// SPDX-License-Identifier: GPL-2.0-or-later /* * Kernel Probes Jump Optimization (Optprobes) * * Copyright (C) IBM Corporation, 2002, 2004 * Copyright (C) Hitachi Ltd., 2012 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common.h" unsigned long __recover_optprobed_insn(kprobe_opcode_t *buf, unsigned long addr) { struct optimized_kprobe *op; struct kprobe *kp; long offs; int i; for (i = 0; i < JMP32_INSN_SIZE; i++) { kp = get_kprobe((void *)addr - i); /* This function only handles jump-optimized kprobe */ if (kp && kprobe_optimized(kp)) { op = container_of(kp, struct optimized_kprobe, kp); /* If op is optimized or under unoptimizing */ if (list_empty(&op->list) || optprobe_queued_unopt(op)) goto found; } } return addr; found: /* * If the kprobe can be optimized, original bytes which can be * overwritten by jump destination address. In this case, original * bytes must be recovered from op->optinsn.copied_insn buffer. */ if (copy_from_kernel_nofault(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) return 0UL; if (addr == (unsigned long)kp->addr) { buf[0] = kp->opcode; memcpy(buf + 1, op->optinsn.copied_insn, DISP32_SIZE); } else { offs = addr - (unsigned long)kp->addr - 1; memcpy(buf, op->optinsn.copied_insn + offs, DISP32_SIZE - offs); } return (unsigned long)buf; } static void synthesize_clac(kprobe_opcode_t *addr) { /* * Can't be static_cpu_has() due to how objtool treats this feature bit. * This isn't a fast path anyway. */ if (!boot_cpu_has(X86_FEATURE_SMAP)) return; /* Replace the NOP3 with CLAC */ addr[0] = 0x0f; addr[1] = 0x01; addr[2] = 0xca; } /* Insert a move instruction which sets a pointer to eax/rdi (1st arg). */ static void synthesize_set_arg1(kprobe_opcode_t *addr, unsigned long val) { #ifdef CONFIG_X86_64 *addr++ = 0x48; *addr++ = 0xbf; #else *addr++ = 0xb8; #endif *(unsigned long *)addr = val; } asm ( ".pushsection .rodata\n" "optprobe_template_func:\n" ".global optprobe_template_entry\n" "optprobe_template_entry:\n" #ifdef CONFIG_X86_64 /* We don't bother saving the ss register */ " pushq %rsp\n" " pushfq\n" ".global optprobe_template_clac\n" "optprobe_template_clac:\n" ASM_NOP3 SAVE_REGS_STRING " movq %rsp, %rsi\n" ".global optprobe_template_val\n" "optprobe_template_val:\n" ASM_NOP5 ASM_NOP5 ".global optprobe_template_call\n" "optprobe_template_call:\n" ASM_NOP5 /* Move flags to rsp */ " movq 18*8(%rsp), %rdx\n" " movq %rdx, 19*8(%rsp)\n" RESTORE_REGS_STRING /* Skip flags entry */ " addq $8, %rsp\n" " popfq\n" #else /* CONFIG_X86_32 */ " pushl %esp\n" " pushfl\n" ".global optprobe_template_clac\n" "optprobe_template_clac:\n" ASM_NOP3 SAVE_REGS_STRING " movl %esp, %edx\n" ".global optprobe_template_val\n" "optprobe_template_val:\n" ASM_NOP5 ".global optprobe_template_call\n" "optprobe_template_call:\n" ASM_NOP5 /* Move flags into esp */ " movl 14*4(%esp), %edx\n" " movl %edx, 15*4(%esp)\n" RESTORE_REGS_STRING /* Skip flags entry */ " addl $4, %esp\n" " popfl\n" #endif ".global optprobe_template_end\n" "optprobe_template_end:\n" ".popsection\n"); void optprobe_template_func(void); STACK_FRAME_NON_STANDARD(optprobe_template_func); #define TMPL_CLAC_IDX \ ((long)optprobe_template_clac - (long)optprobe_template_entry) #define TMPL_MOVE_IDX \ ((long)optprobe_template_val - (long)optprobe_template_entry) #define TMPL_CALL_IDX \ ((long)optprobe_template_call - (long)optprobe_template_entry) #define TMPL_END_IDX \ ((long)optprobe_template_end - (long)optprobe_template_entry) /* Optimized kprobe call back function: called from optinsn */ static void optimized_callback(struct optimized_kprobe *op, struct pt_regs *regs) { /* This is possible if op is under delayed unoptimizing */ if (kprobe_disabled(&op->kp)) return; preempt_disable(); if (kprobe_running()) { kprobes_inc_nmissed_count(&op->kp); } else { struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); /* Save skipped registers */ regs->cs = __KERNEL_CS; #ifdef CONFIG_X86_32 regs->gs = 0; #endif regs->ip = (unsigned long)op->kp.addr + INT3_INSN_SIZE; regs->orig_ax = ~0UL; __this_cpu_write(current_kprobe, &op->kp); kcb->kprobe_status = KPROBE_HIT_ACTIVE; opt_pre_handler(&op->kp, regs); __this_cpu_write(current_kprobe, NULL); } preempt_enable(); } NOKPROBE_SYMBOL(optimized_callback); static int copy_optimized_instructions(u8 *dest, u8 *src, u8 *real) { struct insn insn; int len = 0, ret; while (len < JMP32_INSN_SIZE) { ret = __copy_instruction(dest + len, src + len, real + len, &insn); if (!ret || !can_boost(&insn, src + len)) return -EINVAL; len += ret; } /* Check whether the address range is reserved */ if (ftrace_text_reserved(src, src + len - 1) || alternatives_text_reserved(src, src + len - 1) || jump_label_text_reserved(src, src + len - 1) || static_call_text_reserved(src, src + len - 1)) return -EBUSY; return len; } /* Check whether insn is indirect jump */ static int __insn_is_indirect_jump(struct insn *insn) { return ((insn->opcode.bytes[0] == 0xff && (X86_MODRM_REG(insn->modrm.value) & 6) == 4) || /* Jump */ insn->opcode.bytes[0] == 0xea); /* Segment based jump */ } /* Check whether insn jumps into specified address range */ static int insn_jump_into_range(struct insn *insn, unsigned long start, int len) { unsigned long target = 0; switch (insn->opcode.bytes[0]) { case 0xe0: /* loopne */ case 0xe1: /* loope */ case 0xe2: /* loop */ case 0xe3: /* jcxz */ case 0xe9: /* near relative jump */ case 0xeb: /* short relative jump */ break; case 0x0f: if ((insn->opcode.bytes[1] & 0xf0) == 0x80) /* jcc near */ break; return 0; default: if ((insn->opcode.bytes[0] & 0xf0) == 0x70) /* jcc short */ break; return 0; } target = (unsigned long)insn->next_byte + insn->immediate.value; return (start <= target && target <= start + len); } static int insn_is_indirect_jump(struct insn *insn) { int ret = __insn_is_indirect_jump(insn); #ifdef CONFIG_RETPOLINE /* * Jump to x86_indirect_thunk_* is treated as an indirect jump. * Note that even with CONFIG_RETPOLINE=y, the kernel compiled with * older gcc may use indirect jump. So we add this check instead of * replace indirect-jump check. */ if (!ret) ret = insn_jump_into_range(insn, (unsigned long)__indirect_thunk_start, (unsigned long)__indirect_thunk_end - (unsigned long)__indirect_thunk_start); #endif return ret; } /* Decode whole function to ensure any instructions don't jump into target */ static int can_optimize(unsigned long paddr) { unsigned long addr, size = 0, offset = 0; struct insn insn; kprobe_opcode_t buf[MAX_INSN_SIZE]; /* Lookup symbol including addr */ if (!kallsyms_lookup_size_offset(paddr, &size, &offset)) return 0; /* * Do not optimize in the entry code due to the unstable * stack handling and registers setup. */ if (((paddr >= (unsigned long)__entry_text_start) && (paddr < (unsigned long)__entry_text_end))) return 0; /* Check there is enough space for a relative jump. */ if (size - offset < JMP32_INSN_SIZE) return 0; /* Decode instructions */ addr = paddr - offset; while (addr < paddr - offset + size) { /* Decode until function end */ unsigned long recovered_insn; int ret; if (search_exception_tables(addr)) /* * Since some fixup code will jumps into this function, * we can't optimize kprobe in this function. */ return 0; recovered_insn = recover_probed_instruction(buf, addr); if (!recovered_insn) return 0; ret = insn_decode(&insn, (void *)recovered_insn, MAX_INSN_SIZE, INSN_MODE_KERN); if (ret < 0) return 0; #ifdef CONFIG_KGDB /* * If there is a dynamically installed kgdb sw breakpoint, * this function should not be probed. */ if (insn.opcode.bytes[0] == INT3_INSN_OPCODE && kgdb_has_hit_break(addr)) return 0; #endif /* Recover address */ insn.kaddr = (void *)addr; insn.next_byte = (void *)(addr + insn.length); /* Check any instructions don't jump into target */ if (insn_is_indirect_jump(&insn) || insn_jump_into_range(&insn, paddr + INT3_INSN_SIZE, DISP32_SIZE)) return 0; addr += insn.length; } return 1; } /* Check optimized_kprobe can actually be optimized. */ int arch_check_optimized_kprobe(struct optimized_kprobe *op) { int i; struct kprobe *p; for (i = 1; i < op->optinsn.size; i++) { p = get_kprobe(op->kp.addr + i); if (p && !kprobe_disarmed(p)) return -EEXIST; } return 0; } /* Check the addr is within the optimized instructions. */ int arch_within_optimized_kprobe(struct optimized_kprobe *op, unsigned long addr) { return ((unsigned long)op->kp.addr <= addr && (unsigned long)op->kp.addr + op->optinsn.size > addr); } /* Free optimized instruction slot */ static void __arch_remove_optimized_kprobe(struct optimized_kprobe *op, int dirty) { u8 *slot = op->optinsn.insn; if (slot) { int len = TMPL_END_IDX + op->optinsn.size + JMP32_INSN_SIZE; /* Record the perf event before freeing the slot */ if (dirty) perf_event_text_poke(slot, slot, len, NULL, 0); free_optinsn_slot(slot, dirty); op->optinsn.insn = NULL; op->optinsn.size = 0; } } void arch_remove_optimized_kprobe(struct optimized_kprobe *op) { __arch_remove_optimized_kprobe(op, 1); } /* * Copy replacing target instructions * Target instructions MUST be relocatable (checked inside) * This is called when new aggr(opt)probe is allocated or reused. */ int arch_prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *__unused) { u8 *buf = NULL, *slot; int ret, len; long rel; if (!can_optimize((unsigned long)op->kp.addr)) return -EILSEQ; buf = kzalloc(MAX_OPTINSN_SIZE, GFP_KERNEL); if (!buf) return -ENOMEM; op->optinsn.insn = slot = get_optinsn_slot(); if (!slot) { ret = -ENOMEM; goto out; } /* * Verify if the address gap is in 2GB range, because this uses * a relative jump. */ rel = (long)slot - (long)op->kp.addr + JMP32_INSN_SIZE; if (abs(rel) > 0x7fffffff) { ret = -ERANGE; goto err; } /* Copy arch-dep-instance from template */ memcpy(buf, optprobe_template_entry, TMPL_END_IDX); /* Copy instructions into the out-of-line buffer */ ret = copy_optimized_instructions(buf + TMPL_END_IDX, op->kp.addr, slot + TMPL_END_IDX); if (ret < 0) goto err; op->optinsn.size = ret; len = TMPL_END_IDX + op->optinsn.size; synthesize_clac(buf + TMPL_CLAC_IDX); /* Set probe information */ synthesize_set_arg1(buf + TMPL_MOVE_IDX, (unsigned long)op); /* Set probe function call */ synthesize_relcall(buf + TMPL_CALL_IDX, slot + TMPL_CALL_IDX, optimized_callback); /* Set returning jmp instruction at the tail of out-of-line buffer */ synthesize_reljump(buf + len, slot + len, (u8 *)op->kp.addr + op->optinsn.size); len += JMP32_INSN_SIZE; /* * Note len = TMPL_END_IDX + op->optinsn.size + JMP32_INSN_SIZE is also * used in __arch_remove_optimized_kprobe(). */ /* We have to use text_poke() for instruction buffer because it is RO */ perf_event_text_poke(slot, NULL, 0, buf, len); text_poke(slot, buf, len); ret = 0; out: kfree(buf); return ret; err: __arch_remove_optimized_kprobe(op, 0); goto out; } /* * Replace breakpoints (INT3) with relative jumps (JMP.d32). * Caller must call with locking kprobe_mutex and text_mutex. * * The caller will have installed a regular kprobe and after that issued * syncrhonize_rcu_tasks(), this ensures that the instruction(s) that live in * the 4 bytes after the INT3 are unused and can now be overwritten. */ void arch_optimize_kprobes(struct list_head *oplist) { struct optimized_kprobe *op, *tmp; u8 insn_buff[JMP32_INSN_SIZE]; list_for_each_entry_safe(op, tmp, oplist, list) { s32 rel = (s32)((long)op->optinsn.insn - ((long)op->kp.addr + JMP32_INSN_SIZE)); WARN_ON(kprobe_disabled(&op->kp)); /* Backup instructions which will be replaced by jump address */ memcpy(op->optinsn.copied_insn, op->kp.addr + INT3_INSN_SIZE, DISP32_SIZE); insn_buff[0] = JMP32_INSN_OPCODE; *(s32 *)(&insn_buff[1]) = rel; text_poke_bp(op->kp.addr, insn_buff, JMP32_INSN_SIZE, NULL); list_del_init(&op->list); } } /* * Replace a relative jump (JMP.d32) with a breakpoint (INT3). * * After that, we can restore the 4 bytes after the INT3 to undo what * arch_optimize_kprobes() scribbled. This is safe since those bytes will be * unused once the INT3 lands. */ void arch_unoptimize_kprobe(struct optimized_kprobe *op) { u8 new[JMP32_INSN_SIZE] = { INT3_INSN_OPCODE, }; u8 old[JMP32_INSN_SIZE]; u8 *addr = op->kp.addr; memcpy(old, op->kp.addr, JMP32_INSN_SIZE); memcpy(new + INT3_INSN_SIZE, op->optinsn.copied_insn, JMP32_INSN_SIZE - INT3_INSN_SIZE); text_poke(addr, new, INT3_INSN_SIZE); text_poke_sync(); text_poke(addr + INT3_INSN_SIZE, new + INT3_INSN_SIZE, JMP32_INSN_SIZE - INT3_INSN_SIZE); text_poke_sync(); perf_event_text_poke(op->kp.addr, old, JMP32_INSN_SIZE, new, JMP32_INSN_SIZE); } /* * Recover original instructions and breakpoints from relative jumps. * Caller must call with locking kprobe_mutex. */ extern void arch_unoptimize_kprobes(struct list_head *oplist, struct list_head *done_list) { struct optimized_kprobe *op, *tmp; list_for_each_entry_safe(op, tmp, oplist, list) { arch_unoptimize_kprobe(op); list_move(&op->list, done_list); } } int setup_detour_execution(struct kprobe *p, struct pt_regs *regs, int reenter) { struct optimized_kprobe *op; if (p->flags & KPROBE_FLAG_OPTIMIZED) { /* This kprobe is really able to run optimized path. */ op = container_of(p, struct optimized_kprobe, kp); /* Detour through copied instructions */ regs->ip = (unsigned long)op->optinsn.insn + TMPL_END_IDX; if (!reenter) reset_current_kprobe(); return 1; } return 0; } NOKPROBE_SYMBOL(setup_detour_execution);