// SPDX-License-Identifier: GPL-2.0 /* * Copyright(C) 2005-2006, Thomas Gleixner * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner * * No idle tick implementation for low and high resolution timers * * Started by: Thomas Gleixner and Ingo Molnar */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tick-internal.h" #include /* * Per-CPU nohz control structure */ static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); struct tick_sched *tick_get_tick_sched(int cpu) { return &per_cpu(tick_cpu_sched, cpu); } #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) /* * The time, when the last jiffy update happened. Protected by jiffies_lock. */ static ktime_t last_jiffies_update; /* * Must be called with interrupts disabled ! */ static void tick_do_update_jiffies64(ktime_t now) { unsigned long ticks = 1; ktime_t delta; /* * Do a quick check without holding jiffies_lock. The READ_ONCE() * pairs with the update done later in this function. * * This is also an intentional data race which is even safe on * 32bit in theory. If there is a concurrent update then the check * might give a random answer. It does not matter because if it * returns then the concurrent update is already taking care, if it * falls through then it will pointlessly contend on jiffies_lock. * * Though there is one nasty case on 32bit due to store tearing of * the 64bit value. If the first 32bit store makes the quick check * return on all other CPUs and the writing CPU context gets * delayed to complete the second store (scheduled out on virt) * then jiffies can become stale for up to ~2^32 nanoseconds * without noticing. After that point all CPUs will wait for * jiffies lock. * * OTOH, this is not any different than the situation with NOHZ=off * where one CPU is responsible for updating jiffies and * timekeeping. If that CPU goes out for lunch then all other CPUs * will operate on stale jiffies until it decides to come back. */ if (ktime_before(now, READ_ONCE(tick_next_period))) return; /* Reevaluate with jiffies_lock held */ raw_spin_lock(&jiffies_lock); if (ktime_before(now, tick_next_period)) { raw_spin_unlock(&jiffies_lock); return; } write_seqcount_begin(&jiffies_seq); delta = ktime_sub(now, tick_next_period); if (unlikely(delta >= TICK_NSEC)) { /* Slow path for long idle sleep times */ s64 incr = TICK_NSEC; ticks += ktime_divns(delta, incr); last_jiffies_update = ktime_add_ns(last_jiffies_update, incr * ticks); } else { last_jiffies_update = ktime_add_ns(last_jiffies_update, TICK_NSEC); } do_timer(ticks); /* * Keep the tick_next_period variable up to date. WRITE_ONCE() * pairs with the READ_ONCE() in the lockless quick check above. */ WRITE_ONCE(tick_next_period, ktime_add_ns(last_jiffies_update, TICK_NSEC)); write_seqcount_end(&jiffies_seq); raw_spin_unlock(&jiffies_lock); update_wall_time(); } /* * Initialize and return retrieve the jiffies update. */ static ktime_t tick_init_jiffy_update(void) { ktime_t period; raw_spin_lock(&jiffies_lock); write_seqcount_begin(&jiffies_seq); /* Did we start the jiffies update yet ? */ if (last_jiffies_update == 0) { u32 rem; /* * Ensure that the tick is aligned to a multiple of * TICK_NSEC. */ div_u64_rem(tick_next_period, TICK_NSEC, &rem); if (rem) tick_next_period += TICK_NSEC - rem; last_jiffies_update = tick_next_period; } period = last_jiffies_update; write_seqcount_end(&jiffies_seq); raw_spin_unlock(&jiffies_lock); return period; } #define MAX_STALLED_JIFFIES 5 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now) { int cpu = smp_processor_id(); #ifdef CONFIG_NO_HZ_COMMON /* * Check if the do_timer duty was dropped. We don't care about * concurrency: This happens only when the CPU in charge went * into a long sleep. If two CPUs happen to assign themselves to * this duty, then the jiffies update is still serialized by * jiffies_lock. * * If nohz_full is enabled, this should not happen because the * tick_do_timer_cpu never relinquishes. */ if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) { #ifdef CONFIG_NO_HZ_FULL WARN_ON_ONCE(tick_nohz_full_running); #endif tick_do_timer_cpu = cpu; } #endif /* Check, if the jiffies need an update */ if (tick_do_timer_cpu == cpu) tick_do_update_jiffies64(now); /* * If jiffies update stalled for too long (timekeeper in stop_machine() * or VMEXIT'ed for several msecs), force an update. */ if (ts->last_tick_jiffies != jiffies) { ts->stalled_jiffies = 0; ts->last_tick_jiffies = READ_ONCE(jiffies); } else { if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) { tick_do_update_jiffies64(now); ts->stalled_jiffies = 0; ts->last_tick_jiffies = READ_ONCE(jiffies); } } if (ts->inidle) ts->got_idle_tick = 1; } static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs) { #ifdef CONFIG_NO_HZ_COMMON /* * When we are idle and the tick is stopped, we have to touch * the watchdog as we might not schedule for a really long * time. This happens on complete idle SMP systems while * waiting on the login prompt. We also increment the "start of * idle" jiffy stamp so the idle accounting adjustment we do * when we go busy again does not account too much ticks. */ if (ts->tick_stopped) { touch_softlockup_watchdog_sched(); if (is_idle_task(current)) ts->idle_jiffies++; /* * In case the current tick fired too early past its expected * expiration, make sure we don't bypass the next clock reprogramming * to the same deadline. */ ts->next_tick = 0; } #endif update_process_times(user_mode(regs)); profile_tick(CPU_PROFILING); } #endif #ifdef CONFIG_NO_HZ_FULL cpumask_var_t tick_nohz_full_mask; bool tick_nohz_full_running; EXPORT_SYMBOL_GPL(tick_nohz_full_running); static atomic_t tick_dep_mask; static bool check_tick_dependency(atomic_t *dep) { int val = atomic_read(dep); if (val & TICK_DEP_MASK_POSIX_TIMER) { trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER); return true; } if (val & TICK_DEP_MASK_PERF_EVENTS) { trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS); return true; } if (val & TICK_DEP_MASK_SCHED) { trace_tick_stop(0, TICK_DEP_MASK_SCHED); return true; } if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) { trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE); return true; } if (val & TICK_DEP_MASK_RCU) { trace_tick_stop(0, TICK_DEP_MASK_RCU); return true; } if (val & TICK_DEP_MASK_RCU_EXP) { trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP); return true; } return false; } static bool can_stop_full_tick(int cpu, struct tick_sched *ts) { lockdep_assert_irqs_disabled(); if (unlikely(!cpu_online(cpu))) return false; if (check_tick_dependency(&tick_dep_mask)) return false; if (check_tick_dependency(&ts->tick_dep_mask)) return false; if (check_tick_dependency(¤t->tick_dep_mask)) return false; if (check_tick_dependency(¤t->signal->tick_dep_mask)) return false; return true; } static void nohz_full_kick_func(struct irq_work *work) { /* Empty, the tick restart happens on tick_nohz_irq_exit() */ } static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = { .func = nohz_full_kick_func, .flags = ATOMIC_INIT(IRQ_WORK_HARD_IRQ), }; /* * Kick this CPU if it's full dynticks in order to force it to * re-evaluate its dependency on the tick and restart it if necessary. * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(), * is NMI safe. */ static void tick_nohz_full_kick(void) { if (!tick_nohz_full_cpu(smp_processor_id())) return; irq_work_queue(this_cpu_ptr(&nohz_full_kick_work)); } /* * Kick the CPU if it's full dynticks in order to force it to * re-evaluate its dependency on the tick and restart it if necessary. */ void tick_nohz_full_kick_cpu(int cpu) { if (!tick_nohz_full_cpu(cpu)) return; irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu); } /* * Kick all full dynticks CPUs in order to force these to re-evaluate * their dependency on the tick and restart it if necessary. */ static void tick_nohz_full_kick_all(void) { int cpu; if (!tick_nohz_full_running) return; preempt_disable(); for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask) tick_nohz_full_kick_cpu(cpu); preempt_enable(); } static void tick_nohz_dep_set_all(atomic_t *dep, enum tick_dep_bits bit) { int prev; prev = atomic_fetch_or(BIT(bit), dep); if (!prev) tick_nohz_full_kick_all(); } /* * Set a global tick dependency. Used by perf events that rely on freq and * by unstable clock. */ void tick_nohz_dep_set(enum tick_dep_bits bit) { tick_nohz_dep_set_all(&tick_dep_mask, bit); } void tick_nohz_dep_clear(enum tick_dep_bits bit) { atomic_andnot(BIT(bit), &tick_dep_mask); } /* * Set per-CPU tick dependency. Used by scheduler and perf events in order to * manage events throttling. */ void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit) { int prev; struct tick_sched *ts; ts = per_cpu_ptr(&tick_cpu_sched, cpu); prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask); if (!prev) { preempt_disable(); /* Perf needs local kick that is NMI safe */ if (cpu == smp_processor_id()) { tick_nohz_full_kick(); } else { /* Remote irq work not NMI-safe */ if (!WARN_ON_ONCE(in_nmi())) tick_nohz_full_kick_cpu(cpu); } preempt_enable(); } } EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu); void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit) { struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); atomic_andnot(BIT(bit), &ts->tick_dep_mask); } EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu); /* * Set a per-task tick dependency. RCU need this. Also posix CPU timers * in order to elapse per task timers. */ void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit) { if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) { if (tsk == current) { preempt_disable(); tick_nohz_full_kick(); preempt_enable(); } else { /* * Some future tick_nohz_full_kick_task() * should optimize this. */ tick_nohz_full_kick_all(); } } } EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task); void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit) { atomic_andnot(BIT(bit), &tsk->tick_dep_mask); } EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task); /* * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse * per process timers. */ void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit) { tick_nohz_dep_set_all(&sig->tick_dep_mask, bit); } void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit) { atomic_andnot(BIT(bit), &sig->tick_dep_mask); } /* * Re-evaluate the need for the tick as we switch the current task. * It might need the tick due to per task/process properties: * perf events, posix CPU timers, ... */ void __tick_nohz_task_switch(void) { unsigned long flags; struct tick_sched *ts; local_irq_save(flags); if (!tick_nohz_full_cpu(smp_processor_id())) goto out; ts = this_cpu_ptr(&tick_cpu_sched); if (ts->tick_stopped) { if (atomic_read(¤t->tick_dep_mask) || atomic_read(¤t->signal->tick_dep_mask)) tick_nohz_full_kick(); } out: local_irq_restore(flags); } /* Get the boot-time nohz CPU list from the kernel parameters. */ void __init tick_nohz_full_setup(cpumask_var_t cpumask) { alloc_bootmem_cpumask_var(&tick_nohz_full_mask); cpumask_copy(tick_nohz_full_mask, cpumask); tick_nohz_full_running = true; } bool tick_nohz_cpu_hotpluggable(unsigned int cpu) { /* * The tick_do_timer_cpu CPU handles housekeeping duty (unbound * timers, workqueues, timekeeping, ...) on behalf of full dynticks * CPUs. It must remain online when nohz full is enabled. */ if (tick_nohz_full_running && tick_do_timer_cpu == cpu) return false; return true; } static int tick_nohz_cpu_down(unsigned int cpu) { return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY; } void __init tick_nohz_init(void) { int cpu, ret; if (!tick_nohz_full_running) return; /* * Full dynticks uses irq work to drive the tick rescheduling on safe * locking contexts. But then we need irq work to raise its own * interrupts to avoid circular dependency on the tick */ if (!arch_irq_work_has_interrupt()) { pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n"); cpumask_clear(tick_nohz_full_mask); tick_nohz_full_running = false; return; } if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) && !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) { cpu = smp_processor_id(); if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) { pr_warn("NO_HZ: Clearing %d from nohz_full range " "for timekeeping\n", cpu); cpumask_clear_cpu(cpu, tick_nohz_full_mask); } } for_each_cpu(cpu, tick_nohz_full_mask) context_tracking_cpu_set(cpu); ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "kernel/nohz:predown", NULL, tick_nohz_cpu_down); WARN_ON(ret < 0); pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n", cpumask_pr_args(tick_nohz_full_mask)); } #endif /* * NOHZ - aka dynamic tick functionality */ #ifdef CONFIG_NO_HZ_COMMON /* * NO HZ enabled ? */ bool tick_nohz_enabled __read_mostly = true; unsigned long tick_nohz_active __read_mostly; /* * Enable / Disable tickless mode */ static int __init setup_tick_nohz(char *str) { return (kstrtobool(str, &tick_nohz_enabled) == 0); } __setup("nohz=", setup_tick_nohz); bool tick_nohz_tick_stopped(void) { struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); return ts->tick_stopped; } bool tick_nohz_tick_stopped_cpu(int cpu) { struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu); return ts->tick_stopped; } /** * tick_nohz_update_jiffies - update jiffies when idle was interrupted * * Called from interrupt entry when the CPU was idle * * In case the sched_tick was stopped on this CPU, we have to check if jiffies * must be updated. Otherwise an interrupt handler could use a stale jiffy * value. We do this unconditionally on any CPU, as we don't know whether the * CPU, which has the update task assigned is in a long sleep. */ static void tick_nohz_update_jiffies(ktime_t now) { unsigned long flags; __this_cpu_write(tick_cpu_sched.idle_waketime, now); local_irq_save(flags); tick_do_update_jiffies64(now); local_irq_restore(flags); touch_softlockup_watchdog_sched(); } /* * Updates the per-CPU time idle statistics counters */ static void update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) { ktime_t delta; if (ts->idle_active) { delta = ktime_sub(now, ts->idle_entrytime); if (nr_iowait_cpu(cpu) > 0) ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); else ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); ts->idle_entrytime = now; } if (last_update_time) *last_update_time = ktime_to_us(now); } static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now) { update_ts_time_stats(smp_processor_id(), ts, now, NULL); ts->idle_active = 0; sched_clock_idle_wakeup_event(); } static void tick_nohz_start_idle(struct tick_sched *ts) { ts->idle_entrytime = ktime_get(); ts->idle_active = 1; sched_clock_idle_sleep_event(); } /** * get_cpu_idle_time_us - get the total idle time of a CPU * @cpu: CPU number to query * @last_update_time: variable to store update time in. Do not update * counters if NULL. * * Return the cumulative idle time (since boot) for a given * CPU, in microseconds. * * This time is measured via accounting rather than sampling, * and is as accurate as ktime_get() is. * * This function returns -1 if NOHZ is not enabled. */ u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) { struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); ktime_t now, idle; if (!tick_nohz_active) return -1; now = ktime_get(); if (last_update_time) { update_ts_time_stats(cpu, ts, now, last_update_time); idle = ts->idle_sleeptime; } else { if (ts->idle_active && !nr_iowait_cpu(cpu)) { ktime_t delta = ktime_sub(now, ts->idle_entrytime); idle = ktime_add(ts->idle_sleeptime, delta); } else { idle = ts->idle_sleeptime; } } return ktime_to_us(idle); } EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); /** * get_cpu_iowait_time_us - get the total iowait time of a CPU * @cpu: CPU number to query * @last_update_time: variable to store update time in. Do not update * counters if NULL. * * Return the cumulative iowait time (since boot) for a given * CPU, in microseconds. * * This time is measured via accounting rather than sampling, * and is as accurate as ktime_get() is. * * This function returns -1 if NOHZ is not enabled. */ u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) { struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); ktime_t now, iowait; if (!tick_nohz_active) return -1; now = ktime_get(); if (last_update_time) { update_ts_time_stats(cpu, ts, now, last_update_time); iowait = ts->iowait_sleeptime; } else { if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { ktime_t delta = ktime_sub(now, ts->idle_entrytime); iowait = ktime_add(ts->iowait_sleeptime, delta); } else { iowait = ts->iowait_sleeptime; } } return ktime_to_us(iowait); } EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) { hrtimer_cancel(&ts->sched_timer); hrtimer_set_expires(&ts->sched_timer, ts->last_tick); /* Forward the time to expire in the future */ hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); } else { tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); } /* * Reset to make sure next tick stop doesn't get fooled by past * cached clock deadline. */ ts->next_tick = 0; } static inline bool local_timer_softirq_pending(void) { return local_softirq_pending() & BIT(TIMER_SOFTIRQ); } static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu) { u64 basemono, next_tick, next_tmr, next_rcu, delta, expires; unsigned long basejiff; unsigned int seq; /* Read jiffies and the time when jiffies were updated last */ do { seq = read_seqcount_begin(&jiffies_seq); basemono = last_jiffies_update; basejiff = jiffies; } while (read_seqcount_retry(&jiffies_seq, seq)); ts->last_jiffies = basejiff; ts->timer_expires_base = basemono; /* * Keep the periodic tick, when RCU, architecture or irq_work * requests it. * Aside of that check whether the local timer softirq is * pending. If so its a bad idea to call get_next_timer_interrupt() * because there is an already expired timer, so it will request * immeditate expiry, which rearms the hardware timer with a * minimal delta which brings us back to this place * immediately. Lather, rinse and repeat... */ if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() || irq_work_needs_cpu() || local_timer_softirq_pending()) { next_tick = basemono + TICK_NSEC; } else { /* * Get the next pending timer. If high resolution * timers are enabled this only takes the timer wheel * timers into account. If high resolution timers are * disabled this also looks at the next expiring * hrtimer. */ next_tmr = get_next_timer_interrupt(basejiff, basemono); ts->next_timer = next_tmr; /* Take the next rcu event into account */ next_tick = next_rcu < next_tmr ? next_rcu : next_tmr; } /* * If the tick is due in the next period, keep it ticking or * force prod the timer. */ delta = next_tick - basemono; if (delta <= (u64)TICK_NSEC) { /* * Tell the timer code that the base is not idle, i.e. undo * the effect of get_next_timer_interrupt(): */ timer_clear_idle(); /* * We've not stopped the tick yet, and there's a timer in the * next period, so no point in stopping it either, bail. */ if (!ts->tick_stopped) { ts->timer_expires = 0; goto out; } } /* * If this CPU is the one which had the do_timer() duty last, we limit * the sleep time to the timekeeping max_deferment value. * Otherwise we can sleep as long as we want. */ delta = timekeeping_max_deferment(); if (cpu != tick_do_timer_cpu && (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last)) delta = KTIME_MAX; /* Calculate the next expiry time */ if (delta < (KTIME_MAX - basemono)) expires = basemono + delta; else expires = KTIME_MAX; ts->timer_expires = min_t(u64, expires, next_tick); out: return ts->timer_expires; } static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu) { struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); u64 basemono = ts->timer_expires_base; u64 expires = ts->timer_expires; ktime_t tick = expires; /* Make sure we won't be trying to stop it twice in a row. */ ts->timer_expires_base = 0; /* * If this CPU is the one which updates jiffies, then give up * the assignment and let it be taken by the CPU which runs * the tick timer next, which might be this CPU as well. If we * don't drop this here the jiffies might be stale and * do_timer() never invoked. Keep track of the fact that it * was the one which had the do_timer() duty last. */ if (cpu == tick_do_timer_cpu) { tick_do_timer_cpu = TICK_DO_TIMER_NONE; ts->do_timer_last = 1; } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { ts->do_timer_last = 0; } /* Skip reprogram of event if its not changed */ if (ts->tick_stopped && (expires == ts->next_tick)) { /* Sanity check: make sure clockevent is actually programmed */ if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer)) return; WARN_ON_ONCE(1); printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n", basemono, ts->next_tick, dev->next_event, hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer)); } /* * nohz_stop_sched_tick can be called several times before * the nohz_restart_sched_tick is called. This happens when * interrupts arrive which do not cause a reschedule. In the * first call we save the current tick time, so we can restart * the scheduler tick in nohz_restart_sched_tick. */ if (!ts->tick_stopped) { calc_load_nohz_start(); quiet_vmstat(); ts->last_tick = hrtimer_get_expires(&ts->sched_timer); ts->tick_stopped = 1; trace_tick_stop(1, TICK_DEP_MASK_NONE); } ts->next_tick = tick; /* * If the expiration time == KTIME_MAX, then we simply stop * the tick timer. */ if (unlikely(expires == KTIME_MAX)) { if (ts->nohz_mode == NOHZ_MODE_HIGHRES) hrtimer_cancel(&ts->sched_timer); else tick_program_event(KTIME_MAX, 1); return; } if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED_HARD); } else { hrtimer_set_expires(&ts->sched_timer, tick); tick_program_event(tick, 1); } } static void tick_nohz_retain_tick(struct tick_sched *ts) { ts->timer_expires_base = 0; } #ifdef CONFIG_NO_HZ_FULL static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu) { if (tick_nohz_next_event(ts, cpu)) tick_nohz_stop_tick(ts, cpu); else tick_nohz_retain_tick(ts); } #endif /* CONFIG_NO_HZ_FULL */ static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now) { /* Update jiffies first */ tick_do_update_jiffies64(now); /* * Clear the timer idle flag, so we avoid IPIs on remote queueing and * the clock forward checks in the enqueue path: */ timer_clear_idle(); calc_load_nohz_stop(); touch_softlockup_watchdog_sched(); /* * Cancel the scheduled timer and restore the tick */ ts->tick_stopped = 0; ts->idle_exittime = now; tick_nohz_restart(ts, now); } static void tick_nohz_full_update_tick(struct tick_sched *ts) { #ifdef CONFIG_NO_HZ_FULL int cpu = smp_processor_id(); if (!tick_nohz_full_cpu(cpu)) return; if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE) return; if (can_stop_full_tick(cpu, ts)) tick_nohz_stop_sched_tick(ts, cpu); else if (ts->tick_stopped) tick_nohz_restart_sched_tick(ts, ktime_get()); #endif } static bool can_stop_idle_tick(int cpu, struct tick_sched *ts) { /* * If this CPU is offline and it is the one which updates * jiffies, then give up the assignment and let it be taken by * the CPU which runs the tick timer next. If we don't drop * this here the jiffies might be stale and do_timer() never * invoked. */ if (unlikely(!cpu_online(cpu))) { if (cpu == tick_do_timer_cpu) tick_do_timer_cpu = TICK_DO_TIMER_NONE; /* * Make sure the CPU doesn't get fooled by obsolete tick * deadline if it comes back online later. */ ts->next_tick = 0; return false; } if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) return false; if (need_resched()) return false; if (unlikely(local_softirq_pending())) { static int ratelimit; if (ratelimit < 10 && (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) { pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n", (unsigned int) local_softirq_pending()); ratelimit++; } return false; } if (tick_nohz_full_enabled()) { /* * Keep the tick alive to guarantee timekeeping progression * if there are full dynticks CPUs around */ if (tick_do_timer_cpu == cpu) return false; /* Should not happen for nohz-full */ if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) return false; } return true; } static void __tick_nohz_idle_stop_tick(struct tick_sched *ts) { ktime_t expires; int cpu = smp_processor_id(); /* * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the * tick timer expiration time is known already. */ if (ts->timer_expires_base) expires = ts->timer_expires; else if (can_stop_idle_tick(cpu, ts)) expires = tick_nohz_next_event(ts, cpu); else return; ts->idle_calls++; if (expires > 0LL) { int was_stopped = ts->tick_stopped; tick_nohz_stop_tick(ts, cpu); ts->idle_sleeps++; ts->idle_expires = expires; if (!was_stopped && ts->tick_stopped) { ts->idle_jiffies = ts->last_jiffies; nohz_balance_enter_idle(cpu); } } else { tick_nohz_retain_tick(ts); } } /** * tick_nohz_idle_stop_tick - stop the idle tick from the idle task * * When the next event is more than a tick into the future, stop the idle tick */ void tick_nohz_idle_stop_tick(void) { __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched)); } void tick_nohz_idle_retain_tick(void) { tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched)); /* * Undo the effect of get_next_timer_interrupt() called from * tick_nohz_next_event(). */ timer_clear_idle(); } /** * tick_nohz_idle_enter - prepare for entering idle on the current CPU * * Called when we start the idle loop. */ void tick_nohz_idle_enter(void) { struct tick_sched *ts; lockdep_assert_irqs_enabled(); local_irq_disable(); ts = this_cpu_ptr(&tick_cpu_sched); WARN_ON_ONCE(ts->timer_expires_base); ts->inidle = 1; tick_nohz_start_idle(ts); local_irq_enable(); } /** * tick_nohz_irq_exit - update next tick event from interrupt exit * * When an interrupt fires while we are idle and it doesn't cause * a reschedule, it may still add, modify or delete a timer, enqueue * an RCU callback, etc... * So we need to re-calculate and reprogram the next tick event. */ void tick_nohz_irq_exit(void) { struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); if (ts->inidle) tick_nohz_start_idle(ts); else tick_nohz_full_update_tick(ts); } /** * tick_nohz_idle_got_tick - Check whether or not the tick handler has run */ bool tick_nohz_idle_got_tick(void) { struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); if (ts->got_idle_tick) { ts->got_idle_tick = 0; return true; } return false; } /** * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer * or the tick, whatever that expires first. Note that, if the tick has been * stopped, it returns the next hrtimer. * * Called from power state control code with interrupts disabled */ ktime_t tick_nohz_get_next_hrtimer(void) { return __this_cpu_read(tick_cpu_device.evtdev)->next_event; } /** * tick_nohz_get_sleep_length - return the expected length of the current sleep * @delta_next: duration until the next event if the tick cannot be stopped * * Called from power state control code with interrupts disabled */ ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next) { struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); int cpu = smp_processor_id(); /* * The idle entry time is expected to be a sufficient approximation of * the current time at this point. */ ktime_t now = ts->idle_entrytime; ktime_t next_event; WARN_ON_ONCE(!ts->inidle); *delta_next = ktime_sub(dev->next_event, now); if (!can_stop_idle_tick(cpu, ts)) return *delta_next; next_event = tick_nohz_next_event(ts, cpu); if (!next_event) return *delta_next; /* * If the next highres timer to expire is earlier than next_event, the * idle governor needs to know that. */ next_event = min_t(u64, next_event, hrtimer_next_event_without(&ts->sched_timer)); return ktime_sub(next_event, now); } /** * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value * for a particular CPU. * * Called from the schedutil frequency scaling governor in scheduler context. */ unsigned long tick_nohz_get_idle_calls_cpu(int cpu) { struct tick_sched *ts = tick_get_tick_sched(cpu); return ts->idle_calls; } /** * tick_nohz_get_idle_calls - return the current idle calls counter value * * Called from the schedutil frequency scaling governor in scheduler context. */ unsigned long tick_nohz_get_idle_calls(void) { struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); return ts->idle_calls; } static void tick_nohz_account_idle_ticks(struct tick_sched *ts) { #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE unsigned long ticks; if (vtime_accounting_enabled_this_cpu()) return; /* * We stopped the tick in idle. Update process times would miss the * time we slept as update_process_times does only a 1 tick * accounting. Enforce that this is accounted to idle ! */ ticks = jiffies - ts->idle_jiffies; /* * We might be one off. Do not randomly account a huge number of ticks! */ if (ticks && ticks < LONG_MAX) account_idle_ticks(ticks); #endif } static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now) { tick_nohz_restart_sched_tick(ts, now); tick_nohz_account_idle_ticks(ts); } void tick_nohz_idle_restart_tick(void) { struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); if (ts->tick_stopped) __tick_nohz_idle_restart_tick(ts, ktime_get()); } /** * tick_nohz_idle_exit - restart the idle tick from the idle task * * Restart the idle tick when the CPU is woken up from idle * This also exit the RCU extended quiescent state. The CPU * can use RCU again after this function is called. */ void tick_nohz_idle_exit(void) { struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); bool idle_active, tick_stopped; ktime_t now; local_irq_disable(); WARN_ON_ONCE(!ts->inidle); WARN_ON_ONCE(ts->timer_expires_base); ts->inidle = 0; idle_active = ts->idle_active; tick_stopped = ts->tick_stopped; if (idle_active || tick_stopped) now = ktime_get(); if (idle_active) tick_nohz_stop_idle(ts, now); if (tick_stopped) __tick_nohz_idle_restart_tick(ts, now); local_irq_enable(); } /* * The nohz low res interrupt handler */ static void tick_nohz_handler(struct clock_event_device *dev) { struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); struct pt_regs *regs = get_irq_regs(); ktime_t now = ktime_get(); dev->next_event = KTIME_MAX; tick_sched_do_timer(ts, now); tick_sched_handle(ts, regs); if (unlikely(ts->tick_stopped)) { /* * The clockevent device is not reprogrammed, so change the * clock event device to ONESHOT_STOPPED to avoid spurious * interrupts on devices which might not be truly one shot. */ tick_program_event(KTIME_MAX, 1); return; } hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); } static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { if (!tick_nohz_enabled) return; ts->nohz_mode = mode; /* One update is enough */ if (!test_and_set_bit(0, &tick_nohz_active)) timers_update_nohz(); } /** * tick_nohz_switch_to_nohz - switch to nohz mode */ static void tick_nohz_switch_to_nohz(void) { struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); ktime_t next; if (!tick_nohz_enabled) return; if (tick_switch_to_oneshot(tick_nohz_handler)) return; /* * Recycle the hrtimer in ts, so we can share the * hrtimer_forward with the highres code. */ hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); /* Get the next period */ next = tick_init_jiffy_update(); hrtimer_set_expires(&ts->sched_timer, next); hrtimer_forward_now(&ts->sched_timer, TICK_NSEC); tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1); tick_nohz_activate(ts, NOHZ_MODE_LOWRES); } static inline void tick_nohz_irq_enter(void) { struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); ktime_t now; if (!ts->idle_active && !ts->tick_stopped) return; now = ktime_get(); if (ts->idle_active) tick_nohz_stop_idle(ts, now); if (ts->tick_stopped) tick_nohz_update_jiffies(now); } #else static inline void tick_nohz_switch_to_nohz(void) { } static inline void tick_nohz_irq_enter(void) { } static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { } #endif /* CONFIG_NO_HZ_COMMON */ /* * Called from irq_enter to notify about the possible interruption of idle() */ void tick_irq_enter(void) { tick_check_oneshot_broadcast_this_cpu(); tick_nohz_irq_enter(); } /* * High resolution timer specific code */ #ifdef CONFIG_HIGH_RES_TIMERS /* * We rearm the timer until we get disabled by the idle code. * Called with interrupts disabled. */ static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) { struct tick_sched *ts = container_of(timer, struct tick_sched, sched_timer); struct pt_regs *regs = get_irq_regs(); ktime_t now = ktime_get(); tick_sched_do_timer(ts, now); /* * Do not call, when we are not in irq context and have * no valid regs pointer */ if (regs) tick_sched_handle(ts, regs); else ts->next_tick = 0; /* No need to reprogram if we are in idle or full dynticks mode */ if (unlikely(ts->tick_stopped)) return HRTIMER_NORESTART; hrtimer_forward(timer, now, TICK_NSEC); return HRTIMER_RESTART; } static int sched_skew_tick; static int __init skew_tick(char *str) { get_option(&str, &sched_skew_tick); return 0; } early_param("skew_tick", skew_tick); /** * tick_setup_sched_timer - setup the tick emulation timer */ void tick_setup_sched_timer(void) { struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); ktime_t now = ktime_get(); /* * Emulate tick processing via per-CPU hrtimers: */ hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); ts->sched_timer.function = tick_sched_timer; /* Get the next period (per-CPU) */ hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); /* Offset the tick to avert jiffies_lock contention. */ if (sched_skew_tick) { u64 offset = TICK_NSEC >> 1; do_div(offset, num_possible_cpus()); offset *= smp_processor_id(); hrtimer_add_expires_ns(&ts->sched_timer, offset); } hrtimer_forward(&ts->sched_timer, now, TICK_NSEC); hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD); tick_nohz_activate(ts, NOHZ_MODE_HIGHRES); } #endif /* HIGH_RES_TIMERS */ #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS void tick_cancel_sched_timer(int cpu) { struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); ktime_t idle_sleeptime, iowait_sleeptime; unsigned long idle_calls, idle_sleeps; # ifdef CONFIG_HIGH_RES_TIMERS if (ts->sched_timer.base) hrtimer_cancel(&ts->sched_timer); # endif idle_sleeptime = ts->idle_sleeptime; iowait_sleeptime = ts->iowait_sleeptime; idle_calls = ts->idle_calls; idle_sleeps = ts->idle_sleeps; memset(ts, 0, sizeof(*ts)); ts->idle_sleeptime = idle_sleeptime; ts->iowait_sleeptime = iowait_sleeptime; ts->idle_calls = idle_calls; ts->idle_sleeps = idle_sleeps; } #endif /** * Async notification about clocksource changes */ void tick_clock_notify(void) { int cpu; for_each_possible_cpu(cpu) set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); } /* * Async notification about clock event changes */ void tick_oneshot_notify(void) { struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); set_bit(0, &ts->check_clocks); } /** * Check, if a change happened, which makes oneshot possible. * * Called cyclic from the hrtimer softirq (driven by the timer * softirq) allow_nohz signals, that we can switch into low-res nohz * mode, because high resolution timers are disabled (either compile * or runtime). Called with interrupts disabled. */ int tick_check_oneshot_change(int allow_nohz) { struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched); if (!test_and_clear_bit(0, &ts->check_clocks)) return 0; if (ts->nohz_mode != NOHZ_MODE_INACTIVE) return 0; if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) return 0; if (!allow_nohz) return 1; tick_nohz_switch_to_nohz(); return 0; }