// SPDX-License-Identifier: GPL-2.0-or-later /* * Memory-to-memory device framework for Video for Linux 2 and videobuf. * * Helper functions for devices that use videobuf buffers for both their * source and destination. * * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd. * Pawel Osciak, * Marek Szyprowski, */ #include #include #include #include #include #include #include #include #include #include MODULE_DESCRIPTION("Mem to mem device framework for videobuf"); MODULE_AUTHOR("Pawel Osciak, "); MODULE_LICENSE("GPL"); static bool debug; module_param(debug, bool, 0644); #define dprintk(fmt, arg...) \ do { \ if (debug) \ printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\ } while (0) /* Instance is already queued on the job_queue */ #define TRANS_QUEUED (1 << 0) /* Instance is currently running in hardware */ #define TRANS_RUNNING (1 << 1) /* Instance is currently aborting */ #define TRANS_ABORT (1 << 2) /* The job queue is not running new jobs */ #define QUEUE_PAUSED (1 << 0) /* Offset base for buffers on the destination queue - used to distinguish * between source and destination buffers when mmapping - they receive the same * offsets but for different queues */ #define DST_QUEUE_OFF_BASE (1 << 30) enum v4l2_m2m_entity_type { MEM2MEM_ENT_TYPE_SOURCE, MEM2MEM_ENT_TYPE_SINK, MEM2MEM_ENT_TYPE_PROC }; static const char * const m2m_entity_name[] = { "source", "sink", "proc" }; /** * struct v4l2_m2m_dev - per-device context * @source: &struct media_entity pointer with the source entity * Used only when the M2M device is registered via * v4l2_m2m_unregister_media_controller(). * @source_pad: &struct media_pad with the source pad. * Used only when the M2M device is registered via * v4l2_m2m_unregister_media_controller(). * @sink: &struct media_entity pointer with the sink entity * Used only when the M2M device is registered via * v4l2_m2m_unregister_media_controller(). * @sink_pad: &struct media_pad with the sink pad. * Used only when the M2M device is registered via * v4l2_m2m_unregister_media_controller(). * @proc: &struct media_entity pointer with the M2M device itself. * @proc_pads: &struct media_pad with the @proc pads. * Used only when the M2M device is registered via * v4l2_m2m_unregister_media_controller(). * @intf_devnode: &struct media_intf devnode pointer with the interface * with controls the M2M device. * @curr_ctx: currently running instance * @job_queue: instances queued to run * @job_spinlock: protects job_queue * @job_work: worker to run queued jobs. * @job_queue_flags: flags of the queue status, %QUEUE_PAUSED. * @m2m_ops: driver callbacks */ struct v4l2_m2m_dev { struct v4l2_m2m_ctx *curr_ctx; #ifdef CONFIG_MEDIA_CONTROLLER struct media_entity *source; struct media_pad source_pad; struct media_entity sink; struct media_pad sink_pad; struct media_entity proc; struct media_pad proc_pads[2]; struct media_intf_devnode *intf_devnode; #endif struct list_head job_queue; spinlock_t job_spinlock; struct work_struct job_work; unsigned long job_queue_flags; const struct v4l2_m2m_ops *m2m_ops; }; static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx, enum v4l2_buf_type type) { if (V4L2_TYPE_IS_OUTPUT(type)) return &m2m_ctx->out_q_ctx; else return &m2m_ctx->cap_q_ctx; } struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx, enum v4l2_buf_type type) { struct v4l2_m2m_queue_ctx *q_ctx; q_ctx = get_queue_ctx(m2m_ctx, type); if (!q_ctx) return NULL; return &q_ctx->q; } EXPORT_SYMBOL(v4l2_m2m_get_vq); struct vb2_v4l2_buffer *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx) { struct v4l2_m2m_buffer *b; unsigned long flags; spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); if (list_empty(&q_ctx->rdy_queue)) { spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); return NULL; } b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); return &b->vb; } EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf); struct vb2_v4l2_buffer *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx) { struct v4l2_m2m_buffer *b; unsigned long flags; spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); if (list_empty(&q_ctx->rdy_queue)) { spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); return NULL; } b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); return &b->vb; } EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf); struct vb2_v4l2_buffer *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx) { struct v4l2_m2m_buffer *b; unsigned long flags; spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); if (list_empty(&q_ctx->rdy_queue)) { spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); return NULL; } b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); list_del(&b->list); q_ctx->num_rdy--; spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); return &b->vb; } EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove); void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx, struct vb2_v4l2_buffer *vbuf) { struct v4l2_m2m_buffer *b; unsigned long flags; spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); b = container_of(vbuf, struct v4l2_m2m_buffer, vb); list_del(&b->list); q_ctx->num_rdy--; spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); } EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf); struct vb2_v4l2_buffer * v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx) { struct v4l2_m2m_buffer *b, *tmp; struct vb2_v4l2_buffer *ret = NULL; unsigned long flags; spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) { if (b->vb.vb2_buf.index == idx) { list_del(&b->list); q_ctx->num_rdy--; ret = &b->vb; break; } } spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); return ret; } EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx); /* * Scheduling handlers */ void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev) { unsigned long flags; void *ret = NULL; spin_lock_irqsave(&m2m_dev->job_spinlock, flags); if (m2m_dev->curr_ctx) ret = m2m_dev->curr_ctx->priv; spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); return ret; } EXPORT_SYMBOL(v4l2_m2m_get_curr_priv); /** * v4l2_m2m_try_run() - select next job to perform and run it if possible * @m2m_dev: per-device context * * Get next transaction (if present) from the waiting jobs list and run it. * * Note that this function can run on a given v4l2_m2m_ctx context, * but call .device_run for another context. */ static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev) { unsigned long flags; spin_lock_irqsave(&m2m_dev->job_spinlock, flags); if (NULL != m2m_dev->curr_ctx) { spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); dprintk("Another instance is running, won't run now\n"); return; } if (list_empty(&m2m_dev->job_queue)) { spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); dprintk("No job pending\n"); return; } if (m2m_dev->job_queue_flags & QUEUE_PAUSED) { spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); dprintk("Running new jobs is paused\n"); return; } m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue, struct v4l2_m2m_ctx, queue); m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING; spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx); m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv); } /* * __v4l2_m2m_try_queue() - queue a job * @m2m_dev: m2m device * @m2m_ctx: m2m context * * Check if this context is ready to queue a job. * * This function can run in interrupt context. */ static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev, struct v4l2_m2m_ctx *m2m_ctx) { unsigned long flags_job; struct vb2_v4l2_buffer *dst, *src; dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx); if (!m2m_ctx->out_q_ctx.q.streaming || !m2m_ctx->cap_q_ctx.q.streaming) { dprintk("Streaming needs to be on for both queues\n"); return; } spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job); /* If the context is aborted then don't schedule it */ if (m2m_ctx->job_flags & TRANS_ABORT) { dprintk("Aborted context\n"); goto job_unlock; } if (m2m_ctx->job_flags & TRANS_QUEUED) { dprintk("On job queue already\n"); goto job_unlock; } src = v4l2_m2m_next_src_buf(m2m_ctx); dst = v4l2_m2m_next_dst_buf(m2m_ctx); if (!src && !m2m_ctx->out_q_ctx.buffered) { dprintk("No input buffers available\n"); goto job_unlock; } if (!dst && !m2m_ctx->cap_q_ctx.buffered) { dprintk("No output buffers available\n"); goto job_unlock; } m2m_ctx->new_frame = true; if (src && dst && dst->is_held && dst->vb2_buf.copied_timestamp && dst->vb2_buf.timestamp != src->vb2_buf.timestamp) { dst->is_held = false; v4l2_m2m_dst_buf_remove(m2m_ctx); v4l2_m2m_buf_done(dst, VB2_BUF_STATE_DONE); dst = v4l2_m2m_next_dst_buf(m2m_ctx); if (!dst && !m2m_ctx->cap_q_ctx.buffered) { dprintk("No output buffers available after returning held buffer\n"); goto job_unlock; } } if (src && dst && (m2m_ctx->out_q_ctx.q.subsystem_flags & VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF)) m2m_ctx->new_frame = !dst->vb2_buf.copied_timestamp || dst->vb2_buf.timestamp != src->vb2_buf.timestamp; if (m2m_ctx->has_stopped) { dprintk("Device has stopped\n"); goto job_unlock; } if (m2m_dev->m2m_ops->job_ready && (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) { dprintk("Driver not ready\n"); goto job_unlock; } list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue); m2m_ctx->job_flags |= TRANS_QUEUED; job_unlock: spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); } /** * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context * @m2m_ctx: m2m context * * Check if this context is ready to queue a job. If suitable, * run the next queued job on the mem2mem device. * * This function shouldn't run in interrupt context. * * Note that v4l2_m2m_try_schedule() can schedule one job for this context, * and then run another job for another context. */ void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx) { struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev; __v4l2_m2m_try_queue(m2m_dev, m2m_ctx); v4l2_m2m_try_run(m2m_dev); } EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule); /** * v4l2_m2m_device_run_work() - run pending jobs for the context * @work: Work structure used for scheduling the execution of this function. */ static void v4l2_m2m_device_run_work(struct work_struct *work) { struct v4l2_m2m_dev *m2m_dev = container_of(work, struct v4l2_m2m_dev, job_work); v4l2_m2m_try_run(m2m_dev); } /** * v4l2_m2m_cancel_job() - cancel pending jobs for the context * @m2m_ctx: m2m context with jobs to be canceled * * In case of streamoff or release called on any context, * 1] If the context is currently running, then abort job will be called * 2] If the context is queued, then the context will be removed from * the job_queue */ static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx) { struct v4l2_m2m_dev *m2m_dev; unsigned long flags; m2m_dev = m2m_ctx->m2m_dev; spin_lock_irqsave(&m2m_dev->job_spinlock, flags); m2m_ctx->job_flags |= TRANS_ABORT; if (m2m_ctx->job_flags & TRANS_RUNNING) { spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); if (m2m_dev->m2m_ops->job_abort) m2m_dev->m2m_ops->job_abort(m2m_ctx->priv); dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx); wait_event(m2m_ctx->finished, !(m2m_ctx->job_flags & TRANS_RUNNING)); } else if (m2m_ctx->job_flags & TRANS_QUEUED) { list_del(&m2m_ctx->queue); m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING); spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); dprintk("m2m_ctx: %p had been on queue and was removed\n", m2m_ctx); } else { /* Do nothing, was not on queue/running */ spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); } } /* * Schedule the next job, called from v4l2_m2m_job_finish() or * v4l2_m2m_buf_done_and_job_finish(). */ static void v4l2_m2m_schedule_next_job(struct v4l2_m2m_dev *m2m_dev, struct v4l2_m2m_ctx *m2m_ctx) { /* * This instance might have more buffers ready, but since we do not * allow more than one job on the job_queue per instance, each has * to be scheduled separately after the previous one finishes. */ __v4l2_m2m_try_queue(m2m_dev, m2m_ctx); /* * We might be running in atomic context, * but the job must be run in non-atomic context. */ schedule_work(&m2m_dev->job_work); } /* * Assumes job_spinlock is held, called from v4l2_m2m_job_finish() or * v4l2_m2m_buf_done_and_job_finish(). */ static bool _v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev, struct v4l2_m2m_ctx *m2m_ctx) { if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) { dprintk("Called by an instance not currently running\n"); return false; } list_del(&m2m_dev->curr_ctx->queue); m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING); wake_up(&m2m_dev->curr_ctx->finished); m2m_dev->curr_ctx = NULL; return true; } void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev, struct v4l2_m2m_ctx *m2m_ctx) { unsigned long flags; bool schedule_next; /* * This function should not be used for drivers that support * holding capture buffers. Those should use * v4l2_m2m_buf_done_and_job_finish() instead. */ WARN_ON(m2m_ctx->out_q_ctx.q.subsystem_flags & VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF); spin_lock_irqsave(&m2m_dev->job_spinlock, flags); schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx); spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); if (schedule_next) v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx); } EXPORT_SYMBOL(v4l2_m2m_job_finish); void v4l2_m2m_buf_done_and_job_finish(struct v4l2_m2m_dev *m2m_dev, struct v4l2_m2m_ctx *m2m_ctx, enum vb2_buffer_state state) { struct vb2_v4l2_buffer *src_buf, *dst_buf; bool schedule_next = false; unsigned long flags; spin_lock_irqsave(&m2m_dev->job_spinlock, flags); src_buf = v4l2_m2m_src_buf_remove(m2m_ctx); dst_buf = v4l2_m2m_next_dst_buf(m2m_ctx); if (WARN_ON(!src_buf || !dst_buf)) goto unlock; dst_buf->is_held = src_buf->flags & V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF; if (!dst_buf->is_held) { v4l2_m2m_dst_buf_remove(m2m_ctx); v4l2_m2m_buf_done(dst_buf, state); } /* * If the request API is being used, returning the OUTPUT * (src) buffer will wake-up any process waiting on the * request file descriptor. * * Therefore, return the CAPTURE (dst) buffer first, * to avoid signalling the request file descriptor * before the CAPTURE buffer is done. */ v4l2_m2m_buf_done(src_buf, state); schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx); unlock: spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); if (schedule_next) v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx); } EXPORT_SYMBOL(v4l2_m2m_buf_done_and_job_finish); void v4l2_m2m_suspend(struct v4l2_m2m_dev *m2m_dev) { unsigned long flags; struct v4l2_m2m_ctx *curr_ctx; spin_lock_irqsave(&m2m_dev->job_spinlock, flags); m2m_dev->job_queue_flags |= QUEUE_PAUSED; curr_ctx = m2m_dev->curr_ctx; spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); if (curr_ctx) wait_event(curr_ctx->finished, !(curr_ctx->job_flags & TRANS_RUNNING)); } EXPORT_SYMBOL(v4l2_m2m_suspend); void v4l2_m2m_resume(struct v4l2_m2m_dev *m2m_dev) { unsigned long flags; spin_lock_irqsave(&m2m_dev->job_spinlock, flags); m2m_dev->job_queue_flags &= ~QUEUE_PAUSED; spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); v4l2_m2m_try_run(m2m_dev); } EXPORT_SYMBOL(v4l2_m2m_resume); int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct v4l2_requestbuffers *reqbufs) { struct vb2_queue *vq; int ret; vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type); ret = vb2_reqbufs(vq, reqbufs); /* If count == 0, then the owner has released all buffers and he is no longer owner of the queue. Otherwise we have an owner. */ if (ret == 0) vq->owner = reqbufs->count ? file->private_data : NULL; return ret; } EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs); static void v4l2_m2m_adjust_mem_offset(struct vb2_queue *vq, struct v4l2_buffer *buf) { /* Adjust MMAP memory offsets for the CAPTURE queue */ if (buf->memory == V4L2_MEMORY_MMAP && V4L2_TYPE_IS_CAPTURE(vq->type)) { if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) { unsigned int i; for (i = 0; i < buf->length; ++i) buf->m.planes[i].m.mem_offset += DST_QUEUE_OFF_BASE; } else { buf->m.offset += DST_QUEUE_OFF_BASE; } } } int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct v4l2_buffer *buf) { struct vb2_queue *vq; int ret; vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); ret = vb2_querybuf(vq, buf); if (ret) return ret; /* Adjust MMAP memory offsets for the CAPTURE queue */ v4l2_m2m_adjust_mem_offset(vq, buf); return 0; } EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf); /* * This will add the LAST flag and mark the buffer management * state as stopped. * This is called when the last capture buffer must be flagged as LAST * in draining mode from the encoder/decoder driver buf_queue() callback * or from v4l2_update_last_buf_state() when a capture buffer is available. */ void v4l2_m2m_last_buffer_done(struct v4l2_m2m_ctx *m2m_ctx, struct vb2_v4l2_buffer *vbuf) { vbuf->flags |= V4L2_BUF_FLAG_LAST; vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE); v4l2_m2m_mark_stopped(m2m_ctx); } EXPORT_SYMBOL_GPL(v4l2_m2m_last_buffer_done); /* When stop command is issued, update buffer management state */ static int v4l2_update_last_buf_state(struct v4l2_m2m_ctx *m2m_ctx) { struct vb2_v4l2_buffer *next_dst_buf; if (m2m_ctx->is_draining) return -EBUSY; if (m2m_ctx->has_stopped) return 0; m2m_ctx->last_src_buf = v4l2_m2m_last_src_buf(m2m_ctx); m2m_ctx->is_draining = true; /* * The processing of the last output buffer queued before * the STOP command is expected to mark the buffer management * state as stopped with v4l2_m2m_mark_stopped(). */ if (m2m_ctx->last_src_buf) return 0; /* * In case the output queue is empty, try to mark the last capture * buffer as LAST. */ next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx); if (!next_dst_buf) { /* * Wait for the next queued one in encoder/decoder driver * buf_queue() callback using the v4l2_m2m_dst_buf_is_last() * helper or in v4l2_m2m_qbuf() if encoder/decoder is not yet * streaming. */ m2m_ctx->next_buf_last = true; return 0; } v4l2_m2m_last_buffer_done(m2m_ctx, next_dst_buf); return 0; } /* * Updates the encoding/decoding buffer management state, should * be called from encoder/decoder drivers start_streaming() */ void v4l2_m2m_update_start_streaming_state(struct v4l2_m2m_ctx *m2m_ctx, struct vb2_queue *q) { /* If start streaming again, untag the last output buffer */ if (V4L2_TYPE_IS_OUTPUT(q->type)) m2m_ctx->last_src_buf = NULL; } EXPORT_SYMBOL_GPL(v4l2_m2m_update_start_streaming_state); /* * Updates the encoding/decoding buffer management state, should * be called from encoder/decoder driver stop_streaming() */ void v4l2_m2m_update_stop_streaming_state(struct v4l2_m2m_ctx *m2m_ctx, struct vb2_queue *q) { if (V4L2_TYPE_IS_OUTPUT(q->type)) { /* * If in draining state, either mark next dst buffer as * done or flag next one to be marked as done either * in encoder/decoder driver buf_queue() callback using * the v4l2_m2m_dst_buf_is_last() helper or in v4l2_m2m_qbuf() * if encoder/decoder is not yet streaming */ if (m2m_ctx->is_draining) { struct vb2_v4l2_buffer *next_dst_buf; m2m_ctx->last_src_buf = NULL; next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx); if (!next_dst_buf) m2m_ctx->next_buf_last = true; else v4l2_m2m_last_buffer_done(m2m_ctx, next_dst_buf); } } else { v4l2_m2m_clear_state(m2m_ctx); } } EXPORT_SYMBOL_GPL(v4l2_m2m_update_stop_streaming_state); static void v4l2_m2m_force_last_buf_done(struct v4l2_m2m_ctx *m2m_ctx, struct vb2_queue *q) { struct vb2_buffer *vb; struct vb2_v4l2_buffer *vbuf; unsigned int i; if (WARN_ON(q->is_output)) return; if (list_empty(&q->queued_list)) return; vb = list_first_entry(&q->queued_list, struct vb2_buffer, queued_entry); for (i = 0; i < vb->num_planes; i++) vb2_set_plane_payload(vb, i, 0); /* * Since the buffer hasn't been queued to the ready queue, * mark is active and owned before marking it LAST and DONE */ vb->state = VB2_BUF_STATE_ACTIVE; atomic_inc(&q->owned_by_drv_count); vbuf = to_vb2_v4l2_buffer(vb); vbuf->field = V4L2_FIELD_NONE; v4l2_m2m_last_buffer_done(m2m_ctx, vbuf); } int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct v4l2_buffer *buf) { struct video_device *vdev = video_devdata(file); struct vb2_queue *vq; int ret; vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); if (V4L2_TYPE_IS_CAPTURE(vq->type) && (buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) { dprintk("%s: requests cannot be used with capture buffers\n", __func__); return -EPERM; } ret = vb2_qbuf(vq, vdev->v4l2_dev->mdev, buf); if (ret) return ret; /* Adjust MMAP memory offsets for the CAPTURE queue */ v4l2_m2m_adjust_mem_offset(vq, buf); /* * If the capture queue is streaming, but streaming hasn't started * on the device, but was asked to stop, mark the previously queued * buffer as DONE with LAST flag since it won't be queued on the * device. */ if (V4L2_TYPE_IS_CAPTURE(vq->type) && vb2_is_streaming(vq) && !vb2_start_streaming_called(vq) && (v4l2_m2m_has_stopped(m2m_ctx) || v4l2_m2m_dst_buf_is_last(m2m_ctx))) v4l2_m2m_force_last_buf_done(m2m_ctx, vq); else if (!(buf->flags & V4L2_BUF_FLAG_IN_REQUEST)) v4l2_m2m_try_schedule(m2m_ctx); return 0; } EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf); int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct v4l2_buffer *buf) { struct vb2_queue *vq; int ret; vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); ret = vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK); if (ret) return ret; /* Adjust MMAP memory offsets for the CAPTURE queue */ v4l2_m2m_adjust_mem_offset(vq, buf); return 0; } EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf); int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct v4l2_buffer *buf) { struct video_device *vdev = video_devdata(file); struct vb2_queue *vq; int ret; vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); ret = vb2_prepare_buf(vq, vdev->v4l2_dev->mdev, buf); if (ret) return ret; /* Adjust MMAP memory offsets for the CAPTURE queue */ v4l2_m2m_adjust_mem_offset(vq, buf); return 0; } EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf); int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct v4l2_create_buffers *create) { struct vb2_queue *vq; vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type); return vb2_create_bufs(vq, create); } EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs); int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct v4l2_exportbuffer *eb) { struct vb2_queue *vq; vq = v4l2_m2m_get_vq(m2m_ctx, eb->type); return vb2_expbuf(vq, eb); } EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf); int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, enum v4l2_buf_type type) { struct vb2_queue *vq; int ret; vq = v4l2_m2m_get_vq(m2m_ctx, type); ret = vb2_streamon(vq, type); if (!ret) v4l2_m2m_try_schedule(m2m_ctx); return ret; } EXPORT_SYMBOL_GPL(v4l2_m2m_streamon); int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, enum v4l2_buf_type type) { struct v4l2_m2m_dev *m2m_dev; struct v4l2_m2m_queue_ctx *q_ctx; unsigned long flags_job, flags; int ret; /* wait until the current context is dequeued from job_queue */ v4l2_m2m_cancel_job(m2m_ctx); q_ctx = get_queue_ctx(m2m_ctx, type); ret = vb2_streamoff(&q_ctx->q, type); if (ret) return ret; m2m_dev = m2m_ctx->m2m_dev; spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job); /* We should not be scheduled anymore, since we're dropping a queue. */ if (m2m_ctx->job_flags & TRANS_QUEUED) list_del(&m2m_ctx->queue); m2m_ctx->job_flags = 0; spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); /* Drop queue, since streamoff returns device to the same state as after * calling reqbufs. */ INIT_LIST_HEAD(&q_ctx->rdy_queue); q_ctx->num_rdy = 0; spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); if (m2m_dev->curr_ctx == m2m_ctx) { m2m_dev->curr_ctx = NULL; wake_up(&m2m_ctx->finished); } spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); return 0; } EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff); static __poll_t v4l2_m2m_poll_for_data(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct poll_table_struct *wait) { struct vb2_queue *src_q, *dst_q; __poll_t rc = 0; unsigned long flags; src_q = v4l2_m2m_get_src_vq(m2m_ctx); dst_q = v4l2_m2m_get_dst_vq(m2m_ctx); poll_wait(file, &src_q->done_wq, wait); poll_wait(file, &dst_q->done_wq, wait); /* * There has to be at least one buffer queued on each queued_list, which * means either in driver already or waiting for driver to claim it * and start processing. */ if ((!src_q->streaming || src_q->error || list_empty(&src_q->queued_list)) && (!dst_q->streaming || dst_q->error || (list_empty(&dst_q->queued_list) && !dst_q->last_buffer_dequeued))) return EPOLLERR; spin_lock_irqsave(&src_q->done_lock, flags); if (!list_empty(&src_q->done_list)) rc |= EPOLLOUT | EPOLLWRNORM; spin_unlock_irqrestore(&src_q->done_lock, flags); spin_lock_irqsave(&dst_q->done_lock, flags); /* * If the last buffer was dequeued from the capture queue, signal * userspace. DQBUF(CAPTURE) will return -EPIPE. */ if (!list_empty(&dst_q->done_list) || dst_q->last_buffer_dequeued) rc |= EPOLLIN | EPOLLRDNORM; spin_unlock_irqrestore(&dst_q->done_lock, flags); return rc; } __poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct poll_table_struct *wait) { struct video_device *vfd = video_devdata(file); __poll_t req_events = poll_requested_events(wait); __poll_t rc = 0; if (req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM)) rc = v4l2_m2m_poll_for_data(file, m2m_ctx, wait); if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) { struct v4l2_fh *fh = file->private_data; poll_wait(file, &fh->wait, wait); if (v4l2_event_pending(fh)) rc |= EPOLLPRI; } return rc; } EXPORT_SYMBOL_GPL(v4l2_m2m_poll); int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct vm_area_struct *vma) { unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; struct vb2_queue *vq; if (offset < DST_QUEUE_OFF_BASE) { vq = v4l2_m2m_get_src_vq(m2m_ctx); } else { vq = v4l2_m2m_get_dst_vq(m2m_ctx); vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT); } return vb2_mmap(vq, vma); } EXPORT_SYMBOL(v4l2_m2m_mmap); #if defined(CONFIG_MEDIA_CONTROLLER) void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev) { media_remove_intf_links(&m2m_dev->intf_devnode->intf); media_devnode_remove(m2m_dev->intf_devnode); media_entity_remove_links(m2m_dev->source); media_entity_remove_links(&m2m_dev->sink); media_entity_remove_links(&m2m_dev->proc); media_device_unregister_entity(m2m_dev->source); media_device_unregister_entity(&m2m_dev->sink); media_device_unregister_entity(&m2m_dev->proc); kfree(m2m_dev->source->name); kfree(m2m_dev->sink.name); kfree(m2m_dev->proc.name); } EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller); static int v4l2_m2m_register_entity(struct media_device *mdev, struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type, struct video_device *vdev, int function) { struct media_entity *entity; struct media_pad *pads; char *name; unsigned int len; int num_pads; int ret; switch (type) { case MEM2MEM_ENT_TYPE_SOURCE: entity = m2m_dev->source; pads = &m2m_dev->source_pad; pads[0].flags = MEDIA_PAD_FL_SOURCE; num_pads = 1; break; case MEM2MEM_ENT_TYPE_SINK: entity = &m2m_dev->sink; pads = &m2m_dev->sink_pad; pads[0].flags = MEDIA_PAD_FL_SINK; num_pads = 1; break; case MEM2MEM_ENT_TYPE_PROC: entity = &m2m_dev->proc; pads = m2m_dev->proc_pads; pads[0].flags = MEDIA_PAD_FL_SINK; pads[1].flags = MEDIA_PAD_FL_SOURCE; num_pads = 2; break; default: return -EINVAL; } entity->obj_type = MEDIA_ENTITY_TYPE_BASE; if (type != MEM2MEM_ENT_TYPE_PROC) { entity->info.dev.major = VIDEO_MAJOR; entity->info.dev.minor = vdev->minor; } len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]); name = kmalloc(len, GFP_KERNEL); if (!name) return -ENOMEM; snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]); entity->name = name; entity->function = function; ret = media_entity_pads_init(entity, num_pads, pads); if (ret) { kfree(entity->name); entity->name = NULL; return ret; } ret = media_device_register_entity(mdev, entity); if (ret) { kfree(entity->name); entity->name = NULL; return ret; } return 0; } int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev, struct video_device *vdev, int function) { struct media_device *mdev = vdev->v4l2_dev->mdev; struct media_link *link; int ret; if (!mdev) return 0; /* A memory-to-memory device consists in two * DMA engine and one video processing entities. * The DMA engine entities are linked to a V4L interface */ /* Create the three entities with their pads */ m2m_dev->source = &vdev->entity; ret = v4l2_m2m_register_entity(mdev, m2m_dev, MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L); if (ret) return ret; ret = v4l2_m2m_register_entity(mdev, m2m_dev, MEM2MEM_ENT_TYPE_PROC, vdev, function); if (ret) goto err_rel_entity0; ret = v4l2_m2m_register_entity(mdev, m2m_dev, MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L); if (ret) goto err_rel_entity1; /* Connect the three entities */ ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 0, MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); if (ret) goto err_rel_entity2; ret = media_create_pad_link(&m2m_dev->proc, 1, &m2m_dev->sink, 0, MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); if (ret) goto err_rm_links0; /* Create video interface */ m2m_dev->intf_devnode = media_devnode_create(mdev, MEDIA_INTF_T_V4L_VIDEO, 0, VIDEO_MAJOR, vdev->minor); if (!m2m_dev->intf_devnode) { ret = -ENOMEM; goto err_rm_links1; } /* Connect the two DMA engines to the interface */ link = media_create_intf_link(m2m_dev->source, &m2m_dev->intf_devnode->intf, MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); if (!link) { ret = -ENOMEM; goto err_rm_devnode; } link = media_create_intf_link(&m2m_dev->sink, &m2m_dev->intf_devnode->intf, MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); if (!link) { ret = -ENOMEM; goto err_rm_intf_link; } return 0; err_rm_intf_link: media_remove_intf_links(&m2m_dev->intf_devnode->intf); err_rm_devnode: media_devnode_remove(m2m_dev->intf_devnode); err_rm_links1: media_entity_remove_links(&m2m_dev->sink); err_rm_links0: media_entity_remove_links(&m2m_dev->proc); media_entity_remove_links(m2m_dev->source); err_rel_entity2: media_device_unregister_entity(&m2m_dev->proc); kfree(m2m_dev->proc.name); err_rel_entity1: media_device_unregister_entity(&m2m_dev->sink); kfree(m2m_dev->sink.name); err_rel_entity0: media_device_unregister_entity(m2m_dev->source); kfree(m2m_dev->source->name); return ret; return 0; } EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller); #endif struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops) { struct v4l2_m2m_dev *m2m_dev; if (!m2m_ops || WARN_ON(!m2m_ops->device_run)) return ERR_PTR(-EINVAL); m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL); if (!m2m_dev) return ERR_PTR(-ENOMEM); m2m_dev->curr_ctx = NULL; m2m_dev->m2m_ops = m2m_ops; INIT_LIST_HEAD(&m2m_dev->job_queue); spin_lock_init(&m2m_dev->job_spinlock); INIT_WORK(&m2m_dev->job_work, v4l2_m2m_device_run_work); return m2m_dev; } EXPORT_SYMBOL_GPL(v4l2_m2m_init); void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev) { kfree(m2m_dev); } EXPORT_SYMBOL_GPL(v4l2_m2m_release); struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev, void *drv_priv, int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq)) { struct v4l2_m2m_ctx *m2m_ctx; struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx; int ret; m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL); if (!m2m_ctx) return ERR_PTR(-ENOMEM); m2m_ctx->priv = drv_priv; m2m_ctx->m2m_dev = m2m_dev; init_waitqueue_head(&m2m_ctx->finished); out_q_ctx = &m2m_ctx->out_q_ctx; cap_q_ctx = &m2m_ctx->cap_q_ctx; INIT_LIST_HEAD(&out_q_ctx->rdy_queue); INIT_LIST_HEAD(&cap_q_ctx->rdy_queue); spin_lock_init(&out_q_ctx->rdy_spinlock); spin_lock_init(&cap_q_ctx->rdy_spinlock); INIT_LIST_HEAD(&m2m_ctx->queue); ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q); if (ret) goto err; /* * Both queues should use same the mutex to lock the m2m context. * This lock is used in some v4l2_m2m_* helpers. */ if (WARN_ON(out_q_ctx->q.lock != cap_q_ctx->q.lock)) { ret = -EINVAL; goto err; } m2m_ctx->q_lock = out_q_ctx->q.lock; return m2m_ctx; err: kfree(m2m_ctx); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init); void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx) { /* wait until the current context is dequeued from job_queue */ v4l2_m2m_cancel_job(m2m_ctx); vb2_queue_release(&m2m_ctx->cap_q_ctx.q); vb2_queue_release(&m2m_ctx->out_q_ctx.q); kfree(m2m_ctx); } EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release); void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx, struct vb2_v4l2_buffer *vbuf) { struct v4l2_m2m_buffer *b = container_of(vbuf, struct v4l2_m2m_buffer, vb); struct v4l2_m2m_queue_ctx *q_ctx; unsigned long flags; q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type); if (!q_ctx) return; spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); list_add_tail(&b->list, &q_ctx->rdy_queue); q_ctx->num_rdy++; spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); } EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue); void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer *out_vb, struct vb2_v4l2_buffer *cap_vb, bool copy_frame_flags) { u32 mask = V4L2_BUF_FLAG_TIMECODE | V4L2_BUF_FLAG_TSTAMP_SRC_MASK; if (copy_frame_flags) mask |= V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME | V4L2_BUF_FLAG_BFRAME; cap_vb->vb2_buf.timestamp = out_vb->vb2_buf.timestamp; if (out_vb->flags & V4L2_BUF_FLAG_TIMECODE) cap_vb->timecode = out_vb->timecode; cap_vb->field = out_vb->field; cap_vb->flags &= ~mask; cap_vb->flags |= out_vb->flags & mask; cap_vb->vb2_buf.copied_timestamp = 1; } EXPORT_SYMBOL_GPL(v4l2_m2m_buf_copy_metadata); void v4l2_m2m_request_queue(struct media_request *req) { struct media_request_object *obj, *obj_safe; struct v4l2_m2m_ctx *m2m_ctx = NULL; /* * Queue all objects. Note that buffer objects are at the end of the * objects list, after all other object types. Once buffer objects * are queued, the driver might delete them immediately (if the driver * processes the buffer at once), so we have to use * list_for_each_entry_safe() to handle the case where the object we * queue is deleted. */ list_for_each_entry_safe(obj, obj_safe, &req->objects, list) { struct v4l2_m2m_ctx *m2m_ctx_obj; struct vb2_buffer *vb; if (!obj->ops->queue) continue; if (vb2_request_object_is_buffer(obj)) { /* Sanity checks */ vb = container_of(obj, struct vb2_buffer, req_obj); WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)); m2m_ctx_obj = container_of(vb->vb2_queue, struct v4l2_m2m_ctx, out_q_ctx.q); WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx); m2m_ctx = m2m_ctx_obj; } /* * The buffer we queue here can in theory be immediately * unbound, hence the use of list_for_each_entry_safe() * above and why we call the queue op last. */ obj->ops->queue(obj); } WARN_ON(!m2m_ctx); if (m2m_ctx) v4l2_m2m_try_schedule(m2m_ctx); } EXPORT_SYMBOL_GPL(v4l2_m2m_request_queue); /* Videobuf2 ioctl helpers */ int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv, struct v4l2_requestbuffers *rb) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs); int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv, struct v4l2_create_buffers *create) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs); int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv, struct v4l2_buffer *buf) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf); int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv, struct v4l2_buffer *buf) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf); int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv, struct v4l2_buffer *buf) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf); int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv, struct v4l2_buffer *buf) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf); int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv, struct v4l2_exportbuffer *eb) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf); int v4l2_m2m_ioctl_streamon(struct file *file, void *priv, enum v4l2_buf_type type) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_streamon(file, fh->m2m_ctx, type); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon); int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv, enum v4l2_buf_type type) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_streamoff(file, fh->m2m_ctx, type); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff); int v4l2_m2m_ioctl_try_encoder_cmd(struct file *file, void *fh, struct v4l2_encoder_cmd *ec) { if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START) return -EINVAL; ec->flags = 0; return 0; } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_encoder_cmd); int v4l2_m2m_ioctl_try_decoder_cmd(struct file *file, void *fh, struct v4l2_decoder_cmd *dc) { if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START) return -EINVAL; dc->flags = 0; if (dc->cmd == V4L2_DEC_CMD_STOP) { dc->stop.pts = 0; } else if (dc->cmd == V4L2_DEC_CMD_START) { dc->start.speed = 0; dc->start.format = V4L2_DEC_START_FMT_NONE; } return 0; } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_decoder_cmd); /* * Updates the encoding state on ENC_CMD_STOP/ENC_CMD_START * Should be called from the encoder driver encoder_cmd() callback */ int v4l2_m2m_encoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct v4l2_encoder_cmd *ec) { if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START) return -EINVAL; if (ec->cmd == V4L2_ENC_CMD_STOP) return v4l2_update_last_buf_state(m2m_ctx); if (m2m_ctx->is_draining) return -EBUSY; if (m2m_ctx->has_stopped) m2m_ctx->has_stopped = false; return 0; } EXPORT_SYMBOL_GPL(v4l2_m2m_encoder_cmd); /* * Updates the decoding state on DEC_CMD_STOP/DEC_CMD_START * Should be called from the decoder driver decoder_cmd() callback */ int v4l2_m2m_decoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, struct v4l2_decoder_cmd *dc) { if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START) return -EINVAL; if (dc->cmd == V4L2_DEC_CMD_STOP) return v4l2_update_last_buf_state(m2m_ctx); if (m2m_ctx->is_draining) return -EBUSY; if (m2m_ctx->has_stopped) m2m_ctx->has_stopped = false; return 0; } EXPORT_SYMBOL_GPL(v4l2_m2m_decoder_cmd); int v4l2_m2m_ioctl_encoder_cmd(struct file *file, void *priv, struct v4l2_encoder_cmd *ec) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_encoder_cmd(file, fh->m2m_ctx, ec); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_encoder_cmd); int v4l2_m2m_ioctl_decoder_cmd(struct file *file, void *priv, struct v4l2_decoder_cmd *dc) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_decoder_cmd(file, fh->m2m_ctx, dc); } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_decoder_cmd); int v4l2_m2m_ioctl_stateless_try_decoder_cmd(struct file *file, void *fh, struct v4l2_decoder_cmd *dc) { if (dc->cmd != V4L2_DEC_CMD_FLUSH) return -EINVAL; dc->flags = 0; return 0; } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_try_decoder_cmd); int v4l2_m2m_ioctl_stateless_decoder_cmd(struct file *file, void *priv, struct v4l2_decoder_cmd *dc) { struct v4l2_fh *fh = file->private_data; struct vb2_v4l2_buffer *out_vb, *cap_vb; struct v4l2_m2m_dev *m2m_dev = fh->m2m_ctx->m2m_dev; unsigned long flags; int ret; ret = v4l2_m2m_ioctl_stateless_try_decoder_cmd(file, priv, dc); if (ret < 0) return ret; spin_lock_irqsave(&m2m_dev->job_spinlock, flags); out_vb = v4l2_m2m_last_src_buf(fh->m2m_ctx); cap_vb = v4l2_m2m_last_dst_buf(fh->m2m_ctx); /* * If there is an out buffer pending, then clear any HOLD flag. * * By clearing this flag we ensure that when this output * buffer is processed any held capture buffer will be released. */ if (out_vb) { out_vb->flags &= ~V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF; } else if (cap_vb && cap_vb->is_held) { /* * If there were no output buffers, but there is a * capture buffer that is held, then release that * buffer. */ cap_vb->is_held = false; v4l2_m2m_dst_buf_remove(fh->m2m_ctx); v4l2_m2m_buf_done(cap_vb, VB2_BUF_STATE_DONE); } spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); return 0; } EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_decoder_cmd); /* * v4l2_file_operations helpers. It is assumed here same lock is used * for the output and the capture buffer queue. */ int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma) { struct v4l2_fh *fh = file->private_data; return v4l2_m2m_mmap(file, fh->m2m_ctx, vma); } EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap); __poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait) { struct v4l2_fh *fh = file->private_data; struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx; __poll_t ret; if (m2m_ctx->q_lock) mutex_lock(m2m_ctx->q_lock); ret = v4l2_m2m_poll(file, m2m_ctx, wait); if (m2m_ctx->q_lock) mutex_unlock(m2m_ctx->q_lock); return ret; } EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll);