// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012,2013 - ARM Ltd * Author: Marc Zyngier * * Derived from arch/arm/kvm/reset.c * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Author: Christoffer Dall */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Maximum phys_shift supported for any VM on this host */ static u32 kvm_ipa_limit; /* * ARMv8 Reset Values */ #define VCPU_RESET_PSTATE_EL1 (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \ PSR_F_BIT | PSR_D_BIT) #define VCPU_RESET_PSTATE_SVC (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \ PSR_AA32_I_BIT | PSR_AA32_F_BIT) static bool system_has_full_ptr_auth(void) { return system_supports_address_auth() && system_supports_generic_auth(); } /** * kvm_arch_vm_ioctl_check_extension * * We currently assume that the number of HW registers is uniform * across all CPUs (see cpuinfo_sanity_check). */ int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext) { int r; switch (ext) { case KVM_CAP_ARM_EL1_32BIT: r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1); break; case KVM_CAP_GUEST_DEBUG_HW_BPS: r = get_num_brps(); break; case KVM_CAP_GUEST_DEBUG_HW_WPS: r = get_num_wrps(); break; case KVM_CAP_ARM_PMU_V3: r = kvm_arm_support_pmu_v3(); break; case KVM_CAP_ARM_INJECT_SERROR_ESR: r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN); break; case KVM_CAP_SET_GUEST_DEBUG: case KVM_CAP_VCPU_ATTRIBUTES: r = 1; break; case KVM_CAP_ARM_VM_IPA_SIZE: r = kvm_ipa_limit; break; case KVM_CAP_ARM_SVE: r = system_supports_sve(); break; case KVM_CAP_ARM_PTRAUTH_ADDRESS: case KVM_CAP_ARM_PTRAUTH_GENERIC: r = system_has_full_ptr_auth(); break; default: r = 0; } return r; } unsigned int kvm_sve_max_vl; int kvm_arm_init_sve(void) { if (system_supports_sve()) { kvm_sve_max_vl = sve_max_virtualisable_vl; /* * The get_sve_reg()/set_sve_reg() ioctl interface will need * to be extended with multiple register slice support in * order to support vector lengths greater than * SVE_VL_ARCH_MAX: */ if (WARN_ON(kvm_sve_max_vl > SVE_VL_ARCH_MAX)) kvm_sve_max_vl = SVE_VL_ARCH_MAX; /* * Don't even try to make use of vector lengths that * aren't available on all CPUs, for now: */ if (kvm_sve_max_vl < sve_max_vl) pr_warn("KVM: SVE vector length for guests limited to %u bytes\n", kvm_sve_max_vl); } return 0; } static int kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu) { if (!system_supports_sve()) return -EINVAL; /* Verify that KVM startup enforced this when SVE was detected: */ if (WARN_ON(!has_vhe())) return -EINVAL; vcpu->arch.sve_max_vl = kvm_sve_max_vl; /* * Userspace can still customize the vector lengths by writing * KVM_REG_ARM64_SVE_VLS. Allocation is deferred until * kvm_arm_vcpu_finalize(), which freezes the configuration. */ vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_SVE; return 0; } /* * Finalize vcpu's maximum SVE vector length, allocating * vcpu->arch.sve_state as necessary. */ static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu) { void *buf; unsigned int vl; vl = vcpu->arch.sve_max_vl; /* * Responsibility for these properties is shared between * kvm_arm_init_arch_resources(), kvm_vcpu_enable_sve() and * set_sve_vls(). Double-check here just to be sure: */ if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl || vl > SVE_VL_ARCH_MAX)) return -EIO; buf = kzalloc(SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl)), GFP_KERNEL); if (!buf) return -ENOMEM; vcpu->arch.sve_state = buf; vcpu->arch.flags |= KVM_ARM64_VCPU_SVE_FINALIZED; return 0; } int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature) { switch (feature) { case KVM_ARM_VCPU_SVE: if (!vcpu_has_sve(vcpu)) return -EINVAL; if (kvm_arm_vcpu_sve_finalized(vcpu)) return -EPERM; return kvm_vcpu_finalize_sve(vcpu); } return -EINVAL; } bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu) { if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu)) return false; return true; } void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu) { kfree(vcpu->arch.sve_state); } static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu) { if (vcpu_has_sve(vcpu)) memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu)); } static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu) { /* * For now make sure that both address/generic pointer authentication * features are requested by the userspace together and the system * supports these capabilities. */ if (!test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) || !test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features) || !system_has_full_ptr_auth()) return -EINVAL; vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_PTRAUTH; return 0; } static bool vcpu_allowed_register_width(struct kvm_vcpu *vcpu) { struct kvm_vcpu *tmp; bool is32bit; int i; is32bit = vcpu_has_feature(vcpu, KVM_ARM_VCPU_EL1_32BIT); if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1) && is32bit) return false; /* Check that the vcpus are either all 32bit or all 64bit */ kvm_for_each_vcpu(i, tmp, vcpu->kvm) { if (vcpu_has_feature(tmp, KVM_ARM_VCPU_EL1_32BIT) != is32bit) return false; } return true; } /** * kvm_reset_vcpu - sets core registers and sys_regs to reset value * @vcpu: The VCPU pointer * * This function finds the right table above and sets the registers on * the virtual CPU struct to their architecturally defined reset * values, except for registers whose reset is deferred until * kvm_arm_vcpu_finalize(). * * Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT * ioctl or as part of handling a request issued by another VCPU in the PSCI * handling code. In the first case, the VCPU will not be loaded, and in the * second case the VCPU will be loaded. Because this function operates purely * on the memory-backed values of system registers, we want to do a full put if * we were loaded (handling a request) and load the values back at the end of * the function. Otherwise we leave the state alone. In both cases, we * disable preemption around the vcpu reset as we would otherwise race with * preempt notifiers which also call put/load. */ int kvm_reset_vcpu(struct kvm_vcpu *vcpu) { struct vcpu_reset_state reset_state; int ret; bool loaded; u32 pstate; mutex_lock(&vcpu->kvm->lock); reset_state = vcpu->arch.reset_state; WRITE_ONCE(vcpu->arch.reset_state.reset, false); mutex_unlock(&vcpu->kvm->lock); /* Reset PMU outside of the non-preemptible section */ kvm_pmu_vcpu_reset(vcpu); preempt_disable(); loaded = (vcpu->cpu != -1); if (loaded) kvm_arch_vcpu_put(vcpu); if (!kvm_arm_vcpu_sve_finalized(vcpu)) { if (test_bit(KVM_ARM_VCPU_SVE, vcpu->arch.features)) { ret = kvm_vcpu_enable_sve(vcpu); if (ret) goto out; } } else { kvm_vcpu_reset_sve(vcpu); } if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) || test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) { if (kvm_vcpu_enable_ptrauth(vcpu)) { ret = -EINVAL; goto out; } } if (!vcpu_allowed_register_width(vcpu)) { ret = -EINVAL; goto out; } switch (vcpu->arch.target) { default: if (test_bit(KVM_ARM_VCPU_EL1_32BIT, vcpu->arch.features)) { pstate = VCPU_RESET_PSTATE_SVC; } else { pstate = VCPU_RESET_PSTATE_EL1; } break; } /* Reset core registers */ memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu))); memset(&vcpu->arch.ctxt.fp_regs, 0, sizeof(vcpu->arch.ctxt.fp_regs)); vcpu->arch.ctxt.spsr_abt = 0; vcpu->arch.ctxt.spsr_und = 0; vcpu->arch.ctxt.spsr_irq = 0; vcpu->arch.ctxt.spsr_fiq = 0; vcpu_gp_regs(vcpu)->pstate = pstate; /* Reset system registers */ kvm_reset_sys_regs(vcpu); /* * Additional reset state handling that PSCI may have imposed on us. * Must be done after all the sys_reg reset. */ if (reset_state.reset) { unsigned long target_pc = reset_state.pc; /* Gracefully handle Thumb2 entry point */ if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) { target_pc &= ~1UL; vcpu_set_thumb(vcpu); } /* Propagate caller endianness */ if (reset_state.be) kvm_vcpu_set_be(vcpu); *vcpu_pc(vcpu) = target_pc; vcpu_set_reg(vcpu, 0, reset_state.r0); } /* Reset timer */ ret = kvm_timer_vcpu_reset(vcpu); out: if (loaded) kvm_arch_vcpu_load(vcpu, smp_processor_id()); preempt_enable(); return ret; } u32 get_kvm_ipa_limit(void) { return kvm_ipa_limit; } int kvm_set_ipa_limit(void) { unsigned int parange, tgran_2; u64 mmfr0; mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); parange = cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_PARANGE_SHIFT); /* * IPA size beyond 48 bits could not be supported * on either 4K or 16K page size. Hence let's cap * it to 48 bits, in case it's reported as larger * on the system. */ if (PAGE_SIZE != SZ_64K) parange = min(parange, (unsigned int)ID_AA64MMFR0_PARANGE_48); /* * Check with ARMv8.5-GTG that our PAGE_SIZE is supported at * Stage-2. If not, things will stop very quickly. */ switch (PAGE_SIZE) { default: case SZ_4K: tgran_2 = ID_AA64MMFR0_TGRAN4_2_SHIFT; break; case SZ_16K: tgran_2 = ID_AA64MMFR0_TGRAN16_2_SHIFT; break; case SZ_64K: tgran_2 = ID_AA64MMFR0_TGRAN64_2_SHIFT; break; } switch (cpuid_feature_extract_unsigned_field(mmfr0, tgran_2)) { case ID_AA64MMFR0_TGRAN_2_SUPPORTED_NONE: kvm_err("PAGE_SIZE not supported at Stage-2, giving up\n"); return -EINVAL; case ID_AA64MMFR0_TGRAN_2_SUPPORTED_DEFAULT: kvm_debug("PAGE_SIZE supported at Stage-2 (default)\n"); break; case ID_AA64MMFR0_TGRAN_2_SUPPORTED_MIN ... ID_AA64MMFR0_TGRAN_2_SUPPORTED_MAX: kvm_debug("PAGE_SIZE supported at Stage-2 (advertised)\n"); break; default: kvm_err("Unsupported value for TGRAN_2, giving up\n"); return -EINVAL; } kvm_ipa_limit = id_aa64mmfr0_parange_to_phys_shift(parange); kvm_info("IPA Size Limit: %d bits%s\n", kvm_ipa_limit, ((kvm_ipa_limit < KVM_PHYS_SHIFT) ? " (Reduced IPA size, limited VM/VMM compatibility)" : "")); return 0; } /* * Configure the VTCR_EL2 for this VM. The VTCR value is common * across all the physical CPUs on the system. We use system wide * sanitised values to fill in different fields, except for Hardware * Management of Access Flags. HA Flag is set unconditionally on * all CPUs, as it is safe to run with or without the feature and * the bit is RES0 on CPUs that don't support it. */ int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type) { u64 vtcr = VTCR_EL2_FLAGS, mmfr0; u32 parange, phys_shift; u8 lvls; if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK) return -EINVAL; phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type); if (phys_shift) { if (phys_shift > kvm_ipa_limit || phys_shift < 32) return -EINVAL; } else { phys_shift = KVM_PHYS_SHIFT; if (phys_shift > kvm_ipa_limit) { pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n", current->comm); return -EINVAL; } } mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); parange = cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_PARANGE_SHIFT); if (parange > ID_AA64MMFR0_PARANGE_MAX) parange = ID_AA64MMFR0_PARANGE_MAX; vtcr |= parange << VTCR_EL2_PS_SHIFT; vtcr |= VTCR_EL2_T0SZ(phys_shift); /* * Use a minimum 2 level page table to prevent splitting * host PMD huge pages at stage2. */ lvls = stage2_pgtable_levels(phys_shift); if (lvls < 2) lvls = 2; vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls); /* * Enable the Hardware Access Flag management, unconditionally * on all CPUs. The features is RES0 on CPUs without the support * and must be ignored by the CPUs. */ vtcr |= VTCR_EL2_HA; /* Set the vmid bits */ vtcr |= (kvm_get_vmid_bits() == 16) ? VTCR_EL2_VS_16BIT : VTCR_EL2_VS_8BIT; kvm->arch.vtcr = vtcr; return 0; }