// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 - ARM Ltd * Author: Marc Zyngier */ #include #include #include #include #include #include #include #include #include /* * This is an implementation of the Power State Coordination Interface * as described in ARM document number ARM DEN 0022A. */ #define AFFINITY_MASK(level) ~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1) static unsigned long psci_affinity_mask(unsigned long affinity_level) { if (affinity_level <= 3) return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level); return 0; } static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu) { /* * NOTE: For simplicity, we make VCPU suspend emulation to be * same-as WFI (Wait-for-interrupt) emulation. * * This means for KVM the wakeup events are interrupts and * this is consistent with intended use of StateID as described * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A). * * Further, we also treat power-down request to be same as * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2 * specification (ARM DEN 0022A). This means all suspend states * for KVM will preserve the register state. */ kvm_vcpu_block(vcpu); kvm_clear_request(KVM_REQ_UNHALT, vcpu); return PSCI_RET_SUCCESS; } static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu) { vcpu->arch.power_off = true; kvm_make_request(KVM_REQ_SLEEP, vcpu); kvm_vcpu_kick(vcpu); } static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu) { struct vcpu_reset_state *reset_state; struct kvm *kvm = source_vcpu->kvm; struct kvm_vcpu *vcpu = NULL; unsigned long cpu_id; cpu_id = smccc_get_arg1(source_vcpu) & MPIDR_HWID_BITMASK; if (vcpu_mode_is_32bit(source_vcpu)) cpu_id &= ~((u32) 0); vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id); /* * Make sure the caller requested a valid CPU and that the CPU is * turned off. */ if (!vcpu) return PSCI_RET_INVALID_PARAMS; if (!vcpu->arch.power_off) { if (kvm_psci_version(source_vcpu, kvm) != KVM_ARM_PSCI_0_1) return PSCI_RET_ALREADY_ON; else return PSCI_RET_INVALID_PARAMS; } reset_state = &vcpu->arch.reset_state; reset_state->pc = smccc_get_arg2(source_vcpu); /* Propagate caller endianness */ reset_state->be = kvm_vcpu_is_be(source_vcpu); /* * NOTE: We always update r0 (or x0) because for PSCI v0.1 * the general purpose registers are undefined upon CPU_ON. */ reset_state->r0 = smccc_get_arg3(source_vcpu); WRITE_ONCE(reset_state->reset, true); kvm_make_request(KVM_REQ_VCPU_RESET, vcpu); /* * Make sure the reset request is observed if the change to * power_state is observed. */ smp_wmb(); vcpu->arch.power_off = false; kvm_vcpu_wake_up(vcpu); return PSCI_RET_SUCCESS; } static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu) { int i, matching_cpus = 0; unsigned long mpidr; unsigned long target_affinity; unsigned long target_affinity_mask; unsigned long lowest_affinity_level; struct kvm *kvm = vcpu->kvm; struct kvm_vcpu *tmp; target_affinity = smccc_get_arg1(vcpu); lowest_affinity_level = smccc_get_arg2(vcpu); /* Determine target affinity mask */ target_affinity_mask = psci_affinity_mask(lowest_affinity_level); if (!target_affinity_mask) return PSCI_RET_INVALID_PARAMS; /* Ignore other bits of target affinity */ target_affinity &= target_affinity_mask; /* * If one or more VCPU matching target affinity are running * then ON else OFF */ kvm_for_each_vcpu(i, tmp, kvm) { mpidr = kvm_vcpu_get_mpidr_aff(tmp); if ((mpidr & target_affinity_mask) == target_affinity) { matching_cpus++; if (!tmp->arch.power_off) return PSCI_0_2_AFFINITY_LEVEL_ON; } } if (!matching_cpus) return PSCI_RET_INVALID_PARAMS; return PSCI_0_2_AFFINITY_LEVEL_OFF; } static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type) { int i; struct kvm_vcpu *tmp; /* * The KVM ABI specifies that a system event exit may call KVM_RUN * again and may perform shutdown/reboot at a later time that when the * actual request is made. Since we are implementing PSCI and a * caller of PSCI reboot and shutdown expects that the system shuts * down or reboots immediately, let's make sure that VCPUs are not run * after this call is handled and before the VCPUs have been * re-initialized. */ kvm_for_each_vcpu(i, tmp, vcpu->kvm) tmp->arch.power_off = true; kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP); memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); vcpu->run->system_event.type = type; vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; } static void kvm_psci_system_off(struct kvm_vcpu *vcpu) { kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN); } static void kvm_psci_system_reset(struct kvm_vcpu *vcpu) { kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET); } static void kvm_psci_narrow_to_32bit(struct kvm_vcpu *vcpu) { int i; /* * Zero the input registers' upper 32 bits. They will be fully * zeroed on exit, so we're fine changing them in place. */ for (i = 1; i < 4; i++) vcpu_set_reg(vcpu, i, lower_32_bits(vcpu_get_reg(vcpu, i))); } static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn) { switch(fn) { case PSCI_0_2_FN64_CPU_SUSPEND: case PSCI_0_2_FN64_CPU_ON: case PSCI_0_2_FN64_AFFINITY_INFO: /* Disallow these functions for 32bit guests */ if (vcpu_mode_is_32bit(vcpu)) return PSCI_RET_NOT_SUPPORTED; break; } return 0; } static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; u32 psci_fn = smccc_get_function(vcpu); unsigned long val; int ret = 1; val = kvm_psci_check_allowed_function(vcpu, psci_fn); if (val) goto out; switch (psci_fn) { case PSCI_0_2_FN_PSCI_VERSION: /* * Bits[31:16] = Major Version = 0 * Bits[15:0] = Minor Version = 2 */ val = KVM_ARM_PSCI_0_2; break; case PSCI_0_2_FN_CPU_SUSPEND: case PSCI_0_2_FN64_CPU_SUSPEND: val = kvm_psci_vcpu_suspend(vcpu); break; case PSCI_0_2_FN_CPU_OFF: kvm_psci_vcpu_off(vcpu); val = PSCI_RET_SUCCESS; break; case PSCI_0_2_FN_CPU_ON: kvm_psci_narrow_to_32bit(vcpu); fallthrough; case PSCI_0_2_FN64_CPU_ON: mutex_lock(&kvm->lock); val = kvm_psci_vcpu_on(vcpu); mutex_unlock(&kvm->lock); break; case PSCI_0_2_FN_AFFINITY_INFO: kvm_psci_narrow_to_32bit(vcpu); fallthrough; case PSCI_0_2_FN64_AFFINITY_INFO: val = kvm_psci_vcpu_affinity_info(vcpu); break; case PSCI_0_2_FN_MIGRATE_INFO_TYPE: /* * Trusted OS is MP hence does not require migration * or * Trusted OS is not present */ val = PSCI_0_2_TOS_MP; break; case PSCI_0_2_FN_SYSTEM_OFF: kvm_psci_system_off(vcpu); /* * We shouldn't be going back to guest VCPU after * receiving SYSTEM_OFF request. * * If user space accidentally/deliberately resumes * guest VCPU after SYSTEM_OFF request then guest * VCPU should see internal failure from PSCI return * value. To achieve this, we preload r0 (or x0) with * PSCI return value INTERNAL_FAILURE. */ val = PSCI_RET_INTERNAL_FAILURE; ret = 0; break; case PSCI_0_2_FN_SYSTEM_RESET: kvm_psci_system_reset(vcpu); /* * Same reason as SYSTEM_OFF for preloading r0 (or x0) * with PSCI return value INTERNAL_FAILURE. */ val = PSCI_RET_INTERNAL_FAILURE; ret = 0; break; default: val = PSCI_RET_NOT_SUPPORTED; break; } out: smccc_set_retval(vcpu, val, 0, 0, 0); return ret; } static int kvm_psci_1_0_call(struct kvm_vcpu *vcpu) { u32 psci_fn = smccc_get_function(vcpu); u32 feature; unsigned long val; int ret = 1; switch(psci_fn) { case PSCI_0_2_FN_PSCI_VERSION: val = KVM_ARM_PSCI_1_0; break; case PSCI_1_0_FN_PSCI_FEATURES: feature = smccc_get_arg1(vcpu); val = kvm_psci_check_allowed_function(vcpu, feature); if (val) break; switch(feature) { case PSCI_0_2_FN_PSCI_VERSION: case PSCI_0_2_FN_CPU_SUSPEND: case PSCI_0_2_FN64_CPU_SUSPEND: case PSCI_0_2_FN_CPU_OFF: case PSCI_0_2_FN_CPU_ON: case PSCI_0_2_FN64_CPU_ON: case PSCI_0_2_FN_AFFINITY_INFO: case PSCI_0_2_FN64_AFFINITY_INFO: case PSCI_0_2_FN_MIGRATE_INFO_TYPE: case PSCI_0_2_FN_SYSTEM_OFF: case PSCI_0_2_FN_SYSTEM_RESET: case PSCI_1_0_FN_PSCI_FEATURES: case ARM_SMCCC_VERSION_FUNC_ID: val = 0; break; default: val = PSCI_RET_NOT_SUPPORTED; break; } break; default: return kvm_psci_0_2_call(vcpu); } smccc_set_retval(vcpu, val, 0, 0, 0); return ret; } static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; u32 psci_fn = smccc_get_function(vcpu); unsigned long val; switch (psci_fn) { case KVM_PSCI_FN_CPU_OFF: kvm_psci_vcpu_off(vcpu); val = PSCI_RET_SUCCESS; break; case KVM_PSCI_FN_CPU_ON: mutex_lock(&kvm->lock); val = kvm_psci_vcpu_on(vcpu); mutex_unlock(&kvm->lock); break; default: val = PSCI_RET_NOT_SUPPORTED; break; } smccc_set_retval(vcpu, val, 0, 0, 0); return 1; } /** * kvm_psci_call - handle PSCI call if r0 value is in range * @vcpu: Pointer to the VCPU struct * * Handle PSCI calls from guests through traps from HVC instructions. * The calling convention is similar to SMC calls to the secure world * where the function number is placed in r0. * * This function returns: > 0 (success), 0 (success but exit to user * space), and < 0 (errors) * * Errors: * -EINVAL: Unrecognized PSCI function */ int kvm_psci_call(struct kvm_vcpu *vcpu) { switch (kvm_psci_version(vcpu, vcpu->kvm)) { case KVM_ARM_PSCI_1_0: return kvm_psci_1_0_call(vcpu); case KVM_ARM_PSCI_0_2: return kvm_psci_0_2_call(vcpu); case KVM_ARM_PSCI_0_1: return kvm_psci_0_1_call(vcpu); default: return -EINVAL; }; } int kvm_arm_get_fw_num_regs(struct kvm_vcpu *vcpu) { return 4; /* PSCI version and three workaround registers */ } int kvm_arm_copy_fw_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) { if (put_user(KVM_REG_ARM_PSCI_VERSION, uindices++)) return -EFAULT; if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1, uindices++)) return -EFAULT; if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2, uindices++)) return -EFAULT; if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3, uindices++)) return -EFAULT; return 0; } #define KVM_REG_FEATURE_LEVEL_WIDTH 4 #define KVM_REG_FEATURE_LEVEL_MASK (BIT(KVM_REG_FEATURE_LEVEL_WIDTH) - 1) /* * Convert the workaround level into an easy-to-compare number, where higher * values mean better protection. */ static int get_kernel_wa_level(u64 regid) { switch (regid) { case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: switch (arm64_get_spectre_v2_state()) { case SPECTRE_VULNERABLE: return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL; case SPECTRE_MITIGATED: return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL; case SPECTRE_UNAFFECTED: return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED; } return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL; case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: switch (arm64_get_spectre_v4_state()) { case SPECTRE_MITIGATED: /* * As for the hypercall discovery, we pretend we * don't have any FW mitigation if SSBS is there at * all times. */ if (cpus_have_final_cap(ARM64_SSBS)) return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; fallthrough; case SPECTRE_UNAFFECTED: return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED; case SPECTRE_VULNERABLE: return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; } break; case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3: switch (arm64_get_spectre_bhb_state()) { case SPECTRE_VULNERABLE: return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL; case SPECTRE_MITIGATED: return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_AVAIL; case SPECTRE_UNAFFECTED: return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_REQUIRED; } return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL; } return -EINVAL; } int kvm_arm_get_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { void __user *uaddr = (void __user *)(long)reg->addr; u64 val; switch (reg->id) { case KVM_REG_ARM_PSCI_VERSION: val = kvm_psci_version(vcpu, vcpu->kvm); break; case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3: val = get_kernel_wa_level(reg->id) & KVM_REG_FEATURE_LEVEL_MASK; break; default: return -ENOENT; } if (copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id))) return -EFAULT; return 0; } int kvm_arm_set_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { void __user *uaddr = (void __user *)(long)reg->addr; u64 val; int wa_level; if (KVM_REG_SIZE(reg->id) != sizeof(val)) return -ENOENT; if (copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id))) return -EFAULT; switch (reg->id) { case KVM_REG_ARM_PSCI_VERSION: { bool wants_02; wants_02 = test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features); switch (val) { case KVM_ARM_PSCI_0_1: if (wants_02) return -EINVAL; vcpu->kvm->arch.psci_version = val; return 0; case KVM_ARM_PSCI_0_2: case KVM_ARM_PSCI_1_0: if (!wants_02) return -EINVAL; vcpu->kvm->arch.psci_version = val; return 0; } break; } case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3: if (val & ~KVM_REG_FEATURE_LEVEL_MASK) return -EINVAL; if (get_kernel_wa_level(reg->id) < val) return -EINVAL; return 0; case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: if (val & ~(KVM_REG_FEATURE_LEVEL_MASK | KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED)) return -EINVAL; /* The enabled bit must not be set unless the level is AVAIL. */ if ((val & KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED) && (val & KVM_REG_FEATURE_LEVEL_MASK) != KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL) return -EINVAL; /* * Map all the possible incoming states to the only two we * really want to deal with. */ switch (val & KVM_REG_FEATURE_LEVEL_MASK) { case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL: case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN: wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; break; case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL: case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED: wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED; break; default: return -EINVAL; } /* * We can deal with NOT_AVAIL on NOT_REQUIRED, but not the * other way around. */ if (get_kernel_wa_level(reg->id) < wa_level) return -EINVAL; return 0; default: return -ENOENT; } return -EINVAL; }