// SPDX-License-Identifier: GPL-2.0-only /* * AFE4403 Heart Rate Monitors and Low-Cost Pulse Oximeters * * Copyright (C) 2015-2016 Texas Instruments Incorporated - https://www.ti.com/ * Andrew F. Davis */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "afe440x.h" #define AFE4403_DRIVER_NAME "afe4403" /* AFE4403 Registers */ #define AFE4403_TIAGAIN 0x20 #define AFE4403_TIA_AMB_GAIN 0x21 enum afe4403_fields { /* Gains */ F_RF_LED1, F_CF_LED1, F_RF_LED, F_CF_LED, /* LED Current */ F_ILED1, F_ILED2, /* sentinel */ F_MAX_FIELDS }; static const struct reg_field afe4403_reg_fields[] = { /* Gains */ [F_RF_LED1] = REG_FIELD(AFE4403_TIAGAIN, 0, 2), [F_CF_LED1] = REG_FIELD(AFE4403_TIAGAIN, 3, 7), [F_RF_LED] = REG_FIELD(AFE4403_TIA_AMB_GAIN, 0, 2), [F_CF_LED] = REG_FIELD(AFE4403_TIA_AMB_GAIN, 3, 7), /* LED Current */ [F_ILED1] = REG_FIELD(AFE440X_LEDCNTRL, 0, 7), [F_ILED2] = REG_FIELD(AFE440X_LEDCNTRL, 8, 15), }; /** * struct afe4403_data - AFE4403 device instance data * @dev: Device structure * @spi: SPI device handle * @regmap: Register map of the device * @fields: Register fields of the device * @regulator: Pointer to the regulator for the IC * @trig: IIO trigger for this device * @irq: ADC_RDY line interrupt number * @buffer: Used to construct data layout to push into IIO buffer. */ struct afe4403_data { struct device *dev; struct spi_device *spi; struct regmap *regmap; struct regmap_field *fields[F_MAX_FIELDS]; struct regulator *regulator; struct iio_trigger *trig; int irq; /* Ensure suitable alignment for timestamp */ s32 buffer[8] __aligned(8); }; enum afe4403_chan_id { LED2 = 1, ALED2, LED1, ALED1, LED2_ALED2, LED1_ALED1, }; static const unsigned int afe4403_channel_values[] = { [LED2] = AFE440X_LED2VAL, [ALED2] = AFE440X_ALED2VAL, [LED1] = AFE440X_LED1VAL, [ALED1] = AFE440X_ALED1VAL, [LED2_ALED2] = AFE440X_LED2_ALED2VAL, [LED1_ALED1] = AFE440X_LED1_ALED1VAL, }; static const unsigned int afe4403_channel_leds[] = { [LED2] = F_ILED2, [LED1] = F_ILED1, }; static const struct iio_chan_spec afe4403_channels[] = { /* ADC values */ AFE440X_INTENSITY_CHAN(LED2, 0), AFE440X_INTENSITY_CHAN(ALED2, 0), AFE440X_INTENSITY_CHAN(LED1, 0), AFE440X_INTENSITY_CHAN(ALED1, 0), AFE440X_INTENSITY_CHAN(LED2_ALED2, 0), AFE440X_INTENSITY_CHAN(LED1_ALED1, 0), /* LED current */ AFE440X_CURRENT_CHAN(LED2), AFE440X_CURRENT_CHAN(LED1), }; static const struct afe440x_val_table afe4403_res_table[] = { { 500000 }, { 250000 }, { 100000 }, { 50000 }, { 25000 }, { 10000 }, { 1000000 }, { 0 }, }; AFE440X_TABLE_ATTR(in_intensity_resistance_available, afe4403_res_table); static const struct afe440x_val_table afe4403_cap_table[] = { { 0, 5000 }, { 0, 10000 }, { 0, 20000 }, { 0, 25000 }, { 0, 30000 }, { 0, 35000 }, { 0, 45000 }, { 0, 50000 }, { 0, 55000 }, { 0, 60000 }, { 0, 70000 }, { 0, 75000 }, { 0, 80000 }, { 0, 85000 }, { 0, 95000 }, { 0, 100000 }, { 0, 155000 }, { 0, 160000 }, { 0, 170000 }, { 0, 175000 }, { 0, 180000 }, { 0, 185000 }, { 0, 195000 }, { 0, 200000 }, { 0, 205000 }, { 0, 210000 }, { 0, 220000 }, { 0, 225000 }, { 0, 230000 }, { 0, 235000 }, { 0, 245000 }, { 0, 250000 }, }; AFE440X_TABLE_ATTR(in_intensity_capacitance_available, afe4403_cap_table); static ssize_t afe440x_show_register(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct afe4403_data *afe = iio_priv(indio_dev); struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr); unsigned int reg_val; int vals[2]; int ret; ret = regmap_field_read(afe->fields[afe440x_attr->field], ®_val); if (ret) return ret; if (reg_val >= afe440x_attr->table_size) return -EINVAL; vals[0] = afe440x_attr->val_table[reg_val].integer; vals[1] = afe440x_attr->val_table[reg_val].fract; return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals); } static ssize_t afe440x_store_register(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct afe4403_data *afe = iio_priv(indio_dev); struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr); int val, integer, fract, ret; ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract); if (ret) return ret; for (val = 0; val < afe440x_attr->table_size; val++) if (afe440x_attr->val_table[val].integer == integer && afe440x_attr->val_table[val].fract == fract) break; if (val == afe440x_attr->table_size) return -EINVAL; ret = regmap_field_write(afe->fields[afe440x_attr->field], val); if (ret) return ret; return count; } static AFE440X_ATTR(in_intensity1_resistance, F_RF_LED, afe4403_res_table); static AFE440X_ATTR(in_intensity1_capacitance, F_CF_LED, afe4403_cap_table); static AFE440X_ATTR(in_intensity2_resistance, F_RF_LED, afe4403_res_table); static AFE440X_ATTR(in_intensity2_capacitance, F_CF_LED, afe4403_cap_table); static AFE440X_ATTR(in_intensity3_resistance, F_RF_LED1, afe4403_res_table); static AFE440X_ATTR(in_intensity3_capacitance, F_CF_LED1, afe4403_cap_table); static AFE440X_ATTR(in_intensity4_resistance, F_RF_LED1, afe4403_res_table); static AFE440X_ATTR(in_intensity4_capacitance, F_CF_LED1, afe4403_cap_table); static struct attribute *afe440x_attributes[] = { &dev_attr_in_intensity_resistance_available.attr, &dev_attr_in_intensity_capacitance_available.attr, &afe440x_attr_in_intensity1_resistance.dev_attr.attr, &afe440x_attr_in_intensity1_capacitance.dev_attr.attr, &afe440x_attr_in_intensity2_resistance.dev_attr.attr, &afe440x_attr_in_intensity2_capacitance.dev_attr.attr, &afe440x_attr_in_intensity3_resistance.dev_attr.attr, &afe440x_attr_in_intensity3_capacitance.dev_attr.attr, &afe440x_attr_in_intensity4_resistance.dev_attr.attr, &afe440x_attr_in_intensity4_capacitance.dev_attr.attr, NULL }; static const struct attribute_group afe440x_attribute_group = { .attrs = afe440x_attributes }; static int afe4403_read(struct afe4403_data *afe, unsigned int reg, u32 *val) { u8 tx[4] = {AFE440X_CONTROL0, 0x0, 0x0, AFE440X_CONTROL0_READ}; u8 rx[3]; int ret; /* Enable reading from the device */ ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0); if (ret) return ret; ret = spi_write_then_read(afe->spi, ®, 1, rx, sizeof(rx)); if (ret) return ret; *val = get_unaligned_be24(&rx[0]); /* Disable reading from the device */ tx[3] = AFE440X_CONTROL0_WRITE; ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0); if (ret) return ret; return 0; } static int afe4403_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct afe4403_data *afe = iio_priv(indio_dev); unsigned int reg, field; int ret; switch (chan->type) { case IIO_INTENSITY: switch (mask) { case IIO_CHAN_INFO_RAW: reg = afe4403_channel_values[chan->address]; ret = afe4403_read(afe, reg, val); if (ret) return ret; return IIO_VAL_INT; } break; case IIO_CURRENT: switch (mask) { case IIO_CHAN_INFO_RAW: field = afe4403_channel_leds[chan->address]; ret = regmap_field_read(afe->fields[field], val); if (ret) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = 800000; return IIO_VAL_INT_PLUS_MICRO; } break; default: break; } return -EINVAL; } static int afe4403_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct afe4403_data *afe = iio_priv(indio_dev); unsigned int field = afe4403_channel_leds[chan->address]; switch (chan->type) { case IIO_CURRENT: switch (mask) { case IIO_CHAN_INFO_RAW: return regmap_field_write(afe->fields[field], val); } break; default: break; } return -EINVAL; } static const struct iio_info afe4403_iio_info = { .attrs = &afe440x_attribute_group, .read_raw = afe4403_read_raw, .write_raw = afe4403_write_raw, }; static irqreturn_t afe4403_trigger_handler(int irq, void *private) { struct iio_poll_func *pf = private; struct iio_dev *indio_dev = pf->indio_dev; struct afe4403_data *afe = iio_priv(indio_dev); int ret, bit, i = 0; u8 tx[4] = {AFE440X_CONTROL0, 0x0, 0x0, AFE440X_CONTROL0_READ}; u8 rx[3]; /* Enable reading from the device */ ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0); if (ret) goto err; for_each_set_bit(bit, indio_dev->active_scan_mask, indio_dev->masklength) { ret = spi_write_then_read(afe->spi, &afe4403_channel_values[bit], 1, rx, sizeof(rx)); if (ret) goto err; afe->buffer[i++] = get_unaligned_be24(&rx[0]); } /* Disable reading from the device */ tx[3] = AFE440X_CONTROL0_WRITE; ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0); if (ret) goto err; iio_push_to_buffers_with_timestamp(indio_dev, afe->buffer, pf->timestamp); err: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static const struct iio_trigger_ops afe4403_trigger_ops = { }; #define AFE4403_TIMING_PAIRS \ { AFE440X_LED2STC, 0x000050 }, \ { AFE440X_LED2ENDC, 0x0003e7 }, \ { AFE440X_LED1LEDSTC, 0x0007d0 }, \ { AFE440X_LED1LEDENDC, 0x000bb7 }, \ { AFE440X_ALED2STC, 0x000438 }, \ { AFE440X_ALED2ENDC, 0x0007cf }, \ { AFE440X_LED1STC, 0x000820 }, \ { AFE440X_LED1ENDC, 0x000bb7 }, \ { AFE440X_LED2LEDSTC, 0x000000 }, \ { AFE440X_LED2LEDENDC, 0x0003e7 }, \ { AFE440X_ALED1STC, 0x000c08 }, \ { AFE440X_ALED1ENDC, 0x000f9f }, \ { AFE440X_LED2CONVST, 0x0003ef }, \ { AFE440X_LED2CONVEND, 0x0007cf }, \ { AFE440X_ALED2CONVST, 0x0007d7 }, \ { AFE440X_ALED2CONVEND, 0x000bb7 }, \ { AFE440X_LED1CONVST, 0x000bbf }, \ { AFE440X_LED1CONVEND, 0x009c3f }, \ { AFE440X_ALED1CONVST, 0x000fa7 }, \ { AFE440X_ALED1CONVEND, 0x001387 }, \ { AFE440X_ADCRSTSTCT0, 0x0003e8 }, \ { AFE440X_ADCRSTENDCT0, 0x0003eb }, \ { AFE440X_ADCRSTSTCT1, 0x0007d0 }, \ { AFE440X_ADCRSTENDCT1, 0x0007d3 }, \ { AFE440X_ADCRSTSTCT2, 0x000bb8 }, \ { AFE440X_ADCRSTENDCT2, 0x000bbb }, \ { AFE440X_ADCRSTSTCT3, 0x000fa0 }, \ { AFE440X_ADCRSTENDCT3, 0x000fa3 }, \ { AFE440X_PRPCOUNT, 0x009c3f }, \ { AFE440X_PDNCYCLESTC, 0x001518 }, \ { AFE440X_PDNCYCLEENDC, 0x00991f } static const struct reg_sequence afe4403_reg_sequences[] = { AFE4403_TIMING_PAIRS, { AFE440X_CONTROL1, AFE440X_CONTROL1_TIMEREN }, { AFE4403_TIAGAIN, AFE440X_TIAGAIN_ENSEPGAIN }, }; static const struct regmap_range afe4403_yes_ranges[] = { regmap_reg_range(AFE440X_LED2VAL, AFE440X_LED1_ALED1VAL), }; static const struct regmap_access_table afe4403_volatile_table = { .yes_ranges = afe4403_yes_ranges, .n_yes_ranges = ARRAY_SIZE(afe4403_yes_ranges), }; static const struct regmap_config afe4403_regmap_config = { .reg_bits = 8, .val_bits = 24, .max_register = AFE440X_PDNCYCLEENDC, .cache_type = REGCACHE_RBTREE, .volatile_table = &afe4403_volatile_table, }; static const struct of_device_id afe4403_of_match[] = { { .compatible = "ti,afe4403", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, afe4403_of_match); static int __maybe_unused afe4403_suspend(struct device *dev) { struct iio_dev *indio_dev = spi_get_drvdata(to_spi_device(dev)); struct afe4403_data *afe = iio_priv(indio_dev); int ret; ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2, AFE440X_CONTROL2_PDN_AFE, AFE440X_CONTROL2_PDN_AFE); if (ret) return ret; ret = regulator_disable(afe->regulator); if (ret) { dev_err(dev, "Unable to disable regulator\n"); return ret; } return 0; } static int __maybe_unused afe4403_resume(struct device *dev) { struct iio_dev *indio_dev = spi_get_drvdata(to_spi_device(dev)); struct afe4403_data *afe = iio_priv(indio_dev); int ret; ret = regulator_enable(afe->regulator); if (ret) { dev_err(dev, "Unable to enable regulator\n"); return ret; } ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2, AFE440X_CONTROL2_PDN_AFE, 0); if (ret) return ret; return 0; } static SIMPLE_DEV_PM_OPS(afe4403_pm_ops, afe4403_suspend, afe4403_resume); static int afe4403_probe(struct spi_device *spi) { struct iio_dev *indio_dev; struct afe4403_data *afe; int i, ret; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*afe)); if (!indio_dev) return -ENOMEM; afe = iio_priv(indio_dev); spi_set_drvdata(spi, indio_dev); afe->dev = &spi->dev; afe->spi = spi; afe->irq = spi->irq; afe->regmap = devm_regmap_init_spi(spi, &afe4403_regmap_config); if (IS_ERR(afe->regmap)) { dev_err(afe->dev, "Unable to allocate register map\n"); return PTR_ERR(afe->regmap); } for (i = 0; i < F_MAX_FIELDS; i++) { afe->fields[i] = devm_regmap_field_alloc(afe->dev, afe->regmap, afe4403_reg_fields[i]); if (IS_ERR(afe->fields[i])) { dev_err(afe->dev, "Unable to allocate regmap fields\n"); return PTR_ERR(afe->fields[i]); } } afe->regulator = devm_regulator_get(afe->dev, "tx_sup"); if (IS_ERR(afe->regulator)) { dev_err(afe->dev, "Unable to get regulator\n"); return PTR_ERR(afe->regulator); } ret = regulator_enable(afe->regulator); if (ret) { dev_err(afe->dev, "Unable to enable regulator\n"); return ret; } ret = regmap_write(afe->regmap, AFE440X_CONTROL0, AFE440X_CONTROL0_SW_RESET); if (ret) { dev_err(afe->dev, "Unable to reset device\n"); goto err_disable_reg; } ret = regmap_multi_reg_write(afe->regmap, afe4403_reg_sequences, ARRAY_SIZE(afe4403_reg_sequences)); if (ret) { dev_err(afe->dev, "Unable to set register defaults\n"); goto err_disable_reg; } indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = afe4403_channels; indio_dev->num_channels = ARRAY_SIZE(afe4403_channels); indio_dev->name = AFE4403_DRIVER_NAME; indio_dev->info = &afe4403_iio_info; if (afe->irq > 0) { afe->trig = devm_iio_trigger_alloc(afe->dev, "%s-dev%d", indio_dev->name, indio_dev->id); if (!afe->trig) { dev_err(afe->dev, "Unable to allocate IIO trigger\n"); ret = -ENOMEM; goto err_disable_reg; } iio_trigger_set_drvdata(afe->trig, indio_dev); afe->trig->ops = &afe4403_trigger_ops; afe->trig->dev.parent = afe->dev; ret = iio_trigger_register(afe->trig); if (ret) { dev_err(afe->dev, "Unable to register IIO trigger\n"); goto err_disable_reg; } ret = devm_request_threaded_irq(afe->dev, afe->irq, iio_trigger_generic_data_rdy_poll, NULL, IRQF_ONESHOT, AFE4403_DRIVER_NAME, afe->trig); if (ret) { dev_err(afe->dev, "Unable to request IRQ\n"); goto err_trig; } } ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time, afe4403_trigger_handler, NULL); if (ret) { dev_err(afe->dev, "Unable to setup buffer\n"); goto err_trig; } ret = iio_device_register(indio_dev); if (ret) { dev_err(afe->dev, "Unable to register IIO device\n"); goto err_buff; } return 0; err_buff: iio_triggered_buffer_cleanup(indio_dev); err_trig: if (afe->irq > 0) iio_trigger_unregister(afe->trig); err_disable_reg: regulator_disable(afe->regulator); return ret; } static int afe4403_remove(struct spi_device *spi) { struct iio_dev *indio_dev = spi_get_drvdata(spi); struct afe4403_data *afe = iio_priv(indio_dev); int ret; iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); if (afe->irq > 0) iio_trigger_unregister(afe->trig); ret = regulator_disable(afe->regulator); if (ret) { dev_err(afe->dev, "Unable to disable regulator\n"); return ret; } return 0; } static const struct spi_device_id afe4403_ids[] = { { "afe4403", 0 }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(spi, afe4403_ids); static struct spi_driver afe4403_spi_driver = { .driver = { .name = AFE4403_DRIVER_NAME, .of_match_table = afe4403_of_match, .pm = &afe4403_pm_ops, }, .probe = afe4403_probe, .remove = afe4403_remove, .id_table = afe4403_ids, }; module_spi_driver(afe4403_spi_driver); MODULE_AUTHOR("Andrew F. Davis "); MODULE_DESCRIPTION("TI AFE4403 Heart Rate Monitor and Pulse Oximeter AFE"); MODULE_LICENSE("GPL v2");