// SPDX-License-Identifier: GPL-2.0 /* * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT. * * Copyright (C) 2018-2020 Xilinx Inc. * * Author: Anurag Kumar Vulisha * Author: Subbaraya Sundeep * Author: Laurent Pinchart * * This driver is tested for USB, SATA and Display Port currently. * Other controllers PCIe and SGMII should also work but that is * experimental as of now. */ #include #include #include #include #include #include #include #include #include #include /* * Lane Registers */ /* TX De-emphasis parameters */ #define L0_TX_ANA_TM_18 0x0048 #define L0_TX_ANA_TM_118 0x01d8 #define L0_TX_ANA_TM_118_FORCE_17_0 BIT(0) /* DN Resistor calibration code parameters */ #define L0_TXPMA_ST_3 0x0b0c #define L0_DN_CALIB_CODE 0x3f /* PMA control parameters */ #define L0_TXPMD_TM_45 0x0cb4 #define L0_TXPMD_TM_48 0x0cc0 #define L0_TXPMD_TM_45_OVER_DP_MAIN BIT(0) #define L0_TXPMD_TM_45_ENABLE_DP_MAIN BIT(1) #define L0_TXPMD_TM_45_OVER_DP_POST1 BIT(2) #define L0_TXPMD_TM_45_ENABLE_DP_POST1 BIT(3) #define L0_TXPMD_TM_45_OVER_DP_POST2 BIT(4) #define L0_TXPMD_TM_45_ENABLE_DP_POST2 BIT(5) /* PCS control parameters */ #define L0_TM_DIG_6 0x106c #define L0_TM_DIS_DESCRAMBLE_DECODER 0x0f #define L0_TX_DIG_61 0x00f4 #define L0_TM_DISABLE_SCRAMBLE_ENCODER 0x0f /* PLL Test Mode register parameters */ #define L0_TM_PLL_DIG_37 0x2094 #define L0_TM_COARSE_CODE_LIMIT 0x10 /* PLL SSC step size offsets */ #define L0_PLL_SS_STEPS_0_LSB 0x2368 #define L0_PLL_SS_STEPS_1_MSB 0x236c #define L0_PLL_SS_STEP_SIZE_0_LSB 0x2370 #define L0_PLL_SS_STEP_SIZE_1 0x2374 #define L0_PLL_SS_STEP_SIZE_2 0x2378 #define L0_PLL_SS_STEP_SIZE_3_MSB 0x237c #define L0_PLL_STATUS_READ_1 0x23e4 /* SSC step size parameters */ #define STEP_SIZE_0_MASK 0xff #define STEP_SIZE_1_MASK 0xff #define STEP_SIZE_2_MASK 0xff #define STEP_SIZE_3_MASK 0x3 #define STEP_SIZE_SHIFT 8 #define FORCE_STEP_SIZE 0x10 #define FORCE_STEPS 0x20 #define STEPS_0_MASK 0xff #define STEPS_1_MASK 0x07 /* Reference clock selection parameters */ #define L0_Ln_REF_CLK_SEL(n) (0x2860 + (n) * 4) #define L0_REF_CLK_SEL_MASK 0x8f /* Calibration digital logic parameters */ #define L3_TM_CALIB_DIG19 0xec4c #define L3_CALIB_DONE_STATUS 0xef14 #define L3_TM_CALIB_DIG18 0xec48 #define L3_TM_CALIB_DIG19_NSW 0x07 #define L3_TM_CALIB_DIG18_NSW 0xe0 #define L3_TM_OVERRIDE_NSW_CODE 0x20 #define L3_CALIB_DONE 0x02 #define L3_NSW_SHIFT 5 #define L3_NSW_PIPE_SHIFT 4 #define L3_NSW_CALIB_SHIFT 3 #define PHY_REG_OFFSET 0x4000 /* * Global Registers */ /* Refclk selection parameters */ #define PLL_REF_SEL(n) (0x10000 + (n) * 4) #define PLL_FREQ_MASK 0x1f #define PLL_STATUS_LOCKED 0x10 /* Inter Connect Matrix parameters */ #define ICM_CFG0 0x10010 #define ICM_CFG1 0x10014 #define ICM_CFG0_L0_MASK 0x07 #define ICM_CFG0_L1_MASK 0x70 #define ICM_CFG1_L2_MASK 0x07 #define ICM_CFG2_L3_MASK 0x70 #define ICM_CFG_SHIFT 4 /* Inter Connect Matrix allowed protocols */ #define ICM_PROTOCOL_PD 0x0 #define ICM_PROTOCOL_PCIE 0x1 #define ICM_PROTOCOL_SATA 0x2 #define ICM_PROTOCOL_USB 0x3 #define ICM_PROTOCOL_DP 0x4 #define ICM_PROTOCOL_SGMII 0x5 /* Test Mode common reset control parameters */ #define TM_CMN_RST 0x10018 #define TM_CMN_RST_EN 0x1 #define TM_CMN_RST_SET 0x2 #define TM_CMN_RST_MASK 0x3 /* Bus width parameters */ #define TX_PROT_BUS_WIDTH 0x10040 #define RX_PROT_BUS_WIDTH 0x10044 #define PROT_BUS_WIDTH_10 0x0 #define PROT_BUS_WIDTH_20 0x1 #define PROT_BUS_WIDTH_40 0x2 #define PROT_BUS_WIDTH_SHIFT(n) ((n) * 2) #define PROT_BUS_WIDTH_MASK(n) GENMASK((n) * 2 + 1, (n) * 2) /* Number of GT lanes */ #define NUM_LANES 4 /* SIOU SATA control register */ #define SATA_CONTROL_OFFSET 0x0100 /* Total number of controllers */ #define CONTROLLERS_PER_LANE 5 /* Protocol Type parameters */ #define XPSGTR_TYPE_USB0 0 /* USB controller 0 */ #define XPSGTR_TYPE_USB1 1 /* USB controller 1 */ #define XPSGTR_TYPE_SATA_0 2 /* SATA controller lane 0 */ #define XPSGTR_TYPE_SATA_1 3 /* SATA controller lane 1 */ #define XPSGTR_TYPE_PCIE_0 4 /* PCIe controller lane 0 */ #define XPSGTR_TYPE_PCIE_1 5 /* PCIe controller lane 1 */ #define XPSGTR_TYPE_PCIE_2 6 /* PCIe controller lane 2 */ #define XPSGTR_TYPE_PCIE_3 7 /* PCIe controller lane 3 */ #define XPSGTR_TYPE_DP_0 8 /* Display Port controller lane 0 */ #define XPSGTR_TYPE_DP_1 9 /* Display Port controller lane 1 */ #define XPSGTR_TYPE_SGMII0 10 /* Ethernet SGMII controller 0 */ #define XPSGTR_TYPE_SGMII1 11 /* Ethernet SGMII controller 1 */ #define XPSGTR_TYPE_SGMII2 12 /* Ethernet SGMII controller 2 */ #define XPSGTR_TYPE_SGMII3 13 /* Ethernet SGMII controller 3 */ /* Timeout values */ #define TIMEOUT_US 1000 struct xpsgtr_dev; /** * struct xpsgtr_ssc - structure to hold SSC settings for a lane * @refclk_rate: PLL reference clock frequency * @pll_ref_clk: value to be written to register for corresponding ref clk rate * @steps: number of steps of SSC (Spread Spectrum Clock) * @step_size: step size of each step */ struct xpsgtr_ssc { u32 refclk_rate; u8 pll_ref_clk; u32 steps; u32 step_size; }; /** * struct xpsgtr_phy - representation of a lane * @phy: pointer to the kernel PHY device * @type: controller which uses this lane * @lane: lane number * @protocol: protocol in which the lane operates * @skip_phy_init: skip phy_init() if true * @dev: pointer to the xpsgtr_dev instance * @refclk: reference clock index */ struct xpsgtr_phy { struct phy *phy; u8 type; u8 lane; u8 protocol; bool skip_phy_init; struct xpsgtr_dev *dev; unsigned int refclk; }; /** * struct xpsgtr_dev - representation of a ZynMP GT device * @dev: pointer to device * @serdes: serdes base address * @siou: siou base address * @gtr_mutex: mutex for locking * @phys: PHY lanes * @refclk_sscs: spread spectrum settings for the reference clocks * @tx_term_fix: fix for GT issue * @saved_icm_cfg0: stored value of ICM CFG0 register * @saved_icm_cfg1: stored value of ICM CFG1 register */ struct xpsgtr_dev { struct device *dev; void __iomem *serdes; void __iomem *siou; struct mutex gtr_mutex; /* mutex for locking */ struct xpsgtr_phy phys[NUM_LANES]; const struct xpsgtr_ssc *refclk_sscs[NUM_LANES]; bool tx_term_fix; unsigned int saved_icm_cfg0; unsigned int saved_icm_cfg1; }; /* * Configuration Data */ /* lookup table to hold all settings needed for a ref clock frequency */ static const struct xpsgtr_ssc ssc_lookup[] = { { 19200000, 0x05, 608, 264020 }, { 20000000, 0x06, 634, 243454 }, { 24000000, 0x07, 760, 168973 }, { 26000000, 0x08, 824, 143860 }, { 27000000, 0x09, 856, 86551 }, { 38400000, 0x0a, 1218, 65896 }, { 40000000, 0x0b, 634, 243454 }, { 52000000, 0x0c, 824, 143860 }, { 100000000, 0x0d, 1058, 87533 }, { 108000000, 0x0e, 856, 86551 }, { 125000000, 0x0f, 992, 119497 }, { 135000000, 0x10, 1070, 55393 }, { 150000000, 0x11, 792, 187091 } }; /* * I/O Accessors */ static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg) { return readl(gtr_dev->serdes + reg); } static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value) { writel(value, gtr_dev->serdes + reg); } static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg, u32 clr, u32 set) { u32 value = xpsgtr_read(gtr_dev, reg); value &= ~clr; value |= set; xpsgtr_write(gtr_dev, reg, value); } static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg) { void __iomem *addr = gtr_phy->dev->serdes + gtr_phy->lane * PHY_REG_OFFSET + reg; return readl(addr); } static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy, u32 reg, u32 value) { void __iomem *addr = gtr_phy->dev->serdes + gtr_phy->lane * PHY_REG_OFFSET + reg; writel(value, addr); } static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy, u32 reg, u32 clr, u32 set) { void __iomem *addr = gtr_phy->dev->serdes + gtr_phy->lane * PHY_REG_OFFSET + reg; writel((readl(addr) & ~clr) | set, addr); } /* * Hardware Configuration */ /* Wait for the PLL to lock (with a timeout). */ static int xpsgtr_wait_pll_lock(struct phy *phy) { struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); struct xpsgtr_dev *gtr_dev = gtr_phy->dev; unsigned int timeout = TIMEOUT_US; int ret; dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n"); while (1) { u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1); if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) { ret = 0; break; } if (--timeout == 0) { ret = -ETIMEDOUT; break; } udelay(1); } if (ret == -ETIMEDOUT) dev_err(gtr_dev->dev, "lane %u (type %u, protocol %u): PLL lock timeout\n", gtr_phy->lane, gtr_phy->type, gtr_phy->protocol); return ret; } /* Configure PLL and spread-sprectrum clock. */ static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy) { const struct xpsgtr_ssc *ssc; u32 step_size; ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk]; step_size = ssc->step_size; xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane), PLL_FREQ_MASK, ssc->pll_ref_clk); /* Enable lane clock sharing, if required */ if (gtr_phy->refclk != gtr_phy->lane) { /* Lane3 Ref Clock Selection Register */ xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane), L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk); } /* SSC step size [7:0] */ xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB, STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK); /* SSC step size [15:8] */ step_size >>= STEP_SIZE_SHIFT; xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1, STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK); /* SSC step size [23:16] */ step_size >>= STEP_SIZE_SHIFT; xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2, STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK); /* SSC steps [7:0] */ xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB, STEPS_0_MASK, ssc->steps & STEPS_0_MASK); /* SSC steps [10:8] */ xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB, STEPS_1_MASK, (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK); /* SSC step size [24:25] */ step_size >>= STEP_SIZE_SHIFT; xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB, STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) | FORCE_STEP_SIZE | FORCE_STEPS); } /* Configure the lane protocol. */ static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy) { struct xpsgtr_dev *gtr_dev = gtr_phy->dev; u8 protocol = gtr_phy->protocol; switch (gtr_phy->lane) { case 0: xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol); break; case 1: xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK, protocol << ICM_CFG_SHIFT); break; case 2: xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol); break; case 3: xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK, protocol << ICM_CFG_SHIFT); break; default: /* We already checked 0 <= lane <= 3 */ break; } } /* Bypass (de)scrambler and 8b/10b decoder and encoder. */ static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy) { xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER); xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER); } /* DP-specific initialization. */ static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy) { xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45, L0_TXPMD_TM_45_OVER_DP_MAIN | L0_TXPMD_TM_45_ENABLE_DP_MAIN | L0_TXPMD_TM_45_OVER_DP_POST1 | L0_TXPMD_TM_45_OVER_DP_POST2 | L0_TXPMD_TM_45_ENABLE_DP_POST2); xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118, L0_TX_ANA_TM_118_FORCE_17_0); } /* SATA-specific initialization. */ static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy) { struct xpsgtr_dev *gtr_dev = gtr_phy->dev; xpsgtr_bypass_scrambler_8b10b(gtr_phy); writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET); } /* SGMII-specific initialization. */ static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy) { struct xpsgtr_dev *gtr_dev = gtr_phy->dev; u32 mask = PROT_BUS_WIDTH_MASK(gtr_phy->lane); u32 val = PROT_BUS_WIDTH_10 << PROT_BUS_WIDTH_SHIFT(gtr_phy->lane); /* Set SGMII protocol TX and RX bus width to 10 bits. */ xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, mask, val); xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, mask, val); xpsgtr_bypass_scrambler_8b10b(gtr_phy); } /* Configure TX de-emphasis and margining for DP. */ static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre, unsigned int voltage) { static const u8 voltage_swing[4][4] = { { 0x2a, 0x27, 0x24, 0x20 }, { 0x27, 0x23, 0x20, 0xff }, { 0x24, 0x20, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff } }; static const u8 pre_emphasis[4][4] = { { 0x02, 0x02, 0x02, 0x02 }, { 0x01, 0x01, 0x01, 0xff }, { 0x00, 0x00, 0xff, 0xff }, { 0xff, 0xff, 0xff, 0xff } }; xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]); xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]); } /* * PHY Operations */ static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy) { /* * As USB may save the snapshot of the states during hibernation, doing * phy_init() will put the USB controller into reset, resulting in the * losing of the saved snapshot. So try to avoid phy_init() for USB * except when gtr_phy->skip_phy_init is false (this happens when FPD is * shutdown during suspend or when gt lane is changed from current one) */ if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init) return false; else return true; } /* * There is a functional issue in the GT. The TX termination resistance can be * out of spec due to a issue in the calibration logic. This is the workaround * to fix it, required for XCZU9EG silicon. */ static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy) { struct xpsgtr_dev *gtr_dev = gtr_phy->dev; u32 timeout = TIMEOUT_US; u32 nsw; /* Enabling Test Mode control for CMN Rest */ xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); /* Set Test Mode reset */ xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN); xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00); xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE); /* * As a part of work around sequence for PMOS calibration fix, * we need to configure any lane ICM_CFG to valid protocol. This * will deassert the CMN_Resetn signal. */ xpsgtr_lane_set_protocol(gtr_phy); /* Clear Test Mode reset */ xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); dev_dbg(gtr_dev->dev, "calibrating...\n"); do { u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS); if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE) break; if (!--timeout) { dev_err(gtr_dev->dev, "calibration time out\n"); return -ETIMEDOUT; } udelay(1); } while (timeout > 0); dev_dbg(gtr_dev->dev, "calibration done\n"); /* Reading NMOS Register Code */ nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE; /* Set Test Mode reset */ xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN); /* Writing NMOS register values back [5:3] */ xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT); /* Writing NMOS register value [2:0] */ xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) | (1 << L3_NSW_PIPE_SHIFT)); /* Clear Test Mode reset */ xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); return 0; } static int xpsgtr_phy_init(struct phy *phy) { struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); struct xpsgtr_dev *gtr_dev = gtr_phy->dev; int ret = 0; mutex_lock(>r_dev->gtr_mutex); /* Skip initialization if not required. */ if (!xpsgtr_phy_init_required(gtr_phy)) goto out; if (gtr_dev->tx_term_fix) { ret = xpsgtr_phy_tx_term_fix(gtr_phy); if (ret < 0) goto out; gtr_dev->tx_term_fix = false; } /* Enable coarse code saturation limiting logic. */ xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT); /* * Configure the PLL, the lane protocol, and perform protocol-specific * initialization. */ xpsgtr_configure_pll(gtr_phy); xpsgtr_lane_set_protocol(gtr_phy); switch (gtr_phy->protocol) { case ICM_PROTOCOL_DP: xpsgtr_phy_init_dp(gtr_phy); break; case ICM_PROTOCOL_SATA: xpsgtr_phy_init_sata(gtr_phy); break; case ICM_PROTOCOL_SGMII: xpsgtr_phy_init_sgmii(gtr_phy); break; } out: mutex_unlock(>r_dev->gtr_mutex); return ret; } static int xpsgtr_phy_exit(struct phy *phy) { struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); gtr_phy->skip_phy_init = false; return 0; } static int xpsgtr_phy_power_on(struct phy *phy) { struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); int ret = 0; /* * Wait for the PLL to lock. For DP, only wait on DP0 to avoid * cumulating waits for both lanes. The user is expected to initialize * lane 0 last. */ if (gtr_phy->protocol != ICM_PROTOCOL_DP || gtr_phy->type == XPSGTR_TYPE_DP_0) ret = xpsgtr_wait_pll_lock(phy); return ret; } static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts) { struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); if (gtr_phy->protocol != ICM_PROTOCOL_DP) return 0; xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]); return 0; } static const struct phy_ops xpsgtr_phyops = { .init = xpsgtr_phy_init, .exit = xpsgtr_phy_exit, .power_on = xpsgtr_phy_power_on, .configure = xpsgtr_phy_configure, .owner = THIS_MODULE, }; /* * OF Xlate Support */ /* Set the lane type and protocol based on the PHY type and instance number. */ static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type, unsigned int phy_instance) { unsigned int num_phy_types; const int *phy_types; switch (phy_type) { case PHY_TYPE_SATA: { static const int types[] = { XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_SATA_1, }; phy_types = types; num_phy_types = ARRAY_SIZE(types); gtr_phy->protocol = ICM_PROTOCOL_SATA; break; } case PHY_TYPE_USB3: { static const int types[] = { XPSGTR_TYPE_USB0, XPSGTR_TYPE_USB1, }; phy_types = types; num_phy_types = ARRAY_SIZE(types); gtr_phy->protocol = ICM_PROTOCOL_USB; break; } case PHY_TYPE_DP: { static const int types[] = { XPSGTR_TYPE_DP_0, XPSGTR_TYPE_DP_1, }; phy_types = types; num_phy_types = ARRAY_SIZE(types); gtr_phy->protocol = ICM_PROTOCOL_DP; break; } case PHY_TYPE_PCIE: { static const int types[] = { XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_PCIE_3, }; phy_types = types; num_phy_types = ARRAY_SIZE(types); gtr_phy->protocol = ICM_PROTOCOL_PCIE; break; } case PHY_TYPE_SGMII: { static const int types[] = { XPSGTR_TYPE_SGMII0, XPSGTR_TYPE_SGMII1, XPSGTR_TYPE_SGMII2, XPSGTR_TYPE_SGMII3, }; phy_types = types; num_phy_types = ARRAY_SIZE(types); gtr_phy->protocol = ICM_PROTOCOL_SGMII; break; } default: return -EINVAL; } if (phy_instance >= num_phy_types) return -EINVAL; gtr_phy->type = phy_types[phy_instance]; return 0; } /* * Valid combinations of controllers and lanes (Interconnect Matrix). */ static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = { { XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0, XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 }, { XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0, XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 }, { XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0, XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 }, { XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1, XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 } }; /* Translate OF phandle and args to PHY instance. */ static struct phy *xpsgtr_xlate(struct device *dev, struct of_phandle_args *args) { struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); struct xpsgtr_phy *gtr_phy; unsigned int phy_instance; unsigned int phy_lane; unsigned int phy_type; unsigned int refclk; unsigned int i; int ret; if (args->args_count != 4) { dev_err(dev, "Invalid number of cells in 'phy' property\n"); return ERR_PTR(-EINVAL); } /* * Get the PHY parameters from the OF arguments and derive the lane * type. */ phy_lane = args->args[0]; if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) { dev_err(dev, "Invalid lane number %u\n", phy_lane); return ERR_PTR(-ENODEV); } gtr_phy = >r_dev->phys[phy_lane]; phy_type = args->args[1]; phy_instance = args->args[2]; ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance); if (ret < 0) { dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n"); return ERR_PTR(ret); } refclk = args->args[3]; if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) || !gtr_dev->refclk_sscs[refclk]) { dev_err(dev, "Invalid reference clock number %u\n", refclk); return ERR_PTR(-EINVAL); } gtr_phy->refclk = refclk; /* * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type * is allowed to operate on the lane. */ for (i = 0; i < CONTROLLERS_PER_LANE; i++) { if (icm_matrix[phy_lane][i] == gtr_phy->type) return gtr_phy->phy; } return ERR_PTR(-EINVAL); } /* * Power Management */ static int __maybe_unused xpsgtr_suspend(struct device *dev) { struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); /* Save the snapshot ICM_CFG registers. */ gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0); gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1); return 0; } static int __maybe_unused xpsgtr_resume(struct device *dev) { struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); unsigned int icm_cfg0, icm_cfg1; unsigned int i; bool skip_phy_init; icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0); icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1); /* Return if no GT lanes got configured before suspend. */ if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1) return 0; /* Check if the ICM configurations changed after suspend. */ if (icm_cfg0 == gtr_dev->saved_icm_cfg0 && icm_cfg1 == gtr_dev->saved_icm_cfg1) skip_phy_init = true; else skip_phy_init = false; /* Update the skip_phy_init for all gtr_phy instances. */ for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++) gtr_dev->phys[i].skip_phy_init = skip_phy_init; return 0; } static const struct dev_pm_ops xpsgtr_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(xpsgtr_suspend, xpsgtr_resume) }; /* * Probe & Platform Driver */ static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev) { unsigned int refclk; for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) { unsigned long rate; unsigned int i; struct clk *clk; char name[8]; snprintf(name, sizeof(name), "ref%u", refclk); clk = devm_clk_get_optional(gtr_dev->dev, name); if (IS_ERR(clk)) { if (PTR_ERR(clk) != -EPROBE_DEFER) dev_err(gtr_dev->dev, "Failed to get reference clock %u: %ld\n", refclk, PTR_ERR(clk)); return PTR_ERR(clk); } if (!clk) continue; /* * Get the spread spectrum (SSC) settings for the reference * clock rate. */ rate = clk_get_rate(clk); for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) { if (rate == ssc_lookup[i].refclk_rate) { gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i]; break; } } if (i == ARRAY_SIZE(ssc_lookup)) { dev_err(gtr_dev->dev, "Invalid rate %lu for reference clock %u\n", rate, refclk); return -EINVAL; } } return 0; } static int xpsgtr_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct xpsgtr_dev *gtr_dev; struct phy_provider *provider; unsigned int port; int ret; gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL); if (!gtr_dev) return -ENOMEM; gtr_dev->dev = &pdev->dev; platform_set_drvdata(pdev, gtr_dev); mutex_init(>r_dev->gtr_mutex); if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr")) gtr_dev->tx_term_fix = of_property_read_bool(np, "xlnx,tx-termination-fix"); /* Acquire resources. */ gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes"); if (IS_ERR(gtr_dev->serdes)) return PTR_ERR(gtr_dev->serdes); gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou"); if (IS_ERR(gtr_dev->siou)) return PTR_ERR(gtr_dev->siou); ret = xpsgtr_get_ref_clocks(gtr_dev); if (ret) return ret; /* Create PHYs. */ for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) { struct xpsgtr_phy *gtr_phy = >r_dev->phys[port]; struct phy *phy; gtr_phy->lane = port; gtr_phy->dev = gtr_dev; phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops); if (IS_ERR(phy)) { dev_err(&pdev->dev, "failed to create PHY\n"); return PTR_ERR(phy); } gtr_phy->phy = phy; phy_set_drvdata(phy, gtr_phy); } /* Register the PHY provider. */ provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate); if (IS_ERR(provider)) { dev_err(&pdev->dev, "registering provider failed\n"); return PTR_ERR(provider); } return 0; } static const struct of_device_id xpsgtr_of_match[] = { { .compatible = "xlnx,zynqmp-psgtr", }, { .compatible = "xlnx,zynqmp-psgtr-v1.1", }, {}, }; MODULE_DEVICE_TABLE(of, xpsgtr_of_match); static struct platform_driver xpsgtr_driver = { .probe = xpsgtr_probe, .driver = { .name = "xilinx-psgtr", .of_match_table = xpsgtr_of_match, .pm = &xpsgtr_pm_ops, }, }; module_platform_driver(xpsgtr_driver); MODULE_AUTHOR("Xilinx Inc."); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver");