// SPDX-License-Identifier: GPL-2.0-only /* * Remote Processor Framework * * Copyright (C) 2011 Texas Instruments, Inc. * Copyright (C) 2011 Google, Inc. * * Ohad Ben-Cohen * Brian Swetland * Mark Grosen * Fernando Guzman Lugo * Suman Anna * Robert Tivy * Armando Uribe De Leon */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include /* XXX: pokes into bus_dma_range */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "remoteproc_internal.h" #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL static DEFINE_MUTEX(rproc_list_mutex); static LIST_HEAD(rproc_list); static struct notifier_block rproc_panic_nb; typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int offset, int avail); static int rproc_alloc_carveout(struct rproc *rproc, struct rproc_mem_entry *mem); static int rproc_release_carveout(struct rproc *rproc, struct rproc_mem_entry *mem); /* Unique indices for remoteproc devices */ static DEFINE_IDA(rproc_dev_index); static const char * const rproc_crash_names[] = { [RPROC_MMUFAULT] = "mmufault", [RPROC_WATCHDOG] = "watchdog", [RPROC_FATAL_ERROR] = "fatal error", }; /* translate rproc_crash_type to string */ static const char *rproc_crash_to_string(enum rproc_crash_type type) { if (type < ARRAY_SIZE(rproc_crash_names)) return rproc_crash_names[type]; return "unknown"; } /* * This is the IOMMU fault handler we register with the IOMMU API * (when relevant; not all remote processors access memory through * an IOMMU). * * IOMMU core will invoke this handler whenever the remote processor * will try to access an unmapped device address. */ static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev, unsigned long iova, int flags, void *token) { struct rproc *rproc = token; dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags); rproc_report_crash(rproc, RPROC_MMUFAULT); /* * Let the iommu core know we're not really handling this fault; * we just used it as a recovery trigger. */ return -ENOSYS; } static int rproc_enable_iommu(struct rproc *rproc) { struct iommu_domain *domain; struct device *dev = rproc->dev.parent; int ret; if (!rproc->has_iommu) { dev_dbg(dev, "iommu not present\n"); return 0; } domain = iommu_domain_alloc(dev->bus); if (!domain) { dev_err(dev, "can't alloc iommu domain\n"); return -ENOMEM; } iommu_set_fault_handler(domain, rproc_iommu_fault, rproc); ret = iommu_attach_device(domain, dev); if (ret) { dev_err(dev, "can't attach iommu device: %d\n", ret); goto free_domain; } rproc->domain = domain; return 0; free_domain: iommu_domain_free(domain); return ret; } static void rproc_disable_iommu(struct rproc *rproc) { struct iommu_domain *domain = rproc->domain; struct device *dev = rproc->dev.parent; if (!domain) return; iommu_detach_device(domain, dev); iommu_domain_free(domain); } phys_addr_t rproc_va_to_pa(void *cpu_addr) { /* * Return physical address according to virtual address location * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent * - in kernel: if region allocated in generic dma memory pool */ if (is_vmalloc_addr(cpu_addr)) { return page_to_phys(vmalloc_to_page(cpu_addr)) + offset_in_page(cpu_addr); } WARN_ON(!virt_addr_valid(cpu_addr)); return virt_to_phys(cpu_addr); } EXPORT_SYMBOL(rproc_va_to_pa); /** * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address * @rproc: handle of a remote processor * @da: remoteproc device address to translate * @len: length of the memory region @da is pointing to * * Some remote processors will ask us to allocate them physically contiguous * memory regions (which we call "carveouts"), and map them to specific * device addresses (which are hardcoded in the firmware). They may also have * dedicated memory regions internal to the processors, and use them either * exclusively or alongside carveouts. * * They may then ask us to copy objects into specific device addresses (e.g. * code/data sections) or expose us certain symbols in other device address * (e.g. their trace buffer). * * This function is a helper function with which we can go over the allocated * carveouts and translate specific device addresses to kernel virtual addresses * so we can access the referenced memory. This function also allows to perform * translations on the internal remoteproc memory regions through a platform * implementation specific da_to_va ops, if present. * * The function returns a valid kernel address on success or NULL on failure. * * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too, * but only on kernel direct mapped RAM memory. Instead, we're just using * here the output of the DMA API for the carveouts, which should be more * correct. */ void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len) { struct rproc_mem_entry *carveout; void *ptr = NULL; if (rproc->ops->da_to_va) { ptr = rproc->ops->da_to_va(rproc, da, len); if (ptr) goto out; } list_for_each_entry(carveout, &rproc->carveouts, node) { int offset = da - carveout->da; /* Verify that carveout is allocated */ if (!carveout->va) continue; /* try next carveout if da is too small */ if (offset < 0) continue; /* try next carveout if da is too large */ if (offset + len > carveout->len) continue; ptr = carveout->va + offset; break; } out: return ptr; } EXPORT_SYMBOL(rproc_da_to_va); /** * rproc_find_carveout_by_name() - lookup the carveout region by a name * @rproc: handle of a remote processor * @name: carveout name to find (format string) * @...: optional parameters matching @name string * * Platform driver has the capability to register some pre-allacoted carveout * (physically contiguous memory regions) before rproc firmware loading and * associated resource table analysis. These regions may be dedicated memory * regions internal to the coprocessor or specified DDR region with specific * attributes * * This function is a helper function with which we can go over the * allocated carveouts and return associated region characteristics like * coprocessor address, length or processor virtual address. * * Return: a valid pointer on carveout entry on success or NULL on failure. */ __printf(2, 3) struct rproc_mem_entry * rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...) { va_list args; char _name[32]; struct rproc_mem_entry *carveout, *mem = NULL; if (!name) return NULL; va_start(args, name); vsnprintf(_name, sizeof(_name), name, args); va_end(args); list_for_each_entry(carveout, &rproc->carveouts, node) { /* Compare carveout and requested names */ if (!strcmp(carveout->name, _name)) { mem = carveout; break; } } return mem; } /** * rproc_check_carveout_da() - Check specified carveout da configuration * @rproc: handle of a remote processor * @mem: pointer on carveout to check * @da: area device address * @len: associated area size * * This function is a helper function to verify requested device area (couple * da, len) is part of specified carveout. * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is * checked. * * Return: 0 if carveout matches request else error */ static int rproc_check_carveout_da(struct rproc *rproc, struct rproc_mem_entry *mem, u32 da, u32 len) { struct device *dev = &rproc->dev; int delta; /* Check requested resource length */ if (len > mem->len) { dev_err(dev, "Registered carveout doesn't fit len request\n"); return -EINVAL; } if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) { /* Address doesn't match registered carveout configuration */ return -EINVAL; } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) { delta = da - mem->da; /* Check requested resource belongs to registered carveout */ if (delta < 0) { dev_err(dev, "Registered carveout doesn't fit da request\n"); return -EINVAL; } if (delta + len > mem->len) { dev_err(dev, "Registered carveout doesn't fit len request\n"); return -EINVAL; } } return 0; } int rproc_alloc_vring(struct rproc_vdev *rvdev, int i) { struct rproc *rproc = rvdev->rproc; struct device *dev = &rproc->dev; struct rproc_vring *rvring = &rvdev->vring[i]; struct fw_rsc_vdev *rsc; int ret, notifyid; struct rproc_mem_entry *mem; size_t size; /* actual size of vring (in bytes) */ size = PAGE_ALIGN(vring_size(rvring->len, rvring->align)); rsc = (void *)rproc->table_ptr + rvdev->rsc_offset; /* Search for pre-registered carveout */ mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index, i); if (mem) { if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size)) return -ENOMEM; } else { /* Register carveout in in list */ mem = rproc_mem_entry_init(dev, NULL, 0, size, rsc->vring[i].da, rproc_alloc_carveout, rproc_release_carveout, "vdev%dvring%d", rvdev->index, i); if (!mem) { dev_err(dev, "Can't allocate memory entry structure\n"); return -ENOMEM; } rproc_add_carveout(rproc, mem); } /* * Assign an rproc-wide unique index for this vring * TODO: assign a notifyid for rvdev updates as well * TODO: support predefined notifyids (via resource table) */ ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL); if (ret < 0) { dev_err(dev, "idr_alloc failed: %d\n", ret); return ret; } notifyid = ret; /* Potentially bump max_notifyid */ if (notifyid > rproc->max_notifyid) rproc->max_notifyid = notifyid; rvring->notifyid = notifyid; /* Let the rproc know the notifyid of this vring.*/ rsc->vring[i].notifyid = notifyid; return 0; } static int rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i) { struct rproc *rproc = rvdev->rproc; struct device *dev = &rproc->dev; struct fw_rsc_vdev_vring *vring = &rsc->vring[i]; struct rproc_vring *rvring = &rvdev->vring[i]; dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n", i, vring->da, vring->num, vring->align); /* verify queue size and vring alignment are sane */ if (!vring->num || !vring->align) { dev_err(dev, "invalid qsz (%d) or alignment (%d)\n", vring->num, vring->align); return -EINVAL; } rvring->len = vring->num; rvring->align = vring->align; rvring->rvdev = rvdev; return 0; } void rproc_free_vring(struct rproc_vring *rvring) { struct rproc *rproc = rvring->rvdev->rproc; int idx = rvring - rvring->rvdev->vring; struct fw_rsc_vdev *rsc; idr_remove(&rproc->notifyids, rvring->notifyid); /* * At this point rproc_stop() has been called and the installed resource * table in the remote processor memory may no longer be accessible. As * such and as per rproc_stop(), rproc->table_ptr points to the cached * resource table (rproc->cached_table). The cached resource table is * only available when a remote processor has been booted by the * remoteproc core, otherwise it is NULL. * * Based on the above, reset the virtio device section in the cached * resource table only if there is one to work with. */ if (rproc->table_ptr) { rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset; rsc->vring[idx].da = 0; rsc->vring[idx].notifyid = -1; } } static int rproc_vdev_do_start(struct rproc_subdev *subdev) { struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); return rproc_add_virtio_dev(rvdev, rvdev->id); } static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed) { struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev); int ret; ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev); if (ret) dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret); } /** * rproc_rvdev_release() - release the existence of a rvdev * * @dev: the subdevice's dev */ static void rproc_rvdev_release(struct device *dev) { struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev); of_reserved_mem_device_release(dev); kfree(rvdev); } static int copy_dma_range_map(struct device *to, struct device *from) { const struct bus_dma_region *map = from->dma_range_map, *new_map, *r; int num_ranges = 0; if (!map) return 0; for (r = map; r->size; r++) num_ranges++; new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)), GFP_KERNEL); if (!new_map) return -ENOMEM; to->dma_range_map = new_map; return 0; } /** * rproc_handle_vdev() - handle a vdev fw resource * @rproc: the remote processor * @rsc: the vring resource descriptor * @offset: offset of the resource entry * @avail: size of available data (for sanity checking the image) * * This resource entry requests the host to statically register a virtio * device (vdev), and setup everything needed to support it. It contains * everything needed to make it possible: the virtio device id, virtio * device features, vrings information, virtio config space, etc... * * Before registering the vdev, the vrings are allocated from non-cacheable * physically contiguous memory. Currently we only support two vrings per * remote processor (temporary limitation). We might also want to consider * doing the vring allocation only later when ->find_vqs() is invoked, and * then release them upon ->del_vqs(). * * Note: @da is currently not really handled correctly: we dynamically * allocate it using the DMA API, ignoring requested hard coded addresses, * and we don't take care of any required IOMMU programming. This is all * going to be taken care of when the generic iommu-based DMA API will be * merged. Meanwhile, statically-addressed iommu-based firmware images should * use RSC_DEVMEM resource entries to map their required @da to the physical * address of their base CMA region (ouch, hacky!). * * Returns 0 on success, or an appropriate error code otherwise */ static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc, int offset, int avail) { struct device *dev = &rproc->dev; struct rproc_vdev *rvdev; int i, ret; char name[16]; /* make sure resource isn't truncated */ if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len > avail) { dev_err(dev, "vdev rsc is truncated\n"); return -EINVAL; } /* make sure reserved bytes are zeroes */ if (rsc->reserved[0] || rsc->reserved[1]) { dev_err(dev, "vdev rsc has non zero reserved bytes\n"); return -EINVAL; } dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n", rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings); /* we currently support only two vrings per rvdev */ if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) { dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings); return -EINVAL; } rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL); if (!rvdev) return -ENOMEM; kref_init(&rvdev->refcount); rvdev->id = rsc->id; rvdev->rproc = rproc; rvdev->index = rproc->nb_vdev++; /* Initialise vdev subdevice */ snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index); rvdev->dev.parent = &rproc->dev; rvdev->dev.release = rproc_rvdev_release; dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name); dev_set_drvdata(&rvdev->dev, rvdev); ret = device_register(&rvdev->dev); if (ret) { put_device(&rvdev->dev); return ret; } ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent); if (ret) goto free_rvdev; /* Make device dma capable by inheriting from parent's capabilities */ set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent)); ret = dma_coerce_mask_and_coherent(&rvdev->dev, dma_get_mask(rproc->dev.parent)); if (ret) { dev_warn(dev, "Failed to set DMA mask %llx. Trying to continue... %x\n", dma_get_mask(rproc->dev.parent), ret); } /* parse the vrings */ for (i = 0; i < rsc->num_of_vrings; i++) { ret = rproc_parse_vring(rvdev, rsc, i); if (ret) goto free_rvdev; } /* remember the resource offset*/ rvdev->rsc_offset = offset; /* allocate the vring resources */ for (i = 0; i < rsc->num_of_vrings; i++) { ret = rproc_alloc_vring(rvdev, i); if (ret) goto unwind_vring_allocations; } list_add_tail(&rvdev->node, &rproc->rvdevs); rvdev->subdev.start = rproc_vdev_do_start; rvdev->subdev.stop = rproc_vdev_do_stop; rproc_add_subdev(rproc, &rvdev->subdev); return 0; unwind_vring_allocations: for (i--; i >= 0; i--) rproc_free_vring(&rvdev->vring[i]); free_rvdev: device_unregister(&rvdev->dev); return ret; } void rproc_vdev_release(struct kref *ref) { struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount); struct rproc_vring *rvring; struct rproc *rproc = rvdev->rproc; int id; for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) { rvring = &rvdev->vring[id]; rproc_free_vring(rvring); } rproc_remove_subdev(rproc, &rvdev->subdev); list_del(&rvdev->node); device_unregister(&rvdev->dev); } /** * rproc_handle_trace() - handle a shared trace buffer resource * @rproc: the remote processor * @rsc: the trace resource descriptor * @offset: offset of the resource entry * @avail: size of available data (for sanity checking the image) * * In case the remote processor dumps trace logs into memory, * export it via debugfs. * * Currently, the 'da' member of @rsc should contain the device address * where the remote processor is dumping the traces. Later we could also * support dynamically allocating this address using the generic * DMA API (but currently there isn't a use case for that). * * Returns 0 on success, or an appropriate error code otherwise */ static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc, int offset, int avail) { struct rproc_debug_trace *trace; struct device *dev = &rproc->dev; char name[15]; if (sizeof(*rsc) > avail) { dev_err(dev, "trace rsc is truncated\n"); return -EINVAL; } /* make sure reserved bytes are zeroes */ if (rsc->reserved) { dev_err(dev, "trace rsc has non zero reserved bytes\n"); return -EINVAL; } trace = kzalloc(sizeof(*trace), GFP_KERNEL); if (!trace) return -ENOMEM; /* set the trace buffer dma properties */ trace->trace_mem.len = rsc->len; trace->trace_mem.da = rsc->da; /* set pointer on rproc device */ trace->rproc = rproc; /* make sure snprintf always null terminates, even if truncating */ snprintf(name, sizeof(name), "trace%d", rproc->num_traces); /* create the debugfs entry */ trace->tfile = rproc_create_trace_file(name, rproc, trace); if (!trace->tfile) { kfree(trace); return -EINVAL; } list_add_tail(&trace->node, &rproc->traces); rproc->num_traces++; dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n", name, rsc->da, rsc->len); return 0; } /** * rproc_handle_devmem() - handle devmem resource entry * @rproc: remote processor handle * @rsc: the devmem resource entry * @offset: offset of the resource entry * @avail: size of available data (for sanity checking the image) * * Remote processors commonly need to access certain on-chip peripherals. * * Some of these remote processors access memory via an iommu device, * and might require us to configure their iommu before they can access * the on-chip peripherals they need. * * This resource entry is a request to map such a peripheral device. * * These devmem entries will contain the physical address of the device in * the 'pa' member. If a specific device address is expected, then 'da' will * contain it (currently this is the only use case supported). 'len' will * contain the size of the physical region we need to map. * * Currently we just "trust" those devmem entries to contain valid physical * addresses, but this is going to change: we want the implementations to * tell us ranges of physical addresses the firmware is allowed to request, * and not allow firmwares to request access to physical addresses that * are outside those ranges. */ static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc, int offset, int avail) { struct rproc_mem_entry *mapping; struct device *dev = &rproc->dev; int ret; /* no point in handling this resource without a valid iommu domain */ if (!rproc->domain) return -EINVAL; if (sizeof(*rsc) > avail) { dev_err(dev, "devmem rsc is truncated\n"); return -EINVAL; } /* make sure reserved bytes are zeroes */ if (rsc->reserved) { dev_err(dev, "devmem rsc has non zero reserved bytes\n"); return -EINVAL; } mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); if (!mapping) return -ENOMEM; ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags); if (ret) { dev_err(dev, "failed to map devmem: %d\n", ret); goto out; } /* * We'll need this info later when we'll want to unmap everything * (e.g. on shutdown). * * We can't trust the remote processor not to change the resource * table, so we must maintain this info independently. */ mapping->da = rsc->da; mapping->len = rsc->len; list_add_tail(&mapping->node, &rproc->mappings); dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n", rsc->pa, rsc->da, rsc->len); return 0; out: kfree(mapping); return ret; } /** * rproc_alloc_carveout() - allocated specified carveout * @rproc: rproc handle * @mem: the memory entry to allocate * * This function allocate specified memory entry @mem using * dma_alloc_coherent() as default allocator */ static int rproc_alloc_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) { struct rproc_mem_entry *mapping = NULL; struct device *dev = &rproc->dev; dma_addr_t dma; void *va; int ret; va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL); if (!va) { dev_err(dev->parent, "failed to allocate dma memory: len 0x%zx\n", mem->len); return -ENOMEM; } dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n", va, &dma, mem->len); if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) { /* * Check requested da is equal to dma address * and print a warn message in case of missalignment. * Don't stop rproc_start sequence as coprocessor may * build pa to da translation on its side. */ if (mem->da != (u32)dma) dev_warn(dev->parent, "Allocated carveout doesn't fit device address request\n"); } /* * Ok, this is non-standard. * * Sometimes we can't rely on the generic iommu-based DMA API * to dynamically allocate the device address and then set the IOMMU * tables accordingly, because some remote processors might * _require_ us to use hard coded device addresses that their * firmware was compiled with. * * In this case, we must use the IOMMU API directly and map * the memory to the device address as expected by the remote * processor. * * Obviously such remote processor devices should not be configured * to use the iommu-based DMA API: we expect 'dma' to contain the * physical address in this case. */ if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) { mapping = kzalloc(sizeof(*mapping), GFP_KERNEL); if (!mapping) { ret = -ENOMEM; goto dma_free; } ret = iommu_map(rproc->domain, mem->da, dma, mem->len, mem->flags); if (ret) { dev_err(dev, "iommu_map failed: %d\n", ret); goto free_mapping; } /* * We'll need this info later when we'll want to unmap * everything (e.g. on shutdown). * * We can't trust the remote processor not to change the * resource table, so we must maintain this info independently. */ mapping->da = mem->da; mapping->len = mem->len; list_add_tail(&mapping->node, &rproc->mappings); dev_dbg(dev, "carveout mapped 0x%x to %pad\n", mem->da, &dma); } if (mem->da == FW_RSC_ADDR_ANY) { /* Update device address as undefined by requester */ if ((u64)dma & HIGH_BITS_MASK) dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n"); mem->da = (u32)dma; } mem->dma = dma; mem->va = va; return 0; free_mapping: kfree(mapping); dma_free: dma_free_coherent(dev->parent, mem->len, va, dma); return ret; } /** * rproc_release_carveout() - release acquired carveout * @rproc: rproc handle * @mem: the memory entry to release * * This function releases specified memory entry @mem allocated via * rproc_alloc_carveout() function by @rproc. */ static int rproc_release_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) { struct device *dev = &rproc->dev; /* clean up carveout allocations */ dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma); return 0; } /** * rproc_handle_carveout() - handle phys contig memory allocation requests * @rproc: rproc handle * @rsc: the resource entry * @offset: offset of the resource entry * @avail: size of available data (for image validation) * * This function will handle firmware requests for allocation of physically * contiguous memory regions. * * These request entries should come first in the firmware's resource table, * as other firmware entries might request placing other data objects inside * these memory regions (e.g. data/code segments, trace resource entries, ...). * * Allocating memory this way helps utilizing the reserved physical memory * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB * pressure is important; it may have a substantial impact on performance. */ static int rproc_handle_carveout(struct rproc *rproc, struct fw_rsc_carveout *rsc, int offset, int avail) { struct rproc_mem_entry *carveout; struct device *dev = &rproc->dev; if (sizeof(*rsc) > avail) { dev_err(dev, "carveout rsc is truncated\n"); return -EINVAL; } /* make sure reserved bytes are zeroes */ if (rsc->reserved) { dev_err(dev, "carveout rsc has non zero reserved bytes\n"); return -EINVAL; } dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n", rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags); /* * Check carveout rsc already part of a registered carveout, * Search by name, then check the da and length */ carveout = rproc_find_carveout_by_name(rproc, rsc->name); if (carveout) { if (carveout->rsc_offset != FW_RSC_ADDR_ANY) { dev_err(dev, "Carveout already associated to resource table\n"); return -ENOMEM; } if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len)) return -ENOMEM; /* Update memory carveout with resource table info */ carveout->rsc_offset = offset; carveout->flags = rsc->flags; return 0; } /* Register carveout in in list */ carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da, rproc_alloc_carveout, rproc_release_carveout, rsc->name); if (!carveout) { dev_err(dev, "Can't allocate memory entry structure\n"); return -ENOMEM; } carveout->flags = rsc->flags; carveout->rsc_offset = offset; rproc_add_carveout(rproc, carveout); return 0; } /** * rproc_add_carveout() - register an allocated carveout region * @rproc: rproc handle * @mem: memory entry to register * * This function registers specified memory entry in @rproc carveouts list. * Specified carveout should have been allocated before registering. */ void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem) { list_add_tail(&mem->node, &rproc->carveouts); } EXPORT_SYMBOL(rproc_add_carveout); /** * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct * @dev: pointer on device struct * @va: virtual address * @dma: dma address * @len: memory carveout length * @da: device address * @alloc: memory carveout allocation function * @release: memory carveout release function * @name: carveout name * * This function allocates a rproc_mem_entry struct and fill it with parameters * provided by client. */ __printf(8, 9) struct rproc_mem_entry * rproc_mem_entry_init(struct device *dev, void *va, dma_addr_t dma, size_t len, u32 da, int (*alloc)(struct rproc *, struct rproc_mem_entry *), int (*release)(struct rproc *, struct rproc_mem_entry *), const char *name, ...) { struct rproc_mem_entry *mem; va_list args; mem = kzalloc(sizeof(*mem), GFP_KERNEL); if (!mem) return mem; mem->va = va; mem->dma = dma; mem->da = da; mem->len = len; mem->alloc = alloc; mem->release = release; mem->rsc_offset = FW_RSC_ADDR_ANY; mem->of_resm_idx = -1; va_start(args, name); vsnprintf(mem->name, sizeof(mem->name), name, args); va_end(args); return mem; } EXPORT_SYMBOL(rproc_mem_entry_init); /** * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct * from a reserved memory phandle * @dev: pointer on device struct * @of_resm_idx: reserved memory phandle index in "memory-region" * @len: memory carveout length * @da: device address * @name: carveout name * * This function allocates a rproc_mem_entry struct and fill it with parameters * provided by client. */ __printf(5, 6) struct rproc_mem_entry * rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len, u32 da, const char *name, ...) { struct rproc_mem_entry *mem; va_list args; mem = kzalloc(sizeof(*mem), GFP_KERNEL); if (!mem) return mem; mem->da = da; mem->len = len; mem->rsc_offset = FW_RSC_ADDR_ANY; mem->of_resm_idx = of_resm_idx; va_start(args, name); vsnprintf(mem->name, sizeof(mem->name), name, args); va_end(args); return mem; } EXPORT_SYMBOL(rproc_of_resm_mem_entry_init); /** * rproc_of_parse_firmware() - parse and return the firmware-name * @dev: pointer on device struct representing a rproc * @index: index to use for the firmware-name retrieval * @fw_name: pointer to a character string, in which the firmware * name is returned on success and unmodified otherwise. * * This is an OF helper function that parses a device's DT node for * the "firmware-name" property and returns the firmware name pointer * in @fw_name on success. * * Return: 0 on success, or an appropriate failure. */ int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name) { int ret; ret = of_property_read_string_index(dev->of_node, "firmware-name", index, fw_name); return ret ? ret : 0; } EXPORT_SYMBOL(rproc_of_parse_firmware); /* * A lookup table for resource handlers. The indices are defined in * enum fw_resource_type. */ static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = { [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout, [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem, [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace, [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev, }; /* handle firmware resource entries before booting the remote processor */ static int rproc_handle_resources(struct rproc *rproc, rproc_handle_resource_t handlers[RSC_LAST]) { struct device *dev = &rproc->dev; rproc_handle_resource_t handler; int ret = 0, i; if (!rproc->table_ptr) return 0; for (i = 0; i < rproc->table_ptr->num; i++) { int offset = rproc->table_ptr->offset[i]; struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset; int avail = rproc->table_sz - offset - sizeof(*hdr); void *rsc = (void *)hdr + sizeof(*hdr); /* make sure table isn't truncated */ if (avail < 0) { dev_err(dev, "rsc table is truncated\n"); return -EINVAL; } dev_dbg(dev, "rsc: type %d\n", hdr->type); if (hdr->type >= RSC_VENDOR_START && hdr->type <= RSC_VENDOR_END) { ret = rproc_handle_rsc(rproc, hdr->type, rsc, offset + sizeof(*hdr), avail); if (ret == RSC_HANDLED) continue; else if (ret < 0) break; dev_warn(dev, "unsupported vendor resource %d\n", hdr->type); continue; } if (hdr->type >= RSC_LAST) { dev_warn(dev, "unsupported resource %d\n", hdr->type); continue; } handler = handlers[hdr->type]; if (!handler) continue; ret = handler(rproc, rsc, offset + sizeof(*hdr), avail); if (ret) break; } return ret; } static int rproc_prepare_subdevices(struct rproc *rproc) { struct rproc_subdev *subdev; int ret; list_for_each_entry(subdev, &rproc->subdevs, node) { if (subdev->prepare) { ret = subdev->prepare(subdev); if (ret) goto unroll_preparation; } } return 0; unroll_preparation: list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { if (subdev->unprepare) subdev->unprepare(subdev); } return ret; } static int rproc_start_subdevices(struct rproc *rproc) { struct rproc_subdev *subdev; int ret; list_for_each_entry(subdev, &rproc->subdevs, node) { if (subdev->start) { ret = subdev->start(subdev); if (ret) goto unroll_registration; } } return 0; unroll_registration: list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) { if (subdev->stop) subdev->stop(subdev, true); } return ret; } static void rproc_stop_subdevices(struct rproc *rproc, bool crashed) { struct rproc_subdev *subdev; list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { if (subdev->stop) subdev->stop(subdev, crashed); } } static void rproc_unprepare_subdevices(struct rproc *rproc) { struct rproc_subdev *subdev; list_for_each_entry_reverse(subdev, &rproc->subdevs, node) { if (subdev->unprepare) subdev->unprepare(subdev); } } /** * rproc_alloc_registered_carveouts() - allocate all carveouts registered * in the list * @rproc: the remote processor handle * * This function parses registered carveout list, performs allocation * if alloc() ops registered and updates resource table information * if rsc_offset set. * * Return: 0 on success */ static int rproc_alloc_registered_carveouts(struct rproc *rproc) { struct rproc_mem_entry *entry, *tmp; struct fw_rsc_carveout *rsc; struct device *dev = &rproc->dev; u64 pa; int ret; list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { if (entry->alloc) { ret = entry->alloc(rproc, entry); if (ret) { dev_err(dev, "Unable to allocate carveout %s: %d\n", entry->name, ret); return -ENOMEM; } } if (entry->rsc_offset != FW_RSC_ADDR_ANY) { /* update resource table */ rsc = (void *)rproc->table_ptr + entry->rsc_offset; /* * Some remote processors might need to know the pa * even though they are behind an IOMMU. E.g., OMAP4's * remote M3 processor needs this so it can control * on-chip hardware accelerators that are not behind * the IOMMU, and therefor must know the pa. * * Generally we don't want to expose physical addresses * if we don't have to (remote processors are generally * _not_ trusted), so we might want to do this only for * remote processor that _must_ have this (e.g. OMAP4's * dual M3 subsystem). * * Non-IOMMU processors might also want to have this info. * In this case, the device address and the physical address * are the same. */ /* Use va if defined else dma to generate pa */ if (entry->va) pa = (u64)rproc_va_to_pa(entry->va); else pa = (u64)entry->dma; if (((u64)pa) & HIGH_BITS_MASK) dev_warn(dev, "Physical address cast in 32bit to fit resource table format\n"); rsc->pa = (u32)pa; rsc->da = entry->da; rsc->len = entry->len; } } return 0; } /** * rproc_resource_cleanup() - clean up and free all acquired resources * @rproc: rproc handle * * This function will free all resources acquired for @rproc, and it * is called whenever @rproc either shuts down or fails to boot. */ void rproc_resource_cleanup(struct rproc *rproc) { struct rproc_mem_entry *entry, *tmp; struct rproc_debug_trace *trace, *ttmp; struct rproc_vdev *rvdev, *rvtmp; struct device *dev = &rproc->dev; /* clean up debugfs trace entries */ list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) { rproc_remove_trace_file(trace->tfile); rproc->num_traces--; list_del(&trace->node); kfree(trace); } /* clean up iommu mapping entries */ list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) { size_t unmapped; unmapped = iommu_unmap(rproc->domain, entry->da, entry->len); if (unmapped != entry->len) { /* nothing much to do besides complaining */ dev_err(dev, "failed to unmap %zx/%zu\n", entry->len, unmapped); } list_del(&entry->node); kfree(entry); } /* clean up carveout allocations */ list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) { if (entry->release) entry->release(rproc, entry); list_del(&entry->node); kfree(entry); } /* clean up remote vdev entries */ list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) kref_put(&rvdev->refcount, rproc_vdev_release); rproc_coredump_cleanup(rproc); } EXPORT_SYMBOL(rproc_resource_cleanup); static int rproc_start(struct rproc *rproc, const struct firmware *fw) { struct resource_table *loaded_table; struct device *dev = &rproc->dev; int ret; /* load the ELF segments to memory */ ret = rproc_load_segments(rproc, fw); if (ret) { dev_err(dev, "Failed to load program segments: %d\n", ret); return ret; } /* * The starting device has been given the rproc->cached_table as the * resource table. The address of the vring along with the other * allocated resources (carveouts etc) is stored in cached_table. * In order to pass this information to the remote device we must copy * this information to device memory. We also update the table_ptr so * that any subsequent changes will be applied to the loaded version. */ loaded_table = rproc_find_loaded_rsc_table(rproc, fw); if (loaded_table) { memcpy(loaded_table, rproc->cached_table, rproc->table_sz); rproc->table_ptr = loaded_table; } ret = rproc_prepare_subdevices(rproc); if (ret) { dev_err(dev, "failed to prepare subdevices for %s: %d\n", rproc->name, ret); goto reset_table_ptr; } /* power up the remote processor */ ret = rproc->ops->start(rproc); if (ret) { dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret); goto unprepare_subdevices; } /* Start any subdevices for the remote processor */ ret = rproc_start_subdevices(rproc); if (ret) { dev_err(dev, "failed to probe subdevices for %s: %d\n", rproc->name, ret); goto stop_rproc; } rproc->state = RPROC_RUNNING; dev_info(dev, "remote processor %s is now up\n", rproc->name); return 0; stop_rproc: rproc->ops->stop(rproc); unprepare_subdevices: rproc_unprepare_subdevices(rproc); reset_table_ptr: rproc->table_ptr = rproc->cached_table; return ret; } static int rproc_attach(struct rproc *rproc) { struct device *dev = &rproc->dev; int ret; ret = rproc_prepare_subdevices(rproc); if (ret) { dev_err(dev, "failed to prepare subdevices for %s: %d\n", rproc->name, ret); goto out; } /* Attach to the remote processor */ ret = rproc_attach_device(rproc); if (ret) { dev_err(dev, "can't attach to rproc %s: %d\n", rproc->name, ret); goto unprepare_subdevices; } /* Start any subdevices for the remote processor */ ret = rproc_start_subdevices(rproc); if (ret) { dev_err(dev, "failed to probe subdevices for %s: %d\n", rproc->name, ret); goto stop_rproc; } rproc->state = RPROC_RUNNING; dev_info(dev, "remote processor %s is now attached\n", rproc->name); return 0; stop_rproc: rproc->ops->stop(rproc); unprepare_subdevices: rproc_unprepare_subdevices(rproc); out: return ret; } /* * take a firmware and boot a remote processor with it. */ static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw) { struct device *dev = &rproc->dev; const char *name = rproc->firmware; int ret; ret = rproc_fw_sanity_check(rproc, fw); if (ret) return ret; dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size); /* * if enabling an IOMMU isn't relevant for this rproc, this is * just a nop */ ret = rproc_enable_iommu(rproc); if (ret) { dev_err(dev, "can't enable iommu: %d\n", ret); return ret; } /* Prepare rproc for firmware loading if needed */ ret = rproc_prepare_device(rproc); if (ret) { dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret); goto disable_iommu; } rproc->bootaddr = rproc_get_boot_addr(rproc, fw); /* Load resource table, core dump segment list etc from the firmware */ ret = rproc_parse_fw(rproc, fw); if (ret) goto unprepare_rproc; /* reset max_notifyid */ rproc->max_notifyid = -1; /* reset handled vdev */ rproc->nb_vdev = 0; /* handle fw resources which are required to boot rproc */ ret = rproc_handle_resources(rproc, rproc_loading_handlers); if (ret) { dev_err(dev, "Failed to process resources: %d\n", ret); goto clean_up_resources; } /* Allocate carveout resources associated to rproc */ ret = rproc_alloc_registered_carveouts(rproc); if (ret) { dev_err(dev, "Failed to allocate associated carveouts: %d\n", ret); goto clean_up_resources; } ret = rproc_start(rproc, fw); if (ret) goto clean_up_resources; return 0; clean_up_resources: rproc_resource_cleanup(rproc); kfree(rproc->cached_table); rproc->cached_table = NULL; rproc->table_ptr = NULL; unprepare_rproc: /* release HW resources if needed */ rproc_unprepare_device(rproc); disable_iommu: rproc_disable_iommu(rproc); return ret; } static int rproc_set_rsc_table(struct rproc *rproc) { struct resource_table *table_ptr; struct device *dev = &rproc->dev; size_t table_sz; int ret; table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz); if (!table_ptr) { /* Not having a resource table is acceptable */ return 0; } if (IS_ERR(table_ptr)) { ret = PTR_ERR(table_ptr); dev_err(dev, "can't load resource table: %d\n", ret); return ret; } rproc->cached_table = NULL; rproc->table_ptr = table_ptr; rproc->table_sz = table_sz; return 0; } /* * Attach to remote processor - similar to rproc_fw_boot() but without * the steps that deal with the firmware image. */ static int rproc_actuate(struct rproc *rproc) { struct device *dev = &rproc->dev; int ret; /* * if enabling an IOMMU isn't relevant for this rproc, this is * just a nop */ ret = rproc_enable_iommu(rproc); if (ret) { dev_err(dev, "can't enable iommu: %d\n", ret); return ret; } ret = rproc_set_rsc_table(rproc); if (ret) { dev_err(dev, "can't load resource table: %d\n", ret); goto disable_iommu; } /* reset max_notifyid */ rproc->max_notifyid = -1; /* reset handled vdev */ rproc->nb_vdev = 0; /* * Handle firmware resources required to attach to a remote processor. * Because we are attaching rather than booting the remote processor, * we expect the platform driver to properly set rproc->table_ptr. */ ret = rproc_handle_resources(rproc, rproc_loading_handlers); if (ret) { dev_err(dev, "Failed to process resources: %d\n", ret); goto disable_iommu; } /* Allocate carveout resources associated to rproc */ ret = rproc_alloc_registered_carveouts(rproc); if (ret) { dev_err(dev, "Failed to allocate associated carveouts: %d\n", ret); goto clean_up_resources; } ret = rproc_attach(rproc); if (ret) goto clean_up_resources; return 0; clean_up_resources: rproc_resource_cleanup(rproc); disable_iommu: rproc_disable_iommu(rproc); return ret; } /* * take a firmware and boot it up. * * Note: this function is called asynchronously upon registration of the * remote processor (so we must wait until it completes before we try * to unregister the device. one other option is just to use kref here, * that might be cleaner). */ static void rproc_auto_boot_callback(const struct firmware *fw, void *context) { struct rproc *rproc = context; rproc_boot(rproc); release_firmware(fw); } static int rproc_trigger_auto_boot(struct rproc *rproc) { int ret; /* * Since the remote processor is in a detached state, it has already * been booted by another entity. As such there is no point in waiting * for a firmware image to be loaded, we can simply initiate the process * of attaching to it immediately. */ if (rproc->state == RPROC_DETACHED) return rproc_boot(rproc); /* * We're initiating an asynchronous firmware loading, so we can * be built-in kernel code, without hanging the boot process. */ ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, rproc->firmware, &rproc->dev, GFP_KERNEL, rproc, rproc_auto_boot_callback); if (ret < 0) dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret); return ret; } static int rproc_stop(struct rproc *rproc, bool crashed) { struct device *dev = &rproc->dev; int ret; /* Stop any subdevices for the remote processor */ rproc_stop_subdevices(rproc, crashed); /* the installed resource table is no longer accessible */ rproc->table_ptr = rproc->cached_table; /* power off the remote processor */ ret = rproc->ops->stop(rproc); if (ret) { dev_err(dev, "can't stop rproc: %d\n", ret); return ret; } rproc_unprepare_subdevices(rproc); rproc->state = RPROC_OFFLINE; /* * The remote processor has been stopped and is now offline, which means * that the next time it is brought back online the remoteproc core will * be responsible to load its firmware. As such it is no longer * autonomous. */ rproc->autonomous = false; dev_info(dev, "stopped remote processor %s\n", rproc->name); return 0; } /** * rproc_trigger_recovery() - recover a remoteproc * @rproc: the remote processor * * The recovery is done by resetting all the virtio devices, that way all the * rpmsg drivers will be reseted along with the remote processor making the * remoteproc functional again. * * This function can sleep, so it cannot be called from atomic context. */ int rproc_trigger_recovery(struct rproc *rproc) { const struct firmware *firmware_p; struct device *dev = &rproc->dev; int ret; ret = mutex_lock_interruptible(&rproc->lock); if (ret) return ret; /* State could have changed before we got the mutex */ if (rproc->state != RPROC_CRASHED) goto unlock_mutex; dev_err(dev, "recovering %s\n", rproc->name); ret = rproc_stop(rproc, true); if (ret) goto unlock_mutex; /* generate coredump */ rproc_coredump(rproc); /* load firmware */ ret = request_firmware(&firmware_p, rproc->firmware, dev); if (ret < 0) { dev_err(dev, "request_firmware failed: %d\n", ret); goto unlock_mutex; } /* boot the remote processor up again */ ret = rproc_start(rproc, firmware_p); release_firmware(firmware_p); unlock_mutex: mutex_unlock(&rproc->lock); return ret; } /** * rproc_crash_handler_work() - handle a crash * @work: work treating the crash * * This function needs to handle everything related to a crash, like cpu * registers and stack dump, information to help to debug the fatal error, etc. */ static void rproc_crash_handler_work(struct work_struct *work) { struct rproc *rproc = container_of(work, struct rproc, crash_handler); struct device *dev = &rproc->dev; dev_dbg(dev, "enter %s\n", __func__); mutex_lock(&rproc->lock); if (rproc->state == RPROC_CRASHED) { /* handle only the first crash detected */ mutex_unlock(&rproc->lock); return; } if (rproc->state == RPROC_OFFLINE) { /* Don't recover if the remote processor was stopped */ mutex_unlock(&rproc->lock); goto out; } rproc->state = RPROC_CRASHED; dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt, rproc->name); mutex_unlock(&rproc->lock); if (!rproc->recovery_disabled) rproc_trigger_recovery(rproc); out: pm_relax(rproc->dev.parent); } /** * rproc_boot() - boot a remote processor * @rproc: handle of a remote processor * * Boot a remote processor (i.e. load its firmware, power it on, ...). * * If the remote processor is already powered on, this function immediately * returns (successfully). * * Returns 0 on success, and an appropriate error value otherwise. */ int rproc_boot(struct rproc *rproc) { const struct firmware *firmware_p; struct device *dev; int ret; if (!rproc) { pr_err("invalid rproc handle\n"); return -EINVAL; } dev = &rproc->dev; ret = mutex_lock_interruptible(&rproc->lock); if (ret) { dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); return ret; } if (rproc->state == RPROC_DELETED) { ret = -ENODEV; dev_err(dev, "can't boot deleted rproc %s\n", rproc->name); goto unlock_mutex; } /* skip the boot or attach process if rproc is already powered up */ if (atomic_inc_return(&rproc->power) > 1) { ret = 0; goto unlock_mutex; } if (rproc->state == RPROC_DETACHED) { dev_info(dev, "attaching to %s\n", rproc->name); ret = rproc_actuate(rproc); } else { dev_info(dev, "powering up %s\n", rproc->name); /* load firmware */ ret = request_firmware(&firmware_p, rproc->firmware, dev); if (ret < 0) { dev_err(dev, "request_firmware failed: %d\n", ret); goto downref_rproc; } ret = rproc_fw_boot(rproc, firmware_p); release_firmware(firmware_p); } downref_rproc: if (ret) atomic_dec(&rproc->power); unlock_mutex: mutex_unlock(&rproc->lock); return ret; } EXPORT_SYMBOL(rproc_boot); /** * rproc_shutdown() - power off the remote processor * @rproc: the remote processor * * Power off a remote processor (previously booted with rproc_boot()). * * In case @rproc is still being used by an additional user(s), then * this function will just decrement the power refcount and exit, * without really powering off the device. * * Every call to rproc_boot() must (eventually) be accompanied by a call * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. * * Notes: * - we're not decrementing the rproc's refcount, only the power refcount. * which means that the @rproc handle stays valid even after rproc_shutdown() * returns, and users can still use it with a subsequent rproc_boot(), if * needed. */ void rproc_shutdown(struct rproc *rproc) { struct device *dev = &rproc->dev; int ret; ret = mutex_lock_interruptible(&rproc->lock); if (ret) { dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret); return; } /* if the remote proc is still needed, bail out */ if (!atomic_dec_and_test(&rproc->power)) goto out; ret = rproc_stop(rproc, false); if (ret) { atomic_inc(&rproc->power); goto out; } /* clean up all acquired resources */ rproc_resource_cleanup(rproc); /* release HW resources if needed */ rproc_unprepare_device(rproc); rproc_disable_iommu(rproc); /* Free the copy of the resource table */ kfree(rproc->cached_table); rproc->cached_table = NULL; rproc->table_ptr = NULL; out: mutex_unlock(&rproc->lock); } EXPORT_SYMBOL(rproc_shutdown); /** * rproc_get_by_phandle() - find a remote processor by phandle * @phandle: phandle to the rproc * * Finds an rproc handle using the remote processor's phandle, and then * return a handle to the rproc. * * This function increments the remote processor's refcount, so always * use rproc_put() to decrement it back once rproc isn't needed anymore. * * Returns the rproc handle on success, and NULL on failure. */ #ifdef CONFIG_OF struct rproc *rproc_get_by_phandle(phandle phandle) { struct rproc *rproc = NULL, *r; struct device_node *np; np = of_find_node_by_phandle(phandle); if (!np) return NULL; rcu_read_lock(); list_for_each_entry_rcu(r, &rproc_list, node) { if (r->dev.parent && r->dev.parent->of_node == np) { /* prevent underlying implementation from being removed */ if (!try_module_get(r->dev.parent->driver->owner)) { dev_err(&r->dev, "can't get owner\n"); break; } rproc = r; get_device(&rproc->dev); break; } } rcu_read_unlock(); of_node_put(np); return rproc; } #else struct rproc *rproc_get_by_phandle(phandle phandle) { return NULL; } #endif EXPORT_SYMBOL(rproc_get_by_phandle); static int rproc_validate(struct rproc *rproc) { switch (rproc->state) { case RPROC_OFFLINE: /* * An offline processor without a start() * function makes no sense. */ if (!rproc->ops->start) return -EINVAL; break; case RPROC_DETACHED: /* * A remote processor in a detached state without an * attach() function makes not sense. */ if (!rproc->ops->attach) return -EINVAL; /* * When attaching to a remote processor the device memory * is already available and as such there is no need to have a * cached table. */ if (rproc->cached_table) return -EINVAL; break; default: /* * When adding a remote processor, the state of the device * can be offline or detached, nothing else. */ return -EINVAL; } return 0; } /** * rproc_add() - register a remote processor * @rproc: the remote processor handle to register * * Registers @rproc with the remoteproc framework, after it has been * allocated with rproc_alloc(). * * This is called by the platform-specific rproc implementation, whenever * a new remote processor device is probed. * * Returns 0 on success and an appropriate error code otherwise. * * Note: this function initiates an asynchronous firmware loading * context, which will look for virtio devices supported by the rproc's * firmware. * * If found, those virtio devices will be created and added, so as a result * of registering this remote processor, additional virtio drivers might be * probed. */ int rproc_add(struct rproc *rproc) { struct device *dev = &rproc->dev; int ret; ret = device_add(dev); if (ret < 0) return ret; ret = rproc_validate(rproc); if (ret < 0) return ret; dev_info(dev, "%s is available\n", rproc->name); /* create debugfs entries */ rproc_create_debug_dir(rproc); /* add char device for this remoteproc */ ret = rproc_char_device_add(rproc); if (ret < 0) return ret; /* * Remind ourselves the remote processor has been attached to rather * than booted by the remoteproc core. This is important because the * RPROC_DETACHED state will be lost as soon as the remote processor * has been attached to. Used in firmware_show() and reset in * rproc_stop(). */ if (rproc->state == RPROC_DETACHED) rproc->autonomous = true; /* if rproc is marked always-on, request it to boot */ if (rproc->auto_boot) { ret = rproc_trigger_auto_boot(rproc); if (ret < 0) return ret; } /* expose to rproc_get_by_phandle users */ mutex_lock(&rproc_list_mutex); list_add_rcu(&rproc->node, &rproc_list); mutex_unlock(&rproc_list_mutex); return 0; } EXPORT_SYMBOL(rproc_add); static void devm_rproc_remove(void *rproc) { rproc_del(rproc); } /** * devm_rproc_add() - resource managed rproc_add() * @dev: the underlying device * @rproc: the remote processor handle to register * * This function performs like rproc_add() but the registered rproc device will * automatically be removed on driver detach. * * Returns: 0 on success, negative errno on failure */ int devm_rproc_add(struct device *dev, struct rproc *rproc) { int err; err = rproc_add(rproc); if (err) return err; return devm_add_action_or_reset(dev, devm_rproc_remove, rproc); } EXPORT_SYMBOL(devm_rproc_add); /** * rproc_type_release() - release a remote processor instance * @dev: the rproc's device * * This function should _never_ be called directly. * * It will be called by the driver core when no one holds a valid pointer * to @dev anymore. */ static void rproc_type_release(struct device *dev) { struct rproc *rproc = container_of(dev, struct rproc, dev); dev_info(&rproc->dev, "releasing %s\n", rproc->name); idr_destroy(&rproc->notifyids); if (rproc->index >= 0) ida_simple_remove(&rproc_dev_index, rproc->index); kfree_const(rproc->firmware); kfree_const(rproc->name); kfree(rproc->ops); kfree(rproc); } static const struct device_type rproc_type = { .name = "remoteproc", .release = rproc_type_release, }; static int rproc_alloc_firmware(struct rproc *rproc, const char *name, const char *firmware) { const char *p; /* * Allocate a firmware name if the caller gave us one to work * with. Otherwise construct a new one using a default pattern. */ if (firmware) p = kstrdup_const(firmware, GFP_KERNEL); else p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name); if (!p) return -ENOMEM; rproc->firmware = p; return 0; } static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops) { rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL); if (!rproc->ops) return -ENOMEM; if (rproc->ops->load) return 0; /* Default to ELF loader if no load function is specified */ rproc->ops->load = rproc_elf_load_segments; rproc->ops->parse_fw = rproc_elf_load_rsc_table; rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table; rproc->ops->sanity_check = rproc_elf_sanity_check; rproc->ops->get_boot_addr = rproc_elf_get_boot_addr; return 0; } /** * rproc_alloc() - allocate a remote processor handle * @dev: the underlying device * @name: name of this remote processor * @ops: platform-specific handlers (mainly start/stop) * @firmware: name of firmware file to load, can be NULL * @len: length of private data needed by the rproc driver (in bytes) * * Allocates a new remote processor handle, but does not register * it yet. if @firmware is NULL, a default name is used. * * This function should be used by rproc implementations during initialization * of the remote processor. * * After creating an rproc handle using this function, and when ready, * implementations should then call rproc_add() to complete * the registration of the remote processor. * * On success the new rproc is returned, and on failure, NULL. * * Note: _never_ directly deallocate @rproc, even if it was not registered * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free(). */ struct rproc *rproc_alloc(struct device *dev, const char *name, const struct rproc_ops *ops, const char *firmware, int len) { struct rproc *rproc; if (!dev || !name || !ops) return NULL; rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL); if (!rproc) return NULL; rproc->priv = &rproc[1]; rproc->auto_boot = true; rproc->elf_class = ELFCLASSNONE; rproc->elf_machine = EM_NONE; device_initialize(&rproc->dev); rproc->dev.parent = dev; rproc->dev.type = &rproc_type; rproc->dev.class = &rproc_class; rproc->dev.driver_data = rproc; idr_init(&rproc->notifyids); rproc->name = kstrdup_const(name, GFP_KERNEL); if (!rproc->name) goto put_device; if (rproc_alloc_firmware(rproc, name, firmware)) goto put_device; if (rproc_alloc_ops(rproc, ops)) goto put_device; /* Assign a unique device index and name */ rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL); if (rproc->index < 0) { dev_err(dev, "ida_simple_get failed: %d\n", rproc->index); goto put_device; } dev_set_name(&rproc->dev, "remoteproc%d", rproc->index); atomic_set(&rproc->power, 0); mutex_init(&rproc->lock); INIT_LIST_HEAD(&rproc->carveouts); INIT_LIST_HEAD(&rproc->mappings); INIT_LIST_HEAD(&rproc->traces); INIT_LIST_HEAD(&rproc->rvdevs); INIT_LIST_HEAD(&rproc->subdevs); INIT_LIST_HEAD(&rproc->dump_segments); INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work); rproc->state = RPROC_OFFLINE; return rproc; put_device: put_device(&rproc->dev); return NULL; } EXPORT_SYMBOL(rproc_alloc); /** * rproc_free() - unroll rproc_alloc() * @rproc: the remote processor handle * * This function decrements the rproc dev refcount. * * If no one holds any reference to rproc anymore, then its refcount would * now drop to zero, and it would be freed. */ void rproc_free(struct rproc *rproc) { put_device(&rproc->dev); } EXPORT_SYMBOL(rproc_free); /** * rproc_put() - release rproc reference * @rproc: the remote processor handle * * This function decrements the rproc dev refcount. * * If no one holds any reference to rproc anymore, then its refcount would * now drop to zero, and it would be freed. */ void rproc_put(struct rproc *rproc) { module_put(rproc->dev.parent->driver->owner); put_device(&rproc->dev); } EXPORT_SYMBOL(rproc_put); /** * rproc_del() - unregister a remote processor * @rproc: rproc handle to unregister * * This function should be called when the platform specific rproc * implementation decides to remove the rproc device. it should * _only_ be called if a previous invocation of rproc_add() * has completed successfully. * * After rproc_del() returns, @rproc isn't freed yet, because * of the outstanding reference created by rproc_alloc. To decrement that * one last refcount, one still needs to call rproc_free(). * * Returns 0 on success and -EINVAL if @rproc isn't valid. */ int rproc_del(struct rproc *rproc) { if (!rproc) return -EINVAL; /* if rproc is marked always-on, rproc_add() booted it */ /* TODO: make sure this works with rproc->power > 1 */ if (rproc->auto_boot) rproc_shutdown(rproc); mutex_lock(&rproc->lock); rproc->state = RPROC_DELETED; mutex_unlock(&rproc->lock); rproc_delete_debug_dir(rproc); /* the rproc is downref'ed as soon as it's removed from the klist */ mutex_lock(&rproc_list_mutex); list_del_rcu(&rproc->node); mutex_unlock(&rproc_list_mutex); /* Ensure that no readers of rproc_list are still active */ synchronize_rcu(); device_del(&rproc->dev); rproc_char_device_remove(rproc); return 0; } EXPORT_SYMBOL(rproc_del); static void devm_rproc_free(struct device *dev, void *res) { rproc_free(*(struct rproc **)res); } /** * devm_rproc_alloc() - resource managed rproc_alloc() * @dev: the underlying device * @name: name of this remote processor * @ops: platform-specific handlers (mainly start/stop) * @firmware: name of firmware file to load, can be NULL * @len: length of private data needed by the rproc driver (in bytes) * * This function performs like rproc_alloc() but the acquired rproc device will * automatically be released on driver detach. * * Returns: new rproc instance, or NULL on failure */ struct rproc *devm_rproc_alloc(struct device *dev, const char *name, const struct rproc_ops *ops, const char *firmware, int len) { struct rproc **ptr, *rproc; ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL); if (!ptr) return NULL; rproc = rproc_alloc(dev, name, ops, firmware, len); if (rproc) { *ptr = rproc; devres_add(dev, ptr); } else { devres_free(ptr); } return rproc; } EXPORT_SYMBOL(devm_rproc_alloc); /** * rproc_add_subdev() - add a subdevice to a remoteproc * @rproc: rproc handle to add the subdevice to * @subdev: subdev handle to register * * Caller is responsible for populating optional subdevice function pointers. */ void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev) { list_add_tail(&subdev->node, &rproc->subdevs); } EXPORT_SYMBOL(rproc_add_subdev); /** * rproc_remove_subdev() - remove a subdevice from a remoteproc * @rproc: rproc handle to remove the subdevice from * @subdev: subdev handle, previously registered with rproc_add_subdev() */ void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev) { list_del(&subdev->node); } EXPORT_SYMBOL(rproc_remove_subdev); /** * rproc_get_by_child() - acquire rproc handle of @dev's ancestor * @dev: child device to find ancestor of * * Returns the ancestor rproc instance, or NULL if not found. */ struct rproc *rproc_get_by_child(struct device *dev) { for (dev = dev->parent; dev; dev = dev->parent) { if (dev->type == &rproc_type) return dev->driver_data; } return NULL; } EXPORT_SYMBOL(rproc_get_by_child); /** * rproc_report_crash() - rproc crash reporter function * @rproc: remote processor * @type: crash type * * This function must be called every time a crash is detected by the low-level * drivers implementing a specific remoteproc. This should not be called from a * non-remoteproc driver. * * This function can be called from atomic/interrupt context. */ void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type) { if (!rproc) { pr_err("NULL rproc pointer\n"); return; } /* Prevent suspend while the remoteproc is being recovered */ pm_stay_awake(rproc->dev.parent); dev_err(&rproc->dev, "crash detected in %s: type %s\n", rproc->name, rproc_crash_to_string(type)); /* create a new task to handle the error */ schedule_work(&rproc->crash_handler); } EXPORT_SYMBOL(rproc_report_crash); static int rproc_panic_handler(struct notifier_block *nb, unsigned long event, void *ptr) { unsigned int longest = 0; struct rproc *rproc; unsigned int d; rcu_read_lock(); list_for_each_entry_rcu(rproc, &rproc_list, node) { if (!rproc->ops->panic || rproc->state != RPROC_RUNNING) continue; d = rproc->ops->panic(rproc); longest = max(longest, d); } rcu_read_unlock(); /* * Delay for the longest requested duration before returning. This can * be used by the remoteproc drivers to give the remote processor time * to perform any requested operations (such as flush caches), when * it's not possible to signal the Linux side due to the panic. */ mdelay(longest); return NOTIFY_DONE; } static void __init rproc_init_panic(void) { rproc_panic_nb.notifier_call = rproc_panic_handler; atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb); } static void __exit rproc_exit_panic(void) { atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb); } static int __init remoteproc_init(void) { rproc_init_sysfs(); rproc_init_debugfs(); rproc_init_cdev(); rproc_init_panic(); return 0; } subsys_initcall(remoteproc_init); static void __exit remoteproc_exit(void) { ida_destroy(&rproc_dev_index); rproc_exit_panic(); rproc_exit_debugfs(); rproc_exit_sysfs(); } module_exit(remoteproc_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Generic Remote Processor Framework");