// SPDX-License-Identifier: GPL-2.0 // Copyright 2019 NXP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fsl_easrc.h" #include "imx-pcm.h" #define FSL_EASRC_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | \ SNDRV_PCM_FMTBIT_U16_LE | \ SNDRV_PCM_FMTBIT_S24_LE | \ SNDRV_PCM_FMTBIT_S24_3LE | \ SNDRV_PCM_FMTBIT_U24_LE | \ SNDRV_PCM_FMTBIT_U24_3LE | \ SNDRV_PCM_FMTBIT_S32_LE | \ SNDRV_PCM_FMTBIT_U32_LE | \ SNDRV_PCM_FMTBIT_S20_3LE | \ SNDRV_PCM_FMTBIT_U20_3LE | \ SNDRV_PCM_FMTBIT_FLOAT_LE) static int fsl_easrc_iec958_put_bits(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol); struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp); struct fsl_easrc_priv *easrc_priv = easrc->private; struct soc_mreg_control *mc = (struct soc_mreg_control *)kcontrol->private_value; unsigned int regval = ucontrol->value.integer.value[0]; easrc_priv->bps_iec958[mc->regbase] = regval; return 0; } static int fsl_easrc_iec958_get_bits(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol); struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp); struct fsl_easrc_priv *easrc_priv = easrc->private; struct soc_mreg_control *mc = (struct soc_mreg_control *)kcontrol->private_value; ucontrol->value.enumerated.item[0] = easrc_priv->bps_iec958[mc->regbase]; return 0; } static int fsl_easrc_get_reg(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mreg_control *mc = (struct soc_mreg_control *)kcontrol->private_value; unsigned int regval; regval = snd_soc_component_read(component, mc->regbase); ucontrol->value.integer.value[0] = regval; return 0; } static int fsl_easrc_set_reg(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct soc_mreg_control *mc = (struct soc_mreg_control *)kcontrol->private_value; unsigned int regval = ucontrol->value.integer.value[0]; int ret; ret = snd_soc_component_write(component, mc->regbase, regval); if (ret < 0) return ret; return 0; } #define SOC_SINGLE_REG_RW(xname, xreg) \ { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .info = snd_soc_info_xr_sx, .get = fsl_easrc_get_reg, \ .put = fsl_easrc_set_reg, \ .private_value = (unsigned long)&(struct soc_mreg_control) \ { .regbase = xreg, .regcount = 1, .nbits = 32, \ .invert = 0, .min = 0, .max = 0xffffffff, } } #define SOC_SINGLE_VAL_RW(xname, xreg) \ { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \ .info = snd_soc_info_xr_sx, .get = fsl_easrc_iec958_get_bits, \ .put = fsl_easrc_iec958_put_bits, \ .private_value = (unsigned long)&(struct soc_mreg_control) \ { .regbase = xreg, .regcount = 1, .nbits = 32, \ .invert = 0, .min = 0, .max = 2, } } static const struct snd_kcontrol_new fsl_easrc_snd_controls[] = { SOC_SINGLE("Context 0 Dither Switch", REG_EASRC_COC(0), 0, 1, 0), SOC_SINGLE("Context 1 Dither Switch", REG_EASRC_COC(1), 0, 1, 0), SOC_SINGLE("Context 2 Dither Switch", REG_EASRC_COC(2), 0, 1, 0), SOC_SINGLE("Context 3 Dither Switch", REG_EASRC_COC(3), 0, 1, 0), SOC_SINGLE("Context 0 IEC958 Validity", REG_EASRC_COC(0), 2, 1, 0), SOC_SINGLE("Context 1 IEC958 Validity", REG_EASRC_COC(1), 2, 1, 0), SOC_SINGLE("Context 2 IEC958 Validity", REG_EASRC_COC(2), 2, 1, 0), SOC_SINGLE("Context 3 IEC958 Validity", REG_EASRC_COC(3), 2, 1, 0), SOC_SINGLE_VAL_RW("Context 0 IEC958 Bits Per Sample", 0), SOC_SINGLE_VAL_RW("Context 1 IEC958 Bits Per Sample", 1), SOC_SINGLE_VAL_RW("Context 2 IEC958 Bits Per Sample", 2), SOC_SINGLE_VAL_RW("Context 3 IEC958 Bits Per Sample", 3), SOC_SINGLE_REG_RW("Context 0 IEC958 CS0", REG_EASRC_CS0(0)), SOC_SINGLE_REG_RW("Context 1 IEC958 CS0", REG_EASRC_CS0(1)), SOC_SINGLE_REG_RW("Context 2 IEC958 CS0", REG_EASRC_CS0(2)), SOC_SINGLE_REG_RW("Context 3 IEC958 CS0", REG_EASRC_CS0(3)), SOC_SINGLE_REG_RW("Context 0 IEC958 CS1", REG_EASRC_CS1(0)), SOC_SINGLE_REG_RW("Context 1 IEC958 CS1", REG_EASRC_CS1(1)), SOC_SINGLE_REG_RW("Context 2 IEC958 CS1", REG_EASRC_CS1(2)), SOC_SINGLE_REG_RW("Context 3 IEC958 CS1", REG_EASRC_CS1(3)), SOC_SINGLE_REG_RW("Context 0 IEC958 CS2", REG_EASRC_CS2(0)), SOC_SINGLE_REG_RW("Context 1 IEC958 CS2", REG_EASRC_CS2(1)), SOC_SINGLE_REG_RW("Context 2 IEC958 CS2", REG_EASRC_CS2(2)), SOC_SINGLE_REG_RW("Context 3 IEC958 CS2", REG_EASRC_CS2(3)), SOC_SINGLE_REG_RW("Context 0 IEC958 CS3", REG_EASRC_CS3(0)), SOC_SINGLE_REG_RW("Context 1 IEC958 CS3", REG_EASRC_CS3(1)), SOC_SINGLE_REG_RW("Context 2 IEC958 CS3", REG_EASRC_CS3(2)), SOC_SINGLE_REG_RW("Context 3 IEC958 CS3", REG_EASRC_CS3(3)), SOC_SINGLE_REG_RW("Context 0 IEC958 CS4", REG_EASRC_CS4(0)), SOC_SINGLE_REG_RW("Context 1 IEC958 CS4", REG_EASRC_CS4(1)), SOC_SINGLE_REG_RW("Context 2 IEC958 CS4", REG_EASRC_CS4(2)), SOC_SINGLE_REG_RW("Context 3 IEC958 CS4", REG_EASRC_CS4(3)), SOC_SINGLE_REG_RW("Context 0 IEC958 CS5", REG_EASRC_CS5(0)), SOC_SINGLE_REG_RW("Context 1 IEC958 CS5", REG_EASRC_CS5(1)), SOC_SINGLE_REG_RW("Context 2 IEC958 CS5", REG_EASRC_CS5(2)), SOC_SINGLE_REG_RW("Context 3 IEC958 CS5", REG_EASRC_CS5(3)), }; /* * fsl_easrc_set_rs_ratio * * According to the resample taps, calculate the resample ratio * ratio = in_rate / out_rate */ static int fsl_easrc_set_rs_ratio(struct fsl_asrc_pair *ctx) { struct fsl_asrc *easrc = ctx->asrc; struct fsl_easrc_priv *easrc_priv = easrc->private; struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; unsigned int in_rate = ctx_priv->in_params.norm_rate; unsigned int out_rate = ctx_priv->out_params.norm_rate; unsigned int frac_bits; u64 val; u32 *r; switch (easrc_priv->rs_num_taps) { case EASRC_RS_32_TAPS: /* integer bits = 5; */ frac_bits = 39; break; case EASRC_RS_64_TAPS: /* integer bits = 6; */ frac_bits = 38; break; case EASRC_RS_128_TAPS: /* integer bits = 7; */ frac_bits = 37; break; default: return -EINVAL; } val = (u64)in_rate << frac_bits; do_div(val, out_rate); r = (uint32_t *)&val; if (r[1] & 0xFFFFF000) { dev_err(&easrc->pdev->dev, "ratio exceed range\n"); return -EINVAL; } regmap_write(easrc->regmap, REG_EASRC_RRL(ctx->index), EASRC_RRL_RS_RL(r[0])); regmap_write(easrc->regmap, REG_EASRC_RRH(ctx->index), EASRC_RRH_RS_RH(r[1])); return 0; } /* Normalize input and output sample rates */ static void fsl_easrc_normalize_rates(struct fsl_asrc_pair *ctx) { struct fsl_easrc_ctx_priv *ctx_priv; int a, b; if (!ctx) return; ctx_priv = ctx->private; a = ctx_priv->in_params.sample_rate; b = ctx_priv->out_params.sample_rate; a = gcd(a, b); /* Divide by gcd to normalize the rate */ ctx_priv->in_params.norm_rate = ctx_priv->in_params.sample_rate / a; ctx_priv->out_params.norm_rate = ctx_priv->out_params.sample_rate / a; } /* Resets the pointer of the coeff memory pointers */ static int fsl_easrc_coeff_mem_ptr_reset(struct fsl_asrc *easrc, unsigned int ctx_id, int mem_type) { struct device *dev; u32 reg, mask, val; if (!easrc) return -ENODEV; dev = &easrc->pdev->dev; switch (mem_type) { case EASRC_PF_COEFF_MEM: /* This resets the prefilter memory pointer addr */ if (ctx_id >= EASRC_CTX_MAX_NUM) { dev_err(dev, "Invalid context id[%d]\n", ctx_id); return -EINVAL; } reg = REG_EASRC_CCE1(ctx_id); mask = EASRC_CCE1_COEF_MEM_RST_MASK; val = EASRC_CCE1_COEF_MEM_RST; break; case EASRC_RS_COEFF_MEM: /* This resets the resampling memory pointer addr */ reg = REG_EASRC_CRCC; mask = EASRC_CRCC_RS_CPR_MASK; val = EASRC_CRCC_RS_CPR; break; default: dev_err(dev, "Unknown memory type\n"); return -EINVAL; } /* * To reset the write pointer back to zero, the register field * ASRC_CTX_CTRL_EXT1x[PF_COEFF_MEM_RST] can be toggled from * 0x0 to 0x1 to 0x0. */ regmap_update_bits(easrc->regmap, reg, mask, 0); regmap_update_bits(easrc->regmap, reg, mask, val); regmap_update_bits(easrc->regmap, reg, mask, 0); return 0; } static inline uint32_t bits_taps_to_val(unsigned int t) { switch (t) { case EASRC_RS_32_TAPS: return 32; case EASRC_RS_64_TAPS: return 64; case EASRC_RS_128_TAPS: return 128; } return 0; } static int fsl_easrc_resampler_config(struct fsl_asrc *easrc) { struct device *dev = &easrc->pdev->dev; struct fsl_easrc_priv *easrc_priv = easrc->private; struct asrc_firmware_hdr *hdr = easrc_priv->firmware_hdr; struct interp_params *interp = easrc_priv->interp; struct interp_params *selected_interp = NULL; unsigned int num_coeff; unsigned int i; u64 *coef; u32 *r; int ret; if (!hdr) { dev_err(dev, "firmware not loaded!\n"); return -ENODEV; } for (i = 0; i < hdr->interp_scen; i++) { if ((interp[i].num_taps - 1) != bits_taps_to_val(easrc_priv->rs_num_taps)) continue; coef = interp[i].coeff; selected_interp = &interp[i]; dev_dbg(dev, "Selected interp_filter: %u taps - %u phases\n", selected_interp->num_taps, selected_interp->num_phases); break; } if (!selected_interp) { dev_err(dev, "failed to get interpreter configuration\n"); return -EINVAL; } /* * RS_LOW - first half of center tap of the sinc function * RS_HIGH - second half of center tap of the sinc function * This is due to the fact the resampling function must be * symetrical - i.e. odd number of taps */ r = (uint32_t *)&selected_interp->center_tap; regmap_write(easrc->regmap, REG_EASRC_RCTCL, EASRC_RCTCL_RS_CL(r[0])); regmap_write(easrc->regmap, REG_EASRC_RCTCH, EASRC_RCTCH_RS_CH(r[1])); /* * Write Number of Resampling Coefficient Taps * 00b - 32-Tap Resampling Filter * 01b - 64-Tap Resampling Filter * 10b - 128-Tap Resampling Filter * 11b - N/A */ regmap_update_bits(easrc->regmap, REG_EASRC_CRCC, EASRC_CRCC_RS_TAPS_MASK, EASRC_CRCC_RS_TAPS(easrc_priv->rs_num_taps)); /* Reset prefilter coefficient pointer back to 0 */ ret = fsl_easrc_coeff_mem_ptr_reset(easrc, 0, EASRC_RS_COEFF_MEM); if (ret) return ret; /* * When the filter is programmed to run in: * 32-tap mode, 16-taps, 128-phases 4-coefficients per phase * 64-tap mode, 32-taps, 64-phases 4-coefficients per phase * 128-tap mode, 64-taps, 32-phases 4-coefficients per phase * This means the number of writes is constant no matter * the mode we are using */ num_coeff = 16 * 128 * 4; for (i = 0; i < num_coeff; i++) { r = (uint32_t *)&coef[i]; regmap_write(easrc->regmap, REG_EASRC_CRCM, EASRC_CRCM_RS_CWD(r[0])); regmap_write(easrc->regmap, REG_EASRC_CRCM, EASRC_CRCM_RS_CWD(r[1])); } return 0; } /** * Scale filter coefficients (64 bits float) * For input float32 normalized range (1.0,-1.0) -> output int[16,24,32]: * scale it by multiplying filter coefficients by 2^31 * For input int[16, 24, 32] -> output float32 * scale it by multiplying filter coefficients by 2^-15, 2^-23, 2^-31 * input: * @easrc: Structure pointer of fsl_asrc * @infilter : Pointer to non-scaled input filter * @shift: The multiply factor * output: * @outfilter: scaled filter */ static int fsl_easrc_normalize_filter(struct fsl_asrc *easrc, u64 *infilter, u64 *outfilter, int shift) { struct device *dev = &easrc->pdev->dev; u64 coef = *infilter; s64 exp = (coef & 0x7ff0000000000000ll) >> 52; u64 outcoef; /* * If exponent is zero (value == 0), or 7ff (value == NaNs) * dont touch the content */ if (exp == 0 || exp == 0x7ff) { *outfilter = coef; return 0; } /* coef * 2^shift ==> exp + shift */ exp += shift; if ((shift > 0 && exp >= 0x7ff) || (shift < 0 && exp <= 0)) { dev_err(dev, "coef out of range\n"); return -EINVAL; } outcoef = (u64)(coef & 0x800FFFFFFFFFFFFFll) + ((u64)exp << 52); *outfilter = outcoef; return 0; } static int fsl_easrc_write_pf_coeff_mem(struct fsl_asrc *easrc, int ctx_id, u64 *coef, int n_taps, int shift) { struct device *dev = &easrc->pdev->dev; int ret = 0; int i; u32 *r; u64 tmp; /* If STx_NUM_TAPS is set to 0x0 then return */ if (!n_taps) return 0; if (!coef) { dev_err(dev, "coef table is NULL\n"); return -EINVAL; } /* * When switching between stages, the address pointer * should be reset back to 0x0 before performing a write */ ret = fsl_easrc_coeff_mem_ptr_reset(easrc, ctx_id, EASRC_PF_COEFF_MEM); if (ret) return ret; for (i = 0; i < (n_taps + 1) / 2; i++) { ret = fsl_easrc_normalize_filter(easrc, &coef[i], &tmp, shift); if (ret) return ret; r = (uint32_t *)&tmp; regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id), EASRC_PCF_CD(r[0])); regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id), EASRC_PCF_CD(r[1])); } return 0; } static int fsl_easrc_prefilter_config(struct fsl_asrc *easrc, unsigned int ctx_id) { struct prefil_params *prefil, *selected_prefil = NULL; struct fsl_easrc_ctx_priv *ctx_priv; struct fsl_easrc_priv *easrc_priv; struct asrc_firmware_hdr *hdr; struct fsl_asrc_pair *ctx; struct device *dev; u32 inrate, outrate, offset = 0; u32 in_s_rate, out_s_rate; snd_pcm_format_t in_s_fmt, out_s_fmt; int ret, i; if (!easrc) return -ENODEV; dev = &easrc->pdev->dev; if (ctx_id >= EASRC_CTX_MAX_NUM) { dev_err(dev, "Invalid context id[%d]\n", ctx_id); return -EINVAL; } easrc_priv = easrc->private; ctx = easrc->pair[ctx_id]; ctx_priv = ctx->private; in_s_rate = ctx_priv->in_params.sample_rate; out_s_rate = ctx_priv->out_params.sample_rate; in_s_fmt = ctx_priv->in_params.sample_format; out_s_fmt = ctx_priv->out_params.sample_format; ctx_priv->in_filled_sample = bits_taps_to_val(easrc_priv->rs_num_taps) / 2; ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate; ctx_priv->st1_num_taps = 0; ctx_priv->st2_num_taps = 0; regmap_write(easrc->regmap, REG_EASRC_CCE1(ctx_id), 0); regmap_write(easrc->regmap, REG_EASRC_CCE2(ctx_id), 0); /* * The audio float point data range is (-1, 1), the asrc would output * all zero for float point input and integer output case, that is to * drop the fractional part of the data directly. * * In order to support float to int conversion or int to float * conversion we need to do special operation on the coefficient to * enlarge/reduce the data to the expected range. * * For float to int case: * Up sampling: * 1. Create a 1 tap filter with center tap (only tap) of 2^31 * in 64 bits floating point. * double value = (double)(((uint64_t)1) << 31) * 2. Program 1 tap prefilter with center tap above. * * Down sampling, * 1. If the filter is single stage filter, add "shift" to the exponent * of stage 1 coefficients. * 2. If the filter is two stage filter , add "shift" to the exponent * of stage 2 coefficients. * * The "shift" is 31, same for int16, int24, int32 case. * * For int to float case: * Up sampling: * 1. Create a 1 tap filter with center tap (only tap) of 2^-31 * in 64 bits floating point. * 2. Program 1 tap prefilter with center tap above. * * Down sampling, * 1. If the filter is single stage filter, subtract "shift" to the * exponent of stage 1 coefficients. * 2. If the filter is two stage filter , subtract "shift" to the * exponent of stage 2 coefficients. * * The "shift" is 15,23,31, different for int16, int24, int32 case. * */ if (out_s_rate >= in_s_rate) { if (out_s_rate == in_s_rate) regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), EASRC_CCE1_RS_BYPASS_MASK, EASRC_CCE1_RS_BYPASS); ctx_priv->st1_num_taps = 1; ctx_priv->st1_coeff = &easrc_priv->const_coeff; ctx_priv->st1_num_exp = 1; ctx_priv->st2_num_taps = 0; if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE && out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE) ctx_priv->st1_addexp = 31; else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE && out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE) ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp; } else { inrate = ctx_priv->in_params.norm_rate; outrate = ctx_priv->out_params.norm_rate; hdr = easrc_priv->firmware_hdr; prefil = easrc_priv->prefil; for (i = 0; i < hdr->prefil_scen; i++) { if (inrate == prefil[i].insr && outrate == prefil[i].outsr) { selected_prefil = &prefil[i]; dev_dbg(dev, "Selected prefilter: %u insr, %u outsr, %u st1_taps, %u st2_taps\n", selected_prefil->insr, selected_prefil->outsr, selected_prefil->st1_taps, selected_prefil->st2_taps); break; } } if (!selected_prefil) { dev_err(dev, "Conversion from in ratio %u(%u) to out ratio %u(%u) is not supported\n", in_s_rate, inrate, out_s_rate, outrate); return -EINVAL; } /* * In prefilter coeff array, first st1_num_taps represent the * stage1 prefilter coefficients followed by next st2_num_taps * representing stage 2 coefficients */ ctx_priv->st1_num_taps = selected_prefil->st1_taps; ctx_priv->st1_coeff = selected_prefil->coeff; ctx_priv->st1_num_exp = selected_prefil->st1_exp; offset = ((selected_prefil->st1_taps + 1) / 2); ctx_priv->st2_num_taps = selected_prefil->st2_taps; ctx_priv->st2_coeff = selected_prefil->coeff + offset; if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE && out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE) { /* only change stage2 coefficient for 2 stage case */ if (ctx_priv->st2_num_taps > 0) ctx_priv->st2_addexp = 31; else ctx_priv->st1_addexp = 31; } else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE && out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE) { if (ctx_priv->st2_num_taps > 0) ctx_priv->st2_addexp -= ctx_priv->in_params.fmt.addexp; else ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp; } } ctx_priv->in_filled_sample += (ctx_priv->st1_num_taps / 2) * ctx_priv->st1_num_exp + ctx_priv->st2_num_taps / 2; ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate; if (ctx_priv->in_filled_sample * out_s_rate % in_s_rate != 0) ctx_priv->out_missed_sample += 1; /* * To modify the value of a prefilter coefficient, the user must * perform a write to the register ASRC_PRE_COEFF_FIFOn[COEFF_DATA] * while the respective context RUN_EN bit is set to 0b0 */ regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id), EASRC_CC_EN_MASK, 0); if (ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) { dev_err(dev, "ST1 taps [%d] mus be lower than %d\n", ctx_priv->st1_num_taps, EASRC_MAX_PF_TAPS); ret = -EINVAL; goto ctx_error; } /* Update ctx ST1_NUM_TAPS in Context Control Extended 2 register */ regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id), EASRC_CCE2_ST1_TAPS_MASK, EASRC_CCE2_ST1_TAPS(ctx_priv->st1_num_taps - 1)); /* Prefilter Coefficient Write Select to write in ST1 coeff */ regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), EASRC_CCE1_COEF_WS_MASK, EASRC_PF_ST1_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT); ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id, ctx_priv->st1_coeff, ctx_priv->st1_num_taps, ctx_priv->st1_addexp); if (ret) goto ctx_error; if (ctx_priv->st2_num_taps > 0) { if (ctx_priv->st2_num_taps + ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) { dev_err(dev, "ST2 taps [%d] mus be lower than %d\n", ctx_priv->st2_num_taps, EASRC_MAX_PF_TAPS); ret = -EINVAL; goto ctx_error; } regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), EASRC_CCE1_PF_TSEN_MASK, EASRC_CCE1_PF_TSEN); /* * Enable prefilter stage1 writeback floating point * which is used for FLOAT_LE case */ regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), EASRC_CCE1_PF_ST1_WBFP_MASK, EASRC_CCE1_PF_ST1_WBFP); regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), EASRC_CCE1_PF_EXP_MASK, EASRC_CCE1_PF_EXP(ctx_priv->st1_num_exp - 1)); /* Update ctx ST2_NUM_TAPS in Context Control Extended 2 reg */ regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id), EASRC_CCE2_ST2_TAPS_MASK, EASRC_CCE2_ST2_TAPS(ctx_priv->st2_num_taps - 1)); /* Prefilter Coefficient Write Select to write in ST2 coeff */ regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), EASRC_CCE1_COEF_WS_MASK, EASRC_PF_ST2_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT); ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id, ctx_priv->st2_coeff, ctx_priv->st2_num_taps, ctx_priv->st2_addexp); if (ret) goto ctx_error; } return 0; ctx_error: return ret; } static int fsl_easrc_max_ch_for_slot(struct fsl_asrc_pair *ctx, struct fsl_easrc_slot *slot) { struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; int st1_mem_alloc = 0, st2_mem_alloc = 0; int pf_mem_alloc = 0; int max_channels = 8 - slot->num_channel; int channels = 0; if (ctx_priv->st1_num_taps > 0) { if (ctx_priv->st2_num_taps > 0) st1_mem_alloc = (ctx_priv->st1_num_taps - 1) * ctx_priv->st1_num_exp + 1; else st1_mem_alloc = ctx_priv->st1_num_taps; } if (ctx_priv->st2_num_taps > 0) st2_mem_alloc = ctx_priv->st2_num_taps; pf_mem_alloc = st1_mem_alloc + st2_mem_alloc; if (pf_mem_alloc != 0) channels = (6144 - slot->pf_mem_used) / pf_mem_alloc; else channels = 8; if (channels < max_channels) max_channels = channels; return max_channels; } static int fsl_easrc_config_one_slot(struct fsl_asrc_pair *ctx, struct fsl_easrc_slot *slot, unsigned int slot_ctx_idx, unsigned int *req_channels, unsigned int *start_channel, unsigned int *avail_channel) { struct fsl_asrc *easrc = ctx->asrc; struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; int st1_chanxexp, st1_mem_alloc = 0, st2_mem_alloc = 0; unsigned int reg0, reg1, reg2, reg3; unsigned int addr; if (slot->slot_index == 0) { reg0 = REG_EASRC_DPCS0R0(slot_ctx_idx); reg1 = REG_EASRC_DPCS0R1(slot_ctx_idx); reg2 = REG_EASRC_DPCS0R2(slot_ctx_idx); reg3 = REG_EASRC_DPCS0R3(slot_ctx_idx); } else { reg0 = REG_EASRC_DPCS1R0(slot_ctx_idx); reg1 = REG_EASRC_DPCS1R1(slot_ctx_idx); reg2 = REG_EASRC_DPCS1R2(slot_ctx_idx); reg3 = REG_EASRC_DPCS1R3(slot_ctx_idx); } if (*req_channels <= *avail_channel) { slot->num_channel = *req_channels; *req_channels = 0; } else { slot->num_channel = *avail_channel; *req_channels -= *avail_channel; } slot->min_channel = *start_channel; slot->max_channel = *start_channel + slot->num_channel - 1; slot->ctx_index = ctx->index; slot->busy = true; *start_channel += slot->num_channel; regmap_update_bits(easrc->regmap, reg0, EASRC_DPCS0R0_MAXCH_MASK, EASRC_DPCS0R0_MAXCH(slot->max_channel)); regmap_update_bits(easrc->regmap, reg0, EASRC_DPCS0R0_MINCH_MASK, EASRC_DPCS0R0_MINCH(slot->min_channel)); regmap_update_bits(easrc->regmap, reg0, EASRC_DPCS0R0_NUMCH_MASK, EASRC_DPCS0R0_NUMCH(slot->num_channel - 1)); regmap_update_bits(easrc->regmap, reg0, EASRC_DPCS0R0_CTXNUM_MASK, EASRC_DPCS0R0_CTXNUM(slot->ctx_index)); if (ctx_priv->st1_num_taps > 0) { if (ctx_priv->st2_num_taps > 0) st1_mem_alloc = (ctx_priv->st1_num_taps - 1) * slot->num_channel * ctx_priv->st1_num_exp + slot->num_channel; else st1_mem_alloc = ctx_priv->st1_num_taps * slot->num_channel; slot->pf_mem_used = st1_mem_alloc; regmap_update_bits(easrc->regmap, reg2, EASRC_DPCS0R2_ST1_MA_MASK, EASRC_DPCS0R2_ST1_MA(st1_mem_alloc)); if (slot->slot_index == 1) addr = PREFILTER_MEM_LEN - st1_mem_alloc; else addr = 0; regmap_update_bits(easrc->regmap, reg2, EASRC_DPCS0R2_ST1_SA_MASK, EASRC_DPCS0R2_ST1_SA(addr)); } if (ctx_priv->st2_num_taps > 0) { st1_chanxexp = slot->num_channel * (ctx_priv->st1_num_exp - 1); regmap_update_bits(easrc->regmap, reg1, EASRC_DPCS0R1_ST1_EXP_MASK, EASRC_DPCS0R1_ST1_EXP(st1_chanxexp)); st2_mem_alloc = slot->num_channel * ctx_priv->st2_num_taps; slot->pf_mem_used += st2_mem_alloc; regmap_update_bits(easrc->regmap, reg3, EASRC_DPCS0R3_ST2_MA_MASK, EASRC_DPCS0R3_ST2_MA(st2_mem_alloc)); if (slot->slot_index == 1) addr = PREFILTER_MEM_LEN - st1_mem_alloc - st2_mem_alloc; else addr = st1_mem_alloc; regmap_update_bits(easrc->regmap, reg3, EASRC_DPCS0R3_ST2_SA_MASK, EASRC_DPCS0R3_ST2_SA(addr)); } regmap_update_bits(easrc->regmap, reg0, EASRC_DPCS0R0_EN_MASK, EASRC_DPCS0R0_EN); return 0; } /* * fsl_easrc_config_slot * * A single context can be split amongst any of the 4 context processing pipes * in the design. * The total number of channels consumed within the context processor must be * less than or equal to 8. if a single context is configured to contain more * than 8 channels then it must be distributed across multiple context * processing pipe slots. * */ static int fsl_easrc_config_slot(struct fsl_asrc *easrc, unsigned int ctx_id) { struct fsl_easrc_priv *easrc_priv = easrc->private; struct fsl_asrc_pair *ctx = easrc->pair[ctx_id]; int req_channels = ctx->channels; int start_channel = 0, avail_channel; struct fsl_easrc_slot *slot0, *slot1; struct fsl_easrc_slot *slota, *slotb; int i, ret; if (req_channels <= 0) return -EINVAL; for (i = 0; i < EASRC_CTX_MAX_NUM; i++) { slot0 = &easrc_priv->slot[i][0]; slot1 = &easrc_priv->slot[i][1]; if (slot0->busy && slot1->busy) { continue; } else if ((slot0->busy && slot0->ctx_index == ctx->index) || (slot1->busy && slot1->ctx_index == ctx->index)) { continue; } else if (!slot0->busy) { slota = slot0; slotb = slot1; slota->slot_index = 0; } else if (!slot1->busy) { slota = slot1; slotb = slot0; slota->slot_index = 1; } if (!slota || !slotb) continue; avail_channel = fsl_easrc_max_ch_for_slot(ctx, slotb); if (avail_channel <= 0) continue; ret = fsl_easrc_config_one_slot(ctx, slota, i, &req_channels, &start_channel, &avail_channel); if (ret) return ret; if (req_channels > 0) continue; else break; } if (req_channels > 0) { dev_err(&easrc->pdev->dev, "no avail slot.\n"); return -EINVAL; } return 0; } /* * fsl_easrc_release_slot * * Clear the slot configuration */ static int fsl_easrc_release_slot(struct fsl_asrc *easrc, unsigned int ctx_id) { struct fsl_easrc_priv *easrc_priv = easrc->private; struct fsl_asrc_pair *ctx = easrc->pair[ctx_id]; int i; for (i = 0; i < EASRC_CTX_MAX_NUM; i++) { if (easrc_priv->slot[i][0].busy && easrc_priv->slot[i][0].ctx_index == ctx->index) { easrc_priv->slot[i][0].busy = false; easrc_priv->slot[i][0].num_channel = 0; easrc_priv->slot[i][0].pf_mem_used = 0; /* set registers */ regmap_write(easrc->regmap, REG_EASRC_DPCS0R0(i), 0); regmap_write(easrc->regmap, REG_EASRC_DPCS0R1(i), 0); regmap_write(easrc->regmap, REG_EASRC_DPCS0R2(i), 0); regmap_write(easrc->regmap, REG_EASRC_DPCS0R3(i), 0); } if (easrc_priv->slot[i][1].busy && easrc_priv->slot[i][1].ctx_index == ctx->index) { easrc_priv->slot[i][1].busy = false; easrc_priv->slot[i][1].num_channel = 0; easrc_priv->slot[i][1].pf_mem_used = 0; /* set registers */ regmap_write(easrc->regmap, REG_EASRC_DPCS1R0(i), 0); regmap_write(easrc->regmap, REG_EASRC_DPCS1R1(i), 0); regmap_write(easrc->regmap, REG_EASRC_DPCS1R2(i), 0); regmap_write(easrc->regmap, REG_EASRC_DPCS1R3(i), 0); } } return 0; } /* * fsl_easrc_config_context * * Configure the register relate with context. */ static int fsl_easrc_config_context(struct fsl_asrc *easrc, unsigned int ctx_id) { struct fsl_easrc_ctx_priv *ctx_priv; struct fsl_asrc_pair *ctx; struct device *dev; unsigned long lock_flags; int ret; if (!easrc) return -ENODEV; dev = &easrc->pdev->dev; if (ctx_id >= EASRC_CTX_MAX_NUM) { dev_err(dev, "Invalid context id[%d]\n", ctx_id); return -EINVAL; } ctx = easrc->pair[ctx_id]; ctx_priv = ctx->private; fsl_easrc_normalize_rates(ctx); ret = fsl_easrc_set_rs_ratio(ctx); if (ret) return ret; /* Initialize the context coeficients */ ret = fsl_easrc_prefilter_config(easrc, ctx->index); if (ret) return ret; spin_lock_irqsave(&easrc->lock, lock_flags); ret = fsl_easrc_config_slot(easrc, ctx->index); spin_unlock_irqrestore(&easrc->lock, lock_flags); if (ret) return ret; /* * Both prefilter and resampling filters can use following * initialization modes: * 2 - zero-fil mode * 1 - replication mode * 0 - software control */ regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), EASRC_CCE1_RS_INIT_MASK, EASRC_CCE1_RS_INIT(ctx_priv->rs_init_mode)); regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id), EASRC_CCE1_PF_INIT_MASK, EASRC_CCE1_PF_INIT(ctx_priv->pf_init_mode)); /* * Context Input FIFO Watermark * DMA request is generated when input FIFO < FIFO_WTMK */ regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id), EASRC_CC_FIFO_WTMK_MASK, EASRC_CC_FIFO_WTMK(ctx_priv->in_params.fifo_wtmk)); /* * Context Output FIFO Watermark * DMA request is generated when output FIFO > FIFO_WTMK * So we set fifo_wtmk -1 to register. */ regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx_id), EASRC_COC_FIFO_WTMK_MASK, EASRC_COC_FIFO_WTMK(ctx_priv->out_params.fifo_wtmk - 1)); /* Number of channels */ regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id), EASRC_CC_CHEN_MASK, EASRC_CC_CHEN(ctx->channels - 1)); return 0; } static int fsl_easrc_process_format(struct fsl_asrc_pair *ctx, struct fsl_easrc_data_fmt *fmt, snd_pcm_format_t raw_fmt) { struct fsl_asrc *easrc = ctx->asrc; struct fsl_easrc_priv *easrc_priv = easrc->private; int ret; if (!fmt) return -EINVAL; /* * Context Input Floating Point Format * 0 - Integer Format * 1 - Single Precision FP Format */ fmt->floating_point = !snd_pcm_format_linear(raw_fmt); fmt->sample_pos = 0; fmt->iec958 = 0; /* Get the data width */ switch (snd_pcm_format_width(raw_fmt)) { case 16: fmt->width = EASRC_WIDTH_16_BIT; fmt->addexp = 15; break; case 20: fmt->width = EASRC_WIDTH_20_BIT; fmt->addexp = 19; break; case 24: fmt->width = EASRC_WIDTH_24_BIT; fmt->addexp = 23; break; case 32: fmt->width = EASRC_WIDTH_32_BIT; fmt->addexp = 31; break; default: return -EINVAL; } switch (raw_fmt) { case SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE: fmt->width = easrc_priv->bps_iec958[ctx->index]; fmt->iec958 = 1; fmt->floating_point = 0; if (fmt->width == EASRC_WIDTH_16_BIT) { fmt->sample_pos = 12; fmt->addexp = 15; } else if (fmt->width == EASRC_WIDTH_20_BIT) { fmt->sample_pos = 8; fmt->addexp = 19; } else if (fmt->width == EASRC_WIDTH_24_BIT) { fmt->sample_pos = 4; fmt->addexp = 23; } break; default: break; } /* * Data Endianness * 0 - Little-Endian * 1 - Big-Endian */ ret = snd_pcm_format_big_endian(raw_fmt); if (ret < 0) return ret; fmt->endianness = ret; /* * Input Data sign * 0b - Signed Format * 1b - Unsigned Format */ fmt->unsign = snd_pcm_format_unsigned(raw_fmt) > 0 ? 1 : 0; return 0; } static int fsl_easrc_set_ctx_format(struct fsl_asrc_pair *ctx, snd_pcm_format_t *in_raw_format, snd_pcm_format_t *out_raw_format) { struct fsl_asrc *easrc = ctx->asrc; struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; struct fsl_easrc_data_fmt *in_fmt = &ctx_priv->in_params.fmt; struct fsl_easrc_data_fmt *out_fmt = &ctx_priv->out_params.fmt; int ret = 0; /* Get the bitfield values for input data format */ if (in_raw_format && out_raw_format) { ret = fsl_easrc_process_format(ctx, in_fmt, *in_raw_format); if (ret) return ret; } regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), EASRC_CC_BPS_MASK, EASRC_CC_BPS(in_fmt->width)); regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), EASRC_CC_ENDIANNESS_MASK, in_fmt->endianness << EASRC_CC_ENDIANNESS_SHIFT); regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), EASRC_CC_FMT_MASK, in_fmt->floating_point << EASRC_CC_FMT_SHIFT); regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), EASRC_CC_INSIGN_MASK, in_fmt->unsign << EASRC_CC_INSIGN_SHIFT); /* In Sample Position */ regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), EASRC_CC_SAMPLE_POS_MASK, EASRC_CC_SAMPLE_POS(in_fmt->sample_pos)); /* Get the bitfield values for input data format */ if (in_raw_format && out_raw_format) { ret = fsl_easrc_process_format(ctx, out_fmt, *out_raw_format); if (ret) return ret; } regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), EASRC_COC_BPS_MASK, EASRC_COC_BPS(out_fmt->width)); regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), EASRC_COC_ENDIANNESS_MASK, out_fmt->endianness << EASRC_COC_ENDIANNESS_SHIFT); regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), EASRC_COC_FMT_MASK, out_fmt->floating_point << EASRC_COC_FMT_SHIFT); regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), EASRC_COC_OUTSIGN_MASK, out_fmt->unsign << EASRC_COC_OUTSIGN_SHIFT); /* Out Sample Position */ regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), EASRC_COC_SAMPLE_POS_MASK, EASRC_COC_SAMPLE_POS(out_fmt->sample_pos)); regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), EASRC_COC_IEC_EN_MASK, out_fmt->iec958 << EASRC_COC_IEC_EN_SHIFT); return ret; } /* * The ASRC provides interleaving support in hardware to ensure that a * variety of sample sources can be internally combined * to conform with this format. Interleaving parameters are accessed * through the ASRC_CTRL_IN_ACCESSa and ASRC_CTRL_OUT_ACCESSa registers */ static int fsl_easrc_set_ctx_organziation(struct fsl_asrc_pair *ctx) { struct fsl_easrc_ctx_priv *ctx_priv; struct fsl_asrc *easrc; if (!ctx) return -ENODEV; easrc = ctx->asrc; ctx_priv = ctx->private; /* input interleaving parameters */ regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index), EASRC_CIA_ITER_MASK, EASRC_CIA_ITER(ctx_priv->in_params.iterations)); regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index), EASRC_CIA_GRLEN_MASK, EASRC_CIA_GRLEN(ctx_priv->in_params.group_len)); regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index), EASRC_CIA_ACCLEN_MASK, EASRC_CIA_ACCLEN(ctx_priv->in_params.access_len)); /* output interleaving parameters */ regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index), EASRC_COA_ITER_MASK, EASRC_COA_ITER(ctx_priv->out_params.iterations)); regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index), EASRC_COA_GRLEN_MASK, EASRC_COA_GRLEN(ctx_priv->out_params.group_len)); regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index), EASRC_COA_ACCLEN_MASK, EASRC_COA_ACCLEN(ctx_priv->out_params.access_len)); return 0; } /* * Request one of the available contexts * * Returns a negative number on error and >=0 as context id * on success */ static int fsl_easrc_request_context(int channels, struct fsl_asrc_pair *ctx) { enum asrc_pair_index index = ASRC_INVALID_PAIR; struct fsl_asrc *easrc = ctx->asrc; struct device *dev; unsigned long lock_flags; int ret = 0; int i; dev = &easrc->pdev->dev; spin_lock_irqsave(&easrc->lock, lock_flags); for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) { if (easrc->pair[i]) continue; index = i; break; } if (index == ASRC_INVALID_PAIR) { dev_err(dev, "all contexts are busy\n"); ret = -EBUSY; } else if (channels > easrc->channel_avail) { dev_err(dev, "can't give the required channels: %d\n", channels); ret = -EINVAL; } else { ctx->index = index; ctx->channels = channels; easrc->pair[index] = ctx; easrc->channel_avail -= channels; } spin_unlock_irqrestore(&easrc->lock, lock_flags); return ret; } /* * Release the context * * This funciton is mainly doing the revert thing in request context */ static void fsl_easrc_release_context(struct fsl_asrc_pair *ctx) { unsigned long lock_flags; struct fsl_asrc *easrc; if (!ctx) return; easrc = ctx->asrc; spin_lock_irqsave(&easrc->lock, lock_flags); fsl_easrc_release_slot(easrc, ctx->index); easrc->channel_avail += ctx->channels; easrc->pair[ctx->index] = NULL; spin_unlock_irqrestore(&easrc->lock, lock_flags); } /* * Start the context * * Enable the DMA request and context */ static int fsl_easrc_start_context(struct fsl_asrc_pair *ctx) { struct fsl_asrc *easrc = ctx->asrc; regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), EASRC_CC_FWMDE_MASK, EASRC_CC_FWMDE); regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), EASRC_COC_FWMDE_MASK, EASRC_COC_FWMDE); regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), EASRC_CC_EN_MASK, EASRC_CC_EN); return 0; } /* * Stop the context * * Disable the DMA request and context */ static int fsl_easrc_stop_context(struct fsl_asrc_pair *ctx) { struct fsl_asrc *easrc = ctx->asrc; int val, i; int size = 0; int retry = 200; regmap_read(easrc->regmap, REG_EASRC_CC(ctx->index), &val); if (val & EASRC_CC_EN_MASK) { regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), EASRC_CC_STOP_MASK, EASRC_CC_STOP); do { regmap_read(easrc->regmap, REG_EASRC_SFS(ctx->index), &val); val &= EASRC_SFS_NSGO_MASK; size = val >> EASRC_SFS_NSGO_SHIFT; /* Read FIFO, drop the data */ for (i = 0; i < size * ctx->channels; i++) regmap_read(easrc->regmap, REG_EASRC_RDFIFO(ctx->index), &val); /* Check RUN_STOP_DONE */ regmap_read(easrc->regmap, REG_EASRC_IRQF, &val); if (val & EASRC_IRQF_RSD(1 << ctx->index)) { /*Clear RUN_STOP_DONE*/ regmap_write_bits(easrc->regmap, REG_EASRC_IRQF, EASRC_IRQF_RSD(1 << ctx->index), EASRC_IRQF_RSD(1 << ctx->index)); break; } udelay(100); } while (--retry); if (retry == 0) dev_warn(&easrc->pdev->dev, "RUN STOP fail\n"); } regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), EASRC_CC_EN_MASK | EASRC_CC_STOP_MASK, 0); regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index), EASRC_CC_FWMDE_MASK, 0); regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index), EASRC_COC_FWMDE_MASK, 0); return 0; } static struct dma_chan *fsl_easrc_get_dma_channel(struct fsl_asrc_pair *ctx, bool dir) { struct fsl_asrc *easrc = ctx->asrc; enum asrc_pair_index index = ctx->index; char name[8]; /* Example of dma name: ctx0_rx */ sprintf(name, "ctx%c_%cx", index + '0', dir == IN ? 'r' : 't'); return dma_request_slave_channel(&easrc->pdev->dev, name); }; static const unsigned int easrc_rates[] = { 8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000, 256000, 352800, 384000, 705600, 768000, }; static const struct snd_pcm_hw_constraint_list easrc_rate_constraints = { .count = ARRAY_SIZE(easrc_rates), .list = easrc_rates, }; static int fsl_easrc_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &easrc_rate_constraints); } static int fsl_easrc_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_asrc_pair *ctx = runtime->private_data; int ret; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: ret = fsl_easrc_start_context(ctx); if (ret) return ret; break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: ret = fsl_easrc_stop_context(ctx); if (ret) return ret; break; default: return -EINVAL; } return 0; } static int fsl_easrc_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct fsl_asrc *easrc = snd_soc_dai_get_drvdata(dai); struct snd_pcm_runtime *runtime = substream->runtime; struct device *dev = &easrc->pdev->dev; struct fsl_asrc_pair *ctx = runtime->private_data; struct fsl_easrc_ctx_priv *ctx_priv = ctx->private; unsigned int channels = params_channels(params); unsigned int rate = params_rate(params); snd_pcm_format_t format = params_format(params); int ret; ret = fsl_easrc_request_context(channels, ctx); if (ret) { dev_err(dev, "failed to request context\n"); return ret; } ctx_priv->ctx_streams |= BIT(substream->stream); /* * Set the input and output ratio so we can compute * the resampling ratio in RS_LOW/HIGH */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { ctx_priv->in_params.sample_rate = rate; ctx_priv->in_params.sample_format = format; ctx_priv->out_params.sample_rate = easrc->asrc_rate; ctx_priv->out_params.sample_format = easrc->asrc_format; } else { ctx_priv->out_params.sample_rate = rate; ctx_priv->out_params.sample_format = format; ctx_priv->in_params.sample_rate = easrc->asrc_rate; ctx_priv->in_params.sample_format = easrc->asrc_format; } ctx->channels = channels; ctx_priv->in_params.fifo_wtmk = 0x20; ctx_priv->out_params.fifo_wtmk = 0x20; /* * Do only rate conversion and keep the same format for input * and output data */ ret = fsl_easrc_set_ctx_format(ctx, &ctx_priv->in_params.sample_format, &ctx_priv->out_params.sample_format); if (ret) { dev_err(dev, "failed to set format %d", ret); return ret; } ret = fsl_easrc_config_context(easrc, ctx->index); if (ret) { dev_err(dev, "failed to config context\n"); return ret; } ctx_priv->in_params.iterations = 1; ctx_priv->in_params.group_len = ctx->channels; ctx_priv->in_params.access_len = ctx->channels; ctx_priv->out_params.iterations = 1; ctx_priv->out_params.group_len = ctx->channels; ctx_priv->out_params.access_len = ctx->channels; ret = fsl_easrc_set_ctx_organziation(ctx); if (ret) { dev_err(dev, "failed to set fifo organization\n"); return ret; } return 0; } static int fsl_easrc_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_pcm_runtime *runtime = substream->runtime; struct fsl_asrc_pair *ctx = runtime->private_data; struct fsl_easrc_ctx_priv *ctx_priv; if (!ctx) return -EINVAL; ctx_priv = ctx->private; if (ctx_priv->ctx_streams & BIT(substream->stream)) { ctx_priv->ctx_streams &= ~BIT(substream->stream); fsl_easrc_release_context(ctx); } return 0; } static struct snd_soc_dai_ops fsl_easrc_dai_ops = { .startup = fsl_easrc_startup, .trigger = fsl_easrc_trigger, .hw_params = fsl_easrc_hw_params, .hw_free = fsl_easrc_hw_free, }; static int fsl_easrc_dai_probe(struct snd_soc_dai *cpu_dai) { struct fsl_asrc *easrc = dev_get_drvdata(cpu_dai->dev); snd_soc_dai_init_dma_data(cpu_dai, &easrc->dma_params_tx, &easrc->dma_params_rx); return 0; } static struct snd_soc_dai_driver fsl_easrc_dai = { .probe = fsl_easrc_dai_probe, .playback = { .stream_name = "ASRC-Playback", .channels_min = 1, .channels_max = 32, .rate_min = 8000, .rate_max = 768000, .rates = SNDRV_PCM_RATE_KNOT, .formats = FSL_EASRC_FORMATS, }, .capture = { .stream_name = "ASRC-Capture", .channels_min = 1, .channels_max = 32, .rate_min = 8000, .rate_max = 768000, .rates = SNDRV_PCM_RATE_KNOT, .formats = FSL_EASRC_FORMATS | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, }, .ops = &fsl_easrc_dai_ops, }; static const struct snd_soc_component_driver fsl_easrc_component = { .name = "fsl-easrc-dai", .controls = fsl_easrc_snd_controls, .num_controls = ARRAY_SIZE(fsl_easrc_snd_controls), }; static const struct reg_default fsl_easrc_reg_defaults[] = { {REG_EASRC_WRFIFO(0), 0x00000000}, {REG_EASRC_WRFIFO(1), 0x00000000}, {REG_EASRC_WRFIFO(2), 0x00000000}, {REG_EASRC_WRFIFO(3), 0x00000000}, {REG_EASRC_RDFIFO(0), 0x00000000}, {REG_EASRC_RDFIFO(1), 0x00000000}, {REG_EASRC_RDFIFO(2), 0x00000000}, {REG_EASRC_RDFIFO(3), 0x00000000}, {REG_EASRC_CC(0), 0x00000000}, {REG_EASRC_CC(1), 0x00000000}, {REG_EASRC_CC(2), 0x00000000}, {REG_EASRC_CC(3), 0x00000000}, {REG_EASRC_CCE1(0), 0x00000000}, {REG_EASRC_CCE1(1), 0x00000000}, {REG_EASRC_CCE1(2), 0x00000000}, {REG_EASRC_CCE1(3), 0x00000000}, {REG_EASRC_CCE2(0), 0x00000000}, {REG_EASRC_CCE2(1), 0x00000000}, {REG_EASRC_CCE2(2), 0x00000000}, {REG_EASRC_CCE2(3), 0x00000000}, {REG_EASRC_CIA(0), 0x00000000}, {REG_EASRC_CIA(1), 0x00000000}, {REG_EASRC_CIA(2), 0x00000000}, {REG_EASRC_CIA(3), 0x00000000}, {REG_EASRC_DPCS0R0(0), 0x00000000}, {REG_EASRC_DPCS0R0(1), 0x00000000}, {REG_EASRC_DPCS0R0(2), 0x00000000}, {REG_EASRC_DPCS0R0(3), 0x00000000}, {REG_EASRC_DPCS0R1(0), 0x00000000}, {REG_EASRC_DPCS0R1(1), 0x00000000}, {REG_EASRC_DPCS0R1(2), 0x00000000}, {REG_EASRC_DPCS0R1(3), 0x00000000}, {REG_EASRC_DPCS0R2(0), 0x00000000}, {REG_EASRC_DPCS0R2(1), 0x00000000}, {REG_EASRC_DPCS0R2(2), 0x00000000}, {REG_EASRC_DPCS0R2(3), 0x00000000}, {REG_EASRC_DPCS0R3(0), 0x00000000}, {REG_EASRC_DPCS0R3(1), 0x00000000}, {REG_EASRC_DPCS0R3(2), 0x00000000}, {REG_EASRC_DPCS0R3(3), 0x00000000}, {REG_EASRC_DPCS1R0(0), 0x00000000}, {REG_EASRC_DPCS1R0(1), 0x00000000}, {REG_EASRC_DPCS1R0(2), 0x00000000}, {REG_EASRC_DPCS1R0(3), 0x00000000}, {REG_EASRC_DPCS1R1(0), 0x00000000}, {REG_EASRC_DPCS1R1(1), 0x00000000}, {REG_EASRC_DPCS1R1(2), 0x00000000}, {REG_EASRC_DPCS1R1(3), 0x00000000}, {REG_EASRC_DPCS1R2(0), 0x00000000}, {REG_EASRC_DPCS1R2(1), 0x00000000}, {REG_EASRC_DPCS1R2(2), 0x00000000}, {REG_EASRC_DPCS1R2(3), 0x00000000}, {REG_EASRC_DPCS1R3(0), 0x00000000}, {REG_EASRC_DPCS1R3(1), 0x00000000}, {REG_EASRC_DPCS1R3(2), 0x00000000}, {REG_EASRC_DPCS1R3(3), 0x00000000}, {REG_EASRC_COC(0), 0x00000000}, {REG_EASRC_COC(1), 0x00000000}, {REG_EASRC_COC(2), 0x00000000}, {REG_EASRC_COC(3), 0x00000000}, {REG_EASRC_COA(0), 0x00000000}, {REG_EASRC_COA(1), 0x00000000}, {REG_EASRC_COA(2), 0x00000000}, {REG_EASRC_COA(3), 0x00000000}, {REG_EASRC_SFS(0), 0x00000000}, {REG_EASRC_SFS(1), 0x00000000}, {REG_EASRC_SFS(2), 0x00000000}, {REG_EASRC_SFS(3), 0x00000000}, {REG_EASRC_RRL(0), 0x00000000}, {REG_EASRC_RRL(1), 0x00000000}, {REG_EASRC_RRL(2), 0x00000000}, {REG_EASRC_RRL(3), 0x00000000}, {REG_EASRC_RRH(0), 0x00000000}, {REG_EASRC_RRH(1), 0x00000000}, {REG_EASRC_RRH(2), 0x00000000}, {REG_EASRC_RRH(3), 0x00000000}, {REG_EASRC_RUC(0), 0x00000000}, {REG_EASRC_RUC(1), 0x00000000}, {REG_EASRC_RUC(2), 0x00000000}, {REG_EASRC_RUC(3), 0x00000000}, {REG_EASRC_RUR(0), 0x7FFFFFFF}, {REG_EASRC_RUR(1), 0x7FFFFFFF}, {REG_EASRC_RUR(2), 0x7FFFFFFF}, {REG_EASRC_RUR(3), 0x7FFFFFFF}, {REG_EASRC_RCTCL, 0x00000000}, {REG_EASRC_RCTCH, 0x00000000}, {REG_EASRC_PCF(0), 0x00000000}, {REG_EASRC_PCF(1), 0x00000000}, {REG_EASRC_PCF(2), 0x00000000}, {REG_EASRC_PCF(3), 0x00000000}, {REG_EASRC_CRCM, 0x00000000}, {REG_EASRC_CRCC, 0x00000000}, {REG_EASRC_IRQC, 0x00000FFF}, {REG_EASRC_IRQF, 0x00000000}, {REG_EASRC_CS0(0), 0x00000000}, {REG_EASRC_CS0(1), 0x00000000}, {REG_EASRC_CS0(2), 0x00000000}, {REG_EASRC_CS0(3), 0x00000000}, {REG_EASRC_CS1(0), 0x00000000}, {REG_EASRC_CS1(1), 0x00000000}, {REG_EASRC_CS1(2), 0x00000000}, {REG_EASRC_CS1(3), 0x00000000}, {REG_EASRC_CS2(0), 0x00000000}, {REG_EASRC_CS2(1), 0x00000000}, {REG_EASRC_CS2(2), 0x00000000}, {REG_EASRC_CS2(3), 0x00000000}, {REG_EASRC_CS3(0), 0x00000000}, {REG_EASRC_CS3(1), 0x00000000}, {REG_EASRC_CS3(2), 0x00000000}, {REG_EASRC_CS3(3), 0x00000000}, {REG_EASRC_CS4(0), 0x00000000}, {REG_EASRC_CS4(1), 0x00000000}, {REG_EASRC_CS4(2), 0x00000000}, {REG_EASRC_CS4(3), 0x00000000}, {REG_EASRC_CS5(0), 0x00000000}, {REG_EASRC_CS5(1), 0x00000000}, {REG_EASRC_CS5(2), 0x00000000}, {REG_EASRC_CS5(3), 0x00000000}, {REG_EASRC_DBGC, 0x00000000}, {REG_EASRC_DBGS, 0x00000000}, }; static const struct regmap_range fsl_easrc_readable_ranges[] = { regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RCTCH), regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_PCF(3)), regmap_reg_range(REG_EASRC_CRCC, REG_EASRC_DBGS), }; static const struct regmap_access_table fsl_easrc_readable_table = { .yes_ranges = fsl_easrc_readable_ranges, .n_yes_ranges = ARRAY_SIZE(fsl_easrc_readable_ranges), }; static const struct regmap_range fsl_easrc_writeable_ranges[] = { regmap_reg_range(REG_EASRC_WRFIFO(0), REG_EASRC_WRFIFO(3)), regmap_reg_range(REG_EASRC_CC(0), REG_EASRC_COA(3)), regmap_reg_range(REG_EASRC_RRL(0), REG_EASRC_RCTCH), regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_DBGC), }; static const struct regmap_access_table fsl_easrc_writeable_table = { .yes_ranges = fsl_easrc_writeable_ranges, .n_yes_ranges = ARRAY_SIZE(fsl_easrc_writeable_ranges), }; static const struct regmap_range fsl_easrc_volatileable_ranges[] = { regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RDFIFO(3)), regmap_reg_range(REG_EASRC_SFS(0), REG_EASRC_SFS(3)), regmap_reg_range(REG_EASRC_IRQF, REG_EASRC_IRQF), regmap_reg_range(REG_EASRC_DBGS, REG_EASRC_DBGS), }; static const struct regmap_access_table fsl_easrc_volatileable_table = { .yes_ranges = fsl_easrc_volatileable_ranges, .n_yes_ranges = ARRAY_SIZE(fsl_easrc_volatileable_ranges), }; static const struct regmap_config fsl_easrc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = REG_EASRC_DBGS, .reg_defaults = fsl_easrc_reg_defaults, .num_reg_defaults = ARRAY_SIZE(fsl_easrc_reg_defaults), .rd_table = &fsl_easrc_readable_table, .wr_table = &fsl_easrc_writeable_table, .volatile_table = &fsl_easrc_volatileable_table, .cache_type = REGCACHE_RBTREE, }; #ifdef DEBUG static void fsl_easrc_dump_firmware(struct fsl_asrc *easrc) { struct fsl_easrc_priv *easrc_priv = easrc->private; struct asrc_firmware_hdr *firm = easrc_priv->firmware_hdr; struct interp_params *interp = easrc_priv->interp; struct prefil_params *prefil = easrc_priv->prefil; struct device *dev = &easrc->pdev->dev; int i; if (firm->magic != FIRMWARE_MAGIC) { dev_err(dev, "Wrong magic. Something went wrong!"); return; } dev_dbg(dev, "Firmware v%u dump:\n", firm->firmware_version); dev_dbg(dev, "Num prefilter scenarios: %u\n", firm->prefil_scen); dev_dbg(dev, "Num interpolation scenarios: %u\n", firm->interp_scen); dev_dbg(dev, "\nInterpolation scenarios:\n"); for (i = 0; i < firm->interp_scen; i++) { if (interp[i].magic != FIRMWARE_MAGIC) { dev_dbg(dev, "%d. wrong interp magic: %x\n", i, interp[i].magic); continue; } dev_dbg(dev, "%d. taps: %u, phases: %u, center: %llu\n", i, interp[i].num_taps, interp[i].num_phases, interp[i].center_tap); } for (i = 0; i < firm->prefil_scen; i++) { if (prefil[i].magic != FIRMWARE_MAGIC) { dev_dbg(dev, "%d. wrong prefil magic: %x\n", i, prefil[i].magic); continue; } dev_dbg(dev, "%d. insr: %u, outsr: %u, st1: %u, st2: %u\n", i, prefil[i].insr, prefil[i].outsr, prefil[i].st1_taps, prefil[i].st2_taps); } dev_dbg(dev, "end of firmware dump\n"); } #endif static int fsl_easrc_get_firmware(struct fsl_asrc *easrc) { struct fsl_easrc_priv *easrc_priv; const struct firmware **fw_p; u32 pnum, inum, offset; const u8 *data; int ret; if (!easrc) return -EINVAL; easrc_priv = easrc->private; fw_p = &easrc_priv->fw; ret = request_firmware(fw_p, easrc_priv->fw_name, &easrc->pdev->dev); if (ret) return ret; data = easrc_priv->fw->data; easrc_priv->firmware_hdr = (struct asrc_firmware_hdr *)data; pnum = easrc_priv->firmware_hdr->prefil_scen; inum = easrc_priv->firmware_hdr->interp_scen; if (inum) { offset = sizeof(struct asrc_firmware_hdr); easrc_priv->interp = (struct interp_params *)(data + offset); } if (pnum) { offset = sizeof(struct asrc_firmware_hdr) + inum * sizeof(struct interp_params); easrc_priv->prefil = (struct prefil_params *)(data + offset); } #ifdef DEBUG fsl_easrc_dump_firmware(easrc); #endif return 0; } static irqreturn_t fsl_easrc_isr(int irq, void *dev_id) { struct fsl_asrc *easrc = (struct fsl_asrc *)dev_id; struct device *dev = &easrc->pdev->dev; int val; regmap_read(easrc->regmap, REG_EASRC_IRQF, &val); if (val & EASRC_IRQF_OER_MASK) dev_dbg(dev, "output FIFO underflow\n"); if (val & EASRC_IRQF_IFO_MASK) dev_dbg(dev, "input FIFO overflow\n"); return IRQ_HANDLED; } static int fsl_easrc_get_fifo_addr(u8 dir, enum asrc_pair_index index) { return REG_EASRC_FIFO(dir, index); } static const struct of_device_id fsl_easrc_dt_ids[] = { { .compatible = "fsl,imx8mn-easrc",}, {} }; MODULE_DEVICE_TABLE(of, fsl_easrc_dt_ids); static int fsl_easrc_probe(struct platform_device *pdev) { struct fsl_easrc_priv *easrc_priv; struct device *dev = &pdev->dev; struct fsl_asrc *easrc; struct resource *res; struct device_node *np; void __iomem *regs; u32 asrc_fmt = 0; int ret, irq; easrc = devm_kzalloc(dev, sizeof(*easrc), GFP_KERNEL); if (!easrc) return -ENOMEM; easrc_priv = devm_kzalloc(dev, sizeof(*easrc_priv), GFP_KERNEL); if (!easrc_priv) return -ENOMEM; easrc->pdev = pdev; easrc->private = easrc_priv; np = dev->of_node; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); regs = devm_ioremap_resource(dev, res); if (IS_ERR(regs)) { dev_err(&pdev->dev, "failed ioremap\n"); return PTR_ERR(regs); } easrc->paddr = res->start; easrc->regmap = devm_regmap_init_mmio_clk(dev, "mem", regs, &fsl_easrc_regmap_config); if (IS_ERR(easrc->regmap)) { dev_err(dev, "failed to init regmap"); return PTR_ERR(easrc->regmap); } irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(dev, "no irq for node %pOF\n", np); return irq; } ret = devm_request_irq(&pdev->dev, irq, fsl_easrc_isr, 0, dev_name(dev), easrc); if (ret) { dev_err(dev, "failed to claim irq %u: %d\n", irq, ret); return ret; } easrc->mem_clk = devm_clk_get(dev, "mem"); if (IS_ERR(easrc->mem_clk)) { dev_err(dev, "failed to get mem clock\n"); return PTR_ERR(easrc->mem_clk); } /* Set default value */ easrc->channel_avail = 32; easrc->get_dma_channel = fsl_easrc_get_dma_channel; easrc->request_pair = fsl_easrc_request_context; easrc->release_pair = fsl_easrc_release_context; easrc->get_fifo_addr = fsl_easrc_get_fifo_addr; easrc->pair_priv_size = sizeof(struct fsl_easrc_ctx_priv); easrc_priv->rs_num_taps = EASRC_RS_32_TAPS; easrc_priv->const_coeff = 0x3FF0000000000000; ret = of_property_read_u32(np, "fsl,asrc-rate", &easrc->asrc_rate); if (ret) { dev_err(dev, "failed to asrc rate\n"); return ret; } ret = of_property_read_u32(np, "fsl,asrc-format", &asrc_fmt); easrc->asrc_format = (__force snd_pcm_format_t)asrc_fmt; if (ret) { dev_err(dev, "failed to asrc format\n"); return ret; } if (!(FSL_EASRC_FORMATS & (pcm_format_to_bits(easrc->asrc_format)))) { dev_warn(dev, "unsupported format, switching to S24_LE\n"); easrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE; } ret = of_property_read_string(np, "firmware-name", &easrc_priv->fw_name); if (ret) { dev_err(dev, "failed to get firmware name\n"); return ret; } platform_set_drvdata(pdev, easrc); pm_runtime_enable(dev); spin_lock_init(&easrc->lock); regcache_cache_only(easrc->regmap, true); ret = devm_snd_soc_register_component(dev, &fsl_easrc_component, &fsl_easrc_dai, 1); if (ret) { dev_err(dev, "failed to register ASoC DAI\n"); goto err_pm_disable; } ret = devm_snd_soc_register_component(dev, &fsl_asrc_component, NULL, 0); if (ret) { dev_err(&pdev->dev, "failed to register ASoC platform\n"); goto err_pm_disable; } return 0; err_pm_disable: pm_runtime_disable(&pdev->dev); return ret; } static int fsl_easrc_remove(struct platform_device *pdev) { pm_runtime_disable(&pdev->dev); return 0; } static __maybe_unused int fsl_easrc_runtime_suspend(struct device *dev) { struct fsl_asrc *easrc = dev_get_drvdata(dev); struct fsl_easrc_priv *easrc_priv = easrc->private; unsigned long lock_flags; regcache_cache_only(easrc->regmap, true); clk_disable_unprepare(easrc->mem_clk); spin_lock_irqsave(&easrc->lock, lock_flags); easrc_priv->firmware_loaded = 0; spin_unlock_irqrestore(&easrc->lock, lock_flags); return 0; } static __maybe_unused int fsl_easrc_runtime_resume(struct device *dev) { struct fsl_asrc *easrc = dev_get_drvdata(dev); struct fsl_easrc_priv *easrc_priv = easrc->private; struct fsl_easrc_ctx_priv *ctx_priv; struct fsl_asrc_pair *ctx; unsigned long lock_flags; int ret; int i; ret = clk_prepare_enable(easrc->mem_clk); if (ret) return ret; regcache_cache_only(easrc->regmap, false); regcache_mark_dirty(easrc->regmap); regcache_sync(easrc->regmap); spin_lock_irqsave(&easrc->lock, lock_flags); if (easrc_priv->firmware_loaded) { spin_unlock_irqrestore(&easrc->lock, lock_flags); goto skip_load; } easrc_priv->firmware_loaded = 1; spin_unlock_irqrestore(&easrc->lock, lock_flags); ret = fsl_easrc_get_firmware(easrc); if (ret) { dev_err(dev, "failed to get firmware\n"); goto disable_mem_clk; } /* * Write Resampling Coefficients * The coefficient RAM must be configured prior to beginning of * any context processing within the ASRC */ ret = fsl_easrc_resampler_config(easrc); if (ret) { dev_err(dev, "resampler config failed\n"); goto disable_mem_clk; } for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) { ctx = easrc->pair[i]; if (!ctx) continue; ctx_priv = ctx->private; fsl_easrc_set_rs_ratio(ctx); ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * ctx_priv->out_params.sample_rate / ctx_priv->in_params.sample_rate; if (ctx_priv->in_filled_sample * ctx_priv->out_params.sample_rate % ctx_priv->in_params.sample_rate != 0) ctx_priv->out_missed_sample += 1; ret = fsl_easrc_write_pf_coeff_mem(easrc, i, ctx_priv->st1_coeff, ctx_priv->st1_num_taps, ctx_priv->st1_addexp); if (ret) goto disable_mem_clk; ret = fsl_easrc_write_pf_coeff_mem(easrc, i, ctx_priv->st2_coeff, ctx_priv->st2_num_taps, ctx_priv->st2_addexp); if (ret) goto disable_mem_clk; } skip_load: return 0; disable_mem_clk: clk_disable_unprepare(easrc->mem_clk); return ret; } static const struct dev_pm_ops fsl_easrc_pm_ops = { SET_RUNTIME_PM_OPS(fsl_easrc_runtime_suspend, fsl_easrc_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) }; static struct platform_driver fsl_easrc_driver = { .probe = fsl_easrc_probe, .remove = fsl_easrc_remove, .driver = { .name = "fsl-easrc", .pm = &fsl_easrc_pm_ops, .of_match_table = fsl_easrc_dt_ids, }, }; module_platform_driver(fsl_easrc_driver); MODULE_DESCRIPTION("NXP Enhanced Asynchronous Sample Rate (eASRC) driver"); MODULE_LICENSE("GPL v2");