool *pool) {} +static void init_deferred_free(struct zs_pool *pool) {} +static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} +#endif + +static int create_cache(struct zs_pool *pool) +{ + pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, + 0, 0, NULL); + if (!pool->handle_cachep) + return 1; + + pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), + 0, 0, NULL); + if (!pool->zspage_cachep) { + kmem_cache_destroy(pool->handle_cachep); + pool->handle_cachep = NULL; + return 1; + } + + return 0; +} + +static void destroy_cache(struct zs_pool *pool) +{ + kmem_cache_destroy(pool->handle_cachep); + kmem_cache_destroy(pool->zspage_cachep); +} + +static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) +{ + return (unsigned long)kmem_cache_alloc(pool->handle_cachep, + gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); +} + +static void cache_free_handle(struct zs_pool *pool, unsigned long handle) +{ + kmem_cache_free(pool->handle_cachep, (void *)handle); +} + +static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) +{ + return kmem_cache_alloc(pool->zspage_cachep, + flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); +} + +static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) +{ + kmem_cache_free(pool->zspage_cachep, zspage); +} + +static void record_obj(unsigned long handle, unsigned long obj) +{ + /* + * lsb of @obj represents handle lock while other bits + * represent object value the handle is pointing so + * updating shouldn't do store tearing. + */ + WRITE_ONCE(*(unsigned long *)handle, obj); +} + +/* zpool driver */ + +#ifdef CONFIG_ZPOOL + +static void *zs_zpool_create(const char *name, gfp_t gfp, + const struct zpool_ops *zpool_ops, + struct zpool *zpool) +{ + /* + * Ignore global gfp flags: zs_malloc() may be invoked from + * different contexts and its caller must provide a valid + * gfp mask. + */ + return zs_create_pool(name); +} + +static void zs_zpool_destroy(void *pool) +{ + zs_destroy_pool(pool); +} + +static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, + unsigned long *handle) +{ + *handle = zs_malloc(pool, size, gfp); + return *handle ? 0 : -1; +} +static void zs_zpool_free(void *pool, unsigned long handle) +{ + zs_free(pool, handle); +} + +static void *zs_zpool_map(void *pool, unsigned long handle, + enum zpool_mapmode mm) +{ + enum zs_mapmode zs_mm; + + switch (mm) { + case ZPOOL_MM_RO: + zs_mm = ZS_MM_RO; + break; + case ZPOOL_MM_WO: + zs_mm = ZS_MM_WO; + break; + case ZPOOL_MM_RW: + default: + zs_mm = ZS_MM_RW; + break; + } + + return zs_map_object(pool, handle, zs_mm); +} +static void zs_zpool_unmap(void *pool, unsigned long handle) +{ + zs_unmap_object(pool, handle); +} + +static u64 zs_zpool_total_size(void *pool) +{ + return zs_get_total_pages(pool) << PAGE_SHIFT; +} + +static struct zpool_driver zs_zpool_driver = { + .type = "zsmalloc", + .owner = THIS_MODULE, + .create = zs_zpool_create, + .destroy = zs_zpool_destroy, + .malloc_support_movable = true, + .malloc = zs_zpool_malloc, + .free = zs_zpool_free, + .map = zs_zpool_map, + .unmap = zs_zpool_unmap, + .total_size = zs_zpool_total_size, +}; + +MODULE_ALIAS("zpool-zsmalloc"); +#endif /* CONFIG_ZPOOL */ + +/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ +static DEFINE_PER_CPU(struct mapping_area, zs_map_area); + +static bool is_zspage_isolated(struct zspage *zspage) +{ + return zspage->isolated; +} + +static __maybe_unused int is_first_page(struct page *page) +{ + return PagePrivate(page); +} + +/* Protected by class->lock */ +static inline int get_zspage_inuse(struct zspage *zspage) +{ + return zspage->inuse; +} + + +static inline void mod_zspage_inuse(struct zspage *zspage, int val) +{ + zspage->inuse += val; +} + +static inline struct page *get_first_page(struct zspage *zspage) +{ + struct page *first_page = zspage->first_page; + + VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); + return first_page; +} + +static inline int get_first_obj_offset(struct page *page) +{ + return page->units; +} + +static inline void set_first_obj_offset(struct page *page, int offset) +{ + page->units = offset; +} + +static inline unsigned int get_freeobj(struct zspage *zspage) +{ + return zspage->freeobj; +} + +static inline void set_freeobj(struct zspage *zspage, unsigned int obj) +{ + zspage->freeobj = obj; +} + +static void get_zspage_mapping(struct zspage *zspage, + unsigned int *class_idx, + enum fullness_group *fullness) +{ + BUG_ON(zspage->magic != ZSPAGE_MAGIC); + + *fullness = zspage->fullness; + *class_idx = zspage->class; +} + +static void set_zspage_mapping(struct zspage *zspage, + unsigned int class_idx, + enum fullness_group fullness) +{ + zspage->class = class_idx; + zspage->fullness = fullness; +} + +/* + * zsmalloc divides the pool into various size classes where each + * class maintains a list of zspages where each zspage is divided + * into equal sized chunks. Each allocation falls into one of these + * classes depending on its size. This function returns index of the + * size class which has chunk size big enough to hold the give size. + */ +static int get_size_class_index(int size) +{ + int idx = 0; + + if (likely(size > ZS_MIN_ALLOC_SIZE)) + idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, + ZS_SIZE_CLASS_DELTA); + + return min_t(int, ZS_SIZE_CLASSES - 1, idx); +} + +/* type can be of enum type zs_stat_type or fullness_group */ +static inline void zs_stat_inc(struct size_class *class, + int type, unsigned long cnt) +{ + class->stats.objs[type] += cnt; +} + +/* type can be of enum type zs_stat_type or fullness_group */ +static inline void zs_stat_dec(struct size_class *class, + int type, unsigned long cnt) +{ + class->stats.objs[type] -= cnt; +} + +/* type can be of enum type zs_stat_type or fullness_group */ +static inline unsigned long zs_stat_get(struct size_class *class, + int type) +{ + return class->stats.objs[type]; +} + +#ifdef CONFIG_ZSMALLOC_STAT + +static void __init zs_stat_init(void) +{ + if (!debugfs_initialized()) { + pr_warn("debugfs not available, stat dir not created\n"); + return; + } + + zs_stat_root = debugfs_create_dir("zsmalloc", NULL); +} + +static void __exit zs_stat_exit(void) +{ + debugfs_remove_recursive(zs_stat_root); +} + +static unsigned long zs_can_compact(struct size_class *class); + +static int zs_stats_size_show(struct seq_file *s, void *v) +{ + int i; + struct zs_pool *pool = s->private; + struct size_class *class; + int objs_per_zspage; + unsigned long class_almost_full, class_almost_empty; + unsigned long obj_allocated, obj_used, pages_used, freeable; + unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; + unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; + unsigned long total_freeable = 0; + + seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", + "class", "size", "almost_full", "almost_empty", + "obj_allocated", "obj_used", "pages_used", + "pages_per_zspage", "freeable"); + + for (i = 0; i < ZS_SIZE_CLASSES; i++) { + class = pool->size_class[i]; + + if (class->index != i) + continue; + + spin_lock(&class->lock); + class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); + class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); + obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); + obj_used = zs_stat_get(class, OBJ_USED); + freeable = zs_can_compact(class); + spin_unlock(&class->lock); + + objs_per_zspage = class->objs_per_zspage; + pages_used = obj_allocated / objs_per_zspage * + class->pages_per_zspage; + + seq_printf(s, " %5u %5u %11lu %12lu %13lu" + " %10lu %10lu %16d %8lu\n", + i, class->size, class_almost_full, class_almost_empty, + obj_allocated, obj_used, pages_used, + class->pages_per_zspage, freeable); + + total_class_almost_full += class_almost_full; + total_class_almost_empty += class_almost_empty; + total_objs += obj_allocated; + total_used_objs += obj_used; + total_pages += pages_used; + total_freeable += freeable; + } + + seq_puts(s, "\n"); + seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", + "Total", "", total_class_almost_full, + total_class_almost_empty, total_objs, + total_used_objs, total_pages, "", total_freeable); + + return 0; +} +DEFINE_SHOW_ATTRIBUTE(zs_stats_size); + +static void zs_pool_stat_create(struct zs_pool *pool, const char *name) +{ + if (!zs_stat_root) { + pr_warn("no root stat dir, not creating <%s> stat dir\n", name); + return; + } + + pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); + + debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, + &zs_stats_size_fops); +} + +static void zs_pool_stat_destroy(struct zs_pool *pool) +{ + debugfs_remove_recursive(pool->stat_dentry); +} + +#else /* CONFIG_ZSMALLOC_STAT */ +static void __init zs_stat_init(void) +{ +} + +static void __exit zs_stat_exit(void) +{ +} + +static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) +{ +} + +static inline void zs_pool_stat_destroy(struct zs_pool *pool) +{ +} +#endif + + +/* + * For each size class, zspages are divided into different groups + * depending on how "full" they are. This was done so that we could + * easily find empty or nearly empty zspages when we try to shrink + * the pool (not yet implemented). This function returns fullness + * status of the given page. + */ +static enum fullness_group get_fullness_group(struct size_class *class, + struct zspage *zspage) +{ + int inuse, objs_per_zspage; + enum fullness_group fg; + + inuse = get_zspage_inuse(zspage); + objs_per_zspage = class->objs_per_zspage; + + if (inuse == 0) + fg = ZS_EMPTY; + else if (inuse == objs_per_zspage) + fg = ZS_FULL; + else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) + fg = ZS_ALMOST_EMPTY; + else + fg = ZS_ALMOST_FULL; + + return fg; +} + +/* + * Each size class maintains various freelists and zspages are assigned + * to one of these freelists based on the number of live objects they + * have. This functions inserts the given zspage into the freelist + * identified by . + */ +static void insert_zspage(struct size_class *class, + struct zspage *zspage, + enum fullness_group fullness) +{ + struct zspage *head; + + zs_stat_inc(class, fullness, 1); + head = list_first_entry_or_null(&class->fullness_list[fullness], + struct zspage, list); + /* + * We want to see more ZS_FULL pages and less almost empty/full. + * Put pages with higher ->inuse first. + */ + if (head) { + if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { + list_add(&zspage->list, &head->list); + return; + } + } + list_add(&zspage->list, &class->fullness_list[fullness]); +} + +/* + * This function removes the given zspage from the freelist identified + * by . + */ +static void remove_zspage(struct size_class *class, + struct zspage *zspage, + enum fullness_group fullness) +{ + VM_BUG_ON(list_empty(&class->fullness_list[fullness])); + VM_BUG_ON(is_zspage_isolated(zspage)); + + list_del_init(&zspage->list); + zs_stat_dec(class, fullness, 1); +} + +/* + * Each size class maintains zspages in different fullness groups depending + * on the number of live objects they contain. When allocating or freeing + * objects, the fullness status of the page can change, say, from ALMOST_FULL + * to ALMOST_EMPTY when freeing an object. This function checks if such + * a status change has occurred for the given page and accordingly moves the + * page from the freelist of the old fullness group to that of the new + * fullness group. + */ +static enum fullness_group fix_fullness_group(struct size_class *class, + struct zspage *zspage) +{ + int class_idx; + enum fullness_group currfg, newfg; + + get_zspage_mapping(zspage, &class_idx, &currfg); + newfg = get_fullness_group(class, zspage); + if (newfg == currfg) + goto out; + + if (!is_zspage_isolated(zspage)) { + remove_zspage(class, zspage, currfg); + insert_zspage(class, zspage, newfg); + } + + set_zspage_mapping(zspage, class_idx, newfg); + +out: + return newfg; +} + +/* + * We have to decide on how many pages to link together + * to form a zspage for each size class. This is important + * to reduce wastage due to unusable space left at end of + * each zspage which is given as: + * wastage = Zp % class_size + * usage = Zp - wastage + * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... + * + * For example, for size class of 3/8 * PAGE_SIZE, we should + * link together 3 PAGE_SIZE sized pages to form a zspage + * since then we can perfectly fit in 8 such objects. + */ +static int get_pages_per_zspage(int class_size) +{ + int i, max_usedpc = 0; + /* zspage order which gives maximum used size per KB */ + int max_usedpc_order = 1; + + for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { + int zspage_size; + int waste, usedpc; + + zspage_size = i * PAGE_SIZE; + waste = zspage_size % class_size; + usedpc = (zspage_size - waste) * 100 / zspage_size; + + if (usedpc > max_usedpc) { + max_usedpc = usedpc; + max_usedpc_order = i; + } + } + + return max_usedpc_order; +} + +static struct zspage *get_zspage(struct page *page) +{ + struct zspage *zspage = (struct zspage *)page->private; + + BUG_ON(zspage->magic != ZSPAGE_MAGIC); + return zspage; +} + +static struct page *get_next_page(struct page *page) +{ + if (unlikely(PageHugeObject(page))) + return NULL; + + return page->freelist; +} + +/** + * obj_to_location - get (, ) from encoded object value + * @obj: the encoded object value + * @page: page object resides in zspage + * @obj_idx: object index + */ +static void obj_to_location(unsigned long obj, struct page **page, + unsigned int *obj_idx) +{ + obj >>= OBJ_TAG_BITS; + *page = pfn_to_page(obj >> OBJ_INDEX_BITS); + *obj_idx = (obj & OBJ_INDEX_MASK); +} + +/** + * location_to_obj - get obj value encoded from (, ) + * @page: page object resides in zspage + * @obj_idx: object index + */ +static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) +{ + unsigned long obj; + + obj = page_to_pfn(page) << OBJ_INDEX_BITS; + obj |= obj_idx & OBJ_INDEX_MASK; + obj <<= OBJ_TAG_BITS; + + return obj; +} + +static unsigned long handle_to_obj(unsigned long handle) +{ + return *(unsigned long *)handle; +} + +static unsigned long obj_to_head(struct page *page, void *obj) +{ + if (unlikely(PageHugeObject(page))) { + VM_BUG_ON_PAGE(!is_first_page(page), page); + return page->index; + } else + return *(unsigned long *)obj; +} + +static inline int testpin_tag(unsigned long handle) +{ + return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); +} + +static inline int trypin_tag(unsigned long handle) +{ + return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); +} + +static void pin_tag(unsigned long handle) __acquires(bitlock) +{ + bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); +} + +static void unpin_tag(unsigned long handle) __releases(bitlock) +{ + bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); +} + +static void reset_page(struct page *page) +{ + __ClearPageMovable(page); + ClearPagePrivate(page); + set_page_private(page, 0); + page_mapcount_reset(page); + ClearPageHugeObject(page); + page->freelist = NULL; +} + +static int trylock_zspage(struct zspage *zspage) +{ + struct page *cursor, *fail; + + for (cursor = get_first_page(zspage); cursor != NULL; cursor = + get_next_page(cursor)) { + if (!trylock_page(cursor)) { + fail = cursor; + goto unlock; + } + } + + return 1; +unlock: + for (cursor = get_first_page(zspage); cursor != fail; cursor = + get_next_page(cursor)) + unlock_page(cursor); + + return 0; +} + +static void __free_zspage(struct zs_pool *pool, struct size_class *class, + struct zspage *zspage) +{ + struct page *page, *next; + enum fullness_group fg; + unsigned int class_idx; + + get_zspage_mapping(zspage, &class_idx, &fg); + + assert_spin_locked(&class->lock); + + VM_BUG_ON(get_zspage_inuse(zspage)); + VM_BUG_ON(fg != ZS_EMPTY); + + next = page = get_first_page(zspage); + do { + VM_BUG_ON_PAGE(!PageLocked(page), page); + next = get_next_page(page); + reset_page(page); + unlock_page(page); + dec_zone_page_state(page, NR_ZSPAGES); + put_page(page); + page = next; + } while (page != NULL); + + cache_free_zspage(pool, zspage); + + zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); + atomic_long_sub(class->pages_per_zspage, + &pool->pages_allocated); +} + +static void free_zspage(struct zs_pool *pool, struct size_class *class, + struct zspage *zspage) +{ + VM_BUG_ON(get_zspage_inuse(zspage)); + VM_BUG_ON(list_empty(&zspage->list)); + + if (!trylock_zspage(zspage)) { + kick_deferred_free(pool); + return; + } + + remove_zspage(class, zspage, ZS_EMPTY); + __free_zspage(pool, class, zspage); +} + +/* Initialize a newly allocated zspage */ +static void init_zspage(struct size_class *class, struct zspage *zspage) +{ + unsigned int freeobj = 1; + unsigned long off = 0; + struct page *page = get_first_page(zspage); + + while (page) { + struct page *next_page; + struct link_free *link; + void *vaddr; + + set_first_obj_offset(page, off); + + vaddr = kmap_atomic(page); + link = (struct link_free *)vaddr + off / sizeof(*link); + + while ((off += class->size) < PAGE_SIZE) { + link->next = freeobj++ << OBJ_TAG_BITS; + link += class->size / sizeof(*link); + } + + /* + * We now come to the last (full or partial) object on this + * page, which must point to the first object on the next + * page (if present) + */ + next_page = get_next_page(page); + if (next_page) { + link->next = freeobj++ << OBJ_TAG_BITS; + } else { + /* + * Reset OBJ_TAG_BITS bit to last link to tell + * whether it's allocated object or not. + */ + link->next = -1UL << OBJ_TAG_BITS; + } + kunmap_atomic(vaddr); + page = next_page; + off %= PAGE_SIZE; + } + + set_freeobj(zspage, 0); +} + +static void create_page_chain(struct size_class *class, struct zspage *zspage, + struct page *pages[]) +{ + int i; + struct page *page; + struct page *prev_page = NULL; + int nr_pages = class->pages_per_zspage; + + /* + * Allocate individual pages and link them together as: + * 1. all pages are linked together using page->freelist + * 2. each sub-page point to zspage using page->private + * + * we set PG_private to identify the first page (i.e. no other sub-page + * has this flag set). + */ + for (i = 0; i < nr_pages; i++) { + page = pages[i]; + set_page_private(page, (unsigned long)zspage); + page->freelist = NULL; + if (i == 0) { + zspage->first_page = page; + SetPagePrivate(page); + if (unlikely(class->objs_per_zspage == 1 && + class->pages_per_zspage == 1)) + SetPageHugeObject(page); + } else { + prev_page->freelist = page; + } + prev_page = page; + } +} + +/* + * Allocate a zspage for the given size class + */ +static struct zspage *alloc_zspage(struct zs_pool *pool, + struct size_class *class, + gfp_t gfp) +{ + int i; + struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; + struct zspage *zspage = cache_alloc_zspage(pool, gfp); + + if (!zspage) + return NULL; + + memset(zspage, 0, sizeof(struct zspage)); + zspage->magic = ZSPAGE_MAGIC; + migrate_lock_init(zspage); + + for (i = 0; i < class->pages_per_zspage; i++) { + struct page *page; + + page = alloc_page(gfp); + if (!page) { + while (--i >= 0) { + dec_zone_page_state(pages[i], NR_ZSPAGES); + __free_page(pages[i]); + } + cache_free_zspage(pool, zspage); + return NULL; + } + + inc_zone_page_state(page, NR_ZSPAGES); + pages[i] = page; + } + + create_page_chain(class, zspage, pages); + init_zspage(class, zspage); + + return zspage; +} + +static struct zspage *find_get_zspage(struct size_class *class) +{ + int i; + struct zspage *zspage; + + for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { + zspage = list_first_entry_or_null(&class->fullness_list[i], + struct zspage, list); + if (zspage) + break; + } + + return zspage; +} + +static inline int __zs_cpu_up(struct mapping_area *area) +{ + /* + * Make sure we don't leak memory if a cpu UP notification + * and zs_init() race and both call zs_cpu_up() on the same cpu + */ + if (area->vm_buf) + return 0; + area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); + if (!area->vm_buf) + return -ENOMEM; + return 0; +} + +static inline void __zs_cpu_down(struct mapping_area *area) +{ + kfree(area->vm_buf); + area->vm_buf = NULL; +} + +static void *__zs_map_object(struct mapping_area *area, + struct page *pages[2], int off, int size) +{ + int sizes[2]; + void *addr; + char *buf = area->vm_buf; + + /* disable page faults to match kmap_atomic() return conditions */ + pagefault_disable(); + + /* no read fastpath */ + if (area->vm_mm == ZS_MM_WO) + goto out; + + sizes[0] = PAGE_SIZE - off; + sizes[1] = size - sizes[0]; + + /* copy object to per-cpu buffer */ + addr = kmap_atomic(pages[0]); + memcpy(buf, addr + off, sizes[0]); + kunmap_atomic(addr); + addr = kmap_atomic(pages[1]); + memcpy(buf + sizes[0], addr, sizes[1]); + kunmap_atomic(addr); +out: + return area->vm_buf; +} + +static void __zs_unmap_object(struct mapping_area *area, + struct page *pages[2], int off, int size) +{ + int sizes[2]; + void *addr; + char *buf; + + /* no write fastpath */ + if (area->vm_mm == ZS_MM_RO) + goto out; + + buf = area->vm_buf; + buf = buf + ZS_HANDLE_SIZE; + size -= ZS_HANDLE_SIZE; + off += ZS_HANDLE_SIZE; + + sizes[0] = PAGE_SIZE - off; + sizes[1] = size - sizes[0]; + + /* copy per-cpu buffer to object */ + addr = kmap_atomic(pages[0]); + memcpy(addr + off, buf, sizes[0]); + kunmap_atomic(addr); + addr = kmap_atomic(pages[1]); + memcpy(addr, buf + sizes[0], sizes[1]); + kunmap_atomic(addr); + +out: + /* enable page faults to match kunmap_atomic() return conditions */ + pagefault_enable(); +} + +static int zs_cpu_prepare(unsigned int cpu) +{ + struct mapping_area *area; + + area = &per_cpu(zs_map_area, cpu); + return __zs_cpu_up(area); +} + +static int zs_cpu_dead(unsigned int cpu) +{ + struct mapping_area *area; + + area = &per_cpu(zs_map_area, cpu); + __zs_cpu_down(area); + return 0; +} + +static bool can_merge(struct size_class *prev, int pages_per_zspage, + int objs_per_zspage) +{ + if (prev->pages_per_zspage == pages_per_zspage && + prev->objs_per_zspage == objs_per_zspage) + return true; + + return false; +} + +static bool zspage_full(struct size_class *class, struct zspage *zspage) +{ + return get_zspage_inuse(zspage) == class->objs_per_zspage; +} + +unsigned long zs_get_total_pages(struct zs_pool *pool) +{ + return atomic_long_read(&pool->pages_allocated); +} +EXPORT_SYMBOL_GPL(zs_get_total_pages); + +/** + * zs_map_object - get address of allocated object from handle. + * @pool: pool from which the object was allocated + * @handle: handle returned from zs_malloc + * @mm: maping mode to use + * + * Before using an object allocated from zs_malloc, it must be mapped using + * this function. When done with the object, it must be unmapped using + * zs_unmap_object. + * + * Only one object can be mapped per cpu at a time. There is no protection + * against nested mappings. + * + * This function returns with preemption and page faults disabled. + */ +void *zs_map_object(struct zs_pool *pool, unsigned long handle, + enum zs_mapmode mm) +{ + struct zspage *zspage; + struct page *page; + unsigned long obj, off; + unsigned int obj_idx; + + unsigned int class_idx; + enum fullness_group fg; + struct size_class *class; + struct mapping_area *area; + struct page *pages[2]; + void *ret; + + /* + * Because we use per-cpu mapping areas shared among the + * pools/users, we can't allow mapping in interrupt context + * because it can corrupt another users mappings. + */ + BUG_ON(in_interrupt()); + + /* From now on, migration cannot move the object */ + pin_tag(handle); + + obj = handle_to_obj(handle); + obj_to_location(obj, &page, &obj_idx); + zspage = get_zspage(page); + + /* migration cannot move any subpage in this zspage */ + migrate_read_lock(zspage); + + get_zspage_mapping(zspage, &class_idx, &fg); + class = pool->size_class[class_idx]; + off = (class->size * obj_idx) & ~PAGE_MASK; + + area = &get_cpu_var(zs_map_area); + area->vm_mm = mm; + if (off + class->size <= PAGE_SIZE) { + /* this object is contained entirely within a page */ + area->vm_addr = kmap_atomic(page); + ret = area->vm_addr + off; + goto out; + } + + /* this object spans two pages */ + pages[0] = page; + pages[1] = get_next_page(page); + BUG_ON(!pages[1]); + + ret = __zs_map_object(area, pages, off, class->size); +out: + if (likely(!PageHugeObject(page))) + ret += ZS_HANDLE_SIZE; + + return ret; +} +EXPORT_SYMBOL_GPL(zs_map_object); + +void zs_unmap_object(struct zs_pool *pool, unsigned long handle) +{ + struct zspage *zspage; + struct page *page; + unsigned long obj, off; + unsigned int obj_idx; + + unsigned int class_idx; + enum fullness_group fg; + struct size_class *class; + struct mapping_area *area; + + obj = handle_to_obj(handle); + obj_to_location(obj, &page, &obj_idx); + zspage = get_zspage(page); + get_zspage_mapping(zspage, &class_idx, &fg); + class = pool->size_class[class_idx]; + off = (class->size * obj_idx) & ~PAGE_MASK; + + area = this_cpu_ptr(&zs_map_area); + if (off + class->size <= PAGE_SIZE) + kunmap_atomic(area->vm_addr); + else { + struct page *pages[2]; + + pages[0] = page; + pages[1] = get_next_page(page); + BUG_ON(!pages[1]); + + __zs_unmap_object(area, pages, off, class->size); + } + put_cpu_var(zs_map_area); + + migrate_read_unlock(zspage); + unpin_tag(handle); +} +EXPORT_SYMBOL_GPL(zs_unmap_object); + +/** + * zs_huge_class_size() - Returns the size (in bytes) of the first huge + * zsmalloc &size_class. + * @pool: zsmalloc pool to use + * + * The function returns the size of the first huge class - any object of equal + * or bigger size will be stored in zspage consisting of a single physical + * page. + * + * Context: Any context. + * + * Return: the size (in bytes) of the first huge zsmalloc &size_class. + */ +size_t zs_huge_class_size(struct zs_pool *pool) +{ + return huge_class_size; +} +EXPORT_SYMBOL_GPL(zs_huge_class_size); + +static unsigned long obj_malloc(struct size_class *class, + struct zspage *zspage, unsigned long handle) +{ + int i, nr_page, offset; + unsigned long obj; + struct link_free *link; + + struct page *m_page; + unsigned long m_offset; + void *vaddr; + + handle |= OBJ_ALLOCATED_TAG; + obj = get_freeobj(zspage); + + offset = obj * class->size; + nr_page = offset >> PAGE_SHIFT; + m_offset = offset & ~PAGE_MASK; + m_page = get_first_page(zspage); + + for (i = 0; i < nr_page; i++) + m_page = get_next_page(m_page); + + vaddr = kmap_atomic(m_page); + link = (struct link_free *)vaddr + m_offset / sizeof(*link); + set_freeobj(zspage, link->next >> OBJ_TAG_BITS); + if (likely(!PageHugeObject(m_page))) + /* record handle in the header of allocated chunk */ + link->handle = handle; + else + /* record handle to page->index */ + zspage->first_page->index = handle; + + kunmap_atomic(vaddr); + mod_zspage_inuse(zspage, 1); + zs_stat_inc(class, OBJ_USED, 1); + + obj = location_to_obj(m_page, obj); + + return obj; +} + + +/** + * zs_malloc - Allocate block of given size from pool. + * @pool: pool to allocate from + * @size: size of block to allocate + * @gfp: gfp flags when allocating object + * + * On success, handle to the allocated object is returned, + * otherwise 0. + * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. + */ +unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) +{ + unsigned long handle, obj; + struct size_class *class; + enum fullness_group newfg; + struct zspage *zspage; + + if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) + return 0; + + handle = cache_alloc_handle(pool, gfp); + if (!handle) + return 0; + + /* extra space in chunk to keep the handle */ + size += ZS_HANDLE_SIZE; + class = pool->size_class[get_size_class_index(size)]; + + spin_lock(&class->lock); + zspage = find_get_zspage(class); + if (likely(zspage)) { + obj = obj_malloc(class, zspage, handle); + /* Now move the zspage to another fullness group, if required */ + fix_fullness_group(class, zspage); + record_obj(handle, obj); + spin_unlock(&class->lock); + + return handle; + } + + spin_unlock(&class->lock); + + zspage = alloc_zspage(pool, class, gfp); + if (!zspage) { + cache_free_handle(pool, handle); + return 0; + } + + spin_lock(&class->lock); + obj = obj_malloc(class, zspage, handle); + newfg = get_fullness_group(class, zspage); + insert_zspage(class, zspage, newfg); + set_zspage_mapping(zspage, class->index, newfg); + record_obj(handle, obj); + atomic_long_add(class->pages_per_zspage, + &pool->pages_allocated); + zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); + + /* We completely set up zspage so mark them as movable */ + SetZsPageMovable(pool, zspage); + spin_unlock(&class->lock); + + return handle; +} +EXPORT_SYMBOL_GPL(zs_malloc); + +static void obj_free(struct size_class *class, unsigned long obj) +{ + struct link_free *link; + struct zspage *zspage; + struct page *f_page; + unsigned long f_offset; + unsigned int f_objidx; + void *vaddr; + + obj &= ~OBJ_ALLOCATED_TAG; + obj_to_location(obj, &f_page, &f_objidx); + f_offset = (class->size * f_objidx) & ~PAGE_MASK; + zspage = get_zspage(f_page); + + vaddr = kmap_atomic(f_page); + + /* Insert this object in containing zspage's freelist */ + link = (struct link_free *)(vaddr + f_offset); + link->next = get_freeobj(zspage) << OBJ_TAG_BITS; + kunmap_atomic(vaddr); + set_freeobj(zspage, f_objidx); + mod_zspage_inuse(zspage, -1); + zs_stat_dec(class, OBJ_USED, 1); +} + +void zs_free(struct zs_pool *pool, unsigned long handle) +{ + struct zspage *zspage; + struct page *f_page; + unsigned long obj; + unsigned int f_objidx; + int class_idx; + struct size_class *class; + enum fullness_group fullness; + bool isolated; + + if (unlikely(!handle)) + return; + + pin_tag(handle); + obj = handle_to_obj(handle); + obj_to_location(obj, &f_page, &f_objidx); + zspage = get_zspage(f_page); + + migrate_read_lock(zspage); + + get_zspage_mapping(zspage, &class_idx, &fullness); + class = pool->size_class[class_idx]; + + spin_lock(&class->lock); + obj_free(class, obj); + fullness = fix_fullness_group(class, zspage); + if (fullness != ZS_EMPTY) { + migrate_read_unlock(zspage); + goto out; + } + + isolated = is_zspage_isolated(zspage); + migrate_read_unlock(zspage); + /* If zspage is isolated, zs_page_putback will free the zspage */ + if (likely(!isolated)) + free_zspage(pool, class, zspage); +out: + + spin_unlock(&class->lock); + unpin_tag(handle); + cache_free_handle(pool, handle); +} +EXPORT_SYMBOL_GPL(zs_free); + +static void zs_object_copy(struct size_class *class, unsigned long dst, + unsigned long src) +{ + struct page *s_page, *d_page; + unsigned int s_objidx, d_objidx; + unsigned long s_off, d_off; + void *s_addr, *d_addr; + int s_size, d_size, size; + int written = 0; + + s_size = d_size = class->size; + + obj_to_location(src, &s_page, &s_objidx); + obj_to_location(dst, &d_page, &d_objidx); + + s_off = (class->size * s_objidx) & ~PAGE_MASK; + d_off = (class->size * d_objidx) & ~PAGE_MASK; + + if (s_off + class->size > PAGE_SIZE) + s_size = PAGE_SIZE - s_off; + + if (d_off + class->size > PAGE_SIZE) + d_size = PAGE_SIZE - d_off; + + s_addr = kmap_atomic(s_page); + d_addr = kmap_atomic(d_page); + + while (1) { + size = min(s_size, d_size); + memcpy(d_addr + d_off, s_addr + s_off, size); + written += size; + + if (written == class->size) + break; + + s_off += size; + s_size -= size; + d_off += size; + d_size -= size; + + if (s_off >= PAGE_SIZE) { + kunmap_atomic(d_addr); + kunmap_atomic(s_addr); + s_page = get_next_page(s_page); + s_addr = kmap_atomic(s_page); + d_addr = kmap_atomic(d_page); + s_size = class->size - written; + s_off = 0; + } + + if (d_off >= PAGE_SIZE) { + kunmap_atomic(d_addr); + d_page = get_next_page(d_page); + d_addr = kmap_atomic(d_page); + d_size = class->size - written; + d_off = 0; + } + } + + kunmap_atomic(d_addr); + kunmap_atomic(s_addr); +} + +/* + * Find alloced object in zspage from index object and + * return handle. + */ +static unsigned long find_alloced_obj(struct size_class *class, + struct page *page, int *obj_idx) +{ + unsigned long head; + int offset = 0; + int index = *obj_idx; + unsigned long handle = 0; + void *addr = kmap_atomic(page); + + offset = get_first_obj_offset(page); + offset += class->size * index; + + while (offset < PAGE_SIZE) { + head = obj_to_head(page, addr + offset); + if (head & OBJ_ALLOCATED_TAG) { + handle = head & ~OBJ_ALLOCATED_TAG; + if (trypin_tag(handle)) + break; + handle = 0; + } + + offset += class->size; + index++; + } + + kunmap_atomic(addr); + + *obj_idx = index; + + return handle; +} + +struct zs_compact_control { + /* Source spage for migration which could be a subpage of zspage */ + struct page *s_page; + /* Destination page for migration which should be a first page + * of zspage. */ + struct page *d_page; + /* Starting object index within @s_page which used for live object + * in the subpage. */ + int obj_idx; +}; + +static int migrate_zspage(struct zs_pool *pool, struct size_class *class, + struct zs_compact_control *cc) +{ + unsigned long used_obj, free_obj; + unsigned long handle; + struct page *s_page = cc->s_page; + struct page *d_page = cc->d_page; + int obj_idx = cc->obj_idx; + int ret = 0; + + while (1) { + handle = find_alloced_obj(class, s_page, &obj_idx); + if (!handle) { + s_page = get_next_page(s_page); + if (!s_page) + break; + obj_idx = 0; + continue; + } + + /* Stop if there is no more space */ + if (zspage_full(class, get_zspage(d_page))) { + unpin_tag(handle); + ret = -ENOMEM; + break; + } + + used_obj = handle_to_obj(handle); + free_obj = obj_malloc(class, get_zspage(d_page), handle); + zs_object_copy(class, free_obj, used_obj); + obj_idx++; + /* + * record_obj updates handle's value to free_obj and it will + * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which + * breaks synchronization using pin_tag(e,g, zs_free) so + * let's keep the lock bit. + */ + free_obj |= BIT(HANDLE_PIN_BIT); + record_obj(handle, free_obj); + unpin_tag(handle); + obj_free(class, used_obj); + } + + /* Remember last position in this iteration */ + cc->s_page = s_page; + cc->obj_idx = obj_idx; + + return ret; +} + +static struct zspage *isolate_zspage(struct size_class *class, bool source) +{ + int i; + struct zspage *zspage; + enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; + + if (!source) { + fg[0] = ZS_ALMOST_FULL; + fg[1] = ZS_ALMOST_EMPTY; + } + + for (i = 0; i < 2; i++) { + zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], + struct zspage, list); + if (zspage) { + VM_BUG_ON(is_zspage_isolated(zspage)); + remove_zspage(class, zspage, fg[i]); + return zspage; + } + } + + return zspage; +} + +/* + * putback_zspage - add @zspage into right class's fullness list + * @class: destination class + * @zspage: target page + * + * Return @zspage's fullness_group + */ +static enum fullness_group putback_zspage(struct size_class *class, + struct zspage *zspage) +{ + enum fullness_group fullness; + + VM_BUG_ON(is_zspage_isolated(zspage)); + + fullness = get_fullness_group(class, zspage); + insert_zspage(class, zspage, fullness); + set_zspage_mapping(zspage, class->index, fullness); + + return fullness; +} + +#ifdef CONFIG_COMPACTION +/* + * To prevent zspage destroy during migration, zspage freeing should + * hold locks of all pages in the zspage. + */ +static void lock_zspage(struct zspage *zspage) +{ + struct page *curr_page, *page; + + /* + * Pages we haven't locked yet can be migrated off the list while we're + * trying to lock them, so we need to be careful and only attempt to + * lock each page under migrate_read_lock(). Otherwise, the page we lock + * may no longer belong to the zspage. This means that we may wait for + * the wrong page to unlock, so we must take a reference to the page + * prior to waiting for it to unlock outside migrate_read_lock(). + */ + while (1) { + migrate_read_lock(zspage); + page = get_first_page(zspage); + if (trylock_page(page)) + break; + get_page(page); + migrate_read_unlock(zspage); + wait_on_page_locked(page); + put_page(page); + } + + curr_page = page; + while ((page = get_next_page(curr_page))) { + if (trylock_page(page)) { + curr_page = page; + } else { + get_page(page); + migrate_read_unlock(zspage); + wait_on_page_locked(page); + put_page(page); + migrate_read_lock(zspage); + } + } + migrate_read_unlock(zspage); +} + +static int zs_init_fs_context(struct fs_context *fc) +{ + return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM; +} + +static struct file_system_type zsmalloc_fs = { + .name = "zsmalloc", + .init_fs_context = zs_init_fs_context, + .kill_sb = kill_anon_super, +}; + +static int zsmalloc_mount(void) +{ + int ret = 0; + + zsmalloc_mnt = kern_mount(&zsmalloc_fs); + if (IS_ERR(zsmalloc_mnt)) + ret = PTR_ERR(zsmalloc_mnt); + + return ret; +} + +static void zsmalloc_unmount(void) +{ + kern_unmount(zsmalloc_mnt); +} + +static void migrate_lock_init(struct zspage *zspage) +{ + rwlock_init(&zspage->lock); +} + +static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) +{ + read_lock(&zspage->lock); +} + +static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) +{ + read_unlock(&zspage->lock); +} + +static void migrate_write_lock(struct zspage *zspage) +{ + write_lock(&zspage->lock); +} + +static void migrate_write_unlock(struct zspage *zspage) +{ + write_unlock(&zspage->lock); +} + +/* Number of isolated subpage for *page migration* in this zspage */ +static void inc_zspage_isolation(struct zspage *zspage) +{ + zspage->isolated++; +} + +static void dec_zspage_isolation(struct zspage *zspage) +{ + zspage->isolated--; +} + +static void putback_zspage_deferred(struct zs_pool *pool, + struct size_class *class, + struct zspage *zspage) +{ + enum fullness_group fg; + + fg = putback_zspage(class, zspage); + if (fg == ZS_EMPTY) + schedule_work(&pool->free_work); + +} + +static inline void zs_pool_dec_isolated(struct zs_pool *pool) +{ + VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0); + atomic_long_dec(&pool->isolated_pages); + /* + * Checking pool->destroying must happen after atomic_long_dec() + * for pool->isolated_pages above. Paired with the smp_mb() in + * zs_unregister_migration(). + */ + smp_mb__after_atomic(); + if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying) + wake_up_all(&pool->migration_wait); +} + +static void replace_sub_page(struct size_class *class, struct zspage *zspage, + struct page *newpage, struct page *oldpage) +{ + struct page *page; + struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; + int idx = 0; + + page = get_first_page(zspage); + do { + if (page == oldpage) + pages[idx] = newpage; + else + pages[idx] = page; + idx++; + } while ((page = get_next_page(page)) != NULL); + + create_page_chain(class, zspage, pages); + set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); + if (unlikely(PageHugeObject(oldpage))) + newpage->index = oldpage->index; + __SetPageMovable(newpage, page_mapping(oldpage)); +} + +static bool zs_page_isolate(struct page *page, isolate_mode_t mode) +{ + struct zs_pool *pool; + struct size_class *class; + int class_idx; + enum fullness_group fullness; + struct zspage *zspage; + struct address_space *mapping; + + /* + * Page is locked so zspage couldn't be destroyed. For detail, look at + * lock_zspage in free_zspage. + */ + VM_BUG_ON_PAGE(!PageMovable(page), page); + VM_BUG_ON_PAGE(PageIsolated(page), page); + + zspage = get_zspage(page); + + /* + * Without class lock, fullness could be stale while class_idx is okay + * because class_idx is constant unless page is freed so we should get + * fullness again under class lock. + */ + get_zspage_mapping(zspage, &class_idx, &fullness); + mapping = page_mapping(page); + pool = mapping->private_data; + class = pool->size_class[class_idx]; + + spin_lock(&class->lock); + if (get_zspage_inuse(zspage) == 0) { + spin_unlock(&class->lock); + return false; + } + + /* zspage is isolated for object migration */ + if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { + spin_unlock(&class->lock); + return false; + } + + /* + * If this is first time isolation for the zspage, isolate zspage from + * size_class to prevent further object allocation from the zspage. + */ + if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { + get_zspage_mapping(zspage, &class_idx, &fullness); + atomic_long_inc(&pool->isolated_pages); + remove_zspage(class, zspage, fullness); + } + + inc_zspage_isolation(zspage); + spin_unlock(&class->lock); + + return true; +} + +static int zs_page_migrate(struct address_space *mapping, struct page *newpage, + struct page *page, enum migrate_mode mode) +{ + struct zs_pool *pool; + struct size_class *class; + int class_idx; + enum fullness_group fullness; + struct zspage *zspage; + struct page *dummy; + void *s_addr, *d_addr, *addr; + int offset, pos; + unsigned long handle, head; + unsigned long old_obj, new_obj; + unsigned int obj_idx; + int ret = -EAGAIN; + + /* + * We cannot support the _NO_COPY case here, because copy needs to + * happen under the zs lock, which does not work with + * MIGRATE_SYNC_NO_COPY workflow. + */ + if (mode == MIGRATE_SYNC_NO_COPY) + return -EINVAL; + + VM_BUG_ON_PAGE(!PageMovable(page), page); + VM_BUG_ON_PAGE(!PageIsolated(page), page); + + zspage = get_zspage(page); + + /* Concurrent compactor cannot migrate any subpage in zspage */ + migrate_write_lock(zspage); + get_zspage_mapping(zspage, &class_idx, &fullness); + pool = mapping->private_data; + class = pool->size_class[class_idx]; + offset = get_first_obj_offset(page); + + spin_lock(&class->lock); + if (!get_zspage_inuse(zspage)) { + /* + * Set "offset" to end of the page so that every loops + * skips unnecessary object scanning. + */ + offset = PAGE_SIZE; + } + + pos = offset; + s_addr = kmap_atomic(page); + while (pos < PAGE_SIZE) { + head = obj_to_head(page, s_addr + pos); + if (head & OBJ_ALLOCATED_TAG) { + handle = head & ~OBJ_ALLOCATED_TAG; + if (!trypin_tag(handle)) + goto unpin_objects; + } + pos += class->size; + } + + /* + * Here, any user cannot access all objects in the zspage so let's move. + */ + d_addr = kmap_atomic(newpage); + memcpy(d_addr, s_addr, PAGE_SIZE); + kunmap_atomic(d_addr); + + for (addr = s_addr + offset; addr < s_addr + pos; + addr += class->size) { + head = obj_to_head(page, addr); + if (head & OBJ_ALLOCATED_TAG) { + handle = head & ~OBJ_ALLOCATED_TAG; + if (!testpin_tag(handle)) + BUG(); + + old_obj = handle_to_obj(handle); + obj_to_location(old_obj, &dummy, &obj_idx); + new_obj = (unsigned long)location_to_obj(newpage, + obj_idx); + new_obj |= BIT(HANDLE_PIN_BIT); + record_obj(handle, new_obj); + } + } + + replace_sub_page(class, zspage, newpage, page); + get_page(newpage); + + dec_zspage_isolation(zspage); + + /* + * Page migration is done so let's putback isolated zspage to + * the list if @page is final isolated subpage in the zspage. + */ + if (!is_zspage_isolated(zspage)) { + /* + * We cannot race with zs_destroy_pool() here because we wait + * for isolation to hit zero before we start destroying. + * Also, we ensure that everyone can see pool->destroying before + * we start waiting. + */ + putback_zspage_deferred(pool, class, zspage); + zs_pool_dec_isolated(pool); + } + + if (page_zone(newpage) != page_zone(page)) { + dec_zone_page_state(page, NR_ZSPAGES); + inc_zone_page_state(newpage, NR_ZSPAGES); + } + + reset_page(page); + put_page(page); + page = newpage; + + ret = MIGRATEPAGE_SUCCESS; +unpin_objects: + for (addr = s_addr + offset; addr < s_addr + pos; + addr += class->size) { + head = obj_to_head(page, addr); + if (head & OBJ_ALLOCATED_TAG) { + handle = head & ~OBJ_ALLOCATED_TAG; + if (!testpin_tag(handle)) + BUG(); + unpin_tag(handle); + } + } + kunmap_atomic(s_addr); + spin_unlock(&class->lock); + migrate_write_unlock(zspage); + + return ret; +} + +static void zs_page_putback(struct page *page) +{ + struct zs_pool *pool; + struct size_class *class; + int class_idx; + enum fullness_group fg; + struct address_space *mapping; + struct zspage *zspage; + + VM_BUG_ON_PAGE(!PageMovable(page), page); + VM_BUG_ON_PAGE(!PageIsolated(page), page); + + zspage = get_zspage(page); + get_zspage_mapping(zspage, &class_idx, &fg); + mapping = page_mapping(page); + pool = mapping->private_data; + class = pool->size_class[class_idx]; + + spin_lock(&class->lock); + dec_zspage_isolation(zspage); + if (!is_zspage_isolated(zspage)) { + /* + * Due to page_lock, we cannot free zspage immediately + * so let's defer. + */ + putback_zspage_deferred(pool, class, zspage); + zs_pool_dec_isolated(pool); + } + spin_unlock(&class->lock); +} + +static const struct address_space_operations zsmalloc_aops = { + .isolate_page = zs_page_isolate, + .migratepage = zs_page_migrate, + .putback_page = zs_page_putback, +}; + +static int zs_register_migration(struct zs_pool *pool) +{ + pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); + if (IS_ERR(pool->inode)) { + pool->inode = NULL; + return 1; + } + + pool->inode->i_mapping->private_data = pool; + pool->inode->i_mapping->a_ops = &zsmalloc_aops; + return 0; +} + +static bool pool_isolated_are_drained(struct zs_pool *pool) +{ + return atomic_long_read(&pool->isolated_pages) == 0; +} + +/* Function for resolving migration */ +static void wait_for_isolated_drain(struct zs_pool *pool) +{ + + /* + * We're in the process of destroying the pool, so there are no + * active allocations. zs_page_isolate() fails for completely free + * zspages, so we need only wait for the zs_pool's isolated + * count to hit zero. + */ + wait_event(pool->migration_wait, + pool_isolated_are_drained(pool)); +} + +static void zs_unregister_migration(struct zs_pool *pool) +{ + pool->destroying = true; + /* + * We need a memory barrier here to ensure global visibility of + * pool->destroying. Thus pool->isolated pages will either be 0 in which + * case we don't care, or it will be > 0 and pool->destroying will + * ensure that we wake up once isolation hits 0. + */ + smp_mb(); + wait_for_isolated_drain(pool); /* This can block */ + flush_work(&pool->free_work); + iput(pool->inode); +} + +/* + * Caller should hold page_lock of all pages in the zspage + * In here, we cannot use zspage meta data. + */ +static void async_free_zspage(struct work_struct *work) +{ + int i; + struct size_class *class; + unsigned int class_idx; + enum fullness_group fullness; + struct zspage *zspage, *tmp; + LIST_HEAD(free_pages); + struct zs_pool *pool = container_of(work, struct zs_pool, + free_work); + + for (i = 0; i < ZS_SIZE_CLASSES; i++) { + class = pool->size_class[i]; + if (class->index != i) + continue; + + spin_lock(&class->lock); + list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); + spin_unlock(&class->lock); + } + + + list_for_each_entry_safe(zspage, tmp, &free_pages, list) { + list_del(&zspage->list); + lock_zspage(zspage); + + get_zspage_mapping(zspage, &class_idx, &fullness); + VM_BUG_ON(fullness != ZS_EMPTY); + class = pool->size_class[class_idx]; + spin_lock(&class->lock); + __free_zspage(pool, pool->size_class[class_idx], zspage); + spin_unlock(&class->lock); + } +}; + +static void kick_deferred_free(struct zs_pool *pool) +{ + schedule_work(&pool->free_work); +} + +static void init_deferred_free(struct zs_pool *pool) +{ + INIT_WORK(&pool->free_work, async_free_zspage); +} + +static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) +{ + struct page *page = get_first_page(zspage); + + do { + WARN_ON(!trylock_page(page)); + __SetPageMovable(page, pool->inode->i_mapping); + unlock_page(page); + } while ((page = get_next_page(page)) != NULL); +} +#endif + +/* + * + * Based on the number of unused allocated objects calculate + * and return the number of pages that we can free. + */ +static unsigned long zs_can_compact(struct size_class *class) +{ + unsigned long obj_wasted; + unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); + unsigned long obj_used = zs_stat_get(class, OBJ_USED); + + if (obj_allocated <= obj_used) + return 0; + + obj_wasted = obj_allocated - obj_used; + obj_wasted /= class->objs_per_zspage; + + return obj_wasted * class->pages_per_zspage; +} + +static unsigned long __zs_compact(struct zs_pool *pool, + struct size_class *class) +{ + struct zs_compact_control cc; + struct zspage *src_zspage; + struct zspage *dst_zspage = NULL; + unsigned long pages_freed = 0; + + spin_lock(&class->lock); + while ((src_zspage = isolate_zspage(class, true))) { + + if (!zs_can_compact(class)) + break; + + cc.obj_idx = 0; + cc.s_page = get_first_page(src_zspage); + + while ((dst_zspage = isolate_zspage(class, false))) { + cc.d_page = get_first_page(dst_zspage); + /* + * If there is no more space in dst_page, resched + * and see if anyone had allocated another zspage. + */ + if (!migrate_zspage(pool, class, &cc)) + break; + + putback_zspage(class, dst_zspage); + } + + /* Stop if we couldn't find slot */ + if (dst_zspage == NULL) + break; + + putback_zspage(class, dst_zspage); + if (putback_zspage(class, src_zspage) == ZS_EMPTY) { + free_zspage(pool, class, src_zspage); + pages_freed += class->pages_per_zspage; + } + spin_unlock(&class->lock); + cond_resched(); + spin_lock(&class->lock); + } + + if (src_zspage) + putback_zspage(class, src_zspage); + + spin_unlock(&class->lock); + + return pages_freed; +} + +unsigned long zs_compact(struct zs_pool *pool) +{ + int i; + struct size_class *class; + unsigned long pages_freed = 0; + + for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { + class = pool->size_class[i]; + if (!class) + continue; + if (class->index != i) + continue; + pages_freed += __zs_compact(pool, class); + } + atomic_long_add(pages_freed, &pool->stats.pages_compacted); + + return pages_freed; +} +EXPORT_SYMBOL_GPL(zs_compact); + +void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) +{ + memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); +} +EXPORT_SYMBOL_GPL(zs_pool_stats); + +static unsigned long zs_shrinker_scan(struct shrinker *shrinker, + struct shrink_control *sc) +{ + unsigned long pages_freed; + struct zs_pool *pool = container_of(shrinker, struct zs_pool, + shrinker); + + /* + * Compact classes and calculate compaction delta. + * Can run concurrently with a manually triggered + * (by user) compaction. + */ + pages_freed = zs_compact(pool); + + return pages_freed ? pages_freed : SHRINK_STOP; +} + +static unsigned long zs_shrinker_count(struct shrinker *shrinker, + struct shrink_control *sc) +{ + int i; + struct size_class *class; + unsigned long pages_to_free = 0; + struct zs_pool *pool = container_of(shrinker, struct zs_pool, + shrinker); + + for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { + class = pool->size_class[i]; + if (!class) + continue; + if (class->index != i) + continue; + + pages_to_free += zs_can_compact(class); + } + + return pages_to_free; +} + +static void zs_unregister_shrinker(struct zs_pool *pool) +{ + unregister_shrinker(&pool->shrinker); +} + +static int zs_register_shrinker(struct zs_pool *pool) +{ + pool->shrinker.scan_objects = zs_shrinker_scan; + pool->shrinker.count_objects = zs_shrinker_count; + pool->shrinker.batch = 0; + pool->shrinker.seeks = DEFAULT_SEEKS; + + return register_shrinker(&pool->shrinker); +} + +/** + * zs_create_pool - Creates an allocation pool to work from. + * @name: pool name to be created + * + * This function must be called before anything when using + * the zsmalloc allocator. + * + * On success, a pointer to the newly created pool is returned, + * otherwise NULL. + */ +struct zs_pool *zs_create_pool(const char *name) +{ + int i; + struct zs_pool *pool; + struct size_class *prev_class = NULL; + + pool = kzalloc(sizeof(*pool), GFP_KERNEL); + if (!pool) + return NULL; + + init_deferred_free(pool); + + pool->name = kstrdup(name, GFP_KERNEL); + if (!pool->name) + goto err; + +#ifdef CONFIG_COMPACTION + init_waitqueue_head(&pool->migration_wait); +#endif + + if (create_cache(pool)) + goto err; + + /* + * Iterate reversely, because, size of size_class that we want to use + * for merging should be larger or equal to current size. + */ + for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { + int size; + int pages_per_zspage; + int objs_per_zspage; + struct size_class *class; + int fullness = 0; + + size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; + if (size > ZS_MAX_ALLOC_SIZE) + size = ZS_MAX_ALLOC_SIZE; + pages_per_zspage = get_pages_per_zspage(size); + objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; + + /* + * We iterate from biggest down to smallest classes, + * so huge_class_size holds the size of the first huge + * class. Any object bigger than or equal to that will + * endup in the huge class. + */ + if (pages_per_zspage != 1 && objs_per_zspage != 1 && + !huge_class_size) { + huge_class_size = size; + /* + * The object uses ZS_HANDLE_SIZE bytes to store the + * handle. We need to subtract it, because zs_malloc() + * unconditionally adds handle size before it performs + * size class search - so object may be smaller than + * huge class size, yet it still can end up in the huge + * class because it grows by ZS_HANDLE_SIZE extra bytes + * right before class lookup. + */ + huge_class_size -= (ZS_HANDLE_SIZE - 1); + } + + /* + * size_class is used for normal zsmalloc operation such + * as alloc/free for that size. Although it is natural that we + * have one size_class for each size, there is a chance that we + * can get more memory utilization if we use one size_class for + * many different sizes whose size_class have same + * characteristics. So, we makes size_class point to + * previous size_class if possible. + */ + if (prev_class) { + if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { + pool->size_class[i] = prev_class; + continue; + } + } + + class = kzalloc(sizeof(struct size_class), GFP_KERNEL); + if (!class) + goto err; + + class->size = size; + class->index = i; + class->pages_per_zspage = pages_per_zspage; + class->objs_per_zspage = objs_per_zspage; + spin_lock_init(&class->lock); + pool->size_class[i] = class; + for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; + fullness++) + INIT_LIST_HEAD(&class->fullness_list[fullness]); + + prev_class = class; + } + + /* debug only, don't abort if it fails */ + zs_pool_stat_create(pool, name); + + if (zs_register_migration(pool)) + goto err; + + /* + * Not critical since shrinker is only used to trigger internal + * defragmentation of the pool which is pretty optional thing. If + * registration fails we still can use the pool normally and user can + * trigger compaction manually. Thus, ignore return code. + */ + zs_register_shrinker(pool); + + return pool; + +err: + zs_destroy_pool(pool); + return NULL; +} +EXPORT_SYMBOL_GPL(zs_create_pool); + +void zs_destroy_pool(struct zs_pool *pool) +{ + int i; + + zs_unregister_shrinker(pool); + zs_unregister_migration(pool); + zs_pool_stat_destroy(pool); + + for (i = 0; i < ZS_SIZE_CLASSES; i++) { + int fg; + struct size_class *class = pool->size_class[i]; + + if (!class) + continue; + + if (class->index != i) + continue; + + for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { + if (!list_empty(&class->fullness_list[fg])) { + pr_info("Freeing non-empty class with size %db, fullness group %d\n", + class->size, fg); + } + } + kfree(class); + } + + destroy_cache(pool); + kfree(pool->name); + kfree(pool); +} +EXPORT_SYMBOL_GPL(zs_destroy_pool); + +static int __init zs_init(void) +{ + int ret; + + ret = zsmalloc_mount(); + if (ret) + goto out; + + ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", + zs_cpu_prepare, zs_cpu_dead); + if (ret) + goto hp_setup_fail; + +#ifdef CONFIG_ZPOOL + zpool_register_driver(&zs_zpool_driver); +#endif + + zs_stat_init(); + + return 0; + +hp_setup_fail: + zsmalloc_unmount(); +out: + return ret; +} + +static void __exit zs_exit(void) +{ +#ifdef CONFIG_ZPOOL + zpool_unregister_driver(&zs_zpool_driver); +#endif + zsmalloc_unmount(); + cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); + + zs_stat_exit(); +} + +module_init(zs_init); +module_exit(zs_exit); + +MODULE_LICENSE("Dual BSD/GPL"); +MODULE_AUTHOR("Nitin Gupta "); -- cgit v1.2.3