// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright © 2011-2018 VMware, Inc., Palo Alto, CA., USA * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include #include "vmwgfx_drv.h" #include "ttm_object.h" /** * struct vmw_user_buffer_object - User-space-visible buffer object * * @prime: The prime object providing user visibility. * @vbo: The struct vmw_buffer_object */ struct vmw_user_buffer_object { struct ttm_prime_object prime; struct vmw_buffer_object vbo; }; /** * vmw_buffer_object - Convert a struct ttm_buffer_object to a struct * vmw_buffer_object. * * @bo: Pointer to the TTM buffer object. * Return: Pointer to the struct vmw_buffer_object embedding the * TTM buffer object. */ static struct vmw_buffer_object * vmw_buffer_object(struct ttm_buffer_object *bo) { return container_of(bo, struct vmw_buffer_object, base); } /** * vmw_user_buffer_object - Convert a struct ttm_buffer_object to a struct * vmw_user_buffer_object. * * @bo: Pointer to the TTM buffer object. * Return: Pointer to the struct vmw_buffer_object embedding the TTM buffer * object. */ static struct vmw_user_buffer_object * vmw_user_buffer_object(struct ttm_buffer_object *bo) { struct vmw_buffer_object *vmw_bo = vmw_buffer_object(bo); return container_of(vmw_bo, struct vmw_user_buffer_object, vbo); } /** * vmw_bo_pin_in_placement - Validate a buffer to placement. * * @dev_priv: Driver private. * @buf: DMA buffer to move. * @placement: The placement to pin it. * @interruptible: Use interruptible wait. * Return: Zero on success, Negative error code on failure. In particular * -ERESTARTSYS if interrupted by a signal */ int vmw_bo_pin_in_placement(struct vmw_private *dev_priv, struct vmw_buffer_object *buf, struct ttm_placement *placement, bool interruptible) { struct ttm_operation_ctx ctx = {interruptible, false }; struct ttm_buffer_object *bo = &buf->base; int ret; uint32_t new_flags; ret = ttm_write_lock(&dev_priv->reservation_sem, interruptible); if (unlikely(ret != 0)) return ret; vmw_execbuf_release_pinned_bo(dev_priv); ret = ttm_bo_reserve(bo, interruptible, false, NULL); if (unlikely(ret != 0)) goto err; if (buf->base.pin_count > 0) ret = ttm_bo_mem_compat(placement, &bo->mem, &new_flags) == true ? 0 : -EINVAL; else ret = ttm_bo_validate(bo, placement, &ctx); if (!ret) vmw_bo_pin_reserved(buf, true); ttm_bo_unreserve(bo); err: ttm_write_unlock(&dev_priv->reservation_sem); return ret; } /** * vmw_bo_pin_in_vram_or_gmr - Move a buffer to vram or gmr. * * This function takes the reservation_sem in write mode. * Flushes and unpins the query bo to avoid failures. * * @dev_priv: Driver private. * @buf: DMA buffer to move. * @pin: Pin buffer if true. * @interruptible: Use interruptible wait. * Return: Zero on success, Negative error code on failure. In particular * -ERESTARTSYS if interrupted by a signal */ int vmw_bo_pin_in_vram_or_gmr(struct vmw_private *dev_priv, struct vmw_buffer_object *buf, bool interruptible) { struct ttm_operation_ctx ctx = {interruptible, false }; struct ttm_buffer_object *bo = &buf->base; int ret; uint32_t new_flags; ret = ttm_write_lock(&dev_priv->reservation_sem, interruptible); if (unlikely(ret != 0)) return ret; vmw_execbuf_release_pinned_bo(dev_priv); ret = ttm_bo_reserve(bo, interruptible, false, NULL); if (unlikely(ret != 0)) goto err; if (buf->base.pin_count > 0) { ret = ttm_bo_mem_compat(&vmw_vram_gmr_placement, &bo->mem, &new_flags) == true ? 0 : -EINVAL; goto out_unreserve; } ret = ttm_bo_validate(bo, &vmw_vram_gmr_placement, &ctx); if (likely(ret == 0) || ret == -ERESTARTSYS) goto out_unreserve; ret = ttm_bo_validate(bo, &vmw_vram_placement, &ctx); out_unreserve: if (!ret) vmw_bo_pin_reserved(buf, true); ttm_bo_unreserve(bo); err: ttm_write_unlock(&dev_priv->reservation_sem); return ret; } /** * vmw_bo_pin_in_vram - Move a buffer to vram. * * This function takes the reservation_sem in write mode. * Flushes and unpins the query bo to avoid failures. * * @dev_priv: Driver private. * @buf: DMA buffer to move. * @interruptible: Use interruptible wait. * Return: Zero on success, Negative error code on failure. In particular * -ERESTARTSYS if interrupted by a signal */ int vmw_bo_pin_in_vram(struct vmw_private *dev_priv, struct vmw_buffer_object *buf, bool interruptible) { return vmw_bo_pin_in_placement(dev_priv, buf, &vmw_vram_placement, interruptible); } /** * vmw_bo_pin_in_start_of_vram - Move a buffer to start of vram. * * This function takes the reservation_sem in write mode. * Flushes and unpins the query bo to avoid failures. * * @dev_priv: Driver private. * @buf: DMA buffer to pin. * @interruptible: Use interruptible wait. * Return: Zero on success, Negative error code on failure. In particular * -ERESTARTSYS if interrupted by a signal */ int vmw_bo_pin_in_start_of_vram(struct vmw_private *dev_priv, struct vmw_buffer_object *buf, bool interruptible) { struct ttm_operation_ctx ctx = {interruptible, false }; struct ttm_buffer_object *bo = &buf->base; struct ttm_placement placement; struct ttm_place place; int ret = 0; uint32_t new_flags; place = vmw_vram_placement.placement[0]; place.lpfn = bo->num_pages; placement.num_placement = 1; placement.placement = &place; placement.num_busy_placement = 1; placement.busy_placement = &place; ret = ttm_write_lock(&dev_priv->reservation_sem, interruptible); if (unlikely(ret != 0)) return ret; vmw_execbuf_release_pinned_bo(dev_priv); ret = ttm_bo_reserve(bo, interruptible, false, NULL); if (unlikely(ret != 0)) goto err_unlock; /* * Is this buffer already in vram but not at the start of it? * In that case, evict it first because TTM isn't good at handling * that situation. */ if (bo->mem.mem_type == TTM_PL_VRAM && bo->mem.start < bo->num_pages && bo->mem.start > 0 && buf->base.pin_count == 0) { ctx.interruptible = false; (void) ttm_bo_validate(bo, &vmw_sys_placement, &ctx); } if (buf->base.pin_count > 0) ret = ttm_bo_mem_compat(&placement, &bo->mem, &new_flags) == true ? 0 : -EINVAL; else ret = ttm_bo_validate(bo, &placement, &ctx); /* For some reason we didn't end up at the start of vram */ WARN_ON(ret == 0 && bo->mem.start != 0); if (!ret) vmw_bo_pin_reserved(buf, true); ttm_bo_unreserve(bo); err_unlock: ttm_write_unlock(&dev_priv->reservation_sem); return ret; } /** * vmw_bo_unpin - Unpin the buffer given buffer, does not move the buffer. * * This function takes the reservation_sem in write mode. * * @dev_priv: Driver private. * @buf: DMA buffer to unpin. * @interruptible: Use interruptible wait. * Return: Zero on success, Negative error code on failure. In particular * -ERESTARTSYS if interrupted by a signal */ int vmw_bo_unpin(struct vmw_private *dev_priv, struct vmw_buffer_object *buf, bool interruptible) { struct ttm_buffer_object *bo = &buf->base; int ret; ret = ttm_read_lock(&dev_priv->reservation_sem, interruptible); if (unlikely(ret != 0)) return ret; ret = ttm_bo_reserve(bo, interruptible, false, NULL); if (unlikely(ret != 0)) goto err; vmw_bo_pin_reserved(buf, false); ttm_bo_unreserve(bo); err: ttm_read_unlock(&dev_priv->reservation_sem); return ret; } /** * vmw_bo_get_guest_ptr - Get the guest ptr representing the current placement * of a buffer. * * @bo: Pointer to a struct ttm_buffer_object. Must be pinned or reserved. * @ptr: SVGAGuestPtr returning the result. */ void vmw_bo_get_guest_ptr(const struct ttm_buffer_object *bo, SVGAGuestPtr *ptr) { if (bo->mem.mem_type == TTM_PL_VRAM) { ptr->gmrId = SVGA_GMR_FRAMEBUFFER; ptr->offset = bo->mem.start << PAGE_SHIFT; } else { ptr->gmrId = bo->mem.start; ptr->offset = 0; } } /** * vmw_bo_pin_reserved - Pin or unpin a buffer object without moving it. * * @vbo: The buffer object. Must be reserved. * @pin: Whether to pin or unpin. * */ void vmw_bo_pin_reserved(struct vmw_buffer_object *vbo, bool pin) { struct ttm_operation_ctx ctx = { false, true }; struct ttm_place pl; struct ttm_placement placement; struct ttm_buffer_object *bo = &vbo->base; uint32_t old_mem_type = bo->mem.mem_type; int ret; dma_resv_assert_held(bo->base.resv); if (pin == !!bo->pin_count) return; pl.fpfn = 0; pl.lpfn = 0; pl.mem_type = bo->mem.mem_type; pl.flags = bo->mem.placement; memset(&placement, 0, sizeof(placement)); placement.num_placement = 1; placement.placement = &pl; ret = ttm_bo_validate(bo, &placement, &ctx); BUG_ON(ret != 0 || bo->mem.mem_type != old_mem_type); if (pin) ttm_bo_pin(bo); else ttm_bo_unpin(bo); } /** * vmw_bo_map_and_cache - Map a buffer object and cache the map * * @vbo: The buffer object to map * Return: A kernel virtual address or NULL if mapping failed. * * This function maps a buffer object into the kernel address space, or * returns the virtual kernel address of an already existing map. The virtual * address remains valid as long as the buffer object is pinned or reserved. * The cached map is torn down on either * 1) Buffer object move * 2) Buffer object swapout * 3) Buffer object destruction * */ void *vmw_bo_map_and_cache(struct vmw_buffer_object *vbo) { struct ttm_buffer_object *bo = &vbo->base; bool not_used; void *virtual; int ret; virtual = ttm_kmap_obj_virtual(&vbo->map, ¬_used); if (virtual) return virtual; ret = ttm_bo_kmap(bo, 0, bo->num_pages, &vbo->map); if (ret) DRM_ERROR("Buffer object map failed: %d.\n", ret); return ttm_kmap_obj_virtual(&vbo->map, ¬_used); } /** * vmw_bo_unmap - Tear down a cached buffer object map. * * @vbo: The buffer object whose map we are tearing down. * * This function tears down a cached map set up using * vmw_buffer_object_map_and_cache(). */ void vmw_bo_unmap(struct vmw_buffer_object *vbo) { if (vbo->map.bo == NULL) return; ttm_bo_kunmap(&vbo->map); } /** * vmw_bo_acc_size - Calculate the pinned memory usage of buffers * * @dev_priv: Pointer to a struct vmw_private identifying the device. * @size: The requested buffer size. * @user: Whether this is an ordinary dma buffer or a user dma buffer. */ static size_t vmw_bo_acc_size(struct vmw_private *dev_priv, size_t size, bool user) { static size_t struct_size, user_struct_size; size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *)); if (unlikely(struct_size == 0)) { size_t backend_size = ttm_round_pot(vmw_tt_size); struct_size = backend_size + ttm_round_pot(sizeof(struct vmw_buffer_object)); user_struct_size = backend_size + ttm_round_pot(sizeof(struct vmw_user_buffer_object)) + TTM_OBJ_EXTRA_SIZE; } if (dev_priv->map_mode == vmw_dma_alloc_coherent) page_array_size += ttm_round_pot(num_pages * sizeof(dma_addr_t)); return ((user) ? user_struct_size : struct_size) + page_array_size; } /** * vmw_bo_bo_free - vmw buffer object destructor * * @bo: Pointer to the embedded struct ttm_buffer_object */ void vmw_bo_bo_free(struct ttm_buffer_object *bo) { struct vmw_buffer_object *vmw_bo = vmw_buffer_object(bo); WARN_ON(vmw_bo->dirty); WARN_ON(!RB_EMPTY_ROOT(&vmw_bo->res_tree)); vmw_bo_unmap(vmw_bo); kfree(vmw_bo); } /** * vmw_user_bo_destroy - vmw buffer object destructor * * @bo: Pointer to the embedded struct ttm_buffer_object */ static void vmw_user_bo_destroy(struct ttm_buffer_object *bo) { struct vmw_user_buffer_object *vmw_user_bo = vmw_user_buffer_object(bo); struct vmw_buffer_object *vbo = &vmw_user_bo->vbo; WARN_ON(vbo->dirty); WARN_ON(!RB_EMPTY_ROOT(&vbo->res_tree)); vmw_bo_unmap(vbo); ttm_prime_object_kfree(vmw_user_bo, prime); } /** * vmw_bo_create_kernel - Create a pinned BO for internal kernel use. * * @dev_priv: Pointer to the device private struct * @size: size of the BO we need * @placement: where to put it * @p_bo: resulting BO * * Creates and pin a simple BO for in kernel use. */ int vmw_bo_create_kernel(struct vmw_private *dev_priv, unsigned long size, struct ttm_placement *placement, struct ttm_buffer_object **p_bo) { unsigned npages = PAGE_ALIGN(size) >> PAGE_SHIFT; struct ttm_operation_ctx ctx = { false, false }; struct ttm_buffer_object *bo; size_t acc_size; int ret; bo = kzalloc(sizeof(*bo), GFP_KERNEL); if (unlikely(!bo)) return -ENOMEM; acc_size = ttm_round_pot(sizeof(*bo)); acc_size += ttm_round_pot(npages * sizeof(void *)); acc_size += ttm_round_pot(sizeof(struct ttm_tt)); ret = ttm_bo_init_reserved(&dev_priv->bdev, bo, size, ttm_bo_type_device, placement, 0, &ctx, acc_size, NULL, NULL, NULL); if (unlikely(ret)) goto error_free; ttm_bo_pin(bo); ttm_bo_unreserve(bo); *p_bo = bo; return 0; error_free: kfree(bo); return ret; } /** * vmw_bo_init - Initialize a vmw buffer object * * @dev_priv: Pointer to the device private struct * @vmw_bo: Pointer to the struct vmw_buffer_object to initialize. * @size: Buffer object size in bytes. * @placement: Initial placement. * @interruptible: Whether waits should be performed interruptible. * @pin: If the BO should be created pinned at a fixed location. * @bo_free: The buffer object destructor. * Returns: Zero on success, negative error code on error. * * Note that on error, the code will free the buffer object. */ int vmw_bo_init(struct vmw_private *dev_priv, struct vmw_buffer_object *vmw_bo, size_t size, struct ttm_placement *placement, bool interruptible, bool pin, void (*bo_free)(struct ttm_buffer_object *bo)) { struct ttm_operation_ctx ctx = { interruptible, false }; struct ttm_bo_device *bdev = &dev_priv->bdev; size_t acc_size; int ret; bool user = (bo_free == &vmw_user_bo_destroy); WARN_ON_ONCE(!bo_free && (!user && (bo_free != vmw_bo_bo_free))); acc_size = vmw_bo_acc_size(dev_priv, size, user); memset(vmw_bo, 0, sizeof(*vmw_bo)); BUILD_BUG_ON(TTM_MAX_BO_PRIORITY <= 3); vmw_bo->base.priority = 3; vmw_bo->res_tree = RB_ROOT; ret = ttm_bo_init_reserved(bdev, &vmw_bo->base, size, ttm_bo_type_device, placement, 0, &ctx, acc_size, NULL, NULL, bo_free); if (unlikely(ret)) return ret; if (pin) ttm_bo_pin(&vmw_bo->base); ttm_bo_unreserve(&vmw_bo->base); return 0; } /** * vmw_user_bo_release - TTM reference base object release callback for * vmw user buffer objects * * @p_base: The TTM base object pointer about to be unreferenced. * * Clears the TTM base object pointer and drops the reference the * base object has on the underlying struct vmw_buffer_object. */ static void vmw_user_bo_release(struct ttm_base_object **p_base) { struct vmw_user_buffer_object *vmw_user_bo; struct ttm_base_object *base = *p_base; *p_base = NULL; if (unlikely(base == NULL)) return; vmw_user_bo = container_of(base, struct vmw_user_buffer_object, prime.base); ttm_bo_put(&vmw_user_bo->vbo.base); } /** * vmw_user_bo_ref_obj-release - TTM synccpu reference object release callback * for vmw user buffer objects * * @base: Pointer to the TTM base object * @ref_type: Reference type of the reference reaching zero. * * Called when user-space drops its last synccpu reference on the buffer * object, Either explicitly or as part of a cleanup file close. */ static void vmw_user_bo_ref_obj_release(struct ttm_base_object *base, enum ttm_ref_type ref_type) { struct vmw_user_buffer_object *user_bo; user_bo = container_of(base, struct vmw_user_buffer_object, prime.base); switch (ref_type) { case TTM_REF_SYNCCPU_WRITE: atomic_dec(&user_bo->vbo.cpu_writers); break; default: WARN_ONCE(true, "Undefined buffer object reference release.\n"); } } /** * vmw_user_bo_alloc - Allocate a user buffer object * * @dev_priv: Pointer to a struct device private. * @tfile: Pointer to a struct ttm_object_file on which to register the user * object. * @size: Size of the buffer object. * @shareable: Boolean whether the buffer is shareable with other open files. * @handle: Pointer to where the handle value should be assigned. * @p_vbo: Pointer to where the refcounted struct vmw_buffer_object pointer * should be assigned. * Return: Zero on success, negative error code on error. */ int vmw_user_bo_alloc(struct vmw_private *dev_priv, struct ttm_object_file *tfile, uint32_t size, bool shareable, uint32_t *handle, struct vmw_buffer_object **p_vbo, struct ttm_base_object **p_base) { struct vmw_user_buffer_object *user_bo; int ret; user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL); if (unlikely(!user_bo)) { DRM_ERROR("Failed to allocate a buffer.\n"); return -ENOMEM; } ret = vmw_bo_init(dev_priv, &user_bo->vbo, size, (dev_priv->has_mob) ? &vmw_sys_placement : &vmw_vram_sys_placement, true, false, &vmw_user_bo_destroy); if (unlikely(ret != 0)) return ret; ttm_bo_get(&user_bo->vbo.base); ret = ttm_prime_object_init(tfile, size, &user_bo->prime, shareable, ttm_buffer_type, &vmw_user_bo_release, &vmw_user_bo_ref_obj_release); if (unlikely(ret != 0)) { ttm_bo_put(&user_bo->vbo.base); goto out_no_base_object; } *p_vbo = &user_bo->vbo; if (p_base) { *p_base = &user_bo->prime.base; kref_get(&(*p_base)->refcount); } *handle = user_bo->prime.base.handle; out_no_base_object: return ret; } /** * vmw_user_bo_verify_access - verify access permissions on this * buffer object. * * @bo: Pointer to the buffer object being accessed * @tfile: Identifying the caller. */ int vmw_user_bo_verify_access(struct ttm_buffer_object *bo, struct ttm_object_file *tfile) { struct vmw_user_buffer_object *vmw_user_bo; if (unlikely(bo->destroy != vmw_user_bo_destroy)) return -EPERM; vmw_user_bo = vmw_user_buffer_object(bo); /* Check that the caller has opened the object. */ if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base))) return 0; DRM_ERROR("Could not grant buffer access.\n"); return -EPERM; } /** * vmw_user_bo_synccpu_grab - Grab a struct vmw_user_buffer_object for cpu * access, idling previous GPU operations on the buffer and optionally * blocking it for further command submissions. * * @user_bo: Pointer to the buffer object being grabbed for CPU access * @tfile: Identifying the caller. * @flags: Flags indicating how the grab should be performed. * Return: Zero on success, Negative error code on error. In particular, * -EBUSY will be returned if a dontblock operation is requested and the * buffer object is busy, and -ERESTARTSYS will be returned if a wait is * interrupted by a signal. * * A blocking grab will be automatically released when @tfile is closed. */ static int vmw_user_bo_synccpu_grab(struct vmw_user_buffer_object *user_bo, struct ttm_object_file *tfile, uint32_t flags) { bool nonblock = !!(flags & drm_vmw_synccpu_dontblock); struct ttm_buffer_object *bo = &user_bo->vbo.base; bool existed; int ret; if (flags & drm_vmw_synccpu_allow_cs) { long lret; lret = dma_resv_wait_timeout_rcu (bo->base.resv, true, true, nonblock ? 0 : MAX_SCHEDULE_TIMEOUT); if (!lret) return -EBUSY; else if (lret < 0) return lret; return 0; } ret = ttm_bo_reserve(bo, true, nonblock, NULL); if (unlikely(ret != 0)) return ret; ret = ttm_bo_wait(bo, true, nonblock); if (likely(ret == 0)) atomic_inc(&user_bo->vbo.cpu_writers); ttm_bo_unreserve(bo); if (unlikely(ret != 0)) return ret; ret = ttm_ref_object_add(tfile, &user_bo->prime.base, TTM_REF_SYNCCPU_WRITE, &existed, false); if (ret != 0 || existed) atomic_dec(&user_bo->vbo.cpu_writers); return ret; } /** * vmw_user_bo_synccpu_release - Release a previous grab for CPU access, * and unblock command submission on the buffer if blocked. * * @handle: Handle identifying the buffer object. * @tfile: Identifying the caller. * @flags: Flags indicating the type of release. */ static int vmw_user_bo_synccpu_release(uint32_t handle, struct ttm_object_file *tfile, uint32_t flags) { if (!(flags & drm_vmw_synccpu_allow_cs)) return ttm_ref_object_base_unref(tfile, handle, TTM_REF_SYNCCPU_WRITE); return 0; } /** * vmw_user_bo_synccpu_ioctl - ioctl function implementing the synccpu * functionality. * * @dev: Identifies the drm device. * @data: Pointer to the ioctl argument. * @file_priv: Identifies the caller. * Return: Zero on success, negative error code on error. * * This function checks the ioctl arguments for validity and calls the * relevant synccpu functions. */ int vmw_user_bo_synccpu_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vmw_synccpu_arg *arg = (struct drm_vmw_synccpu_arg *) data; struct vmw_buffer_object *vbo; struct vmw_user_buffer_object *user_bo; struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; struct ttm_base_object *buffer_base; int ret; if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0 || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write | drm_vmw_synccpu_dontblock | drm_vmw_synccpu_allow_cs)) != 0) { DRM_ERROR("Illegal synccpu flags.\n"); return -EINVAL; } switch (arg->op) { case drm_vmw_synccpu_grab: ret = vmw_user_bo_lookup(tfile, arg->handle, &vbo, &buffer_base); if (unlikely(ret != 0)) return ret; user_bo = container_of(vbo, struct vmw_user_buffer_object, vbo); ret = vmw_user_bo_synccpu_grab(user_bo, tfile, arg->flags); vmw_bo_unreference(&vbo); ttm_base_object_unref(&buffer_base); if (unlikely(ret != 0 && ret != -ERESTARTSYS && ret != -EBUSY)) { DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n", (unsigned int) arg->handle); return ret; } break; case drm_vmw_synccpu_release: ret = vmw_user_bo_synccpu_release(arg->handle, tfile, arg->flags); if (unlikely(ret != 0)) { DRM_ERROR("Failed synccpu release on handle 0x%08x.\n", (unsigned int) arg->handle); return ret; } break; default: DRM_ERROR("Invalid synccpu operation.\n"); return -EINVAL; } return 0; } /** * vmw_bo_alloc_ioctl - ioctl function implementing the buffer object * allocation functionality. * * @dev: Identifies the drm device. * @data: Pointer to the ioctl argument. * @file_priv: Identifies the caller. * Return: Zero on success, negative error code on error. * * This function checks the ioctl arguments for validity and allocates a * struct vmw_user_buffer_object bo. */ int vmw_bo_alloc_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct vmw_private *dev_priv = vmw_priv(dev); union drm_vmw_alloc_dmabuf_arg *arg = (union drm_vmw_alloc_dmabuf_arg *)data; struct drm_vmw_alloc_dmabuf_req *req = &arg->req; struct drm_vmw_dmabuf_rep *rep = &arg->rep; struct vmw_buffer_object *vbo; uint32_t handle; int ret; ret = ttm_read_lock(&dev_priv->reservation_sem, true); if (unlikely(ret != 0)) return ret; ret = vmw_user_bo_alloc(dev_priv, vmw_fpriv(file_priv)->tfile, req->size, false, &handle, &vbo, NULL); if (unlikely(ret != 0)) goto out_no_bo; rep->handle = handle; rep->map_handle = drm_vma_node_offset_addr(&vbo->base.base.vma_node); rep->cur_gmr_id = handle; rep->cur_gmr_offset = 0; vmw_bo_unreference(&vbo); out_no_bo: ttm_read_unlock(&dev_priv->reservation_sem); return ret; } /** * vmw_bo_unref_ioctl - Generic handle close ioctl. * * @dev: Identifies the drm device. * @data: Pointer to the ioctl argument. * @file_priv: Identifies the caller. * Return: Zero on success, negative error code on error. * * This function checks the ioctl arguments for validity and closes a * handle to a TTM base object, optionally freeing the object. */ int vmw_bo_unref_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_vmw_unref_dmabuf_arg *arg = (struct drm_vmw_unref_dmabuf_arg *)data; return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile, arg->handle, TTM_REF_USAGE); } /** * vmw_user_bo_lookup - Look up a vmw user buffer object from a handle. * * @tfile: The TTM object file the handle is registered with. * @handle: The user buffer object handle * @out: Pointer to a where a pointer to the embedded * struct vmw_buffer_object should be placed. * @p_base: Pointer to where a pointer to the TTM base object should be * placed, or NULL if no such pointer is required. * Return: Zero on success, Negative error code on error. * * Both the output base object pointer and the vmw buffer object pointer * will be refcounted. */ int vmw_user_bo_lookup(struct ttm_object_file *tfile, uint32_t handle, struct vmw_buffer_object **out, struct ttm_base_object **p_base) { struct vmw_user_buffer_object *vmw_user_bo; struct ttm_base_object *base; base = ttm_base_object_lookup(tfile, handle); if (unlikely(base == NULL)) { DRM_ERROR("Invalid buffer object handle 0x%08lx.\n", (unsigned long)handle); return -ESRCH; } if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) { ttm_base_object_unref(&base); DRM_ERROR("Invalid buffer object handle 0x%08lx.\n", (unsigned long)handle); return -EINVAL; } vmw_user_bo = container_of(base, struct vmw_user_buffer_object, prime.base); ttm_bo_get(&vmw_user_bo->vbo.base); if (p_base) *p_base = base; else ttm_base_object_unref(&base); *out = &vmw_user_bo->vbo; return 0; } /** * vmw_user_bo_noref_lookup - Look up a vmw user buffer object without reference * @tfile: The TTM object file the handle is registered with. * @handle: The user buffer object handle. * * This function looks up a struct vmw_user_bo and returns a pointer to the * struct vmw_buffer_object it derives from without refcounting the pointer. * The returned pointer is only valid until vmw_user_bo_noref_release() is * called, and the object pointed to by the returned pointer may be doomed. * Any persistent usage of the object requires a refcount to be taken using * ttm_bo_reference_unless_doomed(). Iff this function returns successfully it * needs to be paired with vmw_user_bo_noref_release() and no sleeping- * or scheduling functions may be called inbetween these function calls. * * Return: A struct vmw_buffer_object pointer if successful or negative * error pointer on failure. */ struct vmw_buffer_object * vmw_user_bo_noref_lookup(struct ttm_object_file *tfile, u32 handle) { struct vmw_user_buffer_object *vmw_user_bo; struct ttm_base_object *base; base = ttm_base_object_noref_lookup(tfile, handle); if (!base) { DRM_ERROR("Invalid buffer object handle 0x%08lx.\n", (unsigned long)handle); return ERR_PTR(-ESRCH); } if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) { ttm_base_object_noref_release(); DRM_ERROR("Invalid buffer object handle 0x%08lx.\n", (unsigned long)handle); return ERR_PTR(-EINVAL); } vmw_user_bo = container_of(base, struct vmw_user_buffer_object, prime.base); return &vmw_user_bo->vbo; } /** * vmw_user_bo_reference - Open a handle to a vmw user buffer object. * * @tfile: The TTM object file to register the handle with. * @vbo: The embedded vmw buffer object. * @handle: Pointer to where the new handle should be placed. * Return: Zero on success, Negative error code on error. */ int vmw_user_bo_reference(struct ttm_object_file *tfile, struct vmw_buffer_object *vbo, uint32_t *handle) { struct vmw_user_buffer_object *user_bo; if (vbo->base.destroy != vmw_user_bo_destroy) return -EINVAL; user_bo = container_of(vbo, struct vmw_user_buffer_object, vbo); *handle = user_bo->prime.base.handle; return ttm_ref_object_add(tfile, &user_bo->prime.base, TTM_REF_USAGE, NULL, false); } /** * vmw_bo_fence_single - Utility function to fence a single TTM buffer * object without unreserving it. * * @bo: Pointer to the struct ttm_buffer_object to fence. * @fence: Pointer to the fence. If NULL, this function will * insert a fence into the command stream.. * * Contrary to the ttm_eu version of this function, it takes only * a single buffer object instead of a list, and it also doesn't * unreserve the buffer object, which needs to be done separately. */ void vmw_bo_fence_single(struct ttm_buffer_object *bo, struct vmw_fence_obj *fence) { struct ttm_bo_device *bdev = bo->bdev; struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev); if (fence == NULL) { vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL); dma_resv_add_excl_fence(bo->base.resv, &fence->base); dma_fence_put(&fence->base); } else dma_resv_add_excl_fence(bo->base.resv, &fence->base); } /** * vmw_dumb_create - Create a dumb kms buffer * * @file_priv: Pointer to a struct drm_file identifying the caller. * @dev: Pointer to the drm device. * @args: Pointer to a struct drm_mode_create_dumb structure * Return: Zero on success, negative error code on failure. * * This is a driver callback for the core drm create_dumb functionality. * Note that this is very similar to the vmw_bo_alloc ioctl, except * that the arguments have a different format. */ int vmw_dumb_create(struct drm_file *file_priv, struct drm_device *dev, struct drm_mode_create_dumb *args) { struct vmw_private *dev_priv = vmw_priv(dev); struct vmw_buffer_object *vbo; int ret; args->pitch = args->width * ((args->bpp + 7) / 8); args->size = args->pitch * args->height; ret = ttm_read_lock(&dev_priv->reservation_sem, true); if (unlikely(ret != 0)) return ret; ret = vmw_user_bo_alloc(dev_priv, vmw_fpriv(file_priv)->tfile, args->size, false, &args->handle, &vbo, NULL); if (unlikely(ret != 0)) goto out_no_bo; vmw_bo_unreference(&vbo); out_no_bo: ttm_read_unlock(&dev_priv->reservation_sem); return ret; } /** * vmw_dumb_map_offset - Return the address space offset of a dumb buffer * * @file_priv: Pointer to a struct drm_file identifying the caller. * @dev: Pointer to the drm device. * @handle: Handle identifying the dumb buffer. * @offset: The address space offset returned. * Return: Zero on success, negative error code on failure. * * This is a driver callback for the core drm dumb_map_offset functionality. */ int vmw_dumb_map_offset(struct drm_file *file_priv, struct drm_device *dev, uint32_t handle, uint64_t *offset) { struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile; struct vmw_buffer_object *out_buf; int ret; ret = vmw_user_bo_lookup(tfile, handle, &out_buf, NULL); if (ret != 0) return -EINVAL; *offset = drm_vma_node_offset_addr(&out_buf->base.base.vma_node); vmw_bo_unreference(&out_buf); return 0; } /** * vmw_dumb_destroy - Destroy a dumb boffer * * @file_priv: Pointer to a struct drm_file identifying the caller. * @dev: Pointer to the drm device. * @handle: Handle identifying the dumb buffer. * Return: Zero on success, negative error code on failure. * * This is a driver callback for the core drm dumb_destroy functionality. */ int vmw_dumb_destroy(struct drm_file *file_priv, struct drm_device *dev, uint32_t handle) { return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile, handle, TTM_REF_USAGE); } /** * vmw_bo_swap_notify - swapout notify callback. * * @bo: The buffer object to be swapped out. */ void vmw_bo_swap_notify(struct ttm_buffer_object *bo) { /* Is @bo embedded in a struct vmw_buffer_object? */ if (bo->destroy != vmw_bo_bo_free && bo->destroy != vmw_user_bo_destroy) return; /* Kill any cached kernel maps before swapout */ vmw_bo_unmap(vmw_buffer_object(bo)); } /** * vmw_bo_move_notify - TTM move_notify_callback * * @bo: The TTM buffer object about to move. * @mem: The struct ttm_resource indicating to what memory * region the move is taking place. * * Detaches cached maps and device bindings that require that the * buffer doesn't move. */ void vmw_bo_move_notify(struct ttm_buffer_object *bo, struct ttm_resource *mem) { struct vmw_buffer_object *vbo; if (mem == NULL) return; /* Make sure @bo is embedded in a struct vmw_buffer_object? */ if (bo->destroy != vmw_bo_bo_free && bo->destroy != vmw_user_bo_destroy) return; vbo = container_of(bo, struct vmw_buffer_object, base); /* * Kill any cached kernel maps before move to or from VRAM. * With other types of moves, the underlying pages stay the same, * and the map can be kept. */ if (mem->mem_type == TTM_PL_VRAM || bo->mem.mem_type == TTM_PL_VRAM) vmw_bo_unmap(vbo); /* * If we're moving a backup MOB out of MOB placement, then make sure we * read back all resource content first, and unbind the MOB from * the resource. */ if (mem->mem_type != VMW_PL_MOB && bo->mem.mem_type == VMW_PL_MOB) vmw_resource_unbind_list(vbo); }