// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) Maxime Coquelin 2015 * Copyright (C) STMicroelectronics SA 2017 * Authors: Maxime Coquelin * Gerald Baeza * * Inspired by st-asc.c from STMicroelectronics (c) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "serial_mctrl_gpio.h" #include "stm32-usart.h" static void stm32_usart_stop_tx(struct uart_port *port); static void stm32_usart_transmit_chars(struct uart_port *port); static inline struct stm32_port *to_stm32_port(struct uart_port *port) { return container_of(port, struct stm32_port, port); } static void stm32_usart_set_bits(struct uart_port *port, u32 reg, u32 bits) { u32 val; val = readl_relaxed(port->membase + reg); val |= bits; writel_relaxed(val, port->membase + reg); } static void stm32_usart_clr_bits(struct uart_port *port, u32 reg, u32 bits) { u32 val; val = readl_relaxed(port->membase + reg); val &= ~bits; writel_relaxed(val, port->membase + reg); } static void stm32_usart_config_reg_rs485(u32 *cr1, u32 *cr3, u32 delay_ADE, u32 delay_DDE, u32 baud) { u32 rs485_deat_dedt; u32 rs485_deat_dedt_max = (USART_CR1_DEAT_MASK >> USART_CR1_DEAT_SHIFT); bool over8; *cr3 |= USART_CR3_DEM; over8 = *cr1 & USART_CR1_OVER8; *cr1 &= ~(USART_CR1_DEDT_MASK | USART_CR1_DEAT_MASK); if (over8) rs485_deat_dedt = delay_ADE * baud * 8; else rs485_deat_dedt = delay_ADE * baud * 16; rs485_deat_dedt = DIV_ROUND_CLOSEST(rs485_deat_dedt, 1000); rs485_deat_dedt = rs485_deat_dedt > rs485_deat_dedt_max ? rs485_deat_dedt_max : rs485_deat_dedt; rs485_deat_dedt = (rs485_deat_dedt << USART_CR1_DEAT_SHIFT) & USART_CR1_DEAT_MASK; *cr1 |= rs485_deat_dedt; if (over8) rs485_deat_dedt = delay_DDE * baud * 8; else rs485_deat_dedt = delay_DDE * baud * 16; rs485_deat_dedt = DIV_ROUND_CLOSEST(rs485_deat_dedt, 1000); rs485_deat_dedt = rs485_deat_dedt > rs485_deat_dedt_max ? rs485_deat_dedt_max : rs485_deat_dedt; rs485_deat_dedt = (rs485_deat_dedt << USART_CR1_DEDT_SHIFT) & USART_CR1_DEDT_MASK; *cr1 |= rs485_deat_dedt; } static int stm32_usart_config_rs485(struct uart_port *port, struct serial_rs485 *rs485conf) { struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; const struct stm32_usart_config *cfg = &stm32_port->info->cfg; u32 usartdiv, baud, cr1, cr3; bool over8; stm32_usart_clr_bits(port, ofs->cr1, BIT(cfg->uart_enable_bit)); port->rs485 = *rs485conf; rs485conf->flags |= SER_RS485_RX_DURING_TX; if (rs485conf->flags & SER_RS485_ENABLED) { cr1 = readl_relaxed(port->membase + ofs->cr1); cr3 = readl_relaxed(port->membase + ofs->cr3); usartdiv = readl_relaxed(port->membase + ofs->brr); usartdiv = usartdiv & GENMASK(15, 0); over8 = cr1 & USART_CR1_OVER8; if (over8) usartdiv = usartdiv | (usartdiv & GENMASK(4, 0)) << USART_BRR_04_R_SHIFT; baud = DIV_ROUND_CLOSEST(port->uartclk, usartdiv); stm32_usart_config_reg_rs485(&cr1, &cr3, rs485conf->delay_rts_before_send, rs485conf->delay_rts_after_send, baud); if (rs485conf->flags & SER_RS485_RTS_ON_SEND) { cr3 &= ~USART_CR3_DEP; rs485conf->flags &= ~SER_RS485_RTS_AFTER_SEND; } else { cr3 |= USART_CR3_DEP; rs485conf->flags |= SER_RS485_RTS_AFTER_SEND; } writel_relaxed(cr3, port->membase + ofs->cr3); writel_relaxed(cr1, port->membase + ofs->cr1); } else { stm32_usart_clr_bits(port, ofs->cr3, USART_CR3_DEM | USART_CR3_DEP); stm32_usart_clr_bits(port, ofs->cr1, USART_CR1_DEDT_MASK | USART_CR1_DEAT_MASK); } stm32_usart_set_bits(port, ofs->cr1, BIT(cfg->uart_enable_bit)); return 0; } static int stm32_usart_init_rs485(struct uart_port *port, struct platform_device *pdev) { struct serial_rs485 *rs485conf = &port->rs485; rs485conf->flags = 0; rs485conf->delay_rts_before_send = 0; rs485conf->delay_rts_after_send = 0; if (!pdev->dev.of_node) return -ENODEV; return uart_get_rs485_mode(port); } static int stm32_usart_pending_rx(struct uart_port *port, u32 *sr, int *last_res, bool threaded) { struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; enum dma_status status; struct dma_tx_state state; *sr = readl_relaxed(port->membase + ofs->isr); if (threaded && stm32_port->rx_ch) { status = dmaengine_tx_status(stm32_port->rx_ch, stm32_port->rx_ch->cookie, &state); if (status == DMA_IN_PROGRESS && (*last_res != state.residue)) return 1; else return 0; } else if (*sr & USART_SR_RXNE) { return 1; } return 0; } static unsigned long stm32_usart_get_char(struct uart_port *port, u32 *sr, int *last_res) { struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; unsigned long c; if (stm32_port->rx_ch) { c = stm32_port->rx_buf[RX_BUF_L - (*last_res)--]; if ((*last_res) == 0) *last_res = RX_BUF_L; } else { c = readl_relaxed(port->membase + ofs->rdr); /* apply RDR data mask */ c &= stm32_port->rdr_mask; } return c; } static void stm32_usart_receive_chars(struct uart_port *port, bool threaded) { struct tty_port *tport = &port->state->port; struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; unsigned long c; u32 sr; char flag; spin_lock(&port->lock); while (stm32_usart_pending_rx(port, &sr, &stm32_port->last_res, threaded)) { sr |= USART_SR_DUMMY_RX; flag = TTY_NORMAL; /* * Status bits has to be cleared before reading the RDR: * In FIFO mode, reading the RDR will pop the next data * (if any) along with its status bits into the SR. * Not doing so leads to misalignement between RDR and SR, * and clear status bits of the next rx data. * * Clear errors flags for stm32f7 and stm32h7 compatible * devices. On stm32f4 compatible devices, the error bit is * cleared by the sequence [read SR - read DR]. */ if ((sr & USART_SR_ERR_MASK) && ofs->icr != UNDEF_REG) writel_relaxed(sr & USART_SR_ERR_MASK, port->membase + ofs->icr); c = stm32_usart_get_char(port, &sr, &stm32_port->last_res); port->icount.rx++; if (sr & USART_SR_ERR_MASK) { if (sr & USART_SR_ORE) { port->icount.overrun++; } else if (sr & USART_SR_PE) { port->icount.parity++; } else if (sr & USART_SR_FE) { /* Break detection if character is null */ if (!c) { port->icount.brk++; if (uart_handle_break(port)) continue; } else { port->icount.frame++; } } sr &= port->read_status_mask; if (sr & USART_SR_PE) { flag = TTY_PARITY; } else if (sr & USART_SR_FE) { if (!c) flag = TTY_BREAK; else flag = TTY_FRAME; } } if (uart_handle_sysrq_char(port, c)) continue; uart_insert_char(port, sr, USART_SR_ORE, c, flag); } spin_unlock(&port->lock); tty_flip_buffer_push(tport); } static void stm32_usart_tx_dma_complete(void *arg) { struct uart_port *port = arg; struct stm32_port *stm32port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32port->info->ofs; unsigned long flags; dmaengine_terminate_async(stm32port->tx_ch); stm32_usart_clr_bits(port, ofs->cr3, USART_CR3_DMAT); stm32port->tx_dma_busy = false; /* Let's see if we have pending data to send */ spin_lock_irqsave(&port->lock, flags); stm32_usart_transmit_chars(port); spin_unlock_irqrestore(&port->lock, flags); } static void stm32_usart_tx_interrupt_enable(struct uart_port *port) { struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; /* * Enables TX FIFO threashold irq when FIFO is enabled, * or TX empty irq when FIFO is disabled */ if (stm32_port->fifoen) stm32_usart_set_bits(port, ofs->cr3, USART_CR3_TXFTIE); else stm32_usart_set_bits(port, ofs->cr1, USART_CR1_TXEIE); } static void stm32_usart_tx_interrupt_disable(struct uart_port *port) { struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; if (stm32_port->fifoen) stm32_usart_clr_bits(port, ofs->cr3, USART_CR3_TXFTIE); else stm32_usart_clr_bits(port, ofs->cr1, USART_CR1_TXEIE); } static void stm32_usart_transmit_chars_pio(struct uart_port *port) { struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; struct circ_buf *xmit = &port->state->xmit; if (stm32_port->tx_dma_busy) { stm32_usart_clr_bits(port, ofs->cr3, USART_CR3_DMAT); stm32_port->tx_dma_busy = false; } while (!uart_circ_empty(xmit)) { /* Check that TDR is empty before filling FIFO */ if (!(readl_relaxed(port->membase + ofs->isr) & USART_SR_TXE)) break; writel_relaxed(xmit->buf[xmit->tail], port->membase + ofs->tdr); xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); port->icount.tx++; } /* rely on TXE irq (mask or unmask) for sending remaining data */ if (uart_circ_empty(xmit)) stm32_usart_tx_interrupt_disable(port); else stm32_usart_tx_interrupt_enable(port); } static void stm32_usart_transmit_chars_dma(struct uart_port *port) { struct stm32_port *stm32port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32port->info->ofs; struct circ_buf *xmit = &port->state->xmit; struct dma_async_tx_descriptor *desc = NULL; unsigned int count, i; if (stm32port->tx_dma_busy) return; stm32port->tx_dma_busy = true; count = uart_circ_chars_pending(xmit); if (count > TX_BUF_L) count = TX_BUF_L; if (xmit->tail < xmit->head) { memcpy(&stm32port->tx_buf[0], &xmit->buf[xmit->tail], count); } else { size_t one = UART_XMIT_SIZE - xmit->tail; size_t two; if (one > count) one = count; two = count - one; memcpy(&stm32port->tx_buf[0], &xmit->buf[xmit->tail], one); if (two) memcpy(&stm32port->tx_buf[one], &xmit->buf[0], two); } desc = dmaengine_prep_slave_single(stm32port->tx_ch, stm32port->tx_dma_buf, count, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); if (!desc) goto fallback_err; desc->callback = stm32_usart_tx_dma_complete; desc->callback_param = port; /* Push current DMA TX transaction in the pending queue */ if (dma_submit_error(dmaengine_submit(desc))) { /* dma no yet started, safe to free resources */ dmaengine_terminate_async(stm32port->tx_ch); goto fallback_err; } /* Issue pending DMA TX requests */ dma_async_issue_pending(stm32port->tx_ch); stm32_usart_set_bits(port, ofs->cr3, USART_CR3_DMAT); xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1); port->icount.tx += count; return; fallback_err: for (i = count; i > 0; i--) stm32_usart_transmit_chars_pio(port); } static void stm32_usart_transmit_chars(struct uart_port *port) { struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; struct circ_buf *xmit = &port->state->xmit; u32 isr; int ret; if (port->x_char) { if (stm32_port->tx_dma_busy) stm32_usart_clr_bits(port, ofs->cr3, USART_CR3_DMAT); /* Check that TDR is empty before filling FIFO */ ret = readl_relaxed_poll_timeout_atomic(port->membase + ofs->isr, isr, (isr & USART_SR_TXE), 10, 1000); if (ret) dev_warn(port->dev, "1 character may be erased\n"); writel_relaxed(port->x_char, port->membase + ofs->tdr); port->x_char = 0; port->icount.tx++; if (stm32_port->tx_dma_busy) stm32_usart_set_bits(port, ofs->cr3, USART_CR3_DMAT); return; } if (uart_circ_empty(xmit) || uart_tx_stopped(port)) { stm32_usart_tx_interrupt_disable(port); return; } if (ofs->icr == UNDEF_REG) stm32_usart_clr_bits(port, ofs->isr, USART_SR_TC); else writel_relaxed(USART_ICR_TCCF, port->membase + ofs->icr); if (stm32_port->tx_ch) stm32_usart_transmit_chars_dma(port); else stm32_usart_transmit_chars_pio(port); if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(port); if (uart_circ_empty(xmit)) stm32_usart_tx_interrupt_disable(port); } static irqreturn_t stm32_usart_interrupt(int irq, void *ptr) { struct uart_port *port = ptr; struct tty_port *tport = &port->state->port; struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; u32 sr; sr = readl_relaxed(port->membase + ofs->isr); if ((sr & USART_SR_RTOF) && ofs->icr != UNDEF_REG) writel_relaxed(USART_ICR_RTOCF, port->membase + ofs->icr); if ((sr & USART_SR_WUF) && ofs->icr != UNDEF_REG) { /* Clear wake up flag and disable wake up interrupt */ writel_relaxed(USART_ICR_WUCF, port->membase + ofs->icr); stm32_usart_clr_bits(port, ofs->cr3, USART_CR3_WUFIE); if (irqd_is_wakeup_set(irq_get_irq_data(port->irq))) pm_wakeup_event(tport->tty->dev, 0); } if ((sr & USART_SR_RXNE) && !(stm32_port->rx_ch)) stm32_usart_receive_chars(port, false); if ((sr & USART_SR_TXE) && !(stm32_port->tx_ch)) { spin_lock(&port->lock); stm32_usart_transmit_chars(port); spin_unlock(&port->lock); } if (stm32_port->rx_ch) return IRQ_WAKE_THREAD; else return IRQ_HANDLED; } static irqreturn_t stm32_usart_threaded_interrupt(int irq, void *ptr) { struct uart_port *port = ptr; struct stm32_port *stm32_port = to_stm32_port(port); if (stm32_port->rx_ch) stm32_usart_receive_chars(port, true); return IRQ_HANDLED; } static unsigned int stm32_usart_tx_empty(struct uart_port *port) { struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; if (readl_relaxed(port->membase + ofs->isr) & USART_SR_TC) return TIOCSER_TEMT; return 0; } static void stm32_usart_set_mctrl(struct uart_port *port, unsigned int mctrl) { struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; if ((mctrl & TIOCM_RTS) && (port->status & UPSTAT_AUTORTS)) stm32_usart_set_bits(port, ofs->cr3, USART_CR3_RTSE); else stm32_usart_clr_bits(port, ofs->cr3, USART_CR3_RTSE); mctrl_gpio_set(stm32_port->gpios, mctrl); } static unsigned int stm32_usart_get_mctrl(struct uart_port *port) { struct stm32_port *stm32_port = to_stm32_port(port); unsigned int ret; /* This routine is used to get signals of: DCD, DSR, RI, and CTS */ ret = TIOCM_CAR | TIOCM_DSR | TIOCM_CTS; return mctrl_gpio_get(stm32_port->gpios, &ret); } static void stm32_usart_enable_ms(struct uart_port *port) { mctrl_gpio_enable_ms(to_stm32_port(port)->gpios); } static void stm32_usart_disable_ms(struct uart_port *port) { mctrl_gpio_disable_ms(to_stm32_port(port)->gpios); } /* Transmit stop */ static void stm32_usart_stop_tx(struct uart_port *port) { struct stm32_port *stm32_port = to_stm32_port(port); struct serial_rs485 *rs485conf = &port->rs485; stm32_usart_tx_interrupt_disable(port); if (rs485conf->flags & SER_RS485_ENABLED) { if (rs485conf->flags & SER_RS485_RTS_ON_SEND) { mctrl_gpio_set(stm32_port->gpios, stm32_port->port.mctrl & ~TIOCM_RTS); } else { mctrl_gpio_set(stm32_port->gpios, stm32_port->port.mctrl | TIOCM_RTS); } } } /* There are probably characters waiting to be transmitted. */ static void stm32_usart_start_tx(struct uart_port *port) { struct stm32_port *stm32_port = to_stm32_port(port); struct serial_rs485 *rs485conf = &port->rs485; struct circ_buf *xmit = &port->state->xmit; if (uart_circ_empty(xmit) && !port->x_char) return; if (rs485conf->flags & SER_RS485_ENABLED) { if (rs485conf->flags & SER_RS485_RTS_ON_SEND) { mctrl_gpio_set(stm32_port->gpios, stm32_port->port.mctrl | TIOCM_RTS); } else { mctrl_gpio_set(stm32_port->gpios, stm32_port->port.mctrl & ~TIOCM_RTS); } } stm32_usart_transmit_chars(port); } /* Throttle the remote when input buffer is about to overflow. */ static void stm32_usart_throttle(struct uart_port *port) { struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; unsigned long flags; spin_lock_irqsave(&port->lock, flags); stm32_usart_clr_bits(port, ofs->cr1, stm32_port->cr1_irq); if (stm32_port->cr3_irq) stm32_usart_clr_bits(port, ofs->cr3, stm32_port->cr3_irq); spin_unlock_irqrestore(&port->lock, flags); } /* Unthrottle the remote, the input buffer can now accept data. */ static void stm32_usart_unthrottle(struct uart_port *port) { struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; unsigned long flags; spin_lock_irqsave(&port->lock, flags); stm32_usart_set_bits(port, ofs->cr1, stm32_port->cr1_irq); if (stm32_port->cr3_irq) stm32_usart_set_bits(port, ofs->cr3, stm32_port->cr3_irq); spin_unlock_irqrestore(&port->lock, flags); } /* Receive stop */ static void stm32_usart_stop_rx(struct uart_port *port) { struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; stm32_usart_clr_bits(port, ofs->cr1, stm32_port->cr1_irq); if (stm32_port->cr3_irq) stm32_usart_clr_bits(port, ofs->cr3, stm32_port->cr3_irq); } /* Handle breaks - ignored by us */ static void stm32_usart_break_ctl(struct uart_port *port, int break_state) { } static int stm32_usart_startup(struct uart_port *port) { struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; const struct stm32_usart_config *cfg = &stm32_port->info->cfg; const char *name = to_platform_device(port->dev)->name; u32 val; int ret; ret = request_threaded_irq(port->irq, stm32_usart_interrupt, stm32_usart_threaded_interrupt, IRQF_ONESHOT | IRQF_NO_SUSPEND, name, port); if (ret) return ret; /* RX FIFO Flush */ if (ofs->rqr != UNDEF_REG) writel_relaxed(USART_RQR_RXFRQ, port->membase + ofs->rqr); /* RX enabling */ val = stm32_port->cr1_irq | USART_CR1_RE | BIT(cfg->uart_enable_bit); stm32_usart_set_bits(port, ofs->cr1, val); return 0; } static void stm32_usart_shutdown(struct uart_port *port) { struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; const struct stm32_usart_config *cfg = &stm32_port->info->cfg; u32 val, isr; int ret; /* Disable modem control interrupts */ stm32_usart_disable_ms(port); val = USART_CR1_TXEIE | USART_CR1_TE; val |= stm32_port->cr1_irq | USART_CR1_RE; val |= BIT(cfg->uart_enable_bit); if (stm32_port->fifoen) val |= USART_CR1_FIFOEN; ret = readl_relaxed_poll_timeout(port->membase + ofs->isr, isr, (isr & USART_SR_TC), 10, 100000); if (ret) dev_err(port->dev, "transmission complete not set\n"); /* flush RX & TX FIFO */ if (ofs->rqr != UNDEF_REG) writel_relaxed(USART_RQR_TXFRQ | USART_RQR_RXFRQ, port->membase + ofs->rqr); stm32_usart_clr_bits(port, ofs->cr1, val); free_irq(port->irq, port); } static unsigned int stm32_usart_get_databits(struct ktermios *termios) { unsigned int bits; tcflag_t cflag = termios->c_cflag; switch (cflag & CSIZE) { /* * CSIZE settings are not necessarily supported in hardware. * CSIZE unsupported configurations are handled here to set word length * to 8 bits word as default configuration and to print debug message. */ case CS5: bits = 5; break; case CS6: bits = 6; break; case CS7: bits = 7; break; /* default including CS8 */ default: bits = 8; break; } return bits; } static void stm32_usart_set_termios(struct uart_port *port, struct ktermios *termios, struct ktermios *old) { struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; const struct stm32_usart_config *cfg = &stm32_port->info->cfg; struct serial_rs485 *rs485conf = &port->rs485; unsigned int baud, bits; u32 usartdiv, mantissa, fraction, oversampling; tcflag_t cflag = termios->c_cflag; u32 cr1, cr2, cr3, isr; unsigned long flags; int ret; if (!stm32_port->hw_flow_control) cflag &= ~CRTSCTS; baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk / 8); spin_lock_irqsave(&port->lock, flags); ret = readl_relaxed_poll_timeout_atomic(port->membase + ofs->isr, isr, (isr & USART_SR_TC), 10, 100000); /* Send the TC error message only when ISR_TC is not set. */ if (ret) dev_err(port->dev, "Transmission is not complete\n"); /* Stop serial port and reset value */ writel_relaxed(0, port->membase + ofs->cr1); /* flush RX & TX FIFO */ if (ofs->rqr != UNDEF_REG) writel_relaxed(USART_RQR_TXFRQ | USART_RQR_RXFRQ, port->membase + ofs->rqr); cr1 = USART_CR1_TE | USART_CR1_RE; if (stm32_port->fifoen) cr1 |= USART_CR1_FIFOEN; cr2 = 0; /* Tx and RX FIFO configuration */ cr3 = readl_relaxed(port->membase + ofs->cr3); cr3 &= USART_CR3_TXFTIE | USART_CR3_RXFTIE; if (stm32_port->fifoen) { cr3 &= ~(USART_CR3_TXFTCFG_MASK | USART_CR3_RXFTCFG_MASK); cr3 |= USART_CR3_TXFTCFG_HALF << USART_CR3_TXFTCFG_SHIFT; cr3 |= USART_CR3_RXFTCFG_HALF << USART_CR3_RXFTCFG_SHIFT; } if (cflag & CSTOPB) cr2 |= USART_CR2_STOP_2B; bits = stm32_usart_get_databits(termios); stm32_port->rdr_mask = (BIT(bits) - 1); if (cflag & PARENB) { bits++; cr1 |= USART_CR1_PCE; } /* * Word length configuration: * CS8 + parity, 9 bits word aka [M1:M0] = 0b01 * CS7 or (CS6 + parity), 7 bits word aka [M1:M0] = 0b10 * CS8 or (CS7 + parity), 8 bits word aka [M1:M0] = 0b00 * M0 and M1 already cleared by cr1 initialization. */ if (bits == 9) { cr1 |= USART_CR1_M0; } else if ((bits == 7) && cfg->has_7bits_data) { cr1 |= USART_CR1_M1; } else if (bits != 8) { dev_dbg(port->dev, "Unsupported data bits config: %u bits\n" , bits); cflag &= ~CSIZE; cflag |= CS8; termios->c_cflag = cflag; bits = 8; if (cflag & PARENB) { bits++; cr1 |= USART_CR1_M0; } } if (ofs->rtor != UNDEF_REG && (stm32_port->rx_ch || stm32_port->fifoen)) { if (cflag & CSTOPB) bits = bits + 3; /* 1 start bit + 2 stop bits */ else bits = bits + 2; /* 1 start bit + 1 stop bit */ /* RX timeout irq to occur after last stop bit + bits */ stm32_port->cr1_irq = USART_CR1_RTOIE; writel_relaxed(bits, port->membase + ofs->rtor); cr2 |= USART_CR2_RTOEN; /* Not using dma, enable fifo threshold irq */ if (!stm32_port->rx_ch) stm32_port->cr3_irq = USART_CR3_RXFTIE; } cr1 |= stm32_port->cr1_irq; cr3 |= stm32_port->cr3_irq; if (cflag & PARODD) cr1 |= USART_CR1_PS; port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS); if (cflag & CRTSCTS) { port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS; cr3 |= USART_CR3_CTSE | USART_CR3_RTSE; } usartdiv = DIV_ROUND_CLOSEST(port->uartclk, baud); /* * The USART supports 16 or 8 times oversampling. * By default we prefer 16 times oversampling, so that the receiver * has a better tolerance to clock deviations. * 8 times oversampling is only used to achieve higher speeds. */ if (usartdiv < 16) { oversampling = 8; cr1 |= USART_CR1_OVER8; stm32_usart_set_bits(port, ofs->cr1, USART_CR1_OVER8); } else { oversampling = 16; cr1 &= ~USART_CR1_OVER8; stm32_usart_clr_bits(port, ofs->cr1, USART_CR1_OVER8); } mantissa = (usartdiv / oversampling) << USART_BRR_DIV_M_SHIFT; fraction = usartdiv % oversampling; writel_relaxed(mantissa | fraction, port->membase + ofs->brr); uart_update_timeout(port, cflag, baud); port->read_status_mask = USART_SR_ORE; if (termios->c_iflag & INPCK) port->read_status_mask |= USART_SR_PE | USART_SR_FE; if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) port->read_status_mask |= USART_SR_FE; /* Characters to ignore */ port->ignore_status_mask = 0; if (termios->c_iflag & IGNPAR) port->ignore_status_mask = USART_SR_PE | USART_SR_FE; if (termios->c_iflag & IGNBRK) { port->ignore_status_mask |= USART_SR_FE; /* * If we're ignoring parity and break indicators, * ignore overruns too (for real raw support). */ if (termios->c_iflag & IGNPAR) port->ignore_status_mask |= USART_SR_ORE; } /* Ignore all characters if CREAD is not set */ if ((termios->c_cflag & CREAD) == 0) port->ignore_status_mask |= USART_SR_DUMMY_RX; if (stm32_port->rx_ch) cr3 |= USART_CR3_DMAR; if (rs485conf->flags & SER_RS485_ENABLED) { stm32_usart_config_reg_rs485(&cr1, &cr3, rs485conf->delay_rts_before_send, rs485conf->delay_rts_after_send, baud); if (rs485conf->flags & SER_RS485_RTS_ON_SEND) { cr3 &= ~USART_CR3_DEP; rs485conf->flags &= ~SER_RS485_RTS_AFTER_SEND; } else { cr3 |= USART_CR3_DEP; rs485conf->flags |= SER_RS485_RTS_AFTER_SEND; } } else { cr3 &= ~(USART_CR3_DEM | USART_CR3_DEP); cr1 &= ~(USART_CR1_DEDT_MASK | USART_CR1_DEAT_MASK); } /* Configure wake up from low power on start bit detection */ if (stm32_port->wakeirq > 0) { cr3 &= ~USART_CR3_WUS_MASK; cr3 |= USART_CR3_WUS_START_BIT; } writel_relaxed(cr3, port->membase + ofs->cr3); writel_relaxed(cr2, port->membase + ofs->cr2); writel_relaxed(cr1, port->membase + ofs->cr1); stm32_usart_set_bits(port, ofs->cr1, BIT(cfg->uart_enable_bit)); spin_unlock_irqrestore(&port->lock, flags); /* Handle modem control interrupts */ if (UART_ENABLE_MS(port, termios->c_cflag)) stm32_usart_enable_ms(port); else stm32_usart_disable_ms(port); } static const char *stm32_usart_type(struct uart_port *port) { return (port->type == PORT_STM32) ? DRIVER_NAME : NULL; } static void stm32_usart_release_port(struct uart_port *port) { } static int stm32_usart_request_port(struct uart_port *port) { return 0; } static void stm32_usart_config_port(struct uart_port *port, int flags) { if (flags & UART_CONFIG_TYPE) port->type = PORT_STM32; } static int stm32_usart_verify_port(struct uart_port *port, struct serial_struct *ser) { /* No user changeable parameters */ return -EINVAL; } static void stm32_usart_pm(struct uart_port *port, unsigned int state, unsigned int oldstate) { struct stm32_port *stm32port = container_of(port, struct stm32_port, port); const struct stm32_usart_offsets *ofs = &stm32port->info->ofs; const struct stm32_usart_config *cfg = &stm32port->info->cfg; unsigned long flags = 0; switch (state) { case UART_PM_STATE_ON: pm_runtime_get_sync(port->dev); break; case UART_PM_STATE_OFF: spin_lock_irqsave(&port->lock, flags); stm32_usart_clr_bits(port, ofs->cr1, BIT(cfg->uart_enable_bit)); spin_unlock_irqrestore(&port->lock, flags); pm_runtime_put_sync(port->dev); break; } } static const struct uart_ops stm32_uart_ops = { .tx_empty = stm32_usart_tx_empty, .set_mctrl = stm32_usart_set_mctrl, .get_mctrl = stm32_usart_get_mctrl, .stop_tx = stm32_usart_stop_tx, .start_tx = stm32_usart_start_tx, .throttle = stm32_usart_throttle, .unthrottle = stm32_usart_unthrottle, .stop_rx = stm32_usart_stop_rx, .enable_ms = stm32_usart_enable_ms, .break_ctl = stm32_usart_break_ctl, .startup = stm32_usart_startup, .shutdown = stm32_usart_shutdown, .set_termios = stm32_usart_set_termios, .pm = stm32_usart_pm, .type = stm32_usart_type, .release_port = stm32_usart_release_port, .request_port = stm32_usart_request_port, .config_port = stm32_usart_config_port, .verify_port = stm32_usart_verify_port, }; static int stm32_usart_init_port(struct stm32_port *stm32port, struct platform_device *pdev) { struct uart_port *port = &stm32port->port; struct resource *res; int ret; ret = platform_get_irq(pdev, 0); if (ret <= 0) return ret ? : -ENODEV; port->iotype = UPIO_MEM; port->flags = UPF_BOOT_AUTOCONF; port->ops = &stm32_uart_ops; port->dev = &pdev->dev; port->fifosize = stm32port->info->cfg.fifosize; port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_STM32_CONSOLE); port->irq = ret; port->rs485_config = stm32_usart_config_rs485; ret = stm32_usart_init_rs485(port, pdev); if (ret) return ret; if (stm32port->info->cfg.has_wakeup) { stm32port->wakeirq = platform_get_irq_optional(pdev, 1); if (stm32port->wakeirq <= 0 && stm32port->wakeirq != -ENXIO) return stm32port->wakeirq ? : -ENODEV; } stm32port->fifoen = stm32port->info->cfg.has_fifo; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); port->membase = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(port->membase)) return PTR_ERR(port->membase); port->mapbase = res->start; spin_lock_init(&port->lock); stm32port->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(stm32port->clk)) return PTR_ERR(stm32port->clk); /* Ensure that clk rate is correct by enabling the clk */ ret = clk_prepare_enable(stm32port->clk); if (ret) return ret; stm32port->port.uartclk = clk_get_rate(stm32port->clk); if (!stm32port->port.uartclk) { ret = -EINVAL; goto err_clk; } stm32port->gpios = mctrl_gpio_init(&stm32port->port, 0); if (IS_ERR(stm32port->gpios)) { ret = PTR_ERR(stm32port->gpios); goto err_clk; } /* Both CTS/RTS gpios and "st,hw-flow-ctrl" should not be specified */ if (stm32port->hw_flow_control) { if (mctrl_gpio_to_gpiod(stm32port->gpios, UART_GPIO_CTS) || mctrl_gpio_to_gpiod(stm32port->gpios, UART_GPIO_RTS)) { dev_err(&pdev->dev, "Conflicting RTS/CTS config\n"); ret = -EINVAL; goto err_clk; } } return ret; err_clk: clk_disable_unprepare(stm32port->clk); return ret; } static struct stm32_port *stm32_usart_of_get_port(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; int id; if (!np) return NULL; id = of_alias_get_id(np, "serial"); if (id < 0) { dev_err(&pdev->dev, "failed to get alias id, errno %d\n", id); return NULL; } if (WARN_ON(id >= STM32_MAX_PORTS)) return NULL; stm32_ports[id].hw_flow_control = of_property_read_bool (np, "st,hw-flow-ctrl") /*deprecated*/ || of_property_read_bool (np, "uart-has-rtscts"); stm32_ports[id].port.line = id; stm32_ports[id].cr1_irq = USART_CR1_RXNEIE; stm32_ports[id].cr3_irq = 0; stm32_ports[id].last_res = RX_BUF_L; return &stm32_ports[id]; } #ifdef CONFIG_OF static const struct of_device_id stm32_match[] = { { .compatible = "st,stm32-uart", .data = &stm32f4_info}, { .compatible = "st,stm32f7-uart", .data = &stm32f7_info}, { .compatible = "st,stm32h7-uart", .data = &stm32h7_info}, {}, }; MODULE_DEVICE_TABLE(of, stm32_match); #endif static int stm32_usart_of_dma_rx_probe(struct stm32_port *stm32port, struct platform_device *pdev) { const struct stm32_usart_offsets *ofs = &stm32port->info->ofs; struct uart_port *port = &stm32port->port; struct device *dev = &pdev->dev; struct dma_slave_config config; struct dma_async_tx_descriptor *desc = NULL; int ret; /* * Using DMA and threaded handler for the console could lead to * deadlocks. */ if (uart_console(port)) return -ENODEV; /* Request DMA RX channel */ stm32port->rx_ch = dma_request_slave_channel(dev, "rx"); if (!stm32port->rx_ch) { dev_info(dev, "rx dma alloc failed\n"); return -ENODEV; } stm32port->rx_buf = dma_alloc_coherent(&pdev->dev, RX_BUF_L, &stm32port->rx_dma_buf, GFP_KERNEL); if (!stm32port->rx_buf) { ret = -ENOMEM; goto alloc_err; } /* Configure DMA channel */ memset(&config, 0, sizeof(config)); config.src_addr = port->mapbase + ofs->rdr; config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; ret = dmaengine_slave_config(stm32port->rx_ch, &config); if (ret < 0) { dev_err(dev, "rx dma channel config failed\n"); ret = -ENODEV; goto config_err; } /* Prepare a DMA cyclic transaction */ desc = dmaengine_prep_dma_cyclic(stm32port->rx_ch, stm32port->rx_dma_buf, RX_BUF_L, RX_BUF_P, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); if (!desc) { dev_err(dev, "rx dma prep cyclic failed\n"); ret = -ENODEV; goto config_err; } /* No callback as dma buffer is drained on usart interrupt */ desc->callback = NULL; desc->callback_param = NULL; /* Push current DMA transaction in the pending queue */ ret = dma_submit_error(dmaengine_submit(desc)); if (ret) { dmaengine_terminate_sync(stm32port->rx_ch); goto config_err; } /* Issue pending DMA requests */ dma_async_issue_pending(stm32port->rx_ch); return 0; config_err: dma_free_coherent(&pdev->dev, RX_BUF_L, stm32port->rx_buf, stm32port->rx_dma_buf); alloc_err: dma_release_channel(stm32port->rx_ch); stm32port->rx_ch = NULL; return ret; } static int stm32_usart_of_dma_tx_probe(struct stm32_port *stm32port, struct platform_device *pdev) { const struct stm32_usart_offsets *ofs = &stm32port->info->ofs; struct uart_port *port = &stm32port->port; struct device *dev = &pdev->dev; struct dma_slave_config config; int ret; stm32port->tx_dma_busy = false; /* Request DMA TX channel */ stm32port->tx_ch = dma_request_slave_channel(dev, "tx"); if (!stm32port->tx_ch) { dev_info(dev, "tx dma alloc failed\n"); return -ENODEV; } stm32port->tx_buf = dma_alloc_coherent(&pdev->dev, TX_BUF_L, &stm32port->tx_dma_buf, GFP_KERNEL); if (!stm32port->tx_buf) { ret = -ENOMEM; goto alloc_err; } /* Configure DMA channel */ memset(&config, 0, sizeof(config)); config.dst_addr = port->mapbase + ofs->tdr; config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; ret = dmaengine_slave_config(stm32port->tx_ch, &config); if (ret < 0) { dev_err(dev, "tx dma channel config failed\n"); ret = -ENODEV; goto config_err; } return 0; config_err: dma_free_coherent(&pdev->dev, TX_BUF_L, stm32port->tx_buf, stm32port->tx_dma_buf); alloc_err: dma_release_channel(stm32port->tx_ch); stm32port->tx_ch = NULL; return ret; } static int stm32_usart_serial_probe(struct platform_device *pdev) { struct stm32_port *stm32port; int ret; stm32port = stm32_usart_of_get_port(pdev); if (!stm32port) return -ENODEV; stm32port->info = of_device_get_match_data(&pdev->dev); if (!stm32port->info) return -EINVAL; ret = stm32_usart_init_port(stm32port, pdev); if (ret) return ret; if (stm32port->wakeirq > 0) { ret = device_init_wakeup(&pdev->dev, true); if (ret) goto err_uninit; ret = dev_pm_set_dedicated_wake_irq(&pdev->dev, stm32port->wakeirq); if (ret) goto err_nowup; device_set_wakeup_enable(&pdev->dev, false); } ret = stm32_usart_of_dma_rx_probe(stm32port, pdev); if (ret) dev_info(&pdev->dev, "interrupt mode used for rx (no dma)\n"); ret = stm32_usart_of_dma_tx_probe(stm32port, pdev); if (ret) dev_info(&pdev->dev, "interrupt mode used for tx (no dma)\n"); platform_set_drvdata(pdev, &stm32port->port); pm_runtime_get_noresume(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); ret = uart_add_one_port(&stm32_usart_driver, &stm32port->port); if (ret) goto err_port; pm_runtime_put_sync(&pdev->dev); return 0; err_port: pm_runtime_disable(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); pm_runtime_put_noidle(&pdev->dev); if (stm32port->rx_ch) { dmaengine_terminate_async(stm32port->rx_ch); dma_release_channel(stm32port->rx_ch); } if (stm32port->rx_dma_buf) dma_free_coherent(&pdev->dev, RX_BUF_L, stm32port->rx_buf, stm32port->rx_dma_buf); if (stm32port->tx_ch) { dmaengine_terminate_async(stm32port->tx_ch); dma_release_channel(stm32port->tx_ch); } if (stm32port->tx_dma_buf) dma_free_coherent(&pdev->dev, TX_BUF_L, stm32port->tx_buf, stm32port->tx_dma_buf); if (stm32port->wakeirq > 0) dev_pm_clear_wake_irq(&pdev->dev); err_nowup: if (stm32port->wakeirq > 0) device_init_wakeup(&pdev->dev, false); err_uninit: clk_disable_unprepare(stm32port->clk); return ret; } static int stm32_usart_serial_remove(struct platform_device *pdev) { struct uart_port *port = platform_get_drvdata(pdev); struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; int err; pm_runtime_get_sync(&pdev->dev); err = uart_remove_one_port(&stm32_usart_driver, port); if (err) return(err); pm_runtime_disable(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); pm_runtime_put_noidle(&pdev->dev); stm32_usart_clr_bits(port, ofs->cr3, USART_CR3_DMAR); if (stm32_port->rx_ch) { dmaengine_terminate_async(stm32_port->rx_ch); dma_release_channel(stm32_port->rx_ch); } if (stm32_port->rx_dma_buf) dma_free_coherent(&pdev->dev, RX_BUF_L, stm32_port->rx_buf, stm32_port->rx_dma_buf); stm32_usart_clr_bits(port, ofs->cr3, USART_CR3_DMAT); if (stm32_port->tx_ch) { dmaengine_terminate_async(stm32_port->tx_ch); dma_release_channel(stm32_port->tx_ch); } if (stm32_port->tx_dma_buf) dma_free_coherent(&pdev->dev, TX_BUF_L, stm32_port->tx_buf, stm32_port->tx_dma_buf); if (stm32_port->wakeirq > 0) { dev_pm_clear_wake_irq(&pdev->dev); device_init_wakeup(&pdev->dev, false); } clk_disable_unprepare(stm32_port->clk); return 0; } #ifdef CONFIG_SERIAL_STM32_CONSOLE static void stm32_usart_console_putchar(struct uart_port *port, int ch) { struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; while (!(readl_relaxed(port->membase + ofs->isr) & USART_SR_TXE)) cpu_relax(); writel_relaxed(ch, port->membase + ofs->tdr); } static void stm32_usart_console_write(struct console *co, const char *s, unsigned int cnt) { struct uart_port *port = &stm32_ports[co->index].port; struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; const struct stm32_usart_config *cfg = &stm32_port->info->cfg; unsigned long flags; u32 old_cr1, new_cr1; int locked = 1; local_irq_save(flags); if (port->sysrq) locked = 0; else if (oops_in_progress) locked = spin_trylock(&port->lock); else spin_lock(&port->lock); /* Save and disable interrupts, enable the transmitter */ old_cr1 = readl_relaxed(port->membase + ofs->cr1); new_cr1 = old_cr1 & ~USART_CR1_IE_MASK; new_cr1 |= USART_CR1_TE | BIT(cfg->uart_enable_bit); writel_relaxed(new_cr1, port->membase + ofs->cr1); uart_console_write(port, s, cnt, stm32_usart_console_putchar); /* Restore interrupt state */ writel_relaxed(old_cr1, port->membase + ofs->cr1); if (locked) spin_unlock(&port->lock); local_irq_restore(flags); } static int stm32_usart_console_setup(struct console *co, char *options) { struct stm32_port *stm32port; int baud = 9600; int bits = 8; int parity = 'n'; int flow = 'n'; if (co->index >= STM32_MAX_PORTS) return -ENODEV; stm32port = &stm32_ports[co->index]; /* * This driver does not support early console initialization * (use ARM early printk support instead), so we only expect * this to be called during the uart port registration when the * driver gets probed and the port should be mapped at that point. */ if (stm32port->port.mapbase == 0 || !stm32port->port.membase) return -ENXIO; if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); return uart_set_options(&stm32port->port, co, baud, parity, bits, flow); } static struct console stm32_console = { .name = STM32_SERIAL_NAME, .device = uart_console_device, .write = stm32_usart_console_write, .setup = stm32_usart_console_setup, .flags = CON_PRINTBUFFER, .index = -1, .data = &stm32_usart_driver, }; #define STM32_SERIAL_CONSOLE (&stm32_console) #else #define STM32_SERIAL_CONSOLE NULL #endif /* CONFIG_SERIAL_STM32_CONSOLE */ static struct uart_driver stm32_usart_driver = { .driver_name = DRIVER_NAME, .dev_name = STM32_SERIAL_NAME, .major = 0, .minor = 0, .nr = STM32_MAX_PORTS, .cons = STM32_SERIAL_CONSOLE, }; static void __maybe_unused stm32_usart_serial_en_wakeup(struct uart_port *port, bool enable) { struct stm32_port *stm32_port = to_stm32_port(port); const struct stm32_usart_offsets *ofs = &stm32_port->info->ofs; if (stm32_port->wakeirq <= 0) return; /* * Enable low-power wake-up and wake-up irq if argument is set to * "enable", disable low-power wake-up and wake-up irq otherwise */ if (enable) { stm32_usart_set_bits(port, ofs->cr1, USART_CR1_UESM); stm32_usart_set_bits(port, ofs->cr3, USART_CR3_WUFIE); } else { stm32_usart_clr_bits(port, ofs->cr1, USART_CR1_UESM); stm32_usart_clr_bits(port, ofs->cr3, USART_CR3_WUFIE); } } static int __maybe_unused stm32_usart_serial_suspend(struct device *dev) { struct uart_port *port = dev_get_drvdata(dev); uart_suspend_port(&stm32_usart_driver, port); if (device_may_wakeup(dev)) stm32_usart_serial_en_wakeup(port, true); else stm32_usart_serial_en_wakeup(port, false); /* * When "no_console_suspend" is enabled, keep the pinctrl default state * and rely on bootloader stage to restore this state upon resume. * Otherwise, apply the idle or sleep states depending on wakeup * capabilities. */ if (console_suspend_enabled || !uart_console(port)) { if (device_may_wakeup(dev)) pinctrl_pm_select_idle_state(dev); else pinctrl_pm_select_sleep_state(dev); } return 0; } static int __maybe_unused stm32_usart_serial_resume(struct device *dev) { struct uart_port *port = dev_get_drvdata(dev); pinctrl_pm_select_default_state(dev); if (device_may_wakeup(dev)) stm32_usart_serial_en_wakeup(port, false); return uart_resume_port(&stm32_usart_driver, port); } static int __maybe_unused stm32_usart_runtime_suspend(struct device *dev) { struct uart_port *port = dev_get_drvdata(dev); struct stm32_port *stm32port = container_of(port, struct stm32_port, port); clk_disable_unprepare(stm32port->clk); return 0; } static int __maybe_unused stm32_usart_runtime_resume(struct device *dev) { struct uart_port *port = dev_get_drvdata(dev); struct stm32_port *stm32port = container_of(port, struct stm32_port, port); return clk_prepare_enable(stm32port->clk); } static const struct dev_pm_ops stm32_serial_pm_ops = { SET_RUNTIME_PM_OPS(stm32_usart_runtime_suspend, stm32_usart_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(stm32_usart_serial_suspend, stm32_usart_serial_resume) }; static struct platform_driver stm32_serial_driver = { .probe = stm32_usart_serial_probe, .remove = stm32_usart_serial_remove, .driver = { .name = DRIVER_NAME, .pm = &stm32_serial_pm_ops, .of_match_table = of_match_ptr(stm32_match), }, }; static int __init stm32_usart_init(void) { static char banner[] __initdata = "STM32 USART driver initialized"; int ret; pr_info("%s\n", banner); ret = uart_register_driver(&stm32_usart_driver); if (ret) return ret; ret = platform_driver_register(&stm32_serial_driver); if (ret) uart_unregister_driver(&stm32_usart_driver); return ret; } static void __exit stm32_usart_exit(void) { platform_driver_unregister(&stm32_serial_driver); uart_unregister_driver(&stm32_usart_driver); } module_init(stm32_usart_init); module_exit(stm32_usart_exit); MODULE_ALIAS("platform:" DRIVER_NAME); MODULE_DESCRIPTION("STMicroelectronics STM32 serial port driver"); MODULE_LICENSE("GPL v2");