summaryrefslogtreecommitdiffstats
path: root/drivers/crypto/mediatek/mtk-aes.c
blob: 7323066724c3b94958e32167b160017b8359b131 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Cryptographic API.
 *
 * Driver for EIP97 AES acceleration.
 *
 * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
 *
 * Some ideas are from atmel-aes.c drivers.
 */

#include <crypto/aes.h>
#include <crypto/gcm.h>
#include <crypto/internal/skcipher.h>
#include "mtk-platform.h"

#define AES_QUEUE_SIZE		512
#define AES_BUF_ORDER		2
#define AES_BUF_SIZE		((PAGE_SIZE << AES_BUF_ORDER) \
				& ~(AES_BLOCK_SIZE - 1))
#define AES_MAX_STATE_BUF_SIZE	SIZE_IN_WORDS(AES_KEYSIZE_256 + \
				AES_BLOCK_SIZE * 2)
#define AES_MAX_CT_SIZE		6

#define AES_CT_CTRL_HDR		cpu_to_le32(0x00220000)

/* AES-CBC/ECB/CTR/OFB/CFB command token */
#define AES_CMD0		cpu_to_le32(0x05000000)
#define AES_CMD1		cpu_to_le32(0x2d060000)
#define AES_CMD2		cpu_to_le32(0xe4a63806)
/* AES-GCM command token */
#define AES_GCM_CMD0		cpu_to_le32(0x0b000000)
#define AES_GCM_CMD1		cpu_to_le32(0xa0800000)
#define AES_GCM_CMD2		cpu_to_le32(0x25000010)
#define AES_GCM_CMD3		cpu_to_le32(0x0f020000)
#define AES_GCM_CMD4		cpu_to_le32(0x21e60000)
#define AES_GCM_CMD5		cpu_to_le32(0x40e60000)
#define AES_GCM_CMD6		cpu_to_le32(0xd0070000)

/* AES transform information word 0 fields */
#define AES_TFM_BASIC_OUT	cpu_to_le32(0x4 << 0)
#define AES_TFM_BASIC_IN	cpu_to_le32(0x5 << 0)
#define AES_TFM_GCM_OUT		cpu_to_le32(0x6 << 0)
#define AES_TFM_GCM_IN		cpu_to_le32(0xf << 0)
#define AES_TFM_SIZE(x)		cpu_to_le32((x) << 8)
#define AES_TFM_128BITS		cpu_to_le32(0xb << 16)
#define AES_TFM_192BITS		cpu_to_le32(0xd << 16)
#define AES_TFM_256BITS		cpu_to_le32(0xf << 16)
#define AES_TFM_GHASH_DIGEST	cpu_to_le32(0x2 << 21)
#define AES_TFM_GHASH		cpu_to_le32(0x4 << 23)
/* AES transform information word 1 fields */
#define AES_TFM_ECB		cpu_to_le32(0x0 << 0)
#define AES_TFM_CBC		cpu_to_le32(0x1 << 0)
#define AES_TFM_OFB		cpu_to_le32(0x4 << 0)
#define AES_TFM_CFB128		cpu_to_le32(0x5 << 0)
#define AES_TFM_CTR_INIT	cpu_to_le32(0x2 << 0)	/* init counter to 1 */
#define AES_TFM_CTR_LOAD	cpu_to_le32(0x6 << 0)	/* load/reuse counter */
#define AES_TFM_3IV		cpu_to_le32(0x7 << 5)	/* using IV 0-2 */
#define AES_TFM_FULL_IV		cpu_to_le32(0xf << 5)	/* using IV 0-3 */
#define AES_TFM_IV_CTR_MODE	cpu_to_le32(0x1 << 10)
#define AES_TFM_ENC_HASH	cpu_to_le32(0x1 << 17)

/* AES flags */
#define AES_FLAGS_CIPHER_MSK	GENMASK(4, 0)
#define AES_FLAGS_ECB		BIT(0)
#define AES_FLAGS_CBC		BIT(1)
#define AES_FLAGS_CTR		BIT(2)
#define AES_FLAGS_OFB		BIT(3)
#define AES_FLAGS_CFB128	BIT(4)
#define AES_FLAGS_GCM		BIT(5)
#define AES_FLAGS_ENCRYPT	BIT(6)
#define AES_FLAGS_BUSY		BIT(7)

#define AES_AUTH_TAG_ERR	cpu_to_le32(BIT(26))

/**
 * mtk_aes_info - hardware information of AES
 * @cmd:	command token, hardware instruction
 * @tfm:	transform state of cipher algorithm.
 * @state:	contains keys and initial vectors.
 *
 * Memory layout of GCM buffer:
 * /-----------\
 * |  AES KEY  | 128/196/256 bits
 * |-----------|
 * |  HASH KEY | a string 128 zero bits encrypted using the block cipher
 * |-----------|
 * |    IVs    | 4 * 4 bytes
 * \-----------/
 *
 * The engine requires all these info to do:
 * - Commands decoding and control of the engine's data path.
 * - Coordinating hardware data fetch and store operations.
 * - Result token construction and output.
 */
struct mtk_aes_info {
	__le32 cmd[AES_MAX_CT_SIZE];
	__le32 tfm[2];
	__le32 state[AES_MAX_STATE_BUF_SIZE];
};

struct mtk_aes_reqctx {
	u64 mode;
};

struct mtk_aes_base_ctx {
	struct mtk_cryp *cryp;
	u32 keylen;
	__le32 key[12];
	__le32 keymode;

	mtk_aes_fn start;

	struct mtk_aes_info info;
	dma_addr_t ct_dma;
	dma_addr_t tfm_dma;

	__le32 ct_hdr;
	u32 ct_size;
};

struct mtk_aes_ctx {
	struct mtk_aes_base_ctx	base;
};

struct mtk_aes_ctr_ctx {
	struct mtk_aes_base_ctx base;

	__be32	iv[AES_BLOCK_SIZE / sizeof(u32)];
	size_t offset;
	struct scatterlist src[2];
	struct scatterlist dst[2];
};

struct mtk_aes_gcm_ctx {
	struct mtk_aes_base_ctx base;

	u32 authsize;
	size_t textlen;
};

struct mtk_aes_drv {
	struct list_head dev_list;
	/* Device list lock */
	spinlock_t lock;
};

static struct mtk_aes_drv mtk_aes = {
	.dev_list = LIST_HEAD_INIT(mtk_aes.dev_list),
	.lock = __SPIN_LOCK_UNLOCKED(mtk_aes.lock),
};

static inline u32 mtk_aes_read(struct mtk_cryp *cryp, u32 offset)
{
	return readl_relaxed(cryp->base + offset);
}

static inline void mtk_aes_write(struct mtk_cryp *cryp,
				 u32 offset, u32 value)
{
	writel_relaxed(value, cryp->base + offset);
}

static struct mtk_cryp *mtk_aes_find_dev(struct mtk_aes_base_ctx *ctx)
{
	struct mtk_cryp *cryp = NULL;
	struct mtk_cryp *tmp;

	spin_lock_bh(&mtk_aes.lock);
	if (!ctx->cryp) {
		list_for_each_entry(tmp, &mtk_aes.dev_list, aes_list) {
			cryp = tmp;
			break;
		}
		ctx->cryp = cryp;
	} else {
		cryp = ctx->cryp;
	}
	spin_unlock_bh(&mtk_aes.lock);

	return cryp;
}

static inline size_t mtk_aes_padlen(size_t len)
{
	len &= AES_BLOCK_SIZE - 1;
	return len ? AES_BLOCK_SIZE - len : 0;
}

static bool mtk_aes_check_aligned(struct scatterlist *sg, size_t len,
				  struct mtk_aes_dma *dma)
{
	int nents;

	if (!IS_ALIGNED(len, AES_BLOCK_SIZE))
		return false;

	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
			return false;

		if (len <= sg->length) {
			if (!IS_ALIGNED(len, AES_BLOCK_SIZE))
				return false;

			dma->nents = nents + 1;
			dma->remainder = sg->length - len;
			sg->length = len;
			return true;
		}

		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
			return false;

		len -= sg->length;
	}

	return false;
}

static inline void mtk_aes_set_mode(struct mtk_aes_rec *aes,
				    const struct mtk_aes_reqctx *rctx)
{
	/* Clear all but persistent flags and set request flags. */
	aes->flags = (aes->flags & AES_FLAGS_BUSY) | rctx->mode;
}

static inline void mtk_aes_restore_sg(const struct mtk_aes_dma *dma)
{
	struct scatterlist *sg = dma->sg;
	int nents = dma->nents;

	if (!dma->remainder)
		return;

	while (--nents > 0 && sg)
		sg = sg_next(sg);

	if (!sg)
		return;

	sg->length += dma->remainder;
}

static inline int mtk_aes_complete(struct mtk_cryp *cryp,
				   struct mtk_aes_rec *aes,
				   int err)
{
	aes->flags &= ~AES_FLAGS_BUSY;
	aes->areq->complete(aes->areq, err);
	/* Handle new request */
	tasklet_schedule(&aes->queue_task);
	return err;
}

/*
 * Write descriptors for processing. This will configure the engine, load
 * the transform information and then start the packet processing.
 */
static int mtk_aes_xmit(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
{
	struct mtk_ring *ring = cryp->ring[aes->id];
	struct mtk_desc *cmd = NULL, *res = NULL;
	struct scatterlist *ssg = aes->src.sg, *dsg = aes->dst.sg;
	u32 slen = aes->src.sg_len, dlen = aes->dst.sg_len;
	int nents;

	/* Write command descriptors */
	for (nents = 0; nents < slen; ++nents, ssg = sg_next(ssg)) {
		cmd = ring->cmd_next;
		cmd->hdr = MTK_DESC_BUF_LEN(ssg->length);
		cmd->buf = cpu_to_le32(sg_dma_address(ssg));

		if (nents == 0) {
			cmd->hdr |= MTK_DESC_FIRST |
				    MTK_DESC_CT_LEN(aes->ctx->ct_size);
			cmd->ct = cpu_to_le32(aes->ctx->ct_dma);
			cmd->ct_hdr = aes->ctx->ct_hdr;
			cmd->tfm = cpu_to_le32(aes->ctx->tfm_dma);
		}

		/* Shift ring buffer and check boundary */
		if (++ring->cmd_next == ring->cmd_base + MTK_DESC_NUM)
			ring->cmd_next = ring->cmd_base;
	}
	cmd->hdr |= MTK_DESC_LAST;

	/* Prepare result descriptors */
	for (nents = 0; nents < dlen; ++nents, dsg = sg_next(dsg)) {
		res = ring->res_next;
		res->hdr = MTK_DESC_BUF_LEN(dsg->length);
		res->buf = cpu_to_le32(sg_dma_address(dsg));

		if (nents == 0)
			res->hdr |= MTK_DESC_FIRST;

		/* Shift ring buffer and check boundary */
		if (++ring->res_next == ring->res_base + MTK_DESC_NUM)
			ring->res_next = ring->res_base;
	}
	res->hdr |= MTK_DESC_LAST;

	/* Pointer to current result descriptor */
	ring->res_prev = res;

	/* Prepare enough space for authenticated tag */
	if (aes->flags & AES_FLAGS_GCM)
		le32_add_cpu(&res->hdr, AES_BLOCK_SIZE);

	/*
	 * Make sure that all changes to the DMA ring are done before we
	 * start engine.
	 */
	wmb();
	/* Start DMA transfer */
	mtk_aes_write(cryp, RDR_PREP_COUNT(aes->id), MTK_DESC_CNT(dlen));
	mtk_aes_write(cryp, CDR_PREP_COUNT(aes->id), MTK_DESC_CNT(slen));

	return -EINPROGRESS;
}

static void mtk_aes_unmap(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
{
	struct mtk_aes_base_ctx *ctx = aes->ctx;

	dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info),
			 DMA_TO_DEVICE);

	if (aes->src.sg == aes->dst.sg) {
		dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
			     DMA_BIDIRECTIONAL);

		if (aes->src.sg != &aes->aligned_sg)
			mtk_aes_restore_sg(&aes->src);
	} else {
		dma_unmap_sg(cryp->dev, aes->dst.sg, aes->dst.nents,
			     DMA_FROM_DEVICE);

		if (aes->dst.sg != &aes->aligned_sg)
			mtk_aes_restore_sg(&aes->dst);

		dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
			     DMA_TO_DEVICE);

		if (aes->src.sg != &aes->aligned_sg)
			mtk_aes_restore_sg(&aes->src);
	}

	if (aes->dst.sg == &aes->aligned_sg)
		sg_copy_from_buffer(aes->real_dst, sg_nents(aes->real_dst),
				    aes->buf, aes->total);
}

static int mtk_aes_map(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
{
	struct mtk_aes_base_ctx *ctx = aes->ctx;
	struct mtk_aes_info *info = &ctx->info;

	ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info),
				     DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma)))
		goto exit;

	ctx->tfm_dma = ctx->ct_dma + sizeof(info->cmd);

	if (aes->src.sg == aes->dst.sg) {
		aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
					     aes->src.nents,
					     DMA_BIDIRECTIONAL);
		aes->dst.sg_len = aes->src.sg_len;
		if (unlikely(!aes->src.sg_len))
			goto sg_map_err;
	} else {
		aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
					     aes->src.nents, DMA_TO_DEVICE);
		if (unlikely(!aes->src.sg_len))
			goto sg_map_err;

		aes->dst.sg_len = dma_map_sg(cryp->dev, aes->dst.sg,
					     aes->dst.nents, DMA_FROM_DEVICE);
		if (unlikely(!aes->dst.sg_len)) {
			dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
				     DMA_TO_DEVICE);
			goto sg_map_err;
		}
	}

	return mtk_aes_xmit(cryp, aes);

sg_map_err:
	dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(*info), DMA_TO_DEVICE);
exit:
	return mtk_aes_complete(cryp, aes, -EINVAL);
}

/* Initialize transform information of CBC/ECB/CTR/OFB/CFB mode */
static void mtk_aes_info_init(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
			      size_t len)
{
	struct skcipher_request *req = skcipher_request_cast(aes->areq);
	struct mtk_aes_base_ctx *ctx = aes->ctx;
	struct mtk_aes_info *info = &ctx->info;
	u32 cnt = 0;

	ctx->ct_hdr = AES_CT_CTRL_HDR | cpu_to_le32(len);
	info->cmd[cnt++] = AES_CMD0 | cpu_to_le32(len);
	info->cmd[cnt++] = AES_CMD1;

	info->tfm[0] = AES_TFM_SIZE(ctx->keylen) | ctx->keymode;
	if (aes->flags & AES_FLAGS_ENCRYPT)
		info->tfm[0] |= AES_TFM_BASIC_OUT;
	else
		info->tfm[0] |= AES_TFM_BASIC_IN;

	switch (aes->flags & AES_FLAGS_CIPHER_MSK) {
	case AES_FLAGS_CBC:
		info->tfm[1] = AES_TFM_CBC;
		break;
	case AES_FLAGS_ECB:
		info->tfm[1] = AES_TFM_ECB;
		goto ecb;
	case AES_FLAGS_CTR:
		info->tfm[1] = AES_TFM_CTR_LOAD;
		goto ctr;
	case AES_FLAGS_OFB:
		info->tfm[1] = AES_TFM_OFB;
		break;
	case AES_FLAGS_CFB128:
		info->tfm[1] = AES_TFM_CFB128;
		break;
	default:
		/* Should not happen... */
		return;
	}

	memcpy(info->state + ctx->keylen, req->iv, AES_BLOCK_SIZE);
ctr:
	le32_add_cpu(&info->tfm[0],
		     le32_to_cpu(AES_TFM_SIZE(SIZE_IN_WORDS(AES_BLOCK_SIZE))));
	info->tfm[1] |= AES_TFM_FULL_IV;
	info->cmd[cnt++] = AES_CMD2;
ecb:
	ctx->ct_size = cnt;
}

static int mtk_aes_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
		       struct scatterlist *src, struct scatterlist *dst,
		       size_t len)
{
	size_t padlen = 0;
	bool src_aligned, dst_aligned;

	aes->total = len;
	aes->src.sg = src;
	aes->dst.sg = dst;
	aes->real_dst = dst;

	src_aligned = mtk_aes_check_aligned(src, len, &aes->src);
	if (src == dst)
		dst_aligned = src_aligned;
	else
		dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst);

	if (!src_aligned || !dst_aligned) {
		padlen = mtk_aes_padlen(len);

		if (len + padlen > AES_BUF_SIZE)
			return mtk_aes_complete(cryp, aes, -ENOMEM);

		if (!src_aligned) {
			sg_copy_to_buffer(src, sg_nents(src), aes->buf, len);
			aes->src.sg = &aes->aligned_sg;
			aes->src.nents = 1;
			aes->src.remainder = 0;
		}

		if (!dst_aligned) {
			aes->dst.sg = &aes->aligned_sg;
			aes->dst.nents = 1;
			aes->dst.remainder = 0;
		}

		sg_init_table(&aes->aligned_sg, 1);
		sg_set_buf(&aes->aligned_sg, aes->buf, len + padlen);
	}

	mtk_aes_info_init(cryp, aes, len + padlen);

	return mtk_aes_map(cryp, aes);
}

static int mtk_aes_handle_queue(struct mtk_cryp *cryp, u8 id,
				struct crypto_async_request *new_areq)
{
	struct mtk_aes_rec *aes = cryp->aes[id];
	struct crypto_async_request *areq, *backlog;
	struct mtk_aes_base_ctx *ctx;
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&aes->lock, flags);
	if (new_areq)
		ret = crypto_enqueue_request(&aes->queue, new_areq);
	if (aes->flags & AES_FLAGS_BUSY) {
		spin_unlock_irqrestore(&aes->lock, flags);
		return ret;
	}
	backlog = crypto_get_backlog(&aes->queue);
	areq = crypto_dequeue_request(&aes->queue);
	if (areq)
		aes->flags |= AES_FLAGS_BUSY;
	spin_unlock_irqrestore(&aes->lock, flags);

	if (!areq)
		return ret;

	if (backlog)
		backlog->complete(backlog, -EINPROGRESS);

	ctx = crypto_tfm_ctx(areq->tfm);
	/* Write key into state buffer */
	memcpy(ctx->info.state, ctx->key, sizeof(ctx->key));

	aes->areq = areq;
	aes->ctx = ctx;

	return ctx->start(cryp, aes);
}

static int mtk_aes_transfer_complete(struct mtk_cryp *cryp,
				     struct mtk_aes_rec *aes)
{
	return mtk_aes_complete(cryp, aes, 0);
}

static int mtk_aes_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
{
	struct skcipher_request *req = skcipher_request_cast(aes->areq);
	struct mtk_aes_reqctx *rctx = skcipher_request_ctx(req);

	mtk_aes_set_mode(aes, rctx);
	aes->resume = mtk_aes_transfer_complete;

	return mtk_aes_dma(cryp, aes, req->src, req->dst, req->cryptlen);
}

static inline struct mtk_aes_ctr_ctx *
mtk_aes_ctr_ctx_cast(struct mtk_aes_base_ctx *ctx)
{
	return container_of(ctx, struct mtk_aes_ctr_ctx, base);
}

static int mtk_aes_ctr_transfer(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
{
	struct mtk_aes_base_ctx *ctx = aes->ctx;
	struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(ctx);
	struct skcipher_request *req = skcipher_request_cast(aes->areq);
	struct scatterlist *src, *dst;
	u32 start, end, ctr, blocks;
	size_t datalen;
	bool fragmented = false;

	/* Check for transfer completion. */
	cctx->offset += aes->total;
	if (cctx->offset >= req->cryptlen)
		return mtk_aes_transfer_complete(cryp, aes);

	/* Compute data length. */
	datalen = req->cryptlen - cctx->offset;
	blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
	ctr = be32_to_cpu(cctx->iv[3]);

	/* Check 32bit counter overflow. */
	start = ctr;
	end = start + blocks - 1;
	if (end < start) {
		ctr = 0xffffffff;
		datalen = AES_BLOCK_SIZE * -start;
		fragmented = true;
	}

	/* Jump to offset. */
	src = scatterwalk_ffwd(cctx->src, req->src, cctx->offset);
	dst = ((req->src == req->dst) ? src :
	       scatterwalk_ffwd(cctx->dst, req->dst, cctx->offset));

	/* Write IVs into transform state buffer. */
	memcpy(ctx->info.state + ctx->keylen, cctx->iv, AES_BLOCK_SIZE);

	if (unlikely(fragmented)) {
	/*
	 * Increment the counter manually to cope with the hardware
	 * counter overflow.
	 */
		cctx->iv[3] = cpu_to_be32(ctr);
		crypto_inc((u8 *)cctx->iv, AES_BLOCK_SIZE);
	}

	return mtk_aes_dma(cryp, aes, src, dst, datalen);
}

static int mtk_aes_ctr_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
{
	struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(aes->ctx);
	struct skcipher_request *req = skcipher_request_cast(aes->areq);
	struct mtk_aes_reqctx *rctx = skcipher_request_ctx(req);

	mtk_aes_set_mode(aes, rctx);

	memcpy(cctx->iv, req->iv, AES_BLOCK_SIZE);
	cctx->offset = 0;
	aes->total = 0;
	aes->resume = mtk_aes_ctr_transfer;

	return mtk_aes_ctr_transfer(cryp, aes);
}

/* Check and set the AES key to transform state buffer */
static int mtk_aes_setkey(struct crypto_skcipher *tfm,
			  const u8 *key, u32 keylen)
{
	struct mtk_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);

	switch (keylen) {
	case AES_KEYSIZE_128:
		ctx->keymode = AES_TFM_128BITS;
		break;
	case AES_KEYSIZE_192:
		ctx->keymode = AES_TFM_192BITS;
		break;
	case AES_KEYSIZE_256:
		ctx->keymode = AES_TFM_256BITS;
		break;

	default:
		return -EINVAL;
	}

	ctx->keylen = SIZE_IN_WORDS(keylen);
	memcpy(ctx->key, key, keylen);

	return 0;
}

static int mtk_aes_crypt(struct skcipher_request *req, u64 mode)
{
	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
	struct mtk_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
	struct mtk_aes_reqctx *rctx;
	struct mtk_cryp *cryp;

	cryp = mtk_aes_find_dev(ctx);
	if (!cryp)
		return -ENODEV;

	rctx = skcipher_request_ctx(req);
	rctx->mode = mode;

	return mtk_aes_handle_queue(cryp, !(mode & AES_FLAGS_ENCRYPT),
				    &req->base);
}

static int mtk_aes_ecb_encrypt(struct skcipher_request *req)
{
	return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_ECB);
}

static int mtk_aes_ecb_decrypt(struct skcipher_request *req)
{
	return mtk_aes_crypt(req, AES_FLAGS_ECB);
}

static int mtk_aes_cbc_encrypt(struct skcipher_request *req)
{
	return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CBC);
}

static int mtk_aes_cbc_decrypt(struct skcipher_request *req)
{
	return mtk_aes_crypt(req, AES_FLAGS_CBC);
}

static int mtk_aes_ctr_encrypt(struct skcipher_request *req)
{
	return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CTR);
}

static int mtk_aes_ctr_decrypt(struct skcipher_request *req)
{
	return mtk_aes_crypt(req, AES_FLAGS_CTR);
}

static int mtk_aes_ofb_encrypt(struct skcipher_request *req)
{
	return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_OFB);
}

static int mtk_aes_ofb_decrypt(struct skcipher_request *req)
{
	return mtk_aes_crypt(req, AES_FLAGS_OFB);
}

static int mtk_aes_cfb_encrypt(struct skcipher_request *req)
{
	return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CFB128);
}

static int mtk_aes_cfb_decrypt(struct skcipher_request *req)
{
	return mtk_aes_crypt(req, AES_FLAGS_CFB128);
}

static int mtk_aes_init_tfm(struct crypto_skcipher *tfm)
{
	struct mtk_aes_ctx *ctx = crypto_skcipher_ctx(tfm);

	crypto_skcipher_set_reqsize(tfm, sizeof(struct mtk_aes_reqctx));
	ctx->base.start = mtk_aes_start;
	return 0;
}

static int mtk_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
{
	struct mtk_aes_ctx *ctx = crypto_skcipher_ctx(tfm);

	crypto_skcipher_set_reqsize(tfm, sizeof(struct mtk_aes_reqctx));
	ctx->base.start = mtk_aes_ctr_start;
	return 0;
}

static struct skcipher_alg aes_algs[] = {
{
	.base.cra_name		= "cbc(aes)",
	.base.cra_driver_name	= "cbc-aes-mtk",
	.base.cra_priority	= 400,
	.base.cra_flags		= CRYPTO_ALG_ASYNC,
	.base.cra_blocksize	= AES_BLOCK_SIZE,
	.base.cra_ctxsize	= sizeof(struct mtk_aes_ctx),
	.base.cra_alignmask	= 0xf,
	.base.cra_module	= THIS_MODULE,

	.min_keysize		= AES_MIN_KEY_SIZE,
	.max_keysize		= AES_MAX_KEY_SIZE,
	.setkey			= mtk_aes_setkey,
	.encrypt		= mtk_aes_cbc_encrypt,
	.decrypt		= mtk_aes_cbc_decrypt,
	.ivsize			= AES_BLOCK_SIZE,
	.init			= mtk_aes_init_tfm,
},
{
	.base.cra_name		= "ecb(aes)",
	.base.cra_driver_name	= "ecb-aes-mtk",
	.base.cra_priority	= 400,
	.base.cra_flags		= CRYPTO_ALG_ASYNC,
	.base.cra_blocksize	= AES_BLOCK_SIZE,
	.base.cra_ctxsize	= sizeof(struct mtk_aes_ctx),
	.base.cra_alignmask	= 0xf,
	.base.cra_module	= THIS_MODULE,

	.min_keysize		= AES_MIN_KEY_SIZE,
	.max_keysize		= AES_MAX_KEY_SIZE,
	.setkey			= mtk_aes_setkey,
	.encrypt		= mtk_aes_ecb_encrypt,
	.decrypt		= mtk_aes_ecb_decrypt,
	.init			= mtk_aes_init_tfm,
},
{
	.base.cra_name		= "ctr(aes)",
	.base.cra_driver_name	= "ctr-aes-mtk",
	.base.cra_priority	= 400,
	.base.cra_flags		= CRYPTO_ALG_ASYNC,
	.base.cra_blocksize	= 1,
	.base.cra_ctxsize	= sizeof(struct mtk_aes_ctx),
	.base.cra_alignmask	= 0xf,
	.base.cra_module	= THIS_MODULE,

	.min_keysize		= AES_MIN_KEY_SIZE,
	.max_keysize		= AES_MAX_KEY_SIZE,
	.ivsize			= AES_BLOCK_SIZE,
	.setkey			= mtk_aes_setkey,
	.encrypt		= mtk_aes_ctr_encrypt,
	.decrypt		= mtk_aes_ctr_decrypt,
	.init			= mtk_aes_ctr_init_tfm,
},
{
	.base.cra_name		= "ofb(aes)",
	.base.cra_driver_name	= "ofb-aes-mtk",
	.base.cra_priority	= 400,
	.base.cra_flags		= CRYPTO_ALG_ASYNC,
	.base.cra_blocksize	= AES_BLOCK_SIZE,
	.base.cra_ctxsize	= sizeof(struct mtk_aes_ctx),
	.base.cra_alignmask	= 0xf,
	.base.cra_module	= THIS_MODULE,

	.min_keysize		= AES_MIN_KEY_SIZE,
	.max_keysize		= AES_MAX_KEY_SIZE,
	.ivsize			= AES_BLOCK_SIZE,
	.setkey			= mtk_aes_setkey,
	.encrypt		= mtk_aes_ofb_encrypt,
	.decrypt		= mtk_aes_ofb_decrypt,
},
{
	.base.cra_name		= "cfb(aes)",
	.base.cra_driver_name	= "cfb-aes-mtk",
	.base.cra_priority	= 400,
	.base.cra_flags		= CRYPTO_ALG_ASYNC,
	.base.cra_blocksize	= 1,
	.base.cra_ctxsize	= sizeof(struct mtk_aes_ctx),
	.base.cra_alignmask	= 0xf,
	.base.cra_module	= THIS_MODULE,

	.min_keysize		= AES_MIN_KEY_SIZE,
	.max_keysize		= AES_MAX_KEY_SIZE,
	.ivsize			= AES_BLOCK_SIZE,
	.setkey			= mtk_aes_setkey,
	.encrypt		= mtk_aes_cfb_encrypt,
	.decrypt		= mtk_aes_cfb_decrypt,
},
};

static inline struct mtk_aes_gcm_ctx *
mtk_aes_gcm_ctx_cast(struct mtk_aes_base_ctx *ctx)
{
	return container_of(ctx, struct mtk_aes_gcm_ctx, base);
}

/*
 * Engine will verify and compare tag automatically, so we just need
 * to check returned status which stored in the result descriptor.
 */
static int mtk_aes_gcm_tag_verify(struct mtk_cryp *cryp,
				  struct mtk_aes_rec *aes)
{
	__le32 status = cryp->ring[aes->id]->res_prev->ct;

	return mtk_aes_complete(cryp, aes, (status & AES_AUTH_TAG_ERR) ?
				-EBADMSG : 0);
}

/* Initialize transform information of GCM mode */
static void mtk_aes_gcm_info_init(struct mtk_cryp *cryp,
				  struct mtk_aes_rec *aes,
				  size_t len)
{
	struct aead_request *req = aead_request_cast(aes->areq);
	struct mtk_aes_base_ctx *ctx = aes->ctx;
	struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
	struct mtk_aes_info *info = &ctx->info;
	u32 ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
	u32 cnt = 0;

	ctx->ct_hdr = AES_CT_CTRL_HDR | cpu_to_le32(len);

	info->cmd[cnt++] = AES_GCM_CMD0 | cpu_to_le32(req->assoclen);
	info->cmd[cnt++] = AES_GCM_CMD1 | cpu_to_le32(req->assoclen);
	info->cmd[cnt++] = AES_GCM_CMD2;
	info->cmd[cnt++] = AES_GCM_CMD3 | cpu_to_le32(gctx->textlen);

	if (aes->flags & AES_FLAGS_ENCRYPT) {
		info->cmd[cnt++] = AES_GCM_CMD4 | cpu_to_le32(gctx->authsize);
		info->tfm[0] = AES_TFM_GCM_OUT;
	} else {
		info->cmd[cnt++] = AES_GCM_CMD5 | cpu_to_le32(gctx->authsize);
		info->cmd[cnt++] = AES_GCM_CMD6 | cpu_to_le32(gctx->authsize);
		info->tfm[0] = AES_TFM_GCM_IN;
	}
	ctx->ct_size = cnt;

	info->tfm[0] |= AES_TFM_GHASH_DIGEST | AES_TFM_GHASH | AES_TFM_SIZE(
			ctx->keylen + SIZE_IN_WORDS(AES_BLOCK_SIZE + ivsize)) |
			ctx->keymode;
	info->tfm[1] = AES_TFM_CTR_INIT | AES_TFM_IV_CTR_MODE | AES_TFM_3IV |
		       AES_TFM_ENC_HASH;

	memcpy(info->state + ctx->keylen + SIZE_IN_WORDS(AES_BLOCK_SIZE),
	       req->iv, ivsize);
}

static int mtk_aes_gcm_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
			   struct scatterlist *src, struct scatterlist *dst,
			   size_t len)
{
	bool src_aligned, dst_aligned;

	aes->src.sg = src;
	aes->dst.sg = dst;
	aes->real_dst = dst;

	src_aligned = mtk_aes_check_aligned(src, len, &aes->src);
	if (src == dst)
		dst_aligned = src_aligned;
	else
		dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst);

	if (!src_aligned || !dst_aligned) {
		if (aes->total > AES_BUF_SIZE)
			return mtk_aes_complete(cryp, aes, -ENOMEM);

		if (!src_aligned) {
			sg_copy_to_buffer(src, sg_nents(src), aes->buf, len);
			aes->src.sg = &aes->aligned_sg;
			aes->src.nents = 1;
			aes->src.remainder = 0;
		}

		if (!dst_aligned) {
			aes->dst.sg = &aes->aligned_sg;
			aes->dst.nents = 1;
			aes->dst.remainder = 0;
		}

		sg_init_table(&aes->aligned_sg, 1);
		sg_set_buf(&aes->aligned_sg, aes->buf, aes->total);
	}

	mtk_aes_gcm_info_init(cryp, aes, len);

	return mtk_aes_map(cryp, aes);
}

/* Todo: GMAC */
static int mtk_aes_gcm_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
{
	struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(aes->ctx);
	struct aead_request *req = aead_request_cast(aes->areq);
	struct mtk_aes_reqctx *rctx = aead_request_ctx(req);
	u32 len = req->assoclen + req->cryptlen;

	mtk_aes_set_mode(aes, rctx);

	if (aes->flags & AES_FLAGS_ENCRYPT) {
		u32 tag[4];

		aes->resume = mtk_aes_transfer_complete;
		/* Compute total process length. */
		aes->total = len + gctx->authsize;
		/* Hardware will append authenticated tag to output buffer */
		scatterwalk_map_and_copy(tag, req->dst, len, gctx->authsize, 1);
	} else {
		aes->resume = mtk_aes_gcm_tag_verify;
		aes->total = len;
	}

	return mtk_aes_gcm_dma(cryp, aes, req->src, req->dst, len);
}

static int mtk_aes_gcm_crypt(struct aead_request *req, u64 mode)
{
	struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
	struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
	struct mtk_aes_reqctx *rctx = aead_request_ctx(req);
	struct mtk_cryp *cryp;
	bool enc = !!(mode & AES_FLAGS_ENCRYPT);

	cryp = mtk_aes_find_dev(ctx);
	if (!cryp)
		return -ENODEV;

	/* Compute text length. */
	gctx->textlen = req->cryptlen - (enc ? 0 : gctx->authsize);

	/* Empty messages are not supported yet */
	if (!gctx->textlen && !req->assoclen)
		return -EINVAL;

	rctx->mode = AES_FLAGS_GCM | mode;

	return mtk_aes_handle_queue(cryp, enc, &req->base);
}

/*
 * Because of the hardware limitation, we need to pre-calculate key(H)
 * for the GHASH operation. The result of the encryption operation
 * need to be stored in the transform state buffer.
 */
static int mtk_aes_gcm_setkey(struct crypto_aead *aead, const u8 *key,
			      u32 keylen)
{
	struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(aead);
	union {
		u32 x32[SIZE_IN_WORDS(AES_BLOCK_SIZE)];
		u8 x8[AES_BLOCK_SIZE];
	} hash = {};
	struct crypto_aes_ctx aes_ctx;
	int err;
	int i;

	switch (keylen) {
	case AES_KEYSIZE_128:
		ctx->keymode = AES_TFM_128BITS;
		break;
	case AES_KEYSIZE_192:
		ctx->keymode = AES_TFM_192BITS;
		break;
	case AES_KEYSIZE_256:
		ctx->keymode = AES_TFM_256BITS;
		break;

	default:
		return -EINVAL;
	}

	ctx->keylen = SIZE_IN_WORDS(keylen);

	err = aes_expandkey(&aes_ctx, key, keylen);
	if (err)
		return err;

	aes_encrypt(&aes_ctx, hash.x8, hash.x8);
	memzero_explicit(&aes_ctx, sizeof(aes_ctx));

	memcpy(ctx->key, key, keylen);

	/* Why do we need to do this? */
	for (i = 0; i < SIZE_IN_WORDS(AES_BLOCK_SIZE); i++)
		hash.x32[i] = swab32(hash.x32[i]);

	memcpy(ctx->key + ctx->keylen, &hash, AES_BLOCK_SIZE);

	return 0;
}

static int mtk_aes_gcm_setauthsize(struct crypto_aead *aead,
				   u32 authsize)
{
	struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(aead);
	struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);

	/* Same as crypto_gcm_authsize() from crypto/gcm.c */
	switch (authsize) {
	case 8:
	case 12:
	case 16:
		break;
	default:
		return -EINVAL;
	}

	gctx->authsize = authsize;
	return 0;
}

static int mtk_aes_gcm_encrypt(struct aead_request *req)
{
	return mtk_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
}

static int mtk_aes_gcm_decrypt(struct aead_request *req)
{
	return mtk_aes_gcm_crypt(req, 0);
}

static int mtk_aes_gcm_init(struct crypto_aead *aead)
{
	struct mtk_aes_gcm_ctx *ctx = crypto_aead_ctx(aead);

	crypto_aead_set_reqsize(aead, sizeof(struct mtk_aes_reqctx));
	ctx->base.start = mtk_aes_gcm_start;
	return 0;
}

static struct aead_alg aes_gcm_alg = {
	.setkey		= mtk_aes_gcm_setkey,
	.setauthsize	= mtk_aes_gcm_setauthsize,
	.encrypt	= mtk_aes_gcm_encrypt,
	.decrypt	= mtk_aes_gcm_decrypt,
	.init		= mtk_aes_gcm_init,
	.ivsize		= GCM_AES_IV_SIZE,
	.maxauthsize	= AES_BLOCK_SIZE,

	.base = {
		.cra_name		= "gcm(aes)",
		.cra_driver_name	= "gcm-aes-mtk",
		.cra_priority		= 400,
		.cra_flags		= CRYPTO_ALG_ASYNC,
		.cra_blocksize		= 1,
		.cra_ctxsize		= sizeof(struct mtk_aes_gcm_ctx),
		.cra_alignmask		= 0xf,
		.cra_module		= THIS_MODULE,
	},
};

static void mtk_aes_queue_task(unsigned long data)
{
	struct mtk_aes_rec *aes = (struct mtk_aes_rec *)data;

	mtk_aes_handle_queue(aes->cryp, aes->id, NULL);
}

static void mtk_aes_done_task(unsigned long data)
{
	struct mtk_aes_rec *aes = (struct mtk_aes_rec *)data;
	struct mtk_cryp *cryp = aes->cryp;

	mtk_aes_unmap(cryp, aes);
	aes->resume(cryp, aes);
}

static irqreturn_t mtk_aes_irq(int irq, void *dev_id)
{
	struct mtk_aes_rec *aes  = (struct mtk_aes_rec *)dev_id;
	struct mtk_cryp *cryp = aes->cryp;
	u32 val = mtk_aes_read(cryp, RDR_STAT(aes->id));

	mtk_aes_write(cryp, RDR_STAT(aes->id), val);

	if (likely(AES_FLAGS_BUSY & aes->flags)) {
		mtk_aes_write(cryp, RDR_PROC_COUNT(aes->id), MTK_CNT_RST);
		mtk_aes_write(cryp, RDR_THRESH(aes->id),
			      MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);

		tasklet_schedule(&aes->done_task);
	} else {
		dev_warn(cryp->dev, "AES interrupt when no active requests.\n");
	}
	return IRQ_HANDLED;
}

/*
 * The purpose of creating encryption and decryption records is
 * to process outbound/inbound data in parallel, it can improve
 * performance in most use cases, such as IPSec VPN, especially
 * under heavy network traffic.
 */
static int mtk_aes_record_init(struct mtk_cryp *cryp)
{
	struct mtk_aes_rec **aes = cryp->aes;
	int i, err = -ENOMEM;

	for (i = 0; i < MTK_REC_NUM; i++) {
		aes[i] = kzalloc(sizeof(**aes), GFP_KERNEL);
		if (!aes[i])
			goto err_cleanup;

		aes[i]->buf = (void *)__get_free_pages(GFP_KERNEL,
						AES_BUF_ORDER);
		if (!aes[i]->buf)
			goto err_cleanup;

		aes[i]->cryp = cryp;

		spin_lock_init(&aes[i]->lock);
		crypto_init_queue(&aes[i]->queue, AES_QUEUE_SIZE);

		tasklet_init(&aes[i]->queue_task, mtk_aes_queue_task,
			     (unsigned long)aes[i]);
		tasklet_init(&aes[i]->done_task, mtk_aes_done_task,
			     (unsigned long)aes[i]);
	}

	/* Link to ring0 and ring1 respectively */
	aes[0]->id = MTK_RING0;
	aes[1]->id = MTK_RING1;

	return 0;

err_cleanup:
	for (; i--; ) {
		free_page((unsigned long)aes[i]->buf);
		kfree(aes[i]);
	}

	return err;
}

static void mtk_aes_record_free(struct mtk_cryp *cryp)
{
	int i;

	for (i = 0; i < MTK_REC_NUM; i++) {
		tasklet_kill(&cryp->aes[i]->done_task);
		tasklet_kill(&cryp->aes[i]->queue_task);

		free_page((unsigned long)cryp->aes[i]->buf);
		kfree(cryp->aes[i]);
	}
}

static void mtk_aes_unregister_algs(void)
{
	int i;

	crypto_unregister_aead(&aes_gcm_alg);

	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
		crypto_unregister_skcipher(&aes_algs[i]);
}

static int mtk_aes_register_algs(void)
{
	int err, i;

	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
		err = crypto_register_skcipher(&aes_algs[i]);
		if (err)
			goto err_aes_algs;
	}

	err = crypto_register_aead(&aes_gcm_alg);
	if (err)
		goto err_aes_algs;

	return 0;

err_aes_algs:
	for (; i--; )
		crypto_unregister_skcipher(&aes_algs[i]);

	return err;
}

int mtk_cipher_alg_register(struct mtk_cryp *cryp)
{
	int ret;

	INIT_LIST_HEAD(&cryp->aes_list);

	/* Initialize two cipher records */
	ret = mtk_aes_record_init(cryp);
	if (ret)
		goto err_record;

	ret = devm_request_irq(cryp->dev, cryp->irq[MTK_RING0], mtk_aes_irq,
			       0, "mtk-aes", cryp->aes[0]);
	if (ret) {
		dev_err(cryp->dev, "unable to request AES irq.\n");
		goto err_res;
	}

	ret = devm_request_irq(cryp->dev, cryp->irq[MTK_RING1], mtk_aes_irq,
			       0, "mtk-aes", cryp->aes[1]);
	if (ret) {
		dev_err(cryp->dev, "unable to request AES irq.\n");
		goto err_res;
	}

	/* Enable ring0 and ring1 interrupt */
	mtk_aes_write(cryp, AIC_ENABLE_SET(MTK_RING0), MTK_IRQ_RDR0);
	mtk_aes_write(cryp, AIC_ENABLE_SET(MTK_RING1), MTK_IRQ_RDR1);

	spin_lock(&mtk_aes.lock);
	list_add_tail(&cryp->aes_list, &mtk_aes.dev_list);
	spin_unlock(&mtk_aes.lock);

	ret = mtk_aes_register_algs();
	if (ret)
		goto err_algs;

	return 0;

err_algs:
	spin_lock(&mtk_aes.lock);
	list_del(&cryp->aes_list);
	spin_unlock(&mtk_aes.lock);
err_res:
	mtk_aes_record_free(cryp);
err_record:

	dev_err(cryp->dev, "mtk-aes initialization failed.\n");
	return ret;
}

void mtk_cipher_alg_release(struct mtk_cryp *cryp)
{
	spin_lock(&mtk_aes.lock);
	list_del(&cryp->aes_list);
	spin_unlock(&mtk_aes.lock);

	mtk_aes_unregister_algs();
	mtk_aes_record_free(cryp);
}