// SPDX-License-Identifier: GPL-2.0 /* * Page table allocation functions * * Copyright IBM Corp. 2016 * Author(s): Martin Schwidefsky */ #include #include #include #include #include #include #include #include #ifdef CONFIG_PGSTE int page_table_allocate_pgste = 0; EXPORT_SYMBOL(page_table_allocate_pgste); static struct ctl_table page_table_sysctl[] = { { .procname = "allocate_pgste", .data = &page_table_allocate_pgste, .maxlen = sizeof(int), .mode = S_IRUGO | S_IWUSR, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, { } }; static struct ctl_table page_table_sysctl_dir[] = { { .procname = "vm", .maxlen = 0, .mode = 0555, .child = page_table_sysctl, }, { } }; static int __init page_table_register_sysctl(void) { return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM; } __initcall(page_table_register_sysctl); #endif /* CONFIG_PGSTE */ unsigned long *crst_table_alloc(struct mm_struct *mm) { struct page *page = alloc_pages(GFP_KERNEL, 2); if (!page) return NULL; arch_set_page_dat(page, 2); return (unsigned long *) page_to_phys(page); } void crst_table_free(struct mm_struct *mm, unsigned long *table) { free_pages((unsigned long) table, 2); } static void __crst_table_upgrade(void *arg) { struct mm_struct *mm = arg; /* we must change all active ASCEs to avoid the creation of new TLBs */ if (current->active_mm == mm) { S390_lowcore.user_asce = mm->context.asce; if (current->thread.mm_segment == USER_DS) { __ctl_load(S390_lowcore.user_asce, 1, 1); /* Mark user-ASCE present in CR1 */ clear_cpu_flag(CIF_ASCE_PRIMARY); } if (current->thread.mm_segment == USER_DS_SACF) { __ctl_load(S390_lowcore.user_asce, 7, 7); /* enable_sacf_uaccess does all or nothing */ WARN_ON(!test_cpu_flag(CIF_ASCE_SECONDARY)); } } __tlb_flush_local(); } int crst_table_upgrade(struct mm_struct *mm, unsigned long end) { unsigned long *pgd = NULL, *p4d = NULL, *__pgd; unsigned long asce_limit = mm->context.asce_limit; /* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */ VM_BUG_ON(asce_limit < _REGION2_SIZE); if (end <= asce_limit) return 0; if (asce_limit == _REGION2_SIZE) { p4d = crst_table_alloc(mm); if (unlikely(!p4d)) goto err_p4d; crst_table_init(p4d, _REGION2_ENTRY_EMPTY); } if (end > _REGION1_SIZE) { pgd = crst_table_alloc(mm); if (unlikely(!pgd)) goto err_pgd; crst_table_init(pgd, _REGION1_ENTRY_EMPTY); } spin_lock_bh(&mm->page_table_lock); /* * This routine gets called with mmap_lock lock held and there is * no reason to optimize for the case of otherwise. However, if * that would ever change, the below check will let us know. */ VM_BUG_ON(asce_limit != mm->context.asce_limit); if (p4d) { __pgd = (unsigned long *) mm->pgd; p4d_populate(mm, (p4d_t *) p4d, (pud_t *) __pgd); mm->pgd = (pgd_t *) p4d; mm->context.asce_limit = _REGION1_SIZE; mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH | _ASCE_USER_BITS | _ASCE_TYPE_REGION2; mm_inc_nr_puds(mm); } if (pgd) { __pgd = (unsigned long *) mm->pgd; pgd_populate(mm, (pgd_t *) pgd, (p4d_t *) __pgd); mm->pgd = (pgd_t *) pgd; mm->context.asce_limit = TASK_SIZE_MAX; mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH | _ASCE_USER_BITS | _ASCE_TYPE_REGION1; } spin_unlock_bh(&mm->page_table_lock); on_each_cpu(__crst_table_upgrade, mm, 0); return 0; err_pgd: crst_table_free(mm, p4d); err_p4d: return -ENOMEM; } static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits) { unsigned int old, new; do { old = atomic_read(v); new = old ^ bits; } while (atomic_cmpxchg(v, old, new) != old); return new; } #ifdef CONFIG_PGSTE struct page *page_table_alloc_pgste(struct mm_struct *mm) { struct page *page; u64 *table; page = alloc_page(GFP_KERNEL); if (page) { table = (u64 *)page_to_phys(page); memset64(table, _PAGE_INVALID, PTRS_PER_PTE); memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE); } return page; } void page_table_free_pgste(struct page *page) { __free_page(page); } #endif /* CONFIG_PGSTE */ /* * page table entry allocation/free routines. */ unsigned long *page_table_alloc(struct mm_struct *mm) { unsigned long *table; struct page *page; unsigned int mask, bit; /* Try to get a fragment of a 4K page as a 2K page table */ if (!mm_alloc_pgste(mm)) { table = NULL; spin_lock_bh(&mm->context.lock); if (!list_empty(&mm->context.pgtable_list)) { page = list_first_entry(&mm->context.pgtable_list, struct page, lru); mask = atomic_read(&page->_refcount) >> 24; mask = (mask | (mask >> 4)) & 3; if (mask != 3) { table = (unsigned long *) page_to_phys(page); bit = mask & 1; /* =1 -> second 2K */ if (bit) table += PTRS_PER_PTE; atomic_xor_bits(&page->_refcount, 1U << (bit + 24)); list_del(&page->lru); } } spin_unlock_bh(&mm->context.lock); if (table) return table; } /* Allocate a fresh page */ page = alloc_page(GFP_KERNEL); if (!page) return NULL; if (!pgtable_pte_page_ctor(page)) { __free_page(page); return NULL; } arch_set_page_dat(page, 0); /* Initialize page table */ table = (unsigned long *) page_to_phys(page); if (mm_alloc_pgste(mm)) { /* Return 4K page table with PGSTEs */ atomic_xor_bits(&page->_refcount, 3 << 24); memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE); memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE); } else { /* Return the first 2K fragment of the page */ atomic_xor_bits(&page->_refcount, 1 << 24); memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE); spin_lock_bh(&mm->context.lock); list_add(&page->lru, &mm->context.pgtable_list); spin_unlock_bh(&mm->context.lock); } return table; } void page_table_free(struct mm_struct *mm, unsigned long *table) { struct page *page; unsigned int bit, mask; page = pfn_to_page(__pa(table) >> PAGE_SHIFT); if (!mm_alloc_pgste(mm)) { /* Free 2K page table fragment of a 4K page */ bit = (__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)); spin_lock_bh(&mm->context.lock); mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24)); mask >>= 24; if (mask & 3) list_add(&page->lru, &mm->context.pgtable_list); else list_del(&page->lru); spin_unlock_bh(&mm->context.lock); mask = atomic_xor_bits(&page->_refcount, 0x10U << (bit + 24)); mask >>= 24; if (mask != 0) return; } else { atomic_xor_bits(&page->_refcount, 3U << 24); } pgtable_pte_page_dtor(page); __free_page(page); } void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table, unsigned long vmaddr) { struct mm_struct *mm; struct page *page; unsigned int bit, mask; mm = tlb->mm; page = pfn_to_page(__pa(table) >> PAGE_SHIFT); if (mm_alloc_pgste(mm)) { gmap_unlink(mm, table, vmaddr); table = (unsigned long *) (__pa(table) | 3); tlb_remove_table(tlb, table); return; } bit = (__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)); spin_lock_bh(&mm->context.lock); mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24)); mask >>= 24; if (mask & 3) list_add_tail(&page->lru, &mm->context.pgtable_list); else list_del(&page->lru); spin_unlock_bh(&mm->context.lock); table = (unsigned long *) (__pa(table) | (1U << bit)); tlb_remove_table(tlb, table); } void __tlb_remove_table(void *_table) { unsigned int mask = (unsigned long) _table & 3; void *table = (void *)((unsigned long) _table ^ mask); struct page *page = pfn_to_page(__pa(table) >> PAGE_SHIFT); switch (mask) { case 0: /* pmd, pud, or p4d */ free_pages((unsigned long) table, 2); break; case 1: /* lower 2K of a 4K page table */ case 2: /* higher 2K of a 4K page table */ mask = atomic_xor_bits(&page->_refcount, mask << (4 + 24)); mask >>= 24; if (mask != 0) break; fallthrough; case 3: /* 4K page table with pgstes */ if (mask & 3) atomic_xor_bits(&page->_refcount, 3 << 24); pgtable_pte_page_dtor(page); __free_page(page); break; } } /* * Base infrastructure required to generate basic asces, region, segment, * and page tables that do not make use of enhanced features like EDAT1. */ static struct kmem_cache *base_pgt_cache; static unsigned long base_pgt_alloc(void) { u64 *table; table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL); if (table) memset64(table, _PAGE_INVALID, PTRS_PER_PTE); return (unsigned long) table; } static void base_pgt_free(unsigned long table) { kmem_cache_free(base_pgt_cache, (void *) table); } static unsigned long base_crst_alloc(unsigned long val) { unsigned long table; table = __get_free_pages(GFP_KERNEL, CRST_ALLOC_ORDER); if (table) crst_table_init((unsigned long *)table, val); return table; } static void base_crst_free(unsigned long table) { free_pages(table, CRST_ALLOC_ORDER); } #define BASE_ADDR_END_FUNC(NAME, SIZE) \ static inline unsigned long base_##NAME##_addr_end(unsigned long addr, \ unsigned long end) \ { \ unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1); \ \ return (next - 1) < (end - 1) ? next : end; \ } BASE_ADDR_END_FUNC(page, _PAGE_SIZE) BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE) BASE_ADDR_END_FUNC(region3, _REGION3_SIZE) BASE_ADDR_END_FUNC(region2, _REGION2_SIZE) BASE_ADDR_END_FUNC(region1, _REGION1_SIZE) static inline unsigned long base_lra(unsigned long address) { unsigned long real; asm volatile( " lra %0,0(%1)\n" : "=d" (real) : "a" (address) : "cc"); return real; } static int base_page_walk(unsigned long origin, unsigned long addr, unsigned long end, int alloc) { unsigned long *pte, next; if (!alloc) return 0; pte = (unsigned long *) origin; pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT; do { next = base_page_addr_end(addr, end); *pte = base_lra(addr); } while (pte++, addr = next, addr < end); return 0; } static int base_segment_walk(unsigned long origin, unsigned long addr, unsigned long end, int alloc) { unsigned long *ste, next, table; int rc; ste = (unsigned long *) origin; ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; do { next = base_segment_addr_end(addr, end); if (*ste & _SEGMENT_ENTRY_INVALID) { if (!alloc) continue; table = base_pgt_alloc(); if (!table) return -ENOMEM; *ste = table | _SEGMENT_ENTRY; } table = *ste & _SEGMENT_ENTRY_ORIGIN; rc = base_page_walk(table, addr, next, alloc); if (rc) return rc; if (!alloc) base_pgt_free(table); cond_resched(); } while (ste++, addr = next, addr < end); return 0; } static int base_region3_walk(unsigned long origin, unsigned long addr, unsigned long end, int alloc) { unsigned long *rtte, next, table; int rc; rtte = (unsigned long *) origin; rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT; do { next = base_region3_addr_end(addr, end); if (*rtte & _REGION_ENTRY_INVALID) { if (!alloc) continue; table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY); if (!table) return -ENOMEM; *rtte = table | _REGION3_ENTRY; } table = *rtte & _REGION_ENTRY_ORIGIN; rc = base_segment_walk(table, addr, next, alloc); if (rc) return rc; if (!alloc) base_crst_free(table); } while (rtte++, addr = next, addr < end); return 0; } static int base_region2_walk(unsigned long origin, unsigned long addr, unsigned long end, int alloc) { unsigned long *rste, next, table; int rc; rste = (unsigned long *) origin; rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT; do { next = base_region2_addr_end(addr, end); if (*rste & _REGION_ENTRY_INVALID) { if (!alloc) continue; table = base_crst_alloc(_REGION3_ENTRY_EMPTY); if (!table) return -ENOMEM; *rste = table | _REGION2_ENTRY; } table = *rste & _REGION_ENTRY_ORIGIN; rc = base_region3_walk(table, addr, next, alloc); if (rc) return rc; if (!alloc) base_crst_free(table); } while (rste++, addr = next, addr < end); return 0; } static int base_region1_walk(unsigned long origin, unsigned long addr, unsigned long end, int alloc) { unsigned long *rfte, next, table; int rc; rfte = (unsigned long *) origin; rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT; do { next = base_region1_addr_end(addr, end); if (*rfte & _REGION_ENTRY_INVALID) { if (!alloc) continue; table = base_crst_alloc(_REGION2_ENTRY_EMPTY); if (!table) return -ENOMEM; *rfte = table | _REGION1_ENTRY; } table = *rfte & _REGION_ENTRY_ORIGIN; rc = base_region2_walk(table, addr, next, alloc); if (rc) return rc; if (!alloc) base_crst_free(table); } while (rfte++, addr = next, addr < end); return 0; } /** * base_asce_free - free asce and tables returned from base_asce_alloc() * @asce: asce to be freed * * Frees all region, segment, and page tables that were allocated with a * corresponding base_asce_alloc() call. */ void base_asce_free(unsigned long asce) { unsigned long table = asce & _ASCE_ORIGIN; if (!asce) return; switch (asce & _ASCE_TYPE_MASK) { case _ASCE_TYPE_SEGMENT: base_segment_walk(table, 0, _REGION3_SIZE, 0); break; case _ASCE_TYPE_REGION3: base_region3_walk(table, 0, _REGION2_SIZE, 0); break; case _ASCE_TYPE_REGION2: base_region2_walk(table, 0, _REGION1_SIZE, 0); break; case _ASCE_TYPE_REGION1: base_region1_walk(table, 0, TASK_SIZE_MAX, 0); break; } base_crst_free(table); } static int base_pgt_cache_init(void) { static DEFINE_MUTEX(base_pgt_cache_mutex); unsigned long sz = _PAGE_TABLE_SIZE; if (base_pgt_cache) return 0; mutex_lock(&base_pgt_cache_mutex); if (!base_pgt_cache) base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL); mutex_unlock(&base_pgt_cache_mutex); return base_pgt_cache ? 0 : -ENOMEM; } /** * base_asce_alloc - create kernel mapping without enhanced DAT features * @addr: virtual start address of kernel mapping * @num_pages: number of consecutive pages * * Generate an asce, including all required region, segment and page tables, * that can be used to access the virtual kernel mapping. The difference is * that the returned asce does not make use of any enhanced DAT features like * e.g. large pages. This is required for some I/O functions that pass an * asce, like e.g. some service call requests. * * Note: the returned asce may NEVER be attached to any cpu. It may only be * used for I/O requests. tlb entries that might result because the * asce was attached to a cpu won't be cleared. */ unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages) { unsigned long asce, table, end; int rc; if (base_pgt_cache_init()) return 0; end = addr + num_pages * PAGE_SIZE; if (end <= _REGION3_SIZE) { table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY); if (!table) return 0; rc = base_segment_walk(table, addr, end, 1); asce = table | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH; } else if (end <= _REGION2_SIZE) { table = base_crst_alloc(_REGION3_ENTRY_EMPTY); if (!table) return 0; rc = base_region3_walk(table, addr, end, 1); asce = table | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH; } else if (end <= _REGION1_SIZE) { table = base_crst_alloc(_REGION2_ENTRY_EMPTY); if (!table) return 0; rc = base_region2_walk(table, addr, end, 1); asce = table | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH; } else { table = base_crst_alloc(_REGION1_ENTRY_EMPTY); if (!table) return 0; rc = base_region1_walk(table, addr, end, 1); asce = table | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH; } if (rc) { base_asce_free(asce); asce = 0; } return asce; }