// SPDX-License-Identifier: GPL-2.0 /* * Driver for Renesas R-Car MIPI CSI-2 Receiver * * Copyright (C) 2018 Renesas Electronics Corp. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct rcar_csi2; /* Register offsets and bits */ /* Control Timing Select */ #define TREF_REG 0x00 #define TREF_TREF BIT(0) /* Software Reset */ #define SRST_REG 0x04 #define SRST_SRST BIT(0) /* PHY Operation Control */ #define PHYCNT_REG 0x08 #define PHYCNT_SHUTDOWNZ BIT(17) #define PHYCNT_RSTZ BIT(16) #define PHYCNT_ENABLECLK BIT(4) #define PHYCNT_ENABLE_3 BIT(3) #define PHYCNT_ENABLE_2 BIT(2) #define PHYCNT_ENABLE_1 BIT(1) #define PHYCNT_ENABLE_0 BIT(0) /* Checksum Control */ #define CHKSUM_REG 0x0c #define CHKSUM_ECC_EN BIT(1) #define CHKSUM_CRC_EN BIT(0) /* * Channel Data Type Select * VCDT[0-15]: Channel 0 VCDT[16-31]: Channel 1 * VCDT2[0-15]: Channel 2 VCDT2[16-31]: Channel 3 */ #define VCDT_REG 0x10 #define VCDT2_REG 0x14 #define VCDT_VCDTN_EN BIT(15) #define VCDT_SEL_VC(n) (((n) & 0x3) << 8) #define VCDT_SEL_DTN_ON BIT(6) #define VCDT_SEL_DT(n) (((n) & 0x3f) << 0) /* Frame Data Type Select */ #define FRDT_REG 0x18 /* Field Detection Control */ #define FLD_REG 0x1c #define FLD_FLD_NUM(n) (((n) & 0xff) << 16) #define FLD_DET_SEL(n) (((n) & 0x3) << 4) #define FLD_FLD_EN4 BIT(3) #define FLD_FLD_EN3 BIT(2) #define FLD_FLD_EN2 BIT(1) #define FLD_FLD_EN BIT(0) /* Automatic Standby Control */ #define ASTBY_REG 0x20 /* Long Data Type Setting 0 */ #define LNGDT0_REG 0x28 /* Long Data Type Setting 1 */ #define LNGDT1_REG 0x2c /* Interrupt Enable */ #define INTEN_REG 0x30 #define INTEN_INT_AFIFO_OF BIT(27) #define INTEN_INT_ERRSOTHS BIT(4) #define INTEN_INT_ERRSOTSYNCHS BIT(3) /* Interrupt Source Mask */ #define INTCLOSE_REG 0x34 /* Interrupt Status Monitor */ #define INTSTATE_REG 0x38 #define INTSTATE_INT_ULPS_START BIT(7) #define INTSTATE_INT_ULPS_END BIT(6) /* Interrupt Error Status Monitor */ #define INTERRSTATE_REG 0x3c /* Short Packet Data */ #define SHPDAT_REG 0x40 /* Short Packet Count */ #define SHPCNT_REG 0x44 /* LINK Operation Control */ #define LINKCNT_REG 0x48 #define LINKCNT_MONITOR_EN BIT(31) #define LINKCNT_REG_MONI_PACT_EN BIT(25) #define LINKCNT_ICLK_NONSTOP BIT(24) /* Lane Swap */ #define LSWAP_REG 0x4c #define LSWAP_L3SEL(n) (((n) & 0x3) << 6) #define LSWAP_L2SEL(n) (((n) & 0x3) << 4) #define LSWAP_L1SEL(n) (((n) & 0x3) << 2) #define LSWAP_L0SEL(n) (((n) & 0x3) << 0) /* PHY Test Interface Write Register */ #define PHTW_REG 0x50 #define PHTW_DWEN BIT(24) #define PHTW_TESTDIN_DATA(n) (((n & 0xff)) << 16) #define PHTW_CWEN BIT(8) #define PHTW_TESTDIN_CODE(n) ((n & 0xff)) struct phtw_value { u16 data; u16 code; }; struct rcsi2_mbps_reg { u16 mbps; u16 reg; }; static const struct rcsi2_mbps_reg phtw_mbps_h3_v3h_m3n[] = { { .mbps = 80, .reg = 0x86 }, { .mbps = 90, .reg = 0x86 }, { .mbps = 100, .reg = 0x87 }, { .mbps = 110, .reg = 0x87 }, { .mbps = 120, .reg = 0x88 }, { .mbps = 130, .reg = 0x88 }, { .mbps = 140, .reg = 0x89 }, { .mbps = 150, .reg = 0x89 }, { .mbps = 160, .reg = 0x8a }, { .mbps = 170, .reg = 0x8a }, { .mbps = 180, .reg = 0x8b }, { .mbps = 190, .reg = 0x8b }, { .mbps = 205, .reg = 0x8c }, { .mbps = 220, .reg = 0x8d }, { .mbps = 235, .reg = 0x8e }, { .mbps = 250, .reg = 0x8e }, { /* sentinel */ }, }; static const struct rcsi2_mbps_reg phtw_mbps_v3m_e3[] = { { .mbps = 80, .reg = 0x00 }, { .mbps = 90, .reg = 0x20 }, { .mbps = 100, .reg = 0x40 }, { .mbps = 110, .reg = 0x02 }, { .mbps = 130, .reg = 0x22 }, { .mbps = 140, .reg = 0x42 }, { .mbps = 150, .reg = 0x04 }, { .mbps = 170, .reg = 0x24 }, { .mbps = 180, .reg = 0x44 }, { .mbps = 200, .reg = 0x06 }, { .mbps = 220, .reg = 0x26 }, { .mbps = 240, .reg = 0x46 }, { .mbps = 250, .reg = 0x08 }, { .mbps = 270, .reg = 0x28 }, { .mbps = 300, .reg = 0x0a }, { .mbps = 330, .reg = 0x2a }, { .mbps = 360, .reg = 0x4a }, { .mbps = 400, .reg = 0x0c }, { .mbps = 450, .reg = 0x2c }, { .mbps = 500, .reg = 0x0e }, { .mbps = 550, .reg = 0x2e }, { .mbps = 600, .reg = 0x10 }, { .mbps = 650, .reg = 0x30 }, { .mbps = 700, .reg = 0x12 }, { .mbps = 750, .reg = 0x32 }, { .mbps = 800, .reg = 0x52 }, { .mbps = 850, .reg = 0x72 }, { .mbps = 900, .reg = 0x14 }, { .mbps = 950, .reg = 0x34 }, { .mbps = 1000, .reg = 0x54 }, { .mbps = 1050, .reg = 0x74 }, { .mbps = 1125, .reg = 0x16 }, { /* sentinel */ }, }; /* PHY Test Interface Clear */ #define PHTC_REG 0x58 #define PHTC_TESTCLR BIT(0) /* PHY Frequency Control */ #define PHYPLL_REG 0x68 #define PHYPLL_HSFREQRANGE(n) ((n) << 16) static const struct rcsi2_mbps_reg hsfreqrange_h3_v3h_m3n[] = { { .mbps = 80, .reg = 0x00 }, { .mbps = 90, .reg = 0x10 }, { .mbps = 100, .reg = 0x20 }, { .mbps = 110, .reg = 0x30 }, { .mbps = 120, .reg = 0x01 }, { .mbps = 130, .reg = 0x11 }, { .mbps = 140, .reg = 0x21 }, { .mbps = 150, .reg = 0x31 }, { .mbps = 160, .reg = 0x02 }, { .mbps = 170, .reg = 0x12 }, { .mbps = 180, .reg = 0x22 }, { .mbps = 190, .reg = 0x32 }, { .mbps = 205, .reg = 0x03 }, { .mbps = 220, .reg = 0x13 }, { .mbps = 235, .reg = 0x23 }, { .mbps = 250, .reg = 0x33 }, { .mbps = 275, .reg = 0x04 }, { .mbps = 300, .reg = 0x14 }, { .mbps = 325, .reg = 0x25 }, { .mbps = 350, .reg = 0x35 }, { .mbps = 400, .reg = 0x05 }, { .mbps = 450, .reg = 0x16 }, { .mbps = 500, .reg = 0x26 }, { .mbps = 550, .reg = 0x37 }, { .mbps = 600, .reg = 0x07 }, { .mbps = 650, .reg = 0x18 }, { .mbps = 700, .reg = 0x28 }, { .mbps = 750, .reg = 0x39 }, { .mbps = 800, .reg = 0x09 }, { .mbps = 850, .reg = 0x19 }, { .mbps = 900, .reg = 0x29 }, { .mbps = 950, .reg = 0x3a }, { .mbps = 1000, .reg = 0x0a }, { .mbps = 1050, .reg = 0x1a }, { .mbps = 1100, .reg = 0x2a }, { .mbps = 1150, .reg = 0x3b }, { .mbps = 1200, .reg = 0x0b }, { .mbps = 1250, .reg = 0x1b }, { .mbps = 1300, .reg = 0x2b }, { .mbps = 1350, .reg = 0x3c }, { .mbps = 1400, .reg = 0x0c }, { .mbps = 1450, .reg = 0x1c }, { .mbps = 1500, .reg = 0x2c }, { /* sentinel */ }, }; static const struct rcsi2_mbps_reg hsfreqrange_m3w_h3es1[] = { { .mbps = 80, .reg = 0x00 }, { .mbps = 90, .reg = 0x10 }, { .mbps = 100, .reg = 0x20 }, { .mbps = 110, .reg = 0x30 }, { .mbps = 120, .reg = 0x01 }, { .mbps = 130, .reg = 0x11 }, { .mbps = 140, .reg = 0x21 }, { .mbps = 150, .reg = 0x31 }, { .mbps = 160, .reg = 0x02 }, { .mbps = 170, .reg = 0x12 }, { .mbps = 180, .reg = 0x22 }, { .mbps = 190, .reg = 0x32 }, { .mbps = 205, .reg = 0x03 }, { .mbps = 220, .reg = 0x13 }, { .mbps = 235, .reg = 0x23 }, { .mbps = 250, .reg = 0x33 }, { .mbps = 275, .reg = 0x04 }, { .mbps = 300, .reg = 0x14 }, { .mbps = 325, .reg = 0x05 }, { .mbps = 350, .reg = 0x15 }, { .mbps = 400, .reg = 0x25 }, { .mbps = 450, .reg = 0x06 }, { .mbps = 500, .reg = 0x16 }, { .mbps = 550, .reg = 0x07 }, { .mbps = 600, .reg = 0x17 }, { .mbps = 650, .reg = 0x08 }, { .mbps = 700, .reg = 0x18 }, { .mbps = 750, .reg = 0x09 }, { .mbps = 800, .reg = 0x19 }, { .mbps = 850, .reg = 0x29 }, { .mbps = 900, .reg = 0x39 }, { .mbps = 950, .reg = 0x0a }, { .mbps = 1000, .reg = 0x1a }, { .mbps = 1050, .reg = 0x2a }, { .mbps = 1100, .reg = 0x3a }, { .mbps = 1150, .reg = 0x0b }, { .mbps = 1200, .reg = 0x1b }, { .mbps = 1250, .reg = 0x2b }, { .mbps = 1300, .reg = 0x3b }, { .mbps = 1350, .reg = 0x0c }, { .mbps = 1400, .reg = 0x1c }, { .mbps = 1450, .reg = 0x2c }, { .mbps = 1500, .reg = 0x3c }, { /* sentinel */ }, }; /* PHY ESC Error Monitor */ #define PHEERM_REG 0x74 /* PHY Clock Lane Monitor */ #define PHCLM_REG 0x78 #define PHCLM_STOPSTATECKL BIT(0) /* PHY Data Lane Monitor */ #define PHDLM_REG 0x7c /* CSI0CLK Frequency Configuration Preset Register */ #define CSI0CLKFCPR_REG 0x260 #define CSI0CLKFREQRANGE(n) ((n & 0x3f) << 16) struct rcar_csi2_format { u32 code; unsigned int datatype; unsigned int bpp; }; static const struct rcar_csi2_format rcar_csi2_formats[] = { { .code = MEDIA_BUS_FMT_RGB888_1X24, .datatype = 0x24, .bpp = 24 }, { .code = MEDIA_BUS_FMT_UYVY8_1X16, .datatype = 0x1e, .bpp = 16 }, { .code = MEDIA_BUS_FMT_YUYV8_1X16, .datatype = 0x1e, .bpp = 16 }, { .code = MEDIA_BUS_FMT_UYVY8_2X8, .datatype = 0x1e, .bpp = 16 }, { .code = MEDIA_BUS_FMT_YUYV10_2X10, .datatype = 0x1e, .bpp = 20 }, { .code = MEDIA_BUS_FMT_SBGGR8_1X8, .datatype = 0x2a, .bpp = 8 }, { .code = MEDIA_BUS_FMT_SGBRG8_1X8, .datatype = 0x2a, .bpp = 8 }, { .code = MEDIA_BUS_FMT_SGRBG8_1X8, .datatype = 0x2a, .bpp = 8 }, { .code = MEDIA_BUS_FMT_SRGGB8_1X8, .datatype = 0x2a, .bpp = 8 }, }; static const struct rcar_csi2_format *rcsi2_code_to_fmt(unsigned int code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(rcar_csi2_formats); i++) if (rcar_csi2_formats[i].code == code) return &rcar_csi2_formats[i]; return NULL; } enum rcar_csi2_pads { RCAR_CSI2_SINK, RCAR_CSI2_SOURCE_VC0, RCAR_CSI2_SOURCE_VC1, RCAR_CSI2_SOURCE_VC2, RCAR_CSI2_SOURCE_VC3, NR_OF_RCAR_CSI2_PAD, }; struct rcar_csi2_info { int (*init_phtw)(struct rcar_csi2 *priv, unsigned int mbps); int (*phy_post_init)(struct rcar_csi2 *priv); const struct rcsi2_mbps_reg *hsfreqrange; unsigned int csi0clkfreqrange; unsigned int num_channels; bool clear_ulps; }; struct rcar_csi2 { struct device *dev; void __iomem *base; const struct rcar_csi2_info *info; struct reset_control *rstc; struct v4l2_subdev subdev; struct media_pad pads[NR_OF_RCAR_CSI2_PAD]; struct v4l2_async_notifier notifier; struct v4l2_subdev *remote; unsigned int remote_pad; struct v4l2_mbus_framefmt mf; struct mutex lock; int stream_count; unsigned short lanes; unsigned char lane_swap[4]; }; static inline struct rcar_csi2 *sd_to_csi2(struct v4l2_subdev *sd) { return container_of(sd, struct rcar_csi2, subdev); } static inline struct rcar_csi2 *notifier_to_csi2(struct v4l2_async_notifier *n) { return container_of(n, struct rcar_csi2, notifier); } static u32 rcsi2_read(struct rcar_csi2 *priv, unsigned int reg) { return ioread32(priv->base + reg); } static void rcsi2_write(struct rcar_csi2 *priv, unsigned int reg, u32 data) { iowrite32(data, priv->base + reg); } static void rcsi2_enter_standby(struct rcar_csi2 *priv) { rcsi2_write(priv, PHYCNT_REG, 0); rcsi2_write(priv, PHTC_REG, PHTC_TESTCLR); reset_control_assert(priv->rstc); usleep_range(100, 150); pm_runtime_put(priv->dev); } static void rcsi2_exit_standby(struct rcar_csi2 *priv) { pm_runtime_get_sync(priv->dev); reset_control_deassert(priv->rstc); } static int rcsi2_wait_phy_start(struct rcar_csi2 *priv, unsigned int lanes) { unsigned int timeout; /* Wait for the clock and data lanes to enter LP-11 state. */ for (timeout = 0; timeout <= 20; timeout++) { const u32 lane_mask = (1 << lanes) - 1; if ((rcsi2_read(priv, PHCLM_REG) & PHCLM_STOPSTATECKL) && (rcsi2_read(priv, PHDLM_REG) & lane_mask) == lane_mask) return 0; usleep_range(1000, 2000); } dev_err(priv->dev, "Timeout waiting for LP-11 state\n"); return -ETIMEDOUT; } static int rcsi2_set_phypll(struct rcar_csi2 *priv, unsigned int mbps) { const struct rcsi2_mbps_reg *hsfreq; const struct rcsi2_mbps_reg *hsfreq_prev = NULL; for (hsfreq = priv->info->hsfreqrange; hsfreq->mbps != 0; hsfreq++) { if (hsfreq->mbps >= mbps) break; hsfreq_prev = hsfreq; } if (!hsfreq->mbps) { dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps); return -ERANGE; } if (hsfreq_prev && ((mbps - hsfreq_prev->mbps) <= (hsfreq->mbps - mbps))) hsfreq = hsfreq_prev; rcsi2_write(priv, PHYPLL_REG, PHYPLL_HSFREQRANGE(hsfreq->reg)); return 0; } static int rcsi2_calc_mbps(struct rcar_csi2 *priv, unsigned int bpp, unsigned int lanes) { struct v4l2_subdev *source; struct v4l2_ctrl *ctrl; u64 mbps; if (!priv->remote) return -ENODEV; source = priv->remote; /* Read the pixel rate control from remote. */ ctrl = v4l2_ctrl_find(source->ctrl_handler, V4L2_CID_PIXEL_RATE); if (!ctrl) { dev_err(priv->dev, "no pixel rate control in subdev %s\n", source->name); return -EINVAL; } /* * Calculate the phypll in mbps. * link_freq = (pixel_rate * bits_per_sample) / (2 * nr_of_lanes) * bps = link_freq * 2 */ mbps = v4l2_ctrl_g_ctrl_int64(ctrl) * bpp; do_div(mbps, lanes * 1000000); return mbps; } static int rcsi2_get_active_lanes(struct rcar_csi2 *priv, unsigned int *lanes) { struct v4l2_mbus_config mbus_config = { 0 }; unsigned int num_lanes = UINT_MAX; int ret; *lanes = priv->lanes; ret = v4l2_subdev_call(priv->remote, pad, get_mbus_config, priv->remote_pad, &mbus_config); if (ret == -ENOIOCTLCMD) { dev_dbg(priv->dev, "No remote mbus configuration available\n"); return 0; } if (ret) { dev_err(priv->dev, "Failed to get remote mbus configuration\n"); return ret; } if (mbus_config.type != V4L2_MBUS_CSI2_DPHY) { dev_err(priv->dev, "Unsupported media bus type %u\n", mbus_config.type); return -EINVAL; } if (mbus_config.flags & V4L2_MBUS_CSI2_1_LANE) num_lanes = 1; else if (mbus_config.flags & V4L2_MBUS_CSI2_2_LANE) num_lanes = 2; else if (mbus_config.flags & V4L2_MBUS_CSI2_3_LANE) num_lanes = 3; else if (mbus_config.flags & V4L2_MBUS_CSI2_4_LANE) num_lanes = 4; if (num_lanes > priv->lanes) { dev_err(priv->dev, "Unsupported mbus config: too many data lanes %u\n", num_lanes); return -EINVAL; } *lanes = num_lanes; return 0; } static int rcsi2_start_receiver(struct rcar_csi2 *priv) { const struct rcar_csi2_format *format; u32 phycnt, vcdt = 0, vcdt2 = 0, fld = 0; unsigned int lanes; unsigned int i; int mbps, ret; dev_dbg(priv->dev, "Input size (%ux%u%c)\n", priv->mf.width, priv->mf.height, priv->mf.field == V4L2_FIELD_NONE ? 'p' : 'i'); /* Code is validated in set_fmt. */ format = rcsi2_code_to_fmt(priv->mf.code); if (!format) return -EINVAL; /* * Enable all supported CSI-2 channels with virtual channel and * data type matching. * * NOTE: It's not possible to get individual datatype for each * source virtual channel. Once this is possible in V4L2 * it should be used here. */ for (i = 0; i < priv->info->num_channels; i++) { u32 vcdt_part; vcdt_part = VCDT_SEL_VC(i) | VCDT_VCDTN_EN | VCDT_SEL_DTN_ON | VCDT_SEL_DT(format->datatype); /* Store in correct reg and offset. */ if (i < 2) vcdt |= vcdt_part << ((i % 2) * 16); else vcdt2 |= vcdt_part << ((i % 2) * 16); } if (priv->mf.field == V4L2_FIELD_ALTERNATE) { fld = FLD_DET_SEL(1) | FLD_FLD_EN4 | FLD_FLD_EN3 | FLD_FLD_EN2 | FLD_FLD_EN; if (priv->mf.height == 240) fld |= FLD_FLD_NUM(0); else fld |= FLD_FLD_NUM(1); } /* * Get the number of active data lanes inspecting the remote mbus * configuration. */ ret = rcsi2_get_active_lanes(priv, &lanes); if (ret) return ret; phycnt = PHYCNT_ENABLECLK; phycnt |= (1 << lanes) - 1; mbps = rcsi2_calc_mbps(priv, format->bpp, lanes); if (mbps < 0) return mbps; /* Enable interrupts. */ rcsi2_write(priv, INTEN_REG, INTEN_INT_AFIFO_OF | INTEN_INT_ERRSOTHS | INTEN_INT_ERRSOTSYNCHS); /* Init */ rcsi2_write(priv, TREF_REG, TREF_TREF); rcsi2_write(priv, PHTC_REG, 0); /* Configure */ rcsi2_write(priv, VCDT_REG, vcdt); if (vcdt2) rcsi2_write(priv, VCDT2_REG, vcdt2); /* Lanes are zero indexed. */ rcsi2_write(priv, LSWAP_REG, LSWAP_L0SEL(priv->lane_swap[0] - 1) | LSWAP_L1SEL(priv->lane_swap[1] - 1) | LSWAP_L2SEL(priv->lane_swap[2] - 1) | LSWAP_L3SEL(priv->lane_swap[3] - 1)); /* Start */ if (priv->info->init_phtw) { ret = priv->info->init_phtw(priv, mbps); if (ret) return ret; } if (priv->info->hsfreqrange) { ret = rcsi2_set_phypll(priv, mbps); if (ret) return ret; } if (priv->info->csi0clkfreqrange) rcsi2_write(priv, CSI0CLKFCPR_REG, CSI0CLKFREQRANGE(priv->info->csi0clkfreqrange)); rcsi2_write(priv, PHYCNT_REG, phycnt); rcsi2_write(priv, LINKCNT_REG, LINKCNT_MONITOR_EN | LINKCNT_REG_MONI_PACT_EN | LINKCNT_ICLK_NONSTOP); rcsi2_write(priv, FLD_REG, fld); rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ); rcsi2_write(priv, PHYCNT_REG, phycnt | PHYCNT_SHUTDOWNZ | PHYCNT_RSTZ); ret = rcsi2_wait_phy_start(priv, lanes); if (ret) return ret; /* Run post PHY start initialization, if needed. */ if (priv->info->phy_post_init) { ret = priv->info->phy_post_init(priv); if (ret) return ret; } /* Clear Ultra Low Power interrupt. */ if (priv->info->clear_ulps) rcsi2_write(priv, INTSTATE_REG, INTSTATE_INT_ULPS_START | INTSTATE_INT_ULPS_END); return 0; } static int rcsi2_start(struct rcar_csi2 *priv) { int ret; rcsi2_exit_standby(priv); ret = rcsi2_start_receiver(priv); if (ret) { rcsi2_enter_standby(priv); return ret; } ret = v4l2_subdev_call(priv->remote, video, s_stream, 1); if (ret) { rcsi2_enter_standby(priv); return ret; } return 0; } static void rcsi2_stop(struct rcar_csi2 *priv) { rcsi2_enter_standby(priv); v4l2_subdev_call(priv->remote, video, s_stream, 0); } static int rcsi2_s_stream(struct v4l2_subdev *sd, int enable) { struct rcar_csi2 *priv = sd_to_csi2(sd); int ret = 0; mutex_lock(&priv->lock); if (!priv->remote) { ret = -ENODEV; goto out; } if (enable && priv->stream_count == 0) { ret = rcsi2_start(priv); if (ret) goto out; } else if (!enable && priv->stream_count == 1) { rcsi2_stop(priv); } priv->stream_count += enable ? 1 : -1; out: mutex_unlock(&priv->lock); return ret; } static int rcsi2_set_pad_format(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *format) { struct rcar_csi2 *priv = sd_to_csi2(sd); struct v4l2_mbus_framefmt *framefmt; if (!rcsi2_code_to_fmt(format->format.code)) format->format.code = rcar_csi2_formats[0].code; if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) { priv->mf = format->format; } else { framefmt = v4l2_subdev_get_try_format(sd, cfg, 0); *framefmt = format->format; } return 0; } static int rcsi2_get_pad_format(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *format) { struct rcar_csi2 *priv = sd_to_csi2(sd); if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) format->format = priv->mf; else format->format = *v4l2_subdev_get_try_format(sd, cfg, 0); return 0; } static const struct v4l2_subdev_video_ops rcar_csi2_video_ops = { .s_stream = rcsi2_s_stream, }; static const struct v4l2_subdev_pad_ops rcar_csi2_pad_ops = { .set_fmt = rcsi2_set_pad_format, .get_fmt = rcsi2_get_pad_format, }; static const struct v4l2_subdev_ops rcar_csi2_subdev_ops = { .video = &rcar_csi2_video_ops, .pad = &rcar_csi2_pad_ops, }; static irqreturn_t rcsi2_irq(int irq, void *data) { struct rcar_csi2 *priv = data; u32 status, err_status; status = rcsi2_read(priv, INTSTATE_REG); err_status = rcsi2_read(priv, INTERRSTATE_REG); if (!status) return IRQ_HANDLED; rcsi2_write(priv, INTSTATE_REG, status); if (!err_status) return IRQ_HANDLED; rcsi2_write(priv, INTERRSTATE_REG, err_status); dev_info(priv->dev, "Transfer error, restarting CSI-2 receiver\n"); return IRQ_WAKE_THREAD; } static irqreturn_t rcsi2_irq_thread(int irq, void *data) { struct rcar_csi2 *priv = data; mutex_lock(&priv->lock); rcsi2_stop(priv); usleep_range(1000, 2000); if (rcsi2_start(priv)) dev_warn(priv->dev, "Failed to restart CSI-2 receiver\n"); mutex_unlock(&priv->lock); return IRQ_HANDLED; } /* ----------------------------------------------------------------------------- * Async handling and registration of subdevices and links. */ static int rcsi2_notify_bound(struct v4l2_async_notifier *notifier, struct v4l2_subdev *subdev, struct v4l2_async_subdev *asd) { struct rcar_csi2 *priv = notifier_to_csi2(notifier); int pad; pad = media_entity_get_fwnode_pad(&subdev->entity, asd->match.fwnode, MEDIA_PAD_FL_SOURCE); if (pad < 0) { dev_err(priv->dev, "Failed to find pad for %s\n", subdev->name); return pad; } priv->remote = subdev; priv->remote_pad = pad; dev_dbg(priv->dev, "Bound %s pad: %d\n", subdev->name, pad); return media_create_pad_link(&subdev->entity, pad, &priv->subdev.entity, 0, MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); } static void rcsi2_notify_unbind(struct v4l2_async_notifier *notifier, struct v4l2_subdev *subdev, struct v4l2_async_subdev *asd) { struct rcar_csi2 *priv = notifier_to_csi2(notifier); priv->remote = NULL; dev_dbg(priv->dev, "Unbind %s\n", subdev->name); } static const struct v4l2_async_notifier_operations rcar_csi2_notify_ops = { .bound = rcsi2_notify_bound, .unbind = rcsi2_notify_unbind, }; static int rcsi2_parse_v4l2(struct rcar_csi2 *priv, struct v4l2_fwnode_endpoint *vep) { unsigned int i; /* Only port 0 endpoint 0 is valid. */ if (vep->base.port || vep->base.id) return -ENOTCONN; if (vep->bus_type != V4L2_MBUS_CSI2_DPHY) { dev_err(priv->dev, "Unsupported bus: %u\n", vep->bus_type); return -EINVAL; } priv->lanes = vep->bus.mipi_csi2.num_data_lanes; if (priv->lanes != 1 && priv->lanes != 2 && priv->lanes != 4) { dev_err(priv->dev, "Unsupported number of data-lanes: %u\n", priv->lanes); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(priv->lane_swap); i++) { priv->lane_swap[i] = i < priv->lanes ? vep->bus.mipi_csi2.data_lanes[i] : i; /* Check for valid lane number. */ if (priv->lane_swap[i] < 1 || priv->lane_swap[i] > 4) { dev_err(priv->dev, "data-lanes must be in 1-4 range\n"); return -EINVAL; } } return 0; } static int rcsi2_parse_dt(struct rcar_csi2 *priv) { struct v4l2_async_subdev *asd; struct fwnode_handle *fwnode; struct device_node *ep; struct v4l2_fwnode_endpoint v4l2_ep = { .bus_type = 0 }; int ret; ep = of_graph_get_endpoint_by_regs(priv->dev->of_node, 0, 0); if (!ep) { dev_err(priv->dev, "Not connected to subdevice\n"); return -EINVAL; } ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep), &v4l2_ep); if (ret) { dev_err(priv->dev, "Could not parse v4l2 endpoint\n"); of_node_put(ep); return -EINVAL; } ret = rcsi2_parse_v4l2(priv, &v4l2_ep); if (ret) { of_node_put(ep); return ret; } fwnode = fwnode_graph_get_remote_endpoint(of_fwnode_handle(ep)); of_node_put(ep); dev_dbg(priv->dev, "Found '%pOF'\n", to_of_node(fwnode)); v4l2_async_notifier_init(&priv->notifier); priv->notifier.ops = &rcar_csi2_notify_ops; asd = v4l2_async_notifier_add_fwnode_subdev(&priv->notifier, fwnode, sizeof(*asd)); fwnode_handle_put(fwnode); if (IS_ERR(asd)) return PTR_ERR(asd); ret = v4l2_async_subdev_notifier_register(&priv->subdev, &priv->notifier); if (ret) v4l2_async_notifier_cleanup(&priv->notifier); return ret; } /* ----------------------------------------------------------------------------- * PHTW initialization sequences. * * NOTE: Magic values are from the datasheet and lack documentation. */ static int rcsi2_phtw_write(struct rcar_csi2 *priv, u16 data, u16 code) { unsigned int timeout; rcsi2_write(priv, PHTW_REG, PHTW_DWEN | PHTW_TESTDIN_DATA(data) | PHTW_CWEN | PHTW_TESTDIN_CODE(code)); /* Wait for DWEN and CWEN to be cleared by hardware. */ for (timeout = 0; timeout <= 20; timeout++) { if (!(rcsi2_read(priv, PHTW_REG) & (PHTW_DWEN | PHTW_CWEN))) return 0; usleep_range(1000, 2000); } dev_err(priv->dev, "Timeout waiting for PHTW_DWEN and/or PHTW_CWEN\n"); return -ETIMEDOUT; } static int rcsi2_phtw_write_array(struct rcar_csi2 *priv, const struct phtw_value *values) { const struct phtw_value *value; int ret; for (value = values; value->data || value->code; value++) { ret = rcsi2_phtw_write(priv, value->data, value->code); if (ret) return ret; } return 0; } static int rcsi2_phtw_write_mbps(struct rcar_csi2 *priv, unsigned int mbps, const struct rcsi2_mbps_reg *values, u16 code) { const struct rcsi2_mbps_reg *value; const struct rcsi2_mbps_reg *prev_value = NULL; for (value = values; value->mbps; value++) { if (value->mbps >= mbps) break; prev_value = value; } if (prev_value && ((mbps - prev_value->mbps) <= (value->mbps - mbps))) value = prev_value; if (!value->mbps) { dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps); return -ERANGE; } return rcsi2_phtw_write(priv, value->reg, code); } static int __rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv, unsigned int mbps) { static const struct phtw_value step1[] = { { .data = 0xcc, .code = 0xe2 }, { .data = 0x01, .code = 0xe3 }, { .data = 0x11, .code = 0xe4 }, { .data = 0x01, .code = 0xe5 }, { .data = 0x10, .code = 0x04 }, { /* sentinel */ }, }; static const struct phtw_value step2[] = { { .data = 0x38, .code = 0x08 }, { .data = 0x01, .code = 0x00 }, { .data = 0x4b, .code = 0xac }, { .data = 0x03, .code = 0x00 }, { .data = 0x80, .code = 0x07 }, { /* sentinel */ }, }; int ret; ret = rcsi2_phtw_write_array(priv, step1); if (ret) return ret; if (mbps != 0 && mbps <= 250) { ret = rcsi2_phtw_write(priv, 0x39, 0x05); if (ret) return ret; ret = rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_h3_v3h_m3n, 0xf1); if (ret) return ret; } return rcsi2_phtw_write_array(priv, step2); } static int rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv, unsigned int mbps) { return __rcsi2_init_phtw_h3_v3h_m3n(priv, mbps); } static int rcsi2_init_phtw_h3es2(struct rcar_csi2 *priv, unsigned int mbps) { return __rcsi2_init_phtw_h3_v3h_m3n(priv, 0); } static int rcsi2_init_phtw_v3m_e3(struct rcar_csi2 *priv, unsigned int mbps) { return rcsi2_phtw_write_mbps(priv, mbps, phtw_mbps_v3m_e3, 0x44); } static int rcsi2_phy_post_init_v3m_e3(struct rcar_csi2 *priv) { static const struct phtw_value step1[] = { { .data = 0xee, .code = 0x34 }, { .data = 0xee, .code = 0x44 }, { .data = 0xee, .code = 0x54 }, { .data = 0xee, .code = 0x84 }, { .data = 0xee, .code = 0x94 }, { /* sentinel */ }, }; return rcsi2_phtw_write_array(priv, step1); } /* ----------------------------------------------------------------------------- * Platform Device Driver. */ static const struct media_entity_operations rcar_csi2_entity_ops = { .link_validate = v4l2_subdev_link_validate, }; static int rcsi2_probe_resources(struct rcar_csi2 *priv, struct platform_device *pdev) { struct resource *res; int irq, ret; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); priv->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_threaded_irq(&pdev->dev, irq, rcsi2_irq, rcsi2_irq_thread, IRQF_SHARED, KBUILD_MODNAME, priv); if (ret) return ret; priv->rstc = devm_reset_control_get(&pdev->dev, NULL); return PTR_ERR_OR_ZERO(priv->rstc); } static const struct rcar_csi2_info rcar_csi2_info_r8a7795 = { .init_phtw = rcsi2_init_phtw_h3_v3h_m3n, .hsfreqrange = hsfreqrange_h3_v3h_m3n, .csi0clkfreqrange = 0x20, .num_channels = 4, .clear_ulps = true, }; static const struct rcar_csi2_info rcar_csi2_info_r8a7795es1 = { .hsfreqrange = hsfreqrange_m3w_h3es1, .num_channels = 4, }; static const struct rcar_csi2_info rcar_csi2_info_r8a7795es2 = { .init_phtw = rcsi2_init_phtw_h3es2, .hsfreqrange = hsfreqrange_h3_v3h_m3n, .csi0clkfreqrange = 0x20, .num_channels = 4, .clear_ulps = true, }; static const struct rcar_csi2_info rcar_csi2_info_r8a7796 = { .hsfreqrange = hsfreqrange_m3w_h3es1, .num_channels = 4, }; static const struct rcar_csi2_info rcar_csi2_info_r8a77965 = { .init_phtw = rcsi2_init_phtw_h3_v3h_m3n, .hsfreqrange = hsfreqrange_h3_v3h_m3n, .csi0clkfreqrange = 0x20, .num_channels = 4, .clear_ulps = true, }; static const struct rcar_csi2_info rcar_csi2_info_r8a77970 = { .init_phtw = rcsi2_init_phtw_v3m_e3, .phy_post_init = rcsi2_phy_post_init_v3m_e3, .num_channels = 4, }; static const struct rcar_csi2_info rcar_csi2_info_r8a77980 = { .init_phtw = rcsi2_init_phtw_h3_v3h_m3n, .hsfreqrange = hsfreqrange_h3_v3h_m3n, .csi0clkfreqrange = 0x20, .clear_ulps = true, }; static const struct rcar_csi2_info rcar_csi2_info_r8a77990 = { .init_phtw = rcsi2_init_phtw_v3m_e3, .phy_post_init = rcsi2_phy_post_init_v3m_e3, .num_channels = 2, }; static const struct of_device_id rcar_csi2_of_table[] = { { .compatible = "renesas,r8a774a1-csi2", .data = &rcar_csi2_info_r8a7796, }, { .compatible = "renesas,r8a774b1-csi2", .data = &rcar_csi2_info_r8a77965, }, { .compatible = "renesas,r8a774c0-csi2", .data = &rcar_csi2_info_r8a77990, }, { .compatible = "renesas,r8a774e1-csi2", .data = &rcar_csi2_info_r8a7795, }, { .compatible = "renesas,r8a7795-csi2", .data = &rcar_csi2_info_r8a7795, }, { .compatible = "renesas,r8a7796-csi2", .data = &rcar_csi2_info_r8a7796, }, { .compatible = "renesas,r8a77965-csi2", .data = &rcar_csi2_info_r8a77965, }, { .compatible = "renesas,r8a77970-csi2", .data = &rcar_csi2_info_r8a77970, }, { .compatible = "renesas,r8a77980-csi2", .data = &rcar_csi2_info_r8a77980, }, { .compatible = "renesas,r8a77990-csi2", .data = &rcar_csi2_info_r8a77990, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, rcar_csi2_of_table); static const struct soc_device_attribute r8a7795[] = { { .soc_id = "r8a7795", .revision = "ES1.*", .data = &rcar_csi2_info_r8a7795es1, }, { .soc_id = "r8a7795", .revision = "ES2.*", .data = &rcar_csi2_info_r8a7795es2, }, { /* sentinel */ }, }; static int rcsi2_probe(struct platform_device *pdev) { const struct soc_device_attribute *attr; struct rcar_csi2 *priv; unsigned int i; int ret; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->info = of_device_get_match_data(&pdev->dev); /* * The different ES versions of r8a7795 (H3) behave differently but * share the same compatible string. */ attr = soc_device_match(r8a7795); if (attr) priv->info = attr->data; priv->dev = &pdev->dev; mutex_init(&priv->lock); priv->stream_count = 0; ret = rcsi2_probe_resources(priv, pdev); if (ret) { dev_err(priv->dev, "Failed to get resources\n"); return ret; } platform_set_drvdata(pdev, priv); ret = rcsi2_parse_dt(priv); if (ret) return ret; priv->subdev.owner = THIS_MODULE; priv->subdev.dev = &pdev->dev; v4l2_subdev_init(&priv->subdev, &rcar_csi2_subdev_ops); v4l2_set_subdevdata(&priv->subdev, &pdev->dev); snprintf(priv->subdev.name, V4L2_SUBDEV_NAME_SIZE, "%s %s", KBUILD_MODNAME, dev_name(&pdev->dev)); priv->subdev.flags = V4L2_SUBDEV_FL_HAS_DEVNODE; priv->subdev.entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER; priv->subdev.entity.ops = &rcar_csi2_entity_ops; priv->pads[RCAR_CSI2_SINK].flags = MEDIA_PAD_FL_SINK; for (i = RCAR_CSI2_SOURCE_VC0; i < NR_OF_RCAR_CSI2_PAD; i++) priv->pads[i].flags = MEDIA_PAD_FL_SOURCE; ret = media_entity_pads_init(&priv->subdev.entity, NR_OF_RCAR_CSI2_PAD, priv->pads); if (ret) goto error; pm_runtime_enable(&pdev->dev); ret = v4l2_async_register_subdev(&priv->subdev); if (ret < 0) goto error; dev_info(priv->dev, "%d lanes found\n", priv->lanes); return 0; error: v4l2_async_notifier_unregister(&priv->notifier); v4l2_async_notifier_cleanup(&priv->notifier); return ret; } static int rcsi2_remove(struct platform_device *pdev) { struct rcar_csi2 *priv = platform_get_drvdata(pdev); v4l2_async_notifier_unregister(&priv->notifier); v4l2_async_notifier_cleanup(&priv->notifier); v4l2_async_unregister_subdev(&priv->subdev); pm_runtime_disable(&pdev->dev); return 0; } static struct platform_driver rcar_csi2_pdrv = { .remove = rcsi2_remove, .probe = rcsi2_probe, .driver = { .name = "rcar-csi2", .of_match_table = rcar_csi2_of_table, }, }; module_platform_driver(rcar_csi2_pdrv); MODULE_AUTHOR("Niklas Söderlund "); MODULE_DESCRIPTION("Renesas R-Car MIPI CSI-2 receiver driver"); MODULE_LICENSE("GPL");