// SPDX-License-Identifier: GPL-2.0-only /* * Amlogic SD/eMMC driver for the GX/S905 family SoCs * * Copyright (c) 2016 BayLibre, SAS. * Author: Kevin Hilman */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "meson-gx-mmc" #define SD_EMMC_CLOCK 0x0 #define CLK_DIV_MASK GENMASK(5, 0) #define CLK_SRC_MASK GENMASK(7, 6) #define CLK_CORE_PHASE_MASK GENMASK(9, 8) #define CLK_TX_PHASE_MASK GENMASK(11, 10) #define CLK_RX_PHASE_MASK GENMASK(13, 12) #define CLK_PHASE_0 0 #define CLK_PHASE_180 2 #define CLK_V2_TX_DELAY_MASK GENMASK(19, 16) #define CLK_V2_RX_DELAY_MASK GENMASK(23, 20) #define CLK_V2_ALWAYS_ON BIT(24) #define CLK_V3_TX_DELAY_MASK GENMASK(21, 16) #define CLK_V3_RX_DELAY_MASK GENMASK(27, 22) #define CLK_V3_ALWAYS_ON BIT(28) #define CLK_TX_DELAY_MASK(h) (h->data->tx_delay_mask) #define CLK_RX_DELAY_MASK(h) (h->data->rx_delay_mask) #define CLK_ALWAYS_ON(h) (h->data->always_on) #define SD_EMMC_DELAY 0x4 #define SD_EMMC_ADJUST 0x8 #define ADJUST_ADJ_DELAY_MASK GENMASK(21, 16) #define ADJUST_DS_EN BIT(15) #define ADJUST_ADJ_EN BIT(13) #define SD_EMMC_DELAY1 0x4 #define SD_EMMC_DELAY2 0x8 #define SD_EMMC_V3_ADJUST 0xc #define SD_EMMC_CALOUT 0x10 #define SD_EMMC_START 0x40 #define START_DESC_INIT BIT(0) #define START_DESC_BUSY BIT(1) #define START_DESC_ADDR_MASK GENMASK(31, 2) #define SD_EMMC_CFG 0x44 #define CFG_BUS_WIDTH_MASK GENMASK(1, 0) #define CFG_BUS_WIDTH_1 0x0 #define CFG_BUS_WIDTH_4 0x1 #define CFG_BUS_WIDTH_8 0x2 #define CFG_DDR BIT(2) #define CFG_BLK_LEN_MASK GENMASK(7, 4) #define CFG_RESP_TIMEOUT_MASK GENMASK(11, 8) #define CFG_RC_CC_MASK GENMASK(15, 12) #define CFG_STOP_CLOCK BIT(22) #define CFG_CLK_ALWAYS_ON BIT(18) #define CFG_CHK_DS BIT(20) #define CFG_AUTO_CLK BIT(23) #define CFG_ERR_ABORT BIT(27) #define SD_EMMC_STATUS 0x48 #define STATUS_BUSY BIT(31) #define STATUS_DESC_BUSY BIT(30) #define STATUS_DATI GENMASK(23, 16) #define SD_EMMC_IRQ_EN 0x4c #define IRQ_RXD_ERR_MASK GENMASK(7, 0) #define IRQ_TXD_ERR BIT(8) #define IRQ_DESC_ERR BIT(9) #define IRQ_RESP_ERR BIT(10) #define IRQ_CRC_ERR \ (IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR) #define IRQ_RESP_TIMEOUT BIT(11) #define IRQ_DESC_TIMEOUT BIT(12) #define IRQ_TIMEOUTS \ (IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT) #define IRQ_END_OF_CHAIN BIT(13) #define IRQ_RESP_STATUS BIT(14) #define IRQ_SDIO BIT(15) #define IRQ_EN_MASK \ (IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN | IRQ_RESP_STATUS |\ IRQ_SDIO) #define SD_EMMC_CMD_CFG 0x50 #define SD_EMMC_CMD_ARG 0x54 #define SD_EMMC_CMD_DAT 0x58 #define SD_EMMC_CMD_RSP 0x5c #define SD_EMMC_CMD_RSP1 0x60 #define SD_EMMC_CMD_RSP2 0x64 #define SD_EMMC_CMD_RSP3 0x68 #define SD_EMMC_RXD 0x94 #define SD_EMMC_TXD 0x94 #define SD_EMMC_LAST_REG SD_EMMC_TXD #define SD_EMMC_SRAM_DATA_BUF_LEN 1536 #define SD_EMMC_SRAM_DATA_BUF_OFF 0x200 #define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */ #define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */ #define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */ #define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */ #define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */ #define SD_EMMC_DESC_BUF_LEN PAGE_SIZE #define SD_EMMC_PRE_REQ_DONE BIT(0) #define SD_EMMC_DESC_CHAIN_MODE BIT(1) #define MUX_CLK_NUM_PARENTS 2 struct meson_mmc_data { unsigned int tx_delay_mask; unsigned int rx_delay_mask; unsigned int always_on; unsigned int adjust; }; struct sd_emmc_desc { u32 cmd_cfg; u32 cmd_arg; u32 cmd_data; u32 cmd_resp; }; struct meson_host { struct device *dev; struct meson_mmc_data *data; struct mmc_host *mmc; struct mmc_command *cmd; void __iomem *regs; struct clk *core_clk; struct clk *mux_clk; struct clk *mmc_clk; unsigned long req_rate; bool ddr; bool dram_access_quirk; struct pinctrl *pinctrl; struct pinctrl_state *pins_clk_gate; unsigned int bounce_buf_size; void *bounce_buf; void __iomem *bounce_iomem_buf; dma_addr_t bounce_dma_addr; struct sd_emmc_desc *descs; dma_addr_t descs_dma_addr; int irq; bool vqmmc_enabled; bool needs_pre_post_req; }; #define CMD_CFG_LENGTH_MASK GENMASK(8, 0) #define CMD_CFG_BLOCK_MODE BIT(9) #define CMD_CFG_R1B BIT(10) #define CMD_CFG_END_OF_CHAIN BIT(11) #define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12) #define CMD_CFG_NO_RESP BIT(16) #define CMD_CFG_NO_CMD BIT(17) #define CMD_CFG_DATA_IO BIT(18) #define CMD_CFG_DATA_WR BIT(19) #define CMD_CFG_RESP_NOCRC BIT(20) #define CMD_CFG_RESP_128 BIT(21) #define CMD_CFG_RESP_NUM BIT(22) #define CMD_CFG_DATA_NUM BIT(23) #define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24) #define CMD_CFG_ERROR BIT(30) #define CMD_CFG_OWNER BIT(31) #define CMD_DATA_MASK GENMASK(31, 2) #define CMD_DATA_BIG_ENDIAN BIT(1) #define CMD_DATA_SRAM BIT(0) #define CMD_RESP_MASK GENMASK(31, 1) #define CMD_RESP_SRAM BIT(0) static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data) { unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC; if (!timeout) return SD_EMMC_CMD_TIMEOUT_DATA; timeout = roundup_pow_of_two(timeout); return min(timeout, 32768U); /* max. 2^15 ms */ } static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd) { if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error) return cmd->mrq->cmd; else if (mmc_op_multi(cmd->opcode) && (!cmd->mrq->sbc || cmd->error || cmd->data->error)) return cmd->mrq->stop; else return NULL; } static void meson_mmc_get_transfer_mode(struct mmc_host *mmc, struct mmc_request *mrq) { struct meson_host *host = mmc_priv(mmc); struct mmc_data *data = mrq->data; struct scatterlist *sg; int i; bool use_desc_chain_mode = true; /* * When Controller DMA cannot directly access DDR memory, disable * support for Chain Mode to directly use the internal SRAM using * the bounce buffer mode. */ if (host->dram_access_quirk) return; /* * Broken SDIO with AP6255-based WiFi on Khadas VIM Pro has been * reported. For some strange reason this occurs in descriptor * chain mode only. So let's fall back to bounce buffer mode * for command SD_IO_RW_EXTENDED. */ if (mrq->cmd->opcode == SD_IO_RW_EXTENDED) return; for_each_sg(data->sg, sg, data->sg_len, i) /* check for 8 byte alignment */ if (sg->offset & 7) { WARN_ONCE(1, "unaligned scatterlist buffer\n"); use_desc_chain_mode = false; break; } if (use_desc_chain_mode) data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE; } static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data) { return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE; } static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data) { return data && data->flags & MMC_DATA_READ && !meson_mmc_desc_chain_mode(data); } static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq) { struct mmc_data *data = mrq->data; if (!data) return; meson_mmc_get_transfer_mode(mmc, mrq); data->host_cookie |= SD_EMMC_PRE_REQ_DONE; if (!meson_mmc_desc_chain_mode(data)) return; data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len, mmc_get_dma_dir(data)); if (!data->sg_count) dev_err(mmc_dev(mmc), "dma_map_sg failed"); } static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq, int err) { struct mmc_data *data = mrq->data; if (data && meson_mmc_desc_chain_mode(data) && data->sg_count) dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len, mmc_get_dma_dir(data)); } /* * Gating the clock on this controller is tricky. It seems the mmc clock * is also used by the controller. It may crash during some operation if the * clock is stopped. The safest thing to do, whenever possible, is to keep * clock running at stop it at the pad using the pinmux. */ static void meson_mmc_clk_gate(struct meson_host *host) { u32 cfg; if (host->pins_clk_gate) { pinctrl_select_state(host->pinctrl, host->pins_clk_gate); } else { /* * If the pinmux is not provided - default to the classic and * unsafe method */ cfg = readl(host->regs + SD_EMMC_CFG); cfg |= CFG_STOP_CLOCK; writel(cfg, host->regs + SD_EMMC_CFG); } } static void meson_mmc_clk_ungate(struct meson_host *host) { u32 cfg; if (host->pins_clk_gate) pinctrl_select_default_state(host->dev); /* Make sure the clock is not stopped in the controller */ cfg = readl(host->regs + SD_EMMC_CFG); cfg &= ~CFG_STOP_CLOCK; writel(cfg, host->regs + SD_EMMC_CFG); } static int meson_mmc_clk_set(struct meson_host *host, unsigned long rate, bool ddr) { struct mmc_host *mmc = host->mmc; int ret; u32 cfg; /* Same request - bail-out */ if (host->ddr == ddr && host->req_rate == rate) return 0; /* stop clock */ meson_mmc_clk_gate(host); host->req_rate = 0; mmc->actual_clock = 0; /* return with clock being stopped */ if (!rate) return 0; /* Stop the clock during rate change to avoid glitches */ cfg = readl(host->regs + SD_EMMC_CFG); cfg |= CFG_STOP_CLOCK; writel(cfg, host->regs + SD_EMMC_CFG); if (ddr) { /* DDR modes require higher module clock */ rate <<= 1; cfg |= CFG_DDR; } else { cfg &= ~CFG_DDR; } writel(cfg, host->regs + SD_EMMC_CFG); host->ddr = ddr; ret = clk_set_rate(host->mmc_clk, rate); if (ret) { dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n", rate, ret); return ret; } host->req_rate = rate; mmc->actual_clock = clk_get_rate(host->mmc_clk); /* We should report the real output frequency of the controller */ if (ddr) { host->req_rate >>= 1; mmc->actual_clock >>= 1; } dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock); if (rate != mmc->actual_clock) dev_dbg(host->dev, "requested rate was %lu\n", rate); /* (re)start clock */ meson_mmc_clk_ungate(host); return 0; } /* * The SD/eMMC IP block has an internal mux and divider used for * generating the MMC clock. Use the clock framework to create and * manage these clocks. */ static int meson_mmc_clk_init(struct meson_host *host) { struct clk_init_data init; struct clk_mux *mux; struct clk_divider *div; char clk_name[32]; int i, ret = 0; const char *mux_parent_names[MUX_CLK_NUM_PARENTS]; const char *clk_parent[1]; u32 clk_reg; /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */ clk_reg = CLK_ALWAYS_ON(host); clk_reg |= CLK_DIV_MASK; clk_reg |= FIELD_PREP(CLK_CORE_PHASE_MASK, CLK_PHASE_180); clk_reg |= FIELD_PREP(CLK_TX_PHASE_MASK, CLK_PHASE_0); clk_reg |= FIELD_PREP(CLK_RX_PHASE_MASK, CLK_PHASE_0); writel(clk_reg, host->regs + SD_EMMC_CLOCK); /* get the mux parents */ for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) { struct clk *clk; char name[16]; snprintf(name, sizeof(name), "clkin%d", i); clk = devm_clk_get(host->dev, name); if (IS_ERR(clk)) return dev_err_probe(host->dev, PTR_ERR(clk), "Missing clock %s\n", name); mux_parent_names[i] = __clk_get_name(clk); } /* create the mux */ mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL); if (!mux) return -ENOMEM; snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev)); init.name = clk_name; init.ops = &clk_mux_ops; init.flags = 0; init.parent_names = mux_parent_names; init.num_parents = MUX_CLK_NUM_PARENTS; mux->reg = host->regs + SD_EMMC_CLOCK; mux->shift = __ffs(CLK_SRC_MASK); mux->mask = CLK_SRC_MASK >> mux->shift; mux->hw.init = &init; host->mux_clk = devm_clk_register(host->dev, &mux->hw); if (WARN_ON(IS_ERR(host->mux_clk))) return PTR_ERR(host->mux_clk); /* create the divider */ div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL); if (!div) return -ENOMEM; snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev)); init.name = clk_name; init.ops = &clk_divider_ops; init.flags = CLK_SET_RATE_PARENT; clk_parent[0] = __clk_get_name(host->mux_clk); init.parent_names = clk_parent; init.num_parents = 1; div->reg = host->regs + SD_EMMC_CLOCK; div->shift = __ffs(CLK_DIV_MASK); div->width = __builtin_popcountl(CLK_DIV_MASK); div->hw.init = &init; div->flags = CLK_DIVIDER_ONE_BASED; host->mmc_clk = devm_clk_register(host->dev, &div->hw); if (WARN_ON(IS_ERR(host->mmc_clk))) return PTR_ERR(host->mmc_clk); /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */ host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000); ret = clk_set_rate(host->mmc_clk, host->mmc->f_min); if (ret) return ret; return clk_prepare_enable(host->mmc_clk); } static void meson_mmc_disable_resampling(struct meson_host *host) { unsigned int val = readl(host->regs + host->data->adjust); val &= ~ADJUST_ADJ_EN; writel(val, host->regs + host->data->adjust); } static void meson_mmc_reset_resampling(struct meson_host *host) { unsigned int val; meson_mmc_disable_resampling(host); val = readl(host->regs + host->data->adjust); val &= ~ADJUST_ADJ_DELAY_MASK; writel(val, host->regs + host->data->adjust); } static int meson_mmc_resampling_tuning(struct mmc_host *mmc, u32 opcode) { struct meson_host *host = mmc_priv(mmc); unsigned int val, dly, max_dly, i; int ret; /* Resampling is done using the source clock */ max_dly = DIV_ROUND_UP(clk_get_rate(host->mux_clk), clk_get_rate(host->mmc_clk)); val = readl(host->regs + host->data->adjust); val |= ADJUST_ADJ_EN; writel(val, host->regs + host->data->adjust); if (mmc_doing_retune(mmc)) dly = FIELD_GET(ADJUST_ADJ_DELAY_MASK, val) + 1; else dly = 0; for (i = 0; i < max_dly; i++) { val &= ~ADJUST_ADJ_DELAY_MASK; val |= FIELD_PREP(ADJUST_ADJ_DELAY_MASK, (dly + i) % max_dly); writel(val, host->regs + host->data->adjust); ret = mmc_send_tuning(mmc, opcode, NULL); if (!ret) { dev_dbg(mmc_dev(mmc), "resampling delay: %u\n", (dly + i) % max_dly); return 0; } } meson_mmc_reset_resampling(host); return -EIO; } static int meson_mmc_prepare_ios_clock(struct meson_host *host, struct mmc_ios *ios) { bool ddr; switch (ios->timing) { case MMC_TIMING_MMC_DDR52: case MMC_TIMING_UHS_DDR50: ddr = true; break; default: ddr = false; break; } return meson_mmc_clk_set(host, ios->clock, ddr); } static void meson_mmc_check_resampling(struct meson_host *host, struct mmc_ios *ios) { switch (ios->timing) { case MMC_TIMING_LEGACY: case MMC_TIMING_MMC_HS: case MMC_TIMING_SD_HS: case MMC_TIMING_MMC_DDR52: meson_mmc_disable_resampling(host); break; } } static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct meson_host *host = mmc_priv(mmc); u32 bus_width, val; int err; /* * GPIO regulator, only controls switching between 1v8 and * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON. */ switch (ios->power_mode) { case MMC_POWER_OFF: if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) { regulator_disable(mmc->supply.vqmmc); host->vqmmc_enabled = false; } break; case MMC_POWER_UP: if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); break; case MMC_POWER_ON: if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) { int ret = regulator_enable(mmc->supply.vqmmc); if (ret < 0) dev_err(host->dev, "failed to enable vqmmc regulator\n"); else host->vqmmc_enabled = true; } break; } /* Bus width */ switch (ios->bus_width) { case MMC_BUS_WIDTH_1: bus_width = CFG_BUS_WIDTH_1; break; case MMC_BUS_WIDTH_4: bus_width = CFG_BUS_WIDTH_4; break; case MMC_BUS_WIDTH_8: bus_width = CFG_BUS_WIDTH_8; break; default: dev_err(host->dev, "Invalid ios->bus_width: %u. Setting to 4.\n", ios->bus_width); bus_width = CFG_BUS_WIDTH_4; } val = readl(host->regs + SD_EMMC_CFG); val &= ~CFG_BUS_WIDTH_MASK; val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width); writel(val, host->regs + SD_EMMC_CFG); meson_mmc_check_resampling(host, ios); err = meson_mmc_prepare_ios_clock(host, ios); if (err) dev_err(host->dev, "Failed to set clock: %d\n,", err); dev_dbg(host->dev, "SD_EMMC_CFG: 0x%08x\n", val); } static void meson_mmc_request_done(struct mmc_host *mmc, struct mmc_request *mrq) { struct meson_host *host = mmc_priv(mmc); host->cmd = NULL; if (host->needs_pre_post_req) meson_mmc_post_req(mmc, mrq, 0); mmc_request_done(host->mmc, mrq); } static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz) { struct meson_host *host = mmc_priv(mmc); u32 cfg, blksz_old; cfg = readl(host->regs + SD_EMMC_CFG); blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg); if (!is_power_of_2(blksz)) dev_err(host->dev, "blksz %u is not a power of 2\n", blksz); blksz = ilog2(blksz); /* check if block-size matches, if not update */ if (blksz == blksz_old) return; dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__, blksz_old, blksz); cfg &= ~CFG_BLK_LEN_MASK; cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz); writel(cfg, host->regs + SD_EMMC_CFG); } static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg) { if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) *cmd_cfg |= CMD_CFG_RESP_128; *cmd_cfg |= CMD_CFG_RESP_NUM; if (!(cmd->flags & MMC_RSP_CRC)) *cmd_cfg |= CMD_CFG_RESP_NOCRC; if (cmd->flags & MMC_RSP_BUSY) *cmd_cfg |= CMD_CFG_R1B; } else { *cmd_cfg |= CMD_CFG_NO_RESP; } } static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg) { struct meson_host *host = mmc_priv(mmc); struct sd_emmc_desc *desc = host->descs; struct mmc_data *data = host->cmd->data; struct scatterlist *sg; u32 start; int i; if (data->flags & MMC_DATA_WRITE) cmd_cfg |= CMD_CFG_DATA_WR; if (data->blocks > 1) { cmd_cfg |= CMD_CFG_BLOCK_MODE; meson_mmc_set_blksz(mmc, data->blksz); } for_each_sg(data->sg, sg, data->sg_count, i) { unsigned int len = sg_dma_len(sg); if (data->blocks > 1) len /= data->blksz; desc[i].cmd_cfg = cmd_cfg; desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len); if (i > 0) desc[i].cmd_cfg |= CMD_CFG_NO_CMD; desc[i].cmd_arg = host->cmd->arg; desc[i].cmd_resp = 0; desc[i].cmd_data = sg_dma_address(sg); } desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN; dma_wmb(); /* ensure descriptor is written before kicked */ start = host->descs_dma_addr | START_DESC_BUSY; writel(start, host->regs + SD_EMMC_START); } /* local sg copy for dram_access_quirk */ static void meson_mmc_copy_buffer(struct meson_host *host, struct mmc_data *data, size_t buflen, bool to_buffer) { unsigned int sg_flags = SG_MITER_ATOMIC; struct scatterlist *sgl = data->sg; unsigned int nents = data->sg_len; struct sg_mapping_iter miter; unsigned int offset = 0; if (to_buffer) sg_flags |= SG_MITER_FROM_SG; else sg_flags |= SG_MITER_TO_SG; sg_miter_start(&miter, sgl, nents, sg_flags); while ((offset < buflen) && sg_miter_next(&miter)) { unsigned int buf_offset = 0; unsigned int len, left; u32 *buf = miter.addr; len = min(miter.length, buflen - offset); left = len; if (to_buffer) { do { writel(*buf++, host->bounce_iomem_buf + offset + buf_offset); buf_offset += 4; left -= 4; } while (left); } else { do { *buf++ = readl(host->bounce_iomem_buf + offset + buf_offset); buf_offset += 4; left -= 4; } while (left); } offset += len; } sg_miter_stop(&miter); } static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd) { struct meson_host *host = mmc_priv(mmc); struct mmc_data *data = cmd->data; u32 cmd_cfg = 0, cmd_data = 0; unsigned int xfer_bytes = 0; /* Setup descriptors */ dma_rmb(); host->cmd = cmd; cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode); cmd_cfg |= CMD_CFG_OWNER; /* owned by CPU */ meson_mmc_set_response_bits(cmd, &cmd_cfg); /* data? */ if (data) { data->bytes_xfered = 0; cmd_cfg |= CMD_CFG_DATA_IO; cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK, ilog2(meson_mmc_get_timeout_msecs(data))); if (meson_mmc_desc_chain_mode(data)) { meson_mmc_desc_chain_transfer(mmc, cmd_cfg); return; } if (data->blocks > 1) { cmd_cfg |= CMD_CFG_BLOCK_MODE; cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blocks); meson_mmc_set_blksz(mmc, data->blksz); } else { cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz); } xfer_bytes = data->blksz * data->blocks; if (data->flags & MMC_DATA_WRITE) { cmd_cfg |= CMD_CFG_DATA_WR; WARN_ON(xfer_bytes > host->bounce_buf_size); if (host->dram_access_quirk) meson_mmc_copy_buffer(host, data, xfer_bytes, true); else sg_copy_to_buffer(data->sg, data->sg_len, host->bounce_buf, xfer_bytes); dma_wmb(); } cmd_data = host->bounce_dma_addr & CMD_DATA_MASK; } else { cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK, ilog2(SD_EMMC_CMD_TIMEOUT)); } /* Last descriptor */ cmd_cfg |= CMD_CFG_END_OF_CHAIN; writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG); writel(cmd_data, host->regs + SD_EMMC_CMD_DAT); writel(0, host->regs + SD_EMMC_CMD_RSP); wmb(); /* ensure descriptor is written before kicked */ writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG); } static int meson_mmc_validate_dram_access(struct mmc_host *mmc, struct mmc_data *data) { struct scatterlist *sg; int i; /* Reject request if any element offset or size is not 32bit aligned */ for_each_sg(data->sg, sg, data->sg_len, i) { if (!IS_ALIGNED(sg->offset, sizeof(u32)) || !IS_ALIGNED(sg->length, sizeof(u32))) { dev_err(mmc_dev(mmc), "unaligned sg offset %u len %u\n", data->sg->offset, data->sg->length); return -EINVAL; } } return 0; } static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct meson_host *host = mmc_priv(mmc); host->needs_pre_post_req = mrq->data && !(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE); /* * The memory at the end of the controller used as bounce buffer for * the dram_access_quirk only accepts 32bit read/write access, * check the aligment and length of the data before starting the request. */ if (host->dram_access_quirk && mrq->data) { mrq->cmd->error = meson_mmc_validate_dram_access(mmc, mrq->data); if (mrq->cmd->error) { mmc_request_done(mmc, mrq); return; } } if (host->needs_pre_post_req) { meson_mmc_get_transfer_mode(mmc, mrq); if (!meson_mmc_desc_chain_mode(mrq->data)) host->needs_pre_post_req = false; } if (host->needs_pre_post_req) meson_mmc_pre_req(mmc, mrq); /* Stop execution */ writel(0, host->regs + SD_EMMC_START); meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd); } static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd) { struct meson_host *host = mmc_priv(mmc); if (cmd->flags & MMC_RSP_136) { cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3); cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2); cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1); cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP); } else if (cmd->flags & MMC_RSP_PRESENT) { cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP); } } static irqreturn_t meson_mmc_irq(int irq, void *dev_id) { struct meson_host *host = dev_id; struct mmc_command *cmd; struct mmc_data *data; u32 irq_en, status, raw_status; irqreturn_t ret = IRQ_NONE; irq_en = readl(host->regs + SD_EMMC_IRQ_EN); raw_status = readl(host->regs + SD_EMMC_STATUS); status = raw_status & irq_en; if (!status) { dev_dbg(host->dev, "Unexpected IRQ! irq_en 0x%08x - status 0x%08x\n", irq_en, raw_status); return IRQ_NONE; } if (WARN_ON(!host) || WARN_ON(!host->cmd)) return IRQ_NONE; /* ack all raised interrupts */ writel(status, host->regs + SD_EMMC_STATUS); cmd = host->cmd; data = cmd->data; cmd->error = 0; if (status & IRQ_CRC_ERR) { dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status); cmd->error = -EILSEQ; ret = IRQ_WAKE_THREAD; goto out; } if (status & IRQ_TIMEOUTS) { dev_dbg(host->dev, "Timeout - status 0x%08x\n", status); cmd->error = -ETIMEDOUT; ret = IRQ_WAKE_THREAD; goto out; } meson_mmc_read_resp(host->mmc, cmd); if (status & IRQ_SDIO) { dev_dbg(host->dev, "IRQ: SDIO TODO.\n"); ret = IRQ_HANDLED; } if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) { if (data && !cmd->error) data->bytes_xfered = data->blksz * data->blocks; return IRQ_WAKE_THREAD; } out: if (cmd->error) { /* Stop desc in case of errors */ u32 start = readl(host->regs + SD_EMMC_START); start &= ~START_DESC_BUSY; writel(start, host->regs + SD_EMMC_START); } return ret; } static int meson_mmc_wait_desc_stop(struct meson_host *host) { u32 status; /* * It may sometimes take a while for it to actually halt. Here, we * are giving it 5ms to comply * * If we don't confirm the descriptor is stopped, it might raise new * IRQs after we have called mmc_request_done() which is bad. */ return readl_poll_timeout(host->regs + SD_EMMC_STATUS, status, !(status & (STATUS_BUSY | STATUS_DESC_BUSY)), 100, 5000); } static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id) { struct meson_host *host = dev_id; struct mmc_command *next_cmd, *cmd = host->cmd; struct mmc_data *data; unsigned int xfer_bytes; if (WARN_ON(!cmd)) return IRQ_NONE; if (cmd->error) { meson_mmc_wait_desc_stop(host); meson_mmc_request_done(host->mmc, cmd->mrq); return IRQ_HANDLED; } data = cmd->data; if (meson_mmc_bounce_buf_read(data)) { xfer_bytes = data->blksz * data->blocks; WARN_ON(xfer_bytes > host->bounce_buf_size); if (host->dram_access_quirk) meson_mmc_copy_buffer(host, data, xfer_bytes, false); else sg_copy_from_buffer(data->sg, data->sg_len, host->bounce_buf, xfer_bytes); } next_cmd = meson_mmc_get_next_command(cmd); if (next_cmd) meson_mmc_start_cmd(host->mmc, next_cmd); else meson_mmc_request_done(host->mmc, cmd->mrq); return IRQ_HANDLED; } /* * NOTE: we only need this until the GPIO/pinctrl driver can handle * interrupts. For now, the MMC core will use this for polling. */ static int meson_mmc_get_cd(struct mmc_host *mmc) { int status = mmc_gpio_get_cd(mmc); if (status == -ENOSYS) return 1; /* assume present */ return status; } static void meson_mmc_cfg_init(struct meson_host *host) { u32 cfg = 0; cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK, ilog2(SD_EMMC_CFG_RESP_TIMEOUT)); cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP)); cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE)); /* abort chain on R/W errors */ cfg |= CFG_ERR_ABORT; writel(cfg, host->regs + SD_EMMC_CFG); } static int meson_mmc_card_busy(struct mmc_host *mmc) { struct meson_host *host = mmc_priv(mmc); u32 regval; regval = readl(host->regs + SD_EMMC_STATUS); /* We are only interrested in lines 0 to 3, so mask the other ones */ return !(FIELD_GET(STATUS_DATI, regval) & 0xf); } static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios) { int ret; /* vqmmc regulator is available */ if (!IS_ERR(mmc->supply.vqmmc)) { /* * The usual amlogic setup uses a GPIO to switch from one * regulator to the other. While the voltage ramp up is * pretty fast, care must be taken when switching from 3.3v * to 1.8v. Please make sure the regulator framework is aware * of your own regulator constraints */ ret = mmc_regulator_set_vqmmc(mmc, ios); return ret < 0 ? ret : 0; } /* no vqmmc regulator, assume fixed regulator at 3/3.3V */ if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) return 0; return -EINVAL; } static const struct mmc_host_ops meson_mmc_ops = { .request = meson_mmc_request, .set_ios = meson_mmc_set_ios, .get_cd = meson_mmc_get_cd, .pre_req = meson_mmc_pre_req, .post_req = meson_mmc_post_req, .execute_tuning = meson_mmc_resampling_tuning, .card_busy = meson_mmc_card_busy, .start_signal_voltage_switch = meson_mmc_voltage_switch, }; static int meson_mmc_probe(struct platform_device *pdev) { struct resource *res; struct meson_host *host; struct mmc_host *mmc; int ret; mmc = devm_mmc_alloc_host(&pdev->dev, sizeof(struct meson_host)); if (!mmc) return -ENOMEM; host = mmc_priv(mmc); host->mmc = mmc; host->dev = &pdev->dev; dev_set_drvdata(&pdev->dev, host); /* The G12A SDIO Controller needs an SRAM bounce buffer */ host->dram_access_quirk = device_property_read_bool(&pdev->dev, "amlogic,dram-access-quirk"); /* Get regulators and the supported OCR mask */ host->vqmmc_enabled = false; ret = mmc_regulator_get_supply(mmc); if (ret) return ret; ret = mmc_of_parse(mmc); if (ret) return dev_err_probe(&pdev->dev, ret, "error parsing DT\n"); host->data = (struct meson_mmc_data *) of_device_get_match_data(&pdev->dev); if (!host->data) return -EINVAL; ret = device_reset_optional(&pdev->dev); if (ret) return dev_err_probe(&pdev->dev, ret, "device reset failed\n"); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); host->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(host->regs)) return PTR_ERR(host->regs); host->irq = platform_get_irq(pdev, 0); if (host->irq < 0) return host->irq; host->pinctrl = devm_pinctrl_get(&pdev->dev); if (IS_ERR(host->pinctrl)) return PTR_ERR(host->pinctrl); host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl, "clk-gate"); if (IS_ERR(host->pins_clk_gate)) { dev_warn(&pdev->dev, "can't get clk-gate pinctrl, using clk_stop bit\n"); host->pins_clk_gate = NULL; } host->core_clk = devm_clk_get(&pdev->dev, "core"); if (IS_ERR(host->core_clk)) return PTR_ERR(host->core_clk); ret = clk_prepare_enable(host->core_clk); if (ret) return ret; ret = meson_mmc_clk_init(host); if (ret) goto err_core_clk; /* set config to sane default */ meson_mmc_cfg_init(host); /* Stop execution */ writel(0, host->regs + SD_EMMC_START); /* clear, ack and enable interrupts */ writel(0, host->regs + SD_EMMC_IRQ_EN); writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN, host->regs + SD_EMMC_STATUS); writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN, host->regs + SD_EMMC_IRQ_EN); ret = request_threaded_irq(host->irq, meson_mmc_irq, meson_mmc_irq_thread, IRQF_ONESHOT, dev_name(&pdev->dev), host); if (ret) goto err_init_clk; mmc->caps |= MMC_CAP_CMD23; if (host->dram_access_quirk) { /* Limit segments to 1 due to low available sram memory */ mmc->max_segs = 1; /* Limit to the available sram memory */ mmc->max_blk_count = SD_EMMC_SRAM_DATA_BUF_LEN / mmc->max_blk_size; } else { mmc->max_blk_count = CMD_CFG_LENGTH_MASK; mmc->max_segs = SD_EMMC_DESC_BUF_LEN / sizeof(struct sd_emmc_desc); } mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size; mmc->max_seg_size = mmc->max_req_size; /* * At the moment, we don't know how to reliably enable HS400. * From the different datasheets, it is not even clear if this mode * is officially supported by any of the SoCs */ mmc->caps2 &= ~MMC_CAP2_HS400; if (host->dram_access_quirk) { /* * The MMC Controller embeds 1,5KiB of internal SRAM * that can be used to be used as bounce buffer. * In the case of the G12A SDIO controller, use these * instead of the DDR memory */ host->bounce_buf_size = SD_EMMC_SRAM_DATA_BUF_LEN; host->bounce_iomem_buf = host->regs + SD_EMMC_SRAM_DATA_BUF_OFF; host->bounce_dma_addr = res->start + SD_EMMC_SRAM_DATA_BUF_OFF; } else { /* data bounce buffer */ host->bounce_buf_size = mmc->max_req_size; host->bounce_buf = dma_alloc_coherent(host->dev, host->bounce_buf_size, &host->bounce_dma_addr, GFP_KERNEL); if (host->bounce_buf == NULL) { dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n"); ret = -ENOMEM; goto err_free_irq; } } host->descs = dma_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN, &host->descs_dma_addr, GFP_KERNEL); if (!host->descs) { dev_err(host->dev, "Allocating descriptor DMA buffer failed\n"); ret = -ENOMEM; goto err_bounce_buf; } mmc->ops = &meson_mmc_ops; ret = mmc_add_host(mmc); if (ret) goto err_free_irq; return 0; err_bounce_buf: if (!host->dram_access_quirk) dma_free_coherent(host->dev, host->bounce_buf_size, host->bounce_buf, host->bounce_dma_addr); err_free_irq: free_irq(host->irq, host); err_init_clk: clk_disable_unprepare(host->mmc_clk); err_core_clk: clk_disable_unprepare(host->core_clk); return ret; } static int meson_mmc_remove(struct platform_device *pdev) { struct meson_host *host = dev_get_drvdata(&pdev->dev); mmc_remove_host(host->mmc); /* disable interrupts */ writel(0, host->regs + SD_EMMC_IRQ_EN); free_irq(host->irq, host); dma_free_coherent(host->dev, SD_EMMC_DESC_BUF_LEN, host->descs, host->descs_dma_addr); if (!host->dram_access_quirk) dma_free_coherent(host->dev, host->bounce_buf_size, host->bounce_buf, host->bounce_dma_addr); clk_disable_unprepare(host->mmc_clk); clk_disable_unprepare(host->core_clk); return 0; } static const struct meson_mmc_data meson_gx_data = { .tx_delay_mask = CLK_V2_TX_DELAY_MASK, .rx_delay_mask = CLK_V2_RX_DELAY_MASK, .always_on = CLK_V2_ALWAYS_ON, .adjust = SD_EMMC_ADJUST, }; static const struct meson_mmc_data meson_axg_data = { .tx_delay_mask = CLK_V3_TX_DELAY_MASK, .rx_delay_mask = CLK_V3_RX_DELAY_MASK, .always_on = CLK_V3_ALWAYS_ON, .adjust = SD_EMMC_V3_ADJUST, }; static const struct of_device_id meson_mmc_of_match[] = { { .compatible = "amlogic,meson-gx-mmc", .data = &meson_gx_data }, { .compatible = "amlogic,meson-gxbb-mmc", .data = &meson_gx_data }, { .compatible = "amlogic,meson-gxl-mmc", .data = &meson_gx_data }, { .compatible = "amlogic,meson-gxm-mmc", .data = &meson_gx_data }, { .compatible = "amlogic,meson-axg-mmc", .data = &meson_axg_data }, {} }; MODULE_DEVICE_TABLE(of, meson_mmc_of_match); static struct platform_driver meson_mmc_driver = { .probe = meson_mmc_probe, .remove = meson_mmc_remove, .driver = { .name = DRIVER_NAME, .probe_type = PROBE_PREFER_ASYNCHRONOUS, .of_match_table = of_match_ptr(meson_mmc_of_match), }, }; module_platform_driver(meson_mmc_driver); MODULE_DESCRIPTION("Amlogic S905*/GX*/AXG SD/eMMC driver"); MODULE_AUTHOR("Kevin Hilman "); MODULE_LICENSE("GPL v2");