// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2007 Andi Kleen, SUSE Labs. * * This contains most of the x86 vDSO kernel-side code. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef _ASM_X86_VVAR_H #define EMIT_VVAR(name, offset) \ const size_t name ## _offset = offset; #include struct vdso_data *arch_get_vdso_data(void *vvar_page) { return (struct vdso_data *)(vvar_page + _vdso_data_offset); } #undef EMIT_VVAR unsigned int vclocks_used __read_mostly; #if defined(CONFIG_X86_64) unsigned int __read_mostly vdso64_enabled = 1; #endif void __init init_vdso_image(const struct vdso_image *image) { BUG_ON(image->size % PAGE_SIZE != 0); apply_alternatives((struct alt_instr *)(image->data + image->alt), (struct alt_instr *)(image->data + image->alt + image->alt_len)); } static const struct vm_special_mapping vvar_mapping; struct linux_binprm; static vm_fault_t vdso_fault(const struct vm_special_mapping *sm, struct vm_area_struct *vma, struct vm_fault *vmf) { const struct vdso_image *image = vma->vm_mm->context.vdso_image; if (!image || (vmf->pgoff << PAGE_SHIFT) >= image->size) return VM_FAULT_SIGBUS; vmf->page = virt_to_page(image->data + (vmf->pgoff << PAGE_SHIFT)); get_page(vmf->page); return 0; } static void vdso_fix_landing(const struct vdso_image *image, struct vm_area_struct *new_vma) { #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION if (in_ia32_syscall() && image == &vdso_image_32) { struct pt_regs *regs = current_pt_regs(); unsigned long vdso_land = image->sym_int80_landing_pad; unsigned long old_land_addr = vdso_land + (unsigned long)current->mm->context.vdso; /* Fixing userspace landing - look at do_fast_syscall_32 */ if (regs->ip == old_land_addr) regs->ip = new_vma->vm_start + vdso_land; } #endif } static int vdso_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma) { unsigned long new_size = new_vma->vm_end - new_vma->vm_start; const struct vdso_image *image = current->mm->context.vdso_image; if (image->size != new_size) return -EINVAL; vdso_fix_landing(image, new_vma); current->mm->context.vdso = (void __user *)new_vma->vm_start; return 0; } static int vvar_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma) { const struct vdso_image *image = new_vma->vm_mm->context.vdso_image; unsigned long new_size = new_vma->vm_end - new_vma->vm_start; if (new_size != -image->sym_vvar_start) return -EINVAL; return 0; } #ifdef CONFIG_TIME_NS static struct page *find_timens_vvar_page(struct vm_area_struct *vma) { if (likely(vma->vm_mm == current->mm)) return current->nsproxy->time_ns->vvar_page; /* * VM_PFNMAP | VM_IO protect .fault() handler from being called * through interfaces like /proc/$pid/mem or * process_vm_{readv,writev}() as long as there's no .access() * in special_mapping_vmops(). * For more details check_vma_flags() and __access_remote_vm() */ WARN(1, "vvar_page accessed remotely"); return NULL; } /* * The vvar page layout depends on whether a task belongs to the root or * non-root time namespace. Whenever a task changes its namespace, the VVAR * page tables are cleared and then they will re-faulted with a * corresponding layout. * See also the comment near timens_setup_vdso_data() for details. */ int vdso_join_timens(struct task_struct *task, struct time_namespace *ns) { struct mm_struct *mm = task->mm; struct vm_area_struct *vma; mmap_read_lock(mm); for (vma = mm->mmap; vma; vma = vma->vm_next) { unsigned long size = vma->vm_end - vma->vm_start; if (vma_is_special_mapping(vma, &vvar_mapping)) zap_page_range(vma, vma->vm_start, size); } mmap_read_unlock(mm); return 0; } #else static inline struct page *find_timens_vvar_page(struct vm_area_struct *vma) { return NULL; } #endif static vm_fault_t vvar_fault(const struct vm_special_mapping *sm, struct vm_area_struct *vma, struct vm_fault *vmf) { const struct vdso_image *image = vma->vm_mm->context.vdso_image; unsigned long pfn; long sym_offset; if (!image) return VM_FAULT_SIGBUS; sym_offset = (long)(vmf->pgoff << PAGE_SHIFT) + image->sym_vvar_start; /* * Sanity check: a symbol offset of zero means that the page * does not exist for this vdso image, not that the page is at * offset zero relative to the text mapping. This should be * impossible here, because sym_offset should only be zero for * the page past the end of the vvar mapping. */ if (sym_offset == 0) return VM_FAULT_SIGBUS; if (sym_offset == image->sym_vvar_page) { struct page *timens_page = find_timens_vvar_page(vma); pfn = __pa_symbol(&__vvar_page) >> PAGE_SHIFT; /* * If a task belongs to a time namespace then a namespace * specific VVAR is mapped with the sym_vvar_page offset and * the real VVAR page is mapped with the sym_timens_page * offset. * See also the comment near timens_setup_vdso_data(). */ if (timens_page) { unsigned long addr; vm_fault_t err; /* * Optimization: inside time namespace pre-fault * VVAR page too. As on timens page there are only * offsets for clocks on VVAR, it'll be faulted * shortly by VDSO code. */ addr = vmf->address + (image->sym_timens_page - sym_offset); err = vmf_insert_pfn(vma, addr, pfn); if (unlikely(err & VM_FAULT_ERROR)) return err; pfn = page_to_pfn(timens_page); } return vmf_insert_pfn(vma, vmf->address, pfn); } else if (sym_offset == image->sym_pvclock_page) { struct pvclock_vsyscall_time_info *pvti = pvclock_get_pvti_cpu0_va(); if (pvti && vclock_was_used(VDSO_CLOCKMODE_PVCLOCK)) { return vmf_insert_pfn_prot(vma, vmf->address, __pa(pvti) >> PAGE_SHIFT, pgprot_decrypted(vma->vm_page_prot)); } } else if (sym_offset == image->sym_hvclock_page) { struct ms_hyperv_tsc_page *tsc_pg = hv_get_tsc_page(); if (tsc_pg && vclock_was_used(VDSO_CLOCKMODE_HVCLOCK)) return vmf_insert_pfn(vma, vmf->address, virt_to_phys(tsc_pg) >> PAGE_SHIFT); } else if (sym_offset == image->sym_timens_page) { struct page *timens_page = find_timens_vvar_page(vma); if (!timens_page) return VM_FAULT_SIGBUS; pfn = __pa_symbol(&__vvar_page) >> PAGE_SHIFT; return vmf_insert_pfn(vma, vmf->address, pfn); } return VM_FAULT_SIGBUS; } static const struct vm_special_mapping vdso_mapping = { .name = "[vdso]", .fault = vdso_fault, .mremap = vdso_mremap, }; static const struct vm_special_mapping vvar_mapping = { .name = "[vvar]", .fault = vvar_fault, .mremap = vvar_mremap, }; /* * Add vdso and vvar mappings to current process. * @image - blob to map * @addr - request a specific address (zero to map at free addr) */ static int map_vdso(const struct vdso_image *image, unsigned long addr) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; unsigned long text_start; int ret = 0; if (mmap_write_lock_killable(mm)) return -EINTR; addr = get_unmapped_area(NULL, addr, image->size - image->sym_vvar_start, 0, 0); if (IS_ERR_VALUE(addr)) { ret = addr; goto up_fail; } text_start = addr - image->sym_vvar_start; /* * MAYWRITE to allow gdb to COW and set breakpoints */ vma = _install_special_mapping(mm, text_start, image->size, VM_READ|VM_EXEC| VM_MAYREAD|VM_MAYWRITE|VM_MAYEXEC, &vdso_mapping); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto up_fail; } vma = _install_special_mapping(mm, addr, -image->sym_vvar_start, VM_READ|VM_MAYREAD|VM_IO|VM_DONTDUMP| VM_PFNMAP, &vvar_mapping); if (IS_ERR(vma)) { ret = PTR_ERR(vma); do_munmap(mm, text_start, image->size, NULL); } else { current->mm->context.vdso = (void __user *)text_start; current->mm->context.vdso_image = image; } up_fail: mmap_write_unlock(mm); return ret; } #ifdef CONFIG_X86_64 /* * Put the vdso above the (randomized) stack with another randomized * offset. This way there is no hole in the middle of address space. * To save memory make sure it is still in the same PTE as the stack * top. This doesn't give that many random bits. * * Note that this algorithm is imperfect: the distribution of the vdso * start address within a PMD is biased toward the end. * * Only used for the 64-bit and x32 vdsos. */ static unsigned long vdso_addr(unsigned long start, unsigned len) { unsigned long addr, end; unsigned offset; /* * Round up the start address. It can start out unaligned as a result * of stack start randomization. */ start = PAGE_ALIGN(start); /* Round the lowest possible end address up to a PMD boundary. */ end = (start + len + PMD_SIZE - 1) & PMD_MASK; if (end >= DEFAULT_MAP_WINDOW) end = DEFAULT_MAP_WINDOW; end -= len; if (end > start) { offset = get_random_int() % (((end - start) >> PAGE_SHIFT) + 1); addr = start + (offset << PAGE_SHIFT); } else { addr = start; } /* * Forcibly align the final address in case we have a hardware * issue that requires alignment for performance reasons. */ addr = align_vdso_addr(addr); return addr; } static int map_vdso_randomized(const struct vdso_image *image) { unsigned long addr = vdso_addr(current->mm->start_stack, image->size-image->sym_vvar_start); return map_vdso(image, addr); } #endif int map_vdso_once(const struct vdso_image *image, unsigned long addr) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; mmap_write_lock(mm); /* * Check if we have already mapped vdso blob - fail to prevent * abusing from userspace install_speciall_mapping, which may * not do accounting and rlimit right. * We could search vma near context.vdso, but it's a slowpath, * so let's explicitly check all VMAs to be completely sure. */ for (vma = mm->mmap; vma; vma = vma->vm_next) { if (vma_is_special_mapping(vma, &vdso_mapping) || vma_is_special_mapping(vma, &vvar_mapping)) { mmap_write_unlock(mm); return -EEXIST; } } mmap_write_unlock(mm); return map_vdso(image, addr); } #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION) static int load_vdso32(void) { if (vdso32_enabled != 1) /* Other values all mean "disabled" */ return 0; return map_vdso(&vdso_image_32, 0); } #endif #ifdef CONFIG_X86_64 int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp) { if (!vdso64_enabled) return 0; return map_vdso_randomized(&vdso_image_64); } #ifdef CONFIG_COMPAT int compat_arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp) { #ifdef CONFIG_X86_X32_ABI if (test_thread_flag(TIF_X32)) { if (!vdso64_enabled) return 0; return map_vdso_randomized(&vdso_image_x32); } #endif #ifdef CONFIG_IA32_EMULATION return load_vdso32(); #else return 0; #endif } #endif #else int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp) { return load_vdso32(); } #endif #ifdef CONFIG_X86_64 static __init int vdso_setup(char *s) { vdso64_enabled = simple_strtoul(s, NULL, 0); return 1; } __setup("vdso=", vdso_setup); static int __init init_vdso(void) { BUILD_BUG_ON(VDSO_CLOCKMODE_MAX >= 32); init_vdso_image(&vdso_image_64); #ifdef CONFIG_X86_X32_ABI init_vdso_image(&vdso_image_x32); #endif return 0; } subsys_initcall(init_vdso); #endif /* CONFIG_X86_64 */