// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All rights reserved. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #ifdef CONFIG_RFS_ACCEL #include #endif /* CONFIG_RFS_ACCEL */ #include #include #include #include #include #include #include #include #include #include "ena_netdev.h" #include #include "ena_pci_id_tbl.h" MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); MODULE_DESCRIPTION(DEVICE_NAME); MODULE_LICENSE("GPL"); /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT (5 * HZ) #define ENA_NAPI_BUDGET 64 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \ NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR) static int debug = -1; module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); static struct ena_aenq_handlers aenq_handlers; static struct workqueue_struct *ena_wq; MODULE_DEVICE_TABLE(pci, ena_pci_tbl); static int ena_rss_init_default(struct ena_adapter *adapter); static void check_for_admin_com_state(struct ena_adapter *adapter); static void ena_destroy_device(struct ena_adapter *adapter, bool graceful); static int ena_restore_device(struct ena_adapter *adapter); static void ena_init_io_rings(struct ena_adapter *adapter, int first_index, int count); static void ena_init_napi_in_range(struct ena_adapter *adapter, int first_index, int count); static void ena_del_napi_in_range(struct ena_adapter *adapter, int first_index, int count); static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid); static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter, int first_index, int count); static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid); static void ena_free_tx_resources(struct ena_adapter *adapter, int qid); static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget); static void ena_destroy_all_tx_queues(struct ena_adapter *adapter); static void ena_free_all_io_tx_resources(struct ena_adapter *adapter); static void ena_napi_disable_in_range(struct ena_adapter *adapter, int first_index, int count); static void ena_napi_enable_in_range(struct ena_adapter *adapter, int first_index, int count); static int ena_up(struct ena_adapter *adapter); static void ena_down(struct ena_adapter *adapter); static void ena_unmask_interrupt(struct ena_ring *tx_ring, struct ena_ring *rx_ring); static void ena_update_ring_numa_node(struct ena_ring *tx_ring, struct ena_ring *rx_ring); static void ena_unmap_tx_buff(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info); static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter, int first_index, int count); static void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter, int first_index, int count); static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue) { struct ena_adapter *adapter = netdev_priv(dev); /* Change the state of the device to trigger reset * Check that we are not in the middle or a trigger already */ if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) return; adapter->reset_reason = ENA_REGS_RESET_OS_NETDEV_WD; u64_stats_update_begin(&adapter->syncp); adapter->dev_stats.tx_timeout++; u64_stats_update_end(&adapter->syncp); netif_err(adapter, tx_err, dev, "Transmit time out\n"); } static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu) { int i; for (i = 0; i < adapter->num_io_queues; i++) adapter->rx_ring[i].mtu = mtu; } static int ena_change_mtu(struct net_device *dev, int new_mtu) { struct ena_adapter *adapter = netdev_priv(dev); int ret; ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu); if (!ret) { netif_dbg(adapter, drv, dev, "Set MTU to %d\n", new_mtu); update_rx_ring_mtu(adapter, new_mtu); dev->mtu = new_mtu; } else { netif_err(adapter, drv, dev, "Failed to set MTU to %d\n", new_mtu); } return ret; } static int ena_xmit_common(struct net_device *dev, struct ena_ring *ring, struct ena_tx_buffer *tx_info, struct ena_com_tx_ctx *ena_tx_ctx, u16 next_to_use, u32 bytes) { struct ena_adapter *adapter = netdev_priv(dev); int rc, nb_hw_desc; if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq, ena_tx_ctx))) { netif_dbg(adapter, tx_queued, dev, "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n", ring->qid); ena_com_write_sq_doorbell(ring->ena_com_io_sq); } /* prepare the packet's descriptors to dma engine */ rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx, &nb_hw_desc); /* In case there isn't enough space in the queue for the packet, * we simply drop it. All other failure reasons of * ena_com_prepare_tx() are fatal and therefore require a device reset. */ if (unlikely(rc)) { netif_err(adapter, tx_queued, dev, "Failed to prepare tx bufs\n"); u64_stats_update_begin(&ring->syncp); ring->tx_stats.prepare_ctx_err++; u64_stats_update_end(&ring->syncp); if (rc != -ENOMEM) { adapter->reset_reason = ENA_REGS_RESET_DRIVER_INVALID_STATE; set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); } return rc; } u64_stats_update_begin(&ring->syncp); ring->tx_stats.cnt++; ring->tx_stats.bytes += bytes; u64_stats_update_end(&ring->syncp); tx_info->tx_descs = nb_hw_desc; tx_info->last_jiffies = jiffies; tx_info->print_once = 0; ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, ring->ring_size); return 0; } /* This is the XDP napi callback. XDP queues use a separate napi callback * than Rx/Tx queues. */ static int ena_xdp_io_poll(struct napi_struct *napi, int budget) { struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); u32 xdp_work_done, xdp_budget; struct ena_ring *xdp_ring; int napi_comp_call = 0; int ret; xdp_ring = ena_napi->xdp_ring; xdp_ring->first_interrupt = ena_napi->first_interrupt; xdp_budget = budget; if (!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags) || test_bit(ENA_FLAG_TRIGGER_RESET, &xdp_ring->adapter->flags)) { napi_complete_done(napi, 0); return 0; } xdp_work_done = ena_clean_xdp_irq(xdp_ring, xdp_budget); /* If the device is about to reset or down, avoid unmask * the interrupt and return 0 so NAPI won't reschedule */ if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags))) { napi_complete_done(napi, 0); ret = 0; } else if (xdp_budget > xdp_work_done) { napi_comp_call = 1; if (napi_complete_done(napi, xdp_work_done)) ena_unmask_interrupt(xdp_ring, NULL); ena_update_ring_numa_node(xdp_ring, NULL); ret = xdp_work_done; } else { ret = xdp_budget; } u64_stats_update_begin(&xdp_ring->syncp); xdp_ring->tx_stats.napi_comp += napi_comp_call; xdp_ring->tx_stats.tx_poll++; u64_stats_update_end(&xdp_ring->syncp); return ret; } static int ena_xdp_tx_map_buff(struct ena_ring *xdp_ring, struct ena_tx_buffer *tx_info, struct xdp_buff *xdp, void **push_hdr, u32 *push_len) { struct ena_adapter *adapter = xdp_ring->adapter; struct ena_com_buf *ena_buf; dma_addr_t dma = 0; u32 size; tx_info->xdpf = xdp_convert_buff_to_frame(xdp); size = tx_info->xdpf->len; ena_buf = tx_info->bufs; /* llq push buffer */ *push_len = min_t(u32, size, xdp_ring->tx_max_header_size); *push_hdr = tx_info->xdpf->data; if (size - *push_len > 0) { dma = dma_map_single(xdp_ring->dev, *push_hdr + *push_len, size - *push_len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(xdp_ring->dev, dma))) goto error_report_dma_error; tx_info->map_linear_data = 1; tx_info->num_of_bufs = 1; } ena_buf->paddr = dma; ena_buf->len = size; return 0; error_report_dma_error: u64_stats_update_begin(&xdp_ring->syncp); xdp_ring->tx_stats.dma_mapping_err++; u64_stats_update_end(&xdp_ring->syncp); netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map xdp buff\n"); xdp_return_frame_rx_napi(tx_info->xdpf); tx_info->xdpf = NULL; tx_info->num_of_bufs = 0; return -EINVAL; } static int ena_xdp_xmit_buff(struct net_device *dev, struct xdp_buff *xdp, int qid, struct ena_rx_buffer *rx_info) { struct ena_adapter *adapter = netdev_priv(dev); struct ena_com_tx_ctx ena_tx_ctx = {}; struct ena_tx_buffer *tx_info; struct ena_ring *xdp_ring; u16 next_to_use, req_id; int rc; void *push_hdr; u32 push_len; xdp_ring = &adapter->tx_ring[qid]; next_to_use = xdp_ring->next_to_use; req_id = xdp_ring->free_ids[next_to_use]; tx_info = &xdp_ring->tx_buffer_info[req_id]; tx_info->num_of_bufs = 0; page_ref_inc(rx_info->page); tx_info->xdp_rx_page = rx_info->page; rc = ena_xdp_tx_map_buff(xdp_ring, tx_info, xdp, &push_hdr, &push_len); if (unlikely(rc)) goto error_drop_packet; ena_tx_ctx.ena_bufs = tx_info->bufs; ena_tx_ctx.push_header = push_hdr; ena_tx_ctx.num_bufs = tx_info->num_of_bufs; ena_tx_ctx.req_id = req_id; ena_tx_ctx.header_len = push_len; rc = ena_xmit_common(dev, xdp_ring, tx_info, &ena_tx_ctx, next_to_use, xdp->data_end - xdp->data); if (rc) goto error_unmap_dma; /* trigger the dma engine. ena_com_write_sq_doorbell() * has a mb */ ena_com_write_sq_doorbell(xdp_ring->ena_com_io_sq); u64_stats_update_begin(&xdp_ring->syncp); xdp_ring->tx_stats.doorbells++; u64_stats_update_end(&xdp_ring->syncp); return NETDEV_TX_OK; error_unmap_dma: ena_unmap_tx_buff(xdp_ring, tx_info); tx_info->xdpf = NULL; error_drop_packet: __free_page(tx_info->xdp_rx_page); return NETDEV_TX_OK; } static int ena_xdp_execute(struct ena_ring *rx_ring, struct xdp_buff *xdp, struct ena_rx_buffer *rx_info) { struct bpf_prog *xdp_prog; u32 verdict = XDP_PASS; u64 *xdp_stat; rcu_read_lock(); xdp_prog = READ_ONCE(rx_ring->xdp_bpf_prog); if (!xdp_prog) goto out; verdict = bpf_prog_run_xdp(xdp_prog, xdp); if (verdict == XDP_TX) { ena_xdp_xmit_buff(rx_ring->netdev, xdp, rx_ring->qid + rx_ring->adapter->num_io_queues, rx_info); xdp_stat = &rx_ring->rx_stats.xdp_tx; } else if (unlikely(verdict == XDP_ABORTED)) { trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict); xdp_stat = &rx_ring->rx_stats.xdp_aborted; } else if (unlikely(verdict == XDP_DROP)) { xdp_stat = &rx_ring->rx_stats.xdp_drop; } else if (unlikely(verdict == XDP_PASS)) { xdp_stat = &rx_ring->rx_stats.xdp_pass; } else { bpf_warn_invalid_xdp_action(verdict); xdp_stat = &rx_ring->rx_stats.xdp_invalid; } u64_stats_update_begin(&rx_ring->syncp); (*xdp_stat)++; u64_stats_update_end(&rx_ring->syncp); out: rcu_read_unlock(); return verdict; } static void ena_init_all_xdp_queues(struct ena_adapter *adapter) { adapter->xdp_first_ring = adapter->num_io_queues; adapter->xdp_num_queues = adapter->num_io_queues; ena_init_io_rings(adapter, adapter->xdp_first_ring, adapter->xdp_num_queues); } static int ena_setup_and_create_all_xdp_queues(struct ena_adapter *adapter) { u32 xdp_first_ring = adapter->xdp_first_ring; u32 xdp_num_queues = adapter->xdp_num_queues; int rc = 0; rc = ena_setup_tx_resources_in_range(adapter, xdp_first_ring, xdp_num_queues); if (rc) goto setup_err; rc = ena_create_io_tx_queues_in_range(adapter, xdp_first_ring, xdp_num_queues); if (rc) goto create_err; return 0; create_err: ena_free_all_io_tx_resources_in_range(adapter, xdp_first_ring, xdp_num_queues); setup_err: return rc; } /* Provides a way for both kernel and bpf-prog to know * more about the RX-queue a given XDP frame arrived on. */ static int ena_xdp_register_rxq_info(struct ena_ring *rx_ring) { int rc; rc = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, rx_ring->qid); if (rc) { netif_err(rx_ring->adapter, ifup, rx_ring->netdev, "Failed to register xdp rx queue info. RX queue num %d rc: %d\n", rx_ring->qid, rc); goto err; } rc = xdp_rxq_info_reg_mem_model(&rx_ring->xdp_rxq, MEM_TYPE_PAGE_SHARED, NULL); if (rc) { netif_err(rx_ring->adapter, ifup, rx_ring->netdev, "Failed to register xdp rx queue info memory model. RX queue num %d rc: %d\n", rx_ring->qid, rc); xdp_rxq_info_unreg(&rx_ring->xdp_rxq); } err: return rc; } static void ena_xdp_unregister_rxq_info(struct ena_ring *rx_ring) { xdp_rxq_info_unreg_mem_model(&rx_ring->xdp_rxq); xdp_rxq_info_unreg(&rx_ring->xdp_rxq); } static void ena_xdp_exchange_program_rx_in_range(struct ena_adapter *adapter, struct bpf_prog *prog, int first, int count) { struct ena_ring *rx_ring; int i = 0; for (i = first; i < count; i++) { rx_ring = &adapter->rx_ring[i]; xchg(&rx_ring->xdp_bpf_prog, prog); if (prog) { ena_xdp_register_rxq_info(rx_ring); rx_ring->rx_headroom = XDP_PACKET_HEADROOM; } else { ena_xdp_unregister_rxq_info(rx_ring); rx_ring->rx_headroom = 0; } } } static void ena_xdp_exchange_program(struct ena_adapter *adapter, struct bpf_prog *prog) { struct bpf_prog *old_bpf_prog = xchg(&adapter->xdp_bpf_prog, prog); ena_xdp_exchange_program_rx_in_range(adapter, prog, 0, adapter->num_io_queues); if (old_bpf_prog) bpf_prog_put(old_bpf_prog); } static int ena_destroy_and_free_all_xdp_queues(struct ena_adapter *adapter) { bool was_up; int rc; was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); if (was_up) ena_down(adapter); adapter->xdp_first_ring = 0; adapter->xdp_num_queues = 0; ena_xdp_exchange_program(adapter, NULL); if (was_up) { rc = ena_up(adapter); if (rc) return rc; } return 0; } static int ena_xdp_set(struct net_device *netdev, struct netdev_bpf *bpf) { struct ena_adapter *adapter = netdev_priv(netdev); struct bpf_prog *prog = bpf->prog; struct bpf_prog *old_bpf_prog; int rc, prev_mtu; bool is_up; is_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); rc = ena_xdp_allowed(adapter); if (rc == ENA_XDP_ALLOWED) { old_bpf_prog = adapter->xdp_bpf_prog; if (prog) { if (!is_up) { ena_init_all_xdp_queues(adapter); } else if (!old_bpf_prog) { ena_down(adapter); ena_init_all_xdp_queues(adapter); } ena_xdp_exchange_program(adapter, prog); if (is_up && !old_bpf_prog) { rc = ena_up(adapter); if (rc) return rc; } } else if (old_bpf_prog) { rc = ena_destroy_and_free_all_xdp_queues(adapter); if (rc) return rc; } prev_mtu = netdev->max_mtu; netdev->max_mtu = prog ? ENA_XDP_MAX_MTU : adapter->max_mtu; if (!old_bpf_prog) netif_info(adapter, drv, adapter->netdev, "XDP program is set, changing the max_mtu from %d to %d", prev_mtu, netdev->max_mtu); } else if (rc == ENA_XDP_CURRENT_MTU_TOO_LARGE) { netif_err(adapter, drv, adapter->netdev, "Failed to set xdp program, the current MTU (%d) is larger than the maximum allowed MTU (%lu) while xdp is on", netdev->mtu, ENA_XDP_MAX_MTU); NL_SET_ERR_MSG_MOD(bpf->extack, "Failed to set xdp program, the current MTU is larger than the maximum allowed MTU. Check the dmesg for more info"); return -EINVAL; } else if (rc == ENA_XDP_NO_ENOUGH_QUEUES) { netif_err(adapter, drv, adapter->netdev, "Failed to set xdp program, the Rx/Tx channel count should be at most half of the maximum allowed channel count. The current queue count (%d), the maximal queue count (%d)\n", adapter->num_io_queues, adapter->max_num_io_queues); NL_SET_ERR_MSG_MOD(bpf->extack, "Failed to set xdp program, there is no enough space for allocating XDP queues, Check the dmesg for more info"); return -EINVAL; } return 0; } /* This is the main xdp callback, it's used by the kernel to set/unset the xdp * program as well as to query the current xdp program id. */ static int ena_xdp(struct net_device *netdev, struct netdev_bpf *bpf) { switch (bpf->command) { case XDP_SETUP_PROG: return ena_xdp_set(netdev, bpf); default: return -EINVAL; } return 0; } static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter) { #ifdef CONFIG_RFS_ACCEL u32 i; int rc; adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues); if (!adapter->netdev->rx_cpu_rmap) return -ENOMEM; for (i = 0; i < adapter->num_io_queues; i++) { int irq_idx = ENA_IO_IRQ_IDX(i); rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap, pci_irq_vector(adapter->pdev, irq_idx)); if (rc) { free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); adapter->netdev->rx_cpu_rmap = NULL; return rc; } } #endif /* CONFIG_RFS_ACCEL */ return 0; } static void ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring, u16 qid) { ring->qid = qid; ring->pdev = adapter->pdev; ring->dev = &adapter->pdev->dev; ring->netdev = adapter->netdev; ring->napi = &adapter->ena_napi[qid].napi; ring->adapter = adapter; ring->ena_dev = adapter->ena_dev; ring->per_napi_packets = 0; ring->cpu = 0; ring->first_interrupt = false; ring->no_interrupt_event_cnt = 0; u64_stats_init(&ring->syncp); } static void ena_init_io_rings(struct ena_adapter *adapter, int first_index, int count) { struct ena_com_dev *ena_dev; struct ena_ring *txr, *rxr; int i; ena_dev = adapter->ena_dev; for (i = first_index; i < first_index + count; i++) { txr = &adapter->tx_ring[i]; rxr = &adapter->rx_ring[i]; /* TX common ring state */ ena_init_io_rings_common(adapter, txr, i); /* TX specific ring state */ txr->ring_size = adapter->requested_tx_ring_size; txr->tx_max_header_size = ena_dev->tx_max_header_size; txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; txr->sgl_size = adapter->max_tx_sgl_size; txr->smoothed_interval = ena_com_get_nonadaptive_moderation_interval_tx(ena_dev); txr->disable_meta_caching = adapter->disable_meta_caching; /* Don't init RX queues for xdp queues */ if (!ENA_IS_XDP_INDEX(adapter, i)) { /* RX common ring state */ ena_init_io_rings_common(adapter, rxr, i); /* RX specific ring state */ rxr->ring_size = adapter->requested_rx_ring_size; rxr->rx_copybreak = adapter->rx_copybreak; rxr->sgl_size = adapter->max_rx_sgl_size; rxr->smoothed_interval = ena_com_get_nonadaptive_moderation_interval_rx(ena_dev); rxr->empty_rx_queue = 0; adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; } } } /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors) * @adapter: network interface device structure * @qid: queue index * * Return 0 on success, negative on failure */ static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid) { struct ena_ring *tx_ring = &adapter->tx_ring[qid]; struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; int size, i, node; if (tx_ring->tx_buffer_info) { netif_err(adapter, ifup, adapter->netdev, "tx_buffer_info info is not NULL"); return -EEXIST; } size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size; node = cpu_to_node(ena_irq->cpu); tx_ring->tx_buffer_info = vzalloc_node(size, node); if (!tx_ring->tx_buffer_info) { tx_ring->tx_buffer_info = vzalloc(size); if (!tx_ring->tx_buffer_info) goto err_tx_buffer_info; } size = sizeof(u16) * tx_ring->ring_size; tx_ring->free_ids = vzalloc_node(size, node); if (!tx_ring->free_ids) { tx_ring->free_ids = vzalloc(size); if (!tx_ring->free_ids) goto err_tx_free_ids; } size = tx_ring->tx_max_header_size; tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node); if (!tx_ring->push_buf_intermediate_buf) { tx_ring->push_buf_intermediate_buf = vzalloc(size); if (!tx_ring->push_buf_intermediate_buf) goto err_push_buf_intermediate_buf; } /* Req id ring for TX out of order completions */ for (i = 0; i < tx_ring->ring_size; i++) tx_ring->free_ids[i] = i; /* Reset tx statistics */ memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats)); tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; tx_ring->cpu = ena_irq->cpu; return 0; err_push_buf_intermediate_buf: vfree(tx_ring->free_ids); tx_ring->free_ids = NULL; err_tx_free_ids: vfree(tx_ring->tx_buffer_info); tx_ring->tx_buffer_info = NULL; err_tx_buffer_info: return -ENOMEM; } /* ena_free_tx_resources - Free I/O Tx Resources per Queue * @adapter: network interface device structure * @qid: queue index * * Free all transmit software resources */ static void ena_free_tx_resources(struct ena_adapter *adapter, int qid) { struct ena_ring *tx_ring = &adapter->tx_ring[qid]; vfree(tx_ring->tx_buffer_info); tx_ring->tx_buffer_info = NULL; vfree(tx_ring->free_ids); tx_ring->free_ids = NULL; vfree(tx_ring->push_buf_intermediate_buf); tx_ring->push_buf_intermediate_buf = NULL; } static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter, int first_index, int count) { int i, rc = 0; for (i = first_index; i < first_index + count; i++) { rc = ena_setup_tx_resources(adapter, i); if (rc) goto err_setup_tx; } return 0; err_setup_tx: netif_err(adapter, ifup, adapter->netdev, "Tx queue %d: allocation failed\n", i); /* rewind the index freeing the rings as we go */ while (first_index < i--) ena_free_tx_resources(adapter, i); return rc; } static void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter, int first_index, int count) { int i; for (i = first_index; i < first_index + count; i++) ena_free_tx_resources(adapter, i); } /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues * @adapter: board private structure * * Free all transmit software resources */ static void ena_free_all_io_tx_resources(struct ena_adapter *adapter) { ena_free_all_io_tx_resources_in_range(adapter, 0, adapter->xdp_num_queues + adapter->num_io_queues); } /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors) * @adapter: network interface device structure * @qid: queue index * * Returns 0 on success, negative on failure */ static int ena_setup_rx_resources(struct ena_adapter *adapter, u32 qid) { struct ena_ring *rx_ring = &adapter->rx_ring[qid]; struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; int size, node, i; if (rx_ring->rx_buffer_info) { netif_err(adapter, ifup, adapter->netdev, "rx_buffer_info is not NULL"); return -EEXIST; } /* alloc extra element so in rx path * we can always prefetch rx_info + 1 */ size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1); node = cpu_to_node(ena_irq->cpu); rx_ring->rx_buffer_info = vzalloc_node(size, node); if (!rx_ring->rx_buffer_info) { rx_ring->rx_buffer_info = vzalloc(size); if (!rx_ring->rx_buffer_info) return -ENOMEM; } size = sizeof(u16) * rx_ring->ring_size; rx_ring->free_ids = vzalloc_node(size, node); if (!rx_ring->free_ids) { rx_ring->free_ids = vzalloc(size); if (!rx_ring->free_ids) { vfree(rx_ring->rx_buffer_info); rx_ring->rx_buffer_info = NULL; return -ENOMEM; } } /* Req id ring for receiving RX pkts out of order */ for (i = 0; i < rx_ring->ring_size; i++) rx_ring->free_ids[i] = i; /* Reset rx statistics */ memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats)); rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; rx_ring->cpu = ena_irq->cpu; return 0; } /* ena_free_rx_resources - Free I/O Rx Resources * @adapter: network interface device structure * @qid: queue index * * Free all receive software resources */ static void ena_free_rx_resources(struct ena_adapter *adapter, u32 qid) { struct ena_ring *rx_ring = &adapter->rx_ring[qid]; vfree(rx_ring->rx_buffer_info); rx_ring->rx_buffer_info = NULL; vfree(rx_ring->free_ids); rx_ring->free_ids = NULL; } /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues * @adapter: board private structure * * Return 0 on success, negative on failure */ static int ena_setup_all_rx_resources(struct ena_adapter *adapter) { int i, rc = 0; for (i = 0; i < adapter->num_io_queues; i++) { rc = ena_setup_rx_resources(adapter, i); if (rc) goto err_setup_rx; } return 0; err_setup_rx: netif_err(adapter, ifup, adapter->netdev, "Rx queue %d: allocation failed\n", i); /* rewind the index freeing the rings as we go */ while (i--) ena_free_rx_resources(adapter, i); return rc; } /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues * @adapter: board private structure * * Free all receive software resources */ static void ena_free_all_io_rx_resources(struct ena_adapter *adapter) { int i; for (i = 0; i < adapter->num_io_queues; i++) ena_free_rx_resources(adapter, i); } static int ena_alloc_rx_page(struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info, gfp_t gfp) { int headroom = rx_ring->rx_headroom; struct ena_com_buf *ena_buf; struct page *page; dma_addr_t dma; /* restore page offset value in case it has been changed by device */ rx_info->page_offset = headroom; /* if previous allocated page is not used */ if (unlikely(rx_info->page)) return 0; page = alloc_page(gfp); if (unlikely(!page)) { u64_stats_update_begin(&rx_ring->syncp); rx_ring->rx_stats.page_alloc_fail++; u64_stats_update_end(&rx_ring->syncp); return -ENOMEM; } /* To enable NIC-side port-mirroring, AKA SPAN port, * we make the buffer readable from the nic as well */ dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(rx_ring->dev, dma))) { u64_stats_update_begin(&rx_ring->syncp); rx_ring->rx_stats.dma_mapping_err++; u64_stats_update_end(&rx_ring->syncp); __free_page(page); return -EIO; } netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, "Allocate page %p, rx_info %p\n", page, rx_info); rx_info->page = page; ena_buf = &rx_info->ena_buf; ena_buf->paddr = dma + headroom; ena_buf->len = ENA_PAGE_SIZE - headroom; return 0; } static void ena_free_rx_page(struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info) { struct page *page = rx_info->page; struct ena_com_buf *ena_buf = &rx_info->ena_buf; if (unlikely(!page)) { netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, "Trying to free unallocated buffer\n"); return; } dma_unmap_page(rx_ring->dev, ena_buf->paddr - rx_ring->rx_headroom, ENA_PAGE_SIZE, DMA_BIDIRECTIONAL); __free_page(page); rx_info->page = NULL; } static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num) { u16 next_to_use, req_id; u32 i; int rc; next_to_use = rx_ring->next_to_use; for (i = 0; i < num; i++) { struct ena_rx_buffer *rx_info; req_id = rx_ring->free_ids[next_to_use]; rx_info = &rx_ring->rx_buffer_info[req_id]; rc = ena_alloc_rx_page(rx_ring, rx_info, GFP_ATOMIC | __GFP_COMP); if (unlikely(rc < 0)) { netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, "Failed to allocate buffer for rx queue %d\n", rx_ring->qid); break; } rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq, &rx_info->ena_buf, req_id); if (unlikely(rc)) { netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, "Failed to add buffer for rx queue %d\n", rx_ring->qid); break; } next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use, rx_ring->ring_size); } if (unlikely(i < num)) { u64_stats_update_begin(&rx_ring->syncp); rx_ring->rx_stats.refil_partial++; u64_stats_update_end(&rx_ring->syncp); netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, "Refilled rx qid %d with only %d buffers (from %d)\n", rx_ring->qid, i, num); } /* ena_com_write_sq_doorbell issues a wmb() */ if (likely(i)) ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq); rx_ring->next_to_use = next_to_use; return i; } static void ena_free_rx_bufs(struct ena_adapter *adapter, u32 qid) { struct ena_ring *rx_ring = &adapter->rx_ring[qid]; u32 i; for (i = 0; i < rx_ring->ring_size; i++) { struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i]; if (rx_info->page) ena_free_rx_page(rx_ring, rx_info); } } /* ena_refill_all_rx_bufs - allocate all queues Rx buffers * @adapter: board private structure */ static void ena_refill_all_rx_bufs(struct ena_adapter *adapter) { struct ena_ring *rx_ring; int i, rc, bufs_num; for (i = 0; i < adapter->num_io_queues; i++) { rx_ring = &adapter->rx_ring[i]; bufs_num = rx_ring->ring_size - 1; rc = ena_refill_rx_bufs(rx_ring, bufs_num); if (unlikely(rc != bufs_num)) netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, "Refilling Queue %d failed. allocated %d buffers from: %d\n", i, rc, bufs_num); } } static void ena_free_all_rx_bufs(struct ena_adapter *adapter) { int i; for (i = 0; i < adapter->num_io_queues; i++) ena_free_rx_bufs(adapter, i); } static void ena_unmap_tx_buff(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info) { struct ena_com_buf *ena_buf; u32 cnt; int i; ena_buf = tx_info->bufs; cnt = tx_info->num_of_bufs; if (unlikely(!cnt)) return; if (tx_info->map_linear_data) { dma_unmap_single(tx_ring->dev, dma_unmap_addr(ena_buf, paddr), dma_unmap_len(ena_buf, len), DMA_TO_DEVICE); ena_buf++; cnt--; } /* unmap remaining mapped pages */ for (i = 0; i < cnt; i++) { dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr), dma_unmap_len(ena_buf, len), DMA_TO_DEVICE); ena_buf++; } } /* ena_free_tx_bufs - Free Tx Buffers per Queue * @tx_ring: TX ring for which buffers be freed */ static void ena_free_tx_bufs(struct ena_ring *tx_ring) { bool print_once = true; bool is_xdp_ring; u32 i; is_xdp_ring = ENA_IS_XDP_INDEX(tx_ring->adapter, tx_ring->qid); for (i = 0; i < tx_ring->ring_size; i++) { struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i]; if (!tx_info->skb) continue; if (print_once) { netif_notice(tx_ring->adapter, ifdown, tx_ring->netdev, "Free uncompleted tx skb qid %d idx 0x%x\n", tx_ring->qid, i); print_once = false; } else { netif_dbg(tx_ring->adapter, ifdown, tx_ring->netdev, "Free uncompleted tx skb qid %d idx 0x%x\n", tx_ring->qid, i); } ena_unmap_tx_buff(tx_ring, tx_info); if (is_xdp_ring) xdp_return_frame(tx_info->xdpf); else dev_kfree_skb_any(tx_info->skb); } if (!is_xdp_ring) netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid)); } static void ena_free_all_tx_bufs(struct ena_adapter *adapter) { struct ena_ring *tx_ring; int i; for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { tx_ring = &adapter->tx_ring[i]; ena_free_tx_bufs(tx_ring); } } static void ena_destroy_all_tx_queues(struct ena_adapter *adapter) { u16 ena_qid; int i; for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { ena_qid = ENA_IO_TXQ_IDX(i); ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); } } static void ena_destroy_all_rx_queues(struct ena_adapter *adapter) { u16 ena_qid; int i; for (i = 0; i < adapter->num_io_queues; i++) { ena_qid = ENA_IO_RXQ_IDX(i); cancel_work_sync(&adapter->ena_napi[i].dim.work); ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); } } static void ena_destroy_all_io_queues(struct ena_adapter *adapter) { ena_destroy_all_tx_queues(adapter); ena_destroy_all_rx_queues(adapter); } static int handle_invalid_req_id(struct ena_ring *ring, u16 req_id, struct ena_tx_buffer *tx_info, bool is_xdp) { if (tx_info) netif_err(ring->adapter, tx_done, ring->netdev, "tx_info doesn't have valid %s", is_xdp ? "xdp frame" : "skb"); else netif_err(ring->adapter, tx_done, ring->netdev, "Invalid req_id: %hu\n", req_id); u64_stats_update_begin(&ring->syncp); ring->tx_stats.bad_req_id++; u64_stats_update_end(&ring->syncp); /* Trigger device reset */ ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID; set_bit(ENA_FLAG_TRIGGER_RESET, &ring->adapter->flags); return -EFAULT; } static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id) { struct ena_tx_buffer *tx_info; tx_info = &tx_ring->tx_buffer_info[req_id]; if (likely(tx_info->skb)) return 0; return handle_invalid_req_id(tx_ring, req_id, tx_info, false); } static int validate_xdp_req_id(struct ena_ring *xdp_ring, u16 req_id) { struct ena_tx_buffer *tx_info; tx_info = &xdp_ring->tx_buffer_info[req_id]; if (likely(tx_info->xdpf)) return 0; return handle_invalid_req_id(xdp_ring, req_id, tx_info, true); } static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget) { struct netdev_queue *txq; bool above_thresh; u32 tx_bytes = 0; u32 total_done = 0; u16 next_to_clean; u16 req_id; int tx_pkts = 0; int rc; next_to_clean = tx_ring->next_to_clean; txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid); while (tx_pkts < budget) { struct ena_tx_buffer *tx_info; struct sk_buff *skb; rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id); if (rc) { if (unlikely(rc == -EINVAL)) handle_invalid_req_id(tx_ring, req_id, NULL, false); break; } /* validate that the request id points to a valid skb */ rc = validate_tx_req_id(tx_ring, req_id); if (rc) break; tx_info = &tx_ring->tx_buffer_info[req_id]; skb = tx_info->skb; /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */ prefetch(&skb->end); tx_info->skb = NULL; tx_info->last_jiffies = 0; ena_unmap_tx_buff(tx_ring, tx_info); netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, "tx_poll: q %d skb %p completed\n", tx_ring->qid, skb); tx_bytes += skb->len; dev_kfree_skb(skb); tx_pkts++; total_done += tx_info->tx_descs; tx_ring->free_ids[next_to_clean] = req_id; next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, tx_ring->ring_size); } tx_ring->next_to_clean = next_to_clean; ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done); ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq); netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, "tx_poll: q %d done. total pkts: %d\n", tx_ring->qid, tx_pkts); /* need to make the rings circular update visible to * ena_start_xmit() before checking for netif_queue_stopped(). */ smp_mb(); above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, ENA_TX_WAKEUP_THRESH); if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) { __netif_tx_lock(txq, smp_processor_id()); above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, ENA_TX_WAKEUP_THRESH); if (netif_tx_queue_stopped(txq) && above_thresh && test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) { netif_tx_wake_queue(txq); u64_stats_update_begin(&tx_ring->syncp); tx_ring->tx_stats.queue_wakeup++; u64_stats_update_end(&tx_ring->syncp); } __netif_tx_unlock(txq); } return tx_pkts; } static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, bool frags) { struct sk_buff *skb; if (frags) skb = napi_get_frags(rx_ring->napi); else skb = netdev_alloc_skb_ip_align(rx_ring->netdev, rx_ring->rx_copybreak); if (unlikely(!skb)) { u64_stats_update_begin(&rx_ring->syncp); rx_ring->rx_stats.skb_alloc_fail++; u64_stats_update_end(&rx_ring->syncp); netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, "Failed to allocate skb. frags: %d\n", frags); return NULL; } return skb; } static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs, u32 descs, u16 *next_to_clean) { struct sk_buff *skb; struct ena_rx_buffer *rx_info; u16 len, req_id, buf = 0; void *va; len = ena_bufs[buf].len; req_id = ena_bufs[buf].req_id; rx_info = &rx_ring->rx_buffer_info[req_id]; if (unlikely(!rx_info->page)) { netif_err(rx_ring->adapter, rx_err, rx_ring->netdev, "Page is NULL\n"); return NULL; } netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, "rx_info %p page %p\n", rx_info, rx_info->page); /* save virt address of first buffer */ va = page_address(rx_info->page) + rx_info->page_offset; prefetch(va); if (len <= rx_ring->rx_copybreak) { skb = ena_alloc_skb(rx_ring, false); if (unlikely(!skb)) return NULL; netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, "RX allocated small packet. len %d. data_len %d\n", skb->len, skb->data_len); /* sync this buffer for CPU use */ dma_sync_single_for_cpu(rx_ring->dev, dma_unmap_addr(&rx_info->ena_buf, paddr), len, DMA_FROM_DEVICE); skb_copy_to_linear_data(skb, va, len); dma_sync_single_for_device(rx_ring->dev, dma_unmap_addr(&rx_info->ena_buf, paddr), len, DMA_FROM_DEVICE); skb_put(skb, len); skb->protocol = eth_type_trans(skb, rx_ring->netdev); rx_ring->free_ids[*next_to_clean] = req_id; *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs, rx_ring->ring_size); return skb; } skb = ena_alloc_skb(rx_ring, true); if (unlikely(!skb)) return NULL; do { dma_unmap_page(rx_ring->dev, dma_unmap_addr(&rx_info->ena_buf, paddr), ENA_PAGE_SIZE, DMA_BIDIRECTIONAL); skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page, rx_info->page_offset, len, ENA_PAGE_SIZE); netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, "RX skb updated. len %d. data_len %d\n", skb->len, skb->data_len); rx_info->page = NULL; rx_ring->free_ids[*next_to_clean] = req_id; *next_to_clean = ENA_RX_RING_IDX_NEXT(*next_to_clean, rx_ring->ring_size); if (likely(--descs == 0)) break; buf++; len = ena_bufs[buf].len; req_id = ena_bufs[buf].req_id; rx_info = &rx_ring->rx_buffer_info[req_id]; } while (1); return skb; } /* ena_rx_checksum - indicate in skb if hw indicated a good cksum * @adapter: structure containing adapter specific data * @ena_rx_ctx: received packet context/metadata * @skb: skb currently being received and modified */ static void ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx, struct sk_buff *skb) { /* Rx csum disabled */ if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) { skb->ip_summed = CHECKSUM_NONE; return; } /* For fragmented packets the checksum isn't valid */ if (ena_rx_ctx->frag) { skb->ip_summed = CHECKSUM_NONE; return; } /* if IP and error */ if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) && (ena_rx_ctx->l3_csum_err))) { /* ipv4 checksum error */ skb->ip_summed = CHECKSUM_NONE; u64_stats_update_begin(&rx_ring->syncp); rx_ring->rx_stats.bad_csum++; u64_stats_update_end(&rx_ring->syncp); netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, "RX IPv4 header checksum error\n"); return; } /* if TCP/UDP */ if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) { if (unlikely(ena_rx_ctx->l4_csum_err)) { /* TCP/UDP checksum error */ u64_stats_update_begin(&rx_ring->syncp); rx_ring->rx_stats.bad_csum++; u64_stats_update_end(&rx_ring->syncp); netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, "RX L4 checksum error\n"); skb->ip_summed = CHECKSUM_NONE; return; } if (likely(ena_rx_ctx->l4_csum_checked)) { skb->ip_summed = CHECKSUM_UNNECESSARY; u64_stats_update_begin(&rx_ring->syncp); rx_ring->rx_stats.csum_good++; u64_stats_update_end(&rx_ring->syncp); } else { u64_stats_update_begin(&rx_ring->syncp); rx_ring->rx_stats.csum_unchecked++; u64_stats_update_end(&rx_ring->syncp); skb->ip_summed = CHECKSUM_NONE; } } else { skb->ip_summed = CHECKSUM_NONE; return; } } static void ena_set_rx_hash(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx, struct sk_buff *skb) { enum pkt_hash_types hash_type; if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) { if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) hash_type = PKT_HASH_TYPE_L4; else hash_type = PKT_HASH_TYPE_NONE; /* Override hash type if the packet is fragmented */ if (ena_rx_ctx->frag) hash_type = PKT_HASH_TYPE_NONE; skb_set_hash(skb, ena_rx_ctx->hash, hash_type); } } static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp) { struct ena_rx_buffer *rx_info; int ret; rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; xdp->data = page_address(rx_info->page) + rx_info->page_offset; xdp_set_data_meta_invalid(xdp); xdp->data_hard_start = page_address(rx_info->page); xdp->data_end = xdp->data + rx_ring->ena_bufs[0].len; /* If for some reason we received a bigger packet than * we expect, then we simply drop it */ if (unlikely(rx_ring->ena_bufs[0].len > ENA_XDP_MAX_MTU)) return XDP_DROP; ret = ena_xdp_execute(rx_ring, xdp, rx_info); /* The xdp program might expand the headers */ if (ret == XDP_PASS) { rx_info->page_offset = xdp->data - xdp->data_hard_start; rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data; } return ret; } /* ena_clean_rx_irq - Cleanup RX irq * @rx_ring: RX ring to clean * @napi: napi handler * @budget: how many packets driver is allowed to clean * * Returns the number of cleaned buffers. */ static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi, u32 budget) { u16 next_to_clean = rx_ring->next_to_clean; struct ena_com_rx_ctx ena_rx_ctx; struct ena_rx_buffer *rx_info; struct ena_adapter *adapter; u32 res_budget, work_done; int rx_copybreak_pkt = 0; int refill_threshold; struct sk_buff *skb; int refill_required; struct xdp_buff xdp; int total_len = 0; int xdp_verdict; int rc = 0; int i; netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, "%s qid %d\n", __func__, rx_ring->qid); res_budget = budget; xdp.rxq = &rx_ring->xdp_rxq; xdp.frame_sz = ENA_PAGE_SIZE; do { xdp_verdict = XDP_PASS; skb = NULL; ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; ena_rx_ctx.max_bufs = rx_ring->sgl_size; ena_rx_ctx.descs = 0; ena_rx_ctx.pkt_offset = 0; rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq, rx_ring->ena_com_io_sq, &ena_rx_ctx); if (unlikely(rc)) goto error; if (unlikely(ena_rx_ctx.descs == 0)) break; /* First descriptor might have an offset set by the device */ rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; rx_info->page_offset += ena_rx_ctx.pkt_offset; netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n", rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto, ena_rx_ctx.l4_proto, ena_rx_ctx.hash); if (ena_xdp_present_ring(rx_ring)) xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp); /* allocate skb and fill it */ if (xdp_verdict == XDP_PASS) skb = ena_rx_skb(rx_ring, rx_ring->ena_bufs, ena_rx_ctx.descs, &next_to_clean); if (unlikely(!skb)) { /* The page might not actually be freed here since the * page reference count is incremented in * ena_xdp_xmit_buff(), and it will be decreased only * when send completion was received from the device */ if (xdp_verdict == XDP_TX) ena_free_rx_page(rx_ring, &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]); for (i = 0; i < ena_rx_ctx.descs; i++) { rx_ring->free_ids[next_to_clean] = rx_ring->ena_bufs[i].req_id; next_to_clean = ENA_RX_RING_IDX_NEXT(next_to_clean, rx_ring->ring_size); } if (xdp_verdict != XDP_PASS) { res_budget--; continue; } break; } ena_rx_checksum(rx_ring, &ena_rx_ctx, skb); ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb); skb_record_rx_queue(skb, rx_ring->qid); if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) { total_len += rx_ring->ena_bufs[0].len; rx_copybreak_pkt++; napi_gro_receive(napi, skb); } else { total_len += skb->len; napi_gro_frags(napi); } res_budget--; } while (likely(res_budget)); work_done = budget - res_budget; rx_ring->per_napi_packets += work_done; u64_stats_update_begin(&rx_ring->syncp); rx_ring->rx_stats.bytes += total_len; rx_ring->rx_stats.cnt += work_done; rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt; u64_stats_update_end(&rx_ring->syncp); rx_ring->next_to_clean = next_to_clean; refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); refill_threshold = min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER, ENA_RX_REFILL_THRESH_PACKET); /* Optimization, try to batch new rx buffers */ if (refill_required > refill_threshold) { ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq); ena_refill_rx_bufs(rx_ring, refill_required); } return work_done; error: adapter = netdev_priv(rx_ring->netdev); if (rc == -ENOSPC) { u64_stats_update_begin(&rx_ring->syncp); rx_ring->rx_stats.bad_desc_num++; u64_stats_update_end(&rx_ring->syncp); adapter->reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS; } else { u64_stats_update_begin(&rx_ring->syncp); rx_ring->rx_stats.bad_req_id++; u64_stats_update_end(&rx_ring->syncp); adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID; } set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); return 0; } static void ena_dim_work(struct work_struct *w) { struct dim *dim = container_of(w, struct dim, work); struct dim_cq_moder cur_moder = net_dim_get_rx_moderation(dim->mode, dim->profile_ix); struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim); ena_napi->rx_ring->smoothed_interval = cur_moder.usec; dim->state = DIM_START_MEASURE; } static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi) { struct dim_sample dim_sample; struct ena_ring *rx_ring = ena_napi->rx_ring; if (!rx_ring->per_napi_packets) return; rx_ring->non_empty_napi_events++; dim_update_sample(rx_ring->non_empty_napi_events, rx_ring->rx_stats.cnt, rx_ring->rx_stats.bytes, &dim_sample); net_dim(&ena_napi->dim, dim_sample); rx_ring->per_napi_packets = 0; } static void ena_unmask_interrupt(struct ena_ring *tx_ring, struct ena_ring *rx_ring) { struct ena_eth_io_intr_reg intr_reg; u32 rx_interval = 0; /* Rx ring can be NULL when for XDP tx queues which don't have an * accompanying rx_ring pair. */ if (rx_ring) rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ? rx_ring->smoothed_interval : ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev); /* Update intr register: rx intr delay, * tx intr delay and interrupt unmask */ ena_com_update_intr_reg(&intr_reg, rx_interval, tx_ring->smoothed_interval, true); u64_stats_update_begin(&tx_ring->syncp); tx_ring->tx_stats.unmask_interrupt++; u64_stats_update_end(&tx_ring->syncp); /* It is a shared MSI-X. * Tx and Rx CQ have pointer to it. * So we use one of them to reach the intr reg * The Tx ring is used because the rx_ring is NULL for XDP queues */ ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg); } static void ena_update_ring_numa_node(struct ena_ring *tx_ring, struct ena_ring *rx_ring) { int cpu = get_cpu(); int numa_node; /* Check only one ring since the 2 rings are running on the same cpu */ if (likely(tx_ring->cpu == cpu)) goto out; numa_node = cpu_to_node(cpu); put_cpu(); if (numa_node != NUMA_NO_NODE) { ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node); if (rx_ring) ena_com_update_numa_node(rx_ring->ena_com_io_cq, numa_node); } tx_ring->cpu = cpu; if (rx_ring) rx_ring->cpu = cpu; return; out: put_cpu(); } static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget) { u32 total_done = 0; u16 next_to_clean; u32 tx_bytes = 0; int tx_pkts = 0; u16 req_id; int rc; if (unlikely(!xdp_ring)) return 0; next_to_clean = xdp_ring->next_to_clean; while (tx_pkts < budget) { struct ena_tx_buffer *tx_info; struct xdp_frame *xdpf; rc = ena_com_tx_comp_req_id_get(xdp_ring->ena_com_io_cq, &req_id); if (rc) { if (unlikely(rc == -EINVAL)) handle_invalid_req_id(xdp_ring, req_id, NULL, true); break; } /* validate that the request id points to a valid xdp_frame */ rc = validate_xdp_req_id(xdp_ring, req_id); if (rc) break; tx_info = &xdp_ring->tx_buffer_info[req_id]; xdpf = tx_info->xdpf; tx_info->xdpf = NULL; tx_info->last_jiffies = 0; ena_unmap_tx_buff(xdp_ring, tx_info); netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev, "tx_poll: q %d skb %p completed\n", xdp_ring->qid, xdpf); tx_bytes += xdpf->len; tx_pkts++; total_done += tx_info->tx_descs; __free_page(tx_info->xdp_rx_page); xdp_ring->free_ids[next_to_clean] = req_id; next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, xdp_ring->ring_size); } xdp_ring->next_to_clean = next_to_clean; ena_com_comp_ack(xdp_ring->ena_com_io_sq, total_done); ena_com_update_dev_comp_head(xdp_ring->ena_com_io_cq); netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev, "tx_poll: q %d done. total pkts: %d\n", xdp_ring->qid, tx_pkts); return tx_pkts; } static int ena_io_poll(struct napi_struct *napi, int budget) { struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); struct ena_ring *tx_ring, *rx_ring; int tx_work_done; int rx_work_done = 0; int tx_budget; int napi_comp_call = 0; int ret; tx_ring = ena_napi->tx_ring; rx_ring = ena_napi->rx_ring; tx_ring->first_interrupt = ena_napi->first_interrupt; rx_ring->first_interrupt = ena_napi->first_interrupt; tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER; if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) { napi_complete_done(napi, 0); return 0; } tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget); /* On netpoll the budget is zero and the handler should only clean the * tx completions. */ if (likely(budget)) rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget); /* If the device is about to reset or down, avoid unmask * the interrupt and return 0 so NAPI won't reschedule */ if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) { napi_complete_done(napi, 0); ret = 0; } else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) { napi_comp_call = 1; /* Update numa and unmask the interrupt only when schedule * from the interrupt context (vs from sk_busy_loop) */ if (napi_complete_done(napi, rx_work_done) && READ_ONCE(ena_napi->interrupts_masked)) { smp_rmb(); /* make sure interrupts_masked is read */ WRITE_ONCE(ena_napi->interrupts_masked, false); /* We apply adaptive moderation on Rx path only. * Tx uses static interrupt moderation. */ if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev)) ena_adjust_adaptive_rx_intr_moderation(ena_napi); ena_unmask_interrupt(tx_ring, rx_ring); } ena_update_ring_numa_node(tx_ring, rx_ring); ret = rx_work_done; } else { ret = budget; } u64_stats_update_begin(&tx_ring->syncp); tx_ring->tx_stats.napi_comp += napi_comp_call; tx_ring->tx_stats.tx_poll++; u64_stats_update_end(&tx_ring->syncp); return ret; } static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data) { struct ena_adapter *adapter = (struct ena_adapter *)data; ena_com_admin_q_comp_intr_handler(adapter->ena_dev); /* Don't call the aenq handler before probe is done */ if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))) ena_com_aenq_intr_handler(adapter->ena_dev, data); return IRQ_HANDLED; } /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx * @irq: interrupt number * @data: pointer to a network interface private napi device structure */ static irqreturn_t ena_intr_msix_io(int irq, void *data) { struct ena_napi *ena_napi = data; ena_napi->first_interrupt = true; WRITE_ONCE(ena_napi->interrupts_masked, true); smp_wmb(); /* write interrupts_masked before calling napi */ napi_schedule_irqoff(&ena_napi->napi); return IRQ_HANDLED; } /* Reserve a single MSI-X vector for management (admin + aenq). * plus reserve one vector for each potential io queue. * the number of potential io queues is the minimum of what the device * supports and the number of vCPUs. */ static int ena_enable_msix(struct ena_adapter *adapter) { int msix_vecs, irq_cnt; if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { netif_err(adapter, probe, adapter->netdev, "Error, MSI-X is already enabled\n"); return -EPERM; } /* Reserved the max msix vectors we might need */ msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues); netif_dbg(adapter, probe, adapter->netdev, "Trying to enable MSI-X, vectors %d\n", msix_vecs); irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC, msix_vecs, PCI_IRQ_MSIX); if (irq_cnt < 0) { netif_err(adapter, probe, adapter->netdev, "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt); return -ENOSPC; } if (irq_cnt != msix_vecs) { netif_notice(adapter, probe, adapter->netdev, "Enable only %d MSI-X (out of %d), reduce the number of queues\n", irq_cnt, msix_vecs); adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC; } if (ena_init_rx_cpu_rmap(adapter)) netif_warn(adapter, probe, adapter->netdev, "Failed to map IRQs to CPUs\n"); adapter->msix_vecs = irq_cnt; set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags); return 0; } static void ena_setup_mgmnt_intr(struct ena_adapter *adapter) { u32 cpu; snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name, ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s", pci_name(adapter->pdev)); adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler = ena_intr_msix_mgmnt; adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter; adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector = pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX); cpu = cpumask_first(cpu_online_mask); adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu; cpumask_set_cpu(cpu, &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask); } static void ena_setup_io_intr(struct ena_adapter *adapter) { struct net_device *netdev; int irq_idx, i, cpu; int io_queue_count; netdev = adapter->netdev; io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; for (i = 0; i < io_queue_count; i++) { irq_idx = ENA_IO_IRQ_IDX(i); cpu = i % num_online_cpus(); snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE, "%s-Tx-Rx-%d", netdev->name, i); adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io; adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i]; adapter->irq_tbl[irq_idx].vector = pci_irq_vector(adapter->pdev, irq_idx); adapter->irq_tbl[irq_idx].cpu = cpu; cpumask_set_cpu(cpu, &adapter->irq_tbl[irq_idx].affinity_hint_mask); } } static int ena_request_mgmnt_irq(struct ena_adapter *adapter) { unsigned long flags = 0; struct ena_irq *irq; int rc; irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; rc = request_irq(irq->vector, irq->handler, flags, irq->name, irq->data); if (rc) { netif_err(adapter, probe, adapter->netdev, "Failed to request admin irq\n"); return rc; } netif_dbg(adapter, probe, adapter->netdev, "Set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n", irq->affinity_hint_mask.bits[0], irq->vector); irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); return rc; } static int ena_request_io_irq(struct ena_adapter *adapter) { u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; unsigned long flags = 0; struct ena_irq *irq; int rc = 0, i, k; if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { netif_err(adapter, ifup, adapter->netdev, "Failed to request I/O IRQ: MSI-X is not enabled\n"); return -EINVAL; } for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { irq = &adapter->irq_tbl[i]; rc = request_irq(irq->vector, irq->handler, flags, irq->name, irq->data); if (rc) { netif_err(adapter, ifup, adapter->netdev, "Failed to request I/O IRQ. index %d rc %d\n", i, rc); goto err; } netif_dbg(adapter, ifup, adapter->netdev, "Set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n", i, irq->affinity_hint_mask.bits[0], irq->vector); irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); } return rc; err: for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) { irq = &adapter->irq_tbl[k]; free_irq(irq->vector, irq->data); } return rc; } static void ena_free_mgmnt_irq(struct ena_adapter *adapter) { struct ena_irq *irq; irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; synchronize_irq(irq->vector); irq_set_affinity_hint(irq->vector, NULL); free_irq(irq->vector, irq->data); } static void ena_free_io_irq(struct ena_adapter *adapter) { u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; struct ena_irq *irq; int i; #ifdef CONFIG_RFS_ACCEL if (adapter->msix_vecs >= 1) { free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); adapter->netdev->rx_cpu_rmap = NULL; } #endif /* CONFIG_RFS_ACCEL */ for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { irq = &adapter->irq_tbl[i]; irq_set_affinity_hint(irq->vector, NULL); free_irq(irq->vector, irq->data); } } static void ena_disable_msix(struct ena_adapter *adapter) { if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) pci_free_irq_vectors(adapter->pdev); } static void ena_disable_io_intr_sync(struct ena_adapter *adapter) { u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; int i; if (!netif_running(adapter->netdev)) return; for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) synchronize_irq(adapter->irq_tbl[i].vector); } static void ena_del_napi_in_range(struct ena_adapter *adapter, int first_index, int count) { int i; for (i = first_index; i < first_index + count; i++) { netif_napi_del(&adapter->ena_napi[i].napi); WARN_ON(!ENA_IS_XDP_INDEX(adapter, i) && adapter->ena_napi[i].xdp_ring); } } static void ena_init_napi_in_range(struct ena_adapter *adapter, int first_index, int count) { int i; for (i = first_index; i < first_index + count; i++) { struct ena_napi *napi = &adapter->ena_napi[i]; netif_napi_add(adapter->netdev, &napi->napi, ENA_IS_XDP_INDEX(adapter, i) ? ena_xdp_io_poll : ena_io_poll, ENA_NAPI_BUDGET); if (!ENA_IS_XDP_INDEX(adapter, i)) { napi->rx_ring = &adapter->rx_ring[i]; napi->tx_ring = &adapter->tx_ring[i]; } else { napi->xdp_ring = &adapter->tx_ring[i]; } napi->qid = i; } } static void ena_napi_disable_in_range(struct ena_adapter *adapter, int first_index, int count) { int i; for (i = first_index; i < first_index + count; i++) napi_disable(&adapter->ena_napi[i].napi); } static void ena_napi_enable_in_range(struct ena_adapter *adapter, int first_index, int count) { int i; for (i = first_index; i < first_index + count; i++) napi_enable(&adapter->ena_napi[i].napi); } /* Configure the Rx forwarding */ static int ena_rss_configure(struct ena_adapter *adapter) { struct ena_com_dev *ena_dev = adapter->ena_dev; int rc; /* In case the RSS table wasn't initialized by probe */ if (!ena_dev->rss.tbl_log_size) { rc = ena_rss_init_default(adapter); if (rc && (rc != -EOPNOTSUPP)) { netif_err(adapter, ifup, adapter->netdev, "Failed to init RSS rc: %d\n", rc); return rc; } } /* Set indirect table */ rc = ena_com_indirect_table_set(ena_dev); if (unlikely(rc && rc != -EOPNOTSUPP)) return rc; /* Configure hash function (if supported) */ rc = ena_com_set_hash_function(ena_dev); if (unlikely(rc && (rc != -EOPNOTSUPP))) return rc; /* Configure hash inputs (if supported) */ rc = ena_com_set_hash_ctrl(ena_dev); if (unlikely(rc && (rc != -EOPNOTSUPP))) return rc; return 0; } static int ena_up_complete(struct ena_adapter *adapter) { int rc; rc = ena_rss_configure(adapter); if (rc) return rc; ena_change_mtu(adapter->netdev, adapter->netdev->mtu); ena_refill_all_rx_bufs(adapter); /* enable transmits */ netif_tx_start_all_queues(adapter->netdev); ena_napi_enable_in_range(adapter, 0, adapter->xdp_num_queues + adapter->num_io_queues); return 0; } static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid) { struct ena_com_create_io_ctx ctx; struct ena_com_dev *ena_dev; struct ena_ring *tx_ring; u32 msix_vector; u16 ena_qid; int rc; ena_dev = adapter->ena_dev; tx_ring = &adapter->tx_ring[qid]; msix_vector = ENA_IO_IRQ_IDX(qid); ena_qid = ENA_IO_TXQ_IDX(qid); memset(&ctx, 0x0, sizeof(ctx)); ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; ctx.qid = ena_qid; ctx.mem_queue_type = ena_dev->tx_mem_queue_type; ctx.msix_vector = msix_vector; ctx.queue_size = tx_ring->ring_size; ctx.numa_node = cpu_to_node(tx_ring->cpu); rc = ena_com_create_io_queue(ena_dev, &ctx); if (rc) { netif_err(adapter, ifup, adapter->netdev, "Failed to create I/O TX queue num %d rc: %d\n", qid, rc); return rc; } rc = ena_com_get_io_handlers(ena_dev, ena_qid, &tx_ring->ena_com_io_sq, &tx_ring->ena_com_io_cq); if (rc) { netif_err(adapter, ifup, adapter->netdev, "Failed to get TX queue handlers. TX queue num %d rc: %d\n", qid, rc); ena_com_destroy_io_queue(ena_dev, ena_qid); return rc; } ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node); return rc; } static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter, int first_index, int count) { struct ena_com_dev *ena_dev = adapter->ena_dev; int rc, i; for (i = first_index; i < first_index + count; i++) { rc = ena_create_io_tx_queue(adapter, i); if (rc) goto create_err; } return 0; create_err: while (i-- > first_index) ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i)); return rc; } static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid) { struct ena_com_dev *ena_dev; struct ena_com_create_io_ctx ctx; struct ena_ring *rx_ring; u32 msix_vector; u16 ena_qid; int rc; ena_dev = adapter->ena_dev; rx_ring = &adapter->rx_ring[qid]; msix_vector = ENA_IO_IRQ_IDX(qid); ena_qid = ENA_IO_RXQ_IDX(qid); memset(&ctx, 0x0, sizeof(ctx)); ctx.qid = ena_qid; ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; ctx.msix_vector = msix_vector; ctx.queue_size = rx_ring->ring_size; ctx.numa_node = cpu_to_node(rx_ring->cpu); rc = ena_com_create_io_queue(ena_dev, &ctx); if (rc) { netif_err(adapter, ifup, adapter->netdev, "Failed to create I/O RX queue num %d rc: %d\n", qid, rc); return rc; } rc = ena_com_get_io_handlers(ena_dev, ena_qid, &rx_ring->ena_com_io_sq, &rx_ring->ena_com_io_cq); if (rc) { netif_err(adapter, ifup, adapter->netdev, "Failed to get RX queue handlers. RX queue num %d rc: %d\n", qid, rc); goto err; } ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node); return rc; err: ena_com_destroy_io_queue(ena_dev, ena_qid); return rc; } static int ena_create_all_io_rx_queues(struct ena_adapter *adapter) { struct ena_com_dev *ena_dev = adapter->ena_dev; int rc, i; for (i = 0; i < adapter->num_io_queues; i++) { rc = ena_create_io_rx_queue(adapter, i); if (rc) goto create_err; INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work); } return 0; create_err: while (i--) { cancel_work_sync(&adapter->ena_napi[i].dim.work); ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i)); } return rc; } static void set_io_rings_size(struct ena_adapter *adapter, int new_tx_size, int new_rx_size) { int i; for (i = 0; i < adapter->num_io_queues; i++) { adapter->tx_ring[i].ring_size = new_tx_size; adapter->rx_ring[i].ring_size = new_rx_size; } } /* This function allows queue allocation to backoff when the system is * low on memory. If there is not enough memory to allocate io queues * the driver will try to allocate smaller queues. * * The backoff algorithm is as follows: * 1. Try to allocate TX and RX and if successful. * 1.1. return success * * 2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same). * * 3. If TX or RX is smaller than 256 * 3.1. return failure. * 4. else * 4.1. go back to 1. */ static int create_queues_with_size_backoff(struct ena_adapter *adapter) { int rc, cur_rx_ring_size, cur_tx_ring_size; int new_rx_ring_size, new_tx_ring_size; /* current queue sizes might be set to smaller than the requested * ones due to past queue allocation failures. */ set_io_rings_size(adapter, adapter->requested_tx_ring_size, adapter->requested_rx_ring_size); while (1) { if (ena_xdp_present(adapter)) { rc = ena_setup_and_create_all_xdp_queues(adapter); if (rc) goto err_setup_tx; } rc = ena_setup_tx_resources_in_range(adapter, 0, adapter->num_io_queues); if (rc) goto err_setup_tx; rc = ena_create_io_tx_queues_in_range(adapter, 0, adapter->num_io_queues); if (rc) goto err_create_tx_queues; rc = ena_setup_all_rx_resources(adapter); if (rc) goto err_setup_rx; rc = ena_create_all_io_rx_queues(adapter); if (rc) goto err_create_rx_queues; return 0; err_create_rx_queues: ena_free_all_io_rx_resources(adapter); err_setup_rx: ena_destroy_all_tx_queues(adapter); err_create_tx_queues: ena_free_all_io_tx_resources(adapter); err_setup_tx: if (rc != -ENOMEM) { netif_err(adapter, ifup, adapter->netdev, "Queue creation failed with error code %d\n", rc); return rc; } cur_tx_ring_size = adapter->tx_ring[0].ring_size; cur_rx_ring_size = adapter->rx_ring[0].ring_size; netif_err(adapter, ifup, adapter->netdev, "Not enough memory to create queues with sizes TX=%d, RX=%d\n", cur_tx_ring_size, cur_rx_ring_size); new_tx_ring_size = cur_tx_ring_size; new_rx_ring_size = cur_rx_ring_size; /* Decrease the size of the larger queue, or * decrease both if they are the same size. */ if (cur_rx_ring_size <= cur_tx_ring_size) new_tx_ring_size = cur_tx_ring_size / 2; if (cur_rx_ring_size >= cur_tx_ring_size) new_rx_ring_size = cur_rx_ring_size / 2; if (new_tx_ring_size < ENA_MIN_RING_SIZE || new_rx_ring_size < ENA_MIN_RING_SIZE) { netif_err(adapter, ifup, adapter->netdev, "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n", ENA_MIN_RING_SIZE); return rc; } netif_err(adapter, ifup, adapter->netdev, "Retrying queue creation with sizes TX=%d, RX=%d\n", new_tx_ring_size, new_rx_ring_size); set_io_rings_size(adapter, new_tx_ring_size, new_rx_ring_size); } } static int ena_up(struct ena_adapter *adapter) { int io_queue_count, rc, i; netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__); io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; ena_setup_io_intr(adapter); /* napi poll functions should be initialized before running * request_irq(), to handle a rare condition where there is a pending * interrupt, causing the ISR to fire immediately while the poll * function wasn't set yet, causing a null dereference */ ena_init_napi_in_range(adapter, 0, io_queue_count); rc = ena_request_io_irq(adapter); if (rc) goto err_req_irq; rc = create_queues_with_size_backoff(adapter); if (rc) goto err_create_queues_with_backoff; rc = ena_up_complete(adapter); if (rc) goto err_up; if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) netif_carrier_on(adapter->netdev); u64_stats_update_begin(&adapter->syncp); adapter->dev_stats.interface_up++; u64_stats_update_end(&adapter->syncp); set_bit(ENA_FLAG_DEV_UP, &adapter->flags); /* Enable completion queues interrupt */ for (i = 0; i < adapter->num_io_queues; i++) ena_unmask_interrupt(&adapter->tx_ring[i], &adapter->rx_ring[i]); /* schedule napi in case we had pending packets * from the last time we disable napi */ for (i = 0; i < io_queue_count; i++) napi_schedule(&adapter->ena_napi[i].napi); return rc; err_up: ena_destroy_all_tx_queues(adapter); ena_free_all_io_tx_resources(adapter); ena_destroy_all_rx_queues(adapter); ena_free_all_io_rx_resources(adapter); err_create_queues_with_backoff: ena_free_io_irq(adapter); err_req_irq: ena_del_napi_in_range(adapter, 0, io_queue_count); return rc; } static void ena_down(struct ena_adapter *adapter) { int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__); clear_bit(ENA_FLAG_DEV_UP, &adapter->flags); u64_stats_update_begin(&adapter->syncp); adapter->dev_stats.interface_down++; u64_stats_update_end(&adapter->syncp); netif_carrier_off(adapter->netdev); netif_tx_disable(adapter->netdev); /* After this point the napi handler won't enable the tx queue */ ena_napi_disable_in_range(adapter, 0, io_queue_count); /* After destroy the queue there won't be any new interrupts */ if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) { int rc; rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); if (rc) netif_err(adapter, ifdown, adapter->netdev, "Device reset failed\n"); /* stop submitting admin commands on a device that was reset */ ena_com_set_admin_running_state(adapter->ena_dev, false); } ena_destroy_all_io_queues(adapter); ena_disable_io_intr_sync(adapter); ena_free_io_irq(adapter); ena_del_napi_in_range(adapter, 0, io_queue_count); ena_free_all_tx_bufs(adapter); ena_free_all_rx_bufs(adapter); ena_free_all_io_tx_resources(adapter); ena_free_all_io_rx_resources(adapter); } /* ena_open - Called when a network interface is made active * @netdev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. */ static int ena_open(struct net_device *netdev) { struct ena_adapter *adapter = netdev_priv(netdev); int rc; /* Notify the stack of the actual queue counts. */ rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues); if (rc) { netif_err(adapter, ifup, netdev, "Can't set num tx queues\n"); return rc; } rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues); if (rc) { netif_err(adapter, ifup, netdev, "Can't set num rx queues\n"); return rc; } rc = ena_up(adapter); if (rc) return rc; return rc; } /* ena_close - Disables a network interface * @netdev: network interface device structure * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the drivers control, but * needs to be disabled. A global MAC reset is issued to stop the * hardware, and all transmit and receive resources are freed. */ static int ena_close(struct net_device *netdev) { struct ena_adapter *adapter = netdev_priv(netdev); netif_dbg(adapter, ifdown, netdev, "%s\n", __func__); if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) return 0; if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) ena_down(adapter); /* Check for device status and issue reset if needed*/ check_for_admin_com_state(adapter); if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { netif_err(adapter, ifdown, adapter->netdev, "Destroy failure, restarting device\n"); ena_dump_stats_to_dmesg(adapter); /* rtnl lock already obtained in dev_ioctl() layer */ ena_destroy_device(adapter, false); ena_restore_device(adapter); } return 0; } int ena_update_queue_sizes(struct ena_adapter *adapter, u32 new_tx_size, u32 new_rx_size) { bool dev_was_up; dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); ena_close(adapter->netdev); adapter->requested_tx_ring_size = new_tx_size; adapter->requested_rx_ring_size = new_rx_size; ena_init_io_rings(adapter, 0, adapter->xdp_num_queues + adapter->num_io_queues); return dev_was_up ? ena_up(adapter) : 0; } int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count) { struct ena_com_dev *ena_dev = adapter->ena_dev; int prev_channel_count; bool dev_was_up; dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); ena_close(adapter->netdev); prev_channel_count = adapter->num_io_queues; adapter->num_io_queues = new_channel_count; if (ena_xdp_present(adapter) && ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) { adapter->xdp_first_ring = new_channel_count; adapter->xdp_num_queues = new_channel_count; if (prev_channel_count > new_channel_count) ena_xdp_exchange_program_rx_in_range(adapter, NULL, new_channel_count, prev_channel_count); else ena_xdp_exchange_program_rx_in_range(adapter, adapter->xdp_bpf_prog, prev_channel_count, new_channel_count); } /* We need to destroy the rss table so that the indirection * table will be reinitialized by ena_up() */ ena_com_rss_destroy(ena_dev); ena_init_io_rings(adapter, 0, adapter->xdp_num_queues + adapter->num_io_queues); return dev_was_up ? ena_open(adapter->netdev) : 0; } static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct sk_buff *skb, bool disable_meta_caching) { u32 mss = skb_shinfo(skb)->gso_size; struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta; u8 l4_protocol = 0; if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) { ena_tx_ctx->l4_csum_enable = 1; if (mss) { ena_tx_ctx->tso_enable = 1; ena_meta->l4_hdr_len = tcp_hdr(skb)->doff; ena_tx_ctx->l4_csum_partial = 0; } else { ena_tx_ctx->tso_enable = 0; ena_meta->l4_hdr_len = 0; ena_tx_ctx->l4_csum_partial = 1; } switch (ip_hdr(skb)->version) { case IPVERSION: ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; if (ip_hdr(skb)->frag_off & htons(IP_DF)) ena_tx_ctx->df = 1; if (mss) ena_tx_ctx->l3_csum_enable = 1; l4_protocol = ip_hdr(skb)->protocol; break; case 6: ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; l4_protocol = ipv6_hdr(skb)->nexthdr; break; default: break; } if (l4_protocol == IPPROTO_TCP) ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; else ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; ena_meta->mss = mss; ena_meta->l3_hdr_len = skb_network_header_len(skb); ena_meta->l3_hdr_offset = skb_network_offset(skb); ena_tx_ctx->meta_valid = 1; } else if (disable_meta_caching) { memset(ena_meta, 0, sizeof(*ena_meta)); ena_tx_ctx->meta_valid = 1; } else { ena_tx_ctx->meta_valid = 0; } } static int ena_check_and_linearize_skb(struct ena_ring *tx_ring, struct sk_buff *skb) { int num_frags, header_len, rc; num_frags = skb_shinfo(skb)->nr_frags; header_len = skb_headlen(skb); if (num_frags < tx_ring->sgl_size) return 0; if ((num_frags == tx_ring->sgl_size) && (header_len < tx_ring->tx_max_header_size)) return 0; u64_stats_update_begin(&tx_ring->syncp); tx_ring->tx_stats.linearize++; u64_stats_update_end(&tx_ring->syncp); rc = skb_linearize(skb); if (unlikely(rc)) { u64_stats_update_begin(&tx_ring->syncp); tx_ring->tx_stats.linearize_failed++; u64_stats_update_end(&tx_ring->syncp); } return rc; } static int ena_tx_map_skb(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info, struct sk_buff *skb, void **push_hdr, u16 *header_len) { struct ena_adapter *adapter = tx_ring->adapter; struct ena_com_buf *ena_buf; dma_addr_t dma; u32 skb_head_len, frag_len, last_frag; u16 push_len = 0; u16 delta = 0; int i = 0; skb_head_len = skb_headlen(skb); tx_info->skb = skb; ena_buf = tx_info->bufs; if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { /* When the device is LLQ mode, the driver will copy * the header into the device memory space. * the ena_com layer assume the header is in a linear * memory space. * This assumption might be wrong since part of the header * can be in the fragmented buffers. * Use skb_header_pointer to make sure the header is in a * linear memory space. */ push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size); *push_hdr = skb_header_pointer(skb, 0, push_len, tx_ring->push_buf_intermediate_buf); *header_len = push_len; if (unlikely(skb->data != *push_hdr)) { u64_stats_update_begin(&tx_ring->syncp); tx_ring->tx_stats.llq_buffer_copy++; u64_stats_update_end(&tx_ring->syncp); delta = push_len - skb_head_len; } } else { *push_hdr = NULL; *header_len = min_t(u32, skb_head_len, tx_ring->tx_max_header_size); } netif_dbg(adapter, tx_queued, adapter->netdev, "skb: %p header_buf->vaddr: %p push_len: %d\n", skb, *push_hdr, push_len); if (skb_head_len > push_len) { dma = dma_map_single(tx_ring->dev, skb->data + push_len, skb_head_len - push_len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(tx_ring->dev, dma))) goto error_report_dma_error; ena_buf->paddr = dma; ena_buf->len = skb_head_len - push_len; ena_buf++; tx_info->num_of_bufs++; tx_info->map_linear_data = 1; } else { tx_info->map_linear_data = 0; } last_frag = skb_shinfo(skb)->nr_frags; for (i = 0; i < last_frag; i++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; frag_len = skb_frag_size(frag); if (unlikely(delta >= frag_len)) { delta -= frag_len; continue; } dma = skb_frag_dma_map(tx_ring->dev, frag, delta, frag_len - delta, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(tx_ring->dev, dma))) goto error_report_dma_error; ena_buf->paddr = dma; ena_buf->len = frag_len - delta; ena_buf++; tx_info->num_of_bufs++; delta = 0; } return 0; error_report_dma_error: u64_stats_update_begin(&tx_ring->syncp); tx_ring->tx_stats.dma_mapping_err++; u64_stats_update_end(&tx_ring->syncp); netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map skb\n"); tx_info->skb = NULL; tx_info->num_of_bufs += i; ena_unmap_tx_buff(tx_ring, tx_info); return -EINVAL; } /* Called with netif_tx_lock. */ static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ena_adapter *adapter = netdev_priv(dev); struct ena_tx_buffer *tx_info; struct ena_com_tx_ctx ena_tx_ctx; struct ena_ring *tx_ring; struct netdev_queue *txq; void *push_hdr; u16 next_to_use, req_id, header_len; int qid, rc; netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb); /* Determine which tx ring we will be placed on */ qid = skb_get_queue_mapping(skb); tx_ring = &adapter->tx_ring[qid]; txq = netdev_get_tx_queue(dev, qid); rc = ena_check_and_linearize_skb(tx_ring, skb); if (unlikely(rc)) goto error_drop_packet; skb_tx_timestamp(skb); next_to_use = tx_ring->next_to_use; req_id = tx_ring->free_ids[next_to_use]; tx_info = &tx_ring->tx_buffer_info[req_id]; tx_info->num_of_bufs = 0; WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id); rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len); if (unlikely(rc)) goto error_drop_packet; memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); ena_tx_ctx.ena_bufs = tx_info->bufs; ena_tx_ctx.push_header = push_hdr; ena_tx_ctx.num_bufs = tx_info->num_of_bufs; ena_tx_ctx.req_id = req_id; ena_tx_ctx.header_len = header_len; /* set flags and meta data */ ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching); rc = ena_xmit_common(dev, tx_ring, tx_info, &ena_tx_ctx, next_to_use, skb->len); if (rc) goto error_unmap_dma; netdev_tx_sent_queue(txq, skb->len); /* stop the queue when no more space available, the packet can have up * to sgl_size + 2. one for the meta descriptor and one for header * (if the header is larger than tx_max_header_size). */ if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, tx_ring->sgl_size + 2))) { netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n", __func__, qid); netif_tx_stop_queue(txq); u64_stats_update_begin(&tx_ring->syncp); tx_ring->tx_stats.queue_stop++; u64_stats_update_end(&tx_ring->syncp); /* There is a rare condition where this function decide to * stop the queue but meanwhile clean_tx_irq updates * next_to_completion and terminates. * The queue will remain stopped forever. * To solve this issue add a mb() to make sure that * netif_tx_stop_queue() write is vissible before checking if * there is additional space in the queue. */ smp_mb(); if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, ENA_TX_WAKEUP_THRESH)) { netif_tx_wake_queue(txq); u64_stats_update_begin(&tx_ring->syncp); tx_ring->tx_stats.queue_wakeup++; u64_stats_update_end(&tx_ring->syncp); } } if (netif_xmit_stopped(txq) || !netdev_xmit_more()) { /* trigger the dma engine. ena_com_write_sq_doorbell() * has a mb */ ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq); u64_stats_update_begin(&tx_ring->syncp); tx_ring->tx_stats.doorbells++; u64_stats_update_end(&tx_ring->syncp); } return NETDEV_TX_OK; error_unmap_dma: ena_unmap_tx_buff(tx_ring, tx_info); tx_info->skb = NULL; error_drop_packet: dev_kfree_skb(skb); return NETDEV_TX_OK; } static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev) { struct device *dev = &pdev->dev; struct ena_admin_host_info *host_info; int rc; /* Allocate only the host info */ rc = ena_com_allocate_host_info(ena_dev); if (rc) { dev_err(dev, "Cannot allocate host info\n"); return; } host_info = ena_dev->host_attr.host_info; host_info->bdf = (pdev->bus->number << 8) | pdev->devfn; host_info->os_type = ENA_ADMIN_OS_LINUX; host_info->kernel_ver = LINUX_VERSION_CODE; strlcpy(host_info->kernel_ver_str, utsname()->version, sizeof(host_info->kernel_ver_str) - 1); host_info->os_dist = 0; strncpy(host_info->os_dist_str, utsname()->release, sizeof(host_info->os_dist_str) - 1); host_info->driver_version = (DRV_MODULE_GEN_MAJOR) | (DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | (DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) | ("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT); host_info->num_cpus = num_online_cpus(); host_info->driver_supported_features = ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK | ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK | ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK | ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK; rc = ena_com_set_host_attributes(ena_dev); if (rc) { if (rc == -EOPNOTSUPP) dev_warn(dev, "Cannot set host attributes\n"); else dev_err(dev, "Cannot set host attributes\n"); goto err; } return; err: ena_com_delete_host_info(ena_dev); } static void ena_config_debug_area(struct ena_adapter *adapter) { u32 debug_area_size; int rc, ss_count; ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS); if (ss_count <= 0) { netif_err(adapter, drv, adapter->netdev, "SS count is negative\n"); return; } /* allocate 32 bytes for each string and 64bit for the value */ debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count; rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size); if (rc) { netif_err(adapter, drv, adapter->netdev, "Cannot allocate debug area\n"); return; } rc = ena_com_set_host_attributes(adapter->ena_dev); if (rc) { if (rc == -EOPNOTSUPP) netif_warn(adapter, drv, adapter->netdev, "Cannot set host attributes\n"); else netif_err(adapter, drv, adapter->netdev, "Cannot set host attributes\n"); goto err; } return; err: ena_com_delete_debug_area(adapter->ena_dev); } int ena_update_hw_stats(struct ena_adapter *adapter) { int rc = 0; rc = ena_com_get_eni_stats(adapter->ena_dev, &adapter->eni_stats); if (rc) { dev_info_once(&adapter->pdev->dev, "Failed to get ENI stats\n"); return rc; } return 0; } static void ena_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct ena_adapter *adapter = netdev_priv(netdev); struct ena_ring *rx_ring, *tx_ring; unsigned int start; u64 rx_drops; u64 tx_drops; int i; if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) return; for (i = 0; i < adapter->num_io_queues; i++) { u64 bytes, packets; tx_ring = &adapter->tx_ring[i]; do { start = u64_stats_fetch_begin_irq(&tx_ring->syncp); packets = tx_ring->tx_stats.cnt; bytes = tx_ring->tx_stats.bytes; } while (u64_stats_fetch_retry_irq(&tx_ring->syncp, start)); stats->tx_packets += packets; stats->tx_bytes += bytes; rx_ring = &adapter->rx_ring[i]; do { start = u64_stats_fetch_begin_irq(&rx_ring->syncp); packets = rx_ring->rx_stats.cnt; bytes = rx_ring->rx_stats.bytes; } while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start)); stats->rx_packets += packets; stats->rx_bytes += bytes; } do { start = u64_stats_fetch_begin_irq(&adapter->syncp); rx_drops = adapter->dev_stats.rx_drops; tx_drops = adapter->dev_stats.tx_drops; } while (u64_stats_fetch_retry_irq(&adapter->syncp, start)); stats->rx_dropped = rx_drops; stats->tx_dropped = tx_drops; stats->multicast = 0; stats->collisions = 0; stats->rx_length_errors = 0; stats->rx_crc_errors = 0; stats->rx_frame_errors = 0; stats->rx_fifo_errors = 0; stats->rx_missed_errors = 0; stats->tx_window_errors = 0; stats->rx_errors = 0; stats->tx_errors = 0; } static const struct net_device_ops ena_netdev_ops = { .ndo_open = ena_open, .ndo_stop = ena_close, .ndo_start_xmit = ena_start_xmit, .ndo_get_stats64 = ena_get_stats64, .ndo_tx_timeout = ena_tx_timeout, .ndo_change_mtu = ena_change_mtu, .ndo_set_mac_address = NULL, .ndo_validate_addr = eth_validate_addr, .ndo_bpf = ena_xdp, }; static int ena_device_validate_params(struct ena_adapter *adapter, struct ena_com_dev_get_features_ctx *get_feat_ctx) { struct net_device *netdev = adapter->netdev; int rc; rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr, adapter->mac_addr); if (!rc) { netif_err(adapter, drv, netdev, "Error, mac address are different\n"); return -EINVAL; } if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) { netif_err(adapter, drv, netdev, "Error, device max mtu is smaller than netdev MTU\n"); return -EINVAL; } return 0; } static void set_default_llq_configurations(struct ena_llq_configurations *llq_config) { llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER; llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY; llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2; llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B; llq_config->llq_ring_entry_size_value = 128; } static int ena_set_queues_placement_policy(struct pci_dev *pdev, struct ena_com_dev *ena_dev, struct ena_admin_feature_llq_desc *llq, struct ena_llq_configurations *llq_default_configurations) { int rc; u32 llq_feature_mask; llq_feature_mask = 1 << ENA_ADMIN_LLQ; if (!(ena_dev->supported_features & llq_feature_mask)) { dev_err(&pdev->dev, "LLQ is not supported Fallback to host mode policy.\n"); ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; return 0; } rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations); if (unlikely(rc)) { dev_err(&pdev->dev, "Failed to configure the device mode. Fallback to host mode policy.\n"); ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; } return 0; } static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev, int bars) { bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR)); if (!has_mem_bar) { if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { dev_err(&pdev->dev, "ENA device does not expose LLQ bar. Fallback to host mode policy.\n"); ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; } return 0; } ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev, pci_resource_start(pdev, ENA_MEM_BAR), pci_resource_len(pdev, ENA_MEM_BAR)); if (!ena_dev->mem_bar) return -EFAULT; return 0; } static int ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev, struct ena_com_dev_get_features_ctx *get_feat_ctx, bool *wd_state) { struct ena_llq_configurations llq_config; struct device *dev = &pdev->dev; bool readless_supported; u32 aenq_groups; int dma_width; int rc; rc = ena_com_mmio_reg_read_request_init(ena_dev); if (rc) { dev_err(dev, "Failed to init mmio read less\n"); return rc; } /* The PCIe configuration space revision id indicate if mmio reg * read is disabled */ readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ); ena_com_set_mmio_read_mode(ena_dev, readless_supported); rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); if (rc) { dev_err(dev, "Can not reset device\n"); goto err_mmio_read_less; } rc = ena_com_validate_version(ena_dev); if (rc) { dev_err(dev, "Device version is too low\n"); goto err_mmio_read_less; } dma_width = ena_com_get_dma_width(ena_dev); if (dma_width < 0) { dev_err(dev, "Invalid dma width value %d", dma_width); rc = dma_width; goto err_mmio_read_less; } rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(dma_width)); if (rc) { dev_err(dev, "dma_set_mask_and_coherent failed %d\n", rc); goto err_mmio_read_less; } /* ENA admin level init */ rc = ena_com_admin_init(ena_dev, &aenq_handlers); if (rc) { dev_err(dev, "Can not initialize ena admin queue with device\n"); goto err_mmio_read_less; } /* To enable the msix interrupts the driver needs to know the number * of queues. So the driver uses polling mode to retrieve this * information */ ena_com_set_admin_polling_mode(ena_dev, true); ena_config_host_info(ena_dev, pdev); /* Get Device Attributes*/ rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); if (rc) { dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc); goto err_admin_init; } /* Try to turn all the available aenq groups */ aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_FATAL_ERROR) | BIT(ENA_ADMIN_WARNING) | BIT(ENA_ADMIN_NOTIFICATION) | BIT(ENA_ADMIN_KEEP_ALIVE); aenq_groups &= get_feat_ctx->aenq.supported_groups; rc = ena_com_set_aenq_config(ena_dev, aenq_groups); if (rc) { dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc); goto err_admin_init; } *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); set_default_llq_configurations(&llq_config); rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq, &llq_config); if (rc) { dev_err(dev, "ENA device init failed\n"); goto err_admin_init; } return 0; err_admin_init: ena_com_delete_host_info(ena_dev); ena_com_admin_destroy(ena_dev); err_mmio_read_less: ena_com_mmio_reg_read_request_destroy(ena_dev); return rc; } static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter) { struct ena_com_dev *ena_dev = adapter->ena_dev; struct device *dev = &adapter->pdev->dev; int rc; rc = ena_enable_msix(adapter); if (rc) { dev_err(dev, "Can not reserve msix vectors\n"); return rc; } ena_setup_mgmnt_intr(adapter); rc = ena_request_mgmnt_irq(adapter); if (rc) { dev_err(dev, "Can not setup management interrupts\n"); goto err_disable_msix; } ena_com_set_admin_polling_mode(ena_dev, false); ena_com_admin_aenq_enable(ena_dev); return 0; err_disable_msix: ena_disable_msix(adapter); return rc; } static void ena_destroy_device(struct ena_adapter *adapter, bool graceful) { struct net_device *netdev = adapter->netdev; struct ena_com_dev *ena_dev = adapter->ena_dev; bool dev_up; if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) return; netif_carrier_off(netdev); del_timer_sync(&adapter->timer_service); dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); adapter->dev_up_before_reset = dev_up; if (!graceful) ena_com_set_admin_running_state(ena_dev, false); if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) ena_down(adapter); /* Stop the device from sending AENQ events (in case reset flag is set * and device is up, ena_down() already reset the device. */ if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up)) ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); ena_free_mgmnt_irq(adapter); ena_disable_msix(adapter); ena_com_abort_admin_commands(ena_dev); ena_com_wait_for_abort_completion(ena_dev); ena_com_admin_destroy(ena_dev); ena_com_mmio_reg_read_request_destroy(ena_dev); /* return reset reason to default value */ adapter->reset_reason = ENA_REGS_RESET_NORMAL; clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); } static int ena_restore_device(struct ena_adapter *adapter) { struct ena_com_dev_get_features_ctx get_feat_ctx; struct ena_com_dev *ena_dev = adapter->ena_dev; struct pci_dev *pdev = adapter->pdev; bool wd_state; int rc; set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); rc = ena_device_init(ena_dev, adapter->pdev, &get_feat_ctx, &wd_state); if (rc) { dev_err(&pdev->dev, "Can not initialize device\n"); goto err; } adapter->wd_state = wd_state; rc = ena_device_validate_params(adapter, &get_feat_ctx); if (rc) { dev_err(&pdev->dev, "Validation of device parameters failed\n"); goto err_device_destroy; } rc = ena_enable_msix_and_set_admin_interrupts(adapter); if (rc) { dev_err(&pdev->dev, "Enable MSI-X failed\n"); goto err_device_destroy; } /* If the interface was up before the reset bring it up */ if (adapter->dev_up_before_reset) { rc = ena_up(adapter); if (rc) { dev_err(&pdev->dev, "Failed to create I/O queues\n"); goto err_disable_msix; } } set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) netif_carrier_on(adapter->netdev); mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); adapter->last_keep_alive_jiffies = jiffies; dev_err(&pdev->dev, "Device reset completed successfully\n"); return rc; err_disable_msix: ena_free_mgmnt_irq(adapter); ena_disable_msix(adapter); err_device_destroy: ena_com_abort_admin_commands(ena_dev); ena_com_wait_for_abort_completion(ena_dev); ena_com_admin_destroy(ena_dev); ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE); ena_com_mmio_reg_read_request_destroy(ena_dev); err: clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); dev_err(&pdev->dev, "Reset attempt failed. Can not reset the device\n"); return rc; } static void ena_fw_reset_device(struct work_struct *work) { struct ena_adapter *adapter = container_of(work, struct ena_adapter, reset_task); rtnl_lock(); if (likely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { ena_destroy_device(adapter, false); ena_restore_device(adapter); } rtnl_unlock(); } static int check_for_rx_interrupt_queue(struct ena_adapter *adapter, struct ena_ring *rx_ring) { if (likely(rx_ring->first_interrupt)) return 0; if (ena_com_cq_empty(rx_ring->ena_com_io_cq)) return 0; rx_ring->no_interrupt_event_cnt++; if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) { netif_err(adapter, rx_err, adapter->netdev, "Potential MSIX issue on Rx side Queue = %d. Reset the device\n", rx_ring->qid); adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT; smp_mb__before_atomic(); set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); return -EIO; } return 0; } static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter, struct ena_ring *tx_ring) { struct ena_tx_buffer *tx_buf; unsigned long last_jiffies; u32 missed_tx = 0; int i, rc = 0; for (i = 0; i < tx_ring->ring_size; i++) { tx_buf = &tx_ring->tx_buffer_info[i]; last_jiffies = tx_buf->last_jiffies; if (last_jiffies == 0) /* no pending Tx at this location */ continue; if (unlikely(!tx_ring->first_interrupt && time_is_before_jiffies(last_jiffies + 2 * adapter->missing_tx_completion_to))) { /* If after graceful period interrupt is still not * received, we schedule a reset */ netif_err(adapter, tx_err, adapter->netdev, "Potential MSIX issue on Tx side Queue = %d. Reset the device\n", tx_ring->qid); adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT; smp_mb__before_atomic(); set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); return -EIO; } if (unlikely(time_is_before_jiffies(last_jiffies + adapter->missing_tx_completion_to))) { if (!tx_buf->print_once) netif_notice(adapter, tx_err, adapter->netdev, "Found a Tx that wasn't completed on time, qid %d, index %d.\n", tx_ring->qid, i); tx_buf->print_once = 1; missed_tx++; } } if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) { netif_err(adapter, tx_err, adapter->netdev, "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n", missed_tx, adapter->missing_tx_completion_threshold); adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL; set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); rc = -EIO; } u64_stats_update_begin(&tx_ring->syncp); tx_ring->tx_stats.missed_tx += missed_tx; u64_stats_update_end(&tx_ring->syncp); return rc; } static void check_for_missing_completions(struct ena_adapter *adapter) { struct ena_ring *tx_ring; struct ena_ring *rx_ring; int qid, budget, rc; int io_queue_count; io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues; /* Make sure the driver doesn't turn the device in other process */ smp_rmb(); if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) return; if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) return; if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT) return; budget = min_t(u32, io_queue_count, ENA_MONITORED_TX_QUEUES); qid = adapter->last_monitored_tx_qid; while (budget) { qid = (qid + 1) % io_queue_count; tx_ring = &adapter->tx_ring[qid]; rx_ring = &adapter->rx_ring[qid]; rc = check_missing_comp_in_tx_queue(adapter, tx_ring); if (unlikely(rc)) return; rc = !ENA_IS_XDP_INDEX(adapter, qid) ? check_for_rx_interrupt_queue(adapter, rx_ring) : 0; if (unlikely(rc)) return; budget--; } adapter->last_monitored_tx_qid = qid; } /* trigger napi schedule after 2 consecutive detections */ #define EMPTY_RX_REFILL 2 /* For the rare case where the device runs out of Rx descriptors and the * napi handler failed to refill new Rx descriptors (due to a lack of memory * for example). * This case will lead to a deadlock: * The device won't send interrupts since all the new Rx packets will be dropped * The napi handler won't allocate new Rx descriptors so the device will be * able to send new packets. * * This scenario can happen when the kernel's vm.min_free_kbytes is too small. * It is recommended to have at least 512MB, with a minimum of 128MB for * constrained environment). * * When such a situation is detected - Reschedule napi */ static void check_for_empty_rx_ring(struct ena_adapter *adapter) { struct ena_ring *rx_ring; int i, refill_required; if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) return; if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) return; for (i = 0; i < adapter->num_io_queues; i++) { rx_ring = &adapter->rx_ring[i]; refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); if (unlikely(refill_required == (rx_ring->ring_size - 1))) { rx_ring->empty_rx_queue++; if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) { u64_stats_update_begin(&rx_ring->syncp); rx_ring->rx_stats.empty_rx_ring++; u64_stats_update_end(&rx_ring->syncp); netif_err(adapter, drv, adapter->netdev, "Trigger refill for ring %d\n", i); napi_schedule(rx_ring->napi); rx_ring->empty_rx_queue = 0; } } else { rx_ring->empty_rx_queue = 0; } } } /* Check for keep alive expiration */ static void check_for_missing_keep_alive(struct ena_adapter *adapter) { unsigned long keep_alive_expired; if (!adapter->wd_state) return; if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT) return; keep_alive_expired = adapter->last_keep_alive_jiffies + adapter->keep_alive_timeout; if (unlikely(time_is_before_jiffies(keep_alive_expired))) { netif_err(adapter, drv, adapter->netdev, "Keep alive watchdog timeout.\n"); u64_stats_update_begin(&adapter->syncp); adapter->dev_stats.wd_expired++; u64_stats_update_end(&adapter->syncp); adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO; set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); } } static void check_for_admin_com_state(struct ena_adapter *adapter) { if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) { netif_err(adapter, drv, adapter->netdev, "ENA admin queue is not in running state!\n"); u64_stats_update_begin(&adapter->syncp); adapter->dev_stats.admin_q_pause++; u64_stats_update_end(&adapter->syncp); adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO; set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); } } static void ena_update_hints(struct ena_adapter *adapter, struct ena_admin_ena_hw_hints *hints) { struct net_device *netdev = adapter->netdev; if (hints->admin_completion_tx_timeout) adapter->ena_dev->admin_queue.completion_timeout = hints->admin_completion_tx_timeout * 1000; if (hints->mmio_read_timeout) /* convert to usec */ adapter->ena_dev->mmio_read.reg_read_to = hints->mmio_read_timeout * 1000; if (hints->missed_tx_completion_count_threshold_to_reset) adapter->missing_tx_completion_threshold = hints->missed_tx_completion_count_threshold_to_reset; if (hints->missing_tx_completion_timeout) { if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT) adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT; else adapter->missing_tx_completion_to = msecs_to_jiffies(hints->missing_tx_completion_timeout); } if (hints->netdev_wd_timeout) netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout); if (hints->driver_watchdog_timeout) { if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT) adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT; else adapter->keep_alive_timeout = msecs_to_jiffies(hints->driver_watchdog_timeout); } } static void ena_update_host_info(struct ena_admin_host_info *host_info, struct net_device *netdev) { host_info->supported_network_features[0] = netdev->features & GENMASK_ULL(31, 0); host_info->supported_network_features[1] = (netdev->features & GENMASK_ULL(63, 32)) >> 32; } static void ena_timer_service(struct timer_list *t) { struct ena_adapter *adapter = from_timer(adapter, t, timer_service); u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr; struct ena_admin_host_info *host_info = adapter->ena_dev->host_attr.host_info; check_for_missing_keep_alive(adapter); check_for_admin_com_state(adapter); check_for_missing_completions(adapter); check_for_empty_rx_ring(adapter); if (debug_area) ena_dump_stats_to_buf(adapter, debug_area); if (host_info) ena_update_host_info(host_info, adapter->netdev); if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { netif_err(adapter, drv, adapter->netdev, "Trigger reset is on\n"); ena_dump_stats_to_dmesg(adapter); queue_work(ena_wq, &adapter->reset_task); return; } /* Reset the timer */ mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); } static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev, struct ena_com_dev *ena_dev, struct ena_com_dev_get_features_ctx *get_feat_ctx) { u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues; if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { struct ena_admin_queue_ext_feature_fields *max_queue_ext = &get_feat_ctx->max_queue_ext.max_queue_ext; io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num, max_queue_ext->max_rx_cq_num); io_tx_sq_num = max_queue_ext->max_tx_sq_num; io_tx_cq_num = max_queue_ext->max_tx_cq_num; } else { struct ena_admin_queue_feature_desc *max_queues = &get_feat_ctx->max_queues; io_tx_sq_num = max_queues->max_sq_num; io_tx_cq_num = max_queues->max_cq_num; io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num); } /* In case of LLQ use the llq fields for the tx SQ/CQ */ if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) io_tx_sq_num = get_feat_ctx->llq.max_llq_num; max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES); max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num); max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num); max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num); /* 1 IRQ for for mgmnt and 1 IRQs for each IO direction */ max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1); return max_num_io_queues; } static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat, struct net_device *netdev) { netdev_features_t dev_features = 0; /* Set offload features */ if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) dev_features |= NETIF_F_IP_CSUM; if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK) dev_features |= NETIF_F_IPV6_CSUM; if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) dev_features |= NETIF_F_TSO; if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) dev_features |= NETIF_F_TSO6; if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK) dev_features |= NETIF_F_TSO_ECN; if (feat->offload.rx_supported & ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) dev_features |= NETIF_F_RXCSUM; if (feat->offload.rx_supported & ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) dev_features |= NETIF_F_RXCSUM; netdev->features = dev_features | NETIF_F_SG | NETIF_F_RXHASH | NETIF_F_HIGHDMA; netdev->hw_features |= netdev->features; netdev->vlan_features |= netdev->features; } static void ena_set_conf_feat_params(struct ena_adapter *adapter, struct ena_com_dev_get_features_ctx *feat) { struct net_device *netdev = adapter->netdev; /* Copy mac address */ if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) { eth_hw_addr_random(netdev); ether_addr_copy(adapter->mac_addr, netdev->dev_addr); } else { ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr); ether_addr_copy(netdev->dev_addr, adapter->mac_addr); } /* Set offload features */ ena_set_dev_offloads(feat, netdev); adapter->max_mtu = feat->dev_attr.max_mtu; netdev->max_mtu = adapter->max_mtu; netdev->min_mtu = ENA_MIN_MTU; } static int ena_rss_init_default(struct ena_adapter *adapter) { struct ena_com_dev *ena_dev = adapter->ena_dev; struct device *dev = &adapter->pdev->dev; int rc, i; u32 val; rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); if (unlikely(rc)) { dev_err(dev, "Cannot init indirect table\n"); goto err_rss_init; } for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { val = ethtool_rxfh_indir_default(i, adapter->num_io_queues); rc = ena_com_indirect_table_fill_entry(ena_dev, i, ENA_IO_RXQ_IDX(val)); if (unlikely(rc && (rc != -EOPNOTSUPP))) { dev_err(dev, "Cannot fill indirect table\n"); goto err_fill_indir; } } rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL, ENA_HASH_KEY_SIZE, 0xFFFFFFFF); if (unlikely(rc && (rc != -EOPNOTSUPP))) { dev_err(dev, "Cannot fill hash function\n"); goto err_fill_indir; } rc = ena_com_set_default_hash_ctrl(ena_dev); if (unlikely(rc && (rc != -EOPNOTSUPP))) { dev_err(dev, "Cannot fill hash control\n"); goto err_fill_indir; } return 0; err_fill_indir: ena_com_rss_destroy(ena_dev); err_rss_init: return rc; } static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev) { int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; pci_release_selected_regions(pdev, release_bars); } static int ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx) { struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq; struct ena_com_dev *ena_dev = ctx->ena_dev; u32 tx_queue_size = ENA_DEFAULT_RING_SIZE; u32 rx_queue_size = ENA_DEFAULT_RING_SIZE; u32 max_tx_queue_size; u32 max_rx_queue_size; if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { struct ena_admin_queue_ext_feature_fields *max_queue_ext = &ctx->get_feat_ctx->max_queue_ext.max_queue_ext; max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth, max_queue_ext->max_rx_sq_depth); max_tx_queue_size = max_queue_ext->max_tx_cq_depth; if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) max_tx_queue_size = min_t(u32, max_tx_queue_size, llq->max_llq_depth); else max_tx_queue_size = min_t(u32, max_tx_queue_size, max_queue_ext->max_tx_sq_depth); ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, max_queue_ext->max_per_packet_tx_descs); ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, max_queue_ext->max_per_packet_rx_descs); } else { struct ena_admin_queue_feature_desc *max_queues = &ctx->get_feat_ctx->max_queues; max_rx_queue_size = min_t(u32, max_queues->max_cq_depth, max_queues->max_sq_depth); max_tx_queue_size = max_queues->max_cq_depth; if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) max_tx_queue_size = min_t(u32, max_tx_queue_size, llq->max_llq_depth); else max_tx_queue_size = min_t(u32, max_tx_queue_size, max_queues->max_sq_depth); ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, max_queues->max_packet_tx_descs); ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, max_queues->max_packet_rx_descs); } max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size); max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size); tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE, max_tx_queue_size); rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE, max_rx_queue_size); tx_queue_size = rounddown_pow_of_two(tx_queue_size); rx_queue_size = rounddown_pow_of_two(rx_queue_size); ctx->max_tx_queue_size = max_tx_queue_size; ctx->max_rx_queue_size = max_rx_queue_size; ctx->tx_queue_size = tx_queue_size; ctx->rx_queue_size = rx_queue_size; return 0; } /* ena_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in ena_pci_tbl * * Returns 0 on success, negative on failure * * ena_probe initializes an adapter identified by a pci_dev structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. */ static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct ena_calc_queue_size_ctx calc_queue_ctx = {}; struct ena_com_dev_get_features_ctx get_feat_ctx; struct ena_com_dev *ena_dev = NULL; struct ena_adapter *adapter; struct net_device *netdev; static int adapters_found; u32 max_num_io_queues; bool wd_state; int bars, rc; dev_dbg(&pdev->dev, "%s\n", __func__); rc = pci_enable_device_mem(pdev); if (rc) { dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n"); return rc; } rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(ENA_MAX_PHYS_ADDR_SIZE_BITS)); if (rc) { dev_err(&pdev->dev, "dma_set_mask_and_coherent failed %d\n", rc); goto err_disable_device; } pci_set_master(pdev); ena_dev = vzalloc(sizeof(*ena_dev)); if (!ena_dev) { rc = -ENOMEM; goto err_disable_device; } bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME); if (rc) { dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n", rc); goto err_free_ena_dev; } ena_dev->reg_bar = devm_ioremap(&pdev->dev, pci_resource_start(pdev, ENA_REG_BAR), pci_resource_len(pdev, ENA_REG_BAR)); if (!ena_dev->reg_bar) { dev_err(&pdev->dev, "Failed to remap regs bar\n"); rc = -EFAULT; goto err_free_region; } ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US; ena_dev->dmadev = &pdev->dev; rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state); if (rc) { dev_err(&pdev->dev, "ENA device init failed\n"); if (rc == -ETIME) rc = -EPROBE_DEFER; goto err_free_region; } rc = ena_map_llq_mem_bar(pdev, ena_dev, bars); if (rc) { dev_err(&pdev->dev, "ENA llq bar mapping failed\n"); goto err_free_ena_dev; } calc_queue_ctx.ena_dev = ena_dev; calc_queue_ctx.get_feat_ctx = &get_feat_ctx; calc_queue_ctx.pdev = pdev; /* Initial TX and RX interrupt delay. Assumes 1 usec granularity. * Updated during device initialization with the real granularity */ ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS; ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS; ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION; max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx); rc = ena_calc_io_queue_size(&calc_queue_ctx); if (rc || !max_num_io_queues) { rc = -EFAULT; goto err_device_destroy; } /* dev zeroed in init_etherdev */ netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), max_num_io_queues); if (!netdev) { dev_err(&pdev->dev, "alloc_etherdev_mq failed\n"); rc = -ENOMEM; goto err_device_destroy; } SET_NETDEV_DEV(netdev, &pdev->dev); adapter = netdev_priv(netdev); pci_set_drvdata(pdev, adapter); adapter->ena_dev = ena_dev; adapter->netdev = netdev; adapter->pdev = pdev; ena_set_conf_feat_params(adapter, &get_feat_ctx); adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); adapter->reset_reason = ENA_REGS_RESET_NORMAL; adapter->requested_tx_ring_size = calc_queue_ctx.tx_queue_size; adapter->requested_rx_ring_size = calc_queue_ctx.rx_queue_size; adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size; adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size; adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size; adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size; adapter->num_io_queues = max_num_io_queues; adapter->max_num_io_queues = max_num_io_queues; adapter->last_monitored_tx_qid = 0; adapter->xdp_first_ring = 0; adapter->xdp_num_queues = 0; adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK; if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) adapter->disable_meta_caching = !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags & BIT(ENA_ADMIN_DISABLE_META_CACHING)); adapter->wd_state = wd_state; snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found); rc = ena_com_init_interrupt_moderation(adapter->ena_dev); if (rc) { dev_err(&pdev->dev, "Failed to query interrupt moderation feature\n"); goto err_netdev_destroy; } ena_init_io_rings(adapter, 0, adapter->xdp_num_queues + adapter->num_io_queues); netdev->netdev_ops = &ena_netdev_ops; netdev->watchdog_timeo = TX_TIMEOUT; ena_set_ethtool_ops(netdev); netdev->priv_flags |= IFF_UNICAST_FLT; u64_stats_init(&adapter->syncp); rc = ena_enable_msix_and_set_admin_interrupts(adapter); if (rc) { dev_err(&pdev->dev, "Failed to enable and set the admin interrupts\n"); goto err_worker_destroy; } rc = ena_rss_init_default(adapter); if (rc && (rc != -EOPNOTSUPP)) { dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc); goto err_free_msix; } ena_config_debug_area(adapter); if (!ena_update_hw_stats(adapter)) adapter->eni_stats_supported = true; else adapter->eni_stats_supported = false; memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len); netif_carrier_off(netdev); rc = register_netdev(netdev); if (rc) { dev_err(&pdev->dev, "Cannot register net device\n"); goto err_rss; } INIT_WORK(&adapter->reset_task, ena_fw_reset_device); adapter->last_keep_alive_jiffies = jiffies; adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT; adapter->missing_tx_completion_to = TX_TIMEOUT; adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS; ena_update_hints(adapter, &get_feat_ctx.hw_hints); timer_setup(&adapter->timer_service, ena_timer_service, 0); mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); dev_info(&pdev->dev, "%s found at mem %lx, mac addr %pM\n", DEVICE_NAME, (long)pci_resource_start(pdev, 0), netdev->dev_addr); set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); adapters_found++; return 0; err_rss: ena_com_delete_debug_area(ena_dev); ena_com_rss_destroy(ena_dev); err_free_msix: ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR); /* stop submitting admin commands on a device that was reset */ ena_com_set_admin_running_state(ena_dev, false); ena_free_mgmnt_irq(adapter); ena_disable_msix(adapter); err_worker_destroy: del_timer(&adapter->timer_service); err_netdev_destroy: free_netdev(netdev); err_device_destroy: ena_com_delete_host_info(ena_dev); ena_com_admin_destroy(ena_dev); err_free_region: ena_release_bars(ena_dev, pdev); err_free_ena_dev: vfree(ena_dev); err_disable_device: pci_disable_device(pdev); return rc; } /*****************************************************************************/ /* __ena_shutoff - Helper used in both PCI remove/shutdown routines * @pdev: PCI device information struct * @shutdown: Is it a shutdown operation? If false, means it is a removal * * __ena_shutoff is a helper routine that does the real work on shutdown and * removal paths; the difference between those paths is with regards to whether * dettach or unregister the netdevice. */ static void __ena_shutoff(struct pci_dev *pdev, bool shutdown) { struct ena_adapter *adapter = pci_get_drvdata(pdev); struct ena_com_dev *ena_dev; struct net_device *netdev; ena_dev = adapter->ena_dev; netdev = adapter->netdev; #ifdef CONFIG_RFS_ACCEL if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) { free_irq_cpu_rmap(netdev->rx_cpu_rmap); netdev->rx_cpu_rmap = NULL; } #endif /* CONFIG_RFS_ACCEL */ /* Make sure timer and reset routine won't be called after * freeing device resources. */ del_timer_sync(&adapter->timer_service); cancel_work_sync(&adapter->reset_task); rtnl_lock(); /* lock released inside the below if-else block */ adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN; ena_destroy_device(adapter, true); if (shutdown) { netif_device_detach(netdev); dev_close(netdev); rtnl_unlock(); } else { rtnl_unlock(); unregister_netdev(netdev); free_netdev(netdev); } ena_com_rss_destroy(ena_dev); ena_com_delete_debug_area(ena_dev); ena_com_delete_host_info(ena_dev); ena_release_bars(ena_dev, pdev); pci_disable_device(pdev); vfree(ena_dev); } /* ena_remove - Device Removal Routine * @pdev: PCI device information struct * * ena_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. */ static void ena_remove(struct pci_dev *pdev) { __ena_shutoff(pdev, false); } /* ena_shutdown - Device Shutdown Routine * @pdev: PCI device information struct * * ena_shutdown is called by the PCI subsystem to alert the driver that * a shutdown/reboot (or kexec) is happening and device must be disabled. */ static void ena_shutdown(struct pci_dev *pdev) { __ena_shutoff(pdev, true); } /* ena_suspend - PM suspend callback * @dev_d: Device information struct */ static int __maybe_unused ena_suspend(struct device *dev_d) { struct pci_dev *pdev = to_pci_dev(dev_d); struct ena_adapter *adapter = pci_get_drvdata(pdev); u64_stats_update_begin(&adapter->syncp); adapter->dev_stats.suspend++; u64_stats_update_end(&adapter->syncp); rtnl_lock(); if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { dev_err(&pdev->dev, "Ignoring device reset request as the device is being suspended\n"); clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); } ena_destroy_device(adapter, true); rtnl_unlock(); return 0; } /* ena_resume - PM resume callback * @dev_d: Device information struct */ static int __maybe_unused ena_resume(struct device *dev_d) { struct ena_adapter *adapter = dev_get_drvdata(dev_d); int rc; u64_stats_update_begin(&adapter->syncp); adapter->dev_stats.resume++; u64_stats_update_end(&adapter->syncp); rtnl_lock(); rc = ena_restore_device(adapter); rtnl_unlock(); return rc; } static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume); static struct pci_driver ena_pci_driver = { .name = DRV_MODULE_NAME, .id_table = ena_pci_tbl, .probe = ena_probe, .remove = ena_remove, .shutdown = ena_shutdown, .driver.pm = &ena_pm_ops, .sriov_configure = pci_sriov_configure_simple, }; static int __init ena_init(void) { int ret; ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME); if (!ena_wq) { pr_err("Failed to create workqueue\n"); return -ENOMEM; } ret = pci_register_driver(&ena_pci_driver); if (ret) destroy_workqueue(ena_wq); return ret; } static void __exit ena_cleanup(void) { pci_unregister_driver(&ena_pci_driver); if (ena_wq) { destroy_workqueue(ena_wq); ena_wq = NULL; } } /****************************************************************************** ******************************** AENQ Handlers ******************************* *****************************************************************************/ /* ena_update_on_link_change: * Notify the network interface about the change in link status */ static void ena_update_on_link_change(void *adapter_data, struct ena_admin_aenq_entry *aenq_e) { struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; struct ena_admin_aenq_link_change_desc *aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e; int status = aenq_desc->flags & ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK; if (status) { netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__); set_bit(ENA_FLAG_LINK_UP, &adapter->flags); if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags)) netif_carrier_on(adapter->netdev); } else { clear_bit(ENA_FLAG_LINK_UP, &adapter->flags); netif_carrier_off(adapter->netdev); } } static void ena_keep_alive_wd(void *adapter_data, struct ena_admin_aenq_entry *aenq_e) { struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; struct ena_admin_aenq_keep_alive_desc *desc; u64 rx_drops; u64 tx_drops; desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e; adapter->last_keep_alive_jiffies = jiffies; rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low; tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low; u64_stats_update_begin(&adapter->syncp); /* These stats are accumulated by the device, so the counters indicate * all drops since last reset. */ adapter->dev_stats.rx_drops = rx_drops; adapter->dev_stats.tx_drops = tx_drops; u64_stats_update_end(&adapter->syncp); } static void ena_notification(void *adapter_data, struct ena_admin_aenq_entry *aenq_e) { struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; struct ena_admin_ena_hw_hints *hints; WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION, "Invalid group(%x) expected %x\n", aenq_e->aenq_common_desc.group, ENA_ADMIN_NOTIFICATION); switch (aenq_e->aenq_common_desc.syndrome) { case ENA_ADMIN_UPDATE_HINTS: hints = (struct ena_admin_ena_hw_hints *) (&aenq_e->inline_data_w4); ena_update_hints(adapter, hints); break; default: netif_err(adapter, drv, adapter->netdev, "Invalid aenq notification link state %d\n", aenq_e->aenq_common_desc.syndrome); } } /* This handler will called for unknown event group or unimplemented handlers*/ static void unimplemented_aenq_handler(void *data, struct ena_admin_aenq_entry *aenq_e) { struct ena_adapter *adapter = (struct ena_adapter *)data; netif_err(adapter, drv, adapter->netdev, "Unknown event was received or event with unimplemented handler\n"); } static struct ena_aenq_handlers aenq_handlers = { .handlers = { [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, [ENA_ADMIN_NOTIFICATION] = ena_notification, [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd, }, .unimplemented_handler = unimplemented_aenq_handler }; module_init(ena_init); module_exit(ena_cleanup);