// SPDX-License-Identifier: GPL-2.0 /* * This file handles the architecture dependent parts of process handling. * * Copyright IBM Corp. 1999, 2009 * Author(s): Martin Schwidefsky , * Hartmut Penner , * Denis Joseph Barrow, */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "entry.h" asmlinkage void ret_from_fork(void) asm ("ret_from_fork"); extern void kernel_thread_starter(void); void flush_thread(void) { } void arch_setup_new_exec(void) { if (S390_lowcore.current_pid != current->pid) { S390_lowcore.current_pid = current->pid; if (test_facility(40)) lpp(&S390_lowcore.lpp); } } void arch_release_task_struct(struct task_struct *tsk) { runtime_instr_release(tsk); guarded_storage_release(tsk); } int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) { /* * Save the floating-point or vector register state of the current * task and set the CIF_FPU flag to lazy restore the FPU register * state when returning to user space. */ save_fpu_regs(); memcpy(dst, src, arch_task_struct_size); dst->thread.fpu.regs = dst->thread.fpu.fprs; /* * Don't transfer over the runtime instrumentation or the guarded * storage control block pointers. These fields are cleared here instead * of in copy_thread() to avoid premature freeing of associated memory * on fork() failure. Wait to clear the RI flag because ->stack still * refers to the source thread. */ dst->thread.ri_cb = NULL; dst->thread.gs_cb = NULL; dst->thread.gs_bc_cb = NULL; return 0; } int copy_thread(unsigned long clone_flags, unsigned long new_stackp, unsigned long arg, struct task_struct *p, unsigned long tls) { struct fake_frame { struct stack_frame sf; struct pt_regs childregs; } *frame; frame = container_of(task_pt_regs(p), struct fake_frame, childregs); p->thread.ksp = (unsigned long) frame; /* Save access registers to new thread structure. */ save_access_regs(&p->thread.acrs[0]); /* start new process with ar4 pointing to the correct address space */ p->thread.mm_segment = get_fs(); /* Don't copy debug registers */ memset(&p->thread.per_user, 0, sizeof(p->thread.per_user)); memset(&p->thread.per_event, 0, sizeof(p->thread.per_event)); clear_tsk_thread_flag(p, TIF_SINGLE_STEP); p->thread.per_flags = 0; /* Initialize per thread user and system timer values */ p->thread.user_timer = 0; p->thread.guest_timer = 0; p->thread.system_timer = 0; p->thread.hardirq_timer = 0; p->thread.softirq_timer = 0; p->thread.last_break = 1; frame->sf.back_chain = 0; /* new return point is ret_from_fork */ frame->sf.gprs[8] = (unsigned long) ret_from_fork; /* fake return stack for resume(), don't go back to schedule */ frame->sf.gprs[9] = (unsigned long) frame; /* Store access registers to kernel stack of new process. */ if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) { /* kernel thread */ memset(&frame->childregs, 0, sizeof(struct pt_regs)); frame->childregs.psw.mask = PSW_KERNEL_BITS | PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK; frame->childregs.psw.addr = (unsigned long) kernel_thread_starter; frame->childregs.gprs[9] = new_stackp; /* function */ frame->childregs.gprs[10] = arg; frame->childregs.gprs[11] = (unsigned long) do_exit; frame->childregs.orig_gpr2 = -1; return 0; } frame->childregs = *current_pt_regs(); frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */ frame->childregs.flags = 0; if (new_stackp) frame->childregs.gprs[15] = new_stackp; /* * Clear the runtime instrumentation flag after the above childregs * copy. The CB pointer was already cleared in arch_dup_task_struct(). */ frame->childregs.psw.mask &= ~PSW_MASK_RI; /* Set a new TLS ? */ if (clone_flags & CLONE_SETTLS) { if (is_compat_task()) { p->thread.acrs[0] = (unsigned int)tls; } else { p->thread.acrs[0] = (unsigned int)(tls >> 32); p->thread.acrs[1] = (unsigned int)tls; } } return 0; } asmlinkage void execve_tail(void) { current->thread.fpu.fpc = 0; asm volatile("sfpc %0" : : "d" (0)); } unsigned long get_wchan(struct task_struct *p) { struct unwind_state state; unsigned long ip = 0; if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p)) return 0; if (!try_get_task_stack(p)) return 0; unwind_for_each_frame(&state, p, NULL, 0) { if (state.stack_info.type != STACK_TYPE_TASK) { ip = 0; break; } ip = unwind_get_return_address(&state); if (!ip) break; if (!in_sched_functions(ip)) break; } put_task_stack(p); return ip; } unsigned long arch_align_stack(unsigned long sp) { if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) sp -= get_random_int() & ~PAGE_MASK; return sp & ~0xf; } static inline unsigned long brk_rnd(void) { return (get_random_int() & BRK_RND_MASK) << PAGE_SHIFT; } unsigned long arch_randomize_brk(struct mm_struct *mm) { unsigned long ret; ret = PAGE_ALIGN(mm->brk + brk_rnd()); return (ret > mm->brk) ? ret : mm->brk; } void set_fs_fixup(void) { struct pt_regs *regs = current_pt_regs(); static bool warned; set_fs(USER_DS); if (warned) return; WARN(1, "Unbalanced set_fs - int code: 0x%x\n", regs->int_code); show_registers(regs); warned = true; }