// SPDX-License-Identifier: GPL-2.0-or-later /* * Device driver for monitoring ambient light intensity (lux) * within the TAOS tsl258x family of devices (tsl2580, tsl2581, tsl2583). * * Copyright (c) 2011, TAOS Corporation. * Copyright (c) 2016-2017 Brian Masney */ #include #include #include #include #include #include #include #include #include #include #include #include /* Device Registers and Masks */ #define TSL2583_CNTRL 0x00 #define TSL2583_ALS_TIME 0X01 #define TSL2583_INTERRUPT 0x02 #define TSL2583_GAIN 0x07 #define TSL2583_REVID 0x11 #define TSL2583_CHIPID 0x12 #define TSL2583_ALS_CHAN0LO 0x14 #define TSL2583_ALS_CHAN0HI 0x15 #define TSL2583_ALS_CHAN1LO 0x16 #define TSL2583_ALS_CHAN1HI 0x17 #define TSL2583_TMR_LO 0x18 #define TSL2583_TMR_HI 0x19 /* tsl2583 cmd reg masks */ #define TSL2583_CMD_REG 0x80 #define TSL2583_CMD_SPL_FN 0x60 #define TSL2583_CMD_ALS_INT_CLR 0x01 /* tsl2583 cntrl reg masks */ #define TSL2583_CNTL_ADC_ENBL 0x02 #define TSL2583_CNTL_PWR_OFF 0x00 #define TSL2583_CNTL_PWR_ON 0x01 /* tsl2583 status reg masks */ #define TSL2583_STA_ADC_VALID 0x01 #define TSL2583_STA_ADC_INTR 0x10 /* Lux calculation constants */ #define TSL2583_LUX_CALC_OVER_FLOW 65535 #define TSL2583_INTERRUPT_DISABLED 0x00 #define TSL2583_CHIP_ID 0x90 #define TSL2583_CHIP_ID_MASK 0xf0 #define TSL2583_POWER_OFF_DELAY_MS 2000 /* Per-device data */ struct tsl2583_als_info { u16 als_ch0; u16 als_ch1; u16 lux; }; struct tsl2583_lux { unsigned int ratio; unsigned int ch0; unsigned int ch1; }; static const struct tsl2583_lux tsl2583_default_lux[] = { { 9830, 8520, 15729 }, { 12452, 10807, 23344 }, { 14746, 6383, 11705 }, { 17695, 4063, 6554 }, { 0, 0, 0 } /* Termination segment */ }; #define TSL2583_MAX_LUX_TABLE_ENTRIES 11 struct tsl2583_settings { int als_time; int als_gain; int als_gain_trim; int als_cal_target; /* * This structure is intentionally large to accommodate updates via * sysfs. Sized to 11 = max 10 segments + 1 termination segment. * Assumption is that one and only one type of glass used. */ struct tsl2583_lux als_device_lux[TSL2583_MAX_LUX_TABLE_ENTRIES]; }; struct tsl2583_chip { struct mutex als_mutex; struct i2c_client *client; struct tsl2583_als_info als_cur_info; struct tsl2583_settings als_settings; int als_time_scale; int als_saturation; }; struct gainadj { s16 ch0; s16 ch1; s16 mean; }; /* Index = (0 - 3) Used to validate the gain selection index */ static const struct gainadj gainadj[] = { { 1, 1, 1 }, { 8, 8, 8 }, { 16, 16, 16 }, { 107, 115, 111 } }; /* * Provides initial operational parameter defaults. * These defaults may be changed through the device's sysfs files. */ static void tsl2583_defaults(struct tsl2583_chip *chip) { /* * The integration time must be a multiple of 50ms and within the * range [50, 600] ms. */ chip->als_settings.als_time = 100; /* * This is an index into the gainadj table. Assume clear glass as the * default. */ chip->als_settings.als_gain = 0; /* Default gain trim to account for aperture effects */ chip->als_settings.als_gain_trim = 1000; /* Known external ALS reading used for calibration */ chip->als_settings.als_cal_target = 130; /* Default lux table. */ memcpy(chip->als_settings.als_device_lux, tsl2583_default_lux, sizeof(tsl2583_default_lux)); } /* * Reads and calculates current lux value. * The raw ch0 and ch1 values of the ambient light sensed in the last * integration cycle are read from the device. * Time scale factor array values are adjusted based on the integration time. * The raw values are multiplied by a scale factor, and device gain is obtained * using gain index. Limit checks are done next, then the ratio of a multiple * of ch1 value, to the ch0 value, is calculated. The array als_device_lux[] * declared above is then scanned to find the first ratio value that is just * above the ratio we just calculated. The ch0 and ch1 multiplier constants in * the array are then used along with the time scale factor array values, to * calculate the lux. */ static int tsl2583_get_lux(struct iio_dev *indio_dev) { u16 ch0, ch1; /* separated ch0/ch1 data from device */ u32 lux; /* raw lux calculated from device data */ u64 lux64; u32 ratio; u8 buf[5]; struct tsl2583_lux *p; struct tsl2583_chip *chip = iio_priv(indio_dev); int i, ret; ret = i2c_smbus_read_byte_data(chip->client, TSL2583_CMD_REG); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to read CMD_REG register\n", __func__); goto done; } /* is data new & valid */ if (!(ret & TSL2583_STA_ADC_INTR)) { dev_err(&chip->client->dev, "%s: data not valid; returning last value\n", __func__); ret = chip->als_cur_info.lux; /* return LAST VALUE */ goto done; } for (i = 0; i < 4; i++) { int reg = TSL2583_CMD_REG | (TSL2583_ALS_CHAN0LO + i); ret = i2c_smbus_read_byte_data(chip->client, reg); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to read register %x\n", __func__, reg); goto done; } buf[i] = ret; } /* * Clear the pending interrupt status bit on the chip to allow the next * integration cycle to start. This has to be done even though this * driver currently does not support interrupts. */ ret = i2c_smbus_write_byte(chip->client, (TSL2583_CMD_REG | TSL2583_CMD_SPL_FN | TSL2583_CMD_ALS_INT_CLR)); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to clear the interrupt bit\n", __func__); goto done; /* have no data, so return failure */ } /* extract ALS/lux data */ ch0 = le16_to_cpup((const __le16 *)&buf[0]); ch1 = le16_to_cpup((const __le16 *)&buf[2]); chip->als_cur_info.als_ch0 = ch0; chip->als_cur_info.als_ch1 = ch1; if ((ch0 >= chip->als_saturation) || (ch1 >= chip->als_saturation)) goto return_max; if (!ch0) { /* * The sensor appears to be in total darkness so set the * calculated lux to 0 and return early to avoid a division by * zero below when calculating the ratio. */ ret = 0; chip->als_cur_info.lux = 0; goto done; } /* calculate ratio */ ratio = (ch1 << 15) / ch0; /* convert to unscaled lux using the pointer to the table */ for (p = (struct tsl2583_lux *)chip->als_settings.als_device_lux; p->ratio != 0 && p->ratio < ratio; p++) ; if (p->ratio == 0) { lux = 0; } else { u32 ch0lux, ch1lux; ch0lux = ((ch0 * p->ch0) + (gainadj[chip->als_settings.als_gain].ch0 >> 1)) / gainadj[chip->als_settings.als_gain].ch0; ch1lux = ((ch1 * p->ch1) + (gainadj[chip->als_settings.als_gain].ch1 >> 1)) / gainadj[chip->als_settings.als_gain].ch1; /* note: lux is 31 bit max at this point */ if (ch1lux > ch0lux) { dev_dbg(&chip->client->dev, "%s: No Data - Returning 0\n", __func__); ret = 0; chip->als_cur_info.lux = 0; goto done; } lux = ch0lux - ch1lux; } /* adjust for active time scale */ if (chip->als_time_scale == 0) lux = 0; else lux = (lux + (chip->als_time_scale >> 1)) / chip->als_time_scale; /* * Adjust for active gain scale. * The tsl2583_default_lux tables above have a factor of 8192 built in, * so we need to shift right. * User-specified gain provides a multiplier. * Apply user-specified gain before shifting right to retain precision. * Use 64 bits to avoid overflow on multiplication. * Then go back to 32 bits before division to avoid using div_u64(). */ lux64 = lux; lux64 = lux64 * chip->als_settings.als_gain_trim; lux64 >>= 13; lux = lux64; lux = (lux + 500) / 1000; if (lux > TSL2583_LUX_CALC_OVER_FLOW) { /* check for overflow */ return_max: lux = TSL2583_LUX_CALC_OVER_FLOW; } /* Update the structure with the latest VALID lux. */ chip->als_cur_info.lux = lux; ret = lux; done: return ret; } /* * Obtain single reading and calculate the als_gain_trim (later used * to derive actual lux). * Return updated gain_trim value. */ static int tsl2583_als_calibrate(struct iio_dev *indio_dev) { struct tsl2583_chip *chip = iio_priv(indio_dev); unsigned int gain_trim_val; int ret; int lux_val; ret = i2c_smbus_read_byte_data(chip->client, TSL2583_CMD_REG | TSL2583_CNTRL); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to read from the CNTRL register\n", __func__); return ret; } if ((ret & (TSL2583_CNTL_ADC_ENBL | TSL2583_CNTL_PWR_ON)) != (TSL2583_CNTL_ADC_ENBL | TSL2583_CNTL_PWR_ON)) { dev_err(&chip->client->dev, "%s: Device is not powered on and/or ADC is not enabled\n", __func__); return -EINVAL; } else if ((ret & TSL2583_STA_ADC_VALID) != TSL2583_STA_ADC_VALID) { dev_err(&chip->client->dev, "%s: The two ADC channels have not completed an integration cycle\n", __func__); return -ENODATA; } lux_val = tsl2583_get_lux(indio_dev); if (lux_val < 0) { dev_err(&chip->client->dev, "%s: failed to get lux\n", __func__); return lux_val; } /* Avoid division by zero of lux_value later on */ if (lux_val == 0) { dev_err(&chip->client->dev, "%s: lux_val of 0 will produce out of range trim_value\n", __func__); return -ENODATA; } gain_trim_val = (unsigned int)(((chip->als_settings.als_cal_target) * chip->als_settings.als_gain_trim) / lux_val); if ((gain_trim_val < 250) || (gain_trim_val > 4000)) { dev_err(&chip->client->dev, "%s: trim_val of %d is not within the range [250, 4000]\n", __func__, gain_trim_val); return -ENODATA; } chip->als_settings.als_gain_trim = (int)gain_trim_val; return 0; } static int tsl2583_set_als_time(struct tsl2583_chip *chip) { int als_count, als_time, ret; u8 val; /* determine als integration register */ als_count = (chip->als_settings.als_time * 100 + 135) / 270; if (!als_count) als_count = 1; /* ensure at least one cycle */ /* convert back to time (encompasses overrides) */ als_time = (als_count * 27 + 5) / 10; val = 256 - als_count; ret = i2c_smbus_write_byte_data(chip->client, TSL2583_CMD_REG | TSL2583_ALS_TIME, val); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to set the als time to %d\n", __func__, val); return ret; } /* set chip struct re scaling and saturation */ chip->als_saturation = als_count * 922; /* 90% of full scale */ chip->als_time_scale = (als_time + 25) / 50; return ret; } static int tsl2583_set_als_gain(struct tsl2583_chip *chip) { int ret; /* Set the gain based on als_settings struct */ ret = i2c_smbus_write_byte_data(chip->client, TSL2583_CMD_REG | TSL2583_GAIN, chip->als_settings.als_gain); if (ret < 0) dev_err(&chip->client->dev, "%s: failed to set the gain to %d\n", __func__, chip->als_settings.als_gain); return ret; } static int tsl2583_set_power_state(struct tsl2583_chip *chip, u8 state) { int ret; ret = i2c_smbus_write_byte_data(chip->client, TSL2583_CMD_REG | TSL2583_CNTRL, state); if (ret < 0) dev_err(&chip->client->dev, "%s: failed to set the power state to %d\n", __func__, state); return ret; } /* * Turn the device on. * Configuration must be set before calling this function. */ static int tsl2583_chip_init_and_power_on(struct iio_dev *indio_dev) { struct tsl2583_chip *chip = iio_priv(indio_dev); int ret; /* Power on the device; ADC off. */ ret = tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_ON); if (ret < 0) return ret; ret = i2c_smbus_write_byte_data(chip->client, TSL2583_CMD_REG | TSL2583_INTERRUPT, TSL2583_INTERRUPT_DISABLED); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to disable interrupts\n", __func__); return ret; } ret = tsl2583_set_als_time(chip); if (ret < 0) return ret; ret = tsl2583_set_als_gain(chip); if (ret < 0) return ret; usleep_range(3000, 3500); ret = tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_ON | TSL2583_CNTL_ADC_ENBL); if (ret < 0) return ret; return ret; } /* Sysfs Interface Functions */ static ssize_t in_illuminance_input_target_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2583_chip *chip = iio_priv(indio_dev); int ret; mutex_lock(&chip->als_mutex); ret = sprintf(buf, "%d\n", chip->als_settings.als_cal_target); mutex_unlock(&chip->als_mutex); return ret; } static ssize_t in_illuminance_input_target_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2583_chip *chip = iio_priv(indio_dev); int value; if (kstrtoint(buf, 0, &value) || !value) return -EINVAL; mutex_lock(&chip->als_mutex); chip->als_settings.als_cal_target = value; mutex_unlock(&chip->als_mutex); return len; } static ssize_t in_illuminance_calibrate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2583_chip *chip = iio_priv(indio_dev); int value, ret; if (kstrtoint(buf, 0, &value) || value != 1) return -EINVAL; mutex_lock(&chip->als_mutex); ret = tsl2583_als_calibrate(indio_dev); if (ret < 0) goto done; ret = len; done: mutex_unlock(&chip->als_mutex); return ret; } static ssize_t in_illuminance_lux_table_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2583_chip *chip = iio_priv(indio_dev); unsigned int i; int offset = 0; for (i = 0; i < ARRAY_SIZE(chip->als_settings.als_device_lux); i++) { offset += sprintf(buf + offset, "%u,%u,%u,", chip->als_settings.als_device_lux[i].ratio, chip->als_settings.als_device_lux[i].ch0, chip->als_settings.als_device_lux[i].ch1); if (chip->als_settings.als_device_lux[i].ratio == 0) { /* * We just printed the first "0" entry. * Now get rid of the extra "," and break. */ offset--; break; } } offset += sprintf(buf + offset, "\n"); return offset; } static ssize_t in_illuminance_lux_table_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2583_chip *chip = iio_priv(indio_dev); const unsigned int max_ints = TSL2583_MAX_LUX_TABLE_ENTRIES * 3; int value[TSL2583_MAX_LUX_TABLE_ENTRIES * 3 + 1]; int ret = -EINVAL; unsigned int n; mutex_lock(&chip->als_mutex); get_options(buf, ARRAY_SIZE(value), value); /* * We now have an array of ints starting at value[1], and * enumerated by value[0]. * We expect each group of three ints is one table entry, * and the last table entry is all 0. */ n = value[0]; if ((n % 3) || n < 6 || n > max_ints) { dev_err(dev, "%s: The number of entries in the lux table must be a multiple of 3 and within the range [6, %d]\n", __func__, max_ints); goto done; } if ((value[n - 2] | value[n - 1] | value[n]) != 0) { dev_err(dev, "%s: The last 3 entries in the lux table must be zeros.\n", __func__); goto done; } memcpy(chip->als_settings.als_device_lux, &value[1], value[0] * sizeof(value[1])); ret = len; done: mutex_unlock(&chip->als_mutex); return ret; } static IIO_CONST_ATTR(in_illuminance_calibscale_available, "1 8 16 111"); static IIO_CONST_ATTR(in_illuminance_integration_time_available, "0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500 0.550 0.600 0.650"); static IIO_DEVICE_ATTR_RW(in_illuminance_input_target, 0); static IIO_DEVICE_ATTR_WO(in_illuminance_calibrate, 0); static IIO_DEVICE_ATTR_RW(in_illuminance_lux_table, 0); static struct attribute *sysfs_attrs_ctrl[] = { &iio_const_attr_in_illuminance_calibscale_available.dev_attr.attr, &iio_const_attr_in_illuminance_integration_time_available.dev_attr.attr, &iio_dev_attr_in_illuminance_input_target.dev_attr.attr, &iio_dev_attr_in_illuminance_calibrate.dev_attr.attr, &iio_dev_attr_in_illuminance_lux_table.dev_attr.attr, NULL }; static const struct attribute_group tsl2583_attribute_group = { .attrs = sysfs_attrs_ctrl, }; static const struct iio_chan_spec tsl2583_channels[] = { { .type = IIO_LIGHT, .modified = 1, .channel2 = IIO_MOD_LIGHT_IR, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), }, { .type = IIO_LIGHT, .modified = 1, .channel2 = IIO_MOD_LIGHT_BOTH, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), }, { .type = IIO_LIGHT, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_CALIBBIAS) | BIT(IIO_CHAN_INFO_CALIBSCALE) | BIT(IIO_CHAN_INFO_INT_TIME), }, }; static int tsl2583_set_pm_runtime_busy(struct tsl2583_chip *chip, bool on) { int ret; if (on) { ret = pm_runtime_get_sync(&chip->client->dev); if (ret < 0) pm_runtime_put_noidle(&chip->client->dev); } else { pm_runtime_mark_last_busy(&chip->client->dev); ret = pm_runtime_put_autosuspend(&chip->client->dev); } return ret; } static int tsl2583_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct tsl2583_chip *chip = iio_priv(indio_dev); int ret, pm_ret; ret = tsl2583_set_pm_runtime_busy(chip, true); if (ret < 0) return ret; mutex_lock(&chip->als_mutex); ret = -EINVAL; switch (mask) { case IIO_CHAN_INFO_RAW: if (chan->type == IIO_LIGHT) { ret = tsl2583_get_lux(indio_dev); if (ret < 0) goto read_done; /* * From page 20 of the TSL2581, TSL2583 data * sheet (TAOS134 − MARCH 2011): * * One of the photodiodes (channel 0) is * sensitive to both visible and infrared light, * while the second photodiode (channel 1) is * sensitive primarily to infrared light. */ if (chan->channel2 == IIO_MOD_LIGHT_BOTH) *val = chip->als_cur_info.als_ch0; else *val = chip->als_cur_info.als_ch1; ret = IIO_VAL_INT; } break; case IIO_CHAN_INFO_PROCESSED: if (chan->type == IIO_LIGHT) { ret = tsl2583_get_lux(indio_dev); if (ret < 0) goto read_done; *val = ret; ret = IIO_VAL_INT; } break; case IIO_CHAN_INFO_CALIBBIAS: if (chan->type == IIO_LIGHT) { *val = chip->als_settings.als_gain_trim; ret = IIO_VAL_INT; } break; case IIO_CHAN_INFO_CALIBSCALE: if (chan->type == IIO_LIGHT) { *val = gainadj[chip->als_settings.als_gain].mean; ret = IIO_VAL_INT; } break; case IIO_CHAN_INFO_INT_TIME: if (chan->type == IIO_LIGHT) { *val = 0; *val2 = chip->als_settings.als_time; ret = IIO_VAL_INT_PLUS_MICRO; } break; default: break; } read_done: mutex_unlock(&chip->als_mutex); if (ret < 0) return ret; /* * Preserve the ret variable if the call to * tsl2583_set_pm_runtime_busy() is successful so the reading * (if applicable) is returned to user space. */ pm_ret = tsl2583_set_pm_runtime_busy(chip, false); if (pm_ret < 0) return pm_ret; return ret; } static int tsl2583_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct tsl2583_chip *chip = iio_priv(indio_dev); int ret; ret = tsl2583_set_pm_runtime_busy(chip, true); if (ret < 0) return ret; mutex_lock(&chip->als_mutex); ret = -EINVAL; switch (mask) { case IIO_CHAN_INFO_CALIBBIAS: if (chan->type == IIO_LIGHT) { chip->als_settings.als_gain_trim = val; ret = 0; } break; case IIO_CHAN_INFO_CALIBSCALE: if (chan->type == IIO_LIGHT) { unsigned int i; for (i = 0; i < ARRAY_SIZE(gainadj); i++) { if (gainadj[i].mean == val) { chip->als_settings.als_gain = i; ret = tsl2583_set_als_gain(chip); break; } } } break; case IIO_CHAN_INFO_INT_TIME: if (chan->type == IIO_LIGHT && !val && val2 >= 50 && val2 <= 650 && !(val2 % 50)) { chip->als_settings.als_time = val2; ret = tsl2583_set_als_time(chip); } break; default: break; } mutex_unlock(&chip->als_mutex); if (ret < 0) return ret; ret = tsl2583_set_pm_runtime_busy(chip, false); if (ret < 0) return ret; return ret; } static const struct iio_info tsl2583_info = { .attrs = &tsl2583_attribute_group, .read_raw = tsl2583_read_raw, .write_raw = tsl2583_write_raw, }; static int tsl2583_probe(struct i2c_client *clientp, const struct i2c_device_id *idp) { int ret; struct tsl2583_chip *chip; struct iio_dev *indio_dev; if (!i2c_check_functionality(clientp->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { dev_err(&clientp->dev, "%s: i2c smbus byte data functionality is unsupported\n", __func__); return -EOPNOTSUPP; } indio_dev = devm_iio_device_alloc(&clientp->dev, sizeof(*chip)); if (!indio_dev) return -ENOMEM; chip = iio_priv(indio_dev); chip->client = clientp; i2c_set_clientdata(clientp, indio_dev); mutex_init(&chip->als_mutex); ret = i2c_smbus_read_byte_data(clientp, TSL2583_CMD_REG | TSL2583_CHIPID); if (ret < 0) { dev_err(&clientp->dev, "%s: failed to read the chip ID register\n", __func__); return ret; } if ((ret & TSL2583_CHIP_ID_MASK) != TSL2583_CHIP_ID) { dev_err(&clientp->dev, "%s: received an unknown chip ID %x\n", __func__, ret); return -EINVAL; } indio_dev->info = &tsl2583_info; indio_dev->channels = tsl2583_channels; indio_dev->num_channels = ARRAY_SIZE(tsl2583_channels); indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->name = chip->client->name; pm_runtime_enable(&clientp->dev); pm_runtime_set_autosuspend_delay(&clientp->dev, TSL2583_POWER_OFF_DELAY_MS); pm_runtime_use_autosuspend(&clientp->dev); ret = iio_device_register(indio_dev); if (ret) { dev_err(&clientp->dev, "%s: iio registration failed\n", __func__); return ret; } /* Load up the V2 defaults (these are hard coded defaults for now) */ tsl2583_defaults(chip); dev_info(&clientp->dev, "Light sensor found.\n"); return 0; } static int tsl2583_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct tsl2583_chip *chip = iio_priv(indio_dev); iio_device_unregister(indio_dev); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); pm_runtime_put_noidle(&client->dev); return tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_OFF); } static int __maybe_unused tsl2583_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct tsl2583_chip *chip = iio_priv(indio_dev); int ret; mutex_lock(&chip->als_mutex); ret = tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_OFF); mutex_unlock(&chip->als_mutex); return ret; } static int __maybe_unused tsl2583_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct tsl2583_chip *chip = iio_priv(indio_dev); int ret; mutex_lock(&chip->als_mutex); ret = tsl2583_chip_init_and_power_on(indio_dev); mutex_unlock(&chip->als_mutex); return ret; } static const struct dev_pm_ops tsl2583_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(tsl2583_suspend, tsl2583_resume, NULL) }; static const struct i2c_device_id tsl2583_idtable[] = { { "tsl2580", 0 }, { "tsl2581", 1 }, { "tsl2583", 2 }, {} }; MODULE_DEVICE_TABLE(i2c, tsl2583_idtable); static const struct of_device_id tsl2583_of_match[] = { { .compatible = "amstaos,tsl2580", }, { .compatible = "amstaos,tsl2581", }, { .compatible = "amstaos,tsl2583", }, { }, }; MODULE_DEVICE_TABLE(of, tsl2583_of_match); /* Driver definition */ static struct i2c_driver tsl2583_driver = { .driver = { .name = "tsl2583", .pm = &tsl2583_pm_ops, .of_match_table = tsl2583_of_match, }, .id_table = tsl2583_idtable, .probe = tsl2583_probe, .remove = tsl2583_remove, }; module_i2c_driver(tsl2583_driver); MODULE_AUTHOR("J. August Brenner "); MODULE_AUTHOR("Brian Masney "); MODULE_DESCRIPTION("TAOS tsl2583 ambient light sensor driver"); MODULE_LICENSE("GPL");