// SPDX-License-Identifier: GPL-2.0-or-later /* * corsair-cpro.c - Linux driver for Corsair Commander Pro * Copyright (C) 2020 Marius Zachmann * * This driver uses hid reports to communicate with the device to allow hidraw userspace drivers * still being used. The device does not use report ids. When using hidraw and this driver * simultaniously, reports could be switched. */ #include #include #include #include #include #include #include #include #include #include #define USB_VENDOR_ID_CORSAIR 0x1b1c #define USB_PRODUCT_ID_CORSAIR_COMMANDERPRO 0x0c10 #define USB_PRODUCT_ID_CORSAIR_1000D 0x1d00 #define OUT_BUFFER_SIZE 63 #define IN_BUFFER_SIZE 16 #define LABEL_LENGTH 11 #define REQ_TIMEOUT 300 #define CTL_GET_TMP_CNCT 0x10 /* * returns in bytes 1-4 for each temp sensor: * 0 not connected * 1 connected */ #define CTL_GET_TMP 0x11 /* * send: byte 1 is channel, rest zero * rcv: returns temp for channel in centi-degree celsius * in bytes 1 and 2 * returns 0x11 in byte 0 if no sensor is connected */ #define CTL_GET_VOLT 0x12 /* * send: byte 1 is rail number: 0 = 12v, 1 = 5v, 2 = 3.3v * rcv: returns millivolt in bytes 1,2 * returns error 0x10 if request is invalid */ #define CTL_GET_FAN_CNCT 0x20 /* * returns in bytes 1-6 for each fan: * 0 not connected * 1 3pin * 2 4pin */ #define CTL_GET_FAN_RPM 0x21 /* * send: byte 1 is channel, rest zero * rcv: returns rpm in bytes 1,2 */ #define CTL_GET_FAN_PWM 0x22 /* * send: byte 1 is channel, rest zero * rcv: returns pwm in byte 1 if it was set * returns error 0x12 if fan is controlled via * fan_target or fan curve */ #define CTL_SET_FAN_FPWM 0x23 /* * set fixed pwm * send: byte 1 is fan number * send: byte 2 is percentage from 0 - 100 */ #define CTL_SET_FAN_TARGET 0x24 /* * set target rpm * send: byte 1 is fan number * send: byte 2-3 is target * device accepts all values from 0x00 - 0xFFFF */ #define NUM_FANS 6 #define NUM_TEMP_SENSORS 4 struct ccp_device { struct hid_device *hdev; struct device *hwmon_dev; /* For reinitializing the completion below */ spinlock_t wait_input_report_lock; struct completion wait_input_report; struct mutex mutex; /* whenever buffer is used, lock before send_usb_cmd */ u8 *cmd_buffer; u8 *buffer; int target[6]; DECLARE_BITMAP(temp_cnct, NUM_TEMP_SENSORS); DECLARE_BITMAP(fan_cnct, NUM_FANS); char fan_label[6][LABEL_LENGTH]; }; /* converts response error in buffer to errno */ static int ccp_get_errno(struct ccp_device *ccp) { switch (ccp->buffer[0]) { case 0x00: /* success */ return 0; case 0x01: /* called invalid command */ return -EOPNOTSUPP; case 0x10: /* called GET_VOLT / GET_TMP with invalid arguments */ return -EINVAL; case 0x11: /* requested temps of disconnected sensors */ case 0x12: /* requested pwm of not pwm controlled channels */ return -ENODATA; default: hid_dbg(ccp->hdev, "unknown device response error: %d", ccp->buffer[0]); return -EIO; } } /* send command, check for error in response, response in ccp->buffer */ static int send_usb_cmd(struct ccp_device *ccp, u8 command, u8 byte1, u8 byte2, u8 byte3) { unsigned long t; int ret; memset(ccp->cmd_buffer, 0x00, OUT_BUFFER_SIZE); ccp->cmd_buffer[0] = command; ccp->cmd_buffer[1] = byte1; ccp->cmd_buffer[2] = byte2; ccp->cmd_buffer[3] = byte3; /* * Disable raw event parsing for a moment to safely reinitialize the * completion. Reinit is done because hidraw could have triggered * the raw event parsing and marked the ccp->wait_input_report * completion as done. */ spin_lock_bh(&ccp->wait_input_report_lock); reinit_completion(&ccp->wait_input_report); spin_unlock_bh(&ccp->wait_input_report_lock); ret = hid_hw_output_report(ccp->hdev, ccp->cmd_buffer, OUT_BUFFER_SIZE); if (ret < 0) return ret; t = wait_for_completion_timeout(&ccp->wait_input_report, msecs_to_jiffies(REQ_TIMEOUT)); if (!t) return -ETIMEDOUT; return ccp_get_errno(ccp); } static int ccp_raw_event(struct hid_device *hdev, struct hid_report *report, u8 *data, int size) { struct ccp_device *ccp = hid_get_drvdata(hdev); /* only copy buffer when requested */ spin_lock(&ccp->wait_input_report_lock); if (!completion_done(&ccp->wait_input_report)) { memcpy(ccp->buffer, data, min(IN_BUFFER_SIZE, size)); complete_all(&ccp->wait_input_report); } spin_unlock(&ccp->wait_input_report_lock); return 0; } /* requests and returns single data values depending on channel */ static int get_data(struct ccp_device *ccp, int command, int channel, bool two_byte_data) { int ret; mutex_lock(&ccp->mutex); ret = send_usb_cmd(ccp, command, channel, 0, 0); if (ret) goto out_unlock; ret = ccp->buffer[1]; if (two_byte_data) ret = (ret << 8) + ccp->buffer[2]; out_unlock: mutex_unlock(&ccp->mutex); return ret; } static int set_pwm(struct ccp_device *ccp, int channel, long val) { int ret; if (val < 0 || val > 255) return -EINVAL; /* The Corsair Commander Pro uses values from 0-100 */ val = DIV_ROUND_CLOSEST(val * 100, 255); mutex_lock(&ccp->mutex); ret = send_usb_cmd(ccp, CTL_SET_FAN_FPWM, channel, val, 0); if (!ret) ccp->target[channel] = -ENODATA; mutex_unlock(&ccp->mutex); return ret; } static int set_target(struct ccp_device *ccp, int channel, long val) { int ret; val = clamp_val(val, 0, 0xFFFF); ccp->target[channel] = val; mutex_lock(&ccp->mutex); ret = send_usb_cmd(ccp, CTL_SET_FAN_TARGET, channel, val >> 8, val); mutex_unlock(&ccp->mutex); return ret; } static int ccp_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str) { struct ccp_device *ccp = dev_get_drvdata(dev); switch (type) { case hwmon_fan: switch (attr) { case hwmon_fan_label: *str = ccp->fan_label[channel]; return 0; default: break; } break; default: break; } return -EOPNOTSUPP; } static int ccp_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct ccp_device *ccp = dev_get_drvdata(dev); int ret; switch (type) { case hwmon_temp: switch (attr) { case hwmon_temp_input: ret = get_data(ccp, CTL_GET_TMP, channel, true); if (ret < 0) return ret; *val = ret * 10; return 0; default: break; } break; case hwmon_fan: switch (attr) { case hwmon_fan_input: ret = get_data(ccp, CTL_GET_FAN_RPM, channel, true); if (ret < 0) return ret; *val = ret; return 0; case hwmon_fan_target: /* how to read target values from the device is unknown */ /* driver returns last set value or 0 */ if (ccp->target[channel] < 0) return -ENODATA; *val = ccp->target[channel]; return 0; default: break; } break; case hwmon_pwm: switch (attr) { case hwmon_pwm_input: ret = get_data(ccp, CTL_GET_FAN_PWM, channel, false); if (ret < 0) return ret; *val = DIV_ROUND_CLOSEST(ret * 255, 100); return 0; default: break; } break; case hwmon_in: switch (attr) { case hwmon_in_input: ret = get_data(ccp, CTL_GET_VOLT, channel, true); if (ret < 0) return ret; *val = ret; return 0; default: break; } break; default: break; } return -EOPNOTSUPP; }; static int ccp_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { struct ccp_device *ccp = dev_get_drvdata(dev); switch (type) { case hwmon_pwm: switch (attr) { case hwmon_pwm_input: return set_pwm(ccp, channel, val); default: break; } break; case hwmon_fan: switch (attr) { case hwmon_fan_target: return set_target(ccp, channel, val); default: break; } default: break; } return -EOPNOTSUPP; }; static umode_t ccp_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { const struct ccp_device *ccp = data; switch (type) { case hwmon_temp: if (!test_bit(channel, ccp->temp_cnct)) break; switch (attr) { case hwmon_temp_input: return 0444; case hwmon_temp_label: return 0444; default: break; } break; case hwmon_fan: if (!test_bit(channel, ccp->fan_cnct)) break; switch (attr) { case hwmon_fan_input: return 0444; case hwmon_fan_label: return 0444; case hwmon_fan_target: return 0644; default: break; } break; case hwmon_pwm: if (!test_bit(channel, ccp->fan_cnct)) break; switch (attr) { case hwmon_pwm_input: return 0644; default: break; } break; case hwmon_in: switch (attr) { case hwmon_in_input: return 0444; default: break; } break; default: break; } return 0; }; static const struct hwmon_ops ccp_hwmon_ops = { .is_visible = ccp_is_visible, .read = ccp_read, .read_string = ccp_read_string, .write = ccp_write, }; static const struct hwmon_channel_info *ccp_info[] = { HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ), HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT, HWMON_T_INPUT, HWMON_T_INPUT, HWMON_T_INPUT ), HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT | HWMON_F_LABEL | HWMON_F_TARGET, HWMON_F_INPUT | HWMON_F_LABEL | HWMON_F_TARGET, HWMON_F_INPUT | HWMON_F_LABEL | HWMON_F_TARGET, HWMON_F_INPUT | HWMON_F_LABEL | HWMON_F_TARGET, HWMON_F_INPUT | HWMON_F_LABEL | HWMON_F_TARGET, HWMON_F_INPUT | HWMON_F_LABEL | HWMON_F_TARGET ), HWMON_CHANNEL_INFO(pwm, HWMON_PWM_INPUT, HWMON_PWM_INPUT, HWMON_PWM_INPUT, HWMON_PWM_INPUT, HWMON_PWM_INPUT, HWMON_PWM_INPUT ), HWMON_CHANNEL_INFO(in, HWMON_I_INPUT, HWMON_I_INPUT, HWMON_I_INPUT ), NULL }; static const struct hwmon_chip_info ccp_chip_info = { .ops = &ccp_hwmon_ops, .info = ccp_info, }; /* read fan connection status and set labels */ static int get_fan_cnct(struct ccp_device *ccp) { int channel; int mode; int ret; ret = send_usb_cmd(ccp, CTL_GET_FAN_CNCT, 0, 0, 0); if (ret) return ret; for (channel = 0; channel < NUM_FANS; channel++) { mode = ccp->buffer[channel + 1]; if (mode == 0) continue; set_bit(channel, ccp->fan_cnct); ccp->target[channel] = -ENODATA; switch (mode) { case 1: scnprintf(ccp->fan_label[channel], LABEL_LENGTH, "fan%d 3pin", channel + 1); break; case 2: scnprintf(ccp->fan_label[channel], LABEL_LENGTH, "fan%d 4pin", channel + 1); break; default: scnprintf(ccp->fan_label[channel], LABEL_LENGTH, "fan%d other", channel + 1); break; } } return 0; } /* read temp sensor connection status */ static int get_temp_cnct(struct ccp_device *ccp) { int channel; int mode; int ret; ret = send_usb_cmd(ccp, CTL_GET_TMP_CNCT, 0, 0, 0); if (ret) return ret; for (channel = 0; channel < NUM_TEMP_SENSORS; channel++) { mode = ccp->buffer[channel + 1]; if (mode == 0) continue; set_bit(channel, ccp->temp_cnct); } return 0; } static int ccp_probe(struct hid_device *hdev, const struct hid_device_id *id) { struct ccp_device *ccp; int ret; ccp = devm_kzalloc(&hdev->dev, sizeof(*ccp), GFP_KERNEL); if (!ccp) return -ENOMEM; ccp->cmd_buffer = devm_kmalloc(&hdev->dev, OUT_BUFFER_SIZE, GFP_KERNEL); if (!ccp->cmd_buffer) return -ENOMEM; ccp->buffer = devm_kmalloc(&hdev->dev, IN_BUFFER_SIZE, GFP_KERNEL); if (!ccp->buffer) return -ENOMEM; ret = hid_parse(hdev); if (ret) return ret; ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW); if (ret) return ret; ret = hid_hw_open(hdev); if (ret) goto out_hw_stop; ccp->hdev = hdev; hid_set_drvdata(hdev, ccp); mutex_init(&ccp->mutex); spin_lock_init(&ccp->wait_input_report_lock); init_completion(&ccp->wait_input_report); hid_device_io_start(hdev); /* temp and fan connection status only updates when device is powered on */ ret = get_temp_cnct(ccp); if (ret) goto out_hw_close; ret = get_fan_cnct(ccp); if (ret) goto out_hw_close; ccp->hwmon_dev = hwmon_device_register_with_info(&hdev->dev, "corsaircpro", ccp, &ccp_chip_info, 0); if (IS_ERR(ccp->hwmon_dev)) { ret = PTR_ERR(ccp->hwmon_dev); goto out_hw_close; } return 0; out_hw_close: hid_hw_close(hdev); out_hw_stop: hid_hw_stop(hdev); return ret; } static void ccp_remove(struct hid_device *hdev) { struct ccp_device *ccp = hid_get_drvdata(hdev); hwmon_device_unregister(ccp->hwmon_dev); hid_hw_close(hdev); hid_hw_stop(hdev); } static const struct hid_device_id ccp_devices[] = { { HID_USB_DEVICE(USB_VENDOR_ID_CORSAIR, USB_PRODUCT_ID_CORSAIR_COMMANDERPRO) }, { HID_USB_DEVICE(USB_VENDOR_ID_CORSAIR, USB_PRODUCT_ID_CORSAIR_1000D) }, { } }; static struct hid_driver ccp_driver = { .name = "corsair-cpro", .id_table = ccp_devices, .probe = ccp_probe, .remove = ccp_remove, .raw_event = ccp_raw_event, }; MODULE_DEVICE_TABLE(hid, ccp_devices); MODULE_LICENSE("GPL"); static int __init ccp_init(void) { return hid_register_driver(&ccp_driver); } static void __exit ccp_exit(void) { hid_unregister_driver(&ccp_driver); } /* * When compiling this driver as built-in, hwmon initcalls will get called before the * hid driver and this driver would fail to register. late_initcall solves this. */ late_initcall(ccp_init); module_exit(ccp_exit);