// SPDX-License-Identifier: GPL-2.0 /* * amlogic-cipher.c - hardware cryptographic offloader for Amlogic GXL SoC * * Copyright (C) 2018-2019 Corentin LABBE * * This file add support for AES cipher with 128,192,256 bits keysize in * CBC and ECB mode. */ #include #include #include #include #include #include #include #include "amlogic-gxl.h" static int get_engine_number(struct meson_dev *mc) { return atomic_inc_return(&mc->flow) % MAXFLOW; } static bool meson_cipher_need_fallback(struct skcipher_request *areq) { struct scatterlist *src_sg = areq->src; struct scatterlist *dst_sg = areq->dst; if (areq->cryptlen == 0) return true; if (sg_nents(src_sg) != sg_nents(dst_sg)) return true; /* KEY/IV descriptors use 3 desc */ if (sg_nents(src_sg) > MAXDESC - 3 || sg_nents(dst_sg) > MAXDESC - 3) return true; while (src_sg && dst_sg) { if ((src_sg->length % 16) != 0) return true; if ((dst_sg->length % 16) != 0) return true; if (src_sg->length != dst_sg->length) return true; if (!IS_ALIGNED(src_sg->offset, sizeof(u32))) return true; if (!IS_ALIGNED(dst_sg->offset, sizeof(u32))) return true; src_sg = sg_next(src_sg); dst_sg = sg_next(dst_sg); } return false; } static int meson_cipher_do_fallback(struct skcipher_request *areq) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct meson_cipher_req_ctx *rctx = skcipher_request_ctx(areq); int err; #ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG struct skcipher_alg *alg = crypto_skcipher_alg(tfm); struct meson_alg_template *algt; algt = container_of(alg, struct meson_alg_template, alg.skcipher); algt->stat_fb++; #endif skcipher_request_set_tfm(&rctx->fallback_req, op->fallback_tfm); skcipher_request_set_callback(&rctx->fallback_req, areq->base.flags, areq->base.complete, areq->base.data); skcipher_request_set_crypt(&rctx->fallback_req, areq->src, areq->dst, areq->cryptlen, areq->iv); if (rctx->op_dir == MESON_DECRYPT) err = crypto_skcipher_decrypt(&rctx->fallback_req); else err = crypto_skcipher_encrypt(&rctx->fallback_req); return err; } static int meson_cipher(struct skcipher_request *areq) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct meson_cipher_req_ctx *rctx = skcipher_request_ctx(areq); struct meson_dev *mc = op->mc; struct skcipher_alg *alg = crypto_skcipher_alg(tfm); struct meson_alg_template *algt; int flow = rctx->flow; unsigned int todo, eat, len; struct scatterlist *src_sg = areq->src; struct scatterlist *dst_sg = areq->dst; struct meson_desc *desc; int nr_sgs, nr_sgd; int i, err = 0; unsigned int keyivlen, ivsize, offset, tloffset; dma_addr_t phykeyiv; void *backup_iv = NULL, *bkeyiv; u32 v; algt = container_of(alg, struct meson_alg_template, alg.skcipher); dev_dbg(mc->dev, "%s %s %u %x IV(%u) key=%u flow=%d\n", __func__, crypto_tfm_alg_name(areq->base.tfm), areq->cryptlen, rctx->op_dir, crypto_skcipher_ivsize(tfm), op->keylen, flow); #ifdef CONFIG_CRYPTO_DEV_AMLOGIC_GXL_DEBUG algt->stat_req++; mc->chanlist[flow].stat_req++; #endif /* * The hardware expect a list of meson_desc structures. * The 2 first structures store key * The third stores IV */ bkeyiv = kzalloc(48, GFP_KERNEL | GFP_DMA); if (!bkeyiv) return -ENOMEM; memcpy(bkeyiv, op->key, op->keylen); keyivlen = op->keylen; ivsize = crypto_skcipher_ivsize(tfm); if (areq->iv && ivsize > 0) { if (ivsize > areq->cryptlen) { dev_err(mc->dev, "invalid ivsize=%d vs len=%d\n", ivsize, areq->cryptlen); err = -EINVAL; goto theend; } memcpy(bkeyiv + 32, areq->iv, ivsize); keyivlen = 48; if (rctx->op_dir == MESON_DECRYPT) { backup_iv = kzalloc(ivsize, GFP_KERNEL); if (!backup_iv) { err = -ENOMEM; goto theend; } offset = areq->cryptlen - ivsize; scatterwalk_map_and_copy(backup_iv, areq->src, offset, ivsize, 0); } } if (keyivlen == 24) keyivlen = 32; phykeyiv = dma_map_single(mc->dev, bkeyiv, keyivlen, DMA_TO_DEVICE); err = dma_mapping_error(mc->dev, phykeyiv); if (err) { dev_err(mc->dev, "Cannot DMA MAP KEY IV\n"); goto theend; } tloffset = 0; eat = 0; i = 0; while (keyivlen > eat) { desc = &mc->chanlist[flow].tl[tloffset]; memset(desc, 0, sizeof(struct meson_desc)); todo = min(keyivlen - eat, 16u); desc->t_src = cpu_to_le32(phykeyiv + i * 16); desc->t_dst = cpu_to_le32(i * 16); v = (MODE_KEY << 20) | DESC_OWN | 16; desc->t_status = cpu_to_le32(v); eat += todo; i++; tloffset++; } if (areq->src == areq->dst) { nr_sgs = dma_map_sg(mc->dev, areq->src, sg_nents(areq->src), DMA_BIDIRECTIONAL); if (nr_sgs < 0) { dev_err(mc->dev, "Invalid SG count %d\n", nr_sgs); err = -EINVAL; goto theend; } nr_sgd = nr_sgs; } else { nr_sgs = dma_map_sg(mc->dev, areq->src, sg_nents(areq->src), DMA_TO_DEVICE); if (nr_sgs < 0 || nr_sgs > MAXDESC - 3) { dev_err(mc->dev, "Invalid SG count %d\n", nr_sgs); err = -EINVAL; goto theend; } nr_sgd = dma_map_sg(mc->dev, areq->dst, sg_nents(areq->dst), DMA_FROM_DEVICE); if (nr_sgd < 0 || nr_sgd > MAXDESC - 3) { dev_err(mc->dev, "Invalid SG count %d\n", nr_sgd); err = -EINVAL; goto theend; } } src_sg = areq->src; dst_sg = areq->dst; len = areq->cryptlen; while (src_sg) { desc = &mc->chanlist[flow].tl[tloffset]; memset(desc, 0, sizeof(struct meson_desc)); desc->t_src = cpu_to_le32(sg_dma_address(src_sg)); desc->t_dst = cpu_to_le32(sg_dma_address(dst_sg)); todo = min(len, sg_dma_len(src_sg)); v = (op->keymode << 20) | DESC_OWN | todo | (algt->blockmode << 26); if (rctx->op_dir) v |= DESC_ENCRYPTION; len -= todo; if (!sg_next(src_sg)) v |= DESC_LAST; desc->t_status = cpu_to_le32(v); tloffset++; src_sg = sg_next(src_sg); dst_sg = sg_next(dst_sg); } reinit_completion(&mc->chanlist[flow].complete); mc->chanlist[flow].status = 0; writel(mc->chanlist[flow].t_phy | 2, mc->base + (flow << 2)); wait_for_completion_interruptible_timeout(&mc->chanlist[flow].complete, msecs_to_jiffies(500)); if (mc->chanlist[flow].status == 0) { dev_err(mc->dev, "DMA timeout for flow %d\n", flow); err = -EINVAL; } dma_unmap_single(mc->dev, phykeyiv, keyivlen, DMA_TO_DEVICE); if (areq->src == areq->dst) { dma_unmap_sg(mc->dev, areq->src, nr_sgs, DMA_BIDIRECTIONAL); } else { dma_unmap_sg(mc->dev, areq->src, nr_sgs, DMA_TO_DEVICE); dma_unmap_sg(mc->dev, areq->dst, nr_sgd, DMA_FROM_DEVICE); } if (areq->iv && ivsize > 0) { if (rctx->op_dir == MESON_DECRYPT) { memcpy(areq->iv, backup_iv, ivsize); } else { scatterwalk_map_and_copy(areq->iv, areq->dst, areq->cryptlen - ivsize, ivsize, 0); } } theend: kfree_sensitive(bkeyiv); kfree_sensitive(backup_iv); return err; } static int meson_handle_cipher_request(struct crypto_engine *engine, void *areq) { int err; struct skcipher_request *breq = container_of(areq, struct skcipher_request, base); err = meson_cipher(breq); local_bh_disable(); crypto_finalize_skcipher_request(engine, breq, err); local_bh_enable(); return 0; } int meson_skdecrypt(struct skcipher_request *areq) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct meson_cipher_req_ctx *rctx = skcipher_request_ctx(areq); struct crypto_engine *engine; int e; rctx->op_dir = MESON_DECRYPT; if (meson_cipher_need_fallback(areq)) return meson_cipher_do_fallback(areq); e = get_engine_number(op->mc); engine = op->mc->chanlist[e].engine; rctx->flow = e; return crypto_transfer_skcipher_request_to_engine(engine, areq); } int meson_skencrypt(struct skcipher_request *areq) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct meson_cipher_req_ctx *rctx = skcipher_request_ctx(areq); struct crypto_engine *engine; int e; rctx->op_dir = MESON_ENCRYPT; if (meson_cipher_need_fallback(areq)) return meson_cipher_do_fallback(areq); e = get_engine_number(op->mc); engine = op->mc->chanlist[e].engine; rctx->flow = e; return crypto_transfer_skcipher_request_to_engine(engine, areq); } int meson_cipher_init(struct crypto_tfm *tfm) { struct meson_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm); struct meson_alg_template *algt; const char *name = crypto_tfm_alg_name(tfm); struct crypto_skcipher *sktfm = __crypto_skcipher_cast(tfm); struct skcipher_alg *alg = crypto_skcipher_alg(sktfm); memset(op, 0, sizeof(struct meson_cipher_tfm_ctx)); algt = container_of(alg, struct meson_alg_template, alg.skcipher); op->mc = algt->mc; op->fallback_tfm = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(op->fallback_tfm)) { dev_err(op->mc->dev, "ERROR: Cannot allocate fallback for %s %ld\n", name, PTR_ERR(op->fallback_tfm)); return PTR_ERR(op->fallback_tfm); } sktfm->reqsize = sizeof(struct meson_cipher_req_ctx) + crypto_skcipher_reqsize(op->fallback_tfm); op->enginectx.op.do_one_request = meson_handle_cipher_request; op->enginectx.op.prepare_request = NULL; op->enginectx.op.unprepare_request = NULL; return 0; } void meson_cipher_exit(struct crypto_tfm *tfm) { struct meson_cipher_tfm_ctx *op = crypto_tfm_ctx(tfm); kfree_sensitive(op->key); crypto_free_skcipher(op->fallback_tfm); } int meson_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct meson_cipher_tfm_ctx *op = crypto_skcipher_ctx(tfm); struct meson_dev *mc = op->mc; switch (keylen) { case 128 / 8: op->keymode = MODE_AES_128; break; case 192 / 8: op->keymode = MODE_AES_192; break; case 256 / 8: op->keymode = MODE_AES_256; break; default: dev_dbg(mc->dev, "ERROR: Invalid keylen %u\n", keylen); return -EINVAL; } kfree_sensitive(op->key); op->keylen = keylen; op->key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA); if (!op->key) return -ENOMEM; return crypto_skcipher_setkey(op->fallback_tfm, key, keylen); }