1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
|
// SPDX-License-Identifier: GPL-2.0-only
//
// Driver for Cadence QSPI Controller
//
// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/sched.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/timer.h>
#define CQSPI_NAME "cadence-qspi"
#define CQSPI_MAX_CHIPSELECT 16
/* Quirks */
#define CQSPI_NEEDS_WR_DELAY BIT(0)
#define CQSPI_DISABLE_DAC_MODE BIT(1)
/* Capabilities */
#define CQSPI_SUPPORTS_OCTAL BIT(0)
struct cqspi_st;
struct cqspi_flash_pdata {
struct cqspi_st *cqspi;
u32 clk_rate;
u32 read_delay;
u32 tshsl_ns;
u32 tsd2d_ns;
u32 tchsh_ns;
u32 tslch_ns;
u8 inst_width;
u8 addr_width;
u8 data_width;
u8 cs;
};
struct cqspi_st {
struct platform_device *pdev;
struct clk *clk;
unsigned int sclk;
void __iomem *iobase;
void __iomem *ahb_base;
resource_size_t ahb_size;
struct completion transfer_complete;
struct dma_chan *rx_chan;
struct completion rx_dma_complete;
dma_addr_t mmap_phys_base;
int current_cs;
unsigned long master_ref_clk_hz;
bool is_decoded_cs;
u32 fifo_depth;
u32 fifo_width;
bool rclk_en;
u32 trigger_address;
u32 wr_delay;
bool use_direct_mode;
struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
};
struct cqspi_driver_platdata {
u32 hwcaps_mask;
u8 quirks;
};
/* Operation timeout value */
#define CQSPI_TIMEOUT_MS 500
#define CQSPI_READ_TIMEOUT_MS 10
/* Instruction type */
#define CQSPI_INST_TYPE_SINGLE 0
#define CQSPI_INST_TYPE_DUAL 1
#define CQSPI_INST_TYPE_QUAD 2
#define CQSPI_INST_TYPE_OCTAL 3
#define CQSPI_DUMMY_CLKS_PER_BYTE 8
#define CQSPI_DUMMY_BYTES_MAX 4
#define CQSPI_DUMMY_CLKS_MAX 31
#define CQSPI_STIG_DATA_LEN_MAX 8
/* Register map */
#define CQSPI_REG_CONFIG 0x00
#define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
#define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
#define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
#define CQSPI_REG_CONFIG_BAUD_LSB 19
#define CQSPI_REG_CONFIG_IDLE_LSB 31
#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
#define CQSPI_REG_CONFIG_BAUD_MASK 0xF
#define CQSPI_REG_RD_INSTR 0x04
#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
#define CQSPI_REG_WR_INSTR 0x08
#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
#define CQSPI_REG_DELAY 0x0C
#define CQSPI_REG_DELAY_TSLCH_LSB 0
#define CQSPI_REG_DELAY_TCHSH_LSB 8
#define CQSPI_REG_DELAY_TSD2D_LSB 16
#define CQSPI_REG_DELAY_TSHSL_LSB 24
#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
#define CQSPI_REG_READCAPTURE 0x10
#define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
#define CQSPI_REG_READCAPTURE_DELAY_LSB 1
#define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
#define CQSPI_REG_SIZE 0x14
#define CQSPI_REG_SIZE_ADDRESS_LSB 0
#define CQSPI_REG_SIZE_PAGE_LSB 4
#define CQSPI_REG_SIZE_BLOCK_LSB 16
#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
#define CQSPI_REG_SRAMPARTITION 0x18
#define CQSPI_REG_INDIRECTTRIGGER 0x1C
#define CQSPI_REG_DMA 0x20
#define CQSPI_REG_DMA_SINGLE_LSB 0
#define CQSPI_REG_DMA_BURST_LSB 8
#define CQSPI_REG_DMA_SINGLE_MASK 0xFF
#define CQSPI_REG_DMA_BURST_MASK 0xFF
#define CQSPI_REG_REMAP 0x24
#define CQSPI_REG_MODE_BIT 0x28
#define CQSPI_REG_SDRAMLEVEL 0x2C
#define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
#define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
#define CQSPI_REG_IRQSTATUS 0x40
#define CQSPI_REG_IRQMASK 0x44
#define CQSPI_REG_INDIRECTRD 0x60
#define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
#define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
#define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
#define CQSPI_REG_INDIRECTRDWATERMARK 0x64
#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
#define CQSPI_REG_INDIRECTRDBYTES 0x6C
#define CQSPI_REG_CMDCTRL 0x90
#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
#define CQSPI_REG_INDIRECTWR 0x70
#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
#define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
#define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
#define CQSPI_REG_INDIRECTWRWATERMARK 0x74
#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
#define CQSPI_REG_INDIRECTWRBYTES 0x7C
#define CQSPI_REG_CMDADDRESS 0x94
#define CQSPI_REG_CMDREADDATALOWER 0xA0
#define CQSPI_REG_CMDREADDATAUPPER 0xA4
#define CQSPI_REG_CMDWRITEDATALOWER 0xA8
#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
/* Interrupt status bits */
#define CQSPI_REG_IRQ_MODE_ERR BIT(0)
#define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
#define CQSPI_REG_IRQ_IND_COMP BIT(2)
#define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
#define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
#define CQSPI_REG_IRQ_WATERMARK BIT(6)
#define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
#define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
CQSPI_REG_IRQ_IND_SRAM_FULL | \
CQSPI_REG_IRQ_IND_COMP)
#define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
CQSPI_REG_IRQ_WATERMARK | \
CQSPI_REG_IRQ_UNDERFLOW)
#define CQSPI_IRQ_STATUS_MASK 0x1FFFF
static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
{
u32 val;
return readl_relaxed_poll_timeout(reg, val,
(((clr ? ~val : val) & mask) == mask),
10, CQSPI_TIMEOUT_MS * 1000);
}
static bool cqspi_is_idle(struct cqspi_st *cqspi)
{
u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
}
static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
{
u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
}
static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
{
struct cqspi_st *cqspi = dev;
unsigned int irq_status;
/* Read interrupt status */
irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
/* Clear interrupt */
writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
if (irq_status)
complete(&cqspi->transfer_complete);
return IRQ_HANDLED;
}
static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
{
u32 rdreg = 0;
rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
return rdreg;
}
static int cqspi_wait_idle(struct cqspi_st *cqspi)
{
const unsigned int poll_idle_retry = 3;
unsigned int count = 0;
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
while (1) {
/*
* Read few times in succession to ensure the controller
* is indeed idle, that is, the bit does not transition
* low again.
*/
if (cqspi_is_idle(cqspi))
count++;
else
count = 0;
if (count >= poll_idle_retry)
return 0;
if (time_after(jiffies, timeout)) {
/* Timeout, in busy mode. */
dev_err(&cqspi->pdev->dev,
"QSPI is still busy after %dms timeout.\n",
CQSPI_TIMEOUT_MS);
return -ETIMEDOUT;
}
cpu_relax();
}
}
static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
{
void __iomem *reg_base = cqspi->iobase;
int ret;
/* Write the CMDCTRL without start execution. */
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
/* Start execute */
reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
/* Polling for completion. */
ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
if (ret) {
dev_err(&cqspi->pdev->dev,
"Flash command execution timed out.\n");
return ret;
}
/* Polling QSPI idle status. */
return cqspi_wait_idle(cqspi);
}
static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
u8 *rxbuf = op->data.buf.in;
u8 opcode = op->cmd.opcode;
size_t n_rx = op->data.nbytes;
unsigned int rdreg;
unsigned int reg;
size_t read_len;
int status;
if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
dev_err(&cqspi->pdev->dev,
"Invalid input argument, len %zu rxbuf 0x%p\n",
n_rx, rxbuf);
return -EINVAL;
}
reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
rdreg = cqspi_calc_rdreg(f_pdata);
writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
/* 0 means 1 byte. */
reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
status = cqspi_exec_flash_cmd(cqspi, reg);
if (status)
return status;
reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
/* Put the read value into rx_buf */
read_len = (n_rx > 4) ? 4 : n_rx;
memcpy(rxbuf, ®, read_len);
rxbuf += read_len;
if (n_rx > 4) {
reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
read_len = n_rx - read_len;
memcpy(rxbuf, ®, read_len);
}
return 0;
}
static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
const u8 opcode = op->cmd.opcode;
const u8 *txbuf = op->data.buf.out;
size_t n_tx = op->data.nbytes;
unsigned int reg;
unsigned int data;
size_t write_len;
if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
dev_err(&cqspi->pdev->dev,
"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
n_tx, txbuf);
return -EINVAL;
}
reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
if (op->addr.nbytes) {
reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
reg |= ((op->addr.nbytes - 1) &
CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
}
if (n_tx) {
reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
data = 0;
write_len = (n_tx > 4) ? 4 : n_tx;
memcpy(&data, txbuf, write_len);
txbuf += write_len;
writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
if (n_tx > 4) {
data = 0;
write_len = n_tx - 4;
memcpy(&data, txbuf, write_len);
writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
}
}
return cqspi_exec_flash_cmd(cqspi, reg);
}
static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int dummy_clk = 0;
unsigned int reg;
reg = op->cmd.opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
reg |= cqspi_calc_rdreg(f_pdata);
/* Setup dummy clock cycles */
dummy_clk = op->dummy.nbytes * 8;
if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
return -EOPNOTSUPP;
if (dummy_clk)
reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
<< CQSPI_REG_RD_INSTR_DUMMY_LSB;
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
/* Set address width */
reg = readl(reg_base + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (op->addr.nbytes - 1);
writel(reg, reg_base + CQSPI_REG_SIZE);
return 0;
}
static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
u8 *rxbuf, loff_t from_addr,
const size_t n_rx)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
struct device *dev = &cqspi->pdev->dev;
void __iomem *reg_base = cqspi->iobase;
void __iomem *ahb_base = cqspi->ahb_base;
unsigned int remaining = n_rx;
unsigned int mod_bytes = n_rx % 4;
unsigned int bytes_to_read = 0;
u8 *rxbuf_end = rxbuf + n_rx;
int ret = 0;
writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
/* Clear all interrupts. */
writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
reinit_completion(&cqspi->transfer_complete);
writel(CQSPI_REG_INDIRECTRD_START_MASK,
reg_base + CQSPI_REG_INDIRECTRD);
while (remaining > 0) {
if (!wait_for_completion_timeout(&cqspi->transfer_complete,
msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
ret = -ETIMEDOUT;
bytes_to_read = cqspi_get_rd_sram_level(cqspi);
if (ret && bytes_to_read == 0) {
dev_err(dev, "Indirect read timeout, no bytes\n");
goto failrd;
}
while (bytes_to_read != 0) {
unsigned int word_remain = round_down(remaining, 4);
bytes_to_read *= cqspi->fifo_width;
bytes_to_read = bytes_to_read > remaining ?
remaining : bytes_to_read;
bytes_to_read = round_down(bytes_to_read, 4);
/* Read 4 byte word chunks then single bytes */
if (bytes_to_read) {
ioread32_rep(ahb_base, rxbuf,
(bytes_to_read / 4));
} else if (!word_remain && mod_bytes) {
unsigned int temp = ioread32(ahb_base);
bytes_to_read = mod_bytes;
memcpy(rxbuf, &temp, min((unsigned int)
(rxbuf_end - rxbuf),
bytes_to_read));
}
rxbuf += bytes_to_read;
remaining -= bytes_to_read;
bytes_to_read = cqspi_get_rd_sram_level(cqspi);
}
if (remaining > 0)
reinit_completion(&cqspi->transfer_complete);
}
/* Check indirect done status */
ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
if (ret) {
dev_err(dev, "Indirect read completion error (%i)\n", ret);
goto failrd;
}
/* Disable interrupt */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
return 0;
failrd:
/* Disable interrupt */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Cancel the indirect read */
writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
reg_base + CQSPI_REG_INDIRECTRD);
return ret;
}
static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
unsigned int reg;
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
/* Set opcode. */
reg = op->cmd.opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
writel(reg, reg_base + CQSPI_REG_WR_INSTR);
reg = cqspi_calc_rdreg(f_pdata);
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
reg = readl(reg_base + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (op->addr.nbytes - 1);
writel(reg, reg_base + CQSPI_REG_SIZE);
return 0;
}
static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
loff_t to_addr, const u8 *txbuf,
const size_t n_tx)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
struct device *dev = &cqspi->pdev->dev;
void __iomem *reg_base = cqspi->iobase;
unsigned int remaining = n_tx;
unsigned int write_bytes;
int ret;
writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
/* Clear all interrupts. */
writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
reinit_completion(&cqspi->transfer_complete);
writel(CQSPI_REG_INDIRECTWR_START_MASK,
reg_base + CQSPI_REG_INDIRECTWR);
/*
* As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
* Controller programming sequence, couple of cycles of
* QSPI_REF_CLK delay is required for the above bit to
* be internally synchronized by the QSPI module. Provide 5
* cycles of delay.
*/
if (cqspi->wr_delay)
ndelay(cqspi->wr_delay);
while (remaining > 0) {
size_t write_words, mod_bytes;
write_bytes = remaining;
write_words = write_bytes / 4;
mod_bytes = write_bytes % 4;
/* Write 4 bytes at a time then single bytes. */
if (write_words) {
iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
txbuf += (write_words * 4);
}
if (mod_bytes) {
unsigned int temp = 0xFFFFFFFF;
memcpy(&temp, txbuf, mod_bytes);
iowrite32(temp, cqspi->ahb_base);
txbuf += mod_bytes;
}
if (!wait_for_completion_timeout(&cqspi->transfer_complete,
msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
dev_err(dev, "Indirect write timeout\n");
ret = -ETIMEDOUT;
goto failwr;
}
remaining -= write_bytes;
if (remaining > 0)
reinit_completion(&cqspi->transfer_complete);
}
/* Check indirect done status */
ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
if (ret) {
dev_err(dev, "Indirect write completion error (%i)\n", ret);
goto failwr;
}
/* Disable interrupt. */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
cqspi_wait_idle(cqspi);
return 0;
failwr:
/* Disable interrupt. */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Cancel the indirect write */
writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
reg_base + CQSPI_REG_INDIRECTWR);
return ret;
}
static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int chip_select = f_pdata->cs;
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
if (cqspi->is_decoded_cs) {
reg |= CQSPI_REG_CONFIG_DECODE_MASK;
} else {
reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
/* Convert CS if without decoder.
* CS0 to 4b'1110
* CS1 to 4b'1101
* CS2 to 4b'1011
* CS3 to 4b'0111
*/
chip_select = 0xF & ~(1 << chip_select);
}
reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB);
reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
const unsigned int ns_val)
{
unsigned int ticks;
ticks = ref_clk_hz / 1000; /* kHz */
ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
return ticks;
}
static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *iobase = cqspi->iobase;
const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
unsigned int tshsl, tchsh, tslch, tsd2d;
unsigned int reg;
unsigned int tsclk;
/* calculate the number of ref ticks for one sclk tick */
tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
/* this particular value must be at least one sclk */
if (tshsl < tsclk)
tshsl = tsclk;
tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
<< CQSPI_REG_DELAY_TSHSL_LSB;
reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
<< CQSPI_REG_DELAY_TCHSH_LSB;
reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
<< CQSPI_REG_DELAY_TSLCH_LSB;
reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
<< CQSPI_REG_DELAY_TSD2D_LSB;
writel(reg, iobase + CQSPI_REG_DELAY);
}
static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
{
const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
void __iomem *reg_base = cqspi->iobase;
u32 reg, div;
/* Recalculate the baudrate divisor based on QSPI specification. */
div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
static void cqspi_readdata_capture(struct cqspi_st *cqspi,
const bool bypass,
const unsigned int delay)
{
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_READCAPTURE);
if (bypass)
reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
else
reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
<< CQSPI_REG_READCAPTURE_DELAY_LSB);
reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
<< CQSPI_REG_READCAPTURE_DELAY_LSB;
writel(reg, reg_base + CQSPI_REG_READCAPTURE);
}
static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
{
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
if (enable)
reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
else
reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
unsigned long sclk)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
int switch_cs = (cqspi->current_cs != f_pdata->cs);
int switch_ck = (cqspi->sclk != sclk);
if (switch_cs || switch_ck)
cqspi_controller_enable(cqspi, 0);
/* Switch chip select. */
if (switch_cs) {
cqspi->current_cs = f_pdata->cs;
cqspi_chipselect(f_pdata);
}
/* Setup baudrate divisor and delays */
if (switch_ck) {
cqspi->sclk = sclk;
cqspi_config_baudrate_div(cqspi);
cqspi_delay(f_pdata);
cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
f_pdata->read_delay);
}
if (switch_cs || switch_ck)
cqspi_controller_enable(cqspi, 1);
}
static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
if (op->data.dir == SPI_MEM_DATA_IN) {
switch (op->data.buswidth) {
case 1:
f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
break;
case 2:
f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
break;
case 4:
f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
break;
case 8:
f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
break;
default:
return -EINVAL;
}
}
return 0;
}
static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
loff_t to = op->addr.val;
size_t len = op->data.nbytes;
const u_char *buf = op->data.buf.out;
int ret;
ret = cqspi_set_protocol(f_pdata, op);
if (ret)
return ret;
ret = cqspi_write_setup(f_pdata, op);
if (ret)
return ret;
if (cqspi->use_direct_mode && ((to + len) <= cqspi->ahb_size)) {
memcpy_toio(cqspi->ahb_base + to, buf, len);
return cqspi_wait_idle(cqspi);
}
return cqspi_indirect_write_execute(f_pdata, to, buf, len);
}
static void cqspi_rx_dma_callback(void *param)
{
struct cqspi_st *cqspi = param;
complete(&cqspi->rx_dma_complete);
}
static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
u_char *buf, loff_t from, size_t len)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
struct device *dev = &cqspi->pdev->dev;
enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
int ret = 0;
struct dma_async_tx_descriptor *tx;
dma_cookie_t cookie;
dma_addr_t dma_dst;
struct device *ddev;
if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
memcpy_fromio(buf, cqspi->ahb_base + from, len);
return 0;
}
ddev = cqspi->rx_chan->device->dev;
dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
if (dma_mapping_error(ddev, dma_dst)) {
dev_err(dev, "dma mapping failed\n");
return -ENOMEM;
}
tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
len, flags);
if (!tx) {
dev_err(dev, "device_prep_dma_memcpy error\n");
ret = -EIO;
goto err_unmap;
}
tx->callback = cqspi_rx_dma_callback;
tx->callback_param = cqspi;
cookie = tx->tx_submit(tx);
reinit_completion(&cqspi->rx_dma_complete);
ret = dma_submit_error(cookie);
if (ret) {
dev_err(dev, "dma_submit_error %d\n", cookie);
ret = -EIO;
goto err_unmap;
}
dma_async_issue_pending(cqspi->rx_chan);
if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
msecs_to_jiffies(len))) {
dmaengine_terminate_sync(cqspi->rx_chan);
dev_err(dev, "DMA wait_for_completion_timeout\n");
ret = -ETIMEDOUT;
goto err_unmap;
}
err_unmap:
dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
return ret;
}
static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
loff_t from = op->addr.val;
size_t len = op->data.nbytes;
u_char *buf = op->data.buf.in;
int ret;
ret = cqspi_set_protocol(f_pdata, op);
if (ret)
return ret;
ret = cqspi_read_setup(f_pdata, op);
if (ret)
return ret;
if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
return cqspi_direct_read_execute(f_pdata, buf, from, len);
return cqspi_indirect_read_execute(f_pdata, buf, from, len);
}
static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
struct cqspi_flash_pdata *f_pdata;
f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
cqspi_configure(f_pdata, mem->spi->max_speed_hz);
if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
if (!op->addr.nbytes)
return cqspi_command_read(f_pdata, op);
return cqspi_read(f_pdata, op);
}
if (!op->addr.nbytes || !op->data.buf.out)
return cqspi_command_write(f_pdata, op);
return cqspi_write(f_pdata, op);
}
static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
int ret;
ret = cqspi_mem_process(mem, op);
if (ret)
dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
return ret;
}
static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
struct cqspi_flash_pdata *f_pdata,
struct device_node *np)
{
if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
dev_err(&pdev->dev, "couldn't determine read-delay\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
return -ENXIO;
}
return 0;
}
static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
{
struct device *dev = &cqspi->pdev->dev;
struct device_node *np = dev->of_node;
cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
dev_err(dev, "couldn't determine fifo-depth\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
dev_err(dev, "couldn't determine fifo-width\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,trigger-address",
&cqspi->trigger_address)) {
dev_err(dev, "couldn't determine trigger-address\n");
return -ENXIO;
}
cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
return 0;
}
static void cqspi_controller_init(struct cqspi_st *cqspi)
{
u32 reg;
cqspi_controller_enable(cqspi, 0);
/* Configure the remap address register, no remap */
writel(0, cqspi->iobase + CQSPI_REG_REMAP);
/* Disable all interrupts. */
writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
/* Configure the SRAM split to 1:1 . */
writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
/* Load indirect trigger address. */
writel(cqspi->trigger_address,
cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
/* Program read watermark -- 1/2 of the FIFO. */
writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
/* Program write watermark -- 1/8 of the FIFO. */
writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
/* Enable Direct Access Controller */
reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
cqspi_controller_enable(cqspi, 1);
}
static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
{
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
cqspi->rx_chan = dma_request_chan_by_mask(&mask);
if (IS_ERR(cqspi->rx_chan)) {
int ret = PTR_ERR(cqspi->rx_chan);
cqspi->rx_chan = NULL;
return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
}
init_completion(&cqspi->rx_dma_complete);
return 0;
}
static const char *cqspi_get_name(struct spi_mem *mem)
{
struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
struct device *dev = &cqspi->pdev->dev;
return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
}
static const struct spi_controller_mem_ops cqspi_mem_ops = {
.exec_op = cqspi_exec_mem_op,
.get_name = cqspi_get_name,
};
static int cqspi_setup_flash(struct cqspi_st *cqspi)
{
struct platform_device *pdev = cqspi->pdev;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct cqspi_flash_pdata *f_pdata;
unsigned int cs;
int ret;
/* Get flash device data */
for_each_available_child_of_node(dev->of_node, np) {
ret = of_property_read_u32(np, "reg", &cs);
if (ret) {
dev_err(dev, "Couldn't determine chip select.\n");
return ret;
}
if (cs >= CQSPI_MAX_CHIPSELECT) {
dev_err(dev, "Chip select %d out of range.\n", cs);
return -EINVAL;
}
f_pdata = &cqspi->f_pdata[cs];
f_pdata->cqspi = cqspi;
f_pdata->cs = cs;
ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
if (ret)
return ret;
}
return 0;
}
static int cqspi_probe(struct platform_device *pdev)
{
const struct cqspi_driver_platdata *ddata;
struct reset_control *rstc, *rstc_ocp;
struct device *dev = &pdev->dev;
struct spi_master *master;
struct resource *res_ahb;
struct cqspi_st *cqspi;
struct resource *res;
int ret;
int irq;
master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
if (!master) {
dev_err(&pdev->dev, "spi_alloc_master failed\n");
return -ENOMEM;
}
master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
master->mem_ops = &cqspi_mem_ops;
master->dev.of_node = pdev->dev.of_node;
cqspi = spi_master_get_devdata(master);
cqspi->pdev = pdev;
platform_set_drvdata(pdev, cqspi);
/* Obtain configuration from OF. */
ret = cqspi_of_get_pdata(cqspi);
if (ret) {
dev_err(dev, "Cannot get mandatory OF data.\n");
ret = -ENODEV;
goto probe_master_put;
}
/* Obtain QSPI clock. */
cqspi->clk = devm_clk_get(dev, NULL);
if (IS_ERR(cqspi->clk)) {
dev_err(dev, "Cannot claim QSPI clock.\n");
ret = PTR_ERR(cqspi->clk);
goto probe_master_put;
}
/* Obtain and remap controller address. */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
cqspi->iobase = devm_ioremap_resource(dev, res);
if (IS_ERR(cqspi->iobase)) {
dev_err(dev, "Cannot remap controller address.\n");
ret = PTR_ERR(cqspi->iobase);
goto probe_master_put;
}
/* Obtain and remap AHB address. */
res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
if (IS_ERR(cqspi->ahb_base)) {
dev_err(dev, "Cannot remap AHB address.\n");
ret = PTR_ERR(cqspi->ahb_base);
goto probe_master_put;
}
cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
cqspi->ahb_size = resource_size(res_ahb);
init_completion(&cqspi->transfer_complete);
/* Obtain IRQ line. */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = -ENXIO;
goto probe_master_put;
}
pm_runtime_enable(dev);
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
pm_runtime_put_noidle(dev);
goto probe_master_put;
}
ret = clk_prepare_enable(cqspi->clk);
if (ret) {
dev_err(dev, "Cannot enable QSPI clock.\n");
goto probe_clk_failed;
}
/* Obtain QSPI reset control */
rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
if (IS_ERR(rstc)) {
ret = PTR_ERR(rstc);
dev_err(dev, "Cannot get QSPI reset.\n");
goto probe_reset_failed;
}
rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
if (IS_ERR(rstc_ocp)) {
ret = PTR_ERR(rstc_ocp);
dev_err(dev, "Cannot get QSPI OCP reset.\n");
goto probe_reset_failed;
}
reset_control_assert(rstc);
reset_control_deassert(rstc);
reset_control_assert(rstc_ocp);
reset_control_deassert(rstc_ocp);
cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
ddata = of_device_get_match_data(dev);
if (ddata) {
if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
cqspi->master_ref_clk_hz);
if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
master->mode_bits |= SPI_RX_OCTAL;
if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
cqspi->use_direct_mode = true;
}
ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
pdev->name, cqspi);
if (ret) {
dev_err(dev, "Cannot request IRQ.\n");
goto probe_reset_failed;
}
cqspi_wait_idle(cqspi);
cqspi_controller_init(cqspi);
cqspi->current_cs = -1;
cqspi->sclk = 0;
ret = cqspi_setup_flash(cqspi);
if (ret) {
dev_err(dev, "failed to setup flash parameters %d\n", ret);
goto probe_setup_failed;
}
if (cqspi->use_direct_mode) {
ret = cqspi_request_mmap_dma(cqspi);
if (ret == -EPROBE_DEFER)
goto probe_setup_failed;
}
ret = devm_spi_register_master(dev, master);
if (ret) {
dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
goto probe_setup_failed;
}
return 0;
probe_setup_failed:
cqspi_controller_enable(cqspi, 0);
probe_reset_failed:
clk_disable_unprepare(cqspi->clk);
probe_clk_failed:
pm_runtime_put_sync(dev);
pm_runtime_disable(dev);
probe_master_put:
spi_master_put(master);
return ret;
}
static int cqspi_remove(struct platform_device *pdev)
{
struct cqspi_st *cqspi = platform_get_drvdata(pdev);
cqspi_controller_enable(cqspi, 0);
if (cqspi->rx_chan)
dma_release_channel(cqspi->rx_chan);
clk_disable_unprepare(cqspi->clk);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int cqspi_suspend(struct device *dev)
{
struct cqspi_st *cqspi = dev_get_drvdata(dev);
struct spi_master *master = dev_get_drvdata(dev);
int ret;
ret = spi_master_suspend(master);
cqspi_controller_enable(cqspi, 0);
clk_disable_unprepare(cqspi->clk);
return ret;
}
static int cqspi_resume(struct device *dev)
{
struct cqspi_st *cqspi = dev_get_drvdata(dev);
struct spi_master *master = dev_get_drvdata(dev);
clk_prepare_enable(cqspi->clk);
cqspi_wait_idle(cqspi);
cqspi_controller_init(cqspi);
cqspi->current_cs = -1;
cqspi->sclk = 0;
return spi_master_resume(master);
}
static const struct dev_pm_ops cqspi__dev_pm_ops = {
.suspend = cqspi_suspend,
.resume = cqspi_resume,
};
#define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
#else
#define CQSPI_DEV_PM_OPS NULL
#endif
static const struct cqspi_driver_platdata cdns_qspi = {
.quirks = CQSPI_DISABLE_DAC_MODE,
};
static const struct cqspi_driver_platdata k2g_qspi = {
.quirks = CQSPI_NEEDS_WR_DELAY,
};
static const struct cqspi_driver_platdata am654_ospi = {
.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
.quirks = CQSPI_NEEDS_WR_DELAY,
};
static const struct of_device_id cqspi_dt_ids[] = {
{
.compatible = "cdns,qspi-nor",
.data = &cdns_qspi,
},
{
.compatible = "ti,k2g-qspi",
.data = &k2g_qspi,
},
{
.compatible = "ti,am654-ospi",
.data = &am654_ospi,
},
{ /* end of table */ }
};
MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
static struct platform_driver cqspi_platform_driver = {
.probe = cqspi_probe,
.remove = cqspi_remove,
.driver = {
.name = CQSPI_NAME,
.pm = CQSPI_DEV_PM_OPS,
.of_match_table = cqspi_dt_ids,
},
};
module_platform_driver(cqspi_platform_driver);
MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" CQSPI_NAME);
MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
|