// SPDX-License-Identifier: GPL-2.0-or-later /* * SN Platform GRU Driver * * DRIVER TABLE MANAGER + GRU CONTEXT LOAD/UNLOAD * * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. */ #include #include #include #include #include #include #include #include #include #include #include "gru.h" #include "grutables.h" #include "gruhandles.h" unsigned long gru_options __read_mostly; static struct device_driver gru_driver = { .name = "gru" }; static struct device gru_device = { .init_name = "", .driver = &gru_driver, }; struct device *grudev = &gru_device; /* * Select a gru fault map to be used by the current cpu. Note that * multiple cpus may be using the same map. * ZZZ should be inline but did not work on emulator */ int gru_cpu_fault_map_id(void) { #ifdef CONFIG_IA64 return uv_blade_processor_id() % GRU_NUM_TFM; #else int cpu = smp_processor_id(); int id, core; core = uv_cpu_core_number(cpu); id = core + UV_MAX_INT_CORES * uv_cpu_socket_number(cpu); return id; #endif } /*--------- ASID Management ------------------------------------------- * * Initially, assign asids sequentially from MIN_ASID .. MAX_ASID. * Once MAX is reached, flush the TLB & start over. However, * some asids may still be in use. There won't be many (percentage wise) still * in use. Search active contexts & determine the value of the first * asid in use ("x"s below). Set "limit" to this value. * This defines a block of assignable asids. * * When "limit" is reached, search forward from limit+1 and determine the * next block of assignable asids. * * Repeat until MAX_ASID is reached, then start over again. * * Each time MAX_ASID is reached, increment the asid generation. Since * the search for in-use asids only checks contexts with GRUs currently * assigned, asids in some contexts will be missed. Prior to loading * a context, the asid generation of the GTS asid is rechecked. If it * doesn't match the current generation, a new asid will be assigned. * * 0---------------x------------x---------------------x----| * ^-next ^-limit ^-MAX_ASID * * All asid manipulation & context loading/unloading is protected by the * gs_lock. */ /* Hit the asid limit. Start over */ static int gru_wrap_asid(struct gru_state *gru) { gru_dbg(grudev, "gid %d\n", gru->gs_gid); STAT(asid_wrap); gru->gs_asid_gen++; return MIN_ASID; } /* Find the next chunk of unused asids */ static int gru_reset_asid_limit(struct gru_state *gru, int asid) { int i, gid, inuse_asid, limit; gru_dbg(grudev, "gid %d, asid 0x%x\n", gru->gs_gid, asid); STAT(asid_next); limit = MAX_ASID; if (asid >= limit) asid = gru_wrap_asid(gru); gru_flush_all_tlb(gru); gid = gru->gs_gid; again: for (i = 0; i < GRU_NUM_CCH; i++) { if (!gru->gs_gts[i] || is_kernel_context(gru->gs_gts[i])) continue; inuse_asid = gru->gs_gts[i]->ts_gms->ms_asids[gid].mt_asid; gru_dbg(grudev, "gid %d, gts %p, gms %p, inuse 0x%x, cxt %d\n", gru->gs_gid, gru->gs_gts[i], gru->gs_gts[i]->ts_gms, inuse_asid, i); if (inuse_asid == asid) { asid += ASID_INC; if (asid >= limit) { /* * empty range: reset the range limit and * start over */ limit = MAX_ASID; if (asid >= MAX_ASID) asid = gru_wrap_asid(gru); goto again; } } if ((inuse_asid > asid) && (inuse_asid < limit)) limit = inuse_asid; } gru->gs_asid_limit = limit; gru->gs_asid = asid; gru_dbg(grudev, "gid %d, new asid 0x%x, new_limit 0x%x\n", gru->gs_gid, asid, limit); return asid; } /* Assign a new ASID to a thread context. */ static int gru_assign_asid(struct gru_state *gru) { int asid; gru->gs_asid += ASID_INC; asid = gru->gs_asid; if (asid >= gru->gs_asid_limit) asid = gru_reset_asid_limit(gru, asid); gru_dbg(grudev, "gid %d, asid 0x%x\n", gru->gs_gid, asid); return asid; } /* * Clear n bits in a word. Return a word indicating the bits that were cleared. * Optionally, build an array of chars that contain the bit numbers allocated. */ static unsigned long reserve_resources(unsigned long *p, int n, int mmax, char *idx) { unsigned long bits = 0; int i; while (n--) { i = find_first_bit(p, mmax); if (i == mmax) BUG(); __clear_bit(i, p); __set_bit(i, &bits); if (idx) *idx++ = i; } return bits; } unsigned long gru_reserve_cb_resources(struct gru_state *gru, int cbr_au_count, char *cbmap) { return reserve_resources(&gru->gs_cbr_map, cbr_au_count, GRU_CBR_AU, cbmap); } unsigned long gru_reserve_ds_resources(struct gru_state *gru, int dsr_au_count, char *dsmap) { return reserve_resources(&gru->gs_dsr_map, dsr_au_count, GRU_DSR_AU, dsmap); } static void reserve_gru_resources(struct gru_state *gru, struct gru_thread_state *gts) { gru->gs_active_contexts++; gts->ts_cbr_map = gru_reserve_cb_resources(gru, gts->ts_cbr_au_count, gts->ts_cbr_idx); gts->ts_dsr_map = gru_reserve_ds_resources(gru, gts->ts_dsr_au_count, NULL); } static void free_gru_resources(struct gru_state *gru, struct gru_thread_state *gts) { gru->gs_active_contexts--; gru->gs_cbr_map |= gts->ts_cbr_map; gru->gs_dsr_map |= gts->ts_dsr_map; } /* * Check if a GRU has sufficient free resources to satisfy an allocation * request. Note: GRU locks may or may not be held when this is called. If * not held, recheck after acquiring the appropriate locks. * * Returns 1 if sufficient resources, 0 if not */ static int check_gru_resources(struct gru_state *gru, int cbr_au_count, int dsr_au_count, int max_active_contexts) { return hweight64(gru->gs_cbr_map) >= cbr_au_count && hweight64(gru->gs_dsr_map) >= dsr_au_count && gru->gs_active_contexts < max_active_contexts; } /* * TLB manangment requires tracking all GRU chiplets that have loaded a GSEG * context. */ static int gru_load_mm_tracker(struct gru_state *gru, struct gru_thread_state *gts) { struct gru_mm_struct *gms = gts->ts_gms; struct gru_mm_tracker *asids = &gms->ms_asids[gru->gs_gid]; unsigned short ctxbitmap = (1 << gts->ts_ctxnum); int asid; spin_lock(&gms->ms_asid_lock); asid = asids->mt_asid; spin_lock(&gru->gs_asid_lock); if (asid == 0 || (asids->mt_ctxbitmap == 0 && asids->mt_asid_gen != gru->gs_asid_gen)) { asid = gru_assign_asid(gru); asids->mt_asid = asid; asids->mt_asid_gen = gru->gs_asid_gen; STAT(asid_new); } else { STAT(asid_reuse); } spin_unlock(&gru->gs_asid_lock); BUG_ON(asids->mt_ctxbitmap & ctxbitmap); asids->mt_ctxbitmap |= ctxbitmap; if (!test_bit(gru->gs_gid, gms->ms_asidmap)) __set_bit(gru->gs_gid, gms->ms_asidmap); spin_unlock(&gms->ms_asid_lock); gru_dbg(grudev, "gid %d, gts %p, gms %p, ctxnum %d, asid 0x%x, asidmap 0x%lx\n", gru->gs_gid, gts, gms, gts->ts_ctxnum, asid, gms->ms_asidmap[0]); return asid; } static void gru_unload_mm_tracker(struct gru_state *gru, struct gru_thread_state *gts) { struct gru_mm_struct *gms = gts->ts_gms; struct gru_mm_tracker *asids; unsigned short ctxbitmap; asids = &gms->ms_asids[gru->gs_gid]; ctxbitmap = (1 << gts->ts_ctxnum); spin_lock(&gms->ms_asid_lock); spin_lock(&gru->gs_asid_lock); BUG_ON((asids->mt_ctxbitmap & ctxbitmap) != ctxbitmap); asids->mt_ctxbitmap ^= ctxbitmap; gru_dbg(grudev, "gid %d, gts %p, gms %p, ctxnum %d, asidmap 0x%lx\n", gru->gs_gid, gts, gms, gts->ts_ctxnum, gms->ms_asidmap[0]); spin_unlock(&gru->gs_asid_lock); spin_unlock(&gms->ms_asid_lock); } /* * Decrement the reference count on a GTS structure. Free the structure * if the reference count goes to zero. */ void gts_drop(struct gru_thread_state *gts) { if (gts && atomic_dec_return(>s->ts_refcnt) == 0) { if (gts->ts_gms) gru_drop_mmu_notifier(gts->ts_gms); kfree(gts); STAT(gts_free); } } /* * Locate the GTS structure for the current thread. */ static struct gru_thread_state *gru_find_current_gts_nolock(struct gru_vma_data *vdata, int tsid) { struct gru_thread_state *gts; list_for_each_entry(gts, &vdata->vd_head, ts_next) if (gts->ts_tsid == tsid) return gts; return NULL; } /* * Allocate a thread state structure. */ struct gru_thread_state *gru_alloc_gts(struct vm_area_struct *vma, int cbr_au_count, int dsr_au_count, unsigned char tlb_preload_count, int options, int tsid) { struct gru_thread_state *gts; struct gru_mm_struct *gms; int bytes; bytes = DSR_BYTES(dsr_au_count) + CBR_BYTES(cbr_au_count); bytes += sizeof(struct gru_thread_state); gts = kmalloc(bytes, GFP_KERNEL); if (!gts) return ERR_PTR(-ENOMEM); STAT(gts_alloc); memset(gts, 0, sizeof(struct gru_thread_state)); /* zero out header */ atomic_set(>s->ts_refcnt, 1); mutex_init(>s->ts_ctxlock); gts->ts_cbr_au_count = cbr_au_count; gts->ts_dsr_au_count = dsr_au_count; gts->ts_tlb_preload_count = tlb_preload_count; gts->ts_user_options = options; gts->ts_user_blade_id = -1; gts->ts_user_chiplet_id = -1; gts->ts_tsid = tsid; gts->ts_ctxnum = NULLCTX; gts->ts_tlb_int_select = -1; gts->ts_cch_req_slice = -1; gts->ts_sizeavail = GRU_SIZEAVAIL(PAGE_SHIFT); if (vma) { gts->ts_mm = current->mm; gts->ts_vma = vma; gms = gru_register_mmu_notifier(); if (IS_ERR(gms)) goto err; gts->ts_gms = gms; } gru_dbg(grudev, "alloc gts %p\n", gts); return gts; err: gts_drop(gts); return ERR_CAST(gms); } /* * Allocate a vma private data structure. */ struct gru_vma_data *gru_alloc_vma_data(struct vm_area_struct *vma, int tsid) { struct gru_vma_data *vdata = NULL; vdata = kmalloc(sizeof(*vdata), GFP_KERNEL); if (!vdata) return NULL; STAT(vdata_alloc); INIT_LIST_HEAD(&vdata->vd_head); spin_lock_init(&vdata->vd_lock); gru_dbg(grudev, "alloc vdata %p\n", vdata); return vdata; } /* * Find the thread state structure for the current thread. */ struct gru_thread_state *gru_find_thread_state(struct vm_area_struct *vma, int tsid) { struct gru_vma_data *vdata = vma->vm_private_data; struct gru_thread_state *gts; spin_lock(&vdata->vd_lock); gts = gru_find_current_gts_nolock(vdata, tsid); spin_unlock(&vdata->vd_lock); gru_dbg(grudev, "vma %p, gts %p\n", vma, gts); return gts; } /* * Allocate a new thread state for a GSEG. Note that races may allow * another thread to race to create a gts. */ struct gru_thread_state *gru_alloc_thread_state(struct vm_area_struct *vma, int tsid) { struct gru_vma_data *vdata = vma->vm_private_data; struct gru_thread_state *gts, *ngts; gts = gru_alloc_gts(vma, vdata->vd_cbr_au_count, vdata->vd_dsr_au_count, vdata->vd_tlb_preload_count, vdata->vd_user_options, tsid); if (IS_ERR(gts)) return gts; spin_lock(&vdata->vd_lock); ngts = gru_find_current_gts_nolock(vdata, tsid); if (ngts) { gts_drop(gts); gts = ngts; STAT(gts_double_allocate); } else { list_add(>s->ts_next, &vdata->vd_head); } spin_unlock(&vdata->vd_lock); gru_dbg(grudev, "vma %p, gts %p\n", vma, gts); return gts; } /* * Free the GRU context assigned to the thread state. */ static void gru_free_gru_context(struct gru_thread_state *gts) { struct gru_state *gru; gru = gts->ts_gru; gru_dbg(grudev, "gts %p, gid %d\n", gts, gru->gs_gid); spin_lock(&gru->gs_lock); gru->gs_gts[gts->ts_ctxnum] = NULL; free_gru_resources(gru, gts); BUG_ON(test_bit(gts->ts_ctxnum, &gru->gs_context_map) == 0); __clear_bit(gts->ts_ctxnum, &gru->gs_context_map); gts->ts_ctxnum = NULLCTX; gts->ts_gru = NULL; gts->ts_blade = -1; spin_unlock(&gru->gs_lock); gts_drop(gts); STAT(free_context); } /* * Prefetching cachelines help hardware performance. * (Strictly a performance enhancement. Not functionally required). */ static void prefetch_data(void *p, int num, int stride) { while (num-- > 0) { prefetchw(p); p += stride; } } static inline long gru_copy_handle(void *d, void *s) { memcpy(d, s, GRU_HANDLE_BYTES); return GRU_HANDLE_BYTES; } static void gru_prefetch_context(void *gseg, void *cb, void *cbe, unsigned long cbrmap, unsigned long length) { int i, scr; prefetch_data(gseg + GRU_DS_BASE, length / GRU_CACHE_LINE_BYTES, GRU_CACHE_LINE_BYTES); for_each_cbr_in_allocation_map(i, &cbrmap, scr) { prefetch_data(cb, 1, GRU_CACHE_LINE_BYTES); prefetch_data(cbe + i * GRU_HANDLE_STRIDE, 1, GRU_CACHE_LINE_BYTES); cb += GRU_HANDLE_STRIDE; } } static void gru_load_context_data(void *save, void *grubase, int ctxnum, unsigned long cbrmap, unsigned long dsrmap, int data_valid) { void *gseg, *cb, *cbe; unsigned long length; int i, scr; gseg = grubase + ctxnum * GRU_GSEG_STRIDE; cb = gseg + GRU_CB_BASE; cbe = grubase + GRU_CBE_BASE; length = hweight64(dsrmap) * GRU_DSR_AU_BYTES; gru_prefetch_context(gseg, cb, cbe, cbrmap, length); for_each_cbr_in_allocation_map(i, &cbrmap, scr) { if (data_valid) { save += gru_copy_handle(cb, save); save += gru_copy_handle(cbe + i * GRU_HANDLE_STRIDE, save); } else { memset(cb, 0, GRU_CACHE_LINE_BYTES); memset(cbe + i * GRU_HANDLE_STRIDE, 0, GRU_CACHE_LINE_BYTES); } /* Flush CBE to hide race in context restart */ mb(); gru_flush_cache(cbe + i * GRU_HANDLE_STRIDE); cb += GRU_HANDLE_STRIDE; } if (data_valid) memcpy(gseg + GRU_DS_BASE, save, length); else memset(gseg + GRU_DS_BASE, 0, length); } static void gru_unload_context_data(void *save, void *grubase, int ctxnum, unsigned long cbrmap, unsigned long dsrmap) { void *gseg, *cb, *cbe; unsigned long length; int i, scr; gseg = grubase + ctxnum * GRU_GSEG_STRIDE; cb = gseg + GRU_CB_BASE; cbe = grubase + GRU_CBE_BASE; length = hweight64(dsrmap) * GRU_DSR_AU_BYTES; /* CBEs may not be coherent. Flush them from cache */ for_each_cbr_in_allocation_map(i, &cbrmap, scr) gru_flush_cache(cbe + i * GRU_HANDLE_STRIDE); mb(); /* Let the CL flush complete */ gru_prefetch_context(gseg, cb, cbe, cbrmap, length); for_each_cbr_in_allocation_map(i, &cbrmap, scr) { save += gru_copy_handle(save, cb); save += gru_copy_handle(save, cbe + i * GRU_HANDLE_STRIDE); cb += GRU_HANDLE_STRIDE; } memcpy(save, gseg + GRU_DS_BASE, length); } void gru_unload_context(struct gru_thread_state *gts, int savestate) { struct gru_state *gru = gts->ts_gru; struct gru_context_configuration_handle *cch; int ctxnum = gts->ts_ctxnum; if (!is_kernel_context(gts)) zap_vma_ptes(gts->ts_vma, UGRUADDR(gts), GRU_GSEG_PAGESIZE); cch = get_cch(gru->gs_gru_base_vaddr, ctxnum); gru_dbg(grudev, "gts %p, cbrmap 0x%lx, dsrmap 0x%lx\n", gts, gts->ts_cbr_map, gts->ts_dsr_map); lock_cch_handle(cch); if (cch_interrupt_sync(cch)) BUG(); if (!is_kernel_context(gts)) gru_unload_mm_tracker(gru, gts); if (savestate) { gru_unload_context_data(gts->ts_gdata, gru->gs_gru_base_vaddr, ctxnum, gts->ts_cbr_map, gts->ts_dsr_map); gts->ts_data_valid = 1; } if (cch_deallocate(cch)) BUG(); unlock_cch_handle(cch); gru_free_gru_context(gts); } /* * Load a GRU context by copying it from the thread data structure in memory * to the GRU. */ void gru_load_context(struct gru_thread_state *gts) { struct gru_state *gru = gts->ts_gru; struct gru_context_configuration_handle *cch; int i, err, asid, ctxnum = gts->ts_ctxnum; cch = get_cch(gru->gs_gru_base_vaddr, ctxnum); lock_cch_handle(cch); cch->tfm_fault_bit_enable = (gts->ts_user_options == GRU_OPT_MISS_FMM_POLL || gts->ts_user_options == GRU_OPT_MISS_FMM_INTR); cch->tlb_int_enable = (gts->ts_user_options == GRU_OPT_MISS_FMM_INTR); if (cch->tlb_int_enable) { gts->ts_tlb_int_select = gru_cpu_fault_map_id(); cch->tlb_int_select = gts->ts_tlb_int_select; } if (gts->ts_cch_req_slice >= 0) { cch->req_slice_set_enable = 1; cch->req_slice = gts->ts_cch_req_slice; } else { cch->req_slice_set_enable =0; } cch->tfm_done_bit_enable = 0; cch->dsr_allocation_map = gts->ts_dsr_map; cch->cbr_allocation_map = gts->ts_cbr_map; if (is_kernel_context(gts)) { cch->unmap_enable = 1; cch->tfm_done_bit_enable = 1; cch->cb_int_enable = 1; cch->tlb_int_select = 0; /* For now, ints go to cpu 0 */ } else { cch->unmap_enable = 0; cch->tfm_done_bit_enable = 0; cch->cb_int_enable = 0; asid = gru_load_mm_tracker(gru, gts); for (i = 0; i < 8; i++) { cch->asid[i] = asid + i; cch->sizeavail[i] = gts->ts_sizeavail; } } err = cch_allocate(cch); if (err) { gru_dbg(grudev, "err %d: cch %p, gts %p, cbr 0x%lx, dsr 0x%lx\n", err, cch, gts, gts->ts_cbr_map, gts->ts_dsr_map); BUG(); } gru_load_context_data(gts->ts_gdata, gru->gs_gru_base_vaddr, ctxnum, gts->ts_cbr_map, gts->ts_dsr_map, gts->ts_data_valid); if (cch_start(cch)) BUG(); unlock_cch_handle(cch); gru_dbg(grudev, "gid %d, gts %p, cbrmap 0x%lx, dsrmap 0x%lx, tie %d, tis %d\n", gts->ts_gru->gs_gid, gts, gts->ts_cbr_map, gts->ts_dsr_map, (gts->ts_user_options == GRU_OPT_MISS_FMM_INTR), gts->ts_tlb_int_select); } /* * Update fields in an active CCH: * - retarget interrupts on local blade * - update sizeavail mask */ int gru_update_cch(struct gru_thread_state *gts) { struct gru_context_configuration_handle *cch; struct gru_state *gru = gts->ts_gru; int i, ctxnum = gts->ts_ctxnum, ret = 0; cch = get_cch(gru->gs_gru_base_vaddr, ctxnum); lock_cch_handle(cch); if (cch->state == CCHSTATE_ACTIVE) { if (gru->gs_gts[gts->ts_ctxnum] != gts) goto exit; if (cch_interrupt(cch)) BUG(); for (i = 0; i < 8; i++) cch->sizeavail[i] = gts->ts_sizeavail; gts->ts_tlb_int_select = gru_cpu_fault_map_id(); cch->tlb_int_select = gru_cpu_fault_map_id(); cch->tfm_fault_bit_enable = (gts->ts_user_options == GRU_OPT_MISS_FMM_POLL || gts->ts_user_options == GRU_OPT_MISS_FMM_INTR); if (cch_start(cch)) BUG(); ret = 1; } exit: unlock_cch_handle(cch); return ret; } /* * Update CCH tlb interrupt select. Required when all the following is true: * - task's GRU context is loaded into a GRU * - task is using interrupt notification for TLB faults * - task has migrated to a different cpu on the same blade where * it was previously running. */ static int gru_retarget_intr(struct gru_thread_state *gts) { if (gts->ts_tlb_int_select < 0 || gts->ts_tlb_int_select == gru_cpu_fault_map_id()) return 0; gru_dbg(grudev, "retarget from %d to %d\n", gts->ts_tlb_int_select, gru_cpu_fault_map_id()); return gru_update_cch(gts); } /* * Check if a GRU context is allowed to use a specific chiplet. By default * a context is assigned to any blade-local chiplet. However, users can * override this. * Returns 1 if assignment allowed, 0 otherwise */ static int gru_check_chiplet_assignment(struct gru_state *gru, struct gru_thread_state *gts) { int blade_id; int chiplet_id; blade_id = gts->ts_user_blade_id; if (blade_id < 0) blade_id = uv_numa_blade_id(); chiplet_id = gts->ts_user_chiplet_id; return gru->gs_blade_id == blade_id && (chiplet_id < 0 || chiplet_id == gru->gs_chiplet_id); } /* * Unload the gru context if it is not assigned to the correct blade or * chiplet. Misassignment can occur if the process migrates to a different * blade or if the user changes the selected blade/chiplet. */ int gru_check_context_placement(struct gru_thread_state *gts) { struct gru_state *gru; int ret = 0; /* * If the current task is the context owner, verify that the * context is correctly placed. This test is skipped for non-owner * references. Pthread apps use non-owner references to the CBRs. */ gru = gts->ts_gru; /* * If gru or gts->ts_tgid_owner isn't initialized properly, return * success to indicate that the caller does not need to unload the * gru context.The caller is responsible for their inspection and * reinitialization if needed. */ if (!gru || gts->ts_tgid_owner != current->tgid) return ret; if (!gru_check_chiplet_assignment(gru, gts)) { STAT(check_context_unload); ret = -EINVAL; } else if (gru_retarget_intr(gts)) { STAT(check_context_retarget_intr); } return ret; } /* * Insufficient GRU resources available on the local blade. Steal a context from * a process. This is a hack until a _real_ resource scheduler is written.... */ #define next_ctxnum(n) ((n) < GRU_NUM_CCH - 2 ? (n) + 1 : 0) #define next_gru(b, g) (((g) < &(b)->bs_grus[GRU_CHIPLETS_PER_BLADE - 1]) ? \ ((g)+1) : &(b)->bs_grus[0]) static int is_gts_stealable(struct gru_thread_state *gts, struct gru_blade_state *bs) { if (is_kernel_context(gts)) return down_write_trylock(&bs->bs_kgts_sema); else return mutex_trylock(>s->ts_ctxlock); } static void gts_stolen(struct gru_thread_state *gts, struct gru_blade_state *bs) { if (is_kernel_context(gts)) { up_write(&bs->bs_kgts_sema); STAT(steal_kernel_context); } else { mutex_unlock(>s->ts_ctxlock); STAT(steal_user_context); } } void gru_steal_context(struct gru_thread_state *gts) { struct gru_blade_state *blade; struct gru_state *gru, *gru0; struct gru_thread_state *ngts = NULL; int ctxnum, ctxnum0, flag = 0, cbr, dsr; int blade_id; blade_id = gts->ts_user_blade_id; if (blade_id < 0) blade_id = uv_numa_blade_id(); cbr = gts->ts_cbr_au_count; dsr = gts->ts_dsr_au_count; blade = gru_base[blade_id]; spin_lock(&blade->bs_lock); ctxnum = next_ctxnum(blade->bs_lru_ctxnum); gru = blade->bs_lru_gru; if (ctxnum == 0) gru = next_gru(blade, gru); blade->bs_lru_gru = gru; blade->bs_lru_ctxnum = ctxnum; ctxnum0 = ctxnum; gru0 = gru; while (1) { if (gru_check_chiplet_assignment(gru, gts)) { if (check_gru_resources(gru, cbr, dsr, GRU_NUM_CCH)) break; spin_lock(&gru->gs_lock); for (; ctxnum < GRU_NUM_CCH; ctxnum++) { if (flag && gru == gru0 && ctxnum == ctxnum0) break; ngts = gru->gs_gts[ctxnum]; /* * We are grabbing locks out of order, so trylock is * needed. GTSs are usually not locked, so the odds of * success are high. If trylock fails, try to steal a * different GSEG. */ if (ngts && is_gts_stealable(ngts, blade)) break; ngts = NULL; } spin_unlock(&gru->gs_lock); if (ngts || (flag && gru == gru0 && ctxnum == ctxnum0)) break; } if (flag && gru == gru0) break; flag = 1; ctxnum = 0; gru = next_gru(blade, gru); } spin_unlock(&blade->bs_lock); if (ngts) { gts->ustats.context_stolen++; ngts->ts_steal_jiffies = jiffies; gru_unload_context(ngts, is_kernel_context(ngts) ? 0 : 1); gts_stolen(ngts, blade); } else { STAT(steal_context_failed); } gru_dbg(grudev, "stole gid %d, ctxnum %d from gts %p. Need cb %d, ds %d;" " avail cb %ld, ds %ld\n", gru->gs_gid, ctxnum, ngts, cbr, dsr, hweight64(gru->gs_cbr_map), hweight64(gru->gs_dsr_map)); } /* * Assign a gru context. */ static int gru_assign_context_number(struct gru_state *gru) { int ctxnum; ctxnum = find_first_zero_bit(&gru->gs_context_map, GRU_NUM_CCH); __set_bit(ctxnum, &gru->gs_context_map); return ctxnum; } /* * Scan the GRUs on the local blade & assign a GRU context. */ struct gru_state *gru_assign_gru_context(struct gru_thread_state *gts) { struct gru_state *gru, *grux; int i, max_active_contexts; int blade_id = gts->ts_user_blade_id; if (blade_id < 0) blade_id = uv_numa_blade_id(); again: gru = NULL; max_active_contexts = GRU_NUM_CCH; for_each_gru_on_blade(grux, blade_id, i) { if (!gru_check_chiplet_assignment(grux, gts)) continue; if (check_gru_resources(grux, gts->ts_cbr_au_count, gts->ts_dsr_au_count, max_active_contexts)) { gru = grux; max_active_contexts = grux->gs_active_contexts; if (max_active_contexts == 0) break; } } if (gru) { spin_lock(&gru->gs_lock); if (!check_gru_resources(gru, gts->ts_cbr_au_count, gts->ts_dsr_au_count, GRU_NUM_CCH)) { spin_unlock(&gru->gs_lock); goto again; } reserve_gru_resources(gru, gts); gts->ts_gru = gru; gts->ts_blade = gru->gs_blade_id; gts->ts_ctxnum = gru_assign_context_number(gru); atomic_inc(>s->ts_refcnt); gru->gs_gts[gts->ts_ctxnum] = gts; spin_unlock(&gru->gs_lock); STAT(assign_context); gru_dbg(grudev, "gseg %p, gts %p, gid %d, ctx %d, cbr %d, dsr %d\n", gseg_virtual_address(gts->ts_gru, gts->ts_ctxnum), gts, gts->ts_gru->gs_gid, gts->ts_ctxnum, gts->ts_cbr_au_count, gts->ts_dsr_au_count); } else { gru_dbg(grudev, "failed to allocate a GTS %s\n", ""); STAT(assign_context_failed); } return gru; } /* * gru_nopage * * Map the user's GRU segment * * Note: gru segments alway mmaped on GRU_GSEG_PAGESIZE boundaries. */ vm_fault_t gru_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct gru_thread_state *gts; unsigned long paddr, vaddr; unsigned long expires; vaddr = vmf->address; gru_dbg(grudev, "vma %p, vaddr 0x%lx (0x%lx)\n", vma, vaddr, GSEG_BASE(vaddr)); STAT(nopfn); /* The following check ensures vaddr is a valid address in the VMA */ gts = gru_find_thread_state(vma, TSID(vaddr, vma)); if (!gts) return VM_FAULT_SIGBUS; again: mutex_lock(>s->ts_ctxlock); preempt_disable(); if (gru_check_context_placement(gts)) { preempt_enable(); mutex_unlock(>s->ts_ctxlock); gru_unload_context(gts, 1); return VM_FAULT_NOPAGE; } if (!gts->ts_gru) { STAT(load_user_context); if (!gru_assign_gru_context(gts)) { preempt_enable(); mutex_unlock(>s->ts_ctxlock); set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(GRU_ASSIGN_DELAY); /* true hack ZZZ */ expires = gts->ts_steal_jiffies + GRU_STEAL_DELAY; if (time_before(expires, jiffies)) gru_steal_context(gts); goto again; } gru_load_context(gts); paddr = gseg_physical_address(gts->ts_gru, gts->ts_ctxnum); remap_pfn_range(vma, vaddr & ~(GRU_GSEG_PAGESIZE - 1), paddr >> PAGE_SHIFT, GRU_GSEG_PAGESIZE, vma->vm_page_prot); } preempt_enable(); mutex_unlock(>s->ts_ctxlock); return VM_FAULT_NOPAGE; }