// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved. * Copyright (c) 2019, Linaro Limited */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Register Offsets for RB-CPR and Bit Definitions */ /* RBCPR Version Register */ #define REG_RBCPR_VERSION 0 #define RBCPR_VER_2 0x02 #define FLAGS_IGNORE_1ST_IRQ_STATUS BIT(0) /* RBCPR Gate Count and Target Registers */ #define REG_RBCPR_GCNT_TARGET(n) (0x60 + 4 * (n)) #define RBCPR_GCNT_TARGET_TARGET_SHIFT 0 #define RBCPR_GCNT_TARGET_TARGET_MASK GENMASK(11, 0) #define RBCPR_GCNT_TARGET_GCNT_SHIFT 12 #define RBCPR_GCNT_TARGET_GCNT_MASK GENMASK(9, 0) /* RBCPR Timer Control */ #define REG_RBCPR_TIMER_INTERVAL 0x44 #define REG_RBIF_TIMER_ADJUST 0x4c #define RBIF_TIMER_ADJ_CONS_UP_MASK GENMASK(3, 0) #define RBIF_TIMER_ADJ_CONS_UP_SHIFT 0 #define RBIF_TIMER_ADJ_CONS_DOWN_MASK GENMASK(3, 0) #define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT 4 #define RBIF_TIMER_ADJ_CLAMP_INT_MASK GENMASK(7, 0) #define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT 8 /* RBCPR Config Register */ #define REG_RBIF_LIMIT 0x48 #define RBIF_LIMIT_CEILING_MASK GENMASK(5, 0) #define RBIF_LIMIT_CEILING_SHIFT 6 #define RBIF_LIMIT_FLOOR_BITS 6 #define RBIF_LIMIT_FLOOR_MASK GENMASK(5, 0) #define RBIF_LIMIT_CEILING_DEFAULT RBIF_LIMIT_CEILING_MASK #define RBIF_LIMIT_FLOOR_DEFAULT 0 #define REG_RBIF_SW_VLEVEL 0x94 #define RBIF_SW_VLEVEL_DEFAULT 0x20 #define REG_RBCPR_STEP_QUOT 0x80 #define RBCPR_STEP_QUOT_STEPQUOT_MASK GENMASK(7, 0) #define RBCPR_STEP_QUOT_IDLE_CLK_MASK GENMASK(3, 0) #define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT 8 /* RBCPR Control Register */ #define REG_RBCPR_CTL 0x90 #define RBCPR_CTL_LOOP_EN BIT(0) #define RBCPR_CTL_TIMER_EN BIT(3) #define RBCPR_CTL_SW_AUTO_CONT_ACK_EN BIT(5) #define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN BIT(6) #define RBCPR_CTL_COUNT_MODE BIT(10) #define RBCPR_CTL_UP_THRESHOLD_MASK GENMASK(3, 0) #define RBCPR_CTL_UP_THRESHOLD_SHIFT 24 #define RBCPR_CTL_DN_THRESHOLD_MASK GENMASK(3, 0) #define RBCPR_CTL_DN_THRESHOLD_SHIFT 28 /* RBCPR Ack/Nack Response */ #define REG_RBIF_CONT_ACK_CMD 0x98 #define REG_RBIF_CONT_NACK_CMD 0x9c /* RBCPR Result status Register */ #define REG_RBCPR_RESULT_0 0xa0 #define RBCPR_RESULT0_BUSY_SHIFT 19 #define RBCPR_RESULT0_BUSY_MASK BIT(RBCPR_RESULT0_BUSY_SHIFT) #define RBCPR_RESULT0_ERROR_LT0_SHIFT 18 #define RBCPR_RESULT0_ERROR_SHIFT 6 #define RBCPR_RESULT0_ERROR_MASK GENMASK(11, 0) #define RBCPR_RESULT0_ERROR_STEPS_SHIFT 2 #define RBCPR_RESULT0_ERROR_STEPS_MASK GENMASK(3, 0) #define RBCPR_RESULT0_STEP_UP_SHIFT 1 /* RBCPR Interrupt Control Register */ #define REG_RBIF_IRQ_EN(n) (0x100 + 4 * (n)) #define REG_RBIF_IRQ_CLEAR 0x110 #define REG_RBIF_IRQ_STATUS 0x114 #define CPR_INT_DONE BIT(0) #define CPR_INT_MIN BIT(1) #define CPR_INT_DOWN BIT(2) #define CPR_INT_MID BIT(3) #define CPR_INT_UP BIT(4) #define CPR_INT_MAX BIT(5) #define CPR_INT_CLAMP BIT(6) #define CPR_INT_ALL (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \ CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP) #define CPR_INT_DEFAULT (CPR_INT_UP | CPR_INT_DOWN) #define CPR_NUM_RING_OSC 8 /* CPR eFuse parameters */ #define CPR_FUSE_TARGET_QUOT_BITS_MASK GENMASK(11, 0) #define CPR_FUSE_MIN_QUOT_DIFF 50 #define FUSE_REVISION_UNKNOWN (-1) enum voltage_change_dir { NO_CHANGE, DOWN, UP, }; struct cpr_fuse { char *ring_osc; char *init_voltage; char *quotient; char *quotient_offset; }; struct fuse_corner_data { int ref_uV; int max_uV; int min_uV; int max_volt_scale; int max_quot_scale; /* fuse quot */ int quot_offset; int quot_scale; int quot_adjust; /* fuse quot_offset */ int quot_offset_scale; int quot_offset_adjust; }; struct cpr_fuses { int init_voltage_step; int init_voltage_width; struct fuse_corner_data *fuse_corner_data; }; struct corner_data { unsigned int fuse_corner; unsigned long freq; }; struct cpr_desc { unsigned int num_fuse_corners; int min_diff_quot; int *step_quot; unsigned int timer_delay_us; unsigned int timer_cons_up; unsigned int timer_cons_down; unsigned int up_threshold; unsigned int down_threshold; unsigned int idle_clocks; unsigned int gcnt_us; unsigned int vdd_apc_step_up_limit; unsigned int vdd_apc_step_down_limit; unsigned int clamp_timer_interval; struct cpr_fuses cpr_fuses; bool reduce_to_fuse_uV; bool reduce_to_corner_uV; }; struct acc_desc { unsigned int enable_reg; u32 enable_mask; struct reg_sequence *config; struct reg_sequence *settings; int num_regs_per_fuse; }; struct cpr_acc_desc { const struct cpr_desc *cpr_desc; const struct acc_desc *acc_desc; }; struct fuse_corner { int min_uV; int max_uV; int uV; int quot; int step_quot; const struct reg_sequence *accs; int num_accs; unsigned long max_freq; u8 ring_osc_idx; }; struct corner { int min_uV; int max_uV; int uV; int last_uV; int quot_adjust; u32 save_ctl; u32 save_irq; unsigned long freq; struct fuse_corner *fuse_corner; }; struct cpr_drv { unsigned int num_corners; unsigned int ref_clk_khz; struct generic_pm_domain pd; struct device *dev; struct device *attached_cpu_dev; struct mutex lock; void __iomem *base; struct corner *corner; struct regulator *vdd_apc; struct clk *cpu_clk; struct regmap *tcsr; bool loop_disabled; u32 gcnt; unsigned long flags; struct fuse_corner *fuse_corners; struct corner *corners; const struct cpr_desc *desc; const struct acc_desc *acc_desc; const struct cpr_fuse *cpr_fuses; struct dentry *debugfs; }; static bool cpr_is_allowed(struct cpr_drv *drv) { return !drv->loop_disabled; } static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value) { writel_relaxed(value, drv->base + offset); } static u32 cpr_read(struct cpr_drv *drv, u32 offset) { return readl_relaxed(drv->base + offset); } static void cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value) { u32 val; val = readl_relaxed(drv->base + offset); val &= ~mask; val |= value & mask; writel_relaxed(val, drv->base + offset); } static void cpr_irq_clr(struct cpr_drv *drv) { cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL); } static void cpr_irq_clr_nack(struct cpr_drv *drv) { cpr_irq_clr(drv); cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1); } static void cpr_irq_clr_ack(struct cpr_drv *drv) { cpr_irq_clr(drv); cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1); } static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits) { cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits); } static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value) { cpr_masked_write(drv, REG_RBCPR_CTL, mask, value); } static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner) { u32 val, mask; const struct cpr_desc *desc = drv->desc; /* Program Consecutive Up & Down */ val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT; val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT; mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK; cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val); cpr_masked_write(drv, REG_RBCPR_CTL, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN | RBCPR_CTL_SW_AUTO_CONT_ACK_EN, corner->save_ctl); cpr_irq_set(drv, corner->save_irq); if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV) val = RBCPR_CTL_LOOP_EN; else val = 0; cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val); } static void cpr_ctl_disable(struct cpr_drv *drv) { cpr_irq_set(drv, 0); cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN | RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0); cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0); cpr_irq_clr(drv); cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1); cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1); cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0); } static bool cpr_ctl_is_enabled(struct cpr_drv *drv) { u32 reg_val; reg_val = cpr_read(drv, REG_RBCPR_CTL); return reg_val & RBCPR_CTL_LOOP_EN; } static bool cpr_ctl_is_busy(struct cpr_drv *drv) { u32 reg_val; reg_val = cpr_read(drv, REG_RBCPR_RESULT_0); return reg_val & RBCPR_RESULT0_BUSY_MASK; } static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner) { corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL); corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0)); } static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner) { u32 gcnt, ctl, irq, ro_sel, step_quot; struct fuse_corner *fuse = corner->fuse_corner; const struct cpr_desc *desc = drv->desc; int i; ro_sel = fuse->ring_osc_idx; gcnt = drv->gcnt; gcnt |= fuse->quot - corner->quot_adjust; /* Program the step quotient and idle clocks */ step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT; step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK; cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot); /* Clear the target quotient value and gate count of all ROs */ for (i = 0; i < CPR_NUM_RING_OSC; i++) cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0); cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt); ctl = corner->save_ctl; cpr_write(drv, REG_RBCPR_CTL, ctl); irq = corner->save_irq; cpr_irq_set(drv, irq); dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt, ctl, irq); } static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f, struct fuse_corner *end) { if (f == end) return; if (f < end) { for (f += 1; f <= end; f++) regmap_multi_reg_write(tcsr, f->accs, f->num_accs); } else { for (f -= 1; f >= end; f--) regmap_multi_reg_write(tcsr, f->accs, f->num_accs); } } static int cpr_pre_voltage(struct cpr_drv *drv, struct fuse_corner *fuse_corner, enum voltage_change_dir dir) { struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner; if (drv->tcsr && dir == DOWN) cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner); return 0; } static int cpr_post_voltage(struct cpr_drv *drv, struct fuse_corner *fuse_corner, enum voltage_change_dir dir) { struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner; if (drv->tcsr && dir == UP) cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner); return 0; } static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner, int new_uV, enum voltage_change_dir dir) { int ret; struct fuse_corner *fuse_corner = corner->fuse_corner; ret = cpr_pre_voltage(drv, fuse_corner, dir); if (ret) return ret; ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV); if (ret) { dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n", new_uV); return ret; } ret = cpr_post_voltage(drv, fuse_corner, dir); if (ret) return ret; return 0; } static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv) { return drv->corner ? drv->corner - drv->corners + 1 : 0; } static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir) { u32 val, error_steps, reg_mask; int last_uV, new_uV, step_uV, ret; struct corner *corner; const struct cpr_desc *desc = drv->desc; if (dir != UP && dir != DOWN) return 0; step_uV = regulator_get_linear_step(drv->vdd_apc); if (!step_uV) return -EINVAL; corner = drv->corner; val = cpr_read(drv, REG_RBCPR_RESULT_0); error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT; error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK; last_uV = corner->last_uV; if (dir == UP) { if (desc->clamp_timer_interval && error_steps < desc->up_threshold) { /* * Handle the case where another measurement started * after the interrupt was triggered due to a core * exiting from power collapse. */ error_steps = max(desc->up_threshold, desc->vdd_apc_step_up_limit); } if (last_uV >= corner->max_uV) { cpr_irq_clr_nack(drv); /* Maximize the UP threshold */ reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK; reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT; val = reg_mask; cpr_ctl_modify(drv, reg_mask, val); /* Disable UP interrupt */ cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP); return 0; } if (error_steps > desc->vdd_apc_step_up_limit) error_steps = desc->vdd_apc_step_up_limit; /* Calculate new voltage */ new_uV = last_uV + error_steps * step_uV; new_uV = min(new_uV, corner->max_uV); dev_dbg(drv->dev, "UP: -> new_uV: %d last_uV: %d perf state: %u\n", new_uV, last_uV, cpr_get_cur_perf_state(drv)); } else { if (desc->clamp_timer_interval && error_steps < desc->down_threshold) { /* * Handle the case where another measurement started * after the interrupt was triggered due to a core * exiting from power collapse. */ error_steps = max(desc->down_threshold, desc->vdd_apc_step_down_limit); } if (last_uV <= corner->min_uV) { cpr_irq_clr_nack(drv); /* Enable auto nack down */ reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN; val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN; cpr_ctl_modify(drv, reg_mask, val); /* Disable DOWN interrupt */ cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN); return 0; } if (error_steps > desc->vdd_apc_step_down_limit) error_steps = desc->vdd_apc_step_down_limit; /* Calculate new voltage */ new_uV = last_uV - error_steps * step_uV; new_uV = max(new_uV, corner->min_uV); dev_dbg(drv->dev, "DOWN: -> new_uV: %d last_uV: %d perf state: %u\n", new_uV, last_uV, cpr_get_cur_perf_state(drv)); } ret = cpr_scale_voltage(drv, corner, new_uV, dir); if (ret) { cpr_irq_clr_nack(drv); return ret; } drv->corner->last_uV = new_uV; if (dir == UP) { /* Disable auto nack down */ reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN; val = 0; } else { /* Restore default threshold for UP */ reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK; reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT; val = desc->up_threshold; val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT; } cpr_ctl_modify(drv, reg_mask, val); /* Re-enable default interrupts */ cpr_irq_set(drv, CPR_INT_DEFAULT); /* Ack */ cpr_irq_clr_ack(drv); return 0; } static irqreturn_t cpr_irq_handler(int irq, void *dev) { struct cpr_drv *drv = dev; const struct cpr_desc *desc = drv->desc; irqreturn_t ret = IRQ_HANDLED; u32 val; mutex_lock(&drv->lock); val = cpr_read(drv, REG_RBIF_IRQ_STATUS); if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS) val = cpr_read(drv, REG_RBIF_IRQ_STATUS); dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val); if (!cpr_ctl_is_enabled(drv)) { dev_dbg(drv->dev, "CPR is disabled\n"); ret = IRQ_NONE; } else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) { dev_dbg(drv->dev, "CPR measurement is not ready\n"); } else if (!cpr_is_allowed(drv)) { val = cpr_read(drv, REG_RBCPR_CTL); dev_err_ratelimited(drv->dev, "Interrupt broken? RBCPR_CTL = %#02x\n", val); ret = IRQ_NONE; } else { /* * Following sequence of handling is as per each IRQ's * priority */ if (val & CPR_INT_UP) { cpr_scale(drv, UP); } else if (val & CPR_INT_DOWN) { cpr_scale(drv, DOWN); } else if (val & CPR_INT_MIN) { cpr_irq_clr_nack(drv); } else if (val & CPR_INT_MAX) { cpr_irq_clr_nack(drv); } else if (val & CPR_INT_MID) { /* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */ dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n"); } else { dev_dbg(drv->dev, "IRQ occurred for unknown flag (%#08x)\n", val); } /* Save register values for the corner */ cpr_corner_save(drv, drv->corner); } mutex_unlock(&drv->lock); return ret; } static int cpr_enable(struct cpr_drv *drv) { int ret; ret = regulator_enable(drv->vdd_apc); if (ret) return ret; mutex_lock(&drv->lock); if (cpr_is_allowed(drv) && drv->corner) { cpr_irq_clr(drv); cpr_corner_restore(drv, drv->corner); cpr_ctl_enable(drv, drv->corner); } mutex_unlock(&drv->lock); return 0; } static int cpr_disable(struct cpr_drv *drv) { mutex_lock(&drv->lock); if (cpr_is_allowed(drv)) { cpr_ctl_disable(drv); cpr_irq_clr(drv); } mutex_unlock(&drv->lock); return regulator_disable(drv->vdd_apc); } static int cpr_config(struct cpr_drv *drv) { int i; u32 val, gcnt; struct corner *corner; const struct cpr_desc *desc = drv->desc; /* Disable interrupt and CPR */ cpr_write(drv, REG_RBIF_IRQ_EN(0), 0); cpr_write(drv, REG_RBCPR_CTL, 0); /* Program the default HW ceiling, floor and vlevel */ val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK) << RBIF_LIMIT_CEILING_SHIFT; val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK; cpr_write(drv, REG_RBIF_LIMIT, val); cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT); /* * Clear the target quotient value and gate count of all * ring oscillators */ for (i = 0; i < CPR_NUM_RING_OSC; i++) cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0); /* Init and save gcnt */ gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000; gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK; gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT; drv->gcnt = gcnt; /* Program the delay count for the timer */ val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000; cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val); dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val, desc->timer_delay_us); /* Program Consecutive Up & Down */ val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT; val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT; val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT; cpr_write(drv, REG_RBIF_TIMER_ADJUST, val); /* Program the control register */ val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT; val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT; val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE; val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN; cpr_write(drv, REG_RBCPR_CTL, val); for (i = 0; i < drv->num_corners; i++) { corner = &drv->corners[i]; corner->save_ctl = val; corner->save_irq = CPR_INT_DEFAULT; } cpr_irq_set(drv, CPR_INT_DEFAULT); val = cpr_read(drv, REG_RBCPR_VERSION); if (val <= RBCPR_VER_2) drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS; return 0; } static int cpr_set_performance_state(struct generic_pm_domain *domain, unsigned int state) { struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); struct corner *corner, *end; enum voltage_change_dir dir; int ret = 0, new_uV; mutex_lock(&drv->lock); dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n", __func__, state, cpr_get_cur_perf_state(drv)); /* * Determine new corner we're going to. * Remove one since lowest performance state is 1. */ corner = drv->corners + state - 1; end = &drv->corners[drv->num_corners - 1]; if (corner > end || corner < drv->corners) { ret = -EINVAL; goto unlock; } /* Determine direction */ if (drv->corner > corner) dir = DOWN; else if (drv->corner < corner) dir = UP; else dir = NO_CHANGE; if (cpr_is_allowed(drv)) new_uV = corner->last_uV; else new_uV = corner->uV; if (cpr_is_allowed(drv)) cpr_ctl_disable(drv); ret = cpr_scale_voltage(drv, corner, new_uV, dir); if (ret) goto unlock; if (cpr_is_allowed(drv)) { cpr_irq_clr(drv); if (drv->corner != corner) cpr_corner_restore(drv, corner); cpr_ctl_enable(drv, corner); } drv->corner = corner; unlock: mutex_unlock(&drv->lock); return ret; } static int cpr_read_efuse(struct device *dev, const char *cname, u32 *data) { struct nvmem_cell *cell; ssize_t len; char *ret; int i; *data = 0; cell = nvmem_cell_get(dev, cname); if (IS_ERR(cell)) { if (PTR_ERR(cell) != -EPROBE_DEFER) dev_err(dev, "undefined cell %s\n", cname); return PTR_ERR(cell); } ret = nvmem_cell_read(cell, &len); nvmem_cell_put(cell); if (IS_ERR(ret)) { dev_err(dev, "can't read cell %s\n", cname); return PTR_ERR(ret); } for (i = 0; i < len; i++) *data |= ret[i] << (8 * i); kfree(ret); dev_dbg(dev, "efuse read(%s) = %x, bytes %zd\n", cname, *data, len); return 0; } static int cpr_populate_ring_osc_idx(struct cpr_drv *drv) { struct fuse_corner *fuse = drv->fuse_corners; struct fuse_corner *end = fuse + drv->desc->num_fuse_corners; const struct cpr_fuse *fuses = drv->cpr_fuses; u32 data; int ret; for (; fuse < end; fuse++, fuses++) { ret = cpr_read_efuse(drv->dev, fuses->ring_osc, &data); if (ret) return ret; fuse->ring_osc_idx = data; } return 0; } static int cpr_read_fuse_uV(const struct cpr_desc *desc, const struct fuse_corner_data *fdata, const char *init_v_efuse, int step_volt, struct cpr_drv *drv) { int step_size_uV, steps, uV; u32 bits = 0; int ret; ret = cpr_read_efuse(drv->dev, init_v_efuse, &bits); if (ret) return ret; steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1); /* Not two's complement.. instead highest bit is sign bit */ if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1)) steps = -steps; step_size_uV = desc->cpr_fuses.init_voltage_step; uV = fdata->ref_uV + steps * step_size_uV; return DIV_ROUND_UP(uV, step_volt) * step_volt; } static int cpr_fuse_corner_init(struct cpr_drv *drv) { const struct cpr_desc *desc = drv->desc; const struct cpr_fuse *fuses = drv->cpr_fuses; const struct acc_desc *acc_desc = drv->acc_desc; int i; unsigned int step_volt; struct fuse_corner_data *fdata; struct fuse_corner *fuse, *end; int uV; const struct reg_sequence *accs; int ret; accs = acc_desc->settings; step_volt = regulator_get_linear_step(drv->vdd_apc); if (!step_volt) return -EINVAL; /* Populate fuse_corner members */ fuse = drv->fuse_corners; end = &fuse[desc->num_fuse_corners - 1]; fdata = desc->cpr_fuses.fuse_corner_data; for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) { /* * Update SoC voltages: platforms might choose a different * regulators than the one used to characterize the algorithms * (ie, init_voltage_step). */ fdata->min_uV = roundup(fdata->min_uV, step_volt); fdata->max_uV = roundup(fdata->max_uV, step_volt); /* Populate uV */ uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage, step_volt, drv); if (uV < 0) return uV; fuse->min_uV = fdata->min_uV; fuse->max_uV = fdata->max_uV; fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV); if (fuse == end) { /* * Allow the highest fuse corner's PVS voltage to * define the ceiling voltage for that corner in order * to support SoC's in which variable ceiling values * are required. */ end->max_uV = max(end->max_uV, end->uV); } /* Populate target quotient by scaling */ ret = cpr_read_efuse(drv->dev, fuses->quotient, &fuse->quot); if (ret) return ret; fuse->quot *= fdata->quot_scale; fuse->quot += fdata->quot_offset; fuse->quot += fdata->quot_adjust; fuse->step_quot = desc->step_quot[fuse->ring_osc_idx]; /* Populate acc settings */ fuse->accs = accs; fuse->num_accs = acc_desc->num_regs_per_fuse; accs += acc_desc->num_regs_per_fuse; } /* * Restrict all fuse corner PVS voltages based upon per corner * ceiling and floor voltages. */ for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) { if (fuse->uV > fuse->max_uV) fuse->uV = fuse->max_uV; else if (fuse->uV < fuse->min_uV) fuse->uV = fuse->min_uV; ret = regulator_is_supported_voltage(drv->vdd_apc, fuse->min_uV, fuse->min_uV); if (!ret) { dev_err(drv->dev, "min uV: %d (fuse corner: %d) not supported by regulator\n", fuse->min_uV, i); return -EINVAL; } ret = regulator_is_supported_voltage(drv->vdd_apc, fuse->max_uV, fuse->max_uV); if (!ret) { dev_err(drv->dev, "max uV: %d (fuse corner: %d) not supported by regulator\n", fuse->max_uV, i); return -EINVAL; } dev_dbg(drv->dev, "fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n", i, fuse->min_uV, fuse->uV, fuse->max_uV, fuse->ring_osc_idx, fuse->quot, fuse->step_quot); } return 0; } static int cpr_calculate_scaling(const char *quot_offset, struct cpr_drv *drv, const struct fuse_corner_data *fdata, const struct corner *corner) { u32 quot_diff = 0; unsigned long freq_diff; int scaling; const struct fuse_corner *fuse, *prev_fuse; int ret; fuse = corner->fuse_corner; prev_fuse = fuse - 1; if (quot_offset) { ret = cpr_read_efuse(drv->dev, quot_offset, "_diff); if (ret) return ret; quot_diff *= fdata->quot_offset_scale; quot_diff += fdata->quot_offset_adjust; } else { quot_diff = fuse->quot - prev_fuse->quot; } freq_diff = fuse->max_freq - prev_fuse->max_freq; freq_diff /= 1000000; /* Convert to MHz */ scaling = 1000 * quot_diff / freq_diff; return min(scaling, fdata->max_quot_scale); } static int cpr_interpolate(const struct corner *corner, int step_volt, const struct fuse_corner_data *fdata) { unsigned long f_high, f_low, f_diff; int uV_high, uV_low, uV; u64 temp, temp_limit; const struct fuse_corner *fuse, *prev_fuse; fuse = corner->fuse_corner; prev_fuse = fuse - 1; f_high = fuse->max_freq; f_low = prev_fuse->max_freq; uV_high = fuse->uV; uV_low = prev_fuse->uV; f_diff = fuse->max_freq - corner->freq; /* * Don't interpolate in the wrong direction. This could happen * if the adjusted fuse voltage overlaps with the previous fuse's * adjusted voltage. */ if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq) return corner->uV; temp = f_diff * (uV_high - uV_low); temp = div64_ul(temp, f_high - f_low); /* * max_volt_scale has units of uV/MHz while freq values * have units of Hz. Divide by 1000000 to convert to. */ temp_limit = f_diff * fdata->max_volt_scale; do_div(temp_limit, 1000000); uV = uV_high - min(temp, temp_limit); return roundup(uV, step_volt); } static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp) { struct device_node *np; unsigned int fuse_corner = 0; np = dev_pm_opp_get_of_node(opp); if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner)) pr_err("%s: missing 'qcom,opp-fuse-level' property\n", __func__); of_node_put(np); return fuse_corner; } static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref, struct device *cpu_dev) { u64 rate = 0; struct device_node *ref_np; struct device_node *desc_np; struct device_node *child_np = NULL; struct device_node *child_req_np = NULL; desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev); if (!desc_np) return 0; ref_np = dev_pm_opp_get_of_node(ref); if (!ref_np) goto out_ref; do { of_node_put(child_req_np); child_np = of_get_next_available_child(desc_np, child_np); child_req_np = of_parse_phandle(child_np, "required-opps", 0); } while (child_np && child_req_np != ref_np); if (child_np && child_req_np == ref_np) of_property_read_u64(child_np, "opp-hz", &rate); of_node_put(child_req_np); of_node_put(child_np); of_node_put(ref_np); out_ref: of_node_put(desc_np); return (unsigned long) rate; } static int cpr_corner_init(struct cpr_drv *drv) { const struct cpr_desc *desc = drv->desc; const struct cpr_fuse *fuses = drv->cpr_fuses; int i, level, scaling = 0; unsigned int fnum, fc; const char *quot_offset; struct fuse_corner *fuse, *prev_fuse; struct corner *corner, *end; struct corner_data *cdata; const struct fuse_corner_data *fdata; bool apply_scaling; unsigned long freq_diff, freq_diff_mhz; unsigned long freq; int step_volt = regulator_get_linear_step(drv->vdd_apc); struct dev_pm_opp *opp; if (!step_volt) return -EINVAL; corner = drv->corners; end = &corner[drv->num_corners - 1]; cdata = devm_kcalloc(drv->dev, drv->num_corners, sizeof(struct corner_data), GFP_KERNEL); if (!cdata) return -ENOMEM; /* * Store maximum frequency for each fuse corner based on the frequency * plan */ for (level = 1; level <= drv->num_corners; level++) { opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level); if (IS_ERR(opp)) return -EINVAL; fc = cpr_get_fuse_corner(opp); if (!fc) { dev_pm_opp_put(opp); return -EINVAL; } fnum = fc - 1; freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev); if (!freq) { dev_pm_opp_put(opp); return -EINVAL; } cdata[level - 1].fuse_corner = fnum; cdata[level - 1].freq = freq; fuse = &drv->fuse_corners[fnum]; dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n", freq, dev_pm_opp_get_level(opp) - 1, fnum); if (freq > fuse->max_freq) fuse->max_freq = freq; dev_pm_opp_put(opp); } /* * Get the quotient adjustment scaling factor, according to: * * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1)) * / (freq(corner_N) - freq(corner_N-1)), max_factor) * * QUOT(corner_N): quotient read from fuse for fuse corner N * QUOT(corner_N-1): quotient read from fuse for fuse corner (N - 1) * freq(corner_N): max frequency in MHz supported by fuse corner N * freq(corner_N-1): max frequency in MHz supported by fuse corner * (N - 1) * * Then walk through the corners mapped to each fuse corner * and calculate the quotient adjustment for each one using the * following formula: * * quot_adjust = (freq_max - freq_corner) * scaling / 1000 * * freq_max: max frequency in MHz supported by the fuse corner * freq_corner: frequency in MHz corresponding to the corner * scaling: calculated from above equation * * * + + * | v | * q | f c o | f c * u | c l | c * o | f t | f * t | c a | c * | c f g | c f * | e | * +--------------- +---------------- * 0 1 2 3 4 5 6 0 1 2 3 4 5 6 * corner corner * * c = corner * f = fuse corner * */ for (apply_scaling = false, i = 0; corner <= end; corner++, i++) { fnum = cdata[i].fuse_corner; fdata = &desc->cpr_fuses.fuse_corner_data[fnum]; quot_offset = fuses[fnum].quotient_offset; fuse = &drv->fuse_corners[fnum]; if (fnum) prev_fuse = &drv->fuse_corners[fnum - 1]; else prev_fuse = NULL; corner->fuse_corner = fuse; corner->freq = cdata[i].freq; corner->uV = fuse->uV; if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) { scaling = cpr_calculate_scaling(quot_offset, drv, fdata, corner); if (scaling < 0) return scaling; apply_scaling = true; } else if (corner->freq == fuse->max_freq) { /* This is a fuse corner; don't scale anything */ apply_scaling = false; } if (apply_scaling) { freq_diff = fuse->max_freq - corner->freq; freq_diff_mhz = freq_diff / 1000000; corner->quot_adjust = scaling * freq_diff_mhz / 1000; corner->uV = cpr_interpolate(corner, step_volt, fdata); } corner->max_uV = fuse->max_uV; corner->min_uV = fuse->min_uV; corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV); corner->last_uV = corner->uV; /* Reduce the ceiling voltage if needed */ if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV) corner->max_uV = corner->uV; else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV) corner->max_uV = max(corner->min_uV, fuse->uV); dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i, corner->min_uV, corner->uV, corner->max_uV, fuse->quot - corner->quot_adjust); } return 0; } static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv) { const struct cpr_desc *desc = drv->desc; struct cpr_fuse *fuses; int i; fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners, sizeof(struct cpr_fuse), GFP_KERNEL); if (!fuses) return ERR_PTR(-ENOMEM); for (i = 0; i < desc->num_fuse_corners; i++) { char tbuf[32]; snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1); fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL); if (!fuses[i].ring_osc) return ERR_PTR(-ENOMEM); snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1); fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL); if (!fuses[i].init_voltage) return ERR_PTR(-ENOMEM); snprintf(tbuf, 32, "cpr_quotient%d", i + 1); fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL); if (!fuses[i].quotient) return ERR_PTR(-ENOMEM); snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1); fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL); if (!fuses[i].quotient_offset) return ERR_PTR(-ENOMEM); } return fuses; } static void cpr_set_loop_allowed(struct cpr_drv *drv) { drv->loop_disabled = false; } static int cpr_init_parameters(struct cpr_drv *drv) { const struct cpr_desc *desc = drv->desc; struct clk *clk; clk = clk_get(drv->dev, "ref"); if (IS_ERR(clk)) return PTR_ERR(clk); drv->ref_clk_khz = clk_get_rate(clk) / 1000; clk_put(clk); if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK || desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK || desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK || desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK || desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK || desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK) return -EINVAL; dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n", desc->up_threshold, desc->down_threshold); return 0; } static int cpr_find_initial_corner(struct cpr_drv *drv) { unsigned long rate; const struct corner *end; struct corner *iter; unsigned int i = 0; if (!drv->cpu_clk) { dev_err(drv->dev, "cannot get rate from NULL clk\n"); return -EINVAL; } end = &drv->corners[drv->num_corners - 1]; rate = clk_get_rate(drv->cpu_clk); /* * Some bootloaders set a CPU clock frequency that is not defined * in the OPP table. When running at an unlisted frequency, * cpufreq_online() will change to the OPP which has the lowest * frequency, at or above the unlisted frequency. * Since cpufreq_online() always "rounds up" in the case of an * unlisted frequency, this function always "rounds down" in case * of an unlisted frequency. That way, when cpufreq_online() * triggers the first ever call to cpr_set_performance_state(), * it will correctly determine the direction as UP. */ for (iter = drv->corners; iter <= end; iter++) { if (iter->freq > rate) break; i++; if (iter->freq == rate) { drv->corner = iter; break; } if (iter->freq < rate) drv->corner = iter; } if (!drv->corner) { dev_err(drv->dev, "boot up corner not found\n"); return -EINVAL; } dev_dbg(drv->dev, "boot up perf state: %u\n", i); return 0; } static const struct cpr_desc qcs404_cpr_desc = { .num_fuse_corners = 3, .min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF, .step_quot = (int []){ 25, 25, 25, }, .timer_delay_us = 5000, .timer_cons_up = 0, .timer_cons_down = 2, .up_threshold = 1, .down_threshold = 3, .idle_clocks = 15, .gcnt_us = 1, .vdd_apc_step_up_limit = 1, .vdd_apc_step_down_limit = 1, .cpr_fuses = { .init_voltage_step = 8000, .init_voltage_width = 6, .fuse_corner_data = (struct fuse_corner_data[]){ /* fuse corner 0 */ { .ref_uV = 1224000, .max_uV = 1224000, .min_uV = 1048000, .max_volt_scale = 0, .max_quot_scale = 0, .quot_offset = 0, .quot_scale = 1, .quot_adjust = 0, .quot_offset_scale = 5, .quot_offset_adjust = 0, }, /* fuse corner 1 */ { .ref_uV = 1288000, .max_uV = 1288000, .min_uV = 1048000, .max_volt_scale = 2000, .max_quot_scale = 1400, .quot_offset = 0, .quot_scale = 1, .quot_adjust = -20, .quot_offset_scale = 5, .quot_offset_adjust = 0, }, /* fuse corner 2 */ { .ref_uV = 1352000, .max_uV = 1384000, .min_uV = 1088000, .max_volt_scale = 2000, .max_quot_scale = 1400, .quot_offset = 0, .quot_scale = 1, .quot_adjust = 0, .quot_offset_scale = 5, .quot_offset_adjust = 0, }, }, }, }; static const struct acc_desc qcs404_acc_desc = { .settings = (struct reg_sequence[]){ { 0xb120, 0x1041040 }, { 0xb124, 0x41 }, { 0xb120, 0x0 }, { 0xb124, 0x0 }, { 0xb120, 0x0 }, { 0xb124, 0x0 }, }, .config = (struct reg_sequence[]){ { 0xb138, 0xff }, { 0xb130, 0x5555 }, }, .num_regs_per_fuse = 2, }; static const struct cpr_acc_desc qcs404_cpr_acc_desc = { .cpr_desc = &qcs404_cpr_desc, .acc_desc = &qcs404_acc_desc, }; static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd, struct dev_pm_opp *opp) { return dev_pm_opp_get_level(opp); } static int cpr_power_off(struct generic_pm_domain *domain) { struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); return cpr_disable(drv); } static int cpr_power_on(struct generic_pm_domain *domain) { struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); return cpr_enable(drv); } static int cpr_pd_attach_dev(struct generic_pm_domain *domain, struct device *dev) { struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd); const struct acc_desc *acc_desc = drv->acc_desc; int ret = 0; mutex_lock(&drv->lock); dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev)); /* * This driver only supports scaling voltage for a CPU cluster * where all CPUs in the cluster share a single regulator. * Therefore, save the struct device pointer only for the first * CPU device that gets attached. There is no need to do any * additional initialization when further CPUs get attached. */ if (drv->attached_cpu_dev) goto unlock; /* * cpr_scale_voltage() requires the direction (if we are changing * to a higher or lower OPP). The first time * cpr_set_performance_state() is called, there is no previous * performance state defined. Therefore, we call * cpr_find_initial_corner() that gets the CPU clock frequency * set by the bootloader, so that we can determine the direction * the first time cpr_set_performance_state() is called. */ drv->cpu_clk = devm_clk_get(dev, NULL); if (IS_ERR(drv->cpu_clk)) { ret = PTR_ERR(drv->cpu_clk); if (ret != -EPROBE_DEFER) dev_err(drv->dev, "could not get cpu clk: %d\n", ret); goto unlock; } drv->attached_cpu_dev = dev; dev_dbg(drv->dev, "using cpu clk from: %s\n", dev_name(drv->attached_cpu_dev)); /* * Everything related to (virtual) corners has to be initialized * here, when attaching to the power domain, since we need to know * the maximum frequency for each fuse corner, and this is only * available after the cpufreq driver has attached to us. * The reason for this is that we need to know the highest * frequency associated with each fuse corner. */ ret = dev_pm_opp_get_opp_count(&drv->pd.dev); if (ret < 0) { dev_err(drv->dev, "could not get OPP count\n"); goto unlock; } drv->num_corners = ret; if (drv->num_corners < 2) { dev_err(drv->dev, "need at least 2 OPPs to use CPR\n"); ret = -EINVAL; goto unlock; } drv->corners = devm_kcalloc(drv->dev, drv->num_corners, sizeof(*drv->corners), GFP_KERNEL); if (!drv->corners) { ret = -ENOMEM; goto unlock; } ret = cpr_corner_init(drv); if (ret) goto unlock; cpr_set_loop_allowed(drv); ret = cpr_init_parameters(drv); if (ret) goto unlock; /* Configure CPR HW but keep it disabled */ ret = cpr_config(drv); if (ret) goto unlock; ret = cpr_find_initial_corner(drv); if (ret) goto unlock; if (acc_desc->config) regmap_multi_reg_write(drv->tcsr, acc_desc->config, acc_desc->num_regs_per_fuse); /* Enable ACC if required */ if (acc_desc->enable_mask) regmap_update_bits(drv->tcsr, acc_desc->enable_reg, acc_desc->enable_mask, acc_desc->enable_mask); dev_info(drv->dev, "driver initialized with %u OPPs\n", drv->num_corners); unlock: mutex_unlock(&drv->lock); return ret; } static int cpr_debug_info_show(struct seq_file *s, void *unused) { u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps; u32 step_dn, step_up, error, error_lt0, busy; struct cpr_drv *drv = s->private; struct fuse_corner *fuse_corner; struct corner *corner; corner = drv->corner; fuse_corner = corner->fuse_corner; seq_printf(s, "corner, current_volt = %d uV\n", corner->last_uV); ro_sel = fuse_corner->ring_osc_idx; gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel)); seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt); ctl = cpr_read(drv, REG_RBCPR_CTL); seq_printf(s, "rbcpr_ctl = %#02X\n", ctl); irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS); seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status); reg = cpr_read(drv, REG_RBCPR_RESULT_0); seq_printf(s, "rbcpr_result_0 = %#02X\n", reg); step_dn = reg & 0x01; step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01; seq_printf(s, " [step_dn = %u", step_dn); seq_printf(s, ", step_up = %u", step_up); error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT) & RBCPR_RESULT0_ERROR_STEPS_MASK; seq_printf(s, ", error_steps = %u", error_steps); error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK; seq_printf(s, ", error = %u", error); error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01; seq_printf(s, ", error_lt_0 = %u", error_lt0); busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01; seq_printf(s, ", busy = %u]\n", busy); return 0; } DEFINE_SHOW_ATTRIBUTE(cpr_debug_info); static void cpr_debugfs_init(struct cpr_drv *drv) { drv->debugfs = debugfs_create_dir("qcom_cpr", NULL); debugfs_create_file("debug_info", 0444, drv->debugfs, drv, &cpr_debug_info_fops); } static int cpr_probe(struct platform_device *pdev) { struct resource *res; struct device *dev = &pdev->dev; struct cpr_drv *drv; int irq, ret; const struct cpr_acc_desc *data; struct device_node *np; u32 cpr_rev = FUSE_REVISION_UNKNOWN; data = of_device_get_match_data(dev); if (!data || !data->cpr_desc || !data->acc_desc) return -EINVAL; drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL); if (!drv) return -ENOMEM; drv->dev = dev; drv->desc = data->cpr_desc; drv->acc_desc = data->acc_desc; drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners, sizeof(*drv->fuse_corners), GFP_KERNEL); if (!drv->fuse_corners) return -ENOMEM; np = of_parse_phandle(dev->of_node, "acc-syscon", 0); if (!np) return -ENODEV; drv->tcsr = syscon_node_to_regmap(np); of_node_put(np); if (IS_ERR(drv->tcsr)) return PTR_ERR(drv->tcsr); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); drv->base = devm_ioremap_resource(dev, res); if (IS_ERR(drv->base)) return PTR_ERR(drv->base); irq = platform_get_irq(pdev, 0); if (irq < 0) return -EINVAL; drv->vdd_apc = devm_regulator_get(dev, "vdd-apc"); if (IS_ERR(drv->vdd_apc)) return PTR_ERR(drv->vdd_apc); /* * Initialize fuse corners, since it simply depends * on data in efuses. * Everything related to (virtual) corners has to be * initialized after attaching to the power domain, * since it depends on the CPU's OPP table. */ ret = cpr_read_efuse(dev, "cpr_fuse_revision", &cpr_rev); if (ret) return ret; drv->cpr_fuses = cpr_get_fuses(drv); if (IS_ERR(drv->cpr_fuses)) return PTR_ERR(drv->cpr_fuses); ret = cpr_populate_ring_osc_idx(drv); if (ret) return ret; ret = cpr_fuse_corner_init(drv); if (ret) return ret; mutex_init(&drv->lock); ret = devm_request_threaded_irq(dev, irq, NULL, cpr_irq_handler, IRQF_ONESHOT | IRQF_TRIGGER_RISING, "cpr", drv); if (ret) return ret; drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name, GFP_KERNEL); if (!drv->pd.name) return -EINVAL; drv->pd.power_off = cpr_power_off; drv->pd.power_on = cpr_power_on; drv->pd.set_performance_state = cpr_set_performance_state; drv->pd.opp_to_performance_state = cpr_get_performance_state; drv->pd.attach_dev = cpr_pd_attach_dev; ret = pm_genpd_init(&drv->pd, NULL, true); if (ret) return ret; ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd); if (ret) goto err_remove_genpd; platform_set_drvdata(pdev, drv); cpr_debugfs_init(drv); return 0; err_remove_genpd: pm_genpd_remove(&drv->pd); return ret; } static int cpr_remove(struct platform_device *pdev) { struct cpr_drv *drv = platform_get_drvdata(pdev); if (cpr_is_allowed(drv)) { cpr_ctl_disable(drv); cpr_irq_set(drv, 0); } of_genpd_del_provider(pdev->dev.of_node); pm_genpd_remove(&drv->pd); debugfs_remove_recursive(drv->debugfs); return 0; } static const struct of_device_id cpr_match_table[] = { { .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc }, { } }; MODULE_DEVICE_TABLE(of, cpr_match_table); static struct platform_driver cpr_driver = { .probe = cpr_probe, .remove = cpr_remove, .driver = { .name = "qcom-cpr", .of_match_table = cpr_match_table, }, }; module_platform_driver(cpr_driver); MODULE_DESCRIPTION("Core Power Reduction (CPR) driver"); MODULE_LICENSE("GPL v2");