// SPDX-License-Identifier: GPL-2.0-only /* * CAN driver for PEAK System PCAN-USB adapter * Derived from the PCAN project file driver/src/pcan_usb.c * * Copyright (C) 2003-2010 PEAK System-Technik GmbH * Copyright (C) 2011-2012 Stephane Grosjean * * Many thanks to Klaus Hitschler */ #include #include #include #include #include #include #include "pcan_usb_core.h" MODULE_SUPPORTED_DEVICE("PEAK-System PCAN-USB adapter"); /* PCAN-USB Endpoints */ #define PCAN_USB_EP_CMDOUT 1 #define PCAN_USB_EP_CMDIN (PCAN_USB_EP_CMDOUT | USB_DIR_IN) #define PCAN_USB_EP_MSGOUT 2 #define PCAN_USB_EP_MSGIN (PCAN_USB_EP_MSGOUT | USB_DIR_IN) /* PCAN-USB command struct */ #define PCAN_USB_CMD_FUNC 0 #define PCAN_USB_CMD_NUM 1 #define PCAN_USB_CMD_ARGS 2 #define PCAN_USB_CMD_ARGS_LEN 14 #define PCAN_USB_CMD_LEN (PCAN_USB_CMD_ARGS + \ PCAN_USB_CMD_ARGS_LEN) /* PCAN-USB commands */ #define PCAN_USB_CMD_BITRATE 1 #define PCAN_USB_CMD_SET_BUS 3 #define PCAN_USB_CMD_DEVID 4 #define PCAN_USB_CMD_SN 6 #define PCAN_USB_CMD_REGISTER 9 #define PCAN_USB_CMD_EXT_VCC 10 #define PCAN_USB_CMD_ERR_FR 11 /* PCAN_USB_CMD_SET_BUS number arg */ #define PCAN_USB_BUS_XCVER 2 #define PCAN_USB_BUS_SILENT_MODE 3 /* PCAN_USB_CMD_xxx functions */ #define PCAN_USB_GET 1 #define PCAN_USB_SET 2 /* PCAN-USB command timeout (ms.) */ #define PCAN_USB_COMMAND_TIMEOUT 1000 /* PCAN-USB startup timeout (ms.) */ #define PCAN_USB_STARTUP_TIMEOUT 10 /* PCAN-USB rx/tx buffers size */ #define PCAN_USB_RX_BUFFER_SIZE 64 #define PCAN_USB_TX_BUFFER_SIZE 64 #define PCAN_USB_MSG_HEADER_LEN 2 /* PCAN-USB adapter internal clock (MHz) */ #define PCAN_USB_CRYSTAL_HZ 16000000 /* PCAN-USB USB message record status/len field */ #define PCAN_USB_STATUSLEN_TIMESTAMP (1 << 7) #define PCAN_USB_STATUSLEN_INTERNAL (1 << 6) #define PCAN_USB_STATUSLEN_EXT_ID (1 << 5) #define PCAN_USB_STATUSLEN_RTR (1 << 4) #define PCAN_USB_STATUSLEN_DLC (0xf) /* PCAN-USB error flags */ #define PCAN_USB_ERROR_TXFULL 0x01 #define PCAN_USB_ERROR_RXQOVR 0x02 #define PCAN_USB_ERROR_BUS_LIGHT 0x04 #define PCAN_USB_ERROR_BUS_HEAVY 0x08 #define PCAN_USB_ERROR_BUS_OFF 0x10 #define PCAN_USB_ERROR_RXQEMPTY 0x20 #define PCAN_USB_ERROR_QOVR 0x40 #define PCAN_USB_ERROR_TXQFULL 0x80 #define PCAN_USB_ERROR_BUS (PCAN_USB_ERROR_BUS_LIGHT | \ PCAN_USB_ERROR_BUS_HEAVY | \ PCAN_USB_ERROR_BUS_OFF) /* SJA1000 modes */ #define SJA1000_MODE_NORMAL 0x00 #define SJA1000_MODE_INIT 0x01 /* * tick duration = 42.666 us => * (tick_number * 44739243) >> 20 ~ (tick_number * 42666) / 1000 * accuracy = 10^-7 */ #define PCAN_USB_TS_DIV_SHIFTER 20 #define PCAN_USB_TS_US_PER_TICK 44739243 /* PCAN-USB messages record types */ #define PCAN_USB_REC_ERROR 1 #define PCAN_USB_REC_ANALOG 2 #define PCAN_USB_REC_BUSLOAD 3 #define PCAN_USB_REC_TS 4 #define PCAN_USB_REC_BUSEVT 5 /* CAN bus events notifications selection mask */ #define PCAN_USB_ERR_RXERR 0x02 /* ask for rxerr counter */ #define PCAN_USB_ERR_TXERR 0x04 /* ask for txerr counter */ /* This mask generates an usb packet each time the state of the bus changes. * In other words, its interest is to know which side among rx and tx is * responsible of the change of the bus state. */ #define PCAN_USB_BERR_MASK (PCAN_USB_ERR_RXERR | PCAN_USB_ERR_TXERR) /* identify bus event packets with rx/tx error counters */ #define PCAN_USB_ERR_CNT_DEC 0x00 /* counters are decreasing */ #define PCAN_USB_ERR_CNT_INC 0x80 /* counters are increasing */ /* private to PCAN-USB adapter */ struct pcan_usb { struct peak_usb_device dev; struct peak_time_ref time_ref; struct timer_list restart_timer; struct can_berr_counter bec; }; /* incoming message context for decoding */ struct pcan_usb_msg_context { u16 ts16; u8 prev_ts8; u8 *ptr; u8 *end; u8 rec_cnt; u8 rec_idx; u8 rec_ts_idx; struct net_device *netdev; struct pcan_usb *pdev; }; /* * send a command */ static int pcan_usb_send_cmd(struct peak_usb_device *dev, u8 f, u8 n, u8 *p) { int err; int actual_length; /* usb device unregistered? */ if (!(dev->state & PCAN_USB_STATE_CONNECTED)) return 0; dev->cmd_buf[PCAN_USB_CMD_FUNC] = f; dev->cmd_buf[PCAN_USB_CMD_NUM] = n; if (p) memcpy(dev->cmd_buf + PCAN_USB_CMD_ARGS, p, PCAN_USB_CMD_ARGS_LEN); err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, PCAN_USB_EP_CMDOUT), dev->cmd_buf, PCAN_USB_CMD_LEN, &actual_length, PCAN_USB_COMMAND_TIMEOUT); if (err) netdev_err(dev->netdev, "sending cmd f=0x%x n=0x%x failure: %d\n", f, n, err); return err; } /* * send a command then wait for its response */ static int pcan_usb_wait_rsp(struct peak_usb_device *dev, u8 f, u8 n, u8 *p) { int err; int actual_length; /* usb device unregistered? */ if (!(dev->state & PCAN_USB_STATE_CONNECTED)) return 0; /* first, send command */ err = pcan_usb_send_cmd(dev, f, n, NULL); if (err) return err; err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, PCAN_USB_EP_CMDIN), dev->cmd_buf, PCAN_USB_CMD_LEN, &actual_length, PCAN_USB_COMMAND_TIMEOUT); if (err) netdev_err(dev->netdev, "waiting rsp f=0x%x n=0x%x failure: %d\n", f, n, err); else if (p) memcpy(p, dev->cmd_buf + PCAN_USB_CMD_ARGS, PCAN_USB_CMD_ARGS_LEN); return err; } static int pcan_usb_set_sja1000(struct peak_usb_device *dev, u8 mode) { u8 args[PCAN_USB_CMD_ARGS_LEN] = { [1] = mode, }; return pcan_usb_send_cmd(dev, PCAN_USB_CMD_REGISTER, PCAN_USB_SET, args); } static int pcan_usb_set_bus(struct peak_usb_device *dev, u8 onoff) { u8 args[PCAN_USB_CMD_ARGS_LEN] = { [0] = !!onoff, }; return pcan_usb_send_cmd(dev, PCAN_USB_CMD_SET_BUS, PCAN_USB_BUS_XCVER, args); } static int pcan_usb_set_silent(struct peak_usb_device *dev, u8 onoff) { u8 args[PCAN_USB_CMD_ARGS_LEN] = { [0] = !!onoff, }; return pcan_usb_send_cmd(dev, PCAN_USB_CMD_SET_BUS, PCAN_USB_BUS_SILENT_MODE, args); } /* send the cmd to be notified from bus errors */ static int pcan_usb_set_err_frame(struct peak_usb_device *dev, u8 err_mask) { u8 args[PCAN_USB_CMD_ARGS_LEN] = { [0] = err_mask, }; return pcan_usb_send_cmd(dev, PCAN_USB_CMD_ERR_FR, PCAN_USB_SET, args); } static int pcan_usb_set_ext_vcc(struct peak_usb_device *dev, u8 onoff) { u8 args[PCAN_USB_CMD_ARGS_LEN] = { [0] = !!onoff, }; return pcan_usb_send_cmd(dev, PCAN_USB_CMD_EXT_VCC, PCAN_USB_SET, args); } /* * set bittiming value to can */ static int pcan_usb_set_bittiming(struct peak_usb_device *dev, struct can_bittiming *bt) { u8 args[PCAN_USB_CMD_ARGS_LEN]; u8 btr0, btr1; btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6); btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) | (((bt->phase_seg2 - 1) & 0x7) << 4); if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES) btr1 |= 0x80; netdev_info(dev->netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1); args[0] = btr1; args[1] = btr0; return pcan_usb_send_cmd(dev, PCAN_USB_CMD_BITRATE, PCAN_USB_SET, args); } /* * init/reset can */ static int pcan_usb_write_mode(struct peak_usb_device *dev, u8 onoff) { int err; err = pcan_usb_set_bus(dev, onoff); if (err) return err; if (!onoff) { err = pcan_usb_set_sja1000(dev, SJA1000_MODE_INIT); } else { /* the PCAN-USB needs time to init */ set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(msecs_to_jiffies(PCAN_USB_STARTUP_TIMEOUT)); } return err; } /* * handle end of waiting for the device to reset */ static void pcan_usb_restart(struct timer_list *t) { struct pcan_usb *pdev = from_timer(pdev, t, restart_timer); struct peak_usb_device *dev = &pdev->dev; /* notify candev and netdev */ peak_usb_restart_complete(dev); } /* * handle the submission of the restart urb */ static void pcan_usb_restart_pending(struct urb *urb) { struct pcan_usb *pdev = urb->context; /* the PCAN-USB needs time to restart */ mod_timer(&pdev->restart_timer, jiffies + msecs_to_jiffies(PCAN_USB_STARTUP_TIMEOUT)); /* can delete usb resources */ peak_usb_async_complete(urb); } /* * handle asynchronous restart */ static int pcan_usb_restart_async(struct peak_usb_device *dev, struct urb *urb, u8 *buf) { struct pcan_usb *pdev = container_of(dev, struct pcan_usb, dev); if (timer_pending(&pdev->restart_timer)) return -EBUSY; /* set bus on */ buf[PCAN_USB_CMD_FUNC] = 3; buf[PCAN_USB_CMD_NUM] = 2; buf[PCAN_USB_CMD_ARGS] = 1; usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, PCAN_USB_EP_CMDOUT), buf, PCAN_USB_CMD_LEN, pcan_usb_restart_pending, pdev); return usb_submit_urb(urb, GFP_ATOMIC); } /* * read serial number from device */ static int pcan_usb_get_serial(struct peak_usb_device *dev, u32 *serial_number) { u8 args[PCAN_USB_CMD_ARGS_LEN]; int err; err = pcan_usb_wait_rsp(dev, PCAN_USB_CMD_SN, PCAN_USB_GET, args); if (err) { netdev_err(dev->netdev, "getting serial failure: %d\n", err); } else if (serial_number) { __le32 tmp32; memcpy(&tmp32, args, 4); *serial_number = le32_to_cpu(tmp32); } return err; } /* * read device id from device */ static int pcan_usb_get_device_id(struct peak_usb_device *dev, u32 *device_id) { u8 args[PCAN_USB_CMD_ARGS_LEN]; int err; err = pcan_usb_wait_rsp(dev, PCAN_USB_CMD_DEVID, PCAN_USB_GET, args); if (err) netdev_err(dev->netdev, "getting device id failure: %d\n", err); else if (device_id) *device_id = args[0]; return err; } /* * update current time ref with received timestamp */ static int pcan_usb_update_ts(struct pcan_usb_msg_context *mc) { __le16 tmp16; if ((mc->ptr+2) > mc->end) return -EINVAL; memcpy(&tmp16, mc->ptr, 2); mc->ts16 = le16_to_cpu(tmp16); if (mc->rec_idx > 0) peak_usb_update_ts_now(&mc->pdev->time_ref, mc->ts16); else peak_usb_set_ts_now(&mc->pdev->time_ref, mc->ts16); return 0; } /* * decode received timestamp */ static int pcan_usb_decode_ts(struct pcan_usb_msg_context *mc, u8 first_packet) { /* only 1st packet supplies a word timestamp */ if (first_packet) { __le16 tmp16; if ((mc->ptr + 2) > mc->end) return -EINVAL; memcpy(&tmp16, mc->ptr, 2); mc->ptr += 2; mc->ts16 = le16_to_cpu(tmp16); mc->prev_ts8 = mc->ts16 & 0x00ff; } else { u8 ts8; if ((mc->ptr + 1) > mc->end) return -EINVAL; ts8 = *mc->ptr++; if (ts8 < mc->prev_ts8) mc->ts16 += 0x100; mc->ts16 &= 0xff00; mc->ts16 |= ts8; mc->prev_ts8 = ts8; } return 0; } static int pcan_usb_decode_error(struct pcan_usb_msg_context *mc, u8 n, u8 status_len) { struct sk_buff *skb; struct can_frame *cf; enum can_state new_state; /* ignore this error until 1st ts received */ if (n == PCAN_USB_ERROR_QOVR) if (!mc->pdev->time_ref.tick_count) return 0; new_state = mc->pdev->dev.can.state; switch (mc->pdev->dev.can.state) { case CAN_STATE_ERROR_ACTIVE: if (n & PCAN_USB_ERROR_BUS_LIGHT) { new_state = CAN_STATE_ERROR_WARNING; break; } fallthrough; case CAN_STATE_ERROR_WARNING: if (n & PCAN_USB_ERROR_BUS_HEAVY) { new_state = CAN_STATE_ERROR_PASSIVE; break; } if (n & PCAN_USB_ERROR_BUS_OFF) { new_state = CAN_STATE_BUS_OFF; break; } if (n & ~PCAN_USB_ERROR_BUS) { /* * trick to bypass next comparison and process other * errors */ new_state = CAN_STATE_MAX; break; } if ((n & PCAN_USB_ERROR_BUS_LIGHT) == 0) { /* no error (back to active state) */ new_state = CAN_STATE_ERROR_ACTIVE; break; } break; case CAN_STATE_ERROR_PASSIVE: if (n & PCAN_USB_ERROR_BUS_OFF) { new_state = CAN_STATE_BUS_OFF; break; } if (n & PCAN_USB_ERROR_BUS_LIGHT) { new_state = CAN_STATE_ERROR_WARNING; break; } if (n & ~PCAN_USB_ERROR_BUS) { /* * trick to bypass next comparison and process other * errors */ new_state = CAN_STATE_MAX; break; } if ((n & PCAN_USB_ERROR_BUS_HEAVY) == 0) { /* no error (back to warning state) */ new_state = CAN_STATE_ERROR_WARNING; break; } break; default: /* do nothing waiting for restart */ return 0; } /* donot post any error if current state didn't change */ if (mc->pdev->dev.can.state == new_state) return 0; /* allocate an skb to store the error frame */ skb = alloc_can_err_skb(mc->netdev, &cf); if (!skb) return -ENOMEM; switch (new_state) { case CAN_STATE_BUS_OFF: cf->can_id |= CAN_ERR_BUSOFF; mc->pdev->dev.can.can_stats.bus_off++; can_bus_off(mc->netdev); break; case CAN_STATE_ERROR_PASSIVE: cf->can_id |= CAN_ERR_CRTL; cf->data[1] = (mc->pdev->bec.txerr > mc->pdev->bec.rxerr) ? CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE; cf->data[6] = mc->pdev->bec.txerr; cf->data[7] = mc->pdev->bec.rxerr; mc->pdev->dev.can.can_stats.error_passive++; break; case CAN_STATE_ERROR_WARNING: cf->can_id |= CAN_ERR_CRTL; cf->data[1] = (mc->pdev->bec.txerr > mc->pdev->bec.rxerr) ? CAN_ERR_CRTL_TX_WARNING : CAN_ERR_CRTL_RX_WARNING; cf->data[6] = mc->pdev->bec.txerr; cf->data[7] = mc->pdev->bec.rxerr; mc->pdev->dev.can.can_stats.error_warning++; break; case CAN_STATE_ERROR_ACTIVE: cf->can_id |= CAN_ERR_CRTL; cf->data[1] = CAN_ERR_CRTL_ACTIVE; /* sync local copies of rxerr/txerr counters */ mc->pdev->bec.txerr = 0; mc->pdev->bec.rxerr = 0; break; default: /* CAN_STATE_MAX (trick to handle other errors) */ if (n & PCAN_USB_ERROR_TXQFULL) netdev_dbg(mc->netdev, "device Tx queue full)\n"); if (n & PCAN_USB_ERROR_RXQOVR) { netdev_dbg(mc->netdev, "data overrun interrupt\n"); cf->can_id |= CAN_ERR_CRTL; cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW; mc->netdev->stats.rx_over_errors++; mc->netdev->stats.rx_errors++; } cf->data[6] = mc->pdev->bec.txerr; cf->data[7] = mc->pdev->bec.rxerr; new_state = mc->pdev->dev.can.state; break; } mc->pdev->dev.can.state = new_state; if (status_len & PCAN_USB_STATUSLEN_TIMESTAMP) { struct skb_shared_hwtstamps *hwts = skb_hwtstamps(skb); peak_usb_get_ts_time(&mc->pdev->time_ref, mc->ts16, &hwts->hwtstamp); } mc->netdev->stats.rx_packets++; mc->netdev->stats.rx_bytes += cf->can_dlc; netif_rx(skb); return 0; } /* decode bus event usb packet: first byte contains rxerr while 2nd one contains * txerr. */ static int pcan_usb_handle_bus_evt(struct pcan_usb_msg_context *mc, u8 ir) { struct pcan_usb *pdev = mc->pdev; /* acccording to the content of the packet */ switch (ir) { case PCAN_USB_ERR_CNT_DEC: case PCAN_USB_ERR_CNT_INC: /* save rx/tx error counters from in the device context */ pdev->bec.rxerr = mc->ptr[1]; pdev->bec.txerr = mc->ptr[2]; break; default: /* reserved */ break; } return 0; } /* * decode non-data usb message */ static int pcan_usb_decode_status(struct pcan_usb_msg_context *mc, u8 status_len) { u8 rec_len = status_len & PCAN_USB_STATUSLEN_DLC; u8 f, n; int err; /* check whether function and number can be read */ if ((mc->ptr + 2) > mc->end) return -EINVAL; f = mc->ptr[PCAN_USB_CMD_FUNC]; n = mc->ptr[PCAN_USB_CMD_NUM]; mc->ptr += PCAN_USB_CMD_ARGS; if (status_len & PCAN_USB_STATUSLEN_TIMESTAMP) { int err = pcan_usb_decode_ts(mc, !mc->rec_ts_idx); if (err) return err; /* Next packet in the buffer will have a timestamp on a single * byte */ mc->rec_ts_idx++; } switch (f) { case PCAN_USB_REC_ERROR: err = pcan_usb_decode_error(mc, n, status_len); if (err) return err; break; case PCAN_USB_REC_ANALOG: /* analog values (ignored) */ rec_len = 2; break; case PCAN_USB_REC_BUSLOAD: /* bus load (ignored) */ rec_len = 1; break; case PCAN_USB_REC_TS: /* only timestamp */ if (pcan_usb_update_ts(mc)) return -EINVAL; break; case PCAN_USB_REC_BUSEVT: /* bus event notifications (get rxerr/txerr) */ err = pcan_usb_handle_bus_evt(mc, n); if (err) return err; break; default: netdev_err(mc->netdev, "unexpected function %u\n", f); break; } if ((mc->ptr + rec_len) > mc->end) return -EINVAL; mc->ptr += rec_len; return 0; } /* * decode data usb message */ static int pcan_usb_decode_data(struct pcan_usb_msg_context *mc, u8 status_len) { u8 rec_len = status_len & PCAN_USB_STATUSLEN_DLC; struct sk_buff *skb; struct can_frame *cf; struct skb_shared_hwtstamps *hwts; skb = alloc_can_skb(mc->netdev, &cf); if (!skb) return -ENOMEM; if (status_len & PCAN_USB_STATUSLEN_EXT_ID) { __le32 tmp32; if ((mc->ptr + 4) > mc->end) goto decode_failed; memcpy(&tmp32, mc->ptr, 4); mc->ptr += 4; cf->can_id = (le32_to_cpu(tmp32) >> 3) | CAN_EFF_FLAG; } else { __le16 tmp16; if ((mc->ptr + 2) > mc->end) goto decode_failed; memcpy(&tmp16, mc->ptr, 2); mc->ptr += 2; cf->can_id = le16_to_cpu(tmp16) >> 5; } cf->can_dlc = get_can_dlc(rec_len); /* Only first packet timestamp is a word */ if (pcan_usb_decode_ts(mc, !mc->rec_ts_idx)) goto decode_failed; /* Next packet in the buffer will have a timestamp on a single byte */ mc->rec_ts_idx++; /* read data */ memset(cf->data, 0x0, sizeof(cf->data)); if (status_len & PCAN_USB_STATUSLEN_RTR) { cf->can_id |= CAN_RTR_FLAG; } else { if ((mc->ptr + rec_len) > mc->end) goto decode_failed; memcpy(cf->data, mc->ptr, cf->can_dlc); mc->ptr += rec_len; } /* convert timestamp into kernel time */ hwts = skb_hwtstamps(skb); peak_usb_get_ts_time(&mc->pdev->time_ref, mc->ts16, &hwts->hwtstamp); /* update statistics */ mc->netdev->stats.rx_packets++; mc->netdev->stats.rx_bytes += cf->can_dlc; /* push the skb */ netif_rx(skb); return 0; decode_failed: dev_kfree_skb(skb); return -EINVAL; } /* * process incoming message */ static int pcan_usb_decode_msg(struct peak_usb_device *dev, u8 *ibuf, u32 lbuf) { struct pcan_usb_msg_context mc = { .rec_cnt = ibuf[1], .ptr = ibuf + PCAN_USB_MSG_HEADER_LEN, .end = ibuf + lbuf, .netdev = dev->netdev, .pdev = container_of(dev, struct pcan_usb, dev), }; int err; for (err = 0; mc.rec_idx < mc.rec_cnt && !err; mc.rec_idx++) { u8 sl = *mc.ptr++; /* handle status and error frames here */ if (sl & PCAN_USB_STATUSLEN_INTERNAL) { err = pcan_usb_decode_status(&mc, sl); /* handle normal can frames here */ } else { err = pcan_usb_decode_data(&mc, sl); } } return err; } /* * process any incoming buffer */ static int pcan_usb_decode_buf(struct peak_usb_device *dev, struct urb *urb) { int err = 0; if (urb->actual_length > PCAN_USB_MSG_HEADER_LEN) { err = pcan_usb_decode_msg(dev, urb->transfer_buffer, urb->actual_length); } else if (urb->actual_length > 0) { netdev_err(dev->netdev, "usb message length error (%u)\n", urb->actual_length); err = -EINVAL; } return err; } /* * process outgoing packet */ static int pcan_usb_encode_msg(struct peak_usb_device *dev, struct sk_buff *skb, u8 *obuf, size_t *size) { struct net_device *netdev = dev->netdev; struct net_device_stats *stats = &netdev->stats; struct can_frame *cf = (struct can_frame *)skb->data; u8 *pc; obuf[0] = 2; obuf[1] = 1; pc = obuf + PCAN_USB_MSG_HEADER_LEN; /* status/len byte */ *pc = cf->can_dlc; if (cf->can_id & CAN_RTR_FLAG) *pc |= PCAN_USB_STATUSLEN_RTR; /* can id */ if (cf->can_id & CAN_EFF_FLAG) { __le32 tmp32 = cpu_to_le32((cf->can_id & CAN_ERR_MASK) << 3); *pc |= PCAN_USB_STATUSLEN_EXT_ID; memcpy(++pc, &tmp32, 4); pc += 4; } else { __le16 tmp16 = cpu_to_le16((cf->can_id & CAN_ERR_MASK) << 5); memcpy(++pc, &tmp16, 2); pc += 2; } /* can data */ if (!(cf->can_id & CAN_RTR_FLAG)) { memcpy(pc, cf->data, cf->can_dlc); pc += cf->can_dlc; } obuf[(*size)-1] = (u8)(stats->tx_packets & 0xff); return 0; } /* socket callback used to copy berr counters values received through USB */ static int pcan_usb_get_berr_counter(const struct net_device *netdev, struct can_berr_counter *bec) { struct peak_usb_device *dev = netdev_priv(netdev); struct pcan_usb *pdev = container_of(dev, struct pcan_usb, dev); *bec = pdev->bec; /* must return 0 */ return 0; } /* * start interface */ static int pcan_usb_start(struct peak_usb_device *dev) { struct pcan_usb *pdev = container_of(dev, struct pcan_usb, dev); int err; /* number of bits used in timestamps read from adapter struct */ peak_usb_init_time_ref(&pdev->time_ref, &pcan_usb); pdev->bec.rxerr = 0; pdev->bec.txerr = 0; /* be notified on error counter changes (if requested by user) */ if (dev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) { err = pcan_usb_set_err_frame(dev, PCAN_USB_BERR_MASK); if (err) netdev_warn(dev->netdev, "Asking for BERR reporting error %u\n", err); } /* if revision greater than 3, can put silent mode on/off */ if (dev->device_rev > 3) { err = pcan_usb_set_silent(dev, dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY); if (err) return err; } return pcan_usb_set_ext_vcc(dev, 0); } static int pcan_usb_init(struct peak_usb_device *dev) { struct pcan_usb *pdev = container_of(dev, struct pcan_usb, dev); u32 serial_number; int err; /* initialize a timer needed to wait for hardware restart */ timer_setup(&pdev->restart_timer, pcan_usb_restart, 0); /* * explicit use of dev_xxx() instead of netdev_xxx() here: * information displayed are related to the device itself, not * to the canx netdevice. */ err = pcan_usb_get_serial(dev, &serial_number); if (err) { dev_err(dev->netdev->dev.parent, "unable to read %s serial number (err %d)\n", pcan_usb.name, err); return err; } dev_info(dev->netdev->dev.parent, "PEAK-System %s adapter hwrev %u serial %08X (%u channel)\n", pcan_usb.name, dev->device_rev, serial_number, pcan_usb.ctrl_count); return 0; } /* * probe function for new PCAN-USB usb interface */ static int pcan_usb_probe(struct usb_interface *intf) { struct usb_host_interface *if_desc; int i; if_desc = intf->altsetting; /* check interface endpoint addresses */ for (i = 0; i < if_desc->desc.bNumEndpoints; i++) { struct usb_endpoint_descriptor *ep = &if_desc->endpoint[i].desc; switch (ep->bEndpointAddress) { case PCAN_USB_EP_CMDOUT: case PCAN_USB_EP_CMDIN: case PCAN_USB_EP_MSGOUT: case PCAN_USB_EP_MSGIN: break; default: return -ENODEV; } } return 0; } /* * describe the PCAN-USB adapter */ static const struct can_bittiming_const pcan_usb_const = { .name = "pcan_usb", .tseg1_min = 1, .tseg1_max = 16, .tseg2_min = 1, .tseg2_max = 8, .sjw_max = 4, .brp_min = 1, .brp_max = 64, .brp_inc = 1, }; const struct peak_usb_adapter pcan_usb = { .name = "PCAN-USB", .device_id = PCAN_USB_PRODUCT_ID, .ctrl_count = 1, .ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES | CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_BERR_REPORTING, .clock = { .freq = PCAN_USB_CRYSTAL_HZ / 2 , }, .bittiming_const = &pcan_usb_const, /* size of device private data */ .sizeof_dev_private = sizeof(struct pcan_usb), /* timestamps usage */ .ts_used_bits = 16, .ts_period = 24575, /* calibration period in ts. */ .us_per_ts_scale = PCAN_USB_TS_US_PER_TICK, /* us=(ts*scale) */ .us_per_ts_shift = PCAN_USB_TS_DIV_SHIFTER, /* >> shift */ /* give here messages in/out endpoints */ .ep_msg_in = PCAN_USB_EP_MSGIN, .ep_msg_out = {PCAN_USB_EP_MSGOUT}, /* size of rx/tx usb buffers */ .rx_buffer_size = PCAN_USB_RX_BUFFER_SIZE, .tx_buffer_size = PCAN_USB_TX_BUFFER_SIZE, /* device callbacks */ .intf_probe = pcan_usb_probe, .dev_init = pcan_usb_init, .dev_set_bus = pcan_usb_write_mode, .dev_set_bittiming = pcan_usb_set_bittiming, .dev_get_device_id = pcan_usb_get_device_id, .dev_decode_buf = pcan_usb_decode_buf, .dev_encode_msg = pcan_usb_encode_msg, .dev_start = pcan_usb_start, .dev_restart_async = pcan_usb_restart_async, .do_get_berr_counter = pcan_usb_get_berr_counter, };