// SPDX-License-Identifier: GPL-2.0-only /* * This is the driver for the GMAC on-chip Ethernet controller for ST SoCs. * DWC Ether MAC version 4.xx has been used for developing this code. * * This contains the functions to handle the dma. * * Copyright (C) 2015 STMicroelectronics Ltd * * Author: Alexandre Torgue */ #include #include "dwmac4.h" #include "dwmac4_dma.h" static void dwmac4_dma_axi(void __iomem *ioaddr, struct stmmac_axi *axi) { u32 value = readl(ioaddr + DMA_SYS_BUS_MODE); int i; pr_info("dwmac4: Master AXI performs %s burst length\n", (value & DMA_SYS_BUS_FB) ? "fixed" : "any"); if (axi->axi_lpi_en) value |= DMA_AXI_EN_LPI; if (axi->axi_xit_frm) value |= DMA_AXI_LPI_XIT_FRM; value &= ~DMA_AXI_WR_OSR_LMT; value |= (axi->axi_wr_osr_lmt & DMA_AXI_OSR_MAX) << DMA_AXI_WR_OSR_LMT_SHIFT; value &= ~DMA_AXI_RD_OSR_LMT; value |= (axi->axi_rd_osr_lmt & DMA_AXI_OSR_MAX) << DMA_AXI_RD_OSR_LMT_SHIFT; /* Depending on the UNDEF bit the Master AXI will perform any burst * length according to the BLEN programmed (by default all BLEN are * set). */ for (i = 0; i < AXI_BLEN; i++) { switch (axi->axi_blen[i]) { case 256: value |= DMA_AXI_BLEN256; break; case 128: value |= DMA_AXI_BLEN128; break; case 64: value |= DMA_AXI_BLEN64; break; case 32: value |= DMA_AXI_BLEN32; break; case 16: value |= DMA_AXI_BLEN16; break; case 8: value |= DMA_AXI_BLEN8; break; case 4: value |= DMA_AXI_BLEN4; break; } } writel(value, ioaddr + DMA_SYS_BUS_MODE); } static void dwmac4_dma_init_rx_chan(void __iomem *ioaddr, struct stmmac_dma_cfg *dma_cfg, dma_addr_t dma_rx_phy, u32 chan) { u32 value; u32 rxpbl = dma_cfg->rxpbl ?: dma_cfg->pbl; value = readl(ioaddr + DMA_CHAN_RX_CONTROL(chan)); value = value | (rxpbl << DMA_BUS_MODE_RPBL_SHIFT); writel(value, ioaddr + DMA_CHAN_RX_CONTROL(chan)); if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT) && likely(dma_cfg->eame)) writel(upper_32_bits(dma_rx_phy), ioaddr + DMA_CHAN_RX_BASE_ADDR_HI(chan)); writel(lower_32_bits(dma_rx_phy), ioaddr + DMA_CHAN_RX_BASE_ADDR(chan)); } static void dwmac4_dma_init_tx_chan(void __iomem *ioaddr, struct stmmac_dma_cfg *dma_cfg, dma_addr_t dma_tx_phy, u32 chan) { u32 value; u32 txpbl = dma_cfg->txpbl ?: dma_cfg->pbl; value = readl(ioaddr + DMA_CHAN_TX_CONTROL(chan)); value = value | (txpbl << DMA_BUS_MODE_PBL_SHIFT); /* Enable OSP to get best performance */ value |= DMA_CONTROL_OSP; writel(value, ioaddr + DMA_CHAN_TX_CONTROL(chan)); if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT) && likely(dma_cfg->eame)) writel(upper_32_bits(dma_tx_phy), ioaddr + DMA_CHAN_TX_BASE_ADDR_HI(chan)); writel(lower_32_bits(dma_tx_phy), ioaddr + DMA_CHAN_TX_BASE_ADDR(chan)); } static void dwmac4_dma_init_channel(void __iomem *ioaddr, struct stmmac_dma_cfg *dma_cfg, u32 chan) { u32 value; /* common channel control register config */ value = readl(ioaddr + DMA_CHAN_CONTROL(chan)); if (dma_cfg->pblx8) value = value | DMA_BUS_MODE_PBL; writel(value, ioaddr + DMA_CHAN_CONTROL(chan)); /* Mask interrupts by writing to CSR7 */ writel(DMA_CHAN_INTR_DEFAULT_MASK, ioaddr + DMA_CHAN_INTR_ENA(chan)); } static void dwmac410_dma_init_channel(void __iomem *ioaddr, struct stmmac_dma_cfg *dma_cfg, u32 chan) { u32 value; /* common channel control register config */ value = readl(ioaddr + DMA_CHAN_CONTROL(chan)); if (dma_cfg->pblx8) value = value | DMA_BUS_MODE_PBL; writel(value, ioaddr + DMA_CHAN_CONTROL(chan)); /* Mask interrupts by writing to CSR7 */ writel(DMA_CHAN_INTR_DEFAULT_MASK_4_10, ioaddr + DMA_CHAN_INTR_ENA(chan)); } static void dwmac4_dma_init(void __iomem *ioaddr, struct stmmac_dma_cfg *dma_cfg, int atds) { u32 value = readl(ioaddr + DMA_SYS_BUS_MODE); /* Set the Fixed burst mode */ if (dma_cfg->fixed_burst) value |= DMA_SYS_BUS_FB; /* Mixed Burst has no effect when fb is set */ if (dma_cfg->mixed_burst) value |= DMA_SYS_BUS_MB; if (dma_cfg->aal) value |= DMA_SYS_BUS_AAL; if (dma_cfg->eame) value |= DMA_SYS_BUS_EAME; writel(value, ioaddr + DMA_SYS_BUS_MODE); } static void _dwmac4_dump_dma_regs(void __iomem *ioaddr, u32 channel, u32 *reg_space) { reg_space[DMA_CHAN_CONTROL(channel) / 4] = readl(ioaddr + DMA_CHAN_CONTROL(channel)); reg_space[DMA_CHAN_TX_CONTROL(channel) / 4] = readl(ioaddr + DMA_CHAN_TX_CONTROL(channel)); reg_space[DMA_CHAN_RX_CONTROL(channel) / 4] = readl(ioaddr + DMA_CHAN_RX_CONTROL(channel)); reg_space[DMA_CHAN_TX_BASE_ADDR(channel) / 4] = readl(ioaddr + DMA_CHAN_TX_BASE_ADDR(channel)); reg_space[DMA_CHAN_RX_BASE_ADDR(channel) / 4] = readl(ioaddr + DMA_CHAN_RX_BASE_ADDR(channel)); reg_space[DMA_CHAN_TX_END_ADDR(channel) / 4] = readl(ioaddr + DMA_CHAN_TX_END_ADDR(channel)); reg_space[DMA_CHAN_RX_END_ADDR(channel) / 4] = readl(ioaddr + DMA_CHAN_RX_END_ADDR(channel)); reg_space[DMA_CHAN_TX_RING_LEN(channel) / 4] = readl(ioaddr + DMA_CHAN_TX_RING_LEN(channel)); reg_space[DMA_CHAN_RX_RING_LEN(channel) / 4] = readl(ioaddr + DMA_CHAN_RX_RING_LEN(channel)); reg_space[DMA_CHAN_INTR_ENA(channel) / 4] = readl(ioaddr + DMA_CHAN_INTR_ENA(channel)); reg_space[DMA_CHAN_RX_WATCHDOG(channel) / 4] = readl(ioaddr + DMA_CHAN_RX_WATCHDOG(channel)); reg_space[DMA_CHAN_SLOT_CTRL_STATUS(channel) / 4] = readl(ioaddr + DMA_CHAN_SLOT_CTRL_STATUS(channel)); reg_space[DMA_CHAN_CUR_TX_DESC(channel) / 4] = readl(ioaddr + DMA_CHAN_CUR_TX_DESC(channel)); reg_space[DMA_CHAN_CUR_RX_DESC(channel) / 4] = readl(ioaddr + DMA_CHAN_CUR_RX_DESC(channel)); reg_space[DMA_CHAN_CUR_TX_BUF_ADDR(channel) / 4] = readl(ioaddr + DMA_CHAN_CUR_TX_BUF_ADDR(channel)); reg_space[DMA_CHAN_CUR_RX_BUF_ADDR(channel) / 4] = readl(ioaddr + DMA_CHAN_CUR_RX_BUF_ADDR(channel)); reg_space[DMA_CHAN_STATUS(channel) / 4] = readl(ioaddr + DMA_CHAN_STATUS(channel)); } static void dwmac4_dump_dma_regs(void __iomem *ioaddr, u32 *reg_space) { int i; for (i = 0; i < DMA_CHANNEL_NB_MAX; i++) _dwmac4_dump_dma_regs(ioaddr, i, reg_space); } static void dwmac4_rx_watchdog(void __iomem *ioaddr, u32 riwt, u32 number_chan) { u32 chan; for (chan = 0; chan < number_chan; chan++) writel(riwt, ioaddr + DMA_CHAN_RX_WATCHDOG(chan)); } static void dwmac4_dma_rx_chan_op_mode(void __iomem *ioaddr, int mode, u32 channel, int fifosz, u8 qmode) { unsigned int rqs = fifosz / 256 - 1; u32 mtl_rx_op; mtl_rx_op = readl(ioaddr + MTL_CHAN_RX_OP_MODE(channel)); if (mode == SF_DMA_MODE) { pr_debug("GMAC: enable RX store and forward mode\n"); mtl_rx_op |= MTL_OP_MODE_RSF; } else { pr_debug("GMAC: disable RX SF mode (threshold %d)\n", mode); mtl_rx_op &= ~MTL_OP_MODE_RSF; mtl_rx_op &= MTL_OP_MODE_RTC_MASK; if (mode <= 32) mtl_rx_op |= MTL_OP_MODE_RTC_32; else if (mode <= 64) mtl_rx_op |= MTL_OP_MODE_RTC_64; else if (mode <= 96) mtl_rx_op |= MTL_OP_MODE_RTC_96; else mtl_rx_op |= MTL_OP_MODE_RTC_128; } mtl_rx_op &= ~MTL_OP_MODE_RQS_MASK; mtl_rx_op |= rqs << MTL_OP_MODE_RQS_SHIFT; /* Enable flow control only if each channel gets 4 KiB or more FIFO and * only if channel is not an AVB channel. */ if ((fifosz >= 4096) && (qmode != MTL_QUEUE_AVB)) { unsigned int rfd, rfa; mtl_rx_op |= MTL_OP_MODE_EHFC; /* Set Threshold for Activating Flow Control to min 2 frames, * i.e. 1500 * 2 = 3000 bytes. * * Set Threshold for Deactivating Flow Control to min 1 frame, * i.e. 1500 bytes. */ switch (fifosz) { case 4096: /* This violates the above formula because of FIFO size * limit therefore overflow may occur in spite of this. */ rfd = 0x03; /* Full-2.5K */ rfa = 0x01; /* Full-1.5K */ break; default: rfd = 0x07; /* Full-4.5K */ rfa = 0x04; /* Full-3K */ break; } mtl_rx_op &= ~MTL_OP_MODE_RFD_MASK; mtl_rx_op |= rfd << MTL_OP_MODE_RFD_SHIFT; mtl_rx_op &= ~MTL_OP_MODE_RFA_MASK; mtl_rx_op |= rfa << MTL_OP_MODE_RFA_SHIFT; } writel(mtl_rx_op, ioaddr + MTL_CHAN_RX_OP_MODE(channel)); } static void dwmac4_dma_tx_chan_op_mode(void __iomem *ioaddr, int mode, u32 channel, int fifosz, u8 qmode) { u32 mtl_tx_op = readl(ioaddr + MTL_CHAN_TX_OP_MODE(channel)); unsigned int tqs = fifosz / 256 - 1; if (mode == SF_DMA_MODE) { pr_debug("GMAC: enable TX store and forward mode\n"); /* Transmit COE type 2 cannot be done in cut-through mode. */ mtl_tx_op |= MTL_OP_MODE_TSF; } else { pr_debug("GMAC: disabling TX SF (threshold %d)\n", mode); mtl_tx_op &= ~MTL_OP_MODE_TSF; mtl_tx_op &= MTL_OP_MODE_TTC_MASK; /* Set the transmit threshold */ if (mode <= 32) mtl_tx_op |= MTL_OP_MODE_TTC_32; else if (mode <= 64) mtl_tx_op |= MTL_OP_MODE_TTC_64; else if (mode <= 96) mtl_tx_op |= MTL_OP_MODE_TTC_96; else if (mode <= 128) mtl_tx_op |= MTL_OP_MODE_TTC_128; else if (mode <= 192) mtl_tx_op |= MTL_OP_MODE_TTC_192; else if (mode <= 256) mtl_tx_op |= MTL_OP_MODE_TTC_256; else if (mode <= 384) mtl_tx_op |= MTL_OP_MODE_TTC_384; else mtl_tx_op |= MTL_OP_MODE_TTC_512; } /* For an IP with DWC_EQOS_NUM_TXQ == 1, the fields TXQEN and TQS are RO * with reset values: TXQEN on, TQS == DWC_EQOS_TXFIFO_SIZE. * For an IP with DWC_EQOS_NUM_TXQ > 1, the fields TXQEN and TQS are R/W * with reset values: TXQEN off, TQS 256 bytes. * * TXQEN must be written for multi-channel operation and TQS must * reflect the available fifo size per queue (total fifo size / number * of enabled queues). */ mtl_tx_op &= ~MTL_OP_MODE_TXQEN_MASK; if (qmode != MTL_QUEUE_AVB) mtl_tx_op |= MTL_OP_MODE_TXQEN; else mtl_tx_op |= MTL_OP_MODE_TXQEN_AV; mtl_tx_op &= ~MTL_OP_MODE_TQS_MASK; mtl_tx_op |= tqs << MTL_OP_MODE_TQS_SHIFT; writel(mtl_tx_op, ioaddr + MTL_CHAN_TX_OP_MODE(channel)); } static int dwmac4_get_hw_feature(void __iomem *ioaddr, struct dma_features *dma_cap) { u32 hw_cap = readl(ioaddr + GMAC_HW_FEATURE0); /* MAC HW feature0 */ dma_cap->mbps_10_100 = (hw_cap & GMAC_HW_FEAT_MIISEL); dma_cap->mbps_1000 = (hw_cap & GMAC_HW_FEAT_GMIISEL) >> 1; dma_cap->half_duplex = (hw_cap & GMAC_HW_FEAT_HDSEL) >> 2; dma_cap->vlhash = (hw_cap & GMAC_HW_FEAT_VLHASH) >> 4; dma_cap->multi_addr = (hw_cap & GMAC_HW_FEAT_ADDMAC) >> 18; dma_cap->pcs = (hw_cap & GMAC_HW_FEAT_PCSSEL) >> 3; dma_cap->sma_mdio = (hw_cap & GMAC_HW_FEAT_SMASEL) >> 5; dma_cap->pmt_remote_wake_up = (hw_cap & GMAC_HW_FEAT_RWKSEL) >> 6; dma_cap->pmt_magic_frame = (hw_cap & GMAC_HW_FEAT_MGKSEL) >> 7; /* MMC */ dma_cap->rmon = (hw_cap & GMAC_HW_FEAT_MMCSEL) >> 8; /* IEEE 1588-2008 */ dma_cap->atime_stamp = (hw_cap & GMAC_HW_FEAT_TSSEL) >> 12; /* 802.3az - Energy-Efficient Ethernet (EEE) */ dma_cap->eee = (hw_cap & GMAC_HW_FEAT_EEESEL) >> 13; /* TX and RX csum */ dma_cap->tx_coe = (hw_cap & GMAC_HW_FEAT_TXCOSEL) >> 14; dma_cap->rx_coe = (hw_cap & GMAC_HW_FEAT_RXCOESEL) >> 16; dma_cap->vlins = (hw_cap & GMAC_HW_FEAT_SAVLANINS) >> 27; dma_cap->arpoffsel = (hw_cap & GMAC_HW_FEAT_ARPOFFSEL) >> 9; /* MAC HW feature1 */ hw_cap = readl(ioaddr + GMAC_HW_FEATURE1); dma_cap->l3l4fnum = (hw_cap & GMAC_HW_FEAT_L3L4FNUM) >> 27; dma_cap->hash_tb_sz = (hw_cap & GMAC_HW_HASH_TB_SZ) >> 24; dma_cap->av = (hw_cap & GMAC_HW_FEAT_AVSEL) >> 20; dma_cap->tsoen = (hw_cap & GMAC_HW_TSOEN) >> 18; dma_cap->sphen = (hw_cap & GMAC_HW_FEAT_SPHEN) >> 17; dma_cap->addr64 = (hw_cap & GMAC_HW_ADDR64) >> 14; switch (dma_cap->addr64) { case 0: dma_cap->addr64 = 32; break; case 1: dma_cap->addr64 = 40; break; case 2: dma_cap->addr64 = 48; break; default: dma_cap->addr64 = 32; break; } /* RX and TX FIFO sizes are encoded as log2(n / 128). Undo that by * shifting and store the sizes in bytes. */ dma_cap->tx_fifo_size = 128 << ((hw_cap & GMAC_HW_TXFIFOSIZE) >> 6); dma_cap->rx_fifo_size = 128 << ((hw_cap & GMAC_HW_RXFIFOSIZE) >> 0); /* MAC HW feature2 */ hw_cap = readl(ioaddr + GMAC_HW_FEATURE2); /* TX and RX number of channels */ dma_cap->number_rx_channel = ((hw_cap & GMAC_HW_FEAT_RXCHCNT) >> 12) + 1; dma_cap->number_tx_channel = ((hw_cap & GMAC_HW_FEAT_TXCHCNT) >> 18) + 1; /* TX and RX number of queues */ dma_cap->number_rx_queues = ((hw_cap & GMAC_HW_FEAT_RXQCNT) >> 0) + 1; dma_cap->number_tx_queues = ((hw_cap & GMAC_HW_FEAT_TXQCNT) >> 6) + 1; /* PPS output */ dma_cap->pps_out_num = (hw_cap & GMAC_HW_FEAT_PPSOUTNUM) >> 24; /* IEEE 1588-2002 */ dma_cap->time_stamp = 0; /* MAC HW feature3 */ hw_cap = readl(ioaddr + GMAC_HW_FEATURE3); /* 5.10 Features */ dma_cap->asp = (hw_cap & GMAC_HW_FEAT_ASP) >> 28; dma_cap->tbssel = (hw_cap & GMAC_HW_FEAT_TBSSEL) >> 27; dma_cap->fpesel = (hw_cap & GMAC_HW_FEAT_FPESEL) >> 26; dma_cap->estwid = (hw_cap & GMAC_HW_FEAT_ESTWID) >> 20; dma_cap->estdep = (hw_cap & GMAC_HW_FEAT_ESTDEP) >> 17; dma_cap->estsel = (hw_cap & GMAC_HW_FEAT_ESTSEL) >> 16; dma_cap->frpes = (hw_cap & GMAC_HW_FEAT_FRPES) >> 13; dma_cap->frpbs = (hw_cap & GMAC_HW_FEAT_FRPBS) >> 11; dma_cap->frpsel = (hw_cap & GMAC_HW_FEAT_FRPSEL) >> 10; dma_cap->dvlan = (hw_cap & GMAC_HW_FEAT_DVLAN) >> 5; return 0; } /* Enable/disable TSO feature and set MSS */ static void dwmac4_enable_tso(void __iomem *ioaddr, bool en, u32 chan) { u32 value; if (en) { /* enable TSO */ value = readl(ioaddr + DMA_CHAN_TX_CONTROL(chan)); writel(value | DMA_CONTROL_TSE, ioaddr + DMA_CHAN_TX_CONTROL(chan)); } else { /* enable TSO */ value = readl(ioaddr + DMA_CHAN_TX_CONTROL(chan)); writel(value & ~DMA_CONTROL_TSE, ioaddr + DMA_CHAN_TX_CONTROL(chan)); } } static void dwmac4_qmode(void __iomem *ioaddr, u32 channel, u8 qmode) { u32 mtl_tx_op = readl(ioaddr + MTL_CHAN_TX_OP_MODE(channel)); mtl_tx_op &= ~MTL_OP_MODE_TXQEN_MASK; if (qmode != MTL_QUEUE_AVB) mtl_tx_op |= MTL_OP_MODE_TXQEN; else mtl_tx_op |= MTL_OP_MODE_TXQEN_AV; writel(mtl_tx_op, ioaddr + MTL_CHAN_TX_OP_MODE(channel)); } static void dwmac4_set_bfsize(void __iomem *ioaddr, int bfsize, u32 chan) { u32 value = readl(ioaddr + DMA_CHAN_RX_CONTROL(chan)); value &= ~DMA_RBSZ_MASK; value |= (bfsize << DMA_RBSZ_SHIFT) & DMA_RBSZ_MASK; writel(value, ioaddr + DMA_CHAN_RX_CONTROL(chan)); } static void dwmac4_enable_sph(void __iomem *ioaddr, bool en, u32 chan) { u32 value = readl(ioaddr + GMAC_EXT_CONFIG); value &= ~GMAC_CONFIG_HDSMS; value |= GMAC_CONFIG_HDSMS_256; /* Segment max 256 bytes */ writel(value, ioaddr + GMAC_EXT_CONFIG); value = readl(ioaddr + DMA_CHAN_CONTROL(chan)); if (en) value |= DMA_CONTROL_SPH; else value &= ~DMA_CONTROL_SPH; writel(value, ioaddr + DMA_CHAN_CONTROL(chan)); } static int dwmac4_enable_tbs(void __iomem *ioaddr, bool en, u32 chan) { u32 value = readl(ioaddr + DMA_CHAN_TX_CONTROL(chan)); if (en) value |= DMA_CONTROL_EDSE; else value &= ~DMA_CONTROL_EDSE; writel(value, ioaddr + DMA_CHAN_TX_CONTROL(chan)); value = readl(ioaddr + DMA_CHAN_TX_CONTROL(chan)) & DMA_CONTROL_EDSE; if (en && !value) return -EIO; writel(DMA_TBS_DEF_FTOS, ioaddr + DMA_TBS_CTRL); return 0; } const struct stmmac_dma_ops dwmac4_dma_ops = { .reset = dwmac4_dma_reset, .init = dwmac4_dma_init, .init_chan = dwmac4_dma_init_channel, .init_rx_chan = dwmac4_dma_init_rx_chan, .init_tx_chan = dwmac4_dma_init_tx_chan, .axi = dwmac4_dma_axi, .dump_regs = dwmac4_dump_dma_regs, .dma_rx_mode = dwmac4_dma_rx_chan_op_mode, .dma_tx_mode = dwmac4_dma_tx_chan_op_mode, .enable_dma_irq = dwmac4_enable_dma_irq, .disable_dma_irq = dwmac4_disable_dma_irq, .start_tx = dwmac4_dma_start_tx, .stop_tx = dwmac4_dma_stop_tx, .start_rx = dwmac4_dma_start_rx, .stop_rx = dwmac4_dma_stop_rx, .dma_interrupt = dwmac4_dma_interrupt, .get_hw_feature = dwmac4_get_hw_feature, .rx_watchdog = dwmac4_rx_watchdog, .set_rx_ring_len = dwmac4_set_rx_ring_len, .set_tx_ring_len = dwmac4_set_tx_ring_len, .set_rx_tail_ptr = dwmac4_set_rx_tail_ptr, .set_tx_tail_ptr = dwmac4_set_tx_tail_ptr, .enable_tso = dwmac4_enable_tso, .qmode = dwmac4_qmode, .set_bfsize = dwmac4_set_bfsize, .enable_sph = dwmac4_enable_sph, }; const struct stmmac_dma_ops dwmac410_dma_ops = { .reset = dwmac4_dma_reset, .init = dwmac4_dma_init, .init_chan = dwmac410_dma_init_channel, .init_rx_chan = dwmac4_dma_init_rx_chan, .init_tx_chan = dwmac4_dma_init_tx_chan, .axi = dwmac4_dma_axi, .dump_regs = dwmac4_dump_dma_regs, .dma_rx_mode = dwmac4_dma_rx_chan_op_mode, .dma_tx_mode = dwmac4_dma_tx_chan_op_mode, .enable_dma_irq = dwmac410_enable_dma_irq, .disable_dma_irq = dwmac4_disable_dma_irq, .start_tx = dwmac4_dma_start_tx, .stop_tx = dwmac4_dma_stop_tx, .start_rx = dwmac4_dma_start_rx, .stop_rx = dwmac4_dma_stop_rx, .dma_interrupt = dwmac4_dma_interrupt, .get_hw_feature = dwmac4_get_hw_feature, .rx_watchdog = dwmac4_rx_watchdog, .set_rx_ring_len = dwmac4_set_rx_ring_len, .set_tx_ring_len = dwmac4_set_tx_ring_len, .set_rx_tail_ptr = dwmac4_set_rx_tail_ptr, .set_tx_tail_ptr = dwmac4_set_tx_tail_ptr, .enable_tso = dwmac4_enable_tso, .qmode = dwmac4_qmode, .set_bfsize = dwmac4_set_bfsize, .enable_sph = dwmac4_enable_sph, .enable_tbs = dwmac4_enable_tbs, };