/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "amdgpu_ras_eeprom.h" #include "amdgpu.h" #include "amdgpu_ras.h" #include #include "atom.h" #define EEPROM_I2C_TARGET_ADDR_VEGA20 0xA0 #define EEPROM_I2C_TARGET_ADDR_ARCTURUS 0xA8 #define EEPROM_I2C_TARGET_ADDR_ARCTURUS_D342 0xA0 /* * The 2 macros bellow represent the actual size in bytes that * those entities occupy in the EEPROM memory. * EEPROM_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which * uses uint64 to store 6b fields such as retired_page. */ #define EEPROM_TABLE_HEADER_SIZE 20 #define EEPROM_TABLE_RECORD_SIZE 24 #define EEPROM_ADDRESS_SIZE 0x2 /* Table hdr is 'AMDR' */ #define EEPROM_TABLE_HDR_VAL 0x414d4452 #define EEPROM_TABLE_VER 0x00010000 /* Bad GPU tag ‘BADG’ */ #define EEPROM_TABLE_HDR_BAD 0x42414447 /* Assume 2 Mbit size */ #define EEPROM_SIZE_BYTES 256000 #define EEPROM_PAGE__SIZE_BYTES 256 #define EEPROM_HDR_START 0 #define EEPROM_RECORD_START (EEPROM_HDR_START + EEPROM_TABLE_HEADER_SIZE) #define EEPROM_MAX_RECORD_NUM ((EEPROM_SIZE_BYTES - EEPROM_TABLE_HEADER_SIZE) / EEPROM_TABLE_RECORD_SIZE) #define EEPROM_ADDR_MSB_MASK GENMASK(17, 8) #define to_amdgpu_device(x) (container_of(x, struct amdgpu_ras, eeprom_control))->adev static bool __is_ras_eeprom_supported(struct amdgpu_device *adev) { if ((adev->asic_type == CHIP_VEGA20) || (adev->asic_type == CHIP_ARCTURUS)) return true; return false; } static bool __get_eeprom_i2c_addr_arct(struct amdgpu_device *adev, uint16_t *i2c_addr) { struct atom_context *atom_ctx = adev->mode_info.atom_context; if (!i2c_addr || !atom_ctx) return false; if (strnstr(atom_ctx->vbios_version, "D342", sizeof(atom_ctx->vbios_version))) *i2c_addr = EEPROM_I2C_TARGET_ADDR_ARCTURUS_D342; else *i2c_addr = EEPROM_I2C_TARGET_ADDR_ARCTURUS; return true; } static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev, uint16_t *i2c_addr) { if (!i2c_addr) return false; switch (adev->asic_type) { case CHIP_VEGA20: *i2c_addr = EEPROM_I2C_TARGET_ADDR_VEGA20; break; case CHIP_ARCTURUS: return __get_eeprom_i2c_addr_arct(adev, i2c_addr); default: return false; } return true; } static void __encode_table_header_to_buff(struct amdgpu_ras_eeprom_table_header *hdr, unsigned char *buff) { uint32_t *pp = (uint32_t *) buff; pp[0] = cpu_to_le32(hdr->header); pp[1] = cpu_to_le32(hdr->version); pp[2] = cpu_to_le32(hdr->first_rec_offset); pp[3] = cpu_to_le32(hdr->tbl_size); pp[4] = cpu_to_le32(hdr->checksum); } static void __decode_table_header_from_buff(struct amdgpu_ras_eeprom_table_header *hdr, unsigned char *buff) { uint32_t *pp = (uint32_t *)buff; hdr->header = le32_to_cpu(pp[0]); hdr->version = le32_to_cpu(pp[1]); hdr->first_rec_offset = le32_to_cpu(pp[2]); hdr->tbl_size = le32_to_cpu(pp[3]); hdr->checksum = le32_to_cpu(pp[4]); } static int __update_table_header(struct amdgpu_ras_eeprom_control *control, unsigned char *buff) { int ret = 0; struct amdgpu_device *adev = to_amdgpu_device(control); struct i2c_msg msg = { .addr = 0, .flags = 0, .len = EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE, .buf = buff, }; *(uint16_t *)buff = EEPROM_HDR_START; __encode_table_header_to_buff(&control->tbl_hdr, buff + EEPROM_ADDRESS_SIZE); msg.addr = control->i2c_address; ret = i2c_transfer(&adev->pm.smu_i2c, &msg, 1); if (ret < 1) DRM_ERROR("Failed to write EEPROM table header, ret:%d", ret); return ret; } static uint32_t __calc_hdr_byte_sum(struct amdgpu_ras_eeprom_control *control) { int i; uint32_t tbl_sum = 0; /* Header checksum, skip checksum field in the calculation */ for (i = 0; i < sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum); i++) tbl_sum += *(((unsigned char *)&control->tbl_hdr) + i); return tbl_sum; } static uint32_t __calc_recs_byte_sum(struct eeprom_table_record *records, int num) { int i, j; uint32_t tbl_sum = 0; /* Records checksum */ for (i = 0; i < num; i++) { struct eeprom_table_record *record = &records[i]; for (j = 0; j < sizeof(*record); j++) { tbl_sum += *(((unsigned char *)record) + j); } } return tbl_sum; } static inline uint32_t __calc_tbl_byte_sum(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *records, int num) { return __calc_hdr_byte_sum(control) + __calc_recs_byte_sum(records, num); } /* Checksum = 256 -((sum of all table entries) mod 256) */ static void __update_tbl_checksum(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *records, int num, uint32_t old_hdr_byte_sum) { /* * This will update the table sum with new records. * * TODO: What happens when the EEPROM table is to be wrapped around * and old records from start will get overridden. */ /* need to recalculate updated header byte sum */ control->tbl_byte_sum -= old_hdr_byte_sum; control->tbl_byte_sum += __calc_tbl_byte_sum(control, records, num); control->tbl_hdr.checksum = 256 - (control->tbl_byte_sum % 256); } /* table sum mod 256 + checksum must equals 256 */ static bool __validate_tbl_checksum(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *records, int num) { control->tbl_byte_sum = __calc_tbl_byte_sum(control, records, num); if (control->tbl_hdr.checksum + (control->tbl_byte_sum % 256) != 256) { DRM_WARN("Checksum mismatch, checksum: %u ", control->tbl_hdr.checksum); return false; } return true; } static int amdgpu_ras_eeprom_correct_header_tag( struct amdgpu_ras_eeprom_control *control, uint32_t header) { unsigned char buff[EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE]; struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; int ret = 0; memset(buff, 0, EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE); mutex_lock(&control->tbl_mutex); hdr->header = header; ret = __update_table_header(control, buff); mutex_unlock(&control->tbl_mutex); return ret; } int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control) { unsigned char buff[EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE] = { 0 }; struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; int ret = 0; mutex_lock(&control->tbl_mutex); hdr->header = EEPROM_TABLE_HDR_VAL; hdr->version = EEPROM_TABLE_VER; hdr->first_rec_offset = EEPROM_RECORD_START; hdr->tbl_size = EEPROM_TABLE_HEADER_SIZE; control->tbl_byte_sum = 0; __update_tbl_checksum(control, NULL, 0, 0); control->next_addr = EEPROM_RECORD_START; ret = __update_table_header(control, buff); mutex_unlock(&control->tbl_mutex); return ret; } int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control, bool *exceed_err_limit) { int ret = 0; struct amdgpu_device *adev = to_amdgpu_device(control); unsigned char buff[EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE] = { 0 }; struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); struct i2c_msg msg = { .addr = 0, .flags = I2C_M_RD, .len = EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE, .buf = buff, }; *exceed_err_limit = false; if (!__is_ras_eeprom_supported(adev)) return 0; /* Verify i2c adapter is initialized */ if (!adev->pm.smu_i2c.algo) return -ENOENT; if (!__get_eeprom_i2c_addr(adev, &control->i2c_address)) return -EINVAL; mutex_init(&control->tbl_mutex); msg.addr = control->i2c_address; /* Read/Create table header from EEPROM address 0 */ ret = i2c_transfer(&adev->pm.smu_i2c, &msg, 1); if (ret < 1) { DRM_ERROR("Failed to read EEPROM table header, ret:%d", ret); return ret; } __decode_table_header_from_buff(hdr, buff); if (hdr->header == EEPROM_TABLE_HDR_VAL) { control->num_recs = (hdr->tbl_size - EEPROM_TABLE_HEADER_SIZE) / EEPROM_TABLE_RECORD_SIZE; control->tbl_byte_sum = __calc_hdr_byte_sum(control); control->next_addr = EEPROM_RECORD_START; DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records", control->num_recs); } else if ((hdr->header == EEPROM_TABLE_HDR_BAD) && (amdgpu_bad_page_threshold != 0)) { if (ras->bad_page_cnt_threshold > control->num_recs) { dev_info(adev->dev, "Using one valid bigger bad page " "threshold and correcting eeprom header tag.\n"); ret = amdgpu_ras_eeprom_correct_header_tag(control, EEPROM_TABLE_HDR_VAL); } else { *exceed_err_limit = true; dev_err(adev->dev, "Exceeding the bad_page_threshold parameter, " "disabling the GPU.\n"); } } else { DRM_INFO("Creating new EEPROM table"); ret = amdgpu_ras_eeprom_reset_table(control); } return ret == 1 ? 0 : -EIO; } static void __encode_table_record_to_buff(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *record, unsigned char *buff) { __le64 tmp = 0; int i = 0; /* Next are all record fields according to EEPROM page spec in LE foramt */ buff[i++] = record->err_type; buff[i++] = record->bank; tmp = cpu_to_le64(record->ts); memcpy(buff + i, &tmp, 8); i += 8; tmp = cpu_to_le64((record->offset & 0xffffffffffff)); memcpy(buff + i, &tmp, 6); i += 6; buff[i++] = record->mem_channel; buff[i++] = record->mcumc_id; tmp = cpu_to_le64((record->retired_page & 0xffffffffffff)); memcpy(buff + i, &tmp, 6); } static void __decode_table_record_from_buff(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *record, unsigned char *buff) { __le64 tmp = 0; int i = 0; /* Next are all record fields according to EEPROM page spec in LE foramt */ record->err_type = buff[i++]; record->bank = buff[i++]; memcpy(&tmp, buff + i, 8); record->ts = le64_to_cpu(tmp); i += 8; memcpy(&tmp, buff + i, 6); record->offset = (le64_to_cpu(tmp) & 0xffffffffffff); i += 6; record->mem_channel = buff[i++]; record->mcumc_id = buff[i++]; memcpy(&tmp, buff + i, 6); record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff); } /* * When reaching end of EEPROM memory jump back to 0 record address * When next record access will go beyond EEPROM page boundary modify bits A17/A8 * in I2C selector to go to next page */ static uint32_t __correct_eeprom_dest_address(uint32_t curr_address) { uint32_t next_address = curr_address + EEPROM_TABLE_RECORD_SIZE; /* When all EEPROM memory used jump back to 0 address */ if (next_address > EEPROM_SIZE_BYTES) { DRM_INFO("Reached end of EEPROM memory, jumping to 0 " "and overriding old record"); return EEPROM_RECORD_START; } /* * To check if we overflow page boundary compare next address with * current and see if bits 17/8 of the EEPROM address will change * If they do start from the next 256b page * * https://www.st.com/resource/en/datasheet/m24m02-dr.pdf sec. 5.1.2 */ if ((curr_address & EEPROM_ADDR_MSB_MASK) != (next_address & EEPROM_ADDR_MSB_MASK)) { DRM_DEBUG_DRIVER("Reached end of EEPROM memory page, jumping to next: %lx", (next_address & EEPROM_ADDR_MSB_MASK)); return (next_address & EEPROM_ADDR_MSB_MASK); } return curr_address; } int amdgpu_ras_eeprom_check_err_threshold( struct amdgpu_ras_eeprom_control *control, bool *exceed_err_limit) { struct amdgpu_device *adev = to_amdgpu_device(control); unsigned char buff[EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE] = { 0 }; struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; struct i2c_msg msg = { .addr = control->i2c_address, .flags = I2C_M_RD, .len = EEPROM_ADDRESS_SIZE + EEPROM_TABLE_HEADER_SIZE, .buf = buff, }; int ret; *exceed_err_limit = false; if (!__is_ras_eeprom_supported(adev)) return 0; /* read EEPROM table header */ mutex_lock(&control->tbl_mutex); ret = i2c_transfer(&adev->pm.smu_i2c, &msg, 1); if (ret < 1) { dev_err(adev->dev, "Failed to read EEPROM table header.\n"); goto err; } __decode_table_header_from_buff(hdr, &buff[2]); if (hdr->header == EEPROM_TABLE_HDR_BAD) { dev_warn(adev->dev, "This GPU is in BAD status."); dev_warn(adev->dev, "Please retire it or setting one bigger " "threshold value when reloading driver.\n"); *exceed_err_limit = true; } err: mutex_unlock(&control->tbl_mutex); return 0; } int amdgpu_ras_eeprom_process_recods(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *records, bool write, int num) { int i, ret = 0; struct i2c_msg *msgs, *msg; unsigned char *buffs, *buff; bool sched_ras_recovery = false; struct eeprom_table_record *record; struct amdgpu_device *adev = to_amdgpu_device(control); struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); if (!__is_ras_eeprom_supported(adev)) return 0; buffs = kcalloc(num, EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE, GFP_KERNEL); if (!buffs) return -ENOMEM; mutex_lock(&control->tbl_mutex); msgs = kcalloc(num, sizeof(*msgs), GFP_KERNEL); if (!msgs) { ret = -ENOMEM; goto free_buff; } /* * If saved bad pages number exceeds the bad page threshold for * the whole VRAM, update table header to mark the BAD GPU tag * and schedule one ras recovery after eeprom write is done, * this can avoid the missing for latest records. * * This new header will be picked up and checked in the bootup * by ras recovery, which may break bootup process to notify * user this GPU is in bad state and to retire such GPU for * further check. */ if (write && (amdgpu_bad_page_threshold != 0) && ((control->num_recs + num) >= ras->bad_page_cnt_threshold)) { dev_warn(adev->dev, "Saved bad pages(%d) reaches threshold value(%d).\n", control->num_recs + num, ras->bad_page_cnt_threshold); control->tbl_hdr.header = EEPROM_TABLE_HDR_BAD; sched_ras_recovery = true; } /* In case of overflow just start from beginning to not lose newest records */ if (write && (control->next_addr + EEPROM_TABLE_RECORD_SIZE * num > EEPROM_SIZE_BYTES)) control->next_addr = EEPROM_RECORD_START; /* * TODO Currently makes EEPROM writes for each record, this creates * internal fragmentation. Optimized the code to do full page write of * 256b */ for (i = 0; i < num; i++) { buff = &buffs[i * (EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE)]; record = &records[i]; msg = &msgs[i]; control->next_addr = __correct_eeprom_dest_address(control->next_addr); /* * Update bits 16,17 of EEPROM address in I2C address by setting them * to bits 1,2 of Device address byte */ msg->addr = control->i2c_address | ((control->next_addr & EEPROM_ADDR_MSB_MASK) >> 15); msg->flags = write ? 0 : I2C_M_RD; msg->len = EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE; msg->buf = buff; /* Insert the EEPROM dest addess, bits 0-15 */ buff[0] = ((control->next_addr >> 8) & 0xff); buff[1] = (control->next_addr & 0xff); /* EEPROM table content is stored in LE format */ if (write) __encode_table_record_to_buff(control, record, buff + EEPROM_ADDRESS_SIZE); /* * The destination EEPROM address might need to be corrected to account * for page or entire memory wrapping */ control->next_addr += EEPROM_TABLE_RECORD_SIZE; } ret = i2c_transfer(&adev->pm.smu_i2c, msgs, num); if (ret < 1) { DRM_ERROR("Failed to process EEPROM table records, ret:%d", ret); /* TODO Restore prev next EEPROM address ? */ goto free_msgs; } if (!write) { for (i = 0; i < num; i++) { buff = &buffs[i*(EEPROM_ADDRESS_SIZE + EEPROM_TABLE_RECORD_SIZE)]; record = &records[i]; __decode_table_record_from_buff(control, record, buff + EEPROM_ADDRESS_SIZE); } } if (write) { uint32_t old_hdr_byte_sum = __calc_hdr_byte_sum(control); /* * Update table header with size and CRC and account for table * wrap around where the assumption is that we treat it as empty * table * * TODO - Check the assumption is correct */ control->num_recs += num; control->num_recs %= EEPROM_MAX_RECORD_NUM; control->tbl_hdr.tbl_size += EEPROM_TABLE_RECORD_SIZE * num; if (control->tbl_hdr.tbl_size > EEPROM_SIZE_BYTES) control->tbl_hdr.tbl_size = EEPROM_TABLE_HEADER_SIZE + control->num_recs * EEPROM_TABLE_RECORD_SIZE; __update_tbl_checksum(control, records, num, old_hdr_byte_sum); __update_table_header(control, buffs); if (sched_ras_recovery) { /* * Before scheduling ras recovery, assert the related * flag first, which shall bypass common bad page * reservation execution in amdgpu_ras_reset_gpu. */ amdgpu_ras_get_context(adev)->flags |= AMDGPU_RAS_FLAG_SKIP_BAD_PAGE_RESV; dev_warn(adev->dev, "Conduct ras recovery due to bad " "page threshold reached.\n"); amdgpu_ras_reset_gpu(adev); } } else if (!__validate_tbl_checksum(control, records, num)) { DRM_WARN("EEPROM Table checksum mismatch!"); /* TODO Uncomment when EEPROM read/write is relliable */ /* ret = -EIO; */ } free_msgs: kfree(msgs); free_buff: kfree(buffs); mutex_unlock(&control->tbl_mutex); return ret == num ? 0 : -EIO; } inline uint32_t amdgpu_ras_eeprom_get_record_max_length(void) { return EEPROM_MAX_RECORD_NUM; } /* Used for testing if bugs encountered */ #if 0 void amdgpu_ras_eeprom_test(struct amdgpu_ras_eeprom_control *control) { int i; struct eeprom_table_record *recs = kcalloc(1, sizeof(*recs), GFP_KERNEL); if (!recs) return; for (i = 0; i < 1 ; i++) { recs[i].address = 0xdeadbeef; recs[i].retired_page = i; } if (!amdgpu_ras_eeprom_process_recods(control, recs, true, 1)) { memset(recs, 0, sizeof(*recs) * 1); control->next_addr = EEPROM_RECORD_START; if (!amdgpu_ras_eeprom_process_recods(control, recs, false, 1)) { for (i = 0; i < 1; i++) DRM_INFO("rec.address :0x%llx, rec.retired_page :%llu", recs[i].address, recs[i].retired_page); } else DRM_ERROR("Failed in reading from table"); } else DRM_ERROR("Failed in writing to table"); } #endif