/* * Copyright (C) 1995 Linus Torvalds * * Pentium III FXSR, SSE support * Gareth Hughes , May 2000 */ /* * This file handles the architecture-dependent parts of process handling.. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "process.h" void __show_regs(struct pt_regs *regs, enum show_regs_mode mode, const char *log_lvl) { unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; unsigned long d0, d1, d2, d3, d6, d7; unsigned short gs; if (user_mode(regs)) gs = get_user_gs(regs); else savesegment(gs, gs); show_ip(regs, log_lvl); printk("%sEAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n", log_lvl, regs->ax, regs->bx, regs->cx, regs->dx); printk("%sESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n", log_lvl, regs->si, regs->di, regs->bp, regs->sp); printk("%sDS: %04x ES: %04x FS: %04x GS: %04x SS: %04x EFLAGS: %08lx\n", log_lvl, (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, regs->ss, regs->flags); if (mode != SHOW_REGS_ALL) return; cr0 = read_cr0(); cr2 = read_cr2(); cr3 = __read_cr3(); cr4 = __read_cr4(); printk("%sCR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", log_lvl, cr0, cr2, cr3, cr4); get_debugreg(d0, 0); get_debugreg(d1, 1); get_debugreg(d2, 2); get_debugreg(d3, 3); get_debugreg(d6, 6); get_debugreg(d7, 7); /* Only print out debug registers if they are in their non-default state. */ if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) && (d6 == DR6_RESERVED) && (d7 == 0x400)) return; printk("%sDR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n", log_lvl, d0, d1, d2, d3); printk("%sDR6: %08lx DR7: %08lx\n", log_lvl, d6, d7); } void release_thread(struct task_struct *dead_task) { BUG_ON(dead_task->mm); release_vm86_irqs(dead_task); } void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) { set_user_gs(regs, 0); regs->fs = 0; regs->ds = __USER_DS; regs->es = __USER_DS; regs->ss = __USER_DS; regs->cs = __USER_CS; regs->ip = new_ip; regs->sp = new_sp; regs->flags = X86_EFLAGS_IF; } EXPORT_SYMBOL_GPL(start_thread); /* * switch_to(x,y) should switch tasks from x to y. * * We fsave/fwait so that an exception goes off at the right time * (as a call from the fsave or fwait in effect) rather than to * the wrong process. Lazy FP saving no longer makes any sense * with modern CPU's, and this simplifies a lot of things (SMP * and UP become the same). * * NOTE! We used to use the x86 hardware context switching. The * reason for not using it any more becomes apparent when you * try to recover gracefully from saved state that is no longer * valid (stale segment register values in particular). With the * hardware task-switch, there is no way to fix up bad state in * a reasonable manner. * * The fact that Intel documents the hardware task-switching to * be slow is a fairly red herring - this code is not noticeably * faster. However, there _is_ some room for improvement here, * so the performance issues may eventually be a valid point. * More important, however, is the fact that this allows us much * more flexibility. * * The return value (in %ax) will be the "prev" task after * the task-switch, and shows up in ret_from_fork in entry.S, * for example. */ __visible __notrace_funcgraph struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p) { struct thread_struct *prev = &prev_p->thread, *next = &next_p->thread; int cpu = smp_processor_id(); /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ if (!test_thread_flag(TIF_NEED_FPU_LOAD)) switch_fpu_prepare(prev_p, cpu); /* * Save away %gs. No need to save %fs, as it was saved on the * stack on entry. No need to save %es and %ds, as those are * always kernel segments while inside the kernel. Doing this * before setting the new TLS descriptors avoids the situation * where we temporarily have non-reloadable segments in %fs * and %gs. This could be an issue if the NMI handler ever * used %fs or %gs (it does not today), or if the kernel is * running inside of a hypervisor layer. */ lazy_save_gs(prev->gs); /* * Load the per-thread Thread-Local Storage descriptor. */ load_TLS(next, cpu); switch_to_extra(prev_p, next_p); /* * Leave lazy mode, flushing any hypercalls made here. * This must be done before restoring TLS segments so * the GDT and LDT are properly updated. */ arch_end_context_switch(next_p); /* * Reload esp0 and cpu_current_top_of_stack. This changes * current_thread_info(). Refresh the SYSENTER configuration in * case prev or next is vm86. */ update_task_stack(next_p); refresh_sysenter_cs(next); this_cpu_write(cpu_current_top_of_stack, (unsigned long)task_stack_page(next_p) + THREAD_SIZE); /* * Restore %gs if needed (which is common) */ if (prev->gs | next->gs) lazy_load_gs(next->gs); this_cpu_write(current_task, next_p); switch_fpu_finish(next_p); /* Load the Intel cache allocation PQR MSR. */ resctrl_sched_in(next_p); return prev_p; } SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2) { return do_arch_prctl_common(current, option, arg2); }