// SPDX-License-Identifier: GPL-2.0 /* * Texas Instruments Ethernet Switch Driver * * Copyright (C) 2012 Texas Instruments * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cpsw.h" #include "cpsw_ale.h" #include "cpsw_priv.h" #include "cpsw_sl.h" #include "cpts.h" #include "davinci_cpdma.h" #include static int debug_level; module_param(debug_level, int, 0); MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)"); static int ale_ageout = 10; module_param(ale_ageout, int, 0); MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)"); static int rx_packet_max = CPSW_MAX_PACKET_SIZE; module_param(rx_packet_max, int, 0); MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)"); static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT; module_param(descs_pool_size, int, 0444); MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool"); #define for_each_slave(priv, func, arg...) \ do { \ struct cpsw_slave *slave; \ struct cpsw_common *cpsw = (priv)->cpsw; \ int n; \ if (cpsw->data.dual_emac) \ (func)((cpsw)->slaves + priv->emac_port, ##arg);\ else \ for (n = cpsw->data.slaves, \ slave = cpsw->slaves; \ n; n--) \ (func)(slave++, ##arg); \ } while (0) static int cpsw_slave_index_priv(struct cpsw_common *cpsw, struct cpsw_priv *priv) { return cpsw->data.dual_emac ? priv->emac_port : cpsw->data.active_slave; } static int cpsw_get_slave_port(u32 slave_num) { return slave_num + 1; } static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid); static void cpsw_set_promiscious(struct net_device *ndev, bool enable) { struct cpsw_common *cpsw = ndev_to_cpsw(ndev); struct cpsw_ale *ale = cpsw->ale; int i; if (cpsw->data.dual_emac) { bool flag = false; /* Enabling promiscuous mode for one interface will be * common for both the interface as the interface shares * the same hardware resource. */ for (i = 0; i < cpsw->data.slaves; i++) if (cpsw->slaves[i].ndev->flags & IFF_PROMISC) flag = true; if (!enable && flag) { enable = true; dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n"); } if (enable) { /* Enable Bypass */ cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1); dev_dbg(&ndev->dev, "promiscuity enabled\n"); } else { /* Disable Bypass */ cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0); dev_dbg(&ndev->dev, "promiscuity disabled\n"); } } else { if (enable) { unsigned long timeout = jiffies + HZ; /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */ for (i = 0; i <= cpsw->data.slaves; i++) { cpsw_ale_control_set(ale, i, ALE_PORT_NOLEARN, 1); cpsw_ale_control_set(ale, i, ALE_PORT_NO_SA_UPDATE, 1); } /* Clear All Untouched entries */ cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); do { cpu_relax(); if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT)) break; } while (time_after(timeout, jiffies)); cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1); /* Clear all mcast from ALE */ cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1); __hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL); /* Flood All Unicast Packets to Host port */ cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1); dev_dbg(&ndev->dev, "promiscuity enabled\n"); } else { /* Don't Flood All Unicast Packets to Host port */ cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0); /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */ for (i = 0; i <= cpsw->data.slaves; i++) { cpsw_ale_control_set(ale, i, ALE_PORT_NOLEARN, 0); cpsw_ale_control_set(ale, i, ALE_PORT_NO_SA_UPDATE, 0); } dev_dbg(&ndev->dev, "promiscuity disabled\n"); } } } /** * cpsw_set_mc - adds multicast entry to the table if it's not added or deletes * if it's not deleted * @ndev: device to sync * @addr: address to be added or deleted * @vid: vlan id, if vid < 0 set/unset address for real device * @add: add address if the flag is set or remove otherwise */ static int cpsw_set_mc(struct net_device *ndev, const u8 *addr, int vid, int add) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int mask, flags, ret; if (vid < 0) { if (cpsw->data.dual_emac) vid = cpsw->slaves[priv->emac_port].port_vlan; else vid = 0; } mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS; flags = vid ? ALE_VLAN : 0; if (add) ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0); else ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid); return ret; } static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx) { struct addr_sync_ctx *sync_ctx = ctx; struct netdev_hw_addr *ha; int found = 0, ret = 0; if (!vdev || !(vdev->flags & IFF_UP)) return 0; /* vlan address is relevant if its sync_cnt != 0 */ netdev_for_each_mc_addr(ha, vdev) { if (ether_addr_equal(ha->addr, sync_ctx->addr)) { found = ha->sync_cnt; break; } } if (found) sync_ctx->consumed++; if (sync_ctx->flush) { if (!found) cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); return 0; } if (found) ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1); return ret; } static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num) { struct addr_sync_ctx sync_ctx; int ret; sync_ctx.consumed = 0; sync_ctx.addr = addr; sync_ctx.ndev = ndev; sync_ctx.flush = 0; ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); if (sync_ctx.consumed < num && !ret) ret = cpsw_set_mc(ndev, addr, -1, 1); return ret; } static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num) { struct addr_sync_ctx sync_ctx; sync_ctx.consumed = 0; sync_ctx.addr = addr; sync_ctx.ndev = ndev; sync_ctx.flush = 1; vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx); if (sync_ctx.consumed == num) cpsw_set_mc(ndev, addr, -1, 0); return 0; } static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx) { struct addr_sync_ctx *sync_ctx = ctx; struct netdev_hw_addr *ha; int found = 0; if (!vdev || !(vdev->flags & IFF_UP)) return 0; /* vlan address is relevant if its sync_cnt != 0 */ netdev_for_each_mc_addr(ha, vdev) { if (ether_addr_equal(ha->addr, sync_ctx->addr)) { found = ha->sync_cnt; break; } } if (!found) return 0; sync_ctx->consumed++; cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0); return 0; } static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num) { struct addr_sync_ctx sync_ctx; sync_ctx.addr = addr; sync_ctx.ndev = ndev; sync_ctx.consumed = 0; vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx); if (sync_ctx.consumed < num) cpsw_set_mc(ndev, addr, -1, 0); return 0; } static void cpsw_ndo_set_rx_mode(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int slave_port = -1; if (cpsw->data.dual_emac) slave_port = priv->emac_port + 1; if (ndev->flags & IFF_PROMISC) { /* Enable promiscuous mode */ cpsw_set_promiscious(ndev, true); cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, slave_port); return; } else { /* Disable promiscuous mode */ cpsw_set_promiscious(ndev, false); } /* Restore allmulti on vlans if necessary */ cpsw_ale_set_allmulti(cpsw->ale, ndev->flags & IFF_ALLMULTI, slave_port); /* add/remove mcast address either for real netdev or for vlan */ __hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr, cpsw_del_mc_addr); } static unsigned int cpsw_rxbuf_total_len(unsigned int len) { len += CPSW_HEADROOM; len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); return SKB_DATA_ALIGN(len); } static void cpsw_rx_handler(void *token, int len, int status) { struct page *new_page, *page = token; void *pa = page_address(page); struct cpsw_meta_xdp *xmeta = pa + CPSW_XMETA_OFFSET; struct cpsw_common *cpsw = ndev_to_cpsw(xmeta->ndev); int pkt_size = cpsw->rx_packet_max; int ret = 0, port, ch = xmeta->ch; int headroom = CPSW_HEADROOM; struct net_device *ndev = xmeta->ndev; struct cpsw_priv *priv; struct page_pool *pool; struct sk_buff *skb; struct xdp_buff xdp; dma_addr_t dma; if (cpsw->data.dual_emac && status >= 0) { port = CPDMA_RX_SOURCE_PORT(status); if (port) ndev = cpsw->slaves[--port].ndev; } priv = netdev_priv(ndev); pool = cpsw->page_pool[ch]; if (unlikely(status < 0) || unlikely(!netif_running(ndev))) { /* In dual emac mode check for all interfaces */ if (cpsw->data.dual_emac && cpsw->usage_count && (status >= 0)) { /* The packet received is for the interface which * is already down and the other interface is up * and running, instead of freeing which results * in reducing of the number of rx descriptor in * DMA engine, requeue page back to cpdma. */ new_page = page; goto requeue; } /* the interface is going down, pages are purged */ page_pool_recycle_direct(pool, page); return; } new_page = page_pool_dev_alloc_pages(pool); if (unlikely(!new_page)) { new_page = page; ndev->stats.rx_dropped++; goto requeue; } if (priv->xdp_prog) { if (status & CPDMA_RX_VLAN_ENCAP) { xdp.data = pa + CPSW_HEADROOM + CPSW_RX_VLAN_ENCAP_HDR_SIZE; xdp.data_end = xdp.data + len - CPSW_RX_VLAN_ENCAP_HDR_SIZE; } else { xdp.data = pa + CPSW_HEADROOM; xdp.data_end = xdp.data + len; } xdp_set_data_meta_invalid(&xdp); xdp.data_hard_start = pa; xdp.rxq = &priv->xdp_rxq[ch]; xdp.frame_sz = PAGE_SIZE; port = priv->emac_port + cpsw->data.dual_emac; ret = cpsw_run_xdp(priv, ch, &xdp, page, port); if (ret != CPSW_XDP_PASS) goto requeue; /* XDP prog might have changed packet data and boundaries */ len = xdp.data_end - xdp.data; headroom = xdp.data - xdp.data_hard_start; /* XDP prog can modify vlan tag, so can't use encap header */ status &= ~CPDMA_RX_VLAN_ENCAP; } /* pass skb to netstack if no XDP prog or returned XDP_PASS */ skb = build_skb(pa, cpsw_rxbuf_total_len(pkt_size)); if (!skb) { ndev->stats.rx_dropped++; page_pool_recycle_direct(pool, page); goto requeue; } skb_reserve(skb, headroom); skb_put(skb, len); skb->dev = ndev; if (status & CPDMA_RX_VLAN_ENCAP) cpsw_rx_vlan_encap(skb); if (priv->rx_ts_enabled) cpts_rx_timestamp(cpsw->cpts, skb); skb->protocol = eth_type_trans(skb, ndev); /* unmap page as no netstack skb page recycling */ page_pool_release_page(pool, page); netif_receive_skb(skb); ndev->stats.rx_bytes += len; ndev->stats.rx_packets++; requeue: xmeta = page_address(new_page) + CPSW_XMETA_OFFSET; xmeta->ndev = ndev; xmeta->ch = ch; dma = page_pool_get_dma_addr(new_page) + CPSW_HEADROOM; ret = cpdma_chan_submit_mapped(cpsw->rxv[ch].ch, new_page, dma, pkt_size, 0); if (ret < 0) { WARN_ON(ret == -ENOMEM); page_pool_recycle_direct(pool, new_page); } } static void _cpsw_adjust_link(struct cpsw_slave *slave, struct cpsw_priv *priv, bool *link) { struct phy_device *phy = slave->phy; u32 mac_control = 0; u32 slave_port; struct cpsw_common *cpsw = priv->cpsw; if (!phy) return; slave_port = cpsw_get_slave_port(slave->slave_num); if (phy->link) { mac_control = CPSW_SL_CTL_GMII_EN; if (phy->speed == 1000) mac_control |= CPSW_SL_CTL_GIG; if (phy->duplex) mac_control |= CPSW_SL_CTL_FULLDUPLEX; /* set speed_in input in case RMII mode is used in 100Mbps */ if (phy->speed == 100) mac_control |= CPSW_SL_CTL_IFCTL_A; /* in band mode only works in 10Mbps RGMII mode */ else if ((phy->speed == 10) && phy_interface_is_rgmii(phy)) mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */ if (priv->rx_pause) mac_control |= CPSW_SL_CTL_RX_FLOW_EN; if (priv->tx_pause) mac_control |= CPSW_SL_CTL_TX_FLOW_EN; if (mac_control != slave->mac_control) cpsw_sl_ctl_set(slave->mac_sl, mac_control); /* enable forwarding */ cpsw_ale_control_set(cpsw->ale, slave_port, ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); *link = true; if (priv->shp_cfg_speed && priv->shp_cfg_speed != slave->phy->speed && !cpsw_shp_is_off(priv)) dev_warn(priv->dev, "Speed was changed, CBS shaper speeds are changed!"); } else { mac_control = 0; /* disable forwarding */ cpsw_ale_control_set(cpsw->ale, slave_port, ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); cpsw_sl_wait_for_idle(slave->mac_sl, 100); cpsw_sl_ctl_reset(slave->mac_sl); } if (mac_control != slave->mac_control) phy_print_status(phy); slave->mac_control = mac_control; } static void cpsw_adjust_link(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; bool link = false; for_each_slave(priv, _cpsw_adjust_link, priv, &link); if (link) { if (cpsw_need_resplit(cpsw)) cpsw_split_res(cpsw); netif_carrier_on(ndev); if (netif_running(ndev)) netif_tx_wake_all_queues(ndev); } else { netif_carrier_off(ndev); netif_tx_stop_all_queues(ndev); } } static inline void cpsw_add_dual_emac_def_ale_entries( struct cpsw_priv *priv, struct cpsw_slave *slave, u32 slave_port) { struct cpsw_common *cpsw = priv->cpsw; u32 port_mask = 1 << slave_port | ALE_PORT_HOST; if (cpsw->version == CPSW_VERSION_1) slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN); else slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN); cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask, port_mask, port_mask, 0); cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0); cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, ALE_VLAN | ALE_SECURE, slave->port_vlan); cpsw_ale_control_set(cpsw->ale, slave_port, ALE_PORT_DROP_UNKNOWN_VLAN, 1); } static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv) { u32 slave_port; struct phy_device *phy; struct cpsw_common *cpsw = priv->cpsw; cpsw_sl_reset(slave->mac_sl, 100); cpsw_sl_ctl_reset(slave->mac_sl); /* setup priority mapping */ cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP, RX_PRIORITY_MAPPING); switch (cpsw->version) { case CPSW_VERSION_1: slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP); /* Increase RX FIFO size to 5 for supporting fullduplex * flow control mode */ slave_write(slave, (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS); break; case CPSW_VERSION_2: case CPSW_VERSION_3: case CPSW_VERSION_4: slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP); /* Increase RX FIFO size to 5 for supporting fullduplex * flow control mode */ slave_write(slave, (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) | CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS); break; } /* setup max packet size, and mac address */ cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN, cpsw->rx_packet_max); cpsw_set_slave_mac(slave, priv); slave->mac_control = 0; /* no link yet */ slave_port = cpsw_get_slave_port(slave->slave_num); if (cpsw->data.dual_emac) cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port); else cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, 1 << slave_port, 0, 0, ALE_MCAST_FWD_2); if (slave->data->phy_node) { phy = of_phy_connect(priv->ndev, slave->data->phy_node, &cpsw_adjust_link, 0, slave->data->phy_if); if (!phy) { dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n", slave->data->phy_node, slave->slave_num); return; } } else { phy = phy_connect(priv->ndev, slave->data->phy_id, &cpsw_adjust_link, slave->data->phy_if); if (IS_ERR(phy)) { dev_err(priv->dev, "phy \"%s\" not found on slave %d, err %ld\n", slave->data->phy_id, slave->slave_num, PTR_ERR(phy)); return; } } slave->phy = phy; phy_attached_info(slave->phy); phy_start(slave->phy); /* Configure GMII_SEL register */ if (!IS_ERR(slave->data->ifphy)) phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET, slave->data->phy_if); else cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num); } static inline void cpsw_add_default_vlan(struct cpsw_priv *priv) { struct cpsw_common *cpsw = priv->cpsw; const int vlan = cpsw->data.default_vlan; u32 reg; int i; int unreg_mcast_mask; reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN : CPSW2_PORT_VLAN; writel(vlan, &cpsw->host_port_regs->port_vlan); for (i = 0; i < cpsw->data.slaves; i++) slave_write(cpsw->slaves + i, vlan, reg); if (priv->ndev->flags & IFF_ALLMULTI) unreg_mcast_mask = ALE_ALL_PORTS; else unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS, ALE_ALL_PORTS, ALE_ALL_PORTS, unreg_mcast_mask); } static void cpsw_init_host_port(struct cpsw_priv *priv) { u32 fifo_mode; u32 control_reg; struct cpsw_common *cpsw = priv->cpsw; /* soft reset the controller and initialize ale */ soft_reset("cpsw", &cpsw->regs->soft_reset); cpsw_ale_start(cpsw->ale); /* switch to vlan unaware mode */ cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE, CPSW_ALE_VLAN_AWARE); control_reg = readl(&cpsw->regs->control); control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP; writel(control_reg, &cpsw->regs->control); fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE : CPSW_FIFO_NORMAL_MODE; writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl); /* setup host port priority mapping */ writel_relaxed(CPDMA_TX_PRIORITY_MAP, &cpsw->host_port_regs->cpdma_tx_pri_map); writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map); cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_PORT_STATE, ALE_PORT_STATE_FORWARD); if (!cpsw->data.dual_emac) { cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, 0, 0); cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2); } } static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw) { u32 slave_port; slave_port = cpsw_get_slave_port(slave->slave_num); if (!slave->phy) return; phy_stop(slave->phy); phy_disconnect(slave->phy); slave->phy = NULL; cpsw_ale_control_set(cpsw->ale, slave_port, ALE_PORT_STATE, ALE_PORT_STATE_DISABLE); cpsw_sl_reset(slave->mac_sl, 100); cpsw_sl_ctl_reset(slave->mac_sl); } static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg) { struct cpsw_priv *priv = arg; if (!vdev) return 0; cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid); return 0; } /* restore resources after port reset */ static void cpsw_restore(struct cpsw_priv *priv) { /* restore vlan configurations */ vlan_for_each(priv->ndev, cpsw_restore_vlans, priv); /* restore MQPRIO offload */ for_each_slave(priv, cpsw_mqprio_resume, priv); /* restore CBS offload */ for_each_slave(priv, cpsw_cbs_resume, priv); } static int cpsw_ndo_open(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int ret; u32 reg; ret = pm_runtime_get_sync(cpsw->dev); if (ret < 0) { pm_runtime_put_noidle(cpsw->dev); return ret; } netif_carrier_off(ndev); /* Notify the stack of the actual queue counts. */ ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num); if (ret) { dev_err(priv->dev, "cannot set real number of tx queues\n"); goto err_cleanup; } ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num); if (ret) { dev_err(priv->dev, "cannot set real number of rx queues\n"); goto err_cleanup; } reg = cpsw->version; dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n", CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg), CPSW_RTL_VERSION(reg)); /* Initialize host and slave ports */ if (!cpsw->usage_count) cpsw_init_host_port(priv); for_each_slave(priv, cpsw_slave_open, priv); /* Add default VLAN */ if (!cpsw->data.dual_emac) cpsw_add_default_vlan(priv); else cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan, ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0); /* initialize shared resources for every ndev */ if (!cpsw->usage_count) { /* disable priority elevation */ writel_relaxed(0, &cpsw->regs->ptype); /* enable statistics collection only on all ports */ writel_relaxed(0x7, &cpsw->regs->stat_port_en); /* Enable internal fifo flow control */ writel(0x7, &cpsw->regs->flow_control); napi_enable(&cpsw->napi_rx); napi_enable(&cpsw->napi_tx); if (cpsw->tx_irq_disabled) { cpsw->tx_irq_disabled = false; enable_irq(cpsw->irqs_table[1]); } if (cpsw->rx_irq_disabled) { cpsw->rx_irq_disabled = false; enable_irq(cpsw->irqs_table[0]); } /* create rxqs for both infs in dual mac as they use same pool * and must be destroyed together when no users. */ ret = cpsw_create_xdp_rxqs(cpsw); if (ret < 0) goto err_cleanup; ret = cpsw_fill_rx_channels(priv); if (ret < 0) goto err_cleanup; if (cpsw->cpts) { if (cpts_register(cpsw->cpts)) dev_err(priv->dev, "error registering cpts device\n"); else writel(0x10, &cpsw->wr_regs->misc_en); } } cpsw_restore(priv); /* Enable Interrupt pacing if configured */ if (cpsw->coal_intvl != 0) { struct ethtool_coalesce coal; coal.rx_coalesce_usecs = cpsw->coal_intvl; cpsw_set_coalesce(ndev, &coal); } cpdma_ctlr_start(cpsw->dma); cpsw_intr_enable(cpsw); cpsw->usage_count++; return 0; err_cleanup: if (!cpsw->usage_count) { napi_disable(&cpsw->napi_rx); napi_disable(&cpsw->napi_tx); cpdma_ctlr_stop(cpsw->dma); cpsw_destroy_xdp_rxqs(cpsw); } for_each_slave(priv, cpsw_slave_stop, cpsw); pm_runtime_put_sync(cpsw->dev); netif_carrier_off(priv->ndev); return ret; } static int cpsw_ndo_stop(struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; cpsw_info(priv, ifdown, "shutting down cpsw device\n"); __hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc); netif_tx_stop_all_queues(priv->ndev); netif_carrier_off(priv->ndev); if (cpsw->usage_count <= 1) { napi_disable(&cpsw->napi_rx); napi_disable(&cpsw->napi_tx); cpts_unregister(cpsw->cpts); cpsw_intr_disable(cpsw); cpdma_ctlr_stop(cpsw->dma); cpsw_ale_stop(cpsw->ale); cpsw_destroy_xdp_rxqs(cpsw); } for_each_slave(priv, cpsw_slave_stop, cpsw); if (cpsw_need_resplit(cpsw)) cpsw_split_res(cpsw); cpsw->usage_count--; pm_runtime_put_sync(cpsw->dev); return 0; } static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; struct cpts *cpts = cpsw->cpts; struct netdev_queue *txq; struct cpdma_chan *txch; int ret, q_idx; if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) { cpsw_err(priv, tx_err, "packet pad failed\n"); ndev->stats.tx_dropped++; return NET_XMIT_DROP; } if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb)) skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; q_idx = skb_get_queue_mapping(skb); if (q_idx >= cpsw->tx_ch_num) q_idx = q_idx % cpsw->tx_ch_num; txch = cpsw->txv[q_idx].ch; txq = netdev_get_tx_queue(ndev, q_idx); skb_tx_timestamp(skb); ret = cpdma_chan_submit(txch, skb, skb->data, skb->len, priv->emac_port + cpsw->data.dual_emac); if (unlikely(ret != 0)) { cpsw_err(priv, tx_err, "desc submit failed\n"); goto fail; } /* If there is no more tx desc left free then we need to * tell the kernel to stop sending us tx frames. */ if (unlikely(!cpdma_check_free_tx_desc(txch))) { netif_tx_stop_queue(txq); /* Barrier, so that stop_queue visible to other cpus */ smp_mb__after_atomic(); if (cpdma_check_free_tx_desc(txch)) netif_tx_wake_queue(txq); } return NETDEV_TX_OK; fail: ndev->stats.tx_dropped++; netif_tx_stop_queue(txq); /* Barrier, so that stop_queue visible to other cpus */ smp_mb__after_atomic(); if (cpdma_check_free_tx_desc(txch)) netif_tx_wake_queue(txq); return NETDEV_TX_BUSY; } static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p) { struct cpsw_priv *priv = netdev_priv(ndev); struct sockaddr *addr = (struct sockaddr *)p; struct cpsw_common *cpsw = priv->cpsw; int flags = 0; u16 vid = 0; int ret; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; ret = pm_runtime_get_sync(cpsw->dev); if (ret < 0) { pm_runtime_put_noidle(cpsw->dev); return ret; } if (cpsw->data.dual_emac) { vid = cpsw->slaves[priv->emac_port].port_vlan; flags = ALE_VLAN; } cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, flags, vid); cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM, flags, vid); memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); for_each_slave(priv, cpsw_set_slave_mac, priv); pm_runtime_put(cpsw->dev); return 0; } static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv, unsigned short vid) { int ret; int unreg_mcast_mask = 0; int mcast_mask; u32 port_mask; struct cpsw_common *cpsw = priv->cpsw; if (cpsw->data.dual_emac) { port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST; mcast_mask = ALE_PORT_HOST; if (priv->ndev->flags & IFF_ALLMULTI) unreg_mcast_mask = mcast_mask; } else { port_mask = ALE_ALL_PORTS; mcast_mask = port_mask; if (priv->ndev->flags & IFF_ALLMULTI) unreg_mcast_mask = ALE_ALL_PORTS; else unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2; } ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask, unreg_mcast_mask); if (ret != 0) return ret; ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, ALE_VLAN, vid); if (ret != 0) goto clean_vid; ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast, mcast_mask, ALE_VLAN, vid, 0); if (ret != 0) goto clean_vlan_ucast; return 0; clean_vlan_ucast: cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, ALE_VLAN, vid); clean_vid: cpsw_ale_del_vlan(cpsw->ale, vid, 0); return ret; } static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int ret; if (vid == cpsw->data.default_vlan) return 0; ret = pm_runtime_get_sync(cpsw->dev); if (ret < 0) { pm_runtime_put_noidle(cpsw->dev); return ret; } if (cpsw->data.dual_emac) { /* In dual EMAC, reserved VLAN id should not be used for * creating VLAN interfaces as this can break the dual * EMAC port separation */ int i; for (i = 0; i < cpsw->data.slaves; i++) { if (vid == cpsw->slaves[i].port_vlan) { ret = -EINVAL; goto err; } } } dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid); ret = cpsw_add_vlan_ale_entry(priv, vid); err: pm_runtime_put(cpsw->dev); return ret; } static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int ret; if (vid == cpsw->data.default_vlan) return 0; ret = pm_runtime_get_sync(cpsw->dev); if (ret < 0) { pm_runtime_put_noidle(cpsw->dev); return ret; } if (cpsw->data.dual_emac) { int i; for (i = 0; i < cpsw->data.slaves; i++) { if (vid == cpsw->slaves[i].port_vlan) goto err; } } dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid); ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0); ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM, ALE_VLAN, vid); ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast, 0, ALE_VLAN, vid); ret |= cpsw_ale_flush_multicast(cpsw->ale, ALE_PORT_HOST, vid); err: pm_runtime_put(cpsw->dev); return ret; } static int cpsw_ndo_xdp_xmit(struct net_device *ndev, int n, struct xdp_frame **frames, u32 flags) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; struct xdp_frame *xdpf; int i, drops = 0, port; if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) return -EINVAL; for (i = 0; i < n; i++) { xdpf = frames[i]; if (xdpf->len < CPSW_MIN_PACKET_SIZE) { xdp_return_frame_rx_napi(xdpf); drops++; continue; } port = priv->emac_port + cpsw->data.dual_emac; if (cpsw_xdp_tx_frame(priv, xdpf, NULL, port)) drops++; } return n - drops; } #ifdef CONFIG_NET_POLL_CONTROLLER static void cpsw_ndo_poll_controller(struct net_device *ndev) { struct cpsw_common *cpsw = ndev_to_cpsw(ndev); cpsw_intr_disable(cpsw); cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw); cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw); cpsw_intr_enable(cpsw); } #endif static const struct net_device_ops cpsw_netdev_ops = { .ndo_open = cpsw_ndo_open, .ndo_stop = cpsw_ndo_stop, .ndo_start_xmit = cpsw_ndo_start_xmit, .ndo_set_mac_address = cpsw_ndo_set_mac_address, .ndo_do_ioctl = cpsw_ndo_ioctl, .ndo_validate_addr = eth_validate_addr, .ndo_tx_timeout = cpsw_ndo_tx_timeout, .ndo_set_rx_mode = cpsw_ndo_set_rx_mode, .ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = cpsw_ndo_poll_controller, #endif .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid, .ndo_setup_tc = cpsw_ndo_setup_tc, .ndo_bpf = cpsw_ndo_bpf, .ndo_xdp_xmit = cpsw_ndo_xdp_xmit, }; static void cpsw_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info) { struct cpsw_common *cpsw = ndev_to_cpsw(ndev); struct platform_device *pdev = to_platform_device(cpsw->dev); strlcpy(info->driver, "cpsw", sizeof(info->driver)); strlcpy(info->version, "1.0", sizeof(info->version)); strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info)); } static int cpsw_set_pauseparam(struct net_device *ndev, struct ethtool_pauseparam *pause) { struct cpsw_priv *priv = netdev_priv(ndev); bool link; priv->rx_pause = pause->rx_pause ? true : false; priv->tx_pause = pause->tx_pause ? true : false; for_each_slave(priv, _cpsw_adjust_link, priv, &link); return 0; } static int cpsw_set_channels(struct net_device *ndev, struct ethtool_channels *chs) { return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler); } static const struct ethtool_ops cpsw_ethtool_ops = { .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, .get_drvinfo = cpsw_get_drvinfo, .get_msglevel = cpsw_get_msglevel, .set_msglevel = cpsw_set_msglevel, .get_link = ethtool_op_get_link, .get_ts_info = cpsw_get_ts_info, .get_coalesce = cpsw_get_coalesce, .set_coalesce = cpsw_set_coalesce, .get_sset_count = cpsw_get_sset_count, .get_strings = cpsw_get_strings, .get_ethtool_stats = cpsw_get_ethtool_stats, .get_pauseparam = cpsw_get_pauseparam, .set_pauseparam = cpsw_set_pauseparam, .get_wol = cpsw_get_wol, .set_wol = cpsw_set_wol, .get_regs_len = cpsw_get_regs_len, .get_regs = cpsw_get_regs, .begin = cpsw_ethtool_op_begin, .complete = cpsw_ethtool_op_complete, .get_channels = cpsw_get_channels, .set_channels = cpsw_set_channels, .get_link_ksettings = cpsw_get_link_ksettings, .set_link_ksettings = cpsw_set_link_ksettings, .get_eee = cpsw_get_eee, .set_eee = cpsw_set_eee, .nway_reset = cpsw_nway_reset, .get_ringparam = cpsw_get_ringparam, .set_ringparam = cpsw_set_ringparam, }; static int cpsw_probe_dt(struct cpsw_platform_data *data, struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; struct device_node *slave_node; int i = 0, ret; u32 prop; if (!node) return -EINVAL; if (of_property_read_u32(node, "slaves", &prop)) { dev_err(&pdev->dev, "Missing slaves property in the DT.\n"); return -EINVAL; } data->slaves = prop; if (of_property_read_u32(node, "active_slave", &prop)) { dev_err(&pdev->dev, "Missing active_slave property in the DT.\n"); return -EINVAL; } data->active_slave = prop; data->slave_data = devm_kcalloc(&pdev->dev, data->slaves, sizeof(struct cpsw_slave_data), GFP_KERNEL); if (!data->slave_data) return -ENOMEM; if (of_property_read_u32(node, "cpdma_channels", &prop)) { dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n"); return -EINVAL; } data->channels = prop; if (of_property_read_u32(node, "bd_ram_size", &prop)) { dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n"); return -EINVAL; } data->bd_ram_size = prop; if (of_property_read_u32(node, "mac_control", &prop)) { dev_err(&pdev->dev, "Missing mac_control property in the DT.\n"); return -EINVAL; } data->mac_control = prop; if (of_property_read_bool(node, "dual_emac")) data->dual_emac = true; /* * Populate all the child nodes here... */ ret = of_platform_populate(node, NULL, NULL, &pdev->dev); /* We do not want to force this, as in some cases may not have child */ if (ret) dev_warn(&pdev->dev, "Doesn't have any child node\n"); for_each_available_child_of_node(node, slave_node) { struct cpsw_slave_data *slave_data = data->slave_data + i; const void *mac_addr = NULL; int lenp; const __be32 *parp; /* This is no slave child node, continue */ if (!of_node_name_eq(slave_node, "slave")) continue; slave_data->ifphy = devm_of_phy_get(&pdev->dev, slave_node, NULL); if (!IS_ENABLED(CONFIG_TI_CPSW_PHY_SEL) && IS_ERR(slave_data->ifphy)) { ret = PTR_ERR(slave_data->ifphy); dev_err(&pdev->dev, "%d: Error retrieving port phy: %d\n", i, ret); goto err_node_put; } slave_data->slave_node = slave_node; slave_data->phy_node = of_parse_phandle(slave_node, "phy-handle", 0); parp = of_get_property(slave_node, "phy_id", &lenp); if (slave_data->phy_node) { dev_dbg(&pdev->dev, "slave[%d] using phy-handle=\"%pOF\"\n", i, slave_data->phy_node); } else if (of_phy_is_fixed_link(slave_node)) { /* In the case of a fixed PHY, the DT node associated * to the PHY is the Ethernet MAC DT node. */ ret = of_phy_register_fixed_link(slave_node); if (ret) { if (ret != -EPROBE_DEFER) dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret); goto err_node_put; } slave_data->phy_node = of_node_get(slave_node); } else if (parp) { u32 phyid; struct device_node *mdio_node; struct platform_device *mdio; if (lenp != (sizeof(__be32) * 2)) { dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i); goto no_phy_slave; } mdio_node = of_find_node_by_phandle(be32_to_cpup(parp)); phyid = be32_to_cpup(parp+1); mdio = of_find_device_by_node(mdio_node); of_node_put(mdio_node); if (!mdio) { dev_err(&pdev->dev, "Missing mdio platform device\n"); ret = -EINVAL; goto err_node_put; } snprintf(slave_data->phy_id, sizeof(slave_data->phy_id), PHY_ID_FMT, mdio->name, phyid); put_device(&mdio->dev); } else { dev_err(&pdev->dev, "No slave[%d] phy_id, phy-handle, or fixed-link property\n", i); goto no_phy_slave; } ret = of_get_phy_mode(slave_node, &slave_data->phy_if); if (ret) { dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n", i); goto err_node_put; } no_phy_slave: mac_addr = of_get_mac_address(slave_node); if (!IS_ERR(mac_addr)) { ether_addr_copy(slave_data->mac_addr, mac_addr); } else { ret = ti_cm_get_macid(&pdev->dev, i, slave_data->mac_addr); if (ret) goto err_node_put; } if (data->dual_emac) { if (of_property_read_u32(slave_node, "dual_emac_res_vlan", &prop)) { dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n"); slave_data->dual_emac_res_vlan = i+1; dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n", slave_data->dual_emac_res_vlan, i); } else { slave_data->dual_emac_res_vlan = prop; } } i++; if (i == data->slaves) { ret = 0; goto err_node_put; } } return 0; err_node_put: of_node_put(slave_node); return ret; } static void cpsw_remove_dt(struct platform_device *pdev) { struct cpsw_common *cpsw = platform_get_drvdata(pdev); struct cpsw_platform_data *data = &cpsw->data; struct device_node *node = pdev->dev.of_node; struct device_node *slave_node; int i = 0; for_each_available_child_of_node(node, slave_node) { struct cpsw_slave_data *slave_data = &data->slave_data[i]; if (!of_node_name_eq(slave_node, "slave")) continue; if (of_phy_is_fixed_link(slave_node)) of_phy_deregister_fixed_link(slave_node); of_node_put(slave_data->phy_node); i++; if (i == data->slaves) { of_node_put(slave_node); break; } } of_platform_depopulate(&pdev->dev); } static int cpsw_probe_dual_emac(struct cpsw_priv *priv) { struct cpsw_common *cpsw = priv->cpsw; struct cpsw_platform_data *data = &cpsw->data; struct net_device *ndev; struct cpsw_priv *priv_sl2; int ret = 0; ndev = devm_alloc_etherdev_mqs(cpsw->dev, sizeof(struct cpsw_priv), CPSW_MAX_QUEUES, CPSW_MAX_QUEUES); if (!ndev) { dev_err(cpsw->dev, "cpsw: error allocating net_device\n"); return -ENOMEM; } priv_sl2 = netdev_priv(ndev); priv_sl2->cpsw = cpsw; priv_sl2->ndev = ndev; priv_sl2->dev = &ndev->dev; priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); if (is_valid_ether_addr(data->slave_data[1].mac_addr)) { memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr, ETH_ALEN); dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr); } else { eth_random_addr(priv_sl2->mac_addr); dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr); } memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN); priv_sl2->emac_port = 1; cpsw->slaves[1].ndev = ndev; ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; ndev->netdev_ops = &cpsw_netdev_ops; ndev->ethtool_ops = &cpsw_ethtool_ops; /* register the network device */ SET_NETDEV_DEV(ndev, cpsw->dev); ndev->dev.of_node = cpsw->slaves[1].data->slave_node; ret = register_netdev(ndev); if (ret) dev_err(cpsw->dev, "cpsw: error registering net device\n"); return ret; } static const struct of_device_id cpsw_of_mtable[] = { { .compatible = "ti,cpsw"}, { .compatible = "ti,am335x-cpsw"}, { .compatible = "ti,am4372-cpsw"}, { .compatible = "ti,dra7-cpsw"}, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, cpsw_of_mtable); static const struct soc_device_attribute cpsw_soc_devices[] = { { .family = "AM33xx", .revision = "ES1.0"}, { /* sentinel */ } }; static int cpsw_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct clk *clk; struct cpsw_platform_data *data; struct net_device *ndev; struct cpsw_priv *priv; void __iomem *ss_regs; struct resource *ss_res; struct gpio_descs *mode; const struct soc_device_attribute *soc; struct cpsw_common *cpsw; int ret = 0, ch; int irq; cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL); if (!cpsw) return -ENOMEM; platform_set_drvdata(pdev, cpsw); cpsw_slave_index = cpsw_slave_index_priv; cpsw->dev = dev; mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW); if (IS_ERR(mode)) { ret = PTR_ERR(mode); dev_err(dev, "gpio request failed, ret %d\n", ret); return ret; } clk = devm_clk_get(dev, "fck"); if (IS_ERR(clk)) { ret = PTR_ERR(clk); dev_err(dev, "fck is not found %d\n", ret); return ret; } cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000; ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ss_regs = devm_ioremap_resource(dev, ss_res); if (IS_ERR(ss_regs)) return PTR_ERR(ss_regs); cpsw->regs = ss_regs; cpsw->wr_regs = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(cpsw->wr_regs)) return PTR_ERR(cpsw->wr_regs); /* RX IRQ */ irq = platform_get_irq(pdev, 1); if (irq < 0) return irq; cpsw->irqs_table[0] = irq; /* TX IRQ */ irq = platform_get_irq(pdev, 2); if (irq < 0) return irq; cpsw->irqs_table[1] = irq; /* get misc irq*/ irq = platform_get_irq(pdev, 3); if (irq <= 0) return irq; cpsw->misc_irq = irq; /* * This may be required here for child devices. */ pm_runtime_enable(dev); /* Need to enable clocks with runtime PM api to access module * registers */ ret = pm_runtime_get_sync(dev); if (ret < 0) { pm_runtime_put_noidle(dev); goto clean_runtime_disable_ret; } ret = cpsw_probe_dt(&cpsw->data, pdev); if (ret) goto clean_dt_ret; soc = soc_device_match(cpsw_soc_devices); if (soc) cpsw->quirk_irq = true; data = &cpsw->data; cpsw->slaves = devm_kcalloc(dev, data->slaves, sizeof(struct cpsw_slave), GFP_KERNEL); if (!cpsw->slaves) { ret = -ENOMEM; goto clean_dt_ret; } cpsw->rx_packet_max = max(rx_packet_max, CPSW_MAX_PACKET_SIZE); cpsw->descs_pool_size = descs_pool_size; ret = cpsw_init_common(cpsw, ss_regs, ale_ageout, ss_res->start + CPSW2_BD_OFFSET, descs_pool_size); if (ret) goto clean_dt_ret; ch = cpsw->quirk_irq ? 0 : 7; cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0); if (IS_ERR(cpsw->txv[0].ch)) { dev_err(dev, "error initializing tx dma channel\n"); ret = PTR_ERR(cpsw->txv[0].ch); goto clean_cpts; } cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1); if (IS_ERR(cpsw->rxv[0].ch)) { dev_err(dev, "error initializing rx dma channel\n"); ret = PTR_ERR(cpsw->rxv[0].ch); goto clean_cpts; } cpsw_split_res(cpsw); /* setup netdev */ ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv), CPSW_MAX_QUEUES, CPSW_MAX_QUEUES); if (!ndev) { dev_err(dev, "error allocating net_device\n"); ret = -ENOMEM; goto clean_cpts; } priv = netdev_priv(ndev); priv->cpsw = cpsw; priv->ndev = ndev; priv->dev = dev; priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG); priv->emac_port = 0; if (is_valid_ether_addr(data->slave_data[0].mac_addr)) { memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN); dev_info(dev, "Detected MACID = %pM\n", priv->mac_addr); } else { eth_random_addr(priv->mac_addr); dev_info(dev, "Random MACID = %pM\n", priv->mac_addr); } memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN); cpsw->slaves[0].ndev = ndev; ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX; ndev->netdev_ops = &cpsw_netdev_ops; ndev->ethtool_ops = &cpsw_ethtool_ops; netif_napi_add(ndev, &cpsw->napi_rx, cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll, CPSW_POLL_WEIGHT); netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll, CPSW_POLL_WEIGHT); /* register the network device */ SET_NETDEV_DEV(ndev, dev); ndev->dev.of_node = cpsw->slaves[0].data->slave_node; ret = register_netdev(ndev); if (ret) { dev_err(dev, "error registering net device\n"); ret = -ENODEV; goto clean_cpts; } if (cpsw->data.dual_emac) { ret = cpsw_probe_dual_emac(priv); if (ret) { cpsw_err(priv, probe, "error probe slave 2 emac interface\n"); goto clean_unregister_netdev_ret; } } /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and * MISC IRQs which are always kept disabled with this driver so * we will not request them. * * If anyone wants to implement support for those, make sure to * first request and append them to irqs_table array. */ ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt, 0, dev_name(dev), cpsw); if (ret < 0) { dev_err(dev, "error attaching irq (%d)\n", ret); goto clean_unregister_netdev_ret; } ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt, 0, dev_name(&pdev->dev), cpsw); if (ret < 0) { dev_err(dev, "error attaching irq (%d)\n", ret); goto clean_unregister_netdev_ret; } if (!cpsw->cpts) goto skip_cpts; ret = devm_request_irq(&pdev->dev, cpsw->misc_irq, cpsw_misc_interrupt, 0, dev_name(&pdev->dev), cpsw); if (ret < 0) { dev_err(dev, "error attaching misc irq (%d)\n", ret); goto clean_unregister_netdev_ret; } /* Enable misc CPTS evnt_pend IRQ */ cpts_set_irqpoll(cpsw->cpts, false); skip_cpts: cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d, pool size %d)\n", &ss_res->start, cpsw->irqs_table[0], descs_pool_size); pm_runtime_put(&pdev->dev); return 0; clean_unregister_netdev_ret: unregister_netdev(ndev); clean_cpts: cpts_release(cpsw->cpts); cpdma_ctlr_destroy(cpsw->dma); clean_dt_ret: cpsw_remove_dt(pdev); pm_runtime_put_sync(&pdev->dev); clean_runtime_disable_ret: pm_runtime_disable(&pdev->dev); return ret; } static int cpsw_remove(struct platform_device *pdev) { struct cpsw_common *cpsw = platform_get_drvdata(pdev); int i, ret; ret = pm_runtime_get_sync(&pdev->dev); if (ret < 0) { pm_runtime_put_noidle(&pdev->dev); return ret; } for (i = 0; i < cpsw->data.slaves; i++) if (cpsw->slaves[i].ndev) unregister_netdev(cpsw->slaves[i].ndev); cpts_release(cpsw->cpts); cpdma_ctlr_destroy(cpsw->dma); cpsw_remove_dt(pdev); pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); return 0; } #ifdef CONFIG_PM_SLEEP static int cpsw_suspend(struct device *dev) { struct cpsw_common *cpsw = dev_get_drvdata(dev); int i; rtnl_lock(); for (i = 0; i < cpsw->data.slaves; i++) if (cpsw->slaves[i].ndev) if (netif_running(cpsw->slaves[i].ndev)) cpsw_ndo_stop(cpsw->slaves[i].ndev); rtnl_unlock(); /* Select sleep pin state */ pinctrl_pm_select_sleep_state(dev); return 0; } static int cpsw_resume(struct device *dev) { struct cpsw_common *cpsw = dev_get_drvdata(dev); int i; /* Select default pin state */ pinctrl_pm_select_default_state(dev); /* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */ rtnl_lock(); for (i = 0; i < cpsw->data.slaves; i++) if (cpsw->slaves[i].ndev) if (netif_running(cpsw->slaves[i].ndev)) cpsw_ndo_open(cpsw->slaves[i].ndev); rtnl_unlock(); return 0; } #endif static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume); static struct platform_driver cpsw_driver = { .driver = { .name = "cpsw", .pm = &cpsw_pm_ops, .of_match_table = cpsw_of_mtable, }, .probe = cpsw_probe, .remove = cpsw_remove, }; module_platform_driver(cpsw_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Cyril Chemparathy "); MODULE_AUTHOR("Mugunthan V N "); MODULE_DESCRIPTION("TI CPSW Ethernet driver");