summaryrefslogtreecommitdiffstats
path: root/drivers/cpufreq/brcmstb-avs-cpufreq.c
blob: 552db816ed22c5f2470b676d77c284e90aa8647a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
/*
 * CPU frequency scaling for Broadcom SoCs with AVS firmware that
 * supports DVS or DVFS
 *
 * Copyright (c) 2016 Broadcom
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

/*
 * "AVS" is the name of a firmware developed at Broadcom. It derives
 * its name from the technique called "Adaptive Voltage Scaling".
 * Adaptive voltage scaling was the original purpose of this firmware.
 * The AVS firmware still supports "AVS mode", where all it does is
 * adaptive voltage scaling. However, on some newer Broadcom SoCs, the
 * AVS Firmware, despite its unchanged name, also supports DFS mode and
 * DVFS mode.
 *
 * In the context of this document and the related driver, "AVS" by
 * itself always means the Broadcom firmware and never refers to the
 * technique called "Adaptive Voltage Scaling".
 *
 * The Broadcom STB AVS CPUfreq driver provides voltage and frequency
 * scaling on Broadcom SoCs using AVS firmware with support for DFS and
 * DVFS. The AVS firmware is running on its own co-processor. The
 * driver supports both uniprocessor (UP) and symmetric multiprocessor
 * (SMP) systems which share clock and voltage across all CPUs.
 *
 * Actual voltage and frequency scaling is done solely by the AVS
 * firmware. This driver does not change frequency or voltage itself.
 * It provides a standard CPUfreq interface to the rest of the kernel
 * and to userland. It interfaces with the AVS firmware to effect the
 * requested changes and to report back the current system status in a
 * way that is expected by existing tools.
 */

#include <linux/cpufreq.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/semaphore.h>

/* Max number of arguments AVS calls take */
#define AVS_MAX_CMD_ARGS	4
/*
 * This macro is used to generate AVS parameter register offsets. For
 * x >= AVS_MAX_CMD_ARGS, it returns 0 to protect against accidental memory
 * access outside of the parameter range. (Offset 0 is the first parameter.)
 */
#define AVS_PARAM_MULT(x)	((x) < AVS_MAX_CMD_ARGS ? (x) : 0)

/* AVS Mailbox Register offsets */
#define AVS_MBOX_COMMAND	0x00
#define AVS_MBOX_STATUS		0x04
#define AVS_MBOX_VOLTAGE0	0x08
#define AVS_MBOX_TEMP0		0x0c
#define AVS_MBOX_PV0		0x10
#define AVS_MBOX_MV0		0x14
#define AVS_MBOX_PARAM(x)	(0x18 + AVS_PARAM_MULT(x) * sizeof(u32))
#define AVS_MBOX_REVISION	0x28
#define AVS_MBOX_PSTATE		0x2c
#define AVS_MBOX_HEARTBEAT	0x30
#define AVS_MBOX_MAGIC		0x34
#define AVS_MBOX_SIGMA_HVT	0x38
#define AVS_MBOX_SIGMA_SVT	0x3c
#define AVS_MBOX_VOLTAGE1	0x40
#define AVS_MBOX_TEMP1		0x44
#define AVS_MBOX_PV1		0x48
#define AVS_MBOX_MV1		0x4c
#define AVS_MBOX_FREQUENCY	0x50

/* AVS Commands */
#define AVS_CMD_AVAILABLE	0x00
#define AVS_CMD_DISABLE		0x10
#define AVS_CMD_ENABLE		0x11
#define AVS_CMD_S2_ENTER	0x12
#define AVS_CMD_S2_EXIT		0x13
#define AVS_CMD_BBM_ENTER	0x14
#define AVS_CMD_BBM_EXIT	0x15
#define AVS_CMD_S3_ENTER	0x16
#define AVS_CMD_S3_EXIT		0x17
#define AVS_CMD_BALANCE		0x18
/* PMAP and P-STATE commands */
#define AVS_CMD_GET_PMAP	0x30
#define AVS_CMD_SET_PMAP	0x31
#define AVS_CMD_GET_PSTATE	0x40
#define AVS_CMD_SET_PSTATE	0x41

/* Different modes AVS supports (for GET_PMAP/SET_PMAP) */
#define AVS_MODE_AVS		0x0
#define AVS_MODE_DFS		0x1
#define AVS_MODE_DVS		0x2
#define AVS_MODE_DVFS		0x3

/*
 * PMAP parameter p1
 * unused:31-24, mdiv_p0:23-16, unused:15-14, pdiv:13-10 , ndiv_int:9-0
 */
#define NDIV_INT_SHIFT		0
#define NDIV_INT_MASK		0x3ff
#define PDIV_SHIFT		10
#define PDIV_MASK		0xf
#define MDIV_P0_SHIFT		16
#define MDIV_P0_MASK		0xff
/*
 * PMAP parameter p2
 * mdiv_p4:31-24, mdiv_p3:23-16, mdiv_p2:15:8, mdiv_p1:7:0
 */
#define MDIV_P1_SHIFT		0
#define MDIV_P1_MASK		0xff
#define MDIV_P2_SHIFT		8
#define MDIV_P2_MASK		0xff
#define MDIV_P3_SHIFT		16
#define MDIV_P3_MASK		0xff
#define MDIV_P4_SHIFT		24
#define MDIV_P4_MASK		0xff

/* Different P-STATES AVS supports (for GET_PSTATE/SET_PSTATE) */
#define AVS_PSTATE_P0		0x0
#define AVS_PSTATE_P1		0x1
#define AVS_PSTATE_P2		0x2
#define AVS_PSTATE_P3		0x3
#define AVS_PSTATE_P4		0x4
#define AVS_PSTATE_MAX		AVS_PSTATE_P4

/* CPU L2 Interrupt Controller Registers */
#define AVS_CPU_L2_SET0		0x04
#define AVS_CPU_L2_INT_MASK	BIT(31)

/* AVS Command Status Values */
#define AVS_STATUS_CLEAR	0x00
/* Command/notification accepted */
#define AVS_STATUS_SUCCESS	0xf0
/* Command/notification rejected */
#define AVS_STATUS_FAILURE	0xff
/* Invalid command/notification (unknown) */
#define AVS_STATUS_INVALID	0xf1
/* Non-AVS modes are not supported */
#define AVS_STATUS_NO_SUPP	0xf2
/* Cannot set P-State until P-Map supplied */
#define AVS_STATUS_NO_MAP	0xf3
/* Cannot change P-Map after initial P-Map set */
#define AVS_STATUS_MAP_SET	0xf4
/* Max AVS status; higher numbers are used for debugging */
#define AVS_STATUS_MAX		0xff

/* Other AVS related constants */
#define AVS_LOOP_LIMIT		10000
#define AVS_TIMEOUT		300 /* in ms; expected completion is < 10ms */
#define AVS_FIRMWARE_MAGIC	0xa11600d1

#define BRCM_AVS_CPUFREQ_PREFIX	"brcmstb-avs"
#define BRCM_AVS_CPUFREQ_NAME	BRCM_AVS_CPUFREQ_PREFIX "-cpufreq"
#define BRCM_AVS_CPU_DATA	"brcm,avs-cpu-data-mem"
#define BRCM_AVS_CPU_INTR	"brcm,avs-cpu-l2-intr"
#define BRCM_AVS_HOST_INTR	"sw_intr"

struct pmap {
	unsigned int mode;
	unsigned int p1;
	unsigned int p2;
	unsigned int state;
};

struct private_data {
	void __iomem *base;
	void __iomem *avs_intr_base;
	struct device *dev;
	struct completion done;
	struct semaphore sem;
	struct pmap pmap;
	int host_irq;
};

static void __iomem *__map_region(const char *name)
{
	struct device_node *np;
	void __iomem *ptr;

	np = of_find_compatible_node(NULL, NULL, name);
	if (!np)
		return NULL;

	ptr = of_iomap(np, 0);
	of_node_put(np);

	return ptr;
}

static unsigned long wait_for_avs_command(struct private_data *priv,
					  unsigned long timeout)
{
	unsigned long time_left = 0;
	u32 val;

	/* Event driven, wait for the command interrupt */
	if (priv->host_irq >= 0)
		return wait_for_completion_timeout(&priv->done,
						   msecs_to_jiffies(timeout));

	/* Polling for command completion */
	do {
		time_left = timeout;
		val = readl(priv->base + AVS_MBOX_STATUS);
		if (val)
			break;

		usleep_range(1000, 2000);
	} while (--timeout);

	return time_left;
}

static int __issue_avs_command(struct private_data *priv, unsigned int cmd,
			       unsigned int num_in, unsigned int num_out,
			       u32 args[])
{
	void __iomem *base = priv->base;
	unsigned long time_left;
	unsigned int i;
	int ret;
	u32 val;

	ret = down_interruptible(&priv->sem);
	if (ret)
		return ret;

	/*
	 * Make sure no other command is currently running: cmd is 0 if AVS
	 * co-processor is idle. Due to the guard above, we should almost never
	 * have to wait here.
	 */
	for (i = 0, val = 1; val != 0 && i < AVS_LOOP_LIMIT; i++)
		val = readl(base + AVS_MBOX_COMMAND);

	/* Give the caller a chance to retry if AVS is busy. */
	if (i == AVS_LOOP_LIMIT) {
		ret = -EAGAIN;
		goto out;
	}

	/* Clear status before we begin. */
	writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);

	/* Provide input parameters */
	for (i = 0; i < num_in; i++)
		writel(args[i], base + AVS_MBOX_PARAM(i));

	/* Protect from spurious interrupts. */
	reinit_completion(&priv->done);

	/* Now issue the command & tell firmware to wake up to process it. */
	writel(cmd, base + AVS_MBOX_COMMAND);
	writel(AVS_CPU_L2_INT_MASK, priv->avs_intr_base + AVS_CPU_L2_SET0);

	/* Wait for AVS co-processor to finish processing the command. */
	time_left = wait_for_avs_command(priv, AVS_TIMEOUT);

	/*
	 * If the AVS status is not in the expected range, it means AVS didn't
	 * complete our command in time, and we return an error. Also, if there
	 * is no "time left", we timed out waiting for the interrupt.
	 */
	val = readl(base + AVS_MBOX_STATUS);
	if (time_left == 0 || val == 0 || val > AVS_STATUS_MAX) {
		dev_err(priv->dev, "AVS command %#x didn't complete in time\n",
			cmd);
		dev_err(priv->dev, "    Time left: %u ms, AVS status: %#x\n",
			jiffies_to_msecs(time_left), val);
		ret = -ETIMEDOUT;
		goto out;
	}

	/* Process returned values */
	for (i = 0; i < num_out; i++)
		args[i] = readl(base + AVS_MBOX_PARAM(i));

	/* Clear status to tell AVS co-processor we are done. */
	writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);

	/* Convert firmware errors to errno's as much as possible. */
	switch (val) {
	case AVS_STATUS_INVALID:
		ret = -EINVAL;
		break;
	case AVS_STATUS_NO_SUPP:
		ret = -ENOTSUPP;
		break;
	case AVS_STATUS_NO_MAP:
		ret = -ENOENT;
		break;
	case AVS_STATUS_MAP_SET:
		ret = -EEXIST;
		break;
	case AVS_STATUS_FAILURE:
		ret = -EIO;
		break;
	}

out:
	up(&priv->sem);

	return ret;
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct private_data *priv = data;

	/* AVS command completed execution. Wake up __issue_avs_command(). */
	complete(&priv->done);

	return IRQ_HANDLED;
}

static char *brcm_avs_mode_to_string(unsigned int mode)
{
	switch (mode) {
	case AVS_MODE_AVS:
		return "AVS";
	case AVS_MODE_DFS:
		return "DFS";
	case AVS_MODE_DVS:
		return "DVS";
	case AVS_MODE_DVFS:
		return "DVFS";
	}
	return NULL;
}

static void brcm_avs_parse_p1(u32 p1, unsigned int *mdiv_p0, unsigned int *pdiv,
			      unsigned int *ndiv)
{
	*mdiv_p0 = (p1 >> MDIV_P0_SHIFT) & MDIV_P0_MASK;
	*pdiv = (p1 >> PDIV_SHIFT) & PDIV_MASK;
	*ndiv = (p1 >> NDIV_INT_SHIFT) & NDIV_INT_MASK;
}

static void brcm_avs_parse_p2(u32 p2, unsigned int *mdiv_p1,
			      unsigned int *mdiv_p2, unsigned int *mdiv_p3,
			      unsigned int *mdiv_p4)
{
	*mdiv_p4 = (p2 >> MDIV_P4_SHIFT) & MDIV_P4_MASK;
	*mdiv_p3 = (p2 >> MDIV_P3_SHIFT) & MDIV_P3_MASK;
	*mdiv_p2 = (p2 >> MDIV_P2_SHIFT) & MDIV_P2_MASK;
	*mdiv_p1 = (p2 >> MDIV_P1_SHIFT) & MDIV_P1_MASK;
}

static int brcm_avs_get_pmap(struct private_data *priv, struct pmap *pmap)
{
	u32 args[AVS_MAX_CMD_ARGS];
	int ret;

	ret = __issue_avs_command(priv, AVS_CMD_GET_PMAP, 0, 4, args);
	if (ret || !pmap)
		return ret;

	pmap->mode = args[0];
	pmap->p1 = args[1];
	pmap->p2 = args[2];
	pmap->state = args[3];

	return 0;
}

static int brcm_avs_set_pmap(struct private_data *priv, struct pmap *pmap)
{
	u32 args[AVS_MAX_CMD_ARGS];

	args[0] = pmap->mode;
	args[1] = pmap->p1;
	args[2] = pmap->p2;
	args[3] = pmap->state;

	return __issue_avs_command(priv, AVS_CMD_SET_PMAP, 4, 0, args);
}

static int brcm_avs_get_pstate(struct private_data *priv, unsigned int *pstate)
{
	u32 args[AVS_MAX_CMD_ARGS];
	int ret;

	ret = __issue_avs_command(priv, AVS_CMD_GET_PSTATE, 0, 1, args);
	if (ret)
		return ret;
	*pstate = args[0];

	return 0;
}

static int brcm_avs_set_pstate(struct private_data *priv, unsigned int pstate)
{
	u32 args[AVS_MAX_CMD_ARGS];

	args[0] = pstate;

	return __issue_avs_command(priv, AVS_CMD_SET_PSTATE, 1, 0, args);

}

static u32 brcm_avs_get_voltage(void __iomem *base)
{
	return readl(base + AVS_MBOX_VOLTAGE1);
}

static u32 brcm_avs_get_frequency(void __iomem *base)
{
	return readl(base + AVS_MBOX_FREQUENCY) * 1000;	/* in kHz */
}

/*
 * We determine which frequencies are supported by cycling through all P-states
 * and reading back what frequency we are running at for each P-state.
 */
static struct cpufreq_frequency_table *
brcm_avs_get_freq_table(struct device *dev, struct private_data *priv)
{
	struct cpufreq_frequency_table *table;
	unsigned int pstate;
	int i, ret;

	/* Remember P-state for later */
	ret = brcm_avs_get_pstate(priv, &pstate);
	if (ret)
		return ERR_PTR(ret);

	/*
	 * We allocate space for the 5 different P-STATES AVS,
	 * plus extra space for a terminating element.
	 */
	table = devm_kcalloc(dev, AVS_PSTATE_MAX + 1 + 1, sizeof(*table),
			     GFP_KERNEL);
	if (!table)
		return ERR_PTR(-ENOMEM);

	for (i = AVS_PSTATE_P0; i <= AVS_PSTATE_MAX; i++) {
		ret = brcm_avs_set_pstate(priv, i);
		if (ret)
			return ERR_PTR(ret);
		table[i].frequency = brcm_avs_get_frequency(priv->base);
		table[i].driver_data = i;
	}
	table[i].frequency = CPUFREQ_TABLE_END;

	/* Restore P-state */
	ret = brcm_avs_set_pstate(priv, pstate);
	if (ret)
		return ERR_PTR(ret);

	return table;
}

/*
 * To ensure the right firmware is running we need to
 *    - check the MAGIC matches what we expect
 *    - brcm_avs_get_pmap() doesn't return -ENOTSUPP or -EINVAL
 * We need to set up our interrupt handling before calling brcm_avs_get_pmap()!
 */
static bool brcm_avs_is_firmware_loaded(struct private_data *priv)
{
	u32 magic;
	int rc;

	rc = brcm_avs_get_pmap(priv, NULL);
	magic = readl(priv->base + AVS_MBOX_MAGIC);

	return (magic == AVS_FIRMWARE_MAGIC) && ((rc != -ENOTSUPP) ||
		(rc != -EINVAL));
}

static unsigned int brcm_avs_cpufreq_get(unsigned int cpu)
{
	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
	struct private_data *priv;

	if (!policy)
		return 0;
	priv = policy->driver_data;
	cpufreq_cpu_put(policy);

	return brcm_avs_get_frequency(priv->base);
}

static int brcm_avs_target_index(struct cpufreq_policy *policy,
				 unsigned int index)
{
	return brcm_avs_set_pstate(policy->driver_data,
				  policy->freq_table[index].driver_data);
}

static int brcm_avs_suspend(struct cpufreq_policy *policy)
{
	struct private_data *priv = policy->driver_data;
	int ret;

	ret = brcm_avs_get_pmap(priv, &priv->pmap);
	if (ret)
		return ret;

	/*
	 * We can't use the P-state returned by brcm_avs_get_pmap(), since
	 * that's the initial P-state from when the P-map was downloaded to the
	 * AVS co-processor, not necessarily the P-state we are running at now.
	 * So, we get the current P-state explicitly.
	 */
	ret = brcm_avs_get_pstate(priv, &priv->pmap.state);
	if (ret)
		return ret;

	/* This is best effort. Nothing to do if it fails. */
	(void)__issue_avs_command(priv, AVS_CMD_S2_ENTER, 0, 0, NULL);

	return 0;
}

static int brcm_avs_resume(struct cpufreq_policy *policy)
{
	struct private_data *priv = policy->driver_data;
	int ret;

	/* This is best effort. Nothing to do if it fails. */
	(void)__issue_avs_command(priv, AVS_CMD_S2_EXIT, 0, 0, NULL);

	ret = brcm_avs_set_pmap(priv, &priv->pmap);
	if (ret == -EEXIST) {
		struct platform_device *pdev  = cpufreq_get_driver_data();
		struct device *dev = &pdev->dev;

		dev_warn(dev, "PMAP was already set\n");
		ret = 0;
	}

	return ret;
}

/*
 * All initialization code that we only want to execute once goes here. Setup
 * code that can be re-tried on every core (if it failed before) can go into
 * brcm_avs_cpufreq_init().
 */
static int brcm_avs_prepare_init(struct platform_device *pdev)
{
	struct private_data *priv;
	struct device *dev;
	int ret;

	dev = &pdev->dev;
	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->dev = dev;
	sema_init(&priv->sem, 1);
	init_completion(&priv->done);
	platform_set_drvdata(pdev, priv);

	priv->base = __map_region(BRCM_AVS_CPU_DATA);
	if (!priv->base) {
		dev_err(dev, "Couldn't find property %s in device tree.\n",
			BRCM_AVS_CPU_DATA);
		return -ENOENT;
	}

	priv->avs_intr_base = __map_region(BRCM_AVS_CPU_INTR);
	if (!priv->avs_intr_base) {
		dev_err(dev, "Couldn't find property %s in device tree.\n",
			BRCM_AVS_CPU_INTR);
		ret = -ENOENT;
		goto unmap_base;
	}

	priv->host_irq = platform_get_irq_byname(pdev, BRCM_AVS_HOST_INTR);

	ret = devm_request_irq(dev, priv->host_irq, irq_handler,
			       IRQF_TRIGGER_RISING,
			       BRCM_AVS_HOST_INTR, priv);
	if (ret && priv->host_irq >= 0) {
		dev_err(dev, "IRQ request failed: %s (%d) -- %d\n",
			BRCM_AVS_HOST_INTR, priv->host_irq, ret);
		goto unmap_intr_base;
	}

	if (brcm_avs_is_firmware_loaded(priv))
		return 0;

	dev_err(dev, "AVS firmware is not loaded or doesn't support DVFS\n");
	ret = -ENODEV;

unmap_intr_base:
	iounmap(priv->avs_intr_base);
unmap_base:
	iounmap(priv->base);

	return ret;
}

static void brcm_avs_prepare_uninit(struct platform_device *pdev)
{
	struct private_data *priv;

	priv = platform_get_drvdata(pdev);

	iounmap(priv->avs_intr_base);
	iounmap(priv->base);
}

static int brcm_avs_cpufreq_init(struct cpufreq_policy *policy)
{
	struct cpufreq_frequency_table *freq_table;
	struct platform_device *pdev;
	struct private_data *priv;
	struct device *dev;
	int ret;

	pdev = cpufreq_get_driver_data();
	priv = platform_get_drvdata(pdev);
	policy->driver_data = priv;
	dev = &pdev->dev;

	freq_table = brcm_avs_get_freq_table(dev, priv);
	if (IS_ERR(freq_table)) {
		ret = PTR_ERR(freq_table);
		dev_err(dev, "Couldn't determine frequency table (%d).\n", ret);
		return ret;
	}

	policy->freq_table = freq_table;

	/* All cores share the same clock and thus the same policy. */
	cpumask_setall(policy->cpus);

	ret = __issue_avs_command(priv, AVS_CMD_ENABLE, 0, 0, NULL);
	if (!ret) {
		unsigned int pstate;

		ret = brcm_avs_get_pstate(priv, &pstate);
		if (!ret) {
			policy->cur = freq_table[pstate].frequency;
			dev_info(dev, "registered\n");
			return 0;
		}
	}

	dev_err(dev, "couldn't initialize driver (%d)\n", ret);

	return ret;
}

static ssize_t show_brcm_avs_pstate(struct cpufreq_policy *policy, char *buf)
{
	struct private_data *priv = policy->driver_data;
	unsigned int pstate;

	if (brcm_avs_get_pstate(priv, &pstate))
		return sprintf(buf, "<unknown>\n");

	return sprintf(buf, "%u\n", pstate);
}

static ssize_t show_brcm_avs_mode(struct cpufreq_policy *policy, char *buf)
{
	struct private_data *priv = policy->driver_data;
	struct pmap pmap;

	if (brcm_avs_get_pmap(priv, &pmap))
		return sprintf(buf, "<unknown>\n");

	return sprintf(buf, "%s %u\n", brcm_avs_mode_to_string(pmap.mode),
		pmap.mode);
}

static ssize_t show_brcm_avs_pmap(struct cpufreq_policy *policy, char *buf)
{
	unsigned int mdiv_p0, mdiv_p1, mdiv_p2, mdiv_p3, mdiv_p4;
	struct private_data *priv = policy->driver_data;
	unsigned int ndiv, pdiv;
	struct pmap pmap;

	if (brcm_avs_get_pmap(priv, &pmap))
		return sprintf(buf, "<unknown>\n");

	brcm_avs_parse_p1(pmap.p1, &mdiv_p0, &pdiv, &ndiv);
	brcm_avs_parse_p2(pmap.p2, &mdiv_p1, &mdiv_p2, &mdiv_p3, &mdiv_p4);

	return sprintf(buf, "0x%08x 0x%08x %u %u %u %u %u %u %u %u %u\n",
		pmap.p1, pmap.p2, ndiv, pdiv, mdiv_p0, mdiv_p1, mdiv_p2,
		mdiv_p3, mdiv_p4, pmap.mode, pmap.state);
}

static ssize_t show_brcm_avs_voltage(struct cpufreq_policy *policy, char *buf)
{
	struct private_data *priv = policy->driver_data;

	return sprintf(buf, "0x%08x\n", brcm_avs_get_voltage(priv->base));
}

static ssize_t show_brcm_avs_frequency(struct cpufreq_policy *policy, char *buf)
{
	struct private_data *priv = policy->driver_data;

	return sprintf(buf, "0x%08x\n", brcm_avs_get_frequency(priv->base));
}

cpufreq_freq_attr_ro(brcm_avs_pstate);
cpufreq_freq_attr_ro(brcm_avs_mode);
cpufreq_freq_attr_ro(brcm_avs_pmap);
cpufreq_freq_attr_ro(brcm_avs_voltage);
cpufreq_freq_attr_ro(brcm_avs_frequency);

static struct freq_attr *brcm_avs_cpufreq_attr[] = {
	&cpufreq_freq_attr_scaling_available_freqs,
	&brcm_avs_pstate,
	&brcm_avs_mode,
	&brcm_avs_pmap,
	&brcm_avs_voltage,
	&brcm_avs_frequency,
	NULL
};

static struct cpufreq_driver brcm_avs_driver = {
	.flags		= CPUFREQ_NEED_INITIAL_FREQ_CHECK,
	.verify		= cpufreq_generic_frequency_table_verify,
	.target_index	= brcm_avs_target_index,
	.get		= brcm_avs_cpufreq_get,
	.suspend	= brcm_avs_suspend,
	.resume		= brcm_avs_resume,
	.init		= brcm_avs_cpufreq_init,
	.attr		= brcm_avs_cpufreq_attr,
	.name		= BRCM_AVS_CPUFREQ_PREFIX,
};

static int brcm_avs_cpufreq_probe(struct platform_device *pdev)
{
	int ret;

	ret = brcm_avs_prepare_init(pdev);
	if (ret)
		return ret;

	brcm_avs_driver.driver_data = pdev;

	ret = cpufreq_register_driver(&brcm_avs_driver);
	if (ret)
		brcm_avs_prepare_uninit(pdev);

	return ret;
}

static int brcm_avs_cpufreq_remove(struct platform_device *pdev)
{
	int ret;

	ret = cpufreq_unregister_driver(&brcm_avs_driver);
	WARN_ON(ret);

	brcm_avs_prepare_uninit(pdev);

	return 0;
}

static const struct of_device_id brcm_avs_cpufreq_match[] = {
	{ .compatible = BRCM_AVS_CPU_DATA },
	{ }
};
MODULE_DEVICE_TABLE(of, brcm_avs_cpufreq_match);

static struct platform_driver brcm_avs_cpufreq_platdrv = {
	.driver = {
		.name	= BRCM_AVS_CPUFREQ_NAME,
		.of_match_table = brcm_avs_cpufreq_match,
	},
	.probe		= brcm_avs_cpufreq_probe,
	.remove		= brcm_avs_cpufreq_remove,
};
module_platform_driver(brcm_avs_cpufreq_platdrv);

MODULE_AUTHOR("Markus Mayer <mmayer@broadcom.com>");
MODULE_DESCRIPTION("CPUfreq driver for Broadcom STB AVS");
MODULE_LICENSE("GPL");