// SPDX-License-Identifier: GPL-2.0-or-later /* * Procedures for interfacing to Open Firmware. * * Paul Mackerras August 1996. * Copyright (C) 1996-2005 Paul Mackerras. * * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. * {engebret|bergner}@us.ibm.com */ #undef DEBUG_PROM /* we cannot use FORTIFY as it brings in new symbols */ #define __NO_FORTIFY #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* All of prom_init bss lives here */ #define __prombss __section(".bss.prominit") /* * Eventually bump that one up */ #define DEVTREE_CHUNK_SIZE 0x100000 /* * This is the size of the local memory reserve map that gets copied * into the boot params passed to the kernel. That size is totally * flexible as the kernel just reads the list until it encounters an * entry with size 0, so it can be changed without breaking binary * compatibility */ #define MEM_RESERVE_MAP_SIZE 8 /* * prom_init() is called very early on, before the kernel text * and data have been mapped to KERNELBASE. At this point the code * is running at whatever address it has been loaded at. * On ppc32 we compile with -mrelocatable, which means that references * to extern and static variables get relocated automatically. * ppc64 objects are always relocatable, we just need to relocate the * TOC. * * Because OF may have mapped I/O devices into the area starting at * KERNELBASE, particularly on CHRP machines, we can't safely call * OF once the kernel has been mapped to KERNELBASE. Therefore all * OF calls must be done within prom_init(). * * ADDR is used in calls to call_prom. The 4th and following * arguments to call_prom should be 32-bit values. * On ppc64, 64 bit values are truncated to 32 bits (and * fortunately don't get interpreted as two arguments). */ #define ADDR(x) (u32)(unsigned long)(x) #ifdef CONFIG_PPC64 #define OF_WORKAROUNDS 0 #else #define OF_WORKAROUNDS of_workarounds static int of_workarounds __prombss; #endif #define OF_WA_CLAIM 1 /* do phys/virt claim separately, then map */ #define OF_WA_LONGTRAIL 2 /* work around longtrail bugs */ #define PROM_BUG() do { \ prom_printf("kernel BUG at %s line 0x%x!\n", \ __FILE__, __LINE__); \ __builtin_trap(); \ } while (0) #ifdef DEBUG_PROM #define prom_debug(x...) prom_printf(x) #else #define prom_debug(x...) do { } while (0) #endif typedef u32 prom_arg_t; struct prom_args { __be32 service; __be32 nargs; __be32 nret; __be32 args[10]; }; struct prom_t { ihandle root; phandle chosen; int cpu; ihandle stdout; ihandle mmumap; ihandle memory; }; struct mem_map_entry { __be64 base; __be64 size; }; typedef __be32 cell_t; extern void __start(unsigned long r3, unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7, unsigned long r8, unsigned long r9); #ifdef CONFIG_PPC64 extern int enter_prom(struct prom_args *args, unsigned long entry); #else static inline int enter_prom(struct prom_args *args, unsigned long entry) { return ((int (*)(struct prom_args *))entry)(args); } #endif extern void copy_and_flush(unsigned long dest, unsigned long src, unsigned long size, unsigned long offset); /* prom structure */ static struct prom_t __prombss prom; static unsigned long __prombss prom_entry; static char __prombss of_stdout_device[256]; static char __prombss prom_scratch[256]; static unsigned long __prombss dt_header_start; static unsigned long __prombss dt_struct_start, dt_struct_end; static unsigned long __prombss dt_string_start, dt_string_end; static unsigned long __prombss prom_initrd_start, prom_initrd_end; #ifdef CONFIG_PPC64 static int __prombss prom_iommu_force_on; static int __prombss prom_iommu_off; static unsigned long __prombss prom_tce_alloc_start; static unsigned long __prombss prom_tce_alloc_end; #endif #ifdef CONFIG_PPC_PSERIES static bool __prombss prom_radix_disable; static bool __prombss prom_radix_gtse_disable; static bool __prombss prom_xive_disable; #endif #ifdef CONFIG_PPC_SVM static bool __prombss prom_svm_enable; #endif struct platform_support { bool hash_mmu; bool radix_mmu; bool radix_gtse; bool xive; }; /* Platforms codes are now obsolete in the kernel. Now only used within this * file and ultimately gone too. Feel free to change them if you need, they * are not shared with anything outside of this file anymore */ #define PLATFORM_PSERIES 0x0100 #define PLATFORM_PSERIES_LPAR 0x0101 #define PLATFORM_LPAR 0x0001 #define PLATFORM_POWERMAC 0x0400 #define PLATFORM_GENERIC 0x0500 static int __prombss of_platform; static char __prombss prom_cmd_line[COMMAND_LINE_SIZE]; static unsigned long __prombss prom_memory_limit; static unsigned long __prombss alloc_top; static unsigned long __prombss alloc_top_high; static unsigned long __prombss alloc_bottom; static unsigned long __prombss rmo_top; static unsigned long __prombss ram_top; static struct mem_map_entry __prombss mem_reserve_map[MEM_RESERVE_MAP_SIZE]; static int __prombss mem_reserve_cnt; static cell_t __prombss regbuf[1024]; static bool __prombss rtas_has_query_cpu_stopped; /* * Error results ... some OF calls will return "-1" on error, some * will return 0, some will return either. To simplify, here are * macros to use with any ihandle or phandle return value to check if * it is valid */ #define PROM_ERROR (-1u) #define PHANDLE_VALID(p) ((p) != 0 && (p) != PROM_ERROR) #define IHANDLE_VALID(i) ((i) != 0 && (i) != PROM_ERROR) /* Copied from lib/string.c and lib/kstrtox.c */ static int __init prom_strcmp(const char *cs, const char *ct) { unsigned char c1, c2; while (1) { c1 = *cs++; c2 = *ct++; if (c1 != c2) return c1 < c2 ? -1 : 1; if (!c1) break; } return 0; } static char __init *prom_strcpy(char *dest, const char *src) { char *tmp = dest; while ((*dest++ = *src++) != '\0') /* nothing */; return tmp; } static int __init prom_strncmp(const char *cs, const char *ct, size_t count) { unsigned char c1, c2; while (count) { c1 = *cs++; c2 = *ct++; if (c1 != c2) return c1 < c2 ? -1 : 1; if (!c1) break; count--; } return 0; } static size_t __init prom_strlen(const char *s) { const char *sc; for (sc = s; *sc != '\0'; ++sc) /* nothing */; return sc - s; } static int __init prom_memcmp(const void *cs, const void *ct, size_t count) { const unsigned char *su1, *su2; int res = 0; for (su1 = cs, su2 = ct; 0 < count; ++su1, ++su2, count--) if ((res = *su1 - *su2) != 0) break; return res; } static char __init *prom_strstr(const char *s1, const char *s2) { size_t l1, l2; l2 = prom_strlen(s2); if (!l2) return (char *)s1; l1 = prom_strlen(s1); while (l1 >= l2) { l1--; if (!prom_memcmp(s1, s2, l2)) return (char *)s1; s1++; } return NULL; } static size_t __init prom_strlcat(char *dest, const char *src, size_t count) { size_t dsize = prom_strlen(dest); size_t len = prom_strlen(src); size_t res = dsize + len; /* This would be a bug */ if (dsize >= count) return count; dest += dsize; count -= dsize; if (len >= count) len = count-1; memcpy(dest, src, len); dest[len] = 0; return res; } #ifdef CONFIG_PPC_PSERIES static int __init prom_strtobool(const char *s, bool *res) { if (!s) return -EINVAL; switch (s[0]) { case 'y': case 'Y': case '1': *res = true; return 0; case 'n': case 'N': case '0': *res = false; return 0; case 'o': case 'O': switch (s[1]) { case 'n': case 'N': *res = true; return 0; case 'f': case 'F': *res = false; return 0; default: break; } default: break; } return -EINVAL; } #endif /* This is the one and *ONLY* place where we actually call open * firmware. */ static int __init call_prom(const char *service, int nargs, int nret, ...) { int i; struct prom_args args; va_list list; args.service = cpu_to_be32(ADDR(service)); args.nargs = cpu_to_be32(nargs); args.nret = cpu_to_be32(nret); va_start(list, nret); for (i = 0; i < nargs; i++) args.args[i] = cpu_to_be32(va_arg(list, prom_arg_t)); va_end(list); for (i = 0; i < nret; i++) args.args[nargs+i] = 0; if (enter_prom(&args, prom_entry) < 0) return PROM_ERROR; return (nret > 0) ? be32_to_cpu(args.args[nargs]) : 0; } static int __init call_prom_ret(const char *service, int nargs, int nret, prom_arg_t *rets, ...) { int i; struct prom_args args; va_list list; args.service = cpu_to_be32(ADDR(service)); args.nargs = cpu_to_be32(nargs); args.nret = cpu_to_be32(nret); va_start(list, rets); for (i = 0; i < nargs; i++) args.args[i] = cpu_to_be32(va_arg(list, prom_arg_t)); va_end(list); for (i = 0; i < nret; i++) args.args[nargs+i] = 0; if (enter_prom(&args, prom_entry) < 0) return PROM_ERROR; if (rets != NULL) for (i = 1; i < nret; ++i) rets[i-1] = be32_to_cpu(args.args[nargs+i]); return (nret > 0) ? be32_to_cpu(args.args[nargs]) : 0; } static void __init prom_print(const char *msg) { const char *p, *q; if (prom.stdout == 0) return; for (p = msg; *p != 0; p = q) { for (q = p; *q != 0 && *q != '\n'; ++q) ; if (q > p) call_prom("write", 3, 1, prom.stdout, p, q - p); if (*q == 0) break; ++q; call_prom("write", 3, 1, prom.stdout, ADDR("\r\n"), 2); } } /* * Both prom_print_hex & prom_print_dec takes an unsigned long as input so that * we do not need __udivdi3 or __umoddi3 on 32bits. */ static void __init prom_print_hex(unsigned long val) { int i, nibbles = sizeof(val)*2; char buf[sizeof(val)*2+1]; for (i = nibbles-1; i >= 0; i--) { buf[i] = (val & 0xf) + '0'; if (buf[i] > '9') buf[i] += ('a'-'0'-10); val >>= 4; } buf[nibbles] = '\0'; call_prom("write", 3, 1, prom.stdout, buf, nibbles); } /* max number of decimal digits in an unsigned long */ #define UL_DIGITS 21 static void __init prom_print_dec(unsigned long val) { int i, size; char buf[UL_DIGITS+1]; for (i = UL_DIGITS-1; i >= 0; i--) { buf[i] = (val % 10) + '0'; val = val/10; if (val == 0) break; } /* shift stuff down */ size = UL_DIGITS - i; call_prom("write", 3, 1, prom.stdout, buf+i, size); } __printf(1, 2) static void __init prom_printf(const char *format, ...) { const char *p, *q, *s; va_list args; unsigned long v; long vs; int n = 0; va_start(args, format); for (p = format; *p != 0; p = q) { for (q = p; *q != 0 && *q != '\n' && *q != '%'; ++q) ; if (q > p) call_prom("write", 3, 1, prom.stdout, p, q - p); if (*q == 0) break; if (*q == '\n') { ++q; call_prom("write", 3, 1, prom.stdout, ADDR("\r\n"), 2); continue; } ++q; if (*q == 0) break; while (*q == 'l') { ++q; ++n; } switch (*q) { case 's': ++q; s = va_arg(args, const char *); prom_print(s); break; case 'x': ++q; switch (n) { case 0: v = va_arg(args, unsigned int); break; case 1: v = va_arg(args, unsigned long); break; case 2: default: v = va_arg(args, unsigned long long); break; } prom_print_hex(v); break; case 'u': ++q; switch (n) { case 0: v = va_arg(args, unsigned int); break; case 1: v = va_arg(args, unsigned long); break; case 2: default: v = va_arg(args, unsigned long long); break; } prom_print_dec(v); break; case 'd': ++q; switch (n) { case 0: vs = va_arg(args, int); break; case 1: vs = va_arg(args, long); break; case 2: default: vs = va_arg(args, long long); break; } if (vs < 0) { prom_print("-"); vs = -vs; } prom_print_dec(vs); break; } } va_end(args); } static unsigned int __init prom_claim(unsigned long virt, unsigned long size, unsigned long align) { if (align == 0 && (OF_WORKAROUNDS & OF_WA_CLAIM)) { /* * Old OF requires we claim physical and virtual separately * and then map explicitly (assuming virtual mode) */ int ret; prom_arg_t result; ret = call_prom_ret("call-method", 5, 2, &result, ADDR("claim"), prom.memory, align, size, virt); if (ret != 0 || result == -1) return -1; ret = call_prom_ret("call-method", 5, 2, &result, ADDR("claim"), prom.mmumap, align, size, virt); if (ret != 0) { call_prom("call-method", 4, 1, ADDR("release"), prom.memory, size, virt); return -1; } /* the 0x12 is M (coherence) + PP == read/write */ call_prom("call-method", 6, 1, ADDR("map"), prom.mmumap, 0x12, size, virt, virt); return virt; } return call_prom("claim", 3, 1, (prom_arg_t)virt, (prom_arg_t)size, (prom_arg_t)align); } static void __init __attribute__((noreturn)) prom_panic(const char *reason) { prom_print(reason); /* Do not call exit because it clears the screen on pmac * it also causes some sort of double-fault on early pmacs */ if (of_platform == PLATFORM_POWERMAC) asm("trap\n"); /* ToDo: should put up an SRC here on pSeries */ call_prom("exit", 0, 0); for (;;) /* should never get here */ ; } static int __init prom_next_node(phandle *nodep) { phandle node; if ((node = *nodep) != 0 && (*nodep = call_prom("child", 1, 1, node)) != 0) return 1; if ((*nodep = call_prom("peer", 1, 1, node)) != 0) return 1; for (;;) { if ((node = call_prom("parent", 1, 1, node)) == 0) return 0; if ((*nodep = call_prom("peer", 1, 1, node)) != 0) return 1; } } static inline int __init prom_getprop(phandle node, const char *pname, void *value, size_t valuelen) { return call_prom("getprop", 4, 1, node, ADDR(pname), (u32)(unsigned long) value, (u32) valuelen); } static inline int __init prom_getproplen(phandle node, const char *pname) { return call_prom("getproplen", 2, 1, node, ADDR(pname)); } static void add_string(char **str, const char *q) { char *p = *str; while (*q) *p++ = *q++; *p++ = ' '; *str = p; } static char *tohex(unsigned int x) { static const char digits[] __initconst = "0123456789abcdef"; static char result[9] __prombss; int i; result[8] = 0; i = 8; do { --i; result[i] = digits[x & 0xf]; x >>= 4; } while (x != 0 && i > 0); return &result[i]; } static int __init prom_setprop(phandle node, const char *nodename, const char *pname, void *value, size_t valuelen) { char cmd[256], *p; if (!(OF_WORKAROUNDS & OF_WA_LONGTRAIL)) return call_prom("setprop", 4, 1, node, ADDR(pname), (u32)(unsigned long) value, (u32) valuelen); /* gah... setprop doesn't work on longtrail, have to use interpret */ p = cmd; add_string(&p, "dev"); add_string(&p, nodename); add_string(&p, tohex((u32)(unsigned long) value)); add_string(&p, tohex(valuelen)); add_string(&p, tohex(ADDR(pname))); add_string(&p, tohex(prom_strlen(pname))); add_string(&p, "property"); *p = 0; return call_prom("interpret", 1, 1, (u32)(unsigned long) cmd); } /* We can't use the standard versions because of relocation headaches. */ #define isxdigit(c) (('0' <= (c) && (c) <= '9') \ || ('a' <= (c) && (c) <= 'f') \ || ('A' <= (c) && (c) <= 'F')) #define isdigit(c) ('0' <= (c) && (c) <= '9') #define islower(c) ('a' <= (c) && (c) <= 'z') #define toupper(c) (islower(c) ? ((c) - 'a' + 'A') : (c)) static unsigned long prom_strtoul(const char *cp, const char **endp) { unsigned long result = 0, base = 10, value; if (*cp == '0') { base = 8; cp++; if (toupper(*cp) == 'X') { cp++; base = 16; } } while (isxdigit(*cp) && (value = isdigit(*cp) ? *cp - '0' : toupper(*cp) - 'A' + 10) < base) { result = result * base + value; cp++; } if (endp) *endp = cp; return result; } static unsigned long prom_memparse(const char *ptr, const char **retptr) { unsigned long ret = prom_strtoul(ptr, retptr); int shift = 0; /* * We can't use a switch here because GCC *may* generate a * jump table which won't work, because we're not running at * the address we're linked at. */ if ('G' == **retptr || 'g' == **retptr) shift = 30; if ('M' == **retptr || 'm' == **retptr) shift = 20; if ('K' == **retptr || 'k' == **retptr) shift = 10; if (shift) { ret <<= shift; (*retptr)++; } return ret; } /* * Early parsing of the command line passed to the kernel, used for * "mem=x" and the options that affect the iommu */ static void __init early_cmdline_parse(void) { const char *opt; char *p; int l = 0; prom_cmd_line[0] = 0; p = prom_cmd_line; if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && (long)prom.chosen > 0) l = prom_getprop(prom.chosen, "bootargs", p, COMMAND_LINE_SIZE-1); if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) || l <= 0 || p[0] == '\0') prom_strlcat(prom_cmd_line, " " CONFIG_CMDLINE, sizeof(prom_cmd_line)); prom_printf("command line: %s\n", prom_cmd_line); #ifdef CONFIG_PPC64 opt = prom_strstr(prom_cmd_line, "iommu="); if (opt) { prom_printf("iommu opt is: %s\n", opt); opt += 6; while (*opt && *opt == ' ') opt++; if (!prom_strncmp(opt, "off", 3)) prom_iommu_off = 1; else if (!prom_strncmp(opt, "force", 5)) prom_iommu_force_on = 1; } #endif opt = prom_strstr(prom_cmd_line, "mem="); if (opt) { opt += 4; prom_memory_limit = prom_memparse(opt, (const char **)&opt); #ifdef CONFIG_PPC64 /* Align to 16 MB == size of ppc64 large page */ prom_memory_limit = ALIGN(prom_memory_limit, 0x1000000); #endif } #ifdef CONFIG_PPC_PSERIES prom_radix_disable = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT); opt = prom_strstr(prom_cmd_line, "disable_radix"); if (opt) { opt += 13; if (*opt && *opt == '=') { bool val; if (prom_strtobool(++opt, &val)) prom_radix_disable = false; else prom_radix_disable = val; } else prom_radix_disable = true; } if (prom_radix_disable) prom_debug("Radix disabled from cmdline\n"); opt = prom_strstr(prom_cmd_line, "radix_hcall_invalidate=on"); if (opt) { prom_radix_gtse_disable = true; prom_debug("Radix GTSE disabled from cmdline\n"); } opt = prom_strstr(prom_cmd_line, "xive=off"); if (opt) { prom_xive_disable = true; prom_debug("XIVE disabled from cmdline\n"); } #endif /* CONFIG_PPC_PSERIES */ #ifdef CONFIG_PPC_SVM opt = prom_strstr(prom_cmd_line, "svm="); if (opt) { bool val; opt += sizeof("svm=") - 1; if (!prom_strtobool(opt, &val)) prom_svm_enable = val; } #endif /* CONFIG_PPC_SVM */ } #ifdef CONFIG_PPC_PSERIES /* * The architecture vector has an array of PVR mask/value pairs, * followed by # option vectors - 1, followed by the option vectors. * * See prom.h for the definition of the bits specified in the * architecture vector. */ /* Firmware expects the value to be n - 1, where n is the # of vectors */ #define NUM_VECTORS(n) ((n) - 1) /* * Firmware expects 1 + n - 2, where n is the length of the option vector in * bytes. The 1 accounts for the length byte itself, the - 2 .. ? */ #define VECTOR_LENGTH(n) (1 + (n) - 2) struct option_vector1 { u8 byte1; u8 arch_versions; u8 arch_versions3; } __packed; struct option_vector2 { u8 byte1; __be16 reserved; __be32 real_base; __be32 real_size; __be32 virt_base; __be32 virt_size; __be32 load_base; __be32 min_rma; __be32 min_load; u8 min_rma_percent; u8 max_pft_size; } __packed; struct option_vector3 { u8 byte1; u8 byte2; } __packed; struct option_vector4 { u8 byte1; u8 min_vp_cap; } __packed; struct option_vector5 { u8 byte1; u8 byte2; u8 byte3; u8 cmo; u8 associativity; u8 bin_opts; u8 micro_checkpoint; u8 reserved0; __be32 max_cpus; __be16 papr_level; __be16 reserved1; u8 platform_facilities; u8 reserved2; __be16 reserved3; u8 subprocessors; u8 byte22; u8 intarch; u8 mmu; u8 hash_ext; u8 radix_ext; } __packed; struct option_vector6 { u8 reserved; u8 secondary_pteg; u8 os_name; } __packed; struct ibm_arch_vec { struct { u32 mask, val; } pvrs[14]; u8 num_vectors; u8 vec1_len; struct option_vector1 vec1; u8 vec2_len; struct option_vector2 vec2; u8 vec3_len; struct option_vector3 vec3; u8 vec4_len; struct option_vector4 vec4; u8 vec5_len; struct option_vector5 vec5; u8 vec6_len; struct option_vector6 vec6; } __packed; static const struct ibm_arch_vec ibm_architecture_vec_template __initconst = { .pvrs = { { .mask = cpu_to_be32(0xfffe0000), /* POWER5/POWER5+ */ .val = cpu_to_be32(0x003a0000), }, { .mask = cpu_to_be32(0xffff0000), /* POWER6 */ .val = cpu_to_be32(0x003e0000), }, { .mask = cpu_to_be32(0xffff0000), /* POWER7 */ .val = cpu_to_be32(0x003f0000), }, { .mask = cpu_to_be32(0xffff0000), /* POWER8E */ .val = cpu_to_be32(0x004b0000), }, { .mask = cpu_to_be32(0xffff0000), /* POWER8NVL */ .val = cpu_to_be32(0x004c0000), }, { .mask = cpu_to_be32(0xffff0000), /* POWER8 */ .val = cpu_to_be32(0x004d0000), }, { .mask = cpu_to_be32(0xffff0000), /* POWER9 */ .val = cpu_to_be32(0x004e0000), }, { .mask = cpu_to_be32(0xffff0000), /* POWER10 */ .val = cpu_to_be32(0x00800000), }, { .mask = cpu_to_be32(0xffffffff), /* all 3.1-compliant */ .val = cpu_to_be32(0x0f000006), }, { .mask = cpu_to_be32(0xffffffff), /* all 3.00-compliant */ .val = cpu_to_be32(0x0f000005), }, { .mask = cpu_to_be32(0xffffffff), /* all 2.07-compliant */ .val = cpu_to_be32(0x0f000004), }, { .mask = cpu_to_be32(0xffffffff), /* all 2.06-compliant */ .val = cpu_to_be32(0x0f000003), }, { .mask = cpu_to_be32(0xffffffff), /* all 2.05-compliant */ .val = cpu_to_be32(0x0f000002), }, { .mask = cpu_to_be32(0xfffffffe), /* all 2.04-compliant and earlier */ .val = cpu_to_be32(0x0f000001), }, }, .num_vectors = NUM_VECTORS(6), .vec1_len = VECTOR_LENGTH(sizeof(struct option_vector1)), .vec1 = { .byte1 = 0, .arch_versions = OV1_PPC_2_00 | OV1_PPC_2_01 | OV1_PPC_2_02 | OV1_PPC_2_03 | OV1_PPC_2_04 | OV1_PPC_2_05 | OV1_PPC_2_06 | OV1_PPC_2_07, .arch_versions3 = OV1_PPC_3_00 | OV1_PPC_3_1, }, .vec2_len = VECTOR_LENGTH(sizeof(struct option_vector2)), /* option vector 2: Open Firmware options supported */ .vec2 = { .byte1 = OV2_REAL_MODE, .reserved = 0, .real_base = cpu_to_be32(0xffffffff), .real_size = cpu_to_be32(0xffffffff), .virt_base = cpu_to_be32(0xffffffff), .virt_size = cpu_to_be32(0xffffffff), .load_base = cpu_to_be32(0xffffffff), .min_rma = cpu_to_be32(512), /* 512MB min RMA */ .min_load = cpu_to_be32(0xffffffff), /* full client load */ .min_rma_percent = 0, /* min RMA percentage of total RAM */ .max_pft_size = 48, /* max log_2(hash table size) */ }, .vec3_len = VECTOR_LENGTH(sizeof(struct option_vector3)), /* option vector 3: processor options supported */ .vec3 = { .byte1 = 0, /* don't ignore, don't halt */ .byte2 = OV3_FP | OV3_VMX | OV3_DFP, }, .vec4_len = VECTOR_LENGTH(sizeof(struct option_vector4)), /* option vector 4: IBM PAPR implementation */ .vec4 = { .byte1 = 0, /* don't halt */ .min_vp_cap = OV4_MIN_ENT_CAP, /* minimum VP entitled capacity */ }, .vec5_len = VECTOR_LENGTH(sizeof(struct option_vector5)), /* option vector 5: PAPR/OF options */ .vec5 = { .byte1 = 0, /* don't ignore, don't halt */ .byte2 = OV5_FEAT(OV5_LPAR) | OV5_FEAT(OV5_SPLPAR) | OV5_FEAT(OV5_LARGE_PAGES) | OV5_FEAT(OV5_DRCONF_MEMORY) | OV5_FEAT(OV5_DONATE_DEDICATE_CPU) | #ifdef CONFIG_PCI_MSI /* PCIe/MSI support. Without MSI full PCIe is not supported */ OV5_FEAT(OV5_MSI), #else 0, #endif .byte3 = 0, .cmo = #ifdef CONFIG_PPC_SMLPAR OV5_FEAT(OV5_CMO) | OV5_FEAT(OV5_XCMO), #else 0, #endif .associativity = OV5_FEAT(OV5_FORM1_AFFINITY) | OV5_FEAT(OV5_PRRN) | OV5_FEAT(OV5_FORM2_AFFINITY), .bin_opts = OV5_FEAT(OV5_RESIZE_HPT) | OV5_FEAT(OV5_HP_EVT), .micro_checkpoint = 0, .reserved0 = 0, .max_cpus = cpu_to_be32(NR_CPUS), /* number of cores supported */ .papr_level = 0, .reserved1 = 0, .platform_facilities = OV5_FEAT(OV5_PFO_HW_RNG) | OV5_FEAT(OV5_PFO_HW_ENCR) | OV5_FEAT(OV5_PFO_HW_842), .reserved2 = 0, .reserved3 = 0, .subprocessors = 1, .byte22 = OV5_FEAT(OV5_DRMEM_V2) | OV5_FEAT(OV5_DRC_INFO), .intarch = 0, .mmu = 0, .hash_ext = 0, .radix_ext = 0, }, /* option vector 6: IBM PAPR hints */ .vec6_len = VECTOR_LENGTH(sizeof(struct option_vector6)), .vec6 = { .reserved = 0, .secondary_pteg = 0, .os_name = OV6_LINUX, }, }; static struct ibm_arch_vec __prombss ibm_architecture_vec ____cacheline_aligned; /* Old method - ELF header with PT_NOTE sections only works on BE */ #ifdef __BIG_ENDIAN__ static const struct fake_elf { Elf32_Ehdr elfhdr; Elf32_Phdr phdr[2]; struct chrpnote { u32 namesz; u32 descsz; u32 type; char name[8]; /* "PowerPC" */ struct chrpdesc { u32 real_mode; u32 real_base; u32 real_size; u32 virt_base; u32 virt_size; u32 load_base; } chrpdesc; } chrpnote; struct rpanote { u32 namesz; u32 descsz; u32 type; char name[24]; /* "IBM,RPA-Client-Config" */ struct rpadesc { u32 lpar_affinity; u32 min_rmo_size; u32 min_rmo_percent; u32 max_pft_size; u32 splpar; u32 min_load; u32 new_mem_def; u32 ignore_me; } rpadesc; } rpanote; } fake_elf __initconst = { .elfhdr = { .e_ident = { 0x7f, 'E', 'L', 'F', ELFCLASS32, ELFDATA2MSB, EV_CURRENT }, .e_type = ET_EXEC, /* yeah right */ .e_machine = EM_PPC, .e_version = EV_CURRENT, .e_phoff = offsetof(struct fake_elf, phdr), .e_phentsize = sizeof(Elf32_Phdr), .e_phnum = 2 }, .phdr = { [0] = { .p_type = PT_NOTE, .p_offset = offsetof(struct fake_elf, chrpnote), .p_filesz = sizeof(struct chrpnote) }, [1] = { .p_type = PT_NOTE, .p_offset = offsetof(struct fake_elf, rpanote), .p_filesz = sizeof(struct rpanote) } }, .chrpnote = { .namesz = sizeof("PowerPC"), .descsz = sizeof(struct chrpdesc), .type = 0x1275, .name = "PowerPC", .chrpdesc = { .real_mode = ~0U, /* ~0 means "don't care" */ .real_base = ~0U, .real_size = ~0U, .virt_base = ~0U, .virt_size = ~0U, .load_base = ~0U }, }, .rpanote = { .namesz = sizeof("IBM,RPA-Client-Config"), .descsz = sizeof(struct rpadesc), .type = 0x12759999, .name = "IBM,RPA-Client-Config", .rpadesc = { .lpar_affinity = 0, .min_rmo_size = 64, /* in megabytes */ .min_rmo_percent = 0, .max_pft_size = 48, /* 2^48 bytes max PFT size */ .splpar = 1, .min_load = ~0U, .new_mem_def = 0 } } }; #endif /* __BIG_ENDIAN__ */ static int __init prom_count_smt_threads(void) { phandle node; char type[64]; unsigned int plen; /* Pick up th first CPU node we can find */ for (node = 0; prom_next_node(&node); ) { type[0] = 0; prom_getprop(node, "device_type", type, sizeof(type)); if (prom_strcmp(type, "cpu")) continue; /* * There is an entry for each smt thread, each entry being * 4 bytes long. All cpus should have the same number of * smt threads, so return after finding the first. */ plen = prom_getproplen(node, "ibm,ppc-interrupt-server#s"); if (plen == PROM_ERROR) break; plen >>= 2; prom_debug("Found %lu smt threads per core\n", (unsigned long)plen); /* Sanity check */ if (plen < 1 || plen > 64) { prom_printf("Threads per core %lu out of bounds, assuming 1\n", (unsigned long)plen); return 1; } return plen; } prom_debug("No threads found, assuming 1 per core\n"); return 1; } static void __init prom_parse_mmu_model(u8 val, struct platform_support *support) { switch (val) { case OV5_FEAT(OV5_MMU_DYNAMIC): case OV5_FEAT(OV5_MMU_EITHER): /* Either Available */ prom_debug("MMU - either supported\n"); support->radix_mmu = !prom_radix_disable; support->hash_mmu = true; break; case OV5_FEAT(OV5_MMU_RADIX): /* Only Radix */ prom_debug("MMU - radix only\n"); if (prom_radix_disable) { /* * If we __have__ to do radix, we're better off ignoring * the command line rather than not booting. */ prom_printf("WARNING: Ignoring cmdline option disable_radix\n"); } support->radix_mmu = true; break; case OV5_FEAT(OV5_MMU_HASH): prom_debug("MMU - hash only\n"); support->hash_mmu = true; break; default: prom_debug("Unknown mmu support option: 0x%x\n", val); break; } } static void __init prom_parse_xive_model(u8 val, struct platform_support *support) { switch (val) { case OV5_FEAT(OV5_XIVE_EITHER): /* Either Available */ prom_debug("XIVE - either mode supported\n"); support->xive = !prom_xive_disable; break; case OV5_FEAT(OV5_XIVE_EXPLOIT): /* Only Exploitation mode */ prom_debug("XIVE - exploitation mode supported\n"); if (prom_xive_disable) { /* * If we __have__ to do XIVE, we're better off ignoring * the command line rather than not booting. */ prom_printf("WARNING: Ignoring cmdline option xive=off\n"); } support->xive = true; break; case OV5_FEAT(OV5_XIVE_LEGACY): /* Only Legacy mode */ prom_debug("XIVE - legacy mode supported\n"); break; default: prom_debug("Unknown xive support option: 0x%x\n", val); break; } } static void __init prom_parse_platform_support(u8 index, u8 val, struct platform_support *support) { switch (index) { case OV5_INDX(OV5_MMU_SUPPORT): /* MMU Model */ prom_parse_mmu_model(val & OV5_FEAT(OV5_MMU_SUPPORT), support); break; case OV5_INDX(OV5_RADIX_GTSE): /* Radix Extensions */ if (val & OV5_FEAT(OV5_RADIX_GTSE)) support->radix_gtse = !prom_radix_gtse_disable; break; case OV5_INDX(OV5_XIVE_SUPPORT): /* Interrupt mode */ prom_parse_xive_model(val & OV5_FEAT(OV5_XIVE_SUPPORT), support); break; } } static void __init prom_check_platform_support(void) { struct platform_support supported = { .hash_mmu = false, .radix_mmu = false, .radix_gtse = false, .xive = false }; int prop_len = prom_getproplen(prom.chosen, "ibm,arch-vec-5-platform-support"); /* * First copy the architecture vec template * * use memcpy() instead of *vec = *vec_template so that GCC replaces it * by __memcpy() when KASAN is active */ memcpy(&ibm_architecture_vec, &ibm_architecture_vec_template, sizeof(ibm_architecture_vec)); if (prop_len > 1) { int i; u8 vec[8]; prom_debug("Found ibm,arch-vec-5-platform-support, len: %d\n", prop_len); if (prop_len > sizeof(vec)) prom_printf("WARNING: ibm,arch-vec-5-platform-support longer than expected (len: %d)\n", prop_len); prom_getprop(prom.chosen, "ibm,arch-vec-5-platform-support", &vec, sizeof(vec)); for (i = 0; i < prop_len; i += 2) { prom_debug("%d: index = 0x%x val = 0x%x\n", i / 2, vec[i], vec[i + 1]); prom_parse_platform_support(vec[i], vec[i + 1], &supported); } } if (supported.radix_mmu && IS_ENABLED(CONFIG_PPC_RADIX_MMU)) { /* Radix preferred - Check if GTSE is also supported */ prom_debug("Asking for radix\n"); ibm_architecture_vec.vec5.mmu = OV5_FEAT(OV5_MMU_RADIX); if (supported.radix_gtse) ibm_architecture_vec.vec5.radix_ext = OV5_FEAT(OV5_RADIX_GTSE); else prom_debug("Radix GTSE isn't supported\n"); } else if (supported.hash_mmu) { /* Default to hash mmu (if we can) */ prom_debug("Asking for hash\n"); ibm_architecture_vec.vec5.mmu = OV5_FEAT(OV5_MMU_HASH); } else { /* We're probably on a legacy hypervisor */ prom_debug("Assuming legacy hash support\n"); } if (supported.xive) { prom_debug("Asking for XIVE\n"); ibm_architecture_vec.vec5.intarch = OV5_FEAT(OV5_XIVE_EXPLOIT); } } static void __init prom_send_capabilities(void) { ihandle root; prom_arg_t ret; u32 cores; /* Check ibm,arch-vec-5-platform-support and fixup vec5 if required */ prom_check_platform_support(); root = call_prom("open", 1, 1, ADDR("/")); if (root != 0) { /* We need to tell the FW about the number of cores we support. * * To do that, we count the number of threads on the first core * (we assume this is the same for all cores) and use it to * divide NR_CPUS. */ cores = DIV_ROUND_UP(NR_CPUS, prom_count_smt_threads()); prom_printf("Max number of cores passed to firmware: %u (NR_CPUS = %d)\n", cores, NR_CPUS); ibm_architecture_vec.vec5.max_cpus = cpu_to_be32(cores); /* try calling the ibm,client-architecture-support method */ prom_printf("Calling ibm,client-architecture-support..."); if (call_prom_ret("call-method", 3, 2, &ret, ADDR("ibm,client-architecture-support"), root, ADDR(&ibm_architecture_vec)) == 0) { /* the call exists... */ if (ret) prom_printf("\nWARNING: ibm,client-architecture" "-support call FAILED!\n"); call_prom("close", 1, 0, root); prom_printf(" done\n"); return; } call_prom("close", 1, 0, root); prom_printf(" not implemented\n"); } #ifdef __BIG_ENDIAN__ { ihandle elfloader; /* no ibm,client-architecture-support call, try the old way */ elfloader = call_prom("open", 1, 1, ADDR("/packages/elf-loader")); if (elfloader == 0) { prom_printf("couldn't open /packages/elf-loader\n"); return; } call_prom("call-method", 3, 1, ADDR("process-elf-header"), elfloader, ADDR(&fake_elf)); call_prom("close", 1, 0, elfloader); } #endif /* __BIG_ENDIAN__ */ } #endif /* CONFIG_PPC_PSERIES */ /* * Memory allocation strategy... our layout is normally: * * at 14Mb or more we have vmlinux, then a gap and initrd. In some * rare cases, initrd might end up being before the kernel though. * We assume this won't override the final kernel at 0, we have no * provision to handle that in this version, but it should hopefully * never happen. * * alloc_top is set to the top of RMO, eventually shrink down if the * TCEs overlap * * alloc_bottom is set to the top of kernel/initrd * * from there, allocations are done this way : rtas is allocated * topmost, and the device-tree is allocated from the bottom. We try * to grow the device-tree allocation as we progress. If we can't, * then we fail, we don't currently have a facility to restart * elsewhere, but that shouldn't be necessary. * * Note that calls to reserve_mem have to be done explicitly, memory * allocated with either alloc_up or alloc_down isn't automatically * reserved. */ /* * Allocates memory in the RMO upward from the kernel/initrd * * When align is 0, this is a special case, it means to allocate in place * at the current location of alloc_bottom or fail (that is basically * extending the previous allocation). Used for the device-tree flattening */ static unsigned long __init alloc_up(unsigned long size, unsigned long align) { unsigned long base = alloc_bottom; unsigned long addr = 0; if (align) base = ALIGN(base, align); prom_debug("%s(%lx, %lx)\n", __func__, size, align); if (ram_top == 0) prom_panic("alloc_up() called with mem not initialized\n"); if (align) base = ALIGN(alloc_bottom, align); else base = alloc_bottom; for(; (base + size) <= alloc_top; base = ALIGN(base + 0x100000, align)) { prom_debug(" trying: 0x%lx\n\r", base); addr = (unsigned long)prom_claim(base, size, 0); if (addr != PROM_ERROR && addr != 0) break; addr = 0; if (align == 0) break; } if (addr == 0) return 0; alloc_bottom = addr + size; prom_debug(" -> %lx\n", addr); prom_debug(" alloc_bottom : %lx\n", alloc_bottom); prom_debug(" alloc_top : %lx\n", alloc_top); prom_debug(" alloc_top_hi : %lx\n", alloc_top_high); prom_debug(" rmo_top : %lx\n", rmo_top); prom_debug(" ram_top : %lx\n", ram_top); return addr; } /* * Allocates memory downward, either from top of RMO, or if highmem * is set, from the top of RAM. Note that this one doesn't handle * failures. It does claim memory if highmem is not set. */ static unsigned long __init alloc_down(unsigned long size, unsigned long align, int highmem) { unsigned long base, addr = 0; prom_debug("%s(%lx, %lx, %s)\n", __func__, size, align, highmem ? "(high)" : "(low)"); if (ram_top == 0) prom_panic("alloc_down() called with mem not initialized\n"); if (highmem) { /* Carve out storage for the TCE table. */ addr = ALIGN_DOWN(alloc_top_high - size, align); if (addr <= alloc_bottom) return 0; /* Will we bump into the RMO ? If yes, check out that we * didn't overlap existing allocations there, if we did, * we are dead, we must be the first in town ! */ if (addr < rmo_top) { /* Good, we are first */ if (alloc_top == rmo_top) alloc_top = rmo_top = addr; else return 0; } alloc_top_high = addr; goto bail; } base = ALIGN_DOWN(alloc_top - size, align); for (; base > alloc_bottom; base = ALIGN_DOWN(base - 0x100000, align)) { prom_debug(" trying: 0x%lx\n\r", base); addr = (unsigned long)prom_claim(base, size, 0); if (addr != PROM_ERROR && addr != 0) break; addr = 0; } if (addr == 0) return 0; alloc_top = addr; bail: prom_debug(" -> %lx\n", addr); prom_debug(" alloc_bottom : %lx\n", alloc_bottom); prom_debug(" alloc_top : %lx\n", alloc_top); prom_debug(" alloc_top_hi : %lx\n", alloc_top_high); prom_debug(" rmo_top : %lx\n", rmo_top); prom_debug(" ram_top : %lx\n", ram_top); return addr; } /* * Parse a "reg" cell */ static unsigned long __init prom_next_cell(int s, cell_t **cellp) { cell_t *p = *cellp; unsigned long r = 0; /* Ignore more than 2 cells */ while (s > sizeof(unsigned long) / 4) { p++; s--; } r = be32_to_cpu(*p++); #ifdef CONFIG_PPC64 if (s > 1) { r <<= 32; r |= be32_to_cpu(*(p++)); } #endif *cellp = p; return r; } /* * Very dumb function for adding to the memory reserve list, but * we don't need anything smarter at this point * * XXX Eventually check for collisions. They should NEVER happen. * If problems seem to show up, it would be a good start to track * them down. */ static void __init reserve_mem(u64 base, u64 size) { u64 top = base + size; unsigned long cnt = mem_reserve_cnt; if (size == 0) return; /* We need to always keep one empty entry so that we * have our terminator with "size" set to 0 since we are * dumb and just copy this entire array to the boot params */ base = ALIGN_DOWN(base, PAGE_SIZE); top = ALIGN(top, PAGE_SIZE); size = top - base; if (cnt >= (MEM_RESERVE_MAP_SIZE - 1)) prom_panic("Memory reserve map exhausted !\n"); mem_reserve_map[cnt].base = cpu_to_be64(base); mem_reserve_map[cnt].size = cpu_to_be64(size); mem_reserve_cnt = cnt + 1; } /* * Initialize memory allocation mechanism, parse "memory" nodes and * obtain that way the top of memory and RMO to setup out local allocator */ static void __init prom_init_mem(void) { phandle node; char type[64]; unsigned int plen; cell_t *p, *endp; __be32 val; u32 rac, rsc; /* * We iterate the memory nodes to find * 1) top of RMO (first node) * 2) top of memory */ val = cpu_to_be32(2); prom_getprop(prom.root, "#address-cells", &val, sizeof(val)); rac = be32_to_cpu(val); val = cpu_to_be32(1); prom_getprop(prom.root, "#size-cells", &val, sizeof(rsc)); rsc = be32_to_cpu(val); prom_debug("root_addr_cells: %x\n", rac); prom_debug("root_size_cells: %x\n", rsc); prom_debug("scanning memory:\n"); for (node = 0; prom_next_node(&node); ) { type[0] = 0; prom_getprop(node, "device_type", type, sizeof(type)); if (type[0] == 0) { /* * CHRP Longtrail machines have no device_type * on the memory node, so check the name instead... */ prom_getprop(node, "name", type, sizeof(type)); } if (prom_strcmp(type, "memory")) continue; plen = prom_getprop(node, "reg", regbuf, sizeof(regbuf)); if (plen > sizeof(regbuf)) { prom_printf("memory node too large for buffer !\n"); plen = sizeof(regbuf); } p = regbuf; endp = p + (plen / sizeof(cell_t)); #ifdef DEBUG_PROM memset(prom_scratch, 0, sizeof(prom_scratch)); call_prom("package-to-path", 3, 1, node, prom_scratch, sizeof(prom_scratch) - 1); prom_debug(" node %s :\n", prom_scratch); #endif /* DEBUG_PROM */ while ((endp - p) >= (rac + rsc)) { unsigned long base, size; base = prom_next_cell(rac, &p); size = prom_next_cell(rsc, &p); if (size == 0) continue; prom_debug(" %lx %lx\n", base, size); if (base == 0 && (of_platform & PLATFORM_LPAR)) rmo_top = size; if ((base + size) > ram_top) ram_top = base + size; } } alloc_bottom = PAGE_ALIGN((unsigned long)&_end + 0x4000); /* * If prom_memory_limit is set we reduce the upper limits *except* for * alloc_top_high. This must be the real top of RAM so we can put * TCE's up there. */ alloc_top_high = ram_top; if (prom_memory_limit) { if (prom_memory_limit <= alloc_bottom) { prom_printf("Ignoring mem=%lx <= alloc_bottom.\n", prom_memory_limit); prom_memory_limit = 0; } else if (prom_memory_limit >= ram_top) { prom_printf("Ignoring mem=%lx >= ram_top.\n", prom_memory_limit); prom_memory_limit = 0; } else { ram_top = prom_memory_limit; rmo_top = min(rmo_top, prom_memory_limit); } } /* * Setup our top alloc point, that is top of RMO or top of * segment 0 when running non-LPAR. * Some RS64 machines have buggy firmware where claims up at * 1GB fail. Cap at 768MB as a workaround. * Since 768MB is plenty of room, and we need to cap to something * reasonable on 32-bit, cap at 768MB on all machines. */ if (!rmo_top) rmo_top = ram_top; rmo_top = min(0x30000000ul, rmo_top); alloc_top = rmo_top; alloc_top_high = ram_top; /* * Check if we have an initrd after the kernel but still inside * the RMO. If we do move our bottom point to after it. */ if (prom_initrd_start && prom_initrd_start < rmo_top && prom_initrd_end > alloc_bottom) alloc_bottom = PAGE_ALIGN(prom_initrd_end); prom_printf("memory layout at init:\n"); prom_printf(" memory_limit : %lx (16 MB aligned)\n", prom_memory_limit); prom_printf(" alloc_bottom : %lx\n", alloc_bottom); prom_printf(" alloc_top : %lx\n", alloc_top); prom_printf(" alloc_top_hi : %lx\n", alloc_top_high); prom_printf(" rmo_top : %lx\n", rmo_top); prom_printf(" ram_top : %lx\n", ram_top); } static void __init prom_close_stdin(void) { __be32 val; ihandle stdin; if (prom_getprop(prom.chosen, "stdin", &val, sizeof(val)) > 0) { stdin = be32_to_cpu(val); call_prom("close", 1, 0, stdin); } } #ifdef CONFIG_PPC_SVM static int prom_rtas_hcall(uint64_t args) { register uint64_t arg1 asm("r3") = H_RTAS; register uint64_t arg2 asm("r4") = args; asm volatile("sc 1\n" : "=r" (arg1) : "r" (arg1), "r" (arg2) :); return arg1; } static struct rtas_args __prombss os_term_args; static void __init prom_rtas_os_term(char *str) { phandle rtas_node; __be32 val; u32 token; prom_debug("%s: start...\n", __func__); rtas_node = call_prom("finddevice", 1, 1, ADDR("/rtas")); prom_debug("rtas_node: %x\n", rtas_node); if (!PHANDLE_VALID(rtas_node)) return; val = 0; prom_getprop(rtas_node, "ibm,os-term", &val, sizeof(val)); token = be32_to_cpu(val); prom_debug("ibm,os-term: %x\n", token); if (token == 0) prom_panic("Could not get token for ibm,os-term\n"); os_term_args.token = cpu_to_be32(token); os_term_args.nargs = cpu_to_be32(1); os_term_args.nret = cpu_to_be32(1); os_term_args.args[0] = cpu_to_be32(__pa(str)); prom_rtas_hcall((uint64_t)&os_term_args); } #endif /* CONFIG_PPC_SVM */ /* * Allocate room for and instantiate RTAS */ static void __init prom_instantiate_rtas(void) { phandle rtas_node; ihandle rtas_inst; u32 base, entry = 0; __be32 val; u32 size = 0; prom_debug("prom_instantiate_rtas: start...\n"); rtas_node = call_prom("finddevice", 1, 1, ADDR("/rtas")); prom_debug("rtas_node: %x\n", rtas_node); if (!PHANDLE_VALID(rtas_node)) return; val = 0; prom_getprop(rtas_node, "rtas-size", &val, sizeof(size)); size = be32_to_cpu(val); if (size == 0) return; base = alloc_down(size, PAGE_SIZE, 0); if (base == 0) prom_panic("Could not allocate memory for RTAS\n"); rtas_inst = call_prom("open", 1, 1, ADDR("/rtas")); if (!IHANDLE_VALID(rtas_inst)) { prom_printf("opening rtas package failed (%x)\n", rtas_inst); return; } prom_printf("instantiating rtas at 0x%x...", base); if (call_prom_ret("call-method", 3, 2, &entry, ADDR("instantiate-rtas"), rtas_inst, base) != 0 || entry == 0) { prom_printf(" failed\n"); return; } prom_printf(" done\n"); reserve_mem(base, size); val = cpu_to_be32(base); prom_setprop(rtas_node, "/rtas", "linux,rtas-base", &val, sizeof(val)); val = cpu_to_be32(entry); prom_setprop(rtas_node, "/rtas", "linux,rtas-entry", &val, sizeof(val)); /* Check if it supports "query-cpu-stopped-state" */ if (prom_getprop(rtas_node, "query-cpu-stopped-state", &val, sizeof(val)) != PROM_ERROR) rtas_has_query_cpu_stopped = true; prom_debug("rtas base = 0x%x\n", base); prom_debug("rtas entry = 0x%x\n", entry); prom_debug("rtas size = 0x%x\n", size); prom_debug("prom_instantiate_rtas: end...\n"); } #ifdef CONFIG_PPC64 /* * Allocate room for and instantiate Stored Measurement Log (SML) */ static void __init prom_instantiate_sml(void) { phandle ibmvtpm_node; ihandle ibmvtpm_inst; u32 entry = 0, size = 0, succ = 0; u64 base; __be32 val; prom_debug("prom_instantiate_sml: start...\n"); ibmvtpm_node = call_prom("finddevice", 1, 1, ADDR("/vdevice/vtpm")); prom_debug("ibmvtpm_node: %x\n", ibmvtpm_node); if (!PHANDLE_VALID(ibmvtpm_node)) return; ibmvtpm_inst = call_prom("open", 1, 1, ADDR("/vdevice/vtpm")); if (!IHANDLE_VALID(ibmvtpm_inst)) { prom_printf("opening vtpm package failed (%x)\n", ibmvtpm_inst); return; } if (prom_getprop(ibmvtpm_node, "ibm,sml-efi-reformat-supported", &val, sizeof(val)) != PROM_ERROR) { if (call_prom_ret("call-method", 2, 2, &succ, ADDR("reformat-sml-to-efi-alignment"), ibmvtpm_inst) != 0 || succ == 0) { prom_printf("Reformat SML to EFI alignment failed\n"); return; } if (call_prom_ret("call-method", 2, 2, &size, ADDR("sml-get-allocated-size"), ibmvtpm_inst) != 0 || size == 0) { prom_printf("SML get allocated size failed\n"); return; } } else { if (call_prom_ret("call-method", 2, 2, &size, ADDR("sml-get-handover-size"), ibmvtpm_inst) != 0 || size == 0) { prom_printf("SML get handover size failed\n"); return; } } base = alloc_down(size, PAGE_SIZE, 0); if (base == 0) prom_panic("Could not allocate memory for sml\n"); prom_printf("instantiating sml at 0x%llx...", base); memset((void *)base, 0, size); if (call_prom_ret("call-method", 4, 2, &entry, ADDR("sml-handover"), ibmvtpm_inst, size, base) != 0 || entry == 0) { prom_printf("SML handover failed\n"); return; } prom_printf(" done\n"); reserve_mem(base, size); prom_setprop(ibmvtpm_node, "/vdevice/vtpm", "linux,sml-base", &base, sizeof(base)); prom_setprop(ibmvtpm_node, "/vdevice/vtpm", "linux,sml-size", &size, sizeof(size)); prom_debug("sml base = 0x%llx\n", base); prom_debug("sml size = 0x%x\n", size); prom_debug("prom_instantiate_sml: end...\n"); } /* * Allocate room for and initialize TCE tables */ #ifdef __BIG_ENDIAN__ static void __init prom_initialize_tce_table(void) { phandle node; ihandle phb_node; char compatible[64], type[64], model[64]; char *path = prom_scratch; u64 base, align; u32 minalign, minsize; u64 tce_entry, *tce_entryp; u64 local_alloc_top, local_alloc_bottom; u64 i; if (prom_iommu_off) return; prom_debug("starting prom_initialize_tce_table\n"); /* Cache current top of allocs so we reserve a single block */ local_alloc_top = alloc_top_high; local_alloc_bottom = local_alloc_top; /* Search all nodes looking for PHBs. */ for (node = 0; prom_next_node(&node); ) { compatible[0] = 0; type[0] = 0; model[0] = 0; prom_getprop(node, "compatible", compatible, sizeof(compatible)); prom_getprop(node, "device_type", type, sizeof(type)); prom_getprop(node, "model", model, sizeof(model)); if ((type[0] == 0) || (prom_strstr(type, "pci") == NULL)) continue; /* Keep the old logic intact to avoid regression. */ if (compatible[0] != 0) { if ((prom_strstr(compatible, "python") == NULL) && (prom_strstr(compatible, "Speedwagon") == NULL) && (prom_strstr(compatible, "Winnipeg") == NULL)) continue; } else if (model[0] != 0) { if ((prom_strstr(model, "ython") == NULL) && (prom_strstr(model, "peedwagon") == NULL) && (prom_strstr(model, "innipeg") == NULL)) continue; } if (prom_getprop(node, "tce-table-minalign", &minalign, sizeof(minalign)) == PROM_ERROR) minalign = 0; if (prom_getprop(node, "tce-table-minsize", &minsize, sizeof(minsize)) == PROM_ERROR) minsize = 4UL << 20; /* * Even though we read what OF wants, we just set the table * size to 4 MB. This is enough to map 2GB of PCI DMA space. * By doing this, we avoid the pitfalls of trying to DMA to * MMIO space and the DMA alias hole. */ minsize = 4UL << 20; /* Align to the greater of the align or size */ align = max(minalign, minsize); base = alloc_down(minsize, align, 1); if (base == 0) prom_panic("ERROR, cannot find space for TCE table.\n"); if (base < local_alloc_bottom) local_alloc_bottom = base; /* It seems OF doesn't null-terminate the path :-( */ memset(path, 0, sizeof(prom_scratch)); /* Call OF to setup the TCE hardware */ if (call_prom("package-to-path", 3, 1, node, path, sizeof(prom_scratch) - 1) == PROM_ERROR) { prom_printf("package-to-path failed\n"); } /* Save away the TCE table attributes for later use. */ prom_setprop(node, path, "linux,tce-base", &base, sizeof(base)); prom_setprop(node, path, "linux,tce-size", &minsize, sizeof(minsize)); prom_debug("TCE table: %s\n", path); prom_debug("\tnode = 0x%x\n", node); prom_debug("\tbase = 0x%llx\n", base); prom_debug("\tsize = 0x%x\n", minsize); /* Initialize the table to have a one-to-one mapping * over the allocated size. */ tce_entryp = (u64 *)base; for (i = 0; i < (minsize >> 3) ;tce_entryp++, i++) { tce_entry = (i << PAGE_SHIFT); tce_entry |= 0x3; *tce_entryp = tce_entry; } prom_printf("opening PHB %s", path); phb_node = call_prom("open", 1, 1, path); if (phb_node == 0) prom_printf("... failed\n"); else prom_printf("... done\n"); call_prom("call-method", 6, 0, ADDR("set-64-bit-addressing"), phb_node, -1, minsize, (u32) base, (u32) (base >> 32)); call_prom("close", 1, 0, phb_node); } reserve_mem(local_alloc_bottom, local_alloc_top - local_alloc_bottom); /* These are only really needed if there is a memory limit in * effect, but we don't know so export them always. */ prom_tce_alloc_start = local_alloc_bottom; prom_tce_alloc_end = local_alloc_top; /* Flag the first invalid entry */ prom_debug("ending prom_initialize_tce_table\n"); } #endif /* __BIG_ENDIAN__ */ #endif /* CONFIG_PPC64 */ /* * With CHRP SMP we need to use the OF to start the other processors. * We can't wait until smp_boot_cpus (the OF is trashed by then) * so we have to put the processors into a holding pattern controlled * by the kernel (not OF) before we destroy the OF. * * This uses a chunk of low memory, puts some holding pattern * code there and sends the other processors off to there until * smp_boot_cpus tells them to do something. The holding pattern * checks that address until its cpu # is there, when it is that * cpu jumps to __secondary_start(). smp_boot_cpus() takes care * of setting those values. * * We also use physical address 0x4 here to tell when a cpu * is in its holding pattern code. * * -- Cort */ /* * We want to reference the copy of __secondary_hold_* in the * 0 - 0x100 address range */ #define LOW_ADDR(x) (((unsigned long) &(x)) & 0xff) static void __init prom_hold_cpus(void) { unsigned long i; phandle node; char type[64]; unsigned long *spinloop = (void *) LOW_ADDR(__secondary_hold_spinloop); unsigned long *acknowledge = (void *) LOW_ADDR(__secondary_hold_acknowledge); unsigned long secondary_hold = LOW_ADDR(__secondary_hold); /* * On pseries, if RTAS supports "query-cpu-stopped-state", * we skip this stage, the CPUs will be started by the * kernel using RTAS. */ if ((of_platform == PLATFORM_PSERIES || of_platform == PLATFORM_PSERIES_LPAR) && rtas_has_query_cpu_stopped) { prom_printf("prom_hold_cpus: skipped\n"); return; } prom_debug("prom_hold_cpus: start...\n"); prom_debug(" 1) spinloop = 0x%lx\n", (unsigned long)spinloop); prom_debug(" 1) *spinloop = 0x%lx\n", *spinloop); prom_debug(" 1) acknowledge = 0x%lx\n", (unsigned long)acknowledge); prom_debug(" 1) *acknowledge = 0x%lx\n", *acknowledge); prom_debug(" 1) secondary_hold = 0x%lx\n", secondary_hold); /* Set the common spinloop variable, so all of the secondary cpus * will block when they are awakened from their OF spinloop. * This must occur for both SMP and non SMP kernels, since OF will * be trashed when we move the kernel. */ *spinloop = 0; /* look for cpus */ for (node = 0; prom_next_node(&node); ) { unsigned int cpu_no; __be32 reg; type[0] = 0; prom_getprop(node, "device_type", type, sizeof(type)); if (prom_strcmp(type, "cpu") != 0) continue; /* Skip non-configured cpus. */ if (prom_getprop(node, "status", type, sizeof(type)) > 0) if (prom_strcmp(type, "okay") != 0) continue; reg = cpu_to_be32(-1); /* make sparse happy */ prom_getprop(node, "reg", ®, sizeof(reg)); cpu_no = be32_to_cpu(reg); prom_debug("cpu hw idx = %u\n", cpu_no); /* Init the acknowledge var which will be reset by * the secondary cpu when it awakens from its OF * spinloop. */ *acknowledge = (unsigned long)-1; if (cpu_no != prom.cpu) { /* Primary Thread of non-boot cpu or any thread */ prom_printf("starting cpu hw idx %u... ", cpu_no); call_prom("start-cpu", 3, 0, node, secondary_hold, cpu_no); for (i = 0; (i < 100000000) && (*acknowledge == ((unsigned long)-1)); i++ ) mb(); if (*acknowledge == cpu_no) prom_printf("done\n"); else prom_printf("failed: %lx\n", *acknowledge); } #ifdef CONFIG_SMP else prom_printf("boot cpu hw idx %u\n", cpu_no); #endif /* CONFIG_SMP */ } prom_debug("prom_hold_cpus: end...\n"); } static void __init prom_init_client_services(unsigned long pp) { /* Get a handle to the prom entry point before anything else */ prom_entry = pp; /* get a handle for the stdout device */ prom.chosen = call_prom("finddevice", 1, 1, ADDR("/chosen")); if (!PHANDLE_VALID(prom.chosen)) prom_panic("cannot find chosen"); /* msg won't be printed :( */ /* get device tree root */ prom.root = call_prom("finddevice", 1, 1, ADDR("/")); if (!PHANDLE_VALID(prom.root)) prom_panic("cannot find device tree root"); /* msg won't be printed :( */ prom.mmumap = 0; } #ifdef CONFIG_PPC32 /* * For really old powermacs, we need to map things we claim. * For that, we need the ihandle of the mmu. * Also, on the longtrail, we need to work around other bugs. */ static void __init prom_find_mmu(void) { phandle oprom; char version[64]; oprom = call_prom("finddevice", 1, 1, ADDR("/openprom")); if (!PHANDLE_VALID(oprom)) return; if (prom_getprop(oprom, "model", version, sizeof(version)) <= 0) return; version[sizeof(version) - 1] = 0; /* XXX might need to add other versions here */ if (prom_strcmp(version, "Open Firmware, 1.0.5") == 0) of_workarounds = OF_WA_CLAIM; else if (prom_strncmp(version, "FirmWorks,3.", 12) == 0) { of_workarounds = OF_WA_CLAIM | OF_WA_LONGTRAIL; call_prom("interpret", 1, 1, "dev /memory 0 to allow-reclaim"); } else return; prom.memory = call_prom("open", 1, 1, ADDR("/memory")); prom_getprop(prom.chosen, "mmu", &prom.mmumap, sizeof(prom.mmumap)); prom.mmumap = be32_to_cpu(prom.mmumap); if (!IHANDLE_VALID(prom.memory) || !IHANDLE_VALID(prom.mmumap)) of_workarounds &= ~OF_WA_CLAIM; /* hmmm */ } #else #define prom_find_mmu() #endif static void __init prom_init_stdout(void) { char *path = of_stdout_device; char type[16]; phandle stdout_node; __be32 val; if (prom_getprop(prom.chosen, "stdout", &val, sizeof(val)) <= 0) prom_panic("cannot find stdout"); prom.stdout = be32_to_cpu(val); /* Get the full OF pathname of the stdout device */ memset(path, 0, 256); call_prom("instance-to-path", 3, 1, prom.stdout, path, 255); prom_printf("OF stdout device is: %s\n", of_stdout_device); prom_setprop(prom.chosen, "/chosen", "linux,stdout-path", path, prom_strlen(path) + 1); /* instance-to-package fails on PA-Semi */ stdout_node = call_prom("instance-to-package", 1, 1, prom.stdout); if (stdout_node != PROM_ERROR) { val = cpu_to_be32(stdout_node); /* If it's a display, note it */ memset(type, 0, sizeof(type)); prom_getprop(stdout_node, "device_type", type, sizeof(type)); if (prom_strcmp(type, "display") == 0) prom_setprop(stdout_node, path, "linux,boot-display", NULL, 0); } } static int __init prom_find_machine_type(void) { char compat[256]; int len, i = 0; #ifdef CONFIG_PPC64 phandle rtas; int x; #endif /* Look for a PowerMac or a Cell */ len = prom_getprop(prom.root, "compatible", compat, sizeof(compat)-1); if (len > 0) { compat[len] = 0; while (i < len) { char *p = &compat[i]; int sl = prom_strlen(p); if (sl == 0) break; if (prom_strstr(p, "Power Macintosh") || prom_strstr(p, "MacRISC")) return PLATFORM_POWERMAC; #ifdef CONFIG_PPC64 /* We must make sure we don't detect the IBM Cell * blades as pSeries due to some firmware issues, * so we do it here. */ if (prom_strstr(p, "IBM,CBEA") || prom_strstr(p, "IBM,CPBW-1.0")) return PLATFORM_GENERIC; #endif /* CONFIG_PPC64 */ i += sl + 1; } } #ifdef CONFIG_PPC64 /* Try to figure out if it's an IBM pSeries or any other * PAPR compliant platform. We assume it is if : * - /device_type is "chrp" (please, do NOT use that for future * non-IBM designs ! * - it has /rtas */ len = prom_getprop(prom.root, "device_type", compat, sizeof(compat)-1); if (len <= 0) return PLATFORM_GENERIC; if (prom_strcmp(compat, "chrp")) return PLATFORM_GENERIC; /* Default to pSeries. We need to know if we are running LPAR */ rtas = call_prom("finddevice", 1, 1, ADDR("/rtas")); if (!PHANDLE_VALID(rtas)) return PLATFORM_GENERIC; x = prom_getproplen(rtas, "ibm,hypertas-functions"); if (x != PROM_ERROR) { prom_debug("Hypertas detected, assuming LPAR !\n"); return PLATFORM_PSERIES_LPAR; } return PLATFORM_PSERIES; #else return PLATFORM_GENERIC; #endif } static int __init prom_set_color(ihandle ih, int i, int r, int g, int b) { return call_prom("call-method", 6, 1, ADDR("color!"), ih, i, b, g, r); } /* * If we have a display that we don't know how to drive, * we will want to try to execute OF's open method for it * later. However, OF will probably fall over if we do that * we've taken over the MMU. * So we check whether we will need to open the display, * and if so, open it now. */ static void __init prom_check_displays(void) { char type[16], *path; phandle node; ihandle ih; int i; static const unsigned char default_colors[] __initconst = { 0x00, 0x00, 0x00, 0x00, 0x00, 0xaa, 0x00, 0xaa, 0x00, 0x00, 0xaa, 0xaa, 0xaa, 0x00, 0x00, 0xaa, 0x00, 0xaa, 0xaa, 0xaa, 0x00, 0xaa, 0xaa, 0xaa, 0x55, 0x55, 0x55, 0x55, 0x55, 0xff, 0x55, 0xff, 0x55, 0x55, 0xff, 0xff, 0xff, 0x55, 0x55, 0xff, 0x55, 0xff, 0xff, 0xff, 0x55, 0xff, 0xff, 0xff }; const unsigned char *clut; prom_debug("Looking for displays\n"); for (node = 0; prom_next_node(&node); ) { memset(type, 0, sizeof(type)); prom_getprop(node, "device_type", type, sizeof(type)); if (prom_strcmp(type, "display") != 0) continue; /* It seems OF doesn't null-terminate the path :-( */ path = prom_scratch; memset(path, 0, sizeof(prom_scratch)); /* * leave some room at the end of the path for appending extra * arguments */ if (call_prom("package-to-path", 3, 1, node, path, sizeof(prom_scratch) - 10) == PROM_ERROR) continue; prom_printf("found display : %s, opening... ", path); ih = call_prom("open", 1, 1, path); if (ih == 0) { prom_printf("failed\n"); continue; } /* Success */ prom_printf("done\n"); prom_setprop(node, path, "linux,opened", NULL, 0); /* Setup a usable color table when the appropriate * method is available. Should update this to set-colors */ clut = default_colors; for (i = 0; i < 16; i++, clut += 3) if (prom_set_color(ih, i, clut[0], clut[1], clut[2]) != 0) break; #ifdef CONFIG_LOGO_LINUX_CLUT224 clut = PTRRELOC(logo_linux_clut224.clut); for (i = 0; i < logo_linux_clut224.clutsize; i++, clut += 3) if (prom_set_color(ih, i + 32, clut[0], clut[1], clut[2]) != 0) break; #endif /* CONFIG_LOGO_LINUX_CLUT224 */ #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX if (prom_getprop(node, "linux,boot-display", NULL, 0) != PROM_ERROR) { u32 width, height, pitch, addr; prom_printf("Setting btext !\n"); if (prom_getprop(node, "width", &width, 4) == PROM_ERROR) return; if (prom_getprop(node, "height", &height, 4) == PROM_ERROR) return; if (prom_getprop(node, "linebytes", &pitch, 4) == PROM_ERROR) return; if (prom_getprop(node, "address", &addr, 4) == PROM_ERROR) return; prom_printf("W=%d H=%d LB=%d addr=0x%x\n", width, height, pitch, addr); btext_setup_display(width, height, 8, pitch, addr); btext_prepare_BAT(); } #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ } } /* Return (relocated) pointer to this much memory: moves initrd if reqd. */ static void __init *make_room(unsigned long *mem_start, unsigned long *mem_end, unsigned long needed, unsigned long align) { void *ret; *mem_start = ALIGN(*mem_start, align); while ((*mem_start + needed) > *mem_end) { unsigned long room, chunk; prom_debug("Chunk exhausted, claiming more at %lx...\n", alloc_bottom); room = alloc_top - alloc_bottom; if (room > DEVTREE_CHUNK_SIZE) room = DEVTREE_CHUNK_SIZE; if (room < PAGE_SIZE) prom_panic("No memory for flatten_device_tree " "(no room)\n"); chunk = alloc_up(room, 0); if (chunk == 0) prom_panic("No memory for flatten_device_tree " "(claim failed)\n"); *mem_end = chunk + room; } ret = (void *)*mem_start; *mem_start += needed; return ret; } #define dt_push_token(token, mem_start, mem_end) do { \ void *room = make_room(mem_start, mem_end, 4, 4); \ *(__be32 *)room = cpu_to_be32(token); \ } while(0) static unsigned long __init dt_find_string(char *str) { char *s, *os; s = os = (char *)dt_string_start; s += 4; while (s < (char *)dt_string_end) { if (prom_strcmp(s, str) == 0) return s - os; s += prom_strlen(s) + 1; } return 0; } /* * The Open Firmware 1275 specification states properties must be 31 bytes or * less, however not all firmwares obey this. Make it 64 bytes to be safe. */ #define MAX_PROPERTY_NAME 64 static void __init scan_dt_build_strings(phandle node, unsigned long *mem_start, unsigned long *mem_end) { char *prev_name, *namep, *sstart; unsigned long soff; phandle child; sstart = (char *)dt_string_start; /* get and store all property names */ prev_name = ""; for (;;) { /* 64 is max len of name including nul. */ namep = make_room(mem_start, mem_end, MAX_PROPERTY_NAME, 1); if (call_prom("nextprop", 3, 1, node, prev_name, namep) != 1) { /* No more nodes: unwind alloc */ *mem_start = (unsigned long)namep; break; } /* skip "name" */ if (prom_strcmp(namep, "name") == 0) { *mem_start = (unsigned long)namep; prev_name = "name"; continue; } /* get/create string entry */ soff = dt_find_string(namep); if (soff != 0) { *mem_start = (unsigned long)namep; namep = sstart + soff; } else { /* Trim off some if we can */ *mem_start = (unsigned long)namep + prom_strlen(namep) + 1; dt_string_end = *mem_start; } prev_name = namep; } /* do all our children */ child = call_prom("child", 1, 1, node); while (child != 0) { scan_dt_build_strings(child, mem_start, mem_end); child = call_prom("peer", 1, 1, child); } } static void __init scan_dt_build_struct(phandle node, unsigned long *mem_start, unsigned long *mem_end) { phandle child; char *namep, *prev_name, *sstart, *p, *ep, *lp, *path; unsigned long soff; unsigned char *valp; static char pname[MAX_PROPERTY_NAME] __prombss; int l, room, has_phandle = 0; dt_push_token(OF_DT_BEGIN_NODE, mem_start, mem_end); /* get the node's full name */ namep = (char *)*mem_start; room = *mem_end - *mem_start; if (room > 255) room = 255; l = call_prom("package-to-path", 3, 1, node, namep, room); if (l >= 0) { /* Didn't fit? Get more room. */ if (l >= room) { if (l >= *mem_end - *mem_start) namep = make_room(mem_start, mem_end, l+1, 1); call_prom("package-to-path", 3, 1, node, namep, l); } namep[l] = '\0'; /* Fixup an Apple bug where they have bogus \0 chars in the * middle of the path in some properties, and extract * the unit name (everything after the last '/'). */ for (lp = p = namep, ep = namep + l; p < ep; p++) { if (*p == '/') lp = namep; else if (*p != 0) *lp++ = *p; } *lp = 0; *mem_start = ALIGN((unsigned long)lp + 1, 4); } /* get it again for debugging */ path = prom_scratch; memset(path, 0, sizeof(prom_scratch)); call_prom("package-to-path", 3, 1, node, path, sizeof(prom_scratch) - 1); /* get and store all properties */ prev_name = ""; sstart = (char *)dt_string_start; for (;;) { if (call_prom("nextprop", 3, 1, node, prev_name, pname) != 1) break; /* skip "name" */ if (prom_strcmp(pname, "name") == 0) { prev_name = "name"; continue; } /* find string offset */ soff = dt_find_string(pname); if (soff == 0) { prom_printf("WARNING: Can't find string index for" " <%s>, node %s\n", pname, path); break; } prev_name = sstart + soff; /* get length */ l = call_prom("getproplen", 2, 1, node, pname); /* sanity checks */ if (l == PROM_ERROR) continue; /* push property head */ dt_push_token(OF_DT_PROP, mem_start, mem_end); dt_push_token(l, mem_start, mem_end); dt_push_token(soff, mem_start, mem_end); /* push property content */ valp = make_room(mem_start, mem_end, l, 4); call_prom("getprop", 4, 1, node, pname, valp, l); *mem_start = ALIGN(*mem_start, 4); if (!prom_strcmp(pname, "phandle")) has_phandle = 1; } /* Add a "phandle" property if none already exist */ if (!has_phandle) { soff = dt_find_string("phandle"); if (soff == 0) prom_printf("WARNING: Can't find string index for node %s\n", path); else { dt_push_token(OF_DT_PROP, mem_start, mem_end); dt_push_token(4, mem_start, mem_end); dt_push_token(soff, mem_start, mem_end); valp = make_room(mem_start, mem_end, 4, 4); *(__be32 *)valp = cpu_to_be32(node); } } /* do all our children */ child = call_prom("child", 1, 1, node); while (child != 0) { scan_dt_build_struct(child, mem_start, mem_end); child = call_prom("peer", 1, 1, child); } dt_push_token(OF_DT_END_NODE, mem_start, mem_end); } static void __init flatten_device_tree(void) { phandle root; unsigned long mem_start, mem_end, room; struct boot_param_header *hdr; char *namep; u64 *rsvmap; /* * Check how much room we have between alloc top & bottom (+/- a * few pages), crop to 1MB, as this is our "chunk" size */ room = alloc_top - alloc_bottom - 0x4000; if (room > DEVTREE_CHUNK_SIZE) room = DEVTREE_CHUNK_SIZE; prom_debug("starting device tree allocs at %lx\n", alloc_bottom); /* Now try to claim that */ mem_start = (unsigned long)alloc_up(room, PAGE_SIZE); if (mem_start == 0) prom_panic("Can't allocate initial device-tree chunk\n"); mem_end = mem_start + room; /* Get root of tree */ root = call_prom("peer", 1, 1, (phandle)0); if (root == (phandle)0) prom_panic ("couldn't get device tree root\n"); /* Build header and make room for mem rsv map */ mem_start = ALIGN(mem_start, 4); hdr = make_room(&mem_start, &mem_end, sizeof(struct boot_param_header), 4); dt_header_start = (unsigned long)hdr; rsvmap = make_room(&mem_start, &mem_end, sizeof(mem_reserve_map), 8); /* Start of strings */ mem_start = PAGE_ALIGN(mem_start); dt_string_start = mem_start; mem_start += 4; /* hole */ /* Add "phandle" in there, we'll need it */ namep = make_room(&mem_start, &mem_end, 16, 1); prom_strcpy(namep, "phandle"); mem_start = (unsigned long)namep + prom_strlen(namep) + 1; /* Build string array */ prom_printf("Building dt strings...\n"); scan_dt_build_strings(root, &mem_start, &mem_end); dt_string_end = mem_start; /* Build structure */ mem_start = PAGE_ALIGN(mem_start); dt_struct_start = mem_start; prom_printf("Building dt structure...\n"); scan_dt_build_struct(root, &mem_start, &mem_end); dt_push_token(OF_DT_END, &mem_start, &mem_end); dt_struct_end = PAGE_ALIGN(mem_start); /* Finish header */ hdr->boot_cpuid_phys = cpu_to_be32(prom.cpu); hdr->magic = cpu_to_be32(OF_DT_HEADER); hdr->totalsize = cpu_to_be32(dt_struct_end - dt_header_start); hdr->off_dt_struct = cpu_to_be32(dt_struct_start - dt_header_start); hdr->off_dt_strings = cpu_to_be32(dt_string_start - dt_header_start); hdr->dt_strings_size = cpu_to_be32(dt_string_end - dt_string_start); hdr->off_mem_rsvmap = cpu_to_be32(((unsigned long)rsvmap) - dt_header_start); hdr->version = cpu_to_be32(OF_DT_VERSION); /* Version 16 is not backward compatible */ hdr->last_comp_version = cpu_to_be32(0x10); /* Copy the reserve map in */ memcpy(rsvmap, mem_reserve_map, sizeof(mem_reserve_map)); #ifdef DEBUG_PROM { int i; prom_printf("reserved memory map:\n"); for (i = 0; i < mem_reserve_cnt; i++) prom_printf(" %llx - %llx\n", be64_to_cpu(mem_reserve_map[i].base), be64_to_cpu(mem_reserve_map[i].size)); } #endif /* Bump mem_reserve_cnt to cause further reservations to fail * since it's too late. */ mem_reserve_cnt = MEM_RESERVE_MAP_SIZE; prom_printf("Device tree strings 0x%lx -> 0x%lx\n", dt_string_start, dt_string_end); prom_printf("Device tree struct 0x%lx -> 0x%lx\n", dt_struct_start, dt_struct_end); } #ifdef CONFIG_PPC_MAPLE /* PIBS Version 1.05.0000 04/26/2005 has an incorrect /ht/isa/ranges property. * The values are bad, and it doesn't even have the right number of cells. */ static void __init fixup_device_tree_maple(void) { phandle isa; u32 rloc = 0x01002000; /* IO space; PCI device = 4 */ u32 isa_ranges[6]; char *name; name = "/ht@0/isa@4"; isa = call_prom("finddevice", 1, 1, ADDR(name)); if (!PHANDLE_VALID(isa)) { name = "/ht@0/isa@6"; isa = call_prom("finddevice", 1, 1, ADDR(name)); rloc = 0x01003000; /* IO space; PCI device = 6 */ } if (!PHANDLE_VALID(isa)) return; if (prom_getproplen(isa, "ranges") != 12) return; if (prom_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)) == PROM_ERROR) return; if (isa_ranges[0] != 0x1 || isa_ranges[1] != 0xf4000000 || isa_ranges[2] != 0x00010000) return; prom_printf("Fixing up bogus ISA range on Maple/Apache...\n"); isa_ranges[0] = 0x1; isa_ranges[1] = 0x0; isa_ranges[2] = rloc; isa_ranges[3] = 0x0; isa_ranges[4] = 0x0; isa_ranges[5] = 0x00010000; prom_setprop(isa, name, "ranges", isa_ranges, sizeof(isa_ranges)); } #define CPC925_MC_START 0xf8000000 #define CPC925_MC_LENGTH 0x1000000 /* The values for memory-controller don't have right number of cells */ static void __init fixup_device_tree_maple_memory_controller(void) { phandle mc; u32 mc_reg[4]; char *name = "/hostbridge@f8000000"; u32 ac, sc; mc = call_prom("finddevice", 1, 1, ADDR(name)); if (!PHANDLE_VALID(mc)) return; if (prom_getproplen(mc, "reg") != 8) return; prom_getprop(prom.root, "#address-cells", &ac, sizeof(ac)); prom_getprop(prom.root, "#size-cells", &sc, sizeof(sc)); if ((ac != 2) || (sc != 2)) return; if (prom_getprop(mc, "reg", mc_reg, sizeof(mc_reg)) == PROM_ERROR) return; if (mc_reg[0] != CPC925_MC_START || mc_reg[1] != CPC925_MC_LENGTH) return; prom_printf("Fixing up bogus hostbridge on Maple...\n"); mc_reg[0] = 0x0; mc_reg[1] = CPC925_MC_START; mc_reg[2] = 0x0; mc_reg[3] = CPC925_MC_LENGTH; prom_setprop(mc, name, "reg", mc_reg, sizeof(mc_reg)); } #else #define fixup_device_tree_maple() #define fixup_device_tree_maple_memory_controller() #endif #ifdef CONFIG_PPC_CHRP /* * Pegasos and BriQ lacks the "ranges" property in the isa node * Pegasos needs decimal IRQ 14/15, not hexadecimal * Pegasos has the IDE configured in legacy mode, but advertised as native */ static void __init fixup_device_tree_chrp(void) { phandle ph; u32 prop[6]; u32 rloc = 0x01006000; /* IO space; PCI device = 12 */ char *name; int rc; name = "/pci@80000000/isa@c"; ph = call_prom("finddevice", 1, 1, ADDR(name)); if (!PHANDLE_VALID(ph)) { name = "/pci@ff500000/isa@6"; ph = call_prom("finddevice", 1, 1, ADDR(name)); rloc = 0x01003000; /* IO space; PCI device = 6 */ } if (PHANDLE_VALID(ph)) { rc = prom_getproplen(ph, "ranges"); if (rc == 0 || rc == PROM_ERROR) { prom_printf("Fixing up missing ISA range on Pegasos...\n"); prop[0] = 0x1; prop[1] = 0x0; prop[2] = rloc; prop[3] = 0x0; prop[4] = 0x0; prop[5] = 0x00010000; prom_setprop(ph, name, "ranges", prop, sizeof(prop)); } } name = "/pci@80000000/ide@C,1"; ph = call_prom("finddevice", 1, 1, ADDR(name)); if (PHANDLE_VALID(ph)) { prom_printf("Fixing up IDE interrupt on Pegasos...\n"); prop[0] = 14; prop[1] = 0x0; prom_setprop(ph, name, "interrupts", prop, 2*sizeof(u32)); prom_printf("Fixing up IDE class-code on Pegasos...\n"); rc = prom_getprop(ph, "class-code", prop, sizeof(u32)); if (rc == sizeof(u32)) { prop[0] &= ~0x5; prom_setprop(ph, name, "class-code", prop, sizeof(u32)); } } } #else #define fixup_device_tree_chrp() #endif #if defined(CONFIG_PPC64) && defined(CONFIG_PPC_PMAC) static void __init fixup_device_tree_pmac(void) { phandle u3, i2c, mpic; u32 u3_rev; u32 interrupts[2]; u32 parent; /* Some G5s have a missing interrupt definition, fix it up here */ u3 = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000")); if (!PHANDLE_VALID(u3)) return; i2c = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/i2c@f8001000")); if (!PHANDLE_VALID(i2c)) return; mpic = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/mpic@f8040000")); if (!PHANDLE_VALID(mpic)) return; /* check if proper rev of u3 */ if (prom_getprop(u3, "device-rev", &u3_rev, sizeof(u3_rev)) == PROM_ERROR) return; if (u3_rev < 0x35 || u3_rev > 0x39) return; /* does it need fixup ? */ if (prom_getproplen(i2c, "interrupts") > 0) return; prom_printf("fixing up bogus interrupts for u3 i2c...\n"); /* interrupt on this revision of u3 is number 0 and level */ interrupts[0] = 0; interrupts[1] = 1; prom_setprop(i2c, "/u3@0,f8000000/i2c@f8001000", "interrupts", &interrupts, sizeof(interrupts)); parent = (u32)mpic; prom_setprop(i2c, "/u3@0,f8000000/i2c@f8001000", "interrupt-parent", &parent, sizeof(parent)); } #else #define fixup_device_tree_pmac() #endif #ifdef CONFIG_PPC_EFIKA /* * The MPC5200 FEC driver requires an phy-handle property to tell it how * to talk to the phy. If the phy-handle property is missing, then this * function is called to add the appropriate nodes and link it to the * ethernet node. */ static void __init fixup_device_tree_efika_add_phy(void) { u32 node; char prop[64]; int rv; /* Check if /builtin/ethernet exists - bail if it doesn't */ node = call_prom("finddevice", 1, 1, ADDR("/builtin/ethernet")); if (!PHANDLE_VALID(node)) return; /* Check if the phy-handle property exists - bail if it does */ rv = prom_getprop(node, "phy-handle", prop, sizeof(prop)); if (rv <= 0) return; /* * At this point the ethernet device doesn't have a phy described. * Now we need to add the missing phy node and linkage */ /* Check for an MDIO bus node - if missing then create one */ node = call_prom("finddevice", 1, 1, ADDR("/builtin/mdio")); if (!PHANDLE_VALID(node)) { prom_printf("Adding Ethernet MDIO node\n"); call_prom("interpret", 1, 1, " s\" /builtin\" find-device" " new-device" " 1 encode-int s\" #address-cells\" property" " 0 encode-int s\" #size-cells\" property" " s\" mdio\" device-name" " s\" fsl,mpc5200b-mdio\" encode-string" " s\" compatible\" property" " 0xf0003000 0x400 reg" " 0x2 encode-int" " 0x5 encode-int encode+" " 0x3 encode-int encode+" " s\" interrupts\" property" " finish-device"); }; /* Check for a PHY device node - if missing then create one and * give it's phandle to the ethernet node */ node = call_prom("finddevice", 1, 1, ADDR("/builtin/mdio/ethernet-phy")); if (!PHANDLE_VALID(node)) { prom_printf("Adding Ethernet PHY node\n"); call_prom("interpret", 1, 1, " s\" /builtin/mdio\" find-device" " new-device" " s\" ethernet-phy\" device-name" " 0x10 encode-int s\" reg\" property" " my-self" " ihandle>phandle" " finish-device" " s\" /builtin/ethernet\" find-device" " encode-int" " s\" phy-handle\" property" " device-end"); } } static void __init fixup_device_tree_efika(void) { int sound_irq[3] = { 2, 2, 0 }; int bcomm_irq[3*16] = { 3,0,0, 3,1,0, 3,2,0, 3,3,0, 3,4,0, 3,5,0, 3,6,0, 3,7,0, 3,8,0, 3,9,0, 3,10,0, 3,11,0, 3,12,0, 3,13,0, 3,14,0, 3,15,0 }; u32 node; char prop[64]; int rv, len; /* Check if we're really running on a EFIKA */ node = call_prom("finddevice", 1, 1, ADDR("/")); if (!PHANDLE_VALID(node)) return; rv = prom_getprop(node, "model", prop, sizeof(prop)); if (rv == PROM_ERROR) return; if (prom_strcmp(prop, "EFIKA5K2")) return; prom_printf("Applying EFIKA device tree fixups\n"); /* Claiming to be 'chrp' is death */ node = call_prom("finddevice", 1, 1, ADDR("/")); rv = prom_getprop(node, "device_type", prop, sizeof(prop)); if (rv != PROM_ERROR && (prom_strcmp(prop, "chrp") == 0)) prom_setprop(node, "/", "device_type", "efika", sizeof("efika")); /* CODEGEN,description is exposed in /proc/cpuinfo so fix that too */ rv = prom_getprop(node, "CODEGEN,description", prop, sizeof(prop)); if (rv != PROM_ERROR && (prom_strstr(prop, "CHRP"))) prom_setprop(node, "/", "CODEGEN,description", "Efika 5200B PowerPC System", sizeof("Efika 5200B PowerPC System")); /* Fixup bestcomm interrupts property */ node = call_prom("finddevice", 1, 1, ADDR("/builtin/bestcomm")); if (PHANDLE_VALID(node)) { len = prom_getproplen(node, "interrupts"); if (len == 12) { prom_printf("Fixing bestcomm interrupts property\n"); prom_setprop(node, "/builtin/bestcom", "interrupts", bcomm_irq, sizeof(bcomm_irq)); } } /* Fixup sound interrupts property */ node = call_prom("finddevice", 1, 1, ADDR("/builtin/sound")); if (PHANDLE_VALID(node)) { rv = prom_getprop(node, "interrupts", prop, sizeof(prop)); if (rv == PROM_ERROR) { prom_printf("Adding sound interrupts property\n"); prom_setprop(node, "/builtin/sound", "interrupts", sound_irq, sizeof(sound_irq)); } } /* Make sure ethernet phy-handle property exists */ fixup_device_tree_efika_add_phy(); } #else #define fixup_device_tree_efika() #endif #ifdef CONFIG_PPC_PASEMI_NEMO /* * CFE supplied on Nemo is broken in several ways, biggest * problem is that it reassigns ISA interrupts to unused mpic ints. * Add an interrupt-controller property for the io-bridge to use * and correct the ints so we can attach them to an irq_domain */ static void __init fixup_device_tree_pasemi(void) { u32 interrupts[2], parent, rval, val = 0; char *name, *pci_name; phandle iob, node; /* Find the root pci node */ name = "/pxp@0,e0000000"; iob = call_prom("finddevice", 1, 1, ADDR(name)); if (!PHANDLE_VALID(iob)) return; /* check if interrupt-controller node set yet */ if (prom_getproplen(iob, "interrupt-controller") !=PROM_ERROR) return; prom_printf("adding interrupt-controller property for SB600...\n"); prom_setprop(iob, name, "interrupt-controller", &val, 0); pci_name = "/pxp@0,e0000000/pci@11"; node = call_prom("finddevice", 1, 1, ADDR(pci_name)); parent = ADDR(iob); for( ; prom_next_node(&node); ) { /* scan each node for one with an interrupt */ if (!PHANDLE_VALID(node)) continue; rval = prom_getproplen(node, "interrupts"); if (rval == 0 || rval == PROM_ERROR) continue; prom_getprop(node, "interrupts", &interrupts, sizeof(interrupts)); if ((interrupts[0] < 212) || (interrupts[0] > 222)) continue; /* found a node, update both interrupts and interrupt-parent */ if ((interrupts[0] >= 212) && (interrupts[0] <= 215)) interrupts[0] -= 203; if ((interrupts[0] >= 216) && (interrupts[0] <= 220)) interrupts[0] -= 213; if (interrupts[0] == 221) interrupts[0] = 14; if (interrupts[0] == 222) interrupts[0] = 8; prom_setprop(node, pci_name, "interrupts", interrupts, sizeof(interrupts)); prom_setprop(node, pci_name, "interrupt-parent", &parent, sizeof(parent)); } /* * The io-bridge has device_type set to 'io-bridge' change it to 'isa' * so that generic isa-bridge code can add the SB600 and its on-board * peripherals. */ name = "/pxp@0,e0000000/io-bridge@0"; iob = call_prom("finddevice", 1, 1, ADDR(name)); if (!PHANDLE_VALID(iob)) return; /* device_type is already set, just change it. */ prom_printf("Changing device_type of SB600 node...\n"); prom_setprop(iob, name, "device_type", "isa", sizeof("isa")); } #else /* !CONFIG_PPC_PASEMI_NEMO */ static inline void fixup_device_tree_pasemi(void) { } #endif static void __init fixup_device_tree(void) { fixup_device_tree_maple(); fixup_device_tree_maple_memory_controller(); fixup_device_tree_chrp(); fixup_device_tree_pmac(); fixup_device_tree_efika(); fixup_device_tree_pasemi(); } static void __init prom_find_boot_cpu(void) { __be32 rval; ihandle prom_cpu; phandle cpu_pkg; rval = 0; if (prom_getprop(prom.chosen, "cpu", &rval, sizeof(rval)) <= 0) return; prom_cpu = be32_to_cpu(rval); cpu_pkg = call_prom("instance-to-package", 1, 1, prom_cpu); if (!PHANDLE_VALID(cpu_pkg)) return; prom_getprop(cpu_pkg, "reg", &rval, sizeof(rval)); prom.cpu = be32_to_cpu(rval); prom_debug("Booting CPU hw index = %d\n", prom.cpu); } static void __init prom_check_initrd(unsigned long r3, unsigned long r4) { #ifdef CONFIG_BLK_DEV_INITRD if (r3 && r4 && r4 != 0xdeadbeef) { __be64 val; prom_initrd_start = is_kernel_addr(r3) ? __pa(r3) : r3; prom_initrd_end = prom_initrd_start + r4; val = cpu_to_be64(prom_initrd_start); prom_setprop(prom.chosen, "/chosen", "linux,initrd-start", &val, sizeof(val)); val = cpu_to_be64(prom_initrd_end); prom_setprop(prom.chosen, "/chosen", "linux,initrd-end", &val, sizeof(val)); reserve_mem(prom_initrd_start, prom_initrd_end - prom_initrd_start); prom_debug("initrd_start=0x%lx\n", prom_initrd_start); prom_debug("initrd_end=0x%lx\n", prom_initrd_end); } #endif /* CONFIG_BLK_DEV_INITRD */ } #ifdef CONFIG_PPC64 #ifdef CONFIG_RELOCATABLE static void reloc_toc(void) { } static void unreloc_toc(void) { } #else static void __reloc_toc(unsigned long offset, unsigned long nr_entries) { unsigned long i; unsigned long *toc_entry; /* Get the start of the TOC by using r2 directly. */ asm volatile("addi %0,2,-0x8000" : "=b" (toc_entry)); for (i = 0; i < nr_entries; i++) { *toc_entry = *toc_entry + offset; toc_entry++; } } static void reloc_toc(void) { unsigned long offset = reloc_offset(); unsigned long nr_entries = (__prom_init_toc_end - __prom_init_toc_start) / sizeof(long); __reloc_toc(offset, nr_entries); mb(); } static void unreloc_toc(void) { unsigned long offset = reloc_offset(); unsigned long nr_entries = (__prom_init_toc_end - __prom_init_toc_start) / sizeof(long); mb(); __reloc_toc(-offset, nr_entries); } #endif #endif #ifdef CONFIG_PPC_SVM /* * Perform the Enter Secure Mode ultracall. */ static int enter_secure_mode(unsigned long kbase, unsigned long fdt) { register unsigned long r3 asm("r3") = UV_ESM; register unsigned long r4 asm("r4") = kbase; register unsigned long r5 asm("r5") = fdt; asm volatile("sc 2" : "+r"(r3) : "r"(r4), "r"(r5)); return r3; } /* * Call the Ultravisor to transfer us to secure memory if we have an ESM blob. */ static void __init setup_secure_guest(unsigned long kbase, unsigned long fdt) { int ret; if (!prom_svm_enable) return; /* Switch to secure mode. */ prom_printf("Switching to secure mode.\n"); /* * The ultravisor will do an integrity check of the kernel image but we * relocated it so the check will fail. Restore the original image by * relocating it back to the kernel virtual base address. */ if (IS_ENABLED(CONFIG_RELOCATABLE)) relocate(KERNELBASE); ret = enter_secure_mode(kbase, fdt); /* Relocate the kernel again. */ if (IS_ENABLED(CONFIG_RELOCATABLE)) relocate(kbase); if (ret != U_SUCCESS) { prom_printf("Returned %d from switching to secure mode.\n", ret); prom_rtas_os_term("Switch to secure mode failed.\n"); } } #else static void __init setup_secure_guest(unsigned long kbase, unsigned long fdt) { } #endif /* CONFIG_PPC_SVM */ /* * We enter here early on, when the Open Firmware prom is still * handling exceptions and the MMU hash table for us. */ unsigned long __init prom_init(unsigned long r3, unsigned long r4, unsigned long pp, unsigned long r6, unsigned long r7, unsigned long kbase) { unsigned long hdr; #ifdef CONFIG_PPC32 unsigned long offset = reloc_offset(); reloc_got2(offset); #else reloc_toc(); #endif /* * First zero the BSS */ memset(&__bss_start, 0, __bss_stop - __bss_start); /* * Init interface to Open Firmware, get some node references, * like /chosen */ prom_init_client_services(pp); /* * See if this OF is old enough that we need to do explicit maps * and other workarounds */ prom_find_mmu(); /* * Init prom stdout device */ prom_init_stdout(); prom_printf("Preparing to boot %s", linux_banner); /* * Get default machine type. At this point, we do not differentiate * between pSeries SMP and pSeries LPAR */ of_platform = prom_find_machine_type(); prom_printf("Detected machine type: %x\n", of_platform); #ifndef CONFIG_NONSTATIC_KERNEL /* Bail if this is a kdump kernel. */ if (PHYSICAL_START > 0) prom_panic("Error: You can't boot a kdump kernel from OF!\n"); #endif /* * Check for an initrd */ prom_check_initrd(r3, r4); /* * Do early parsing of command line */ early_cmdline_parse(); #ifdef CONFIG_PPC_PSERIES /* * On pSeries, inform the firmware about our capabilities */ if (of_platform == PLATFORM_PSERIES || of_platform == PLATFORM_PSERIES_LPAR) prom_send_capabilities(); #endif /* * Copy the CPU hold code */ if (of_platform != PLATFORM_POWERMAC) copy_and_flush(0, kbase, 0x100, 0); /* * Initialize memory management within prom_init */ prom_init_mem(); /* * Determine which cpu is actually running right _now_ */ prom_find_boot_cpu(); /* * Initialize display devices */ prom_check_displays(); #if defined(CONFIG_PPC64) && defined(__BIG_ENDIAN__) /* * Initialize IOMMU (TCE tables) on pSeries. Do that before anything else * that uses the allocator, we need to make sure we get the top of memory * available for us here... */ if (of_platform == PLATFORM_PSERIES) prom_initialize_tce_table(); #endif /* * On non-powermacs, try to instantiate RTAS. PowerMacs don't * have a usable RTAS implementation. */ if (of_platform != PLATFORM_POWERMAC) prom_instantiate_rtas(); #ifdef CONFIG_PPC64 /* instantiate sml */ prom_instantiate_sml(); #endif /* * On non-powermacs, put all CPUs in spin-loops. * * PowerMacs use a different mechanism to spin CPUs * * (This must be done after instanciating RTAS) */ if (of_platform != PLATFORM_POWERMAC) prom_hold_cpus(); /* * Fill in some infos for use by the kernel later on */ if (prom_memory_limit) { __be64 val = cpu_to_be64(prom_memory_limit); prom_setprop(prom.chosen, "/chosen", "linux,memory-limit", &val, sizeof(val)); } #ifdef CONFIG_PPC64 if (prom_iommu_off) prom_setprop(prom.chosen, "/chosen", "linux,iommu-off", NULL, 0); if (prom_iommu_force_on) prom_setprop(prom.chosen, "/chosen", "linux,iommu-force-on", NULL, 0); if (prom_tce_alloc_start) { prom_setprop(prom.chosen, "/chosen", "linux,tce-alloc-start", &prom_tce_alloc_start, sizeof(prom_tce_alloc_start)); prom_setprop(prom.chosen, "/chosen", "linux,tce-alloc-end", &prom_tce_alloc_end, sizeof(prom_tce_alloc_end)); } #endif /* * Fixup any known bugs in the device-tree */ fixup_device_tree(); /* * Now finally create the flattened device-tree */ prom_printf("copying OF device tree...\n"); flatten_device_tree(); /* * in case stdin is USB and still active on IBM machines... * Unfortunately quiesce crashes on some powermacs if we have * closed stdin already (in particular the powerbook 101). */ if (of_platform != PLATFORM_POWERMAC) prom_close_stdin(); /* * Call OF "quiesce" method to shut down pending DMA's from * devices etc... */ prom_printf("Quiescing Open Firmware ...\n"); call_prom("quiesce", 0, 0); /* * And finally, call the kernel passing it the flattened device * tree and NULL as r5, thus triggering the new entry point which * is common to us and kexec */ hdr = dt_header_start; prom_printf("Booting Linux via __start() @ 0x%lx ...\n", kbase); prom_debug("->dt_header_start=0x%lx\n", hdr); #ifdef CONFIG_PPC32 reloc_got2(-offset); #else unreloc_toc(); #endif /* Move to secure memory if we're supposed to be secure guests. */ setup_secure_guest(kbase, hdr); __start(hdr, kbase, 0, 0, 0, 0, 0); return 0; }