// SPDX-License-Identifier: GPL-2.0-or-later /* * RDMA Transport Layer * * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved. * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved. * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved. */ #undef pr_fmt #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt #include #include #include "rtrs-srv.h" #include "rtrs-log.h" #include #include MODULE_DESCRIPTION("RDMA Transport Server"); MODULE_LICENSE("GPL"); /* Must be power of 2, see mask from mr->page_size in ib_sg_to_pages() */ #define DEFAULT_MAX_CHUNK_SIZE (128 << 10) #define DEFAULT_SESS_QUEUE_DEPTH 512 #define MAX_HDR_SIZE PAGE_SIZE /* We guarantee to serve 10 paths at least */ #define CHUNK_POOL_SZ 10 static struct rtrs_rdma_dev_pd dev_pd; static mempool_t *chunk_pool; struct class *rtrs_dev_class; static struct rtrs_srv_ib_ctx ib_ctx; static int __read_mostly max_chunk_size = DEFAULT_MAX_CHUNK_SIZE; static int __read_mostly sess_queue_depth = DEFAULT_SESS_QUEUE_DEPTH; static bool always_invalidate = true; module_param(always_invalidate, bool, 0444); MODULE_PARM_DESC(always_invalidate, "Invalidate memory registration for contiguous memory regions before accessing."); module_param_named(max_chunk_size, max_chunk_size, int, 0444); MODULE_PARM_DESC(max_chunk_size, "Max size for each IO request, when change the unit is in byte (default: " __stringify(DEFAULT_MAX_CHUNK_SIZE) "KB)"); module_param_named(sess_queue_depth, sess_queue_depth, int, 0444); MODULE_PARM_DESC(sess_queue_depth, "Number of buffers for pending I/O requests to allocate per session. Maximum: " __stringify(MAX_SESS_QUEUE_DEPTH) " (default: " __stringify(DEFAULT_SESS_QUEUE_DEPTH) ")"); static cpumask_t cq_affinity_mask = { CPU_BITS_ALL }; static struct workqueue_struct *rtrs_wq; static inline struct rtrs_srv_con *to_srv_con(struct rtrs_con *c) { return container_of(c, struct rtrs_srv_con, c); } static inline struct rtrs_srv_sess *to_srv_sess(struct rtrs_sess *s) { return container_of(s, struct rtrs_srv_sess, s); } static bool __rtrs_srv_change_state(struct rtrs_srv_sess *sess, enum rtrs_srv_state new_state) { enum rtrs_srv_state old_state; bool changed = false; lockdep_assert_held(&sess->state_lock); old_state = sess->state; switch (new_state) { case RTRS_SRV_CONNECTED: switch (old_state) { case RTRS_SRV_CONNECTING: changed = true; fallthrough; default: break; } break; case RTRS_SRV_CLOSING: switch (old_state) { case RTRS_SRV_CONNECTING: case RTRS_SRV_CONNECTED: changed = true; fallthrough; default: break; } break; case RTRS_SRV_CLOSED: switch (old_state) { case RTRS_SRV_CLOSING: changed = true; fallthrough; default: break; } break; default: break; } if (changed) sess->state = new_state; return changed; } static bool rtrs_srv_change_state_get_old(struct rtrs_srv_sess *sess, enum rtrs_srv_state new_state, enum rtrs_srv_state *old_state) { bool changed; spin_lock_irq(&sess->state_lock); *old_state = sess->state; changed = __rtrs_srv_change_state(sess, new_state); spin_unlock_irq(&sess->state_lock); return changed; } static bool rtrs_srv_change_state(struct rtrs_srv_sess *sess, enum rtrs_srv_state new_state) { enum rtrs_srv_state old_state; return rtrs_srv_change_state_get_old(sess, new_state, &old_state); } static void free_id(struct rtrs_srv_op *id) { if (!id) return; kfree(id); } static void rtrs_srv_free_ops_ids(struct rtrs_srv_sess *sess) { struct rtrs_srv *srv = sess->srv; int i; WARN_ON(atomic_read(&sess->ids_inflight)); if (sess->ops_ids) { for (i = 0; i < srv->queue_depth; i++) free_id(sess->ops_ids[i]); kfree(sess->ops_ids); sess->ops_ids = NULL; } } static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc); static struct ib_cqe io_comp_cqe = { .done = rtrs_srv_rdma_done }; static int rtrs_srv_alloc_ops_ids(struct rtrs_srv_sess *sess) { struct rtrs_srv *srv = sess->srv; struct rtrs_srv_op *id; int i; sess->ops_ids = kcalloc(srv->queue_depth, sizeof(*sess->ops_ids), GFP_KERNEL); if (!sess->ops_ids) goto err; for (i = 0; i < srv->queue_depth; ++i) { id = kzalloc(sizeof(*id), GFP_KERNEL); if (!id) goto err; sess->ops_ids[i] = id; } init_waitqueue_head(&sess->ids_waitq); atomic_set(&sess->ids_inflight, 0); return 0; err: rtrs_srv_free_ops_ids(sess); return -ENOMEM; } static inline void rtrs_srv_get_ops_ids(struct rtrs_srv_sess *sess) { atomic_inc(&sess->ids_inflight); } static inline void rtrs_srv_put_ops_ids(struct rtrs_srv_sess *sess) { if (atomic_dec_and_test(&sess->ids_inflight)) wake_up(&sess->ids_waitq); } static void rtrs_srv_wait_ops_ids(struct rtrs_srv_sess *sess) { wait_event(sess->ids_waitq, !atomic_read(&sess->ids_inflight)); } static void rtrs_srv_reg_mr_done(struct ib_cq *cq, struct ib_wc *wc) { struct rtrs_srv_con *con = cq->cq_context; struct rtrs_sess *s = con->c.sess; struct rtrs_srv_sess *sess = to_srv_sess(s); if (unlikely(wc->status != IB_WC_SUCCESS)) { rtrs_err(s, "REG MR failed: %s\n", ib_wc_status_msg(wc->status)); close_sess(sess); return; } } static struct ib_cqe local_reg_cqe = { .done = rtrs_srv_reg_mr_done }; static int rdma_write_sg(struct rtrs_srv_op *id) { struct rtrs_sess *s = id->con->c.sess; struct rtrs_srv_sess *sess = to_srv_sess(s); dma_addr_t dma_addr = sess->dma_addr[id->msg_id]; struct rtrs_srv_mr *srv_mr; struct rtrs_srv *srv = sess->srv; struct ib_send_wr inv_wr; struct ib_rdma_wr imm_wr; struct ib_rdma_wr *wr = NULL; enum ib_send_flags flags; size_t sg_cnt; int err, offset; bool need_inval; u32 rkey = 0; struct ib_reg_wr rwr; struct ib_sge *plist; struct ib_sge list; sg_cnt = le16_to_cpu(id->rd_msg->sg_cnt); need_inval = le16_to_cpu(id->rd_msg->flags) & RTRS_MSG_NEED_INVAL_F; if (unlikely(sg_cnt != 1)) return -EINVAL; offset = 0; wr = &id->tx_wr; plist = &id->tx_sg; plist->addr = dma_addr + offset; plist->length = le32_to_cpu(id->rd_msg->desc[0].len); /* WR will fail with length error * if this is 0 */ if (unlikely(plist->length == 0)) { rtrs_err(s, "Invalid RDMA-Write sg list length 0\n"); return -EINVAL; } plist->lkey = sess->s.dev->ib_pd->local_dma_lkey; offset += plist->length; wr->wr.sg_list = plist; wr->wr.num_sge = 1; wr->remote_addr = le64_to_cpu(id->rd_msg->desc[0].addr); wr->rkey = le32_to_cpu(id->rd_msg->desc[0].key); if (rkey == 0) rkey = wr->rkey; else /* Only one key is actually used */ WARN_ON_ONCE(rkey != wr->rkey); wr->wr.opcode = IB_WR_RDMA_WRITE; wr->wr.wr_cqe = &io_comp_cqe; wr->wr.ex.imm_data = 0; wr->wr.send_flags = 0; if (need_inval && always_invalidate) { wr->wr.next = &rwr.wr; rwr.wr.next = &inv_wr; inv_wr.next = &imm_wr.wr; } else if (always_invalidate) { wr->wr.next = &rwr.wr; rwr.wr.next = &imm_wr.wr; } else if (need_inval) { wr->wr.next = &inv_wr; inv_wr.next = &imm_wr.wr; } else { wr->wr.next = &imm_wr.wr; } /* * From time to time we have to post signaled sends, * or send queue will fill up and only QP reset can help. */ flags = (atomic_inc_return(&id->con->wr_cnt) % srv->queue_depth) ? 0 : IB_SEND_SIGNALED; if (need_inval) { inv_wr.sg_list = NULL; inv_wr.num_sge = 0; inv_wr.opcode = IB_WR_SEND_WITH_INV; inv_wr.wr_cqe = &io_comp_cqe; inv_wr.send_flags = 0; inv_wr.ex.invalidate_rkey = rkey; } imm_wr.wr.next = NULL; if (always_invalidate) { struct rtrs_msg_rkey_rsp *msg; srv_mr = &sess->mrs[id->msg_id]; rwr.wr.opcode = IB_WR_REG_MR; rwr.wr.wr_cqe = &local_reg_cqe; rwr.wr.num_sge = 0; rwr.mr = srv_mr->mr; rwr.wr.send_flags = 0; rwr.key = srv_mr->mr->rkey; rwr.access = (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE); msg = srv_mr->iu->buf; msg->buf_id = cpu_to_le16(id->msg_id); msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP); msg->rkey = cpu_to_le32(srv_mr->mr->rkey); list.addr = srv_mr->iu->dma_addr; list.length = sizeof(*msg); list.lkey = sess->s.dev->ib_pd->local_dma_lkey; imm_wr.wr.sg_list = &list; imm_wr.wr.num_sge = 1; imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM; ib_dma_sync_single_for_device(sess->s.dev->ib_dev, srv_mr->iu->dma_addr, srv_mr->iu->size, DMA_TO_DEVICE); } else { imm_wr.wr.sg_list = NULL; imm_wr.wr.num_sge = 0; imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM; } imm_wr.wr.send_flags = flags; imm_wr.wr.ex.imm_data = cpu_to_be32(rtrs_to_io_rsp_imm(id->msg_id, 0, need_inval)); imm_wr.wr.wr_cqe = &io_comp_cqe; ib_dma_sync_single_for_device(sess->s.dev->ib_dev, dma_addr, offset, DMA_BIDIRECTIONAL); err = ib_post_send(id->con->c.qp, &id->tx_wr.wr, NULL); if (unlikely(err)) rtrs_err(s, "Posting RDMA-Write-Request to QP failed, err: %d\n", err); return err; } /** * send_io_resp_imm() - respond to client with empty IMM on failed READ/WRITE * requests or on successful WRITE request. * @con: the connection to send back result * @id: the id associated with the IO * @errno: the error number of the IO. * * Return 0 on success, errno otherwise. */ static int send_io_resp_imm(struct rtrs_srv_con *con, struct rtrs_srv_op *id, int errno) { struct rtrs_sess *s = con->c.sess; struct rtrs_srv_sess *sess = to_srv_sess(s); struct ib_send_wr inv_wr, *wr = NULL; struct ib_rdma_wr imm_wr; struct ib_reg_wr rwr; struct rtrs_srv *srv = sess->srv; struct rtrs_srv_mr *srv_mr; bool need_inval = false; enum ib_send_flags flags; u32 imm; int err; if (id->dir == READ) { struct rtrs_msg_rdma_read *rd_msg = id->rd_msg; size_t sg_cnt; need_inval = le16_to_cpu(rd_msg->flags) & RTRS_MSG_NEED_INVAL_F; sg_cnt = le16_to_cpu(rd_msg->sg_cnt); if (need_inval) { if (likely(sg_cnt)) { inv_wr.wr_cqe = &io_comp_cqe; inv_wr.sg_list = NULL; inv_wr.num_sge = 0; inv_wr.opcode = IB_WR_SEND_WITH_INV; inv_wr.send_flags = 0; /* Only one key is actually used */ inv_wr.ex.invalidate_rkey = le32_to_cpu(rd_msg->desc[0].key); } else { WARN_ON_ONCE(1); need_inval = false; } } } if (need_inval && always_invalidate) { wr = &inv_wr; inv_wr.next = &rwr.wr; rwr.wr.next = &imm_wr.wr; } else if (always_invalidate) { wr = &rwr.wr; rwr.wr.next = &imm_wr.wr; } else if (need_inval) { wr = &inv_wr; inv_wr.next = &imm_wr.wr; } else { wr = &imm_wr.wr; } /* * From time to time we have to post signalled sends, * or send queue will fill up and only QP reset can help. */ flags = (atomic_inc_return(&con->wr_cnt) % srv->queue_depth) ? 0 : IB_SEND_SIGNALED; imm = rtrs_to_io_rsp_imm(id->msg_id, errno, need_inval); imm_wr.wr.next = NULL; if (always_invalidate) { struct ib_sge list; struct rtrs_msg_rkey_rsp *msg; srv_mr = &sess->mrs[id->msg_id]; rwr.wr.next = &imm_wr.wr; rwr.wr.opcode = IB_WR_REG_MR; rwr.wr.wr_cqe = &local_reg_cqe; rwr.wr.num_sge = 0; rwr.wr.send_flags = 0; rwr.mr = srv_mr->mr; rwr.key = srv_mr->mr->rkey; rwr.access = (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE); msg = srv_mr->iu->buf; msg->buf_id = cpu_to_le16(id->msg_id); msg->type = cpu_to_le16(RTRS_MSG_RKEY_RSP); msg->rkey = cpu_to_le32(srv_mr->mr->rkey); list.addr = srv_mr->iu->dma_addr; list.length = sizeof(*msg); list.lkey = sess->s.dev->ib_pd->local_dma_lkey; imm_wr.wr.sg_list = &list; imm_wr.wr.num_sge = 1; imm_wr.wr.opcode = IB_WR_SEND_WITH_IMM; ib_dma_sync_single_for_device(sess->s.dev->ib_dev, srv_mr->iu->dma_addr, srv_mr->iu->size, DMA_TO_DEVICE); } else { imm_wr.wr.sg_list = NULL; imm_wr.wr.num_sge = 0; imm_wr.wr.opcode = IB_WR_RDMA_WRITE_WITH_IMM; } imm_wr.wr.send_flags = flags; imm_wr.wr.wr_cqe = &io_comp_cqe; imm_wr.wr.ex.imm_data = cpu_to_be32(imm); err = ib_post_send(id->con->c.qp, wr, NULL); if (unlikely(err)) rtrs_err_rl(s, "Posting RDMA-Reply to QP failed, err: %d\n", err); return err; } void close_sess(struct rtrs_srv_sess *sess) { enum rtrs_srv_state old_state; if (rtrs_srv_change_state_get_old(sess, RTRS_SRV_CLOSING, &old_state)) queue_work(rtrs_wq, &sess->close_work); WARN_ON(sess->state != RTRS_SRV_CLOSING); } static inline const char *rtrs_srv_state_str(enum rtrs_srv_state state) { switch (state) { case RTRS_SRV_CONNECTING: return "RTRS_SRV_CONNECTING"; case RTRS_SRV_CONNECTED: return "RTRS_SRV_CONNECTED"; case RTRS_SRV_CLOSING: return "RTRS_SRV_CLOSING"; case RTRS_SRV_CLOSED: return "RTRS_SRV_CLOSED"; default: return "UNKNOWN"; } } /** * rtrs_srv_resp_rdma() - Finish an RDMA request * * @id: Internal RTRS operation identifier * @status: Response Code sent to the other side for this operation. * 0 = success, <=0 error * Context: any * * Finish a RDMA operation. A message is sent to the client and the * corresponding memory areas will be released. */ bool rtrs_srv_resp_rdma(struct rtrs_srv_op *id, int status) { struct rtrs_srv_sess *sess; struct rtrs_srv_con *con; struct rtrs_sess *s; int err; if (WARN_ON(!id)) return true; con = id->con; s = con->c.sess; sess = to_srv_sess(s); id->status = status; if (unlikely(sess->state != RTRS_SRV_CONNECTED)) { rtrs_err_rl(s, "Sending I/O response failed, session is disconnected, sess state %s\n", rtrs_srv_state_str(sess->state)); goto out; } if (always_invalidate) { struct rtrs_srv_mr *mr = &sess->mrs[id->msg_id]; ib_update_fast_reg_key(mr->mr, ib_inc_rkey(mr->mr->rkey)); } if (unlikely(atomic_sub_return(1, &con->sq_wr_avail) < 0)) { pr_err("IB send queue full\n"); atomic_add(1, &con->sq_wr_avail); spin_lock(&con->rsp_wr_wait_lock); list_add_tail(&id->wait_list, &con->rsp_wr_wait_list); spin_unlock(&con->rsp_wr_wait_lock); return false; } if (status || id->dir == WRITE || !id->rd_msg->sg_cnt) err = send_io_resp_imm(con, id, status); else err = rdma_write_sg(id); if (unlikely(err)) { rtrs_err_rl(s, "IO response failed: %d\n", err); close_sess(sess); } out: rtrs_srv_put_ops_ids(sess); return true; } EXPORT_SYMBOL(rtrs_srv_resp_rdma); /** * rtrs_srv_set_sess_priv() - Set private pointer in rtrs_srv. * @srv: Session pointer * @priv: The private pointer that is associated with the session. */ void rtrs_srv_set_sess_priv(struct rtrs_srv *srv, void *priv) { srv->priv = priv; } EXPORT_SYMBOL(rtrs_srv_set_sess_priv); static void unmap_cont_bufs(struct rtrs_srv_sess *sess) { int i; for (i = 0; i < sess->mrs_num; i++) { struct rtrs_srv_mr *srv_mr; srv_mr = &sess->mrs[i]; rtrs_iu_free(srv_mr->iu, sess->s.dev->ib_dev, 1); ib_dereg_mr(srv_mr->mr); ib_dma_unmap_sg(sess->s.dev->ib_dev, srv_mr->sgt.sgl, srv_mr->sgt.nents, DMA_BIDIRECTIONAL); sg_free_table(&srv_mr->sgt); } kfree(sess->mrs); } static int map_cont_bufs(struct rtrs_srv_sess *sess) { struct rtrs_srv *srv = sess->srv; struct rtrs_sess *ss = &sess->s; int i, mri, err, mrs_num; unsigned int chunk_bits; int chunks_per_mr = 1; /* * Here we map queue_depth chunks to MR. Firstly we have to * figure out how many chunks can we map per MR. */ if (always_invalidate) { /* * in order to do invalidate for each chunks of memory, we needs * more memory regions. */ mrs_num = srv->queue_depth; } else { chunks_per_mr = sess->s.dev->ib_dev->attrs.max_fast_reg_page_list_len; mrs_num = DIV_ROUND_UP(srv->queue_depth, chunks_per_mr); chunks_per_mr = DIV_ROUND_UP(srv->queue_depth, mrs_num); } sess->mrs = kcalloc(mrs_num, sizeof(*sess->mrs), GFP_KERNEL); if (!sess->mrs) return -ENOMEM; sess->mrs_num = mrs_num; for (mri = 0; mri < mrs_num; mri++) { struct rtrs_srv_mr *srv_mr = &sess->mrs[mri]; struct sg_table *sgt = &srv_mr->sgt; struct scatterlist *s; struct ib_mr *mr; int nr, chunks; chunks = chunks_per_mr * mri; if (!always_invalidate) chunks_per_mr = min_t(int, chunks_per_mr, srv->queue_depth - chunks); err = sg_alloc_table(sgt, chunks_per_mr, GFP_KERNEL); if (err) goto err; for_each_sg(sgt->sgl, s, chunks_per_mr, i) sg_set_page(s, srv->chunks[chunks + i], max_chunk_size, 0); nr = ib_dma_map_sg(sess->s.dev->ib_dev, sgt->sgl, sgt->nents, DMA_BIDIRECTIONAL); if (nr < sgt->nents) { err = nr < 0 ? nr : -EINVAL; goto free_sg; } mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG, sgt->nents); if (IS_ERR(mr)) { err = PTR_ERR(mr); goto unmap_sg; } nr = ib_map_mr_sg(mr, sgt->sgl, sgt->nents, NULL, max_chunk_size); if (nr < 0 || nr < sgt->nents) { err = nr < 0 ? nr : -EINVAL; goto dereg_mr; } if (always_invalidate) { srv_mr->iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_rkey_rsp), GFP_KERNEL, sess->s.dev->ib_dev, DMA_TO_DEVICE, rtrs_srv_rdma_done); if (!srv_mr->iu) { err = -ENOMEM; rtrs_err(ss, "rtrs_iu_alloc(), err: %d\n", err); goto dereg_mr; } } /* Eventually dma addr for each chunk can be cached */ for_each_sg(sgt->sgl, s, sgt->orig_nents, i) sess->dma_addr[chunks + i] = sg_dma_address(s); ib_update_fast_reg_key(mr, ib_inc_rkey(mr->rkey)); srv_mr->mr = mr; continue; err: while (mri--) { srv_mr = &sess->mrs[mri]; sgt = &srv_mr->sgt; mr = srv_mr->mr; rtrs_iu_free(srv_mr->iu, sess->s.dev->ib_dev, 1); dereg_mr: ib_dereg_mr(mr); unmap_sg: ib_dma_unmap_sg(sess->s.dev->ib_dev, sgt->sgl, sgt->nents, DMA_BIDIRECTIONAL); free_sg: sg_free_table(sgt); } kfree(sess->mrs); return err; } chunk_bits = ilog2(srv->queue_depth - 1) + 1; sess->mem_bits = (MAX_IMM_PAYL_BITS - chunk_bits); return 0; } static void rtrs_srv_hb_err_handler(struct rtrs_con *c) { close_sess(to_srv_sess(c->sess)); } static void rtrs_srv_init_hb(struct rtrs_srv_sess *sess) { rtrs_init_hb(&sess->s, &io_comp_cqe, RTRS_HB_INTERVAL_MS, RTRS_HB_MISSED_MAX, rtrs_srv_hb_err_handler, rtrs_wq); } static void rtrs_srv_start_hb(struct rtrs_srv_sess *sess) { rtrs_start_hb(&sess->s); } static void rtrs_srv_stop_hb(struct rtrs_srv_sess *sess) { rtrs_stop_hb(&sess->s); } static void rtrs_srv_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc) { struct rtrs_srv_con *con = cq->cq_context; struct rtrs_sess *s = con->c.sess; struct rtrs_srv_sess *sess = to_srv_sess(s); struct rtrs_iu *iu; iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe); rtrs_iu_free(iu, sess->s.dev->ib_dev, 1); if (unlikely(wc->status != IB_WC_SUCCESS)) { rtrs_err(s, "Sess info response send failed: %s\n", ib_wc_status_msg(wc->status)); close_sess(sess); return; } WARN_ON(wc->opcode != IB_WC_SEND); } static void rtrs_srv_sess_up(struct rtrs_srv_sess *sess) { struct rtrs_srv *srv = sess->srv; struct rtrs_srv_ctx *ctx = srv->ctx; int up; mutex_lock(&srv->paths_ev_mutex); up = ++srv->paths_up; if (up == 1) ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_CONNECTED, NULL); mutex_unlock(&srv->paths_ev_mutex); /* Mark session as established */ sess->established = true; } static void rtrs_srv_sess_down(struct rtrs_srv_sess *sess) { struct rtrs_srv *srv = sess->srv; struct rtrs_srv_ctx *ctx = srv->ctx; if (!sess->established) return; sess->established = false; mutex_lock(&srv->paths_ev_mutex); WARN_ON(!srv->paths_up); if (--srv->paths_up == 0) ctx->ops.link_ev(srv, RTRS_SRV_LINK_EV_DISCONNECTED, srv->priv); mutex_unlock(&srv->paths_ev_mutex); } static int post_recv_sess(struct rtrs_srv_sess *sess); static int process_info_req(struct rtrs_srv_con *con, struct rtrs_msg_info_req *msg) { struct rtrs_sess *s = con->c.sess; struct rtrs_srv_sess *sess = to_srv_sess(s); struct ib_send_wr *reg_wr = NULL; struct rtrs_msg_info_rsp *rsp; struct rtrs_iu *tx_iu; struct ib_reg_wr *rwr; int mri, err; size_t tx_sz; err = post_recv_sess(sess); if (unlikely(err)) { rtrs_err(s, "post_recv_sess(), err: %d\n", err); return err; } rwr = kcalloc(sess->mrs_num, sizeof(*rwr), GFP_KERNEL); if (unlikely(!rwr)) return -ENOMEM; strlcpy(sess->s.sessname, msg->sessname, sizeof(sess->s.sessname)); tx_sz = sizeof(*rsp); tx_sz += sizeof(rsp->desc[0]) * sess->mrs_num; tx_iu = rtrs_iu_alloc(1, tx_sz, GFP_KERNEL, sess->s.dev->ib_dev, DMA_TO_DEVICE, rtrs_srv_info_rsp_done); if (unlikely(!tx_iu)) { err = -ENOMEM; goto rwr_free; } rsp = tx_iu->buf; rsp->type = cpu_to_le16(RTRS_MSG_INFO_RSP); rsp->sg_cnt = cpu_to_le16(sess->mrs_num); for (mri = 0; mri < sess->mrs_num; mri++) { struct ib_mr *mr = sess->mrs[mri].mr; rsp->desc[mri].addr = cpu_to_le64(mr->iova); rsp->desc[mri].key = cpu_to_le32(mr->rkey); rsp->desc[mri].len = cpu_to_le32(mr->length); /* * Fill in reg MR request and chain them *backwards* */ rwr[mri].wr.next = mri ? &rwr[mri - 1].wr : NULL; rwr[mri].wr.opcode = IB_WR_REG_MR; rwr[mri].wr.wr_cqe = &local_reg_cqe; rwr[mri].wr.num_sge = 0; rwr[mri].wr.send_flags = 0; rwr[mri].mr = mr; rwr[mri].key = mr->rkey; rwr[mri].access = (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE); reg_wr = &rwr[mri].wr; } err = rtrs_srv_create_sess_files(sess); if (unlikely(err)) goto iu_free; kobject_get(&sess->kobj); get_device(&sess->srv->dev); rtrs_srv_change_state(sess, RTRS_SRV_CONNECTED); rtrs_srv_start_hb(sess); /* * We do not account number of established connections at the current * moment, we rely on the client, which should send info request when * all connections are successfully established. Thus, simply notify * listener with a proper event if we are the first path. */ rtrs_srv_sess_up(sess); ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr, tx_iu->size, DMA_TO_DEVICE); /* Send info response */ err = rtrs_iu_post_send(&con->c, tx_iu, tx_sz, reg_wr); if (unlikely(err)) { rtrs_err(s, "rtrs_iu_post_send(), err: %d\n", err); iu_free: rtrs_iu_free(tx_iu, sess->s.dev->ib_dev, 1); } rwr_free: kfree(rwr); return err; } static void rtrs_srv_info_req_done(struct ib_cq *cq, struct ib_wc *wc) { struct rtrs_srv_con *con = cq->cq_context; struct rtrs_sess *s = con->c.sess; struct rtrs_srv_sess *sess = to_srv_sess(s); struct rtrs_msg_info_req *msg; struct rtrs_iu *iu; int err; WARN_ON(con->c.cid); iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe); if (unlikely(wc->status != IB_WC_SUCCESS)) { rtrs_err(s, "Sess info request receive failed: %s\n", ib_wc_status_msg(wc->status)); goto close; } WARN_ON(wc->opcode != IB_WC_RECV); if (unlikely(wc->byte_len < sizeof(*msg))) { rtrs_err(s, "Sess info request is malformed: size %d\n", wc->byte_len); goto close; } ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr, iu->size, DMA_FROM_DEVICE); msg = iu->buf; if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_REQ)) { rtrs_err(s, "Sess info request is malformed: type %d\n", le16_to_cpu(msg->type)); goto close; } err = process_info_req(con, msg); if (unlikely(err)) goto close; out: rtrs_iu_free(iu, sess->s.dev->ib_dev, 1); return; close: close_sess(sess); goto out; } static int post_recv_info_req(struct rtrs_srv_con *con) { struct rtrs_sess *s = con->c.sess; struct rtrs_srv_sess *sess = to_srv_sess(s); struct rtrs_iu *rx_iu; int err; rx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL, sess->s.dev->ib_dev, DMA_FROM_DEVICE, rtrs_srv_info_req_done); if (unlikely(!rx_iu)) return -ENOMEM; /* Prepare for getting info response */ err = rtrs_iu_post_recv(&con->c, rx_iu); if (unlikely(err)) { rtrs_err(s, "rtrs_iu_post_recv(), err: %d\n", err); rtrs_iu_free(rx_iu, sess->s.dev->ib_dev, 1); return err; } return 0; } static int post_recv_io(struct rtrs_srv_con *con, size_t q_size) { int i, err; for (i = 0; i < q_size; i++) { err = rtrs_post_recv_empty(&con->c, &io_comp_cqe); if (unlikely(err)) return err; } return 0; } static int post_recv_sess(struct rtrs_srv_sess *sess) { struct rtrs_srv *srv = sess->srv; struct rtrs_sess *s = &sess->s; size_t q_size; int err, cid; for (cid = 0; cid < sess->s.con_num; cid++) { if (cid == 0) q_size = SERVICE_CON_QUEUE_DEPTH; else q_size = srv->queue_depth; err = post_recv_io(to_srv_con(sess->s.con[cid]), q_size); if (unlikely(err)) { rtrs_err(s, "post_recv_io(), err: %d\n", err); return err; } } return 0; } static void process_read(struct rtrs_srv_con *con, struct rtrs_msg_rdma_read *msg, u32 buf_id, u32 off) { struct rtrs_sess *s = con->c.sess; struct rtrs_srv_sess *sess = to_srv_sess(s); struct rtrs_srv *srv = sess->srv; struct rtrs_srv_ctx *ctx = srv->ctx; struct rtrs_srv_op *id; size_t usr_len, data_len; void *data; int ret; if (unlikely(sess->state != RTRS_SRV_CONNECTED)) { rtrs_err_rl(s, "Processing read request failed, session is disconnected, sess state %s\n", rtrs_srv_state_str(sess->state)); return; } if (unlikely(msg->sg_cnt != 1 && msg->sg_cnt != 0)) { rtrs_err_rl(s, "Processing read request failed, invalid message\n"); return; } rtrs_srv_get_ops_ids(sess); rtrs_srv_update_rdma_stats(sess->stats, off, READ); id = sess->ops_ids[buf_id]; id->con = con; id->dir = READ; id->msg_id = buf_id; id->rd_msg = msg; usr_len = le16_to_cpu(msg->usr_len); data_len = off - usr_len; data = page_address(srv->chunks[buf_id]); ret = ctx->ops.rdma_ev(srv, srv->priv, id, READ, data, data_len, data + data_len, usr_len); if (unlikely(ret)) { rtrs_err_rl(s, "Processing read request failed, user module cb reported for msg_id %d, err: %d\n", buf_id, ret); goto send_err_msg; } return; send_err_msg: ret = send_io_resp_imm(con, id, ret); if (ret < 0) { rtrs_err_rl(s, "Sending err msg for failed RDMA-Write-Req failed, msg_id %d, err: %d\n", buf_id, ret); close_sess(sess); } rtrs_srv_put_ops_ids(sess); } static void process_write(struct rtrs_srv_con *con, struct rtrs_msg_rdma_write *req, u32 buf_id, u32 off) { struct rtrs_sess *s = con->c.sess; struct rtrs_srv_sess *sess = to_srv_sess(s); struct rtrs_srv *srv = sess->srv; struct rtrs_srv_ctx *ctx = srv->ctx; struct rtrs_srv_op *id; size_t data_len, usr_len; void *data; int ret; if (unlikely(sess->state != RTRS_SRV_CONNECTED)) { rtrs_err_rl(s, "Processing write request failed, session is disconnected, sess state %s\n", rtrs_srv_state_str(sess->state)); return; } rtrs_srv_get_ops_ids(sess); rtrs_srv_update_rdma_stats(sess->stats, off, WRITE); id = sess->ops_ids[buf_id]; id->con = con; id->dir = WRITE; id->msg_id = buf_id; usr_len = le16_to_cpu(req->usr_len); data_len = off - usr_len; data = page_address(srv->chunks[buf_id]); ret = ctx->ops.rdma_ev(srv, srv->priv, id, WRITE, data, data_len, data + data_len, usr_len); if (unlikely(ret)) { rtrs_err_rl(s, "Processing write request failed, user module callback reports err: %d\n", ret); goto send_err_msg; } return; send_err_msg: ret = send_io_resp_imm(con, id, ret); if (ret < 0) { rtrs_err_rl(s, "Processing write request failed, sending I/O response failed, msg_id %d, err: %d\n", buf_id, ret); close_sess(sess); } rtrs_srv_put_ops_ids(sess); } static void process_io_req(struct rtrs_srv_con *con, void *msg, u32 id, u32 off) { struct rtrs_sess *s = con->c.sess; struct rtrs_srv_sess *sess = to_srv_sess(s); struct rtrs_msg_rdma_hdr *hdr; unsigned int type; ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, sess->dma_addr[id], max_chunk_size, DMA_BIDIRECTIONAL); hdr = msg; type = le16_to_cpu(hdr->type); switch (type) { case RTRS_MSG_WRITE: process_write(con, msg, id, off); break; case RTRS_MSG_READ: process_read(con, msg, id, off); break; default: rtrs_err(s, "Processing I/O request failed, unknown message type received: 0x%02x\n", type); goto err; } return; err: close_sess(sess); } static void rtrs_srv_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) { struct rtrs_srv_mr *mr = container_of(wc->wr_cqe, typeof(*mr), inv_cqe); struct rtrs_srv_con *con = cq->cq_context; struct rtrs_sess *s = con->c.sess; struct rtrs_srv_sess *sess = to_srv_sess(s); struct rtrs_srv *srv = sess->srv; u32 msg_id, off; void *data; if (unlikely(wc->status != IB_WC_SUCCESS)) { rtrs_err(s, "Failed IB_WR_LOCAL_INV: %s\n", ib_wc_status_msg(wc->status)); close_sess(sess); } msg_id = mr->msg_id; off = mr->msg_off; data = page_address(srv->chunks[msg_id]) + off; process_io_req(con, data, msg_id, off); } static int rtrs_srv_inv_rkey(struct rtrs_srv_con *con, struct rtrs_srv_mr *mr) { struct ib_send_wr wr = { .opcode = IB_WR_LOCAL_INV, .wr_cqe = &mr->inv_cqe, .send_flags = IB_SEND_SIGNALED, .ex.invalidate_rkey = mr->mr->rkey, }; mr->inv_cqe.done = rtrs_srv_inv_rkey_done; return ib_post_send(con->c.qp, &wr, NULL); } static void rtrs_rdma_process_wr_wait_list(struct rtrs_srv_con *con) { spin_lock(&con->rsp_wr_wait_lock); while (!list_empty(&con->rsp_wr_wait_list)) { struct rtrs_srv_op *id; int ret; id = list_entry(con->rsp_wr_wait_list.next, struct rtrs_srv_op, wait_list); list_del(&id->wait_list); spin_unlock(&con->rsp_wr_wait_lock); ret = rtrs_srv_resp_rdma(id, id->status); spin_lock(&con->rsp_wr_wait_lock); if (!ret) { list_add(&id->wait_list, &con->rsp_wr_wait_list); break; } } spin_unlock(&con->rsp_wr_wait_lock); } static void rtrs_srv_rdma_done(struct ib_cq *cq, struct ib_wc *wc) { struct rtrs_srv_con *con = cq->cq_context; struct rtrs_sess *s = con->c.sess; struct rtrs_srv_sess *sess = to_srv_sess(s); struct rtrs_srv *srv = sess->srv; u32 imm_type, imm_payload; int err; if (unlikely(wc->status != IB_WC_SUCCESS)) { if (wc->status != IB_WC_WR_FLUSH_ERR) { rtrs_err(s, "%s (wr_cqe: %p, type: %d, vendor_err: 0x%x, len: %u)\n", ib_wc_status_msg(wc->status), wc->wr_cqe, wc->opcode, wc->vendor_err, wc->byte_len); close_sess(sess); } return; } switch (wc->opcode) { case IB_WC_RECV_RDMA_WITH_IMM: /* * post_recv() RDMA write completions of IO reqs (read/write) * and hb */ if (WARN_ON(wc->wr_cqe != &io_comp_cqe)) return; err = rtrs_post_recv_empty(&con->c, &io_comp_cqe); if (unlikely(err)) { rtrs_err(s, "rtrs_post_recv(), err: %d\n", err); close_sess(sess); break; } rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload); if (likely(imm_type == RTRS_IO_REQ_IMM)) { u32 msg_id, off; void *data; msg_id = imm_payload >> sess->mem_bits; off = imm_payload & ((1 << sess->mem_bits) - 1); if (unlikely(msg_id >= srv->queue_depth || off >= max_chunk_size)) { rtrs_err(s, "Wrong msg_id %u, off %u\n", msg_id, off); close_sess(sess); return; } if (always_invalidate) { struct rtrs_srv_mr *mr = &sess->mrs[msg_id]; mr->msg_off = off; mr->msg_id = msg_id; err = rtrs_srv_inv_rkey(con, mr); if (unlikely(err)) { rtrs_err(s, "rtrs_post_recv(), err: %d\n", err); close_sess(sess); break; } } else { data = page_address(srv->chunks[msg_id]) + off; process_io_req(con, data, msg_id, off); } } else if (imm_type == RTRS_HB_MSG_IMM) { WARN_ON(con->c.cid); rtrs_send_hb_ack(&sess->s); } else if (imm_type == RTRS_HB_ACK_IMM) { WARN_ON(con->c.cid); sess->s.hb_missed_cnt = 0; } else { rtrs_wrn(s, "Unknown IMM type %u\n", imm_type); } break; case IB_WC_RDMA_WRITE: case IB_WC_SEND: /* * post_send() RDMA write completions of IO reqs (read/write) */ atomic_add(srv->queue_depth, &con->sq_wr_avail); if (unlikely(!list_empty_careful(&con->rsp_wr_wait_list))) rtrs_rdma_process_wr_wait_list(con); break; default: rtrs_wrn(s, "Unexpected WC type: %d\n", wc->opcode); return; } } /** * rtrs_srv_get_sess_name() - Get rtrs_srv peer hostname. * @srv: Session * @sessname: Sessname buffer * @len: Length of sessname buffer */ int rtrs_srv_get_sess_name(struct rtrs_srv *srv, char *sessname, size_t len) { struct rtrs_srv_sess *sess; int err = -ENOTCONN; mutex_lock(&srv->paths_mutex); list_for_each_entry(sess, &srv->paths_list, s.entry) { if (sess->state != RTRS_SRV_CONNECTED) continue; strlcpy(sessname, sess->s.sessname, min_t(size_t, sizeof(sess->s.sessname), len)); err = 0; break; } mutex_unlock(&srv->paths_mutex); return err; } EXPORT_SYMBOL(rtrs_srv_get_sess_name); /** * rtrs_srv_get_sess_qdepth() - Get rtrs_srv qdepth. * @srv: Session */ int rtrs_srv_get_queue_depth(struct rtrs_srv *srv) { return srv->queue_depth; } EXPORT_SYMBOL(rtrs_srv_get_queue_depth); static int find_next_bit_ring(struct rtrs_srv_sess *sess) { struct ib_device *ib_dev = sess->s.dev->ib_dev; int v; v = cpumask_next(sess->cur_cq_vector, &cq_affinity_mask); if (v >= nr_cpu_ids || v >= ib_dev->num_comp_vectors) v = cpumask_first(&cq_affinity_mask); return v; } static int rtrs_srv_get_next_cq_vector(struct rtrs_srv_sess *sess) { sess->cur_cq_vector = find_next_bit_ring(sess); return sess->cur_cq_vector; } static void rtrs_srv_dev_release(struct device *dev) { struct rtrs_srv *srv = container_of(dev, struct rtrs_srv, dev); kfree(srv); } static void free_srv(struct rtrs_srv *srv) { int i; WARN_ON(refcount_read(&srv->refcount)); for (i = 0; i < srv->queue_depth; i++) mempool_free(srv->chunks[i], chunk_pool); kfree(srv->chunks); mutex_destroy(&srv->paths_mutex); mutex_destroy(&srv->paths_ev_mutex); /* last put to release the srv structure */ put_device(&srv->dev); } static struct rtrs_srv *get_or_create_srv(struct rtrs_srv_ctx *ctx, const uuid_t *paths_uuid, bool first_conn) { struct rtrs_srv *srv; int i; mutex_lock(&ctx->srv_mutex); list_for_each_entry(srv, &ctx->srv_list, ctx_list) { if (uuid_equal(&srv->paths_uuid, paths_uuid) && refcount_inc_not_zero(&srv->refcount)) { mutex_unlock(&ctx->srv_mutex); return srv; } } mutex_unlock(&ctx->srv_mutex); /* * If this request is not the first connection request from the * client for this session then fail and return error. */ if (!first_conn) return ERR_PTR(-ENXIO); /* need to allocate a new srv */ srv = kzalloc(sizeof(*srv), GFP_KERNEL); if (!srv) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&srv->paths_list); mutex_init(&srv->paths_mutex); mutex_init(&srv->paths_ev_mutex); uuid_copy(&srv->paths_uuid, paths_uuid); srv->queue_depth = sess_queue_depth; srv->ctx = ctx; device_initialize(&srv->dev); srv->dev.release = rtrs_srv_dev_release; srv->chunks = kcalloc(srv->queue_depth, sizeof(*srv->chunks), GFP_KERNEL); if (!srv->chunks) goto err_free_srv; for (i = 0; i < srv->queue_depth; i++) { srv->chunks[i] = mempool_alloc(chunk_pool, GFP_KERNEL); if (!srv->chunks[i]) goto err_free_chunks; } refcount_set(&srv->refcount, 1); mutex_lock(&ctx->srv_mutex); list_add(&srv->ctx_list, &ctx->srv_list); mutex_unlock(&ctx->srv_mutex); return srv; err_free_chunks: while (i--) mempool_free(srv->chunks[i], chunk_pool); kfree(srv->chunks); err_free_srv: kfree(srv); return ERR_PTR(-ENOMEM); } static void put_srv(struct rtrs_srv *srv) { if (refcount_dec_and_test(&srv->refcount)) { struct rtrs_srv_ctx *ctx = srv->ctx; WARN_ON(srv->dev.kobj.state_in_sysfs); mutex_lock(&ctx->srv_mutex); list_del(&srv->ctx_list); mutex_unlock(&ctx->srv_mutex); free_srv(srv); } } static void __add_path_to_srv(struct rtrs_srv *srv, struct rtrs_srv_sess *sess) { list_add_tail(&sess->s.entry, &srv->paths_list); srv->paths_num++; WARN_ON(srv->paths_num >= MAX_PATHS_NUM); } static void del_path_from_srv(struct rtrs_srv_sess *sess) { struct rtrs_srv *srv = sess->srv; if (WARN_ON(!srv)) return; mutex_lock(&srv->paths_mutex); list_del(&sess->s.entry); WARN_ON(!srv->paths_num); srv->paths_num--; mutex_unlock(&srv->paths_mutex); } /* return true if addresses are the same, error other wise */ static int sockaddr_cmp(const struct sockaddr *a, const struct sockaddr *b) { switch (a->sa_family) { case AF_IB: return memcmp(&((struct sockaddr_ib *)a)->sib_addr, &((struct sockaddr_ib *)b)->sib_addr, sizeof(struct ib_addr)) && (b->sa_family == AF_IB); case AF_INET: return memcmp(&((struct sockaddr_in *)a)->sin_addr, &((struct sockaddr_in *)b)->sin_addr, sizeof(struct in_addr)) && (b->sa_family == AF_INET); case AF_INET6: return memcmp(&((struct sockaddr_in6 *)a)->sin6_addr, &((struct sockaddr_in6 *)b)->sin6_addr, sizeof(struct in6_addr)) && (b->sa_family == AF_INET6); default: return -ENOENT; } } static bool __is_path_w_addr_exists(struct rtrs_srv *srv, struct rdma_addr *addr) { struct rtrs_srv_sess *sess; list_for_each_entry(sess, &srv->paths_list, s.entry) if (!sockaddr_cmp((struct sockaddr *)&sess->s.dst_addr, (struct sockaddr *)&addr->dst_addr) && !sockaddr_cmp((struct sockaddr *)&sess->s.src_addr, (struct sockaddr *)&addr->src_addr)) return true; return false; } static void free_sess(struct rtrs_srv_sess *sess) { if (sess->kobj.state_in_sysfs) { kobject_del(&sess->kobj); kobject_put(&sess->kobj); } else { kfree(sess->stats); kfree(sess); } } static void rtrs_srv_close_work(struct work_struct *work) { struct rtrs_srv_sess *sess; struct rtrs_srv_con *con; int i; sess = container_of(work, typeof(*sess), close_work); rtrs_srv_destroy_sess_files(sess); rtrs_srv_stop_hb(sess); for (i = 0; i < sess->s.con_num; i++) { if (!sess->s.con[i]) continue; con = to_srv_con(sess->s.con[i]); rdma_disconnect(con->c.cm_id); ib_drain_qp(con->c.qp); } /* Wait for all inflights */ rtrs_srv_wait_ops_ids(sess); /* Notify upper layer if we are the last path */ rtrs_srv_sess_down(sess); unmap_cont_bufs(sess); rtrs_srv_free_ops_ids(sess); for (i = 0; i < sess->s.con_num; i++) { if (!sess->s.con[i]) continue; con = to_srv_con(sess->s.con[i]); rtrs_cq_qp_destroy(&con->c); rdma_destroy_id(con->c.cm_id); kfree(con); } rtrs_ib_dev_put(sess->s.dev); del_path_from_srv(sess); put_srv(sess->srv); sess->srv = NULL; rtrs_srv_change_state(sess, RTRS_SRV_CLOSED); kfree(sess->dma_addr); kfree(sess->s.con); free_sess(sess); } static int rtrs_rdma_do_accept(struct rtrs_srv_sess *sess, struct rdma_cm_id *cm_id) { struct rtrs_srv *srv = sess->srv; struct rtrs_msg_conn_rsp msg; struct rdma_conn_param param; int err; param = (struct rdma_conn_param) { .rnr_retry_count = 7, .private_data = &msg, .private_data_len = sizeof(msg), }; msg = (struct rtrs_msg_conn_rsp) { .magic = cpu_to_le16(RTRS_MAGIC), .version = cpu_to_le16(RTRS_PROTO_VER), .queue_depth = cpu_to_le16(srv->queue_depth), .max_io_size = cpu_to_le32(max_chunk_size - MAX_HDR_SIZE), .max_hdr_size = cpu_to_le32(MAX_HDR_SIZE), }; if (always_invalidate) msg.flags = cpu_to_le32(RTRS_MSG_NEW_RKEY_F); err = rdma_accept(cm_id, ¶m); if (err) pr_err("rdma_accept(), err: %d\n", err); return err; } static int rtrs_rdma_do_reject(struct rdma_cm_id *cm_id, int errno) { struct rtrs_msg_conn_rsp msg; int err; msg = (struct rtrs_msg_conn_rsp) { .magic = cpu_to_le16(RTRS_MAGIC), .version = cpu_to_le16(RTRS_PROTO_VER), .errno = cpu_to_le16(errno), }; err = rdma_reject(cm_id, &msg, sizeof(msg), IB_CM_REJ_CONSUMER_DEFINED); if (err) pr_err("rdma_reject(), err: %d\n", err); /* Bounce errno back */ return errno; } static struct rtrs_srv_sess * __find_sess(struct rtrs_srv *srv, const uuid_t *sess_uuid) { struct rtrs_srv_sess *sess; list_for_each_entry(sess, &srv->paths_list, s.entry) { if (uuid_equal(&sess->s.uuid, sess_uuid)) return sess; } return NULL; } static int create_con(struct rtrs_srv_sess *sess, struct rdma_cm_id *cm_id, unsigned int cid) { struct rtrs_srv *srv = sess->srv; struct rtrs_sess *s = &sess->s; struct rtrs_srv_con *con; u32 cq_size, max_send_wr, max_recv_wr, wr_limit; int err, cq_vector; con = kzalloc(sizeof(*con), GFP_KERNEL); if (!con) { err = -ENOMEM; goto err; } spin_lock_init(&con->rsp_wr_wait_lock); INIT_LIST_HEAD(&con->rsp_wr_wait_list); con->c.cm_id = cm_id; con->c.sess = &sess->s; con->c.cid = cid; atomic_set(&con->wr_cnt, 1); if (con->c.cid == 0) { /* * All receive and all send (each requiring invalidate) * + 2 for drain and heartbeat */ max_send_wr = SERVICE_CON_QUEUE_DEPTH * 2 + 2; max_recv_wr = SERVICE_CON_QUEUE_DEPTH + 2; cq_size = max_send_wr + max_recv_wr; } else { /* * In theory we might have queue_depth * 32 * outstanding requests if an unsafe global key is used * and we have queue_depth read requests each consisting * of 32 different addresses. div 3 for mlx5. */ wr_limit = sess->s.dev->ib_dev->attrs.max_qp_wr / 3; /* when always_invlaidate enalbed, we need linv+rinv+mr+imm */ if (always_invalidate) max_send_wr = min_t(int, wr_limit, srv->queue_depth * (1 + 4) + 1); else max_send_wr = min_t(int, wr_limit, srv->queue_depth * (1 + 2) + 1); max_recv_wr = srv->queue_depth + 1; /* * If we have all receive requests posted and * all write requests posted and each read request * requires an invalidate request + drain * and qp gets into error state. */ cq_size = max_send_wr + max_recv_wr; } atomic_set(&con->sq_wr_avail, max_send_wr); cq_vector = rtrs_srv_get_next_cq_vector(sess); /* TODO: SOFTIRQ can be faster, but be careful with softirq context */ err = rtrs_cq_qp_create(&sess->s, &con->c, 1, cq_vector, cq_size, max_send_wr, max_recv_wr, IB_POLL_WORKQUEUE); if (err) { rtrs_err(s, "rtrs_cq_qp_create(), err: %d\n", err); goto free_con; } if (con->c.cid == 0) { err = post_recv_info_req(con); if (err) goto free_cqqp; } WARN_ON(sess->s.con[cid]); sess->s.con[cid] = &con->c; /* * Change context from server to current connection. The other * way is to use cm_id->qp->qp_context, which does not work on OFED. */ cm_id->context = &con->c; return 0; free_cqqp: rtrs_cq_qp_destroy(&con->c); free_con: kfree(con); err: return err; } static struct rtrs_srv_sess *__alloc_sess(struct rtrs_srv *srv, struct rdma_cm_id *cm_id, unsigned int con_num, unsigned int recon_cnt, const uuid_t *uuid) { struct rtrs_srv_sess *sess; int err = -ENOMEM; if (srv->paths_num >= MAX_PATHS_NUM) { err = -ECONNRESET; goto err; } if (__is_path_w_addr_exists(srv, &cm_id->route.addr)) { err = -EEXIST; pr_err("Path with same addr exists\n"); goto err; } sess = kzalloc(sizeof(*sess), GFP_KERNEL); if (!sess) goto err; sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL); if (!sess->stats) goto err_free_sess; sess->stats->sess = sess; sess->dma_addr = kcalloc(srv->queue_depth, sizeof(*sess->dma_addr), GFP_KERNEL); if (!sess->dma_addr) goto err_free_stats; sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL); if (!sess->s.con) goto err_free_dma_addr; sess->state = RTRS_SRV_CONNECTING; sess->srv = srv; sess->cur_cq_vector = -1; sess->s.dst_addr = cm_id->route.addr.dst_addr; sess->s.src_addr = cm_id->route.addr.src_addr; sess->s.con_num = con_num; sess->s.recon_cnt = recon_cnt; uuid_copy(&sess->s.uuid, uuid); spin_lock_init(&sess->state_lock); INIT_WORK(&sess->close_work, rtrs_srv_close_work); rtrs_srv_init_hb(sess); sess->s.dev = rtrs_ib_dev_find_or_add(cm_id->device, &dev_pd); if (!sess->s.dev) { err = -ENOMEM; goto err_free_con; } err = map_cont_bufs(sess); if (err) goto err_put_dev; err = rtrs_srv_alloc_ops_ids(sess); if (err) goto err_unmap_bufs; __add_path_to_srv(srv, sess); return sess; err_unmap_bufs: unmap_cont_bufs(sess); err_put_dev: rtrs_ib_dev_put(sess->s.dev); err_free_con: kfree(sess->s.con); err_free_dma_addr: kfree(sess->dma_addr); err_free_stats: kfree(sess->stats); err_free_sess: kfree(sess); err: return ERR_PTR(err); } static int rtrs_rdma_connect(struct rdma_cm_id *cm_id, const struct rtrs_msg_conn_req *msg, size_t len) { struct rtrs_srv_ctx *ctx = cm_id->context; struct rtrs_srv_sess *sess; struct rtrs_srv *srv; u16 version, con_num, cid; u16 recon_cnt; int err; if (len < sizeof(*msg)) { pr_err("Invalid RTRS connection request\n"); goto reject_w_econnreset; } if (le16_to_cpu(msg->magic) != RTRS_MAGIC) { pr_err("Invalid RTRS magic\n"); goto reject_w_econnreset; } version = le16_to_cpu(msg->version); if (version >> 8 != RTRS_PROTO_VER_MAJOR) { pr_err("Unsupported major RTRS version: %d, expected %d\n", version >> 8, RTRS_PROTO_VER_MAJOR); goto reject_w_econnreset; } con_num = le16_to_cpu(msg->cid_num); if (con_num > 4096) { /* Sanity check */ pr_err("Too many connections requested: %d\n", con_num); goto reject_w_econnreset; } cid = le16_to_cpu(msg->cid); if (cid >= con_num) { /* Sanity check */ pr_err("Incorrect cid: %d >= %d\n", cid, con_num); goto reject_w_econnreset; } recon_cnt = le16_to_cpu(msg->recon_cnt); srv = get_or_create_srv(ctx, &msg->paths_uuid, msg->first_conn); if (IS_ERR(srv)) { err = PTR_ERR(srv); goto reject_w_err; } mutex_lock(&srv->paths_mutex); sess = __find_sess(srv, &msg->sess_uuid); if (sess) { struct rtrs_sess *s = &sess->s; /* Session already holds a reference */ put_srv(srv); if (sess->state != RTRS_SRV_CONNECTING) { rtrs_err(s, "Session in wrong state: %s\n", rtrs_srv_state_str(sess->state)); mutex_unlock(&srv->paths_mutex); goto reject_w_econnreset; } /* * Sanity checks */ if (con_num != s->con_num || cid >= s->con_num) { rtrs_err(s, "Incorrect request: %d, %d\n", cid, con_num); mutex_unlock(&srv->paths_mutex); goto reject_w_econnreset; } if (s->con[cid]) { rtrs_err(s, "Connection already exists: %d\n", cid); mutex_unlock(&srv->paths_mutex); goto reject_w_econnreset; } } else { sess = __alloc_sess(srv, cm_id, con_num, recon_cnt, &msg->sess_uuid); if (IS_ERR(sess)) { mutex_unlock(&srv->paths_mutex); put_srv(srv); err = PTR_ERR(sess); goto reject_w_err; } } err = create_con(sess, cm_id, cid); if (err) { (void)rtrs_rdma_do_reject(cm_id, err); /* * Since session has other connections we follow normal way * through workqueue, but still return an error to tell cma.c * to call rdma_destroy_id() for current connection. */ goto close_and_return_err; } err = rtrs_rdma_do_accept(sess, cm_id); if (err) { (void)rtrs_rdma_do_reject(cm_id, err); /* * Since current connection was successfully added to the * session we follow normal way through workqueue to close the * session, thus return 0 to tell cma.c we call * rdma_destroy_id() ourselves. */ err = 0; goto close_and_return_err; } mutex_unlock(&srv->paths_mutex); return 0; reject_w_err: return rtrs_rdma_do_reject(cm_id, err); reject_w_econnreset: return rtrs_rdma_do_reject(cm_id, -ECONNRESET); close_and_return_err: mutex_unlock(&srv->paths_mutex); close_sess(sess); return err; } static int rtrs_srv_rdma_cm_handler(struct rdma_cm_id *cm_id, struct rdma_cm_event *ev) { struct rtrs_srv_sess *sess = NULL; struct rtrs_sess *s = NULL; if (ev->event != RDMA_CM_EVENT_CONNECT_REQUEST) { struct rtrs_con *c = cm_id->context; s = c->sess; sess = to_srv_sess(s); } switch (ev->event) { case RDMA_CM_EVENT_CONNECT_REQUEST: /* * In case of error cma.c will destroy cm_id, * see cma_process_remove() */ return rtrs_rdma_connect(cm_id, ev->param.conn.private_data, ev->param.conn.private_data_len); case RDMA_CM_EVENT_ESTABLISHED: /* Nothing here */ break; case RDMA_CM_EVENT_REJECTED: case RDMA_CM_EVENT_CONNECT_ERROR: case RDMA_CM_EVENT_UNREACHABLE: rtrs_err(s, "CM error (CM event: %s, err: %d)\n", rdma_event_msg(ev->event), ev->status); close_sess(sess); break; case RDMA_CM_EVENT_DISCONNECTED: case RDMA_CM_EVENT_ADDR_CHANGE: case RDMA_CM_EVENT_TIMEWAIT_EXIT: close_sess(sess); break; case RDMA_CM_EVENT_DEVICE_REMOVAL: close_sess(sess); break; default: pr_err("Ignoring unexpected CM event %s, err %d\n", rdma_event_msg(ev->event), ev->status); break; } return 0; } static struct rdma_cm_id *rtrs_srv_cm_init(struct rtrs_srv_ctx *ctx, struct sockaddr *addr, enum rdma_ucm_port_space ps) { struct rdma_cm_id *cm_id; int ret; cm_id = rdma_create_id(&init_net, rtrs_srv_rdma_cm_handler, ctx, ps, IB_QPT_RC); if (IS_ERR(cm_id)) { ret = PTR_ERR(cm_id); pr_err("Creating id for RDMA connection failed, err: %d\n", ret); goto err_out; } ret = rdma_bind_addr(cm_id, addr); if (ret) { pr_err("Binding RDMA address failed, err: %d\n", ret); goto err_cm; } ret = rdma_listen(cm_id, 64); if (ret) { pr_err("Listening on RDMA connection failed, err: %d\n", ret); goto err_cm; } return cm_id; err_cm: rdma_destroy_id(cm_id); err_out: return ERR_PTR(ret); } static int rtrs_srv_rdma_init(struct rtrs_srv_ctx *ctx, u16 port) { struct sockaddr_in6 sin = { .sin6_family = AF_INET6, .sin6_addr = IN6ADDR_ANY_INIT, .sin6_port = htons(port), }; struct sockaddr_ib sib = { .sib_family = AF_IB, .sib_sid = cpu_to_be64(RDMA_IB_IP_PS_IB | port), .sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL), .sib_pkey = cpu_to_be16(0xffff), }; struct rdma_cm_id *cm_ip, *cm_ib; int ret; /* * We accept both IPoIB and IB connections, so we need to keep * two cm id's, one for each socket type and port space. * If the cm initialization of one of the id's fails, we abort * everything. */ cm_ip = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sin, RDMA_PS_TCP); if (IS_ERR(cm_ip)) return PTR_ERR(cm_ip); cm_ib = rtrs_srv_cm_init(ctx, (struct sockaddr *)&sib, RDMA_PS_IB); if (IS_ERR(cm_ib)) { ret = PTR_ERR(cm_ib); goto free_cm_ip; } ctx->cm_id_ip = cm_ip; ctx->cm_id_ib = cm_ib; return 0; free_cm_ip: rdma_destroy_id(cm_ip); return ret; } static struct rtrs_srv_ctx *alloc_srv_ctx(struct rtrs_srv_ops *ops) { struct rtrs_srv_ctx *ctx; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return NULL; ctx->ops = *ops; mutex_init(&ctx->srv_mutex); INIT_LIST_HEAD(&ctx->srv_list); return ctx; } static void free_srv_ctx(struct rtrs_srv_ctx *ctx) { WARN_ON(!list_empty(&ctx->srv_list)); mutex_destroy(&ctx->srv_mutex); kfree(ctx); } static int rtrs_srv_add_one(struct ib_device *device) { struct rtrs_srv_ctx *ctx; int ret = 0; mutex_lock(&ib_ctx.ib_dev_mutex); if (ib_ctx.ib_dev_count) goto out; /* * Since our CM IDs are NOT bound to any ib device we will create them * only once */ ctx = ib_ctx.srv_ctx; ret = rtrs_srv_rdma_init(ctx, ib_ctx.port); if (ret) { /* * We errored out here. * According to the ib code, if we encounter an error here then the * error code is ignored, and no more calls to our ops are made. */ pr_err("Failed to initialize RDMA connection"); goto err_out; } out: /* * Keep a track on the number of ib devices added */ ib_ctx.ib_dev_count++; err_out: mutex_unlock(&ib_ctx.ib_dev_mutex); return ret; } static void rtrs_srv_remove_one(struct ib_device *device, void *client_data) { struct rtrs_srv_ctx *ctx; mutex_lock(&ib_ctx.ib_dev_mutex); ib_ctx.ib_dev_count--; if (ib_ctx.ib_dev_count) goto out; /* * Since our CM IDs are NOT bound to any ib device we will remove them * only once, when the last device is removed */ ctx = ib_ctx.srv_ctx; rdma_destroy_id(ctx->cm_id_ip); rdma_destroy_id(ctx->cm_id_ib); out: mutex_unlock(&ib_ctx.ib_dev_mutex); } static struct ib_client rtrs_srv_client = { .name = "rtrs_server", .add = rtrs_srv_add_one, .remove = rtrs_srv_remove_one }; /** * rtrs_srv_open() - open RTRS server context * @ops: callback functions * @port: port to listen on * * Creates server context with specified callbacks. * * Return a valid pointer on success otherwise PTR_ERR. */ struct rtrs_srv_ctx *rtrs_srv_open(struct rtrs_srv_ops *ops, u16 port) { struct rtrs_srv_ctx *ctx; int err; ctx = alloc_srv_ctx(ops); if (!ctx) return ERR_PTR(-ENOMEM); mutex_init(&ib_ctx.ib_dev_mutex); ib_ctx.srv_ctx = ctx; ib_ctx.port = port; err = ib_register_client(&rtrs_srv_client); if (err) { free_srv_ctx(ctx); return ERR_PTR(err); } return ctx; } EXPORT_SYMBOL(rtrs_srv_open); static void close_sessions(struct rtrs_srv *srv) { struct rtrs_srv_sess *sess; mutex_lock(&srv->paths_mutex); list_for_each_entry(sess, &srv->paths_list, s.entry) close_sess(sess); mutex_unlock(&srv->paths_mutex); } static void close_ctx(struct rtrs_srv_ctx *ctx) { struct rtrs_srv *srv; mutex_lock(&ctx->srv_mutex); list_for_each_entry(srv, &ctx->srv_list, ctx_list) close_sessions(srv); mutex_unlock(&ctx->srv_mutex); flush_workqueue(rtrs_wq); } /** * rtrs_srv_close() - close RTRS server context * @ctx: pointer to server context * * Closes RTRS server context with all client sessions. */ void rtrs_srv_close(struct rtrs_srv_ctx *ctx) { ib_unregister_client(&rtrs_srv_client); mutex_destroy(&ib_ctx.ib_dev_mutex); close_ctx(ctx); free_srv_ctx(ctx); } EXPORT_SYMBOL(rtrs_srv_close); static int check_module_params(void) { if (sess_queue_depth < 1 || sess_queue_depth > MAX_SESS_QUEUE_DEPTH) { pr_err("Invalid sess_queue_depth value %d, has to be >= %d, <= %d.\n", sess_queue_depth, 1, MAX_SESS_QUEUE_DEPTH); return -EINVAL; } if (max_chunk_size < MIN_CHUNK_SIZE || !is_power_of_2(max_chunk_size)) { pr_err("Invalid max_chunk_size value %d, has to be >= %d and should be power of two.\n", max_chunk_size, MIN_CHUNK_SIZE); return -EINVAL; } /* * Check if IB immediate data size is enough to hold the mem_id and the * offset inside the memory chunk */ if ((ilog2(sess_queue_depth - 1) + 1) + (ilog2(max_chunk_size - 1) + 1) > MAX_IMM_PAYL_BITS) { pr_err("RDMA immediate size (%db) not enough to encode %d buffers of size %dB. Reduce 'sess_queue_depth' or 'max_chunk_size' parameters.\n", MAX_IMM_PAYL_BITS, sess_queue_depth, max_chunk_size); return -EINVAL; } return 0; } static int __init rtrs_server_init(void) { int err; pr_info("Loading module %s, proto %s: (max_chunk_size: %d (pure IO %ld, headers %ld) , sess_queue_depth: %d, always_invalidate: %d)\n", KBUILD_MODNAME, RTRS_PROTO_VER_STRING, max_chunk_size, max_chunk_size - MAX_HDR_SIZE, MAX_HDR_SIZE, sess_queue_depth, always_invalidate); rtrs_rdma_dev_pd_init(0, &dev_pd); err = check_module_params(); if (err) { pr_err("Failed to load module, invalid module parameters, err: %d\n", err); return err; } chunk_pool = mempool_create_page_pool(sess_queue_depth * CHUNK_POOL_SZ, get_order(max_chunk_size)); if (!chunk_pool) return -ENOMEM; rtrs_dev_class = class_create(THIS_MODULE, "rtrs-server"); if (IS_ERR(rtrs_dev_class)) { err = PTR_ERR(rtrs_dev_class); goto out_chunk_pool; } rtrs_wq = alloc_workqueue("rtrs_server_wq", 0, 0); if (!rtrs_wq) { err = -ENOMEM; goto out_dev_class; } return 0; out_dev_class: class_destroy(rtrs_dev_class); out_chunk_pool: mempool_destroy(chunk_pool); return err; } static void __exit rtrs_server_exit(void) { destroy_workqueue(rtrs_wq); class_destroy(rtrs_dev_class); mempool_destroy(chunk_pool); rtrs_rdma_dev_pd_deinit(&dev_pd); } module_init(rtrs_server_init); module_exit(rtrs_server_exit);