diff options
Diffstat (limited to 'src/partition/repart.c')
-rw-r--r-- | src/partition/repart.c | 4114 |
1 files changed, 4114 insertions, 0 deletions
diff --git a/src/partition/repart.c b/src/partition/repart.c new file mode 100644 index 0000000..6db413e --- /dev/null +++ b/src/partition/repart.c @@ -0,0 +1,4114 @@ +/* SPDX-License-Identifier: LGPL-2.1-or-later */ + +#if HAVE_VALGRIND_MEMCHECK_H +#include <valgrind/memcheck.h> +#endif + +#include <fcntl.h> +#include <getopt.h> +#include <libfdisk.h> +#include <linux/fs.h> +#include <linux/loop.h> +#include <sys/file.h> +#include <sys/ioctl.h> +#include <sys/stat.h> + +#include <openssl/hmac.h> +#include <openssl/sha.h> + +#include "sd-id128.h" + +#include "alloc-util.h" +#include "blkid-util.h" +#include "blockdev-util.h" +#include "btrfs-util.h" +#include "conf-files.h" +#include "conf-parser.h" +#include "cryptsetup-util.h" +#include "def.h" +#include "efivars.h" +#include "errno-util.h" +#include "fd-util.h" +#include "fileio.h" +#include "format-table.h" +#include "format-util.h" +#include "fs-util.h" +#include "gpt.h" +#include "id128-util.h" +#include "json.h" +#include "list.h" +#include "locale-util.h" +#include "loop-util.h" +#include "main-func.h" +#include "mkdir.h" +#include "mkfs-util.h" +#include "mount-util.h" +#include "parse-util.h" +#include "path-util.h" +#include "pretty-print.h" +#include "proc-cmdline.h" +#include "process-util.h" +#include "random-util.h" +#include "resize-fs.h" +#include "sort-util.h" +#include "specifier.h" +#include "stat-util.h" +#include "stdio-util.h" +#include "string-util.h" +#include "strv.h" +#include "terminal-util.h" +#include "user-util.h" +#include "utf8.h" + +/* If not configured otherwise use a minimal partition size of 10M */ +#define DEFAULT_MIN_SIZE (10*1024*1024) + +/* Hard lower limit for new partition sizes */ +#define HARD_MIN_SIZE 4096 + +/* libfdisk takes off slightly more than 1M of the disk size when creating a GPT disk label */ +#define GPT_METADATA_SIZE (1044*1024) + +/* LUKS2 takes off 16M of the partition size with its metadata by default */ +#define LUKS2_METADATA_SIZE (16*1024*1024) + +#if !HAVE_LIBCRYPTSETUP +struct crypt_device; +static inline void sym_crypt_free(struct crypt_device* cd) {} +static inline void sym_crypt_freep(struct crypt_device** cd) {} +#endif + +/* Note: When growing and placing new partitions we always align to 4K sector size. It's how newer hard disks + * are designed, and if everything is aligned to that performance is best. And for older hard disks with 512B + * sector size devices were generally assumed to have an even number of sectors, hence at the worst we'll + * waste 3K per partition, which is probably fine. */ + +static enum { + EMPTY_REFUSE, /* refuse empty disks, never create a partition table */ + EMPTY_ALLOW, /* allow empty disks, create partition table if necessary */ + EMPTY_REQUIRE, /* require an empty disk, create a partition table */ + EMPTY_FORCE, /* make disk empty, erase everything, create a partition table always */ + EMPTY_CREATE, /* create disk as loopback file, create a partition table always */ +} arg_empty = EMPTY_REFUSE; + +static bool arg_dry_run = true; +static const char *arg_node = NULL; +static char *arg_root = NULL; +static char *arg_definitions = NULL; +static bool arg_discard = true; +static bool arg_can_factory_reset = false; +static int arg_factory_reset = -1; +static sd_id128_t arg_seed = SD_ID128_NULL; +static bool arg_randomize = false; +static int arg_pretty = -1; +static uint64_t arg_size = UINT64_MAX; +static bool arg_size_auto = false; +static bool arg_json = false; +static JsonFormatFlags arg_json_format_flags = 0; +static void *arg_key = NULL; +static size_t arg_key_size = 0; + +STATIC_DESTRUCTOR_REGISTER(arg_root, freep); +STATIC_DESTRUCTOR_REGISTER(arg_definitions, freep); +STATIC_DESTRUCTOR_REGISTER(arg_key, erase_and_freep); + +typedef struct Partition Partition; +typedef struct FreeArea FreeArea; +typedef struct Context Context; + +struct Partition { + char *definition_path; + + sd_id128_t type_uuid; + sd_id128_t current_uuid, new_uuid; + char *current_label, *new_label; + + bool dropped; + bool factory_reset; + int32_t priority; + + uint32_t weight, padding_weight; + + uint64_t current_size, new_size; + uint64_t size_min, size_max; + + uint64_t current_padding, new_padding; + uint64_t padding_min, padding_max; + + uint64_t partno; + uint64_t offset; + + struct fdisk_partition *current_partition; + struct fdisk_partition *new_partition; + FreeArea *padding_area; + FreeArea *allocated_to_area; + + char *copy_blocks_path; + int copy_blocks_fd; + uint64_t copy_blocks_size; + + char *format; + char **copy_files; + bool encrypt; + + LIST_FIELDS(Partition, partitions); +}; + +#define PARTITION_IS_FOREIGN(p) (!(p)->definition_path) +#define PARTITION_EXISTS(p) (!!(p)->current_partition) + +struct FreeArea { + Partition *after; + uint64_t size; + uint64_t allocated; +}; + +struct Context { + LIST_HEAD(Partition, partitions); + size_t n_partitions; + + FreeArea **free_areas; + size_t n_free_areas, n_allocated_free_areas; + + uint64_t start, end, total; + + struct fdisk_context *fdisk_context; + + sd_id128_t seed; +}; + +static uint64_t round_down_size(uint64_t v, uint64_t p) { + return (v / p) * p; +} + +static uint64_t round_up_size(uint64_t v, uint64_t p) { + + v = DIV_ROUND_UP(v, p); + + if (v > UINT64_MAX / p) + return UINT64_MAX; /* overflow */ + + return v * p; +} + +static Partition *partition_new(void) { + Partition *p; + + p = new(Partition, 1); + if (!p) + return NULL; + + *p = (Partition) { + .weight = 1000, + .padding_weight = 0, + .current_size = UINT64_MAX, + .new_size = UINT64_MAX, + .size_min = UINT64_MAX, + .size_max = UINT64_MAX, + .current_padding = UINT64_MAX, + .new_padding = UINT64_MAX, + .padding_min = UINT64_MAX, + .padding_max = UINT64_MAX, + .partno = UINT64_MAX, + .offset = UINT64_MAX, + .copy_blocks_fd = -1, + .copy_blocks_size = UINT64_MAX, + }; + + return p; +} + +static Partition* partition_free(Partition *p) { + if (!p) + return NULL; + + free(p->current_label); + free(p->new_label); + free(p->definition_path); + + if (p->current_partition) + fdisk_unref_partition(p->current_partition); + if (p->new_partition) + fdisk_unref_partition(p->new_partition); + + free(p->copy_blocks_path); + safe_close(p->copy_blocks_fd); + + free(p->format); + strv_free(p->copy_files); + + return mfree(p); +} + +static Partition* partition_unlink_and_free(Context *context, Partition *p) { + if (!p) + return NULL; + + LIST_REMOVE(partitions, context->partitions, p); + + assert(context->n_partitions > 0); + context->n_partitions--; + + return partition_free(p); +} + +DEFINE_TRIVIAL_CLEANUP_FUNC(Partition*, partition_free); + +static Context *context_new(sd_id128_t seed) { + Context *context; + + context = new(Context, 1); + if (!context) + return NULL; + + *context = (Context) { + .start = UINT64_MAX, + .end = UINT64_MAX, + .total = UINT64_MAX, + .seed = seed, + }; + + return context; +} + +static void context_free_free_areas(Context *context) { + assert(context); + + for (size_t i = 0; i < context->n_free_areas; i++) + free(context->free_areas[i]); + + context->free_areas = mfree(context->free_areas); + context->n_free_areas = 0; + context->n_allocated_free_areas = 0; +} + +static Context *context_free(Context *context) { + if (!context) + return NULL; + + while (context->partitions) + partition_unlink_and_free(context, context->partitions); + assert(context->n_partitions == 0); + + context_free_free_areas(context); + + if (context->fdisk_context) + fdisk_unref_context(context->fdisk_context); + + return mfree(context); +} + +DEFINE_TRIVIAL_CLEANUP_FUNC(Context*, context_free); + +static int context_add_free_area( + Context *context, + uint64_t size, + Partition *after) { + + FreeArea *a; + + assert(context); + assert(!after || !after->padding_area); + + if (!GREEDY_REALLOC(context->free_areas, context->n_allocated_free_areas, context->n_free_areas + 1)) + return -ENOMEM; + + a = new(FreeArea, 1); + if (!a) + return -ENOMEM; + + *a = (FreeArea) { + .size = size, + .after = after, + }; + + context->free_areas[context->n_free_areas++] = a; + + if (after) + after->padding_area = a; + + return 0; +} + +static bool context_drop_one_priority(Context *context) { + int32_t priority = 0; + Partition *p; + bool exists = false; + + LIST_FOREACH(partitions, p, context->partitions) { + if (p->dropped) + continue; + if (p->priority < priority) + continue; + if (p->priority == priority) { + exists = exists || PARTITION_EXISTS(p); + continue; + } + + priority = p->priority; + exists = PARTITION_EXISTS(p); + } + + /* Refuse to drop partitions with 0 or negative priorities or partitions of priorities that have at + * least one existing priority */ + if (priority <= 0 || exists) + return false; + + LIST_FOREACH(partitions, p, context->partitions) { + if (p->priority < priority) + continue; + + if (p->dropped) + continue; + + p->dropped = true; + log_info("Can't fit partition %s of priority %" PRIi32 ", dropping.", p->definition_path, p->priority); + } + + return true; +} + +static uint64_t partition_min_size(const Partition *p) { + uint64_t sz; + + /* Calculate the disk space we really need at minimum for this partition. If the partition already + * exists the current size is what we really need. If it doesn't exist yet refuse to allocate less + * than 4K. + * + * DEFAULT_MIN_SIZE is the default SizeMin= we configure if nothing else is specified. */ + + if (PARTITION_IS_FOREIGN(p)) { + /* Don't allow changing size of partitions not managed by us */ + assert(p->current_size != UINT64_MAX); + return p->current_size; + } + + sz = p->current_size != UINT64_MAX ? p->current_size : HARD_MIN_SIZE; + + if (!PARTITION_EXISTS(p)) { + uint64_t d = 0; + + if (p->encrypt) + d += round_up_size(LUKS2_METADATA_SIZE, 4096); + + if (p->copy_blocks_size != UINT64_MAX) + d += round_up_size(p->copy_blocks_size, 4096); + else if (p->format || p->encrypt) { + uint64_t f; + + /* If we shall synthesize a file system, take minimal fs size into account (assumed to be 4K if not known) */ + f = p->format ? minimal_size_by_fs_name(p->format) : UINT64_MAX; + d += f == UINT64_MAX ? 4096 : f; + } + + if (d > sz) + sz = d; + } + + return MAX(p->size_min != UINT64_MAX ? p->size_min : DEFAULT_MIN_SIZE, sz); +} + +static uint64_t partition_max_size(const Partition *p) { + /* Calculate how large the partition may become at max. This is generally the configured maximum + * size, except when it already exists and is larger than that. In that case it's the existing size, + * since we never want to shrink partitions. */ + + if (PARTITION_IS_FOREIGN(p)) { + /* Don't allow changing size of partitions not managed by us */ + assert(p->current_size != UINT64_MAX); + return p->current_size; + } + + if (p->current_size != UINT64_MAX) + return MAX(p->current_size, p->size_max); + + return p->size_max; +} + +static uint64_t partition_min_size_with_padding(const Partition *p) { + uint64_t sz; + + /* Calculate the disk space we need for this partition plus any free space coming after it. This + * takes user configured padding into account as well as any additional whitespace needed to align + * the next partition to 4K again. */ + + sz = partition_min_size(p); + + if (p->padding_min != UINT64_MAX) + sz += p->padding_min; + + if (PARTITION_EXISTS(p)) { + /* If the partition wasn't aligned, add extra space so that any we might add will be aligned */ + assert(p->offset != UINT64_MAX); + return round_up_size(p->offset + sz, 4096) - p->offset; + } + + /* If this is a new partition we'll place it aligned, hence we just need to round up the required size here */ + return round_up_size(sz, 4096); +} + +static uint64_t free_area_available(const FreeArea *a) { + assert(a); + + /* Determines how much of this free area is not allocated yet */ + + assert(a->size >= a->allocated); + return a->size - a->allocated; +} + +static uint64_t free_area_available_for_new_partitions(const FreeArea *a) { + uint64_t avail; + + /* Similar to free_area_available(), but takes into account that the required size and padding of the + * preceding partition is honoured. */ + + avail = free_area_available(a); + if (a->after) { + uint64_t need, space; + + need = partition_min_size_with_padding(a->after); + + assert(a->after->offset != UINT64_MAX); + assert(a->after->current_size != UINT64_MAX); + + space = round_up_size(a->after->offset + a->after->current_size, 4096) - a->after->offset + avail; + if (need >= space) + return 0; + + return space - need; + } + + return avail; +} + +static int free_area_compare(FreeArea *const *a, FreeArea *const*b) { + return CMP(free_area_available_for_new_partitions(*a), + free_area_available_for_new_partitions(*b)); +} + +static uint64_t charge_size(uint64_t total, uint64_t amount) { + uint64_t rounded; + + assert(amount <= total); + + /* Subtract the specified amount from total, rounding up to multiple of 4K if there's room */ + rounded = round_up_size(amount, 4096); + if (rounded >= total) + return 0; + + return total - rounded; +} + +static uint64_t charge_weight(uint64_t total, uint64_t amount) { + assert(amount <= total); + return total - amount; +} + +static bool context_allocate_partitions(Context *context) { + Partition *p; + + assert(context); + + /* A simple first-fit algorithm, assuming the array of free areas is sorted by size in decreasing + * order. */ + + LIST_FOREACH(partitions, p, context->partitions) { + bool fits = false; + uint64_t required; + FreeArea *a = NULL; + + /* Skip partitions we already dropped or that already exist */ + if (p->dropped || PARTITION_EXISTS(p)) + continue; + + /* Sort by size */ + typesafe_qsort(context->free_areas, context->n_free_areas, free_area_compare); + + /* How much do we need to fit? */ + required = partition_min_size_with_padding(p); + assert(required % 4096 == 0); + + for (size_t i = 0; i < context->n_free_areas; i++) { + a = context->free_areas[i]; + + if (free_area_available_for_new_partitions(a) >= required) { + fits = true; + break; + } + } + + if (!fits) + return false; /* 😢 Oh no! We can't fit this partition into any free area! */ + + /* Assign the partition to this free area */ + p->allocated_to_area = a; + + /* Budget the minimal partition size */ + a->allocated += required; + } + + return true; +} + +static int context_sum_weights(Context *context, FreeArea *a, uint64_t *ret) { + uint64_t weight_sum = 0; + Partition *p; + + assert(context); + assert(a); + assert(ret); + + /* Determine the sum of the weights of all partitions placed in or before the specified free area */ + + LIST_FOREACH(partitions, p, context->partitions) { + if (p->padding_area != a && p->allocated_to_area != a) + continue; + + if (p->weight > UINT64_MAX - weight_sum) + goto overflow_sum; + weight_sum += p->weight; + + if (p->padding_weight > UINT64_MAX - weight_sum) + goto overflow_sum; + weight_sum += p->padding_weight; + } + + *ret = weight_sum; + return 0; + +overflow_sum: + return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Combined weight of partition exceeds unsigned 64bit range, refusing."); +} + +static int scale_by_weight(uint64_t value, uint64_t weight, uint64_t weight_sum, uint64_t *ret) { + assert(weight_sum >= weight); + assert(ret); + + if (weight == 0) { + *ret = 0; + return 0; + } + + if (value > UINT64_MAX / weight) + return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Scaling by weight of partition exceeds unsigned 64bit range, refusing."); + + *ret = value * weight / weight_sum; + return 0; +} + +typedef enum GrowPartitionPhase { + /* The first phase: we charge partitions which need more (according to constraints) than their weight-based share. */ + PHASE_OVERCHARGE, + + /* The second phase: we charge partitions which need less (according to constraints) than their weight-based share. */ + PHASE_UNDERCHARGE, + + /* The third phase: we distribute what remains among the remaining partitions, according to the weights */ + PHASE_DISTRIBUTE, +} GrowPartitionPhase; + +static int context_grow_partitions_phase( + Context *context, + FreeArea *a, + GrowPartitionPhase phase, + uint64_t *span, + uint64_t *weight_sum) { + + Partition *p; + int r; + + assert(context); + assert(a); + + /* Now let's look at the intended weights and adjust them taking the minimum space assignments into + * account. i.e. if a partition has a small weight but a high minimum space value set it should not + * get any additional room from the left-overs. Similar, if two partitions have the same weight they + * should get the same space if possible, even if one has a smaller minimum size than the other. */ + LIST_FOREACH(partitions, p, context->partitions) { + + /* Look only at partitions associated with this free area, i.e. immediately + * preceding it, or allocated into it */ + if (p->allocated_to_area != a && p->padding_area != a) + continue; + + if (p->new_size == UINT64_MAX) { + bool charge = false, try_again = false; + uint64_t share, rsz, xsz; + + /* Calculate how much this space this partition needs if everyone would get + * the weight based share */ + r = scale_by_weight(*span, p->weight, *weight_sum, &share); + if (r < 0) + return r; + + rsz = partition_min_size(p); + xsz = partition_max_size(p); + + if (phase == PHASE_OVERCHARGE && rsz > share) { + /* This partition needs more than its calculated share. Let's assign + * it that, and take this partition out of all calculations and start + * again. */ + + p->new_size = rsz; + charge = try_again = true; + + } else if (phase == PHASE_UNDERCHARGE && xsz != UINT64_MAX && xsz < share) { + /* This partition accepts less than its calculated + * share. Let's assign it that, and take this partition out + * of all calculations and start again. */ + + p->new_size = xsz; + charge = try_again = true; + + } else if (phase == PHASE_DISTRIBUTE) { + /* This partition can accept its calculated share. Let's + * assign it. There's no need to restart things here since + * assigning this shouldn't impact the shares of the other + * partitions. */ + + if (PARTITION_IS_FOREIGN(p)) + /* Never change of foreign partitions (i.e. those we don't manage) */ + p->new_size = p->current_size; + else + p->new_size = MAX(round_down_size(share, 4096), rsz); + + charge = true; + } + + if (charge) { + *span = charge_size(*span, p->new_size); + *weight_sum = charge_weight(*weight_sum, p->weight); + } + + if (try_again) + return 0; /* try again */ + } + + if (p->new_padding == UINT64_MAX) { + bool charge = false, try_again = false; + uint64_t share; + + r = scale_by_weight(*span, p->padding_weight, *weight_sum, &share); + if (r < 0) + return r; + + if (phase == PHASE_OVERCHARGE && p->padding_min != UINT64_MAX && p->padding_min > share) { + p->new_padding = p->padding_min; + charge = try_again = true; + } else if (phase == PHASE_UNDERCHARGE && p->padding_max != UINT64_MAX && p->padding_max < share) { + p->new_padding = p->padding_max; + charge = try_again = true; + } else if (phase == PHASE_DISTRIBUTE) { + + p->new_padding = round_down_size(share, 4096); + if (p->padding_min != UINT64_MAX && p->new_padding < p->padding_min) + p->new_padding = p->padding_min; + + charge = true; + } + + if (charge) { + *span = charge_size(*span, p->new_padding); + *weight_sum = charge_weight(*weight_sum, p->padding_weight); + } + + if (try_again) + return 0; /* try again */ + } + } + + return 1; /* done */ +} + +static int context_grow_partitions_on_free_area(Context *context, FreeArea *a) { + uint64_t weight_sum = 0, span; + int r; + + assert(context); + assert(a); + + r = context_sum_weights(context, a, &weight_sum); + if (r < 0) + return r; + + /* Let's calculate the total area covered by this free area and the partition before it */ + span = a->size; + if (a->after) { + assert(a->after->offset != UINT64_MAX); + assert(a->after->current_size != UINT64_MAX); + + span += round_up_size(a->after->offset + a->after->current_size, 4096) - a->after->offset; + } + + GrowPartitionPhase phase = PHASE_OVERCHARGE; + for (;;) { + r = context_grow_partitions_phase(context, a, phase, &span, &weight_sum); + if (r < 0) + return r; + if (r == 0) /* not done yet, re-run this phase */ + continue; + + if (phase == PHASE_OVERCHARGE) + phase = PHASE_UNDERCHARGE; + else if (phase == PHASE_UNDERCHARGE) + phase = PHASE_DISTRIBUTE; + else if (phase == PHASE_DISTRIBUTE) + break; + } + + /* We still have space left over? Donate to preceding partition if we have one */ + if (span > 0 && a->after && !PARTITION_IS_FOREIGN(a->after)) { + uint64_t m, xsz; + + assert(a->after->new_size != UINT64_MAX); + m = a->after->new_size + span; + + xsz = partition_max_size(a->after); + if (xsz != UINT64_MAX && m > xsz) + m = xsz; + + span = charge_size(span, m - a->after->new_size); + a->after->new_size = m; + } + + /* What? Even still some space left (maybe because there was no preceding partition, or it had a + * size limit), then let's donate it to whoever wants it. */ + if (span > 0) { + Partition *p; + + LIST_FOREACH(partitions, p, context->partitions) { + uint64_t m, xsz; + + if (p->allocated_to_area != a) + continue; + + if (PARTITION_IS_FOREIGN(p)) + continue; + + assert(p->new_size != UINT64_MAX); + m = p->new_size + span; + + xsz = partition_max_size(p); + if (xsz != UINT64_MAX && m > xsz) + m = xsz; + + span = charge_size(span, m - p->new_size); + p->new_size = m; + + if (span == 0) + break; + } + } + + /* Yuck, still no one? Then make it padding */ + if (span > 0 && a->after) { + assert(a->after->new_padding != UINT64_MAX); + a->after->new_padding += span; + } + + return 0; +} + +static int context_grow_partitions(Context *context) { + Partition *p; + int r; + + assert(context); + + for (size_t i = 0; i < context->n_free_areas; i++) { + r = context_grow_partitions_on_free_area(context, context->free_areas[i]); + if (r < 0) + return r; + } + + /* All existing partitions that have no free space after them can't change size */ + LIST_FOREACH(partitions, p, context->partitions) { + if (p->dropped) + continue; + + if (!PARTITION_EXISTS(p) || p->padding_area) { + /* The algorithm above must have initialized this already */ + assert(p->new_size != UINT64_MAX); + continue; + } + + assert(p->new_size == UINT64_MAX); + p->new_size = p->current_size; + + assert(p->new_padding == UINT64_MAX); + p->new_padding = p->current_padding; + } + + return 0; +} + +static void context_place_partitions(Context *context) { + uint64_t partno = 0; + Partition *p; + + assert(context); + + /* Determine next partition number to assign */ + LIST_FOREACH(partitions, p, context->partitions) { + if (!PARTITION_EXISTS(p)) + continue; + + assert(p->partno != UINT64_MAX); + if (p->partno >= partno) + partno = p->partno + 1; + } + + for (size_t i = 0; i < context->n_free_areas; i++) { + FreeArea *a = context->free_areas[i]; + uint64_t start, left; + + if (a->after) { + assert(a->after->offset != UINT64_MAX); + assert(a->after->new_size != UINT64_MAX); + assert(a->after->new_padding != UINT64_MAX); + + start = a->after->offset + a->after->new_size + a->after->new_padding; + } else + start = context->start; + + start = round_up_size(start, 4096); + left = a->size; + + LIST_FOREACH(partitions, p, context->partitions) { + if (p->allocated_to_area != a) + continue; + + p->offset = start; + p->partno = partno++; + + assert(left >= p->new_size); + start += p->new_size; + left -= p->new_size; + + assert(left >= p->new_padding); + start += p->new_padding; + left -= p->new_padding; + } + } +} + +static int config_parse_type( + const char *unit, + const char *filename, + unsigned line, + const char *section, + unsigned section_line, + const char *lvalue, + int ltype, + const char *rvalue, + void *data, + void *userdata) { + + sd_id128_t *type_uuid = data; + int r; + + assert(rvalue); + assert(type_uuid); + + r = gpt_partition_type_uuid_from_string(rvalue, type_uuid); + if (r < 0) + return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to parse partition type: %s", rvalue); + + return 0; +} + +static const Specifier specifier_table[] = { + COMMON_SYSTEM_SPECIFIERS, + {} +}; + +static int config_parse_label( + const char *unit, + const char *filename, + unsigned line, + const char *section, + unsigned section_line, + const char *lvalue, + int ltype, + const char *rvalue, + void *data, + void *userdata) { + + _cleanup_free_ char16_t *recoded = NULL; + _cleanup_free_ char *resolved = NULL; + char **label = data; + int r; + + assert(rvalue); + assert(label); + + r = specifier_printf(rvalue, specifier_table, NULL, &resolved); + if (r < 0) { + log_syntax(unit, LOG_WARNING, filename, line, r, + "Failed to expand specifiers in Label=, ignoring: %s", rvalue); + return 0; + } + + if (!utf8_is_valid(resolved)) { + log_syntax(unit, LOG_WARNING, filename, line, 0, + "Partition label not valid UTF-8, ignoring: %s", rvalue); + return 0; + } + + recoded = utf8_to_utf16(resolved, strlen(resolved)); + if (!recoded) + return log_oom(); + + if (char16_strlen(recoded) > 36) { + log_syntax(unit, LOG_WARNING, filename, line, 0, + "Partition label too long for GPT table, ignoring: \"%s\" (from \"%s\")", + resolved, rvalue); + return 0; + } + + free_and_replace(*label, resolved); + return 0; +} + +static int config_parse_weight( + const char *unit, + const char *filename, + unsigned line, + const char *section, + unsigned section_line, + const char *lvalue, + int ltype, + const char *rvalue, + void *data, + void *userdata) { + + uint32_t *priority = data, v; + int r; + + assert(rvalue); + assert(priority); + + r = safe_atou32(rvalue, &v); + if (r < 0) { + log_syntax(unit, LOG_WARNING, filename, line, r, + "Failed to parse weight value, ignoring: %s", rvalue); + return 0; + } + + if (v > 1000U*1000U) { + log_syntax(unit, LOG_WARNING, filename, line, 0, + "Weight needs to be in range 0…10000000, ignoring: %" PRIu32, v); + return 0; + } + + *priority = v; + return 0; +} + +static int config_parse_size4096( + const char *unit, + const char *filename, + unsigned line, + const char *section, + unsigned section_line, + const char *lvalue, + int ltype, + const char *rvalue, + void *data, + void *userdata) { + + uint64_t *sz = data, parsed; + int r; + + assert(rvalue); + assert(data); + + r = parse_size(rvalue, 1024, &parsed); + if (r < 0) + return log_syntax(unit, LOG_ERR, filename, line, r, + "Failed to parse size value: %s", rvalue); + + if (ltype > 0) + *sz = round_up_size(parsed, 4096); + else if (ltype < 0) + *sz = round_down_size(parsed, 4096); + else + *sz = parsed; + + if (*sz != parsed) + log_syntax(unit, LOG_NOTICE, filename, line, r, "Rounded %s= size %" PRIu64 " → %" PRIu64 ", a multiple of 4096.", lvalue, parsed, *sz); + + return 0; +} + +static int config_parse_fstype( + const char *unit, + const char *filename, + unsigned line, + const char *section, + unsigned section_line, + const char *lvalue, + int ltype, + const char *rvalue, + void *data, + void *userdata) { + + char **fstype = data; + + assert(rvalue); + assert(data); + + if (!filename_is_valid(rvalue)) + return log_syntax(unit, LOG_ERR, filename, line, 0, + "File system type is not valid, refusing: %s", rvalue); + + return free_and_strdup_warn(fstype, rvalue); +} + +static int config_parse_copy_files( + const char *unit, + const char *filename, + unsigned line, + const char *section, + unsigned section_line, + const char *lvalue, + int ltype, + const char *rvalue, + void *data, + void *userdata) { + + _cleanup_free_ char *source = NULL, *buffer = NULL, *resolved_source = NULL, *resolved_target = NULL; + const char *p = rvalue, *target; + Partition *partition = data; + int r; + + assert(rvalue); + assert(partition); + + r = extract_first_word(&p, &source, ":", EXTRACT_CUNESCAPE|EXTRACT_DONT_COALESCE_SEPARATORS); + if (r < 0) + return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to extract source path: %s", rvalue); + if (r == 0) { + log_syntax(unit, LOG_WARNING, filename, line, 0, "No argument specified: %s", rvalue); + return 0; + } + + r = extract_first_word(&p, &buffer, ":", EXTRACT_CUNESCAPE|EXTRACT_DONT_COALESCE_SEPARATORS); + if (r < 0) + return log_syntax(unit, LOG_ERR, filename, line, r, "Failed to extract target path: %s", rvalue); + if (r == 0) + target = source; /* No target, then it's the same as the source */ + else + target = buffer; + + if (!isempty(p)) + return log_syntax(unit, LOG_ERR, filename, line, SYNTHETIC_ERRNO(EINVAL), "Too many arguments: %s", rvalue); + + r = specifier_printf(source, specifier_table, NULL, &resolved_source); + if (r < 0) { + log_syntax(unit, LOG_WARNING, filename, line, r, + "Failed to expand specifiers in CopyFiles= source, ignoring: %s", rvalue); + return 0; + } + + if (!path_is_absolute(resolved_source) || !path_is_normalized(resolved_source)) { + log_syntax(unit, LOG_WARNING, filename, line, 0, + "Invalid path name in CopyFiles= source, ignoring: %s", resolved_source); + return 0; + } + + r = specifier_printf(target, specifier_table, NULL, &resolved_target); + if (r < 0) { + log_syntax(unit, LOG_WARNING, filename, line, r, + "Failed to expand specifiers in CopyFiles= target, ignoring: %s", resolved_target); + return 0; + } + + if (!path_is_absolute(resolved_target) || !path_is_normalized(resolved_target)) { + log_syntax(unit, LOG_WARNING, filename, line, 0, + "Invalid path name in CopyFiles= source, ignoring: %s", resolved_target); + return 0; + } + + r = strv_consume_pair(&partition->copy_files, TAKE_PTR(resolved_source), TAKE_PTR(resolved_target)); + if (r < 0) + return log_oom(); + + return 0; +} + +static int partition_read_definition(Partition *p, const char *path) { + + ConfigTableItem table[] = { + { "Partition", "Type", config_parse_type, 0, &p->type_uuid }, + { "Partition", "Label", config_parse_label, 0, &p->new_label }, + { "Partition", "UUID", config_parse_id128, 0, &p->new_uuid }, + { "Partition", "Priority", config_parse_int32, 0, &p->priority }, + { "Partition", "Weight", config_parse_weight, 0, &p->weight }, + { "Partition", "PaddingWeight", config_parse_weight, 0, &p->padding_weight }, + { "Partition", "SizeMinBytes", config_parse_size4096, 1, &p->size_min }, + { "Partition", "SizeMaxBytes", config_parse_size4096, -1, &p->size_max }, + { "Partition", "PaddingMinBytes", config_parse_size4096, 1, &p->padding_min }, + { "Partition", "PaddingMaxBytes", config_parse_size4096, -1, &p->padding_max }, + { "Partition", "FactoryReset", config_parse_bool, 0, &p->factory_reset }, + { "Partition", "CopyBlocks", config_parse_path, 0, &p->copy_blocks_path }, + { "Partition", "Format", config_parse_fstype, 0, &p->format }, + { "Partition", "CopyFiles", config_parse_copy_files, 0, p }, + { "Partition", "Encrypt", config_parse_bool, 0, &p->encrypt }, + {} + }; + int r; + + r = config_parse(NULL, path, NULL, + "Partition\0", + config_item_table_lookup, table, + CONFIG_PARSE_WARN, + p, + NULL); + if (r < 0) + return r; + + if (p->size_min != UINT64_MAX && p->size_max != UINT64_MAX && p->size_min > p->size_max) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "SizeMinBytes= larger than SizeMaxBytes=, refusing."); + + if (p->padding_min != UINT64_MAX && p->padding_max != UINT64_MAX && p->padding_min > p->padding_max) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "PaddingMinBytes= larger than PaddingMaxBytes=, refusing."); + + if (sd_id128_is_null(p->type_uuid)) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "Type= not defined, refusing."); + + if (p->copy_blocks_path && (p->format || !strv_isempty(p->copy_files))) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "Format= and CopyBlocks= cannot be combined, refusing."); + + if (!strv_isempty(p->copy_files) && streq_ptr(p->format, "swap")) + return log_syntax(NULL, LOG_ERR, path, 1, SYNTHETIC_ERRNO(EINVAL), + "Format=swap and CopyFiles= cannot be combined, refusing."); + + if (!p->format && (!strv_isempty(p->copy_files) || (p->encrypt && !p->copy_blocks_path))) { + /* Pick "ext4" as file system if we are configured to copy files or encrypt the device */ + p->format = strdup("ext4"); + if (!p->format) + return log_oom(); + } + + return 0; +} + +static int context_read_definitions( + Context *context, + const char *directory, + const char *root) { + + _cleanup_strv_free_ char **files = NULL; + Partition *last = NULL; + char **f; + int r; + + assert(context); + + if (directory) + r = conf_files_list_strv(&files, ".conf", NULL, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, (const char**) STRV_MAKE(directory)); + else + r = conf_files_list_strv(&files, ".conf", root, CONF_FILES_REGULAR|CONF_FILES_FILTER_MASKED, (const char**) CONF_PATHS_STRV("repart.d")); + if (r < 0) + return log_error_errno(r, "Failed to enumerate *.conf files: %m"); + + STRV_FOREACH(f, files) { + _cleanup_(partition_freep) Partition *p = NULL; + + p = partition_new(); + if (!p) + return log_oom(); + + p->definition_path = strdup(*f); + if (!p->definition_path) + return log_oom(); + + r = partition_read_definition(p, *f); + if (r < 0) + return r; + + LIST_INSERT_AFTER(partitions, context->partitions, last, p); + last = TAKE_PTR(p); + context->n_partitions++; + } + + return 0; +} + +DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_context*, fdisk_unref_context); +DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_partition*, fdisk_unref_partition); +DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_parttype*, fdisk_unref_parttype); +DEFINE_TRIVIAL_CLEANUP_FUNC(struct fdisk_table*, fdisk_unref_table); + +static int determine_current_padding( + struct fdisk_context *c, + struct fdisk_table *t, + struct fdisk_partition *p, + uint64_t *ret) { + + size_t n_partitions; + uint64_t offset, next = UINT64_MAX; + + assert(c); + assert(t); + assert(p); + + if (!fdisk_partition_has_end(p)) + return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition has no end!"); + + offset = fdisk_partition_get_end(p); + assert(offset < UINT64_MAX / 512); + offset *= 512; + + n_partitions = fdisk_table_get_nents(t); + for (size_t i = 0; i < n_partitions; i++) { + struct fdisk_partition *q; + uint64_t start; + + q = fdisk_table_get_partition(t, i); + if (!q) + return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m"); + + if (fdisk_partition_is_used(q) <= 0) + continue; + + if (!fdisk_partition_has_start(q)) + continue; + + start = fdisk_partition_get_start(q); + assert(start < UINT64_MAX / 512); + start *= 512; + + if (start >= offset && (next == UINT64_MAX || next > start)) + next = start; + } + + if (next == UINT64_MAX) { + /* No later partition? In that case check the end of the usable area */ + next = fdisk_get_last_lba(c); + assert(next < UINT64_MAX); + next++; /* The last LBA is one sector before the end */ + + assert(next < UINT64_MAX / 512); + next *= 512; + + if (offset > next) + return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end."); + } + + assert(next >= offset); + offset = round_up_size(offset, 4096); + next = round_down_size(next, 4096); + + if (next >= offset) /* Check again, rounding might have fucked things up */ + *ret = next - offset; + else + *ret = 0; + + return 0; +} + +static int fdisk_ask_cb(struct fdisk_context *c, struct fdisk_ask *ask, void *data) { + _cleanup_free_ char *ids = NULL; + int r; + + if (fdisk_ask_get_type(ask) != FDISK_ASKTYPE_STRING) + return -EINVAL; + + ids = new(char, ID128_UUID_STRING_MAX); + if (!ids) + return -ENOMEM; + + r = fdisk_ask_string_set_result(ask, id128_to_uuid_string(*(sd_id128_t*) data, ids)); + if (r < 0) + return r; + + TAKE_PTR(ids); + return 0; +} + +static int fdisk_set_disklabel_id_by_uuid(struct fdisk_context *c, sd_id128_t id) { + int r; + + r = fdisk_set_ask(c, fdisk_ask_cb, &id); + if (r < 0) + return r; + + r = fdisk_set_disklabel_id(c); + if (r < 0) + return r; + + return fdisk_set_ask(c, NULL, NULL); +} + +static int derive_uuid(sd_id128_t base, const char *token, sd_id128_t *ret) { + union { + unsigned char md[SHA256_DIGEST_LENGTH]; + sd_id128_t id; + } result; + + assert(token); + assert(ret); + + /* Derive a new UUID from the specified UUID in a stable and reasonably safe way. Specifically, we + * calculate the HMAC-SHA256 of the specified token string, keyed by the supplied base (typically the + * machine ID). We use the machine ID as key (and not as cleartext!) of the HMAC operation since it's + * the machine ID we don't want to leak. */ + + if (!HMAC(EVP_sha256(), + &base, sizeof(base), + (const unsigned char*) token, strlen(token), + result.md, NULL)) + return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE), "HMAC-SHA256 calculation failed."); + + /* Take the first half, mark it as v4 UUID */ + assert_cc(sizeof(result.md) == sizeof(result.id) * 2); + *ret = id128_make_v4_uuid(result.id); + return 0; +} + +static int context_load_partition_table( + Context *context, + const char *node, + int *backing_fd) { + + _cleanup_(fdisk_unref_contextp) struct fdisk_context *c = NULL; + _cleanup_(fdisk_unref_tablep) struct fdisk_table *t = NULL; + uint64_t left_boundary = UINT64_MAX, first_lba, last_lba, nsectors; + _cleanup_free_ char *disk_uuid_string = NULL; + bool from_scratch = false; + sd_id128_t disk_uuid; + size_t n_partitions; + int r; + + assert(context); + assert(node); + assert(backing_fd); + assert(!context->fdisk_context); + assert(!context->free_areas); + assert(context->start == UINT64_MAX); + assert(context->end == UINT64_MAX); + assert(context->total == UINT64_MAX); + + c = fdisk_new_context(); + if (!c) + return log_oom(); + + /* libfdisk doesn't have an API to operate on arbitrary fds, hence reopen the fd going via the + * /proc/self/fd/ magic path if we have an existing fd. Open the original file otherwise. */ + if (*backing_fd < 0) + r = fdisk_assign_device(c, node, arg_dry_run); + else { + char procfs_path[STRLEN("/proc/self/fd/") + DECIMAL_STR_MAX(int)]; + xsprintf(procfs_path, "/proc/self/fd/%i", *backing_fd); + + r = fdisk_assign_device(c, procfs_path, arg_dry_run); + } + if (r == -EINVAL && arg_size_auto) { + struct stat st; + + /* libfdisk returns EINVAL if opening a file of size zero. Let's check for that, and accept + * it if automatic sizing is requested. */ + + if (*backing_fd < 0) + r = stat(node, &st); + else + r = fstat(*backing_fd, &st); + if (r < 0) + return log_error_errno(errno, "Failed to stat block device '%s': %m", node); + + if (S_ISREG(st.st_mode) && st.st_size == 0) + return /* from_scratch = */ true; + + r = -EINVAL; + } + if (r < 0) + return log_error_errno(r, "Failed to open device '%s': %m", node); + + if (*backing_fd < 0) { + /* If we have no fd referencing the device yet, make a copy of the fd now, so that we have one */ + *backing_fd = fcntl(fdisk_get_devfd(c), F_DUPFD_CLOEXEC, 3); + if (*backing_fd < 0) + return log_error_errno(errno, "Failed to duplicate fdisk fd: %m"); + } + + /* Tell udev not to interfere while we are processing the device */ + if (flock(fdisk_get_devfd(c), arg_dry_run ? LOCK_SH : LOCK_EX) < 0) + return log_error_errno(errno, "Failed to lock block device: %m"); + + switch (arg_empty) { + + case EMPTY_REFUSE: + /* Refuse empty disks, insist on an existing GPT partition table */ + if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT)) + return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has no GPT disk label, not repartitioning.", node); + + break; + + case EMPTY_REQUIRE: + /* Require an empty disk, refuse any existing partition table */ + r = fdisk_has_label(c); + if (r < 0) + return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", node); + if (r > 0) + return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s already has a disk label, refusing.", node); + + from_scratch = true; + break; + + case EMPTY_ALLOW: + /* Allow both an empty disk and an existing partition table, but only GPT */ + r = fdisk_has_label(c); + if (r < 0) + return log_error_errno(r, "Failed to determine whether disk %s has a disk label: %m", node); + if (r > 0) { + if (!fdisk_is_labeltype(c, FDISK_DISKLABEL_GPT)) + return log_notice_errno(SYNTHETIC_ERRNO(EHWPOISON), "Disk %s has non-GPT disk label, not repartitioning.", node); + } else + from_scratch = true; + + break; + + case EMPTY_FORCE: + case EMPTY_CREATE: + /* Always reinitiaize the disk, don't consider what there was on the disk before */ + from_scratch = true; + break; + } + + if (from_scratch) { + r = fdisk_create_disklabel(c, "gpt"); + if (r < 0) + return log_error_errno(r, "Failed to create GPT disk label: %m"); + + r = derive_uuid(context->seed, "disk-uuid", &disk_uuid); + if (r < 0) + return log_error_errno(r, "Failed to acquire disk GPT uuid: %m"); + + r = fdisk_set_disklabel_id_by_uuid(c, disk_uuid); + if (r < 0) + return log_error_errno(r, "Failed to set GPT disk label: %m"); + + goto add_initial_free_area; + } + + r = fdisk_get_disklabel_id(c, &disk_uuid_string); + if (r < 0) + return log_error_errno(r, "Failed to get current GPT disk label UUID: %m"); + + r = sd_id128_from_string(disk_uuid_string, &disk_uuid); + if (r < 0) + return log_error_errno(r, "Failed to parse current GPT disk label UUID: %m"); + + if (sd_id128_is_null(disk_uuid)) { + r = derive_uuid(context->seed, "disk-uuid", &disk_uuid); + if (r < 0) + return log_error_errno(r, "Failed to acquire disk GPT uuid: %m"); + + r = fdisk_set_disklabel_id(c); + if (r < 0) + return log_error_errno(r, "Failed to set GPT disk label: %m"); + } + + r = fdisk_get_partitions(c, &t); + if (r < 0) + return log_error_errno(r, "Failed to acquire partition table: %m"); + + n_partitions = fdisk_table_get_nents(t); + for (size_t i = 0; i < n_partitions; i++) { + _cleanup_free_ char *label_copy = NULL; + Partition *pp, *last = NULL; + struct fdisk_partition *p; + struct fdisk_parttype *pt; + const char *pts, *ids, *label; + uint64_t sz, start; + bool found = false; + sd_id128_t ptid, id; + size_t partno; + + p = fdisk_table_get_partition(t, i); + if (!p) + return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to read partition metadata: %m"); + + if (fdisk_partition_is_used(p) <= 0) + continue; + + if (fdisk_partition_has_start(p) <= 0 || + fdisk_partition_has_size(p) <= 0 || + fdisk_partition_has_partno(p) <= 0) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a position, size or number."); + + pt = fdisk_partition_get_type(p); + if (!pt) + return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to acquire type of partition: %m"); + + pts = fdisk_parttype_get_string(pt); + if (!pts) + return log_error_errno(SYNTHETIC_ERRNO(EIO), "Failed to acquire type of partition as string: %m"); + + r = sd_id128_from_string(pts, &ptid); + if (r < 0) + return log_error_errno(r, "Failed to parse partition type UUID %s: %m", pts); + + ids = fdisk_partition_get_uuid(p); + if (!ids) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Found a partition without a UUID."); + + r = sd_id128_from_string(ids, &id); + if (r < 0) + return log_error_errno(r, "Failed to parse partition UUID %s: %m", ids); + + label = fdisk_partition_get_name(p); + if (!isempty(label)) { + label_copy = strdup(label); + if (!label_copy) + return log_oom(); + } + + sz = fdisk_partition_get_size(p); + assert_se(sz <= UINT64_MAX/512); + sz *= 512; + + start = fdisk_partition_get_start(p); + assert_se(start <= UINT64_MAX/512); + start *= 512; + + partno = fdisk_partition_get_partno(p); + + if (left_boundary == UINT64_MAX || left_boundary > start) + left_boundary = start; + + /* Assign this existing partition to the first partition of the right type that doesn't have + * an existing one assigned yet. */ + LIST_FOREACH(partitions, pp, context->partitions) { + last = pp; + + if (!sd_id128_equal(pp->type_uuid, ptid)) + continue; + + if (!pp->current_partition) { + pp->current_uuid = id; + pp->current_size = sz; + pp->offset = start; + pp->partno = partno; + pp->current_label = TAKE_PTR(label_copy); + + pp->current_partition = p; + fdisk_ref_partition(p); + + r = determine_current_padding(c, t, p, &pp->current_padding); + if (r < 0) + return r; + + if (pp->current_padding > 0) { + r = context_add_free_area(context, pp->current_padding, pp); + if (r < 0) + return r; + } + + found = true; + break; + } + } + + /* If we have no matching definition, create a new one. */ + if (!found) { + _cleanup_(partition_freep) Partition *np = NULL; + + np = partition_new(); + if (!np) + return log_oom(); + + np->current_uuid = id; + np->type_uuid = ptid; + np->current_size = sz; + np->offset = start; + np->partno = partno; + np->current_label = TAKE_PTR(label_copy); + + np->current_partition = p; + fdisk_ref_partition(p); + + r = determine_current_padding(c, t, p, &np->current_padding); + if (r < 0) + return r; + + if (np->current_padding > 0) { + r = context_add_free_area(context, np->current_padding, np); + if (r < 0) + return r; + } + + LIST_INSERT_AFTER(partitions, context->partitions, last, TAKE_PTR(np)); + context->n_partitions++; + } + } + +add_initial_free_area: + nsectors = fdisk_get_nsectors(c); + assert(nsectors <= UINT64_MAX/512); + nsectors *= 512; + + first_lba = fdisk_get_first_lba(c); + assert(first_lba <= UINT64_MAX/512); + first_lba *= 512; + + last_lba = fdisk_get_last_lba(c); + assert(last_lba < UINT64_MAX); + last_lba++; + assert(last_lba <= UINT64_MAX/512); + last_lba *= 512; + + assert(last_lba >= first_lba); + + if (left_boundary == UINT64_MAX) { + /* No partitions at all? Then the whole disk is up for grabs. */ + + first_lba = round_up_size(first_lba, 4096); + last_lba = round_down_size(last_lba, 4096); + + if (last_lba > first_lba) { + r = context_add_free_area(context, last_lba - first_lba, NULL); + if (r < 0) + return r; + } + } else { + /* Add space left of first partition */ + assert(left_boundary >= first_lba); + + first_lba = round_up_size(first_lba, 4096); + left_boundary = round_down_size(left_boundary, 4096); + last_lba = round_down_size(last_lba, 4096); + + if (left_boundary > first_lba) { + r = context_add_free_area(context, left_boundary - first_lba, NULL); + if (r < 0) + return r; + } + } + + context->start = first_lba; + context->end = last_lba; + context->total = nsectors; + context->fdisk_context = TAKE_PTR(c); + + return from_scratch; +} + +static void context_unload_partition_table(Context *context) { + Partition *p, *next; + + assert(context); + + LIST_FOREACH_SAFE(partitions, p, next, context->partitions) { + + /* Entirely remove partitions that have no configuration */ + if (PARTITION_IS_FOREIGN(p)) { + partition_unlink_and_free(context, p); + continue; + } + + /* Otherwise drop all data we read off the block device and everything we might have + * calculated based on it */ + + p->dropped = false; + p->current_size = UINT64_MAX; + p->new_size = UINT64_MAX; + p->current_padding = UINT64_MAX; + p->new_padding = UINT64_MAX; + p->partno = UINT64_MAX; + p->offset = UINT64_MAX; + + if (p->current_partition) { + fdisk_unref_partition(p->current_partition); + p->current_partition = NULL; + } + + if (p->new_partition) { + fdisk_unref_partition(p->new_partition); + p->new_partition = NULL; + } + + p->padding_area = NULL; + p->allocated_to_area = NULL; + + p->current_uuid = SD_ID128_NULL; + p->current_label = mfree(p->current_label); + } + + context->start = UINT64_MAX; + context->end = UINT64_MAX; + context->total = UINT64_MAX; + + if (context->fdisk_context) { + fdisk_unref_context(context->fdisk_context); + context->fdisk_context = NULL; + } + + context_free_free_areas(context); +} + +static int format_size_change(uint64_t from, uint64_t to, char **ret) { + char format_buffer1[FORMAT_BYTES_MAX], format_buffer2[FORMAT_BYTES_MAX], *buf; + + if (from != UINT64_MAX) + format_bytes(format_buffer1, sizeof(format_buffer1), from); + if (to != UINT64_MAX) + format_bytes(format_buffer2, sizeof(format_buffer2), to); + + if (from != UINT64_MAX) { + if (from == to || to == UINT64_MAX) + buf = strdup(format_buffer1); + else + buf = strjoin(format_buffer1, " ", special_glyph(SPECIAL_GLYPH_ARROW), " ", format_buffer2); + } else if (to != UINT64_MAX) + buf = strjoin(special_glyph(SPECIAL_GLYPH_ARROW), " ", format_buffer2); + else { + *ret = NULL; + return 0; + } + + if (!buf) + return log_oom(); + + *ret = TAKE_PTR(buf); + return 1; +} + +static const char *partition_label(const Partition *p) { + assert(p); + + if (p->new_label) + return p->new_label; + + if (p->current_label) + return p->current_label; + + return gpt_partition_type_uuid_to_string(p->type_uuid); +} + +static int context_dump_partitions(Context *context, const char *node) { + _cleanup_(table_unrefp) Table *t = NULL; + uint64_t sum_padding = 0, sum_size = 0; + Partition *p; + int r; + + if (!arg_json && context->n_partitions == 0) { + log_info("Empty partition table."); + return 0; + } + + t = table_new("type", "label", "uuid", "file", "node", "offset", "old size", "raw size", "size", "old padding", "raw padding", "padding", "activity"); + if (!t) + return log_oom(); + + if (!DEBUG_LOGGING) { + if (arg_json) + (void) table_set_display(t, (size_t) 0, (size_t) 1, (size_t) 2, (size_t) 3, (size_t) 4, + (size_t) 5, (size_t) 6, (size_t) 7, (size_t) 9, (size_t) 10, (size_t) 12, (size_t) -1); + else + (void) table_set_display(t, (size_t) 0, (size_t) 1, (size_t) 2, (size_t) 3, (size_t) 4, + (size_t) 8, (size_t) 11, (size_t) -1); + } + + (void) table_set_align_percent(t, table_get_cell(t, 0, 4), 100); + (void) table_set_align_percent(t, table_get_cell(t, 0, 5), 100); + + LIST_FOREACH(partitions, p, context->partitions) { + _cleanup_free_ char *size_change = NULL, *padding_change = NULL, *partname = NULL; + char uuid_buffer[ID128_UUID_STRING_MAX]; + const char *label, *activity = NULL; + + if (p->dropped) + continue; + + if (p->current_size == UINT64_MAX) + activity = "create"; + else if (p->current_size != p->new_size) + activity = "resize"; + + label = partition_label(p); + partname = p->partno != UINT64_MAX ? fdisk_partname(node, p->partno+1) : NULL; + + r = format_size_change(p->current_size, p->new_size, &size_change); + if (r < 0) + return r; + + r = format_size_change(p->current_padding, p->new_padding, &padding_change); + if (r < 0) + return r; + + if (p->new_size != UINT64_MAX) + sum_size += p->new_size; + if (p->new_padding != UINT64_MAX) + sum_padding += p->new_padding; + + r = table_add_many( + t, + TABLE_STRING, gpt_partition_type_uuid_to_string_harder(p->type_uuid, uuid_buffer), + TABLE_STRING, label ?: "-", TABLE_SET_COLOR, label ? NULL : ansi_grey(), + TABLE_UUID, sd_id128_is_null(p->new_uuid) ? p->current_uuid : p->new_uuid, + TABLE_STRING, p->definition_path ? basename(p->definition_path) : "-", TABLE_SET_COLOR, p->definition_path ? NULL : ansi_grey(), + TABLE_STRING, partname ?: "-", TABLE_SET_COLOR, partname ? NULL : ansi_highlight(), + TABLE_UINT64, p->offset, + TABLE_UINT64, p->current_size == UINT64_MAX ? 0 : p->current_size, + TABLE_UINT64, p->new_size, + TABLE_STRING, size_change, TABLE_SET_COLOR, !p->partitions_next && sum_size > 0 ? ansi_underline() : NULL, + TABLE_UINT64, p->current_padding == UINT64_MAX ? 0 : p->current_padding, + TABLE_UINT64, p->new_padding, + TABLE_STRING, padding_change, TABLE_SET_COLOR, !p->partitions_next && sum_padding > 0 ? ansi_underline() : NULL, + TABLE_STRING, activity ?: "unknown"); + if (r < 0) + return table_log_add_error(r); + } + + if (!arg_json && (sum_padding > 0 || sum_size > 0)) { + char s[FORMAT_BYTES_MAX]; + const char *a, *b; + + a = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", format_bytes(s, sizeof(s), sum_size)); + b = strjoina(special_glyph(SPECIAL_GLYPH_SIGMA), " = ", format_bytes(s, sizeof(s), sum_padding)); + + r = table_add_many( + t, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_STRING, a, + TABLE_EMPTY, + TABLE_EMPTY, + TABLE_STRING, b, + TABLE_EMPTY); + if (r < 0) + return table_log_add_error(r); + } + + if (arg_json) + r = table_print_json(t, stdout, arg_json_format_flags); + else + r = table_print(t, stdout); + if (r < 0) + return log_error_errno(r, "Failed to dump table: %m"); + + return 0; +} + +static void context_bar_char_process_partition( + Context *context, + Partition *bar[], + size_t n, + Partition *p, + size_t *ret_start) { + + uint64_t from, to, total; + size_t x, y; + + assert(context); + assert(bar); + assert(n > 0); + assert(p); + + if (p->dropped) + return; + + assert(p->offset != UINT64_MAX); + assert(p->new_size != UINT64_MAX); + + from = p->offset; + to = from + p->new_size; + + assert(context->end >= context->start); + total = context->end - context->start; + + assert(from >= context->start); + assert(from <= context->end); + x = (from - context->start) * n / total; + + assert(to >= context->start); + assert(to <= context->end); + y = (to - context->start) * n / total; + + assert(x <= y); + assert(y <= n); + + for (size_t i = x; i < y; i++) + bar[i] = p; + + *ret_start = x; +} + +static int partition_hint(const Partition *p, const char *node, char **ret) { + _cleanup_free_ char *buf = NULL; + char ids[ID128_UUID_STRING_MAX]; + const char *label; + sd_id128_t id; + + /* Tries really hard to find a suitable description for this partition */ + + if (p->definition_path) { + buf = strdup(basename(p->definition_path)); + goto done; + } + + label = partition_label(p); + if (!isempty(label)) { + buf = strdup(label); + goto done; + } + + if (p->partno != UINT64_MAX) { + buf = fdisk_partname(node, p->partno+1); + goto done; + } + + if (!sd_id128_is_null(p->new_uuid)) + id = p->new_uuid; + else if (!sd_id128_is_null(p->current_uuid)) + id = p->current_uuid; + else + id = p->type_uuid; + + buf = strdup(id128_to_uuid_string(id, ids)); + +done: + if (!buf) + return -ENOMEM; + + *ret = TAKE_PTR(buf); + return 0; +} + +static int context_dump_partition_bar(Context *context, const char *node) { + _cleanup_free_ Partition **bar = NULL; + _cleanup_free_ size_t *start_array = NULL; + Partition *p, *last = NULL; + bool z = false; + size_t c, j = 0; + + assert_se((c = columns()) >= 2); + c -= 2; /* We do not use the leftmost and rightmost character cell */ + + bar = new0(Partition*, c); + if (!bar) + return log_oom(); + + start_array = new(size_t, context->n_partitions); + if (!start_array) + return log_oom(); + + LIST_FOREACH(partitions, p, context->partitions) + context_bar_char_process_partition(context, bar, c, p, start_array + j++); + + putc(' ', stdout); + + for (size_t i = 0; i < c; i++) { + if (bar[i]) { + if (last != bar[i]) + z = !z; + + fputs(z ? ansi_green() : ansi_yellow(), stdout); + fputs(special_glyph(SPECIAL_GLYPH_DARK_SHADE), stdout); + } else { + fputs(ansi_normal(), stdout); + fputs(special_glyph(SPECIAL_GLYPH_LIGHT_SHADE), stdout); + } + + last = bar[i]; + } + + fputs(ansi_normal(), stdout); + putc('\n', stdout); + + for (size_t i = 0; i < context->n_partitions; i++) { + _cleanup_free_ char **line = NULL; + + line = new0(char*, c); + if (!line) + return log_oom(); + + j = 0; + LIST_FOREACH(partitions, p, context->partitions) { + _cleanup_free_ char *d = NULL; + j++; + + if (i < context->n_partitions - j) { + + if (line[start_array[j-1]]) { + const char *e; + + /* Upgrade final corner to the right with a branch to the right */ + e = startswith(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_RIGHT)); + if (e) { + d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), e); + if (!d) + return log_oom(); + } + } + + if (!d) { + d = strdup(special_glyph(SPECIAL_GLYPH_TREE_VERTICAL)); + if (!d) + return log_oom(); + } + + } else if (i == context->n_partitions - j) { + _cleanup_free_ char *hint = NULL; + + (void) partition_hint(p, node, &hint); + + if (streq_ptr(line[start_array[j-1]], special_glyph(SPECIAL_GLYPH_TREE_VERTICAL))) + d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_BRANCH), " ", strna(hint)); + else + d = strjoin(special_glyph(SPECIAL_GLYPH_TREE_RIGHT), " ", strna(hint)); + + if (!d) + return log_oom(); + } + + if (d) + free_and_replace(line[start_array[j-1]], d); + } + + putc(' ', stdout); + + j = 0; + while (j < c) { + if (line[j]) { + fputs(line[j], stdout); + j += utf8_console_width(line[j]); + } else { + putc(' ', stdout); + j++; + } + } + + putc('\n', stdout); + + for (j = 0; j < c; j++) + free(line[j]); + } + + return 0; +} + +static bool context_changed(const Context *context) { + Partition *p; + + LIST_FOREACH(partitions, p, context->partitions) { + if (p->dropped) + continue; + + if (p->allocated_to_area) + return true; + + if (p->new_size != p->current_size) + return true; + } + + return false; +} + +static int context_wipe_range(Context *context, uint64_t offset, uint64_t size) { + _cleanup_(blkid_free_probep) blkid_probe probe = NULL; + int r; + + assert(context); + assert(offset != UINT64_MAX); + assert(size != UINT64_MAX); + + probe = blkid_new_probe(); + if (!probe) + return log_oom(); + + errno = 0; + r = blkid_probe_set_device(probe, fdisk_get_devfd(context->fdisk_context), offset, size); + if (r < 0) + return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to allocate device probe for wiping."); + + errno = 0; + if (blkid_probe_enable_superblocks(probe, true) < 0 || + blkid_probe_set_superblocks_flags(probe, BLKID_SUBLKS_MAGIC|BLKID_SUBLKS_BADCSUM) < 0 || + blkid_probe_enable_partitions(probe, true) < 0 || + blkid_probe_set_partitions_flags(probe, BLKID_PARTS_MAGIC) < 0) + return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to enable superblock and partition probing."); + + for (;;) { + errno = 0; + r = blkid_do_probe(probe); + if (r < 0) + return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to probe for file systems."); + if (r > 0) + break; + + errno = 0; + if (blkid_do_wipe(probe, false) < 0) + return log_error_errno(errno ?: SYNTHETIC_ERRNO(EIO), "Failed to wipe file system signature."); + } + + return 0; +} + +static int context_wipe_partition(Context *context, Partition *p) { + int r; + + assert(context); + assert(p); + assert(!PARTITION_EXISTS(p)); /* Safety check: never wipe existing partitions */ + + assert(p->offset != UINT64_MAX); + assert(p->new_size != UINT64_MAX); + + r = context_wipe_range(context, p->offset, p->new_size); + if (r < 0) + return r; + + log_info("Successfully wiped file system signatures from future partition %" PRIu64 ".", p->partno); + return 0; +} + +static int context_discard_range( + Context *context, + uint64_t offset, + uint64_t size) { + + struct stat st; + int fd; + + assert(context); + assert(offset != UINT64_MAX); + assert(size != UINT64_MAX); + + if (size <= 0) + return 0; + + assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0); + + if (fstat(fd, &st) < 0) + return -errno; + + if (S_ISREG(st.st_mode)) { + if (fallocate(fd, FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE, offset, size) < 0) { + if (ERRNO_IS_NOT_SUPPORTED(errno)) + return -EOPNOTSUPP; + + return -errno; + } + + return 1; + } + + if (S_ISBLK(st.st_mode)) { + uint64_t range[2], end; + + range[0] = round_up_size(offset, 512); + + end = offset + size; + if (end <= range[0]) + return 0; + + range[1] = round_down_size(end - range[0], 512); + if (range[1] <= 0) + return 0; + + if (ioctl(fd, BLKDISCARD, range) < 0) { + if (ERRNO_IS_NOT_SUPPORTED(errno)) + return -EOPNOTSUPP; + + return -errno; + } + + return 1; + } + + return -EOPNOTSUPP; +} + +static int context_discard_partition(Context *context, Partition *p) { + int r; + + assert(context); + assert(p); + + assert(p->offset != UINT64_MAX); + assert(p->new_size != UINT64_MAX); + assert(!PARTITION_EXISTS(p)); /* Safety check: never discard existing partitions */ + + if (!arg_discard) + return 0; + + r = context_discard_range(context, p->offset, p->new_size); + if (r == -EOPNOTSUPP) { + log_info("Storage does not support discard, not discarding data in future partition %" PRIu64 ".", p->partno); + return 0; + } + if (r == 0) { + log_info("Partition %" PRIu64 " too short for discard, skipping.", p->partno); + return 0; + } + if (r < 0) + return log_error_errno(r, "Failed to discard data for future partition %" PRIu64 ".", p->partno); + + log_info("Successfully discarded data from future partition %" PRIu64 ".", p->partno); + return 1; +} + +static int context_discard_gap_after(Context *context, Partition *p) { + uint64_t gap, next = UINT64_MAX; + Partition *q; + int r; + + assert(context); + assert(!p || (p->offset != UINT64_MAX && p->new_size != UINT64_MAX)); + + if (p) + gap = p->offset + p->new_size; + else + gap = context->start; + + LIST_FOREACH(partitions, q, context->partitions) { + if (q->dropped) + continue; + + assert(q->offset != UINT64_MAX); + assert(q->new_size != UINT64_MAX); + + if (q->offset < gap) + continue; + + if (next == UINT64_MAX || q->offset < next) + next = q->offset; + } + + if (next == UINT64_MAX) { + next = context->end; + if (gap > next) + return log_error_errno(SYNTHETIC_ERRNO(EIO), "Partition end beyond disk end."); + } + + assert(next >= gap); + r = context_discard_range(context, gap, next - gap); + if (r == -EOPNOTSUPP) { + if (p) + log_info("Storage does not support discard, not discarding gap after partition %" PRIu64 ".", p->partno); + else + log_info("Storage does not support discard, not discarding gap at beginning of disk."); + return 0; + } + if (r == 0) /* Too short */ + return 0; + if (r < 0) { + if (p) + return log_error_errno(r, "Failed to discard gap after partition %" PRIu64 ".", p->partno); + else + return log_error_errno(r, "Failed to discard gap at beginning of disk."); + } + + if (p) + log_info("Successfully discarded gap after partition %" PRIu64 ".", p->partno); + else + log_info("Successfully discarded gap at beginning of disk."); + + return 0; +} + +static int context_wipe_and_discard(Context *context, bool from_scratch) { + Partition *p; + int r; + + assert(context); + + /* Wipe and discard the contents of all partitions we are about to create. We skip the discarding if + * we were supposed to start from scratch anyway, as in that case we just discard the whole block + * device in one go early on. */ + + LIST_FOREACH(partitions, p, context->partitions) { + + if (!p->allocated_to_area) + continue; + + r = context_wipe_partition(context, p); + if (r < 0) + return r; + + if (!from_scratch) { + r = context_discard_partition(context, p); + if (r < 0) + return r; + + r = context_discard_gap_after(context, p); + if (r < 0) + return r; + } + } + + if (!from_scratch) { + r = context_discard_gap_after(context, NULL); + if (r < 0) + return r; + } + + return 0; +} + +static int partition_encrypt( + Partition *p, + const char *node, + struct crypt_device **ret_cd, + char **ret_volume, + int *ret_fd) { +#if HAVE_LIBCRYPTSETUP + _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL; + _cleanup_(erase_and_freep) void *volume_key = NULL; + _cleanup_free_ char *dm_name = NULL, *vol = NULL; + char suuid[ID128_UUID_STRING_MAX]; + size_t volume_key_size = 256 / 8; + sd_id128_t uuid; + int r; + + assert(p); + assert(p->encrypt); + + r = dlopen_cryptsetup(); + if (r < 0) + return log_error_errno(r, "libcryptsetup not found, cannot encrypt: %m"); + + if (asprintf(&dm_name, "luks-repart-%08" PRIx64, random_u64()) < 0) + return log_oom(); + + if (ret_volume) { + vol = path_join("/dev/mapper/", dm_name); + if (!vol) + return log_oom(); + } + + r = derive_uuid(p->new_uuid, "luks-uuid", &uuid); + if (r < 0) + return r; + + log_info("Encrypting future partition %" PRIu64 "...", p->partno); + + volume_key = malloc(volume_key_size); + if (!volume_key) + return log_oom(); + + r = genuine_random_bytes(volume_key, volume_key_size, RANDOM_BLOCK); + if (r < 0) + return log_error_errno(r, "Failed to generate volume key: %m"); + + r = sym_crypt_init(&cd, node); + if (r < 0) + return log_error_errno(r, "Failed to allocate libcryptsetup context: %m"); + + cryptsetup_enable_logging(cd); + + r = sym_crypt_format(cd, + CRYPT_LUKS2, + "aes", + "xts-plain64", + id128_to_uuid_string(uuid, suuid), + volume_key, + volume_key_size, + &(struct crypt_params_luks2) { + .label = p->new_label, + .sector_size = 512U, + }); + if (r < 0) + return log_error_errno(r, "Failed to LUKS2 format future partition: %m"); + + r = sym_crypt_keyslot_add_by_volume_key( + cd, + CRYPT_ANY_SLOT, + volume_key, + volume_key_size, + strempty(arg_key), + arg_key_size); + if (r < 0) + return log_error_errno(r, "Failed to add LUKS2 key: %m"); + + r = sym_crypt_activate_by_volume_key( + cd, + dm_name, + volume_key, + volume_key_size, + arg_discard ? CRYPT_ACTIVATE_ALLOW_DISCARDS : 0); + if (r < 0) + return log_error_errno(r, "Failed to activate LUKS superblock: %m"); + + log_info("Successfully encrypted future partition %" PRIu64 ".", p->partno); + + if (ret_fd) { + _cleanup_close_ int dev_fd = -1; + + dev_fd = open(vol, O_RDWR|O_CLOEXEC|O_NOCTTY); + if (dev_fd < 0) + return log_error_errno(errno, "Failed to open LUKS volume '%s': %m", vol); + + *ret_fd = TAKE_FD(dev_fd); + } + + if (ret_cd) + *ret_cd = TAKE_PTR(cd); + if (ret_volume) + *ret_volume = TAKE_PTR(vol); + + return 0; +#else + return log_error_errno(SYNTHETIC_ERRNO(EOPNOTSUPP), "libcryptsetup is not supported, cannot encrypt: %m"); +#endif +} + +static int deactivate_luks(struct crypt_device *cd, const char *node) { +#if HAVE_LIBCRYPTSETUP + int r; + + if (!cd) + return 0; + + assert(node); + + /* udev or so might access out block device in the background while we are done. Let's hence force + * detach the volume. We sync'ed before, hence this should be safe. */ + + r = sym_crypt_deactivate_by_name(cd, basename(node), CRYPT_DEACTIVATE_FORCE); + if (r < 0) + return log_error_errno(r, "Failed to deactivate LUKS device: %m"); + + return 1; +#else + return 0; +#endif +} + +static int context_copy_blocks(Context *context) { + Partition *p; + int whole_fd = -1, r; + + assert(context); + + /* Copy in file systems on the block level */ + + LIST_FOREACH(partitions, p, context->partitions) { + _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL; + _cleanup_(loop_device_unrefp) LoopDevice *d = NULL; + _cleanup_free_ char *encrypted = NULL; + _cleanup_close_ int encrypted_dev_fd = -1; + char buf[FORMAT_BYTES_MAX]; + int target_fd; + + if (p->copy_blocks_fd < 0) + continue; + + if (p->dropped) + continue; + + if (PARTITION_EXISTS(p)) /* Never copy over existing partitions */ + continue; + + assert(p->new_size != UINT64_MAX); + assert(p->copy_blocks_size != UINT64_MAX); + assert(p->new_size >= p->copy_blocks_size); + + if (whole_fd < 0) + assert_se((whole_fd = fdisk_get_devfd(context->fdisk_context)) >= 0); + + if (p->encrypt) { + r = loop_device_make(whole_fd, O_RDWR, p->offset, p->new_size, 0, &d); + if (r < 0) + return log_error_errno(r, "Failed to make loopback device of future partition %" PRIu64 ": %m", p->partno); + + r = loop_device_flock(d, LOCK_EX); + if (r < 0) + return log_error_errno(r, "Failed to lock loopback device: %m"); + + r = partition_encrypt(p, d->node, &cd, &encrypted, &encrypted_dev_fd); + if (r < 0) + return log_error_errno(r, "Failed to encrypt device: %m"); + + if (flock(encrypted_dev_fd, LOCK_EX) < 0) + return log_error_errno(errno, "Failed to lock LUKS device: %m"); + + target_fd = encrypted_dev_fd; + } else { + if (lseek(whole_fd, p->offset, SEEK_SET) == (off_t) -1) + return log_error_errno(errno, "Failed to seek to partition offset: %m"); + + target_fd = whole_fd; + } + + log_info("Copying in '%s' (%s) on block level into future partition %" PRIu64 ".", p->copy_blocks_path, format_bytes(buf, sizeof(buf), p->copy_blocks_size), p->partno); + + r = copy_bytes_full(p->copy_blocks_fd, target_fd, p->copy_blocks_size, 0, NULL, NULL, NULL, NULL); + if (r < 0) + return log_error_errno(r, "Failed to copy in data from '%s': %m", p->copy_blocks_path); + + if (fsync(target_fd) < 0) + return log_error_errno(r, "Failed to synchronize copied data blocks: %m"); + + if (p->encrypt) { + encrypted_dev_fd = safe_close(encrypted_dev_fd); + + r = deactivate_luks(cd, encrypted); + if (r < 0) + return r; + + sym_crypt_free(cd); + cd = NULL; + + r = loop_device_sync(d); + if (r < 0) + return log_error_errno(r, "Failed to sync loopback device: %m"); + } + + log_info("Copying in of '%s' on block level completed.", p->copy_blocks_path); + } + + return 0; +} + +static int do_copy_files(Partition *p, const char *fs) { + char **source, **target; + int r; + + assert(p); + assert(fs); + + STRV_FOREACH_PAIR(source, target, p->copy_files) { + _cleanup_close_ int sfd = -1, pfd = -1, tfd = -1; + _cleanup_free_ char *dn = NULL; + + dn = dirname_malloc(*target); + if (!dn) + return log_oom(); + + sfd = chase_symlinks_and_open(*source, arg_root, CHASE_PREFIX_ROOT|CHASE_WARN, O_CLOEXEC|O_NOCTTY, NULL); + if (sfd < 0) + return log_error_errno(sfd, "Failed to open source file '%s%s': %m", strempty(arg_root), *source); + + r = fd_verify_regular(sfd); + if (r < 0) { + if (r != -EISDIR) + return log_error_errno(r, "Failed to check type of source file '%s': %m", *source); + + /* We are looking at a directory */ + tfd = chase_symlinks_and_open(*target, fs, CHASE_PREFIX_ROOT|CHASE_WARN, O_RDONLY|O_DIRECTORY|O_CLOEXEC, NULL); + if (tfd < 0) { + if (tfd != -ENOENT) + return log_error_errno(tfd, "Failed to open target directory '%s': %m", *target); + + r = mkdir_p_root(fs, dn, UID_INVALID, GID_INVALID, 0755); + if (r < 0) + return log_error_errno(r, "Failed to create parent directory '%s': %m", dn); + + pfd = chase_symlinks_and_open(dn, fs, CHASE_PREFIX_ROOT|CHASE_WARN, O_RDONLY|O_DIRECTORY|O_CLOEXEC, NULL); + if (pfd < 0) + return log_error_errno(pfd, "Failed to open parent directory of target: %m"); + + r = copy_tree_at( + sfd, ".", + pfd, basename(*target), + UID_INVALID, GID_INVALID, + COPY_REFLINK|COPY_MERGE|COPY_REPLACE|COPY_SIGINT|COPY_HARDLINKS); + } else + r = copy_tree_at( + sfd, ".", + tfd, ".", + UID_INVALID, GID_INVALID, + COPY_REFLINK|COPY_MERGE|COPY_REPLACE|COPY_SIGINT|COPY_HARDLINKS); + if (r < 0) + return log_error_errno(r, "Failed to copy %s%s to %s: %m", strempty(arg_root), *source, *target); + } else { + /* We are looking at a regular file */ + + r = mkdir_p_root(fs, dn, UID_INVALID, GID_INVALID, 0755); + if (r < 0) + return log_error_errno(r, "Failed to create parent directory: %m"); + + pfd = chase_symlinks_and_open(dn, fs, CHASE_PREFIX_ROOT|CHASE_WARN, O_RDONLY|O_DIRECTORY|O_CLOEXEC, NULL); + if (pfd < 0) + return log_error_errno(tfd, "Failed to open parent directory of target: %m"); + + tfd = openat(pfd, basename(*target), O_CREAT|O_EXCL|O_WRONLY|O_CLOEXEC, 0700); + if (tfd < 0) + return log_error_errno(errno, "Failed to create target file '%s': %m", *target); + + r = copy_bytes(sfd, tfd, UINT64_MAX, COPY_REFLINK|COPY_SIGINT); + if (r < 0) + return log_error_errno(r, "Failed to copy '%s%s' to '%s': %m", strempty(arg_root), *source, *target); + + (void) copy_xattr(sfd, tfd); + (void) copy_access(sfd, tfd); + (void) copy_times(sfd, tfd, 0); + } + } + + return 0; +} + +static int partition_copy_files(Partition *p, const char *node) { + int r; + + assert(p); + assert(node); + + if (strv_isempty(p->copy_files)) + return 0; + + log_info("Populating partition %" PRIu64 " with files.", p->partno); + + /* We copy in a child process, since we have to mount the fs for that, and we don't want that fs to + * appear in the host namespace. Hence we fork a child that has its own file system namespace and + * detached mount propagation. */ + + r = safe_fork("(sd-copy)", FORK_DEATHSIG|FORK_LOG|FORK_WAIT|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE, NULL); + if (r < 0) + return r; + if (r == 0) { + static const char fs[] = "/run/systemd/mount-root"; + /* This is a child process with its own mount namespace and propagation to host turned off */ + + r = mkdir_p(fs, 0700); + if (r < 0) { + log_error_errno(r, "Failed to create mount point: %m"); + _exit(EXIT_FAILURE); + } + + if (mount_nofollow_verbose(LOG_ERR, node, fs, p->format, MS_NOATIME|MS_NODEV|MS_NOEXEC|MS_NOSUID, NULL) < 0) + _exit(EXIT_FAILURE); + + if (do_copy_files(p, fs) < 0) + _exit(EXIT_FAILURE); + + r = syncfs_path(AT_FDCWD, fs); + if (r < 0) { + log_error_errno(r, "Failed to synchronize written files: %m"); + _exit(EXIT_FAILURE); + } + + _exit(EXIT_SUCCESS); + } + + log_info("Successfully populated partition %" PRIu64 " with files.", p->partno); + return 0; +} + +static int context_mkfs(Context *context) { + Partition *p; + int fd = -1, r; + + assert(context); + + /* Make a file system */ + + LIST_FOREACH(partitions, p, context->partitions) { + _cleanup_(sym_crypt_freep) struct crypt_device *cd = NULL; + _cleanup_(loop_device_unrefp) LoopDevice *d = NULL; + _cleanup_free_ char *encrypted = NULL; + _cleanup_close_ int encrypted_dev_fd = -1; + const char *fsdev; + sd_id128_t fs_uuid; + + if (p->dropped) + continue; + + if (PARTITION_EXISTS(p)) /* Never format existing partitions */ + continue; + + if (!p->format) + continue; + + assert(p->offset != UINT64_MAX); + assert(p->new_size != UINT64_MAX); + + if (fd < 0) + assert_se((fd = fdisk_get_devfd(context->fdisk_context)) >= 0); + + /* Loopback block devices are not only useful to turn regular files into block devices, but + * also to cut out sections of block devices into new block devices. */ + + r = loop_device_make(fd, O_RDWR, p->offset, p->new_size, 0, &d); + if (r < 0) + return log_error_errno(r, "Failed to make loopback device of future partition %" PRIu64 ": %m", p->partno); + + r = loop_device_flock(d, LOCK_EX); + if (r < 0) + return log_error_errno(r, "Failed to lock loopback device: %m"); + + if (p->encrypt) { + r = partition_encrypt(p, d->node, &cd, &encrypted, &encrypted_dev_fd); + if (r < 0) + return log_error_errno(r, "Failed to encrypt device: %m"); + + if (flock(encrypted_dev_fd, LOCK_EX) < 0) + return log_error_errno(errno, "Failed to lock LUKS device: %m"); + + fsdev = encrypted; + } else + fsdev = d->node; + + log_info("Formatting future partition %" PRIu64 ".", p->partno); + + /* Calculate the UUID for the file system as HMAC-SHA256 of the string "file-system-uuid", + * keyed off the partition UUID. */ + r = derive_uuid(p->new_uuid, "file-system-uuid", &fs_uuid); + if (r < 0) + return r; + + r = make_filesystem(fsdev, p->format, p->new_label, fs_uuid, arg_discard); + if (r < 0) { + encrypted_dev_fd = safe_close(encrypted_dev_fd); + (void) deactivate_luks(cd, encrypted); + return r; + } + + log_info("Successfully formatted future partition %" PRIu64 ".", p->partno); + + /* The file system is now created, no need to delay udev further */ + if (p->encrypt) + if (flock(encrypted_dev_fd, LOCK_UN) < 0) + return log_error_errno(errno, "Failed to unlock LUKS device: %m"); + + r = partition_copy_files(p, fsdev); + if (r < 0) { + encrypted_dev_fd = safe_close(encrypted_dev_fd); + (void) deactivate_luks(cd, encrypted); + return r; + } + + /* Note that we always sync explicitly here, since mkfs.fat doesn't do that on its own, and + * if we don't sync before detaching a block device the in-flight sectors possibly won't hit + * the disk. */ + + if (p->encrypt) { + if (fsync(encrypted_dev_fd) < 0) + return log_error_errno(r, "Failed to synchronize LUKS volume: %m"); + encrypted_dev_fd = safe_close(encrypted_dev_fd); + + r = deactivate_luks(cd, encrypted); + if (r < 0) + return r; + + sym_crypt_free(cd); + cd = NULL; + } + + r = loop_device_sync(d); + if (r < 0) + return log_error_errno(r, "Failed to sync loopback device: %m"); + } + + return 0; +} + +static int partition_acquire_uuid(Context *context, Partition *p, sd_id128_t *ret) { + struct { + sd_id128_t type_uuid; + uint64_t counter; + } _packed_ plaintext = {}; + union { + unsigned char md[SHA256_DIGEST_LENGTH]; + sd_id128_t id; + } result; + + uint64_t k = 0; + Partition *q; + int r; + + assert(context); + assert(p); + assert(ret); + + /* Calculate a good UUID for the indicated partition. We want a certain degree of reproducibility, + * hence we won't generate the UUIDs randomly. Instead we use a cryptographic hash (precisely: + * HMAC-SHA256) to derive them from a single seed. The seed is generally the machine ID of the + * installation we are processing, but if random behaviour is desired can be random, too. We use the + * seed value as key for the HMAC (since the machine ID is something we generally don't want to leak) + * and the partition type as plaintext. The partition type is suffixed with a counter (only for the + * second and later partition of the same type) if we have more than one partition of the same + * time. Or in other words: + * + * With: + * SEED := /etc/machine-id + * + * If first partition instance of type TYPE_UUID: + * PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID) + * + * For all later partition instances of type TYPE_UUID with INSTANCE being the LE64 encoded instance number: + * PARTITION_UUID := HMAC-SHA256(SEED, TYPE_UUID || INSTANCE) + */ + + LIST_FOREACH(partitions, q, context->partitions) { + if (p == q) + break; + + if (!sd_id128_equal(p->type_uuid, q->type_uuid)) + continue; + + k++; + } + + plaintext.type_uuid = p->type_uuid; + plaintext.counter = htole64(k); + + if (!HMAC(EVP_sha256(), + &context->seed, sizeof(context->seed), + (const unsigned char*) &plaintext, k == 0 ? sizeof(sd_id128_t) : sizeof(plaintext), + result.md, NULL)) + return log_error_errno(SYNTHETIC_ERRNO(ENOTRECOVERABLE), "SHA256 calculation failed."); + + /* Take the first half, mark it as v4 UUID */ + assert_cc(sizeof(result.md) == sizeof(result.id) * 2); + result.id = id128_make_v4_uuid(result.id); + + /* Ensure this partition UUID is actually unique, and there's no remaining partition from an earlier run? */ + LIST_FOREACH(partitions, q, context->partitions) { + if (p == q) + continue; + + if (sd_id128_equal(q->current_uuid, result.id) || + sd_id128_equal(q->new_uuid, result.id)) { + log_warning("Partition UUID calculated from seed for partition %" PRIu64 " exists already, reverting to randomized UUID.", p->partno); + + r = sd_id128_randomize(&result.id); + if (r < 0) + return log_error_errno(r, "Failed to generate randomized UUID: %m"); + + break; + } + } + + *ret = result.id; + return 0; +} + +static int partition_acquire_label(Context *context, Partition *p, char **ret) { + _cleanup_free_ char *label = NULL; + const char *prefix; + unsigned k = 1; + + assert(context); + assert(p); + assert(ret); + + prefix = gpt_partition_type_uuid_to_string(p->type_uuid); + if (!prefix) + prefix = "linux"; + + for (;;) { + const char *ll = label ?: prefix; + bool retry = false; + Partition *q; + + LIST_FOREACH(partitions, q, context->partitions) { + if (p == q) + break; + + if (streq_ptr(ll, q->current_label) || + streq_ptr(ll, q->new_label)) { + retry = true; + break; + } + } + + if (!retry) + break; + + label = mfree(label); + + + if (asprintf(&label, "%s-%u", prefix, ++k) < 0) + return log_oom(); + } + + if (!label) { + label = strdup(prefix); + if (!label) + return log_oom(); + } + + *ret = TAKE_PTR(label); + return 0; +} + +static int context_acquire_partition_uuids_and_labels(Context *context) { + Partition *p; + int r; + + assert(context); + + LIST_FOREACH(partitions, p, context->partitions) { + /* Never touch foreign partitions */ + if (PARTITION_IS_FOREIGN(p)) { + p->new_uuid = p->current_uuid; + + if (p->current_label) { + free(p->new_label); + p->new_label = strdup(p->current_label); + if (!p->new_label) + return log_oom(); + } + + continue; + } + + if (!sd_id128_is_null(p->current_uuid)) + p->new_uuid = p->current_uuid; /* Never change initialized UUIDs */ + else if (sd_id128_is_null(p->new_uuid)) { + /* Not explicitly set by user! */ + r = partition_acquire_uuid(context, p, &p->new_uuid); + if (r < 0) + return r; + } + + if (!isempty(p->current_label)) { + free(p->new_label); + p->new_label = strdup(p->current_label); /* never change initialized labels */ + if (!p->new_label) + return log_oom(); + } else if (!p->new_label) { + /* Not explicitly set by user! */ + + r = partition_acquire_label(context, p, &p->new_label); + if (r < 0) + return r; + } + } + + return 0; +} + +static int context_mangle_partitions(Context *context) { + Partition *p; + int r; + + assert(context); + + LIST_FOREACH(partitions, p, context->partitions) { + if (p->dropped) + continue; + + assert(p->new_size != UINT64_MAX); + assert(p->offset != UINT64_MAX); + assert(p->partno != UINT64_MAX); + + if (PARTITION_EXISTS(p)) { + bool changed = false; + + assert(p->current_partition); + + if (p->new_size != p->current_size) { + assert(p->new_size >= p->current_size); + assert(p->new_size % 512 == 0); + + r = fdisk_partition_size_explicit(p->current_partition, true); + if (r < 0) + return log_error_errno(r, "Failed to enable explicit sizing: %m"); + + r = fdisk_partition_set_size(p->current_partition, p->new_size / 512); + if (r < 0) + return log_error_errno(r, "Failed to grow partition: %m"); + + log_info("Growing existing partition %" PRIu64 ".", p->partno); + changed = true; + } + + if (!sd_id128_equal(p->new_uuid, p->current_uuid)) { + char buf[ID128_UUID_STRING_MAX]; + + assert(!sd_id128_is_null(p->new_uuid)); + + r = fdisk_partition_set_uuid(p->current_partition, id128_to_uuid_string(p->new_uuid, buf)); + if (r < 0) + return log_error_errno(r, "Failed to set partition UUID: %m"); + + log_info("Initializing UUID of existing partition %" PRIu64 ".", p->partno); + changed = true; + } + + if (!streq_ptr(p->new_label, p->current_label)) { + assert(!isempty(p->new_label)); + + r = fdisk_partition_set_name(p->current_partition, p->new_label); + if (r < 0) + return log_error_errno(r, "Failed to set partition label: %m"); + + log_info("Setting partition label of existing partition %" PRIu64 ".", p->partno); + changed = true; + } + + if (changed) { + assert(!PARTITION_IS_FOREIGN(p)); /* never touch foreign partitions */ + + r = fdisk_set_partition(context->fdisk_context, p->partno, p->current_partition); + if (r < 0) + return log_error_errno(r, "Failed to update partition: %m"); + } + } else { + _cleanup_(fdisk_unref_partitionp) struct fdisk_partition *q = NULL; + _cleanup_(fdisk_unref_parttypep) struct fdisk_parttype *t = NULL; + char ids[ID128_UUID_STRING_MAX]; + + assert(!p->new_partition); + assert(p->offset % 512 == 0); + assert(p->new_size % 512 == 0); + assert(!sd_id128_is_null(p->new_uuid)); + assert(!isempty(p->new_label)); + + t = fdisk_new_parttype(); + if (!t) + return log_oom(); + + r = fdisk_parttype_set_typestr(t, id128_to_uuid_string(p->type_uuid, ids)); + if (r < 0) + return log_error_errno(r, "Failed to initialize partition type: %m"); + + q = fdisk_new_partition(); + if (!q) + return log_oom(); + + r = fdisk_partition_set_type(q, t); + if (r < 0) + return log_error_errno(r, "Failed to set partition type: %m"); + + r = fdisk_partition_size_explicit(q, true); + if (r < 0) + return log_error_errno(r, "Failed to enable explicit sizing: %m"); + + r = fdisk_partition_set_start(q, p->offset / 512); + if (r < 0) + return log_error_errno(r, "Failed to position partition: %m"); + + r = fdisk_partition_set_size(q, p->new_size / 512); + if (r < 0) + return log_error_errno(r, "Failed to grow partition: %m"); + + r = fdisk_partition_set_partno(q, p->partno); + if (r < 0) + return log_error_errno(r, "Failed to set partition number: %m"); + + r = fdisk_partition_set_uuid(q, id128_to_uuid_string(p->new_uuid, ids)); + if (r < 0) + return log_error_errno(r, "Failed to set partition UUID: %m"); + + r = fdisk_partition_set_name(q, p->new_label); + if (r < 0) + return log_error_errno(r, "Failed to set partition label: %m"); + + log_info("Adding new partition %" PRIu64 " to partition table.", p->partno); + + r = fdisk_add_partition(context->fdisk_context, q, NULL); + if (r < 0) + return log_error_errno(r, "Failed to add partition: %m"); + + assert(!p->new_partition); + p->new_partition = TAKE_PTR(q); + } + } + + return 0; +} + +static int context_write_partition_table( + Context *context, + const char *node, + bool from_scratch) { + + _cleanup_(fdisk_unref_tablep) struct fdisk_table *original_table = NULL; + int capable, r; + + assert(context); + + if (arg_pretty > 0 || + (arg_pretty < 0 && isatty(STDOUT_FILENO) > 0) || + arg_json) { + + (void) context_dump_partitions(context, node); + + putc('\n', stdout); + + if (!arg_json) + (void) context_dump_partition_bar(context, node); + putc('\n', stdout); + fflush(stdout); + } + + if (!from_scratch && !context_changed(context)) { + log_info("No changes."); + return 0; + } + + if (arg_dry_run) { + log_notice("Refusing to repartition, please re-run with --dry-run=no."); + return 0; + } + + log_info("Applying changes."); + + if (from_scratch) { + r = context_wipe_range(context, 0, context->total); + if (r < 0) + return r; + + log_info("Wiped block device."); + + r = context_discard_range(context, 0, context->total); + if (r == -EOPNOTSUPP) + log_info("Storage does not support discard, not discarding entire block device data."); + else if (r < 0) + return log_error_errno(r, "Failed to discard entire block device: %m"); + else if (r > 0) + log_info("Discarded entire block device."); + } + + r = fdisk_get_partitions(context->fdisk_context, &original_table); + if (r < 0) + return log_error_errno(r, "Failed to acquire partition table: %m"); + + /* Wipe fs signatures and discard sectors where the new partitions are going to be placed and in the + * gaps between partitions, just to be sure. */ + r = context_wipe_and_discard(context, from_scratch); + if (r < 0) + return r; + + r = context_copy_blocks(context); + if (r < 0) + return r; + + r = context_mkfs(context); + if (r < 0) + return r; + + r = context_mangle_partitions(context); + if (r < 0) + return r; + + log_info("Writing new partition table."); + + r = fdisk_write_disklabel(context->fdisk_context); + if (r < 0) + return log_error_errno(r, "Failed to write partition table: %m"); + + capable = blockdev_partscan_enabled(fdisk_get_devfd(context->fdisk_context)); + if (capable == -ENOTBLK) + log_debug("Not telling kernel to reread partition table, since we are not operating on a block device."); + else if (capable < 0) + return log_error_errno(capable, "Failed to check if block device supports partition scanning: %m"); + else if (capable > 0) { + log_info("Telling kernel to reread partition table."); + + if (from_scratch) + r = fdisk_reread_partition_table(context->fdisk_context); + else + r = fdisk_reread_changes(context->fdisk_context, original_table); + if (r < 0) + return log_error_errno(r, "Failed to reread partition table: %m"); + } else + log_notice("Not telling kernel to reread partition table, because selected image does not support kernel partition block devices."); + + log_info("All done."); + + return 0; +} + +static int context_read_seed(Context *context, const char *root) { + int r; + + assert(context); + + if (!sd_id128_is_null(context->seed)) + return 0; + + if (!arg_randomize) { + _cleanup_close_ int fd = -1; + + fd = chase_symlinks_and_open("/etc/machine-id", root, CHASE_PREFIX_ROOT, O_RDONLY|O_CLOEXEC, NULL); + if (fd == -ENOENT) + log_info("No machine ID set, using randomized partition UUIDs."); + else if (fd < 0) + return log_error_errno(fd, "Failed to determine machine ID of image: %m"); + else { + r = id128_read_fd(fd, ID128_PLAIN_OR_UNINIT, &context->seed); + if (r == -ENOMEDIUM) + log_info("No machine ID set, using randomized partition UUIDs."); + else if (r < 0) + return log_error_errno(r, "Failed to parse machine ID of image: %m"); + + return 0; + } + } + + r = sd_id128_randomize(&context->seed); + if (r < 0) + return log_error_errno(r, "Failed to generate randomized seed: %m"); + + return 0; +} + +static int context_factory_reset(Context *context, bool from_scratch) { + Partition *p; + size_t n = 0; + int r; + + assert(context); + + if (arg_factory_reset <= 0) + return 0; + + if (from_scratch) /* Nothing to reset if we start from scratch */ + return 0; + + if (arg_dry_run) { + log_notice("Refusing to factory reset, please re-run with --dry-run=no."); + return 0; + } + + log_info("Applying factory reset."); + + LIST_FOREACH(partitions, p, context->partitions) { + + if (!p->factory_reset || !PARTITION_EXISTS(p)) + continue; + + assert(p->partno != UINT64_MAX); + + log_info("Removing partition %" PRIu64 " for factory reset.", p->partno); + + r = fdisk_delete_partition(context->fdisk_context, p->partno); + if (r < 0) + return log_error_errno(r, "Failed to remove partition %" PRIu64 ": %m", p->partno); + + n++; + } + + if (n == 0) { + log_info("Factory reset requested, but no partitions to delete found."); + return 0; + } + + r = fdisk_write_disklabel(context->fdisk_context); + if (r < 0) + return log_error_errno(r, "Failed to write disk label: %m"); + + log_info("Successfully deleted %zu partitions.", n); + return 1; +} + +static int context_can_factory_reset(Context *context) { + Partition *p; + + assert(context); + + LIST_FOREACH(partitions, p, context->partitions) + if (p->factory_reset && PARTITION_EXISTS(p)) + return true; + + return false; +} + +static int context_open_copy_block_paths(Context *context) { + Partition *p; + int r; + + assert(context); + + LIST_FOREACH(partitions, p, context->partitions) { + _cleanup_close_ int source_fd = -1; + uint64_t size; + struct stat st; + + assert(p->copy_blocks_fd < 0); + assert(p->copy_blocks_size == UINT64_MAX); + + if (PARTITION_EXISTS(p)) /* Never copy over partitions that already exist! */ + continue; + + if (!p->copy_blocks_path) + continue; + + source_fd = open(p->copy_blocks_path, O_RDONLY|O_CLOEXEC|O_NOCTTY); + if (source_fd < 0) + return log_error_errno(errno, "Failed to open block copy file '%s': %m", p->copy_blocks_path); + + if (fstat(source_fd, &st) < 0) + return log_error_errno(errno, "Failed to stat block copy file '%s': %m", p->copy_blocks_path); + + if (S_ISDIR(st.st_mode)) { + _cleanup_free_ char *bdev = NULL; + + /* If the file is a directory, automatically find the backing block device */ + + if (major(st.st_dev) != 0) + r = device_path_make_major_minor(S_IFBLK, st.st_dev, &bdev); + else { + dev_t devt; + + /* Special support for btrfs */ + + r = btrfs_get_block_device_fd(source_fd, &devt); + if (r == -EUCLEAN) + return btrfs_log_dev_root(LOG_ERR, r, p->copy_blocks_path); + if (r < 0) + return log_error_errno(r, "Unable to determine backing block device of '%s': %m", p->copy_blocks_path); + + r = device_path_make_major_minor(S_IFBLK, devt, &bdev); + } + if (r < 0) + return log_error_errno(r, "Failed to determine block device path for block device backing '%s': %m", p->copy_blocks_path); + + safe_close(source_fd); + + source_fd = open(bdev, O_RDONLY|O_CLOEXEC|O_NOCTTY); + if (source_fd < 0) + return log_error_errno(errno, "Failed to open block device '%s': %m", bdev); + + if (fstat(source_fd, &st) < 0) + return log_error_errno(errno, "Failed to stat block device '%s': %m", bdev); + + if (!S_ISBLK(st.st_mode)) + return log_error_errno(SYNTHETIC_ERRNO(ENOTBLK), "Block device '%s' is not actually a block device, refusing.", bdev); + } + + if (S_ISREG(st.st_mode)) + size = st.st_size; + else if (S_ISBLK(st.st_mode)) { + if (ioctl(source_fd, BLKGETSIZE64, &size) != 0) + return log_error_errno(errno, "Failed to determine size of block device to copy from: %m"); + } else + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Specified path to copy blocks from '%s' is not a regular file, block device or directory, refusing: %m", p->copy_blocks_path); + + if (size <= 0) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "File to copy bytes from '%s' has zero size, refusing.", p->copy_blocks_path); + if (size % 512 != 0) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "File to copy bytes from '%s' has size that is not multiple of 512, refusing.", p->copy_blocks_path); + + p->copy_blocks_fd = TAKE_FD(source_fd); + p->copy_blocks_size = size; + } + + return 0; +} + +static int help(void) { + _cleanup_free_ char *link = NULL; + int r; + + r = terminal_urlify_man("systemd-repart", "1", &link); + if (r < 0) + return log_oom(); + + printf("%s [OPTIONS...] [DEVICE]\n" + "\n%sGrow and add partitions to partition table.%s\n\n" + " -h --help Show this help\n" + " --version Show package version\n" + " --dry-run=BOOL Whether to run dry-run operation\n" + " --empty=MODE One of refuse, allow, require, force, create; controls\n" + " how to handle empty disks lacking partition tables\n" + " --discard=BOOL Whether to discard backing blocks for new partitions\n" + " --pretty=BOOL Whether to show pretty summary before doing changes\n" + " --factory-reset=BOOL Whether to remove data partitions before recreating\n" + " them\n" + " --can-factory-reset Test whether factory reset is defined\n" + " --root=PATH Operate relative to root path\n" + " --definitions=DIR Find partitions in specified directory\n" + " --key-file=PATH Key to use when encrypting partitions\n" + " --seed=UUID 128bit seed UUID to derive all UUIDs from\n" + " --size=BYTES Grow loopback file to specified size\n" + " --json=pretty|short|off\n" + " Generate JSON output\n" + "\nSee the %s for details.\n" + , program_invocation_short_name + , ansi_highlight(), ansi_normal() + , link + ); + + return 0; +} + +static int parse_argv(int argc, char *argv[]) { + + enum { + ARG_VERSION = 0x100, + ARG_DRY_RUN, + ARG_EMPTY, + ARG_DISCARD, + ARG_FACTORY_RESET, + ARG_CAN_FACTORY_RESET, + ARG_ROOT, + ARG_SEED, + ARG_PRETTY, + ARG_DEFINITIONS, + ARG_SIZE, + ARG_JSON, + ARG_KEY_FILE, + }; + + static const struct option options[] = { + { "help", no_argument, NULL, 'h' }, + { "version", no_argument, NULL, ARG_VERSION }, + { "dry-run", required_argument, NULL, ARG_DRY_RUN }, + { "empty", required_argument, NULL, ARG_EMPTY }, + { "discard", required_argument, NULL, ARG_DISCARD }, + { "factory-reset", required_argument, NULL, ARG_FACTORY_RESET }, + { "can-factory-reset", no_argument, NULL, ARG_CAN_FACTORY_RESET }, + { "root", required_argument, NULL, ARG_ROOT }, + { "seed", required_argument, NULL, ARG_SEED }, + { "pretty", required_argument, NULL, ARG_PRETTY }, + { "definitions", required_argument, NULL, ARG_DEFINITIONS }, + { "size", required_argument, NULL, ARG_SIZE }, + { "json", required_argument, NULL, ARG_JSON }, + { "key-file", required_argument, NULL, ARG_KEY_FILE }, + {} + }; + + int c, r, dry_run = -1; + + assert(argc >= 0); + assert(argv); + + while ((c = getopt_long(argc, argv, "h", options, NULL)) >= 0) + + switch (c) { + + case 'h': + return help(); + + case ARG_VERSION: + return version(); + + case ARG_DRY_RUN: + r = parse_boolean(optarg); + if (r < 0) + return log_error_errno(r, "Failed to parse --dry-run= parameter: %s", optarg); + + dry_run = r; + break; + + case ARG_EMPTY: + if (isempty(optarg) || streq(optarg, "refuse")) + arg_empty = EMPTY_REFUSE; + else if (streq(optarg, "allow")) + arg_empty = EMPTY_ALLOW; + else if (streq(optarg, "require")) + arg_empty = EMPTY_REQUIRE; + else if (streq(optarg, "force")) + arg_empty = EMPTY_FORCE; + else if (streq(optarg, "create")) { + arg_empty = EMPTY_CREATE; + + if (dry_run < 0) + dry_run = false; /* Imply --dry-run=no if we create the loopback file + * anew. After all we cannot really break anyone's + * partition tables that way. */ + } else + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), + "Failed to parse --empty= parameter: %s", optarg); + break; + + case ARG_DISCARD: + r = parse_boolean(optarg); + if (r < 0) + return log_error_errno(r, "Failed to parse --discard= parameter: %s", optarg); + + arg_discard = r; + break; + + case ARG_FACTORY_RESET: + r = parse_boolean(optarg); + if (r < 0) + return log_error_errno(r, "Failed to parse --factory-reset= parameter: %s", optarg); + + arg_factory_reset = r; + break; + + case ARG_CAN_FACTORY_RESET: + arg_can_factory_reset = true; + break; + + case ARG_ROOT: + r = parse_path_argument_and_warn(optarg, false, &arg_root); + if (r < 0) + return r; + break; + + case ARG_SEED: + if (isempty(optarg)) { + arg_seed = SD_ID128_NULL; + arg_randomize = false; + } else if (streq(optarg, "random")) + arg_randomize = true; + else { + r = sd_id128_from_string(optarg, &arg_seed); + if (r < 0) + return log_error_errno(r, "Failed to parse seed: %s", optarg); + + arg_randomize = false; + } + + break; + + case ARG_PRETTY: + r = parse_boolean(optarg); + if (r < 0) + return log_error_errno(r, "Failed to parse --pretty= parameter: %s", optarg); + + arg_pretty = r; + break; + + case ARG_DEFINITIONS: + r = parse_path_argument_and_warn(optarg, false, &arg_definitions); + if (r < 0) + return r; + break; + + case ARG_SIZE: { + uint64_t parsed, rounded; + + if (streq(optarg, "auto")) { + arg_size = UINT64_MAX; + arg_size_auto = true; + break; + } + + r = parse_size(optarg, 1024, &parsed); + if (r < 0) + return log_error_errno(r, "Failed to parse --size= parameter: %s", optarg); + + rounded = round_up_size(parsed, 4096); + if (rounded == 0) + return log_error_errno(SYNTHETIC_ERRNO(ERANGE), "Specified image size too small, refusing."); + if (rounded == UINT64_MAX) + return log_error_errno(SYNTHETIC_ERRNO(ERANGE), "Specified image size too large, refusing."); + + if (rounded != parsed) + log_warning("Specified size is not a multiple of 4096, rounding up automatically. (%" PRIu64 " → %" PRIu64 ")", + parsed, rounded); + + arg_size = rounded; + arg_size_auto = false; + break; + } + + case ARG_JSON: + if (streq(optarg, "pretty")) { + arg_json = true; + arg_json_format_flags = JSON_FORMAT_PRETTY|JSON_FORMAT_COLOR_AUTO; + } else if (streq(optarg, "short")) { + arg_json = true; + arg_json_format_flags = JSON_FORMAT_NEWLINE; + } else if (streq(optarg, "off")) { + arg_json = false; + arg_json_format_flags = 0; + } else if (streq(optarg, "help")) { + puts("pretty\n" + "short\n" + "off"); + return 0; + } else + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Unknown argument to --json=: %s", optarg); + + break; + + case ARG_KEY_FILE: { + _cleanup_(erase_and_freep) char *k = NULL; + size_t n = 0; + + r = read_full_file_full(AT_FDCWD, optarg, READ_FULL_FILE_SECURE|READ_FULL_FILE_CONNECT_SOCKET, NULL, &k, &n); + if (r < 0) + return log_error_errno(r, "Failed to read key file '%s': %m", optarg); + + erase_and_free(arg_key); + arg_key = TAKE_PTR(k); + arg_key_size = n; + break; + } + + case '?': + return -EINVAL; + + default: + assert_not_reached("Unhandled option"); + } + + if (argc - optind > 1) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), + "Expected at most one argument, the path to the block device."); + + if (arg_factory_reset > 0 && IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE, EMPTY_CREATE)) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), + "Combination of --factory-reset=yes and --empty=force/--empty=require/--empty=create is invalid."); + + if (arg_can_factory_reset) + arg_dry_run = true; /* When --can-factory-reset is specified we don't make changes, hence + * non-dry-run mode makes no sense. Thus, imply dry run mode so that we + * open things strictly read-only. */ + else if (dry_run >= 0) + arg_dry_run = dry_run; + + if (arg_empty == EMPTY_CREATE && (arg_size == UINT64_MAX && !arg_size_auto)) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), + "If --empty=create is specified, --size= must be specified, too."); + + arg_node = argc > optind ? argv[optind] : NULL; + + if (IN_SET(arg_empty, EMPTY_FORCE, EMPTY_REQUIRE, EMPTY_CREATE) && !arg_node) + return log_error_errno(SYNTHETIC_ERRNO(EINVAL), + "A path to a device node or loopback file must be specified when --empty=force, --empty=require or --empty=create are used."); + + return 1; +} + +static int parse_proc_cmdline_factory_reset(void) { + bool b; + int r; + + if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */ + return 0; + + if (!in_initrd()) /* Never honour kernel command line factory reset request outside of the initrd */ + return 0; + + r = proc_cmdline_get_bool("systemd.factory_reset", &b); + if (r < 0) + return log_error_errno(r, "Failed to parse systemd.factory_reset kernel command line argument: %m"); + if (r > 0) { + arg_factory_reset = b; + + if (b) + log_notice("Honouring factory reset requested via kernel command line."); + } + + return 0; +} + +static int parse_efi_variable_factory_reset(void) { + _cleanup_free_ char *value = NULL; + int r; + + if (arg_factory_reset >= 0) /* Never override what is specified on the process command line */ + return 0; + + if (!in_initrd()) /* Never honour EFI variable factory reset request outside of the initrd */ + return 0; + + r = efi_get_variable_string(EFI_VENDOR_SYSTEMD, "FactoryReset", &value); + if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r)) + return 0; + if (r < 0) + return log_error_errno(r, "Failed to read EFI variable FactoryReset: %m"); + + r = parse_boolean(value); + if (r < 0) + return log_error_errno(r, "Failed to parse EFI variable FactoryReset: %m"); + + arg_factory_reset = r; + if (r) + log_notice("Honouring factory reset requested via EFI variable FactoryReset: %m"); + + return 0; +} + +static int remove_efi_variable_factory_reset(void) { + int r; + + r = efi_set_variable(EFI_VENDOR_SYSTEMD, "FactoryReset", NULL, 0); + if (r == -ENOENT || ERRNO_IS_NOT_SUPPORTED(r)) + return 0; + if (r < 0) + return log_error_errno(r, "Failed to remove EFI variable FactoryReset: %m"); + + log_info("Successfully unset EFI variable FactoryReset."); + return 0; +} + +static int acquire_root_devno(const char *p, int mode, char **ret, int *ret_fd) { + _cleanup_close_ int fd = -1; + struct stat st; + dev_t devno, fd_devno = (mode_t) -1; + int r; + + assert(p); + assert(ret); + assert(ret_fd); + + fd = open(p, mode); + if (fd < 0) + return -errno; + + if (fstat(fd, &st) < 0) + return -errno; + + if (S_ISREG(st.st_mode)) { + char *s; + + s = strdup(p); + if (!s) + return log_oom(); + + *ret = s; + *ret_fd = TAKE_FD(fd); + + return 0; + } + + if (S_ISBLK(st.st_mode)) + fd_devno = devno = st.st_rdev; + else if (S_ISDIR(st.st_mode)) { + + devno = st.st_dev; + if (major(devno) == 0) { + r = btrfs_get_block_device_fd(fd, &devno); + if (r == -ENOTTY) /* not btrfs */ + return -ENODEV; + if (r < 0) + return r; + } + } else + return -ENOTBLK; + + /* From dm-crypt to backing partition */ + r = block_get_originating(devno, &devno); + if (r < 0) + log_debug_errno(r, "Failed to find underlying block device for '%s', ignoring: %m", p); + + /* From partition to whole disk containing it */ + r = block_get_whole_disk(devno, &devno); + if (r < 0) + log_debug_errno(r, "Failed to find whole disk block device for '%s', ignoring: %m", p); + + r = device_path_make_canonical(S_IFBLK, devno, ret); + if (r < 0) + return log_debug_errno(r, "Failed to determine canonical path for '%s': %m", p); + + /* Only if we still lock at the same block device we can reuse the fd. Otherwise return an + * invalidated fd. */ + *ret_fd = fd_devno != (mode_t) -1 && fd_devno == devno ? TAKE_FD(fd) : -1; + return 0; +} + +static int find_root(char **ret, int *ret_fd) { + const char *t; + int r; + + assert(ret); + assert(ret_fd); + + if (arg_node) { + if (arg_empty == EMPTY_CREATE) { + _cleanup_close_ int fd = -1; + _cleanup_free_ char *s = NULL; + + s = strdup(arg_node); + if (!s) + return log_oom(); + + fd = open(arg_node, O_RDONLY|O_CREAT|O_EXCL|O_CLOEXEC|O_NOFOLLOW, 0666); + if (fd < 0) + return log_error_errno(errno, "Failed to create '%s': %m", arg_node); + + *ret = TAKE_PTR(s); + *ret_fd = TAKE_FD(fd); + return 0; + } + + r = acquire_root_devno(arg_node, O_RDONLY|O_CLOEXEC, ret, ret_fd); + if (r == -EUCLEAN) + return btrfs_log_dev_root(LOG_ERR, r, arg_node); + if (r < 0) + return log_error_errno(r, "Failed to open file or determine backing device of %s: %m", arg_node); + + return 0; + } + + assert(IN_SET(arg_empty, EMPTY_REFUSE, EMPTY_ALLOW)); + + /* Let's search for the root device. We look for two cases here: first in /, and then in /usr. The + * latter we check for cases where / is a tmpfs and only /usr is an actual persistent block device + * (think: volatile setups) */ + + FOREACH_STRING(t, "/", "/usr") { + _cleanup_free_ char *j = NULL; + const char *p; + + if (in_initrd()) { + j = path_join("/sysroot", t); + if (!j) + return log_oom(); + + p = j; + } else + p = t; + + r = acquire_root_devno(p, O_RDONLY|O_DIRECTORY|O_CLOEXEC, ret, ret_fd); + if (r < 0) { + if (r == -EUCLEAN) + return btrfs_log_dev_root(LOG_ERR, r, p); + if (r != -ENODEV) + return log_error_errno(r, "Failed to determine backing device of %s: %m", p); + } else + return 0; + } + + return log_error_errno(SYNTHETIC_ERRNO(ENODEV), "Failed to discover root block device."); +} + +static int resize_backing_fd(const char *node, int *fd) { + char buf1[FORMAT_BYTES_MAX], buf2[FORMAT_BYTES_MAX]; + _cleanup_close_ int writable_fd = -1; + struct stat st; + int r; + + assert(node); + assert(fd); + + if (arg_size == UINT64_MAX) /* Nothing to do */ + return 0; + + if (*fd < 0) { + /* Open the file if we haven't opened it yet. Note that we open it read-only here, just to + * keep a reference to the file we can pass around. */ + *fd = open(node, O_RDONLY|O_CLOEXEC); + if (*fd < 0) + return log_error_errno(errno, "Failed to open '%s' in order to adjust size: %m", node); + } + + if (fstat(*fd, &st) < 0) + return log_error_errno(errno, "Failed to stat '%s': %m", node); + + r = stat_verify_regular(&st); + if (r < 0) + return log_error_errno(r, "Specified path '%s' is not a regular file, cannot resize: %m", node); + + assert_se(format_bytes(buf1, sizeof(buf1), st.st_size)); + assert_se(format_bytes(buf2, sizeof(buf2), arg_size)); + + if ((uint64_t) st.st_size >= arg_size) { + log_info("File '%s' already is of requested size or larger, not growing. (%s >= %s)", node, buf1, buf2); + return 0; + } + + /* The file descriptor is read-only. In order to grow the file we need to have a writable fd. We + * reopen the file for that temporarily. We keep the writable fd only open for this operation though, + * as fdisk can't accept it anyway. */ + + writable_fd = fd_reopen(*fd, O_WRONLY|O_CLOEXEC); + if (writable_fd < 0) + return log_error_errno(writable_fd, "Failed to reopen backing file '%s' writable: %m", node); + + if (!arg_discard) { + if (fallocate(writable_fd, 0, 0, arg_size) < 0) { + if (!ERRNO_IS_NOT_SUPPORTED(errno)) + return log_error_errno(errno, "Failed to grow '%s' from %s to %s by allocation: %m", + node, buf1, buf2); + + /* Fallback to truncation, if fallocate() is not supported. */ + log_debug("Backing file system does not support fallocate(), falling back to ftruncate()."); + } else { + if (st.st_size == 0) /* Likely regular file just created by us */ + log_info("Allocated %s for '%s'.", buf2, node); + else + log_info("File '%s' grown from %s to %s by allocation.", node, buf1, buf2); + + return 1; + } + } + + if (ftruncate(writable_fd, arg_size) < 0) + return log_error_errno(errno, "Failed to grow '%s' from %s to %s by truncation: %m", + node, buf1, buf2); + + if (st.st_size == 0) /* Likely regular file just created by us */ + log_info("Sized '%s' to %s.", node, buf2); + else + log_info("File '%s' grown from %s to %s by truncation.", node, buf1, buf2); + + return 1; +} + +static int determine_auto_size(Context *c) { + uint64_t sum = round_up_size(GPT_METADATA_SIZE, 4096); + char buf[FORMAT_BYTES_MAX]; + Partition *p; + + assert_se(c); + assert_se(arg_size == UINT64_MAX); + assert_se(arg_size_auto); + + LIST_FOREACH(partitions, p, c->partitions) { + uint64_t m; + + if (p->dropped) + continue; + + m = partition_min_size_with_padding(p); + if (m > UINT64_MAX - sum) + return log_error_errno(SYNTHETIC_ERRNO(EOVERFLOW), "Image would grow too large, refusing."); + + sum += m; + } + + assert_se(format_bytes(buf, sizeof(buf), sum)); + log_info("Automatically determined minimal disk image size as %s.", buf); + + arg_size = sum; + return 0; +} + +static int run(int argc, char *argv[]) { + _cleanup_(context_freep) Context* context = NULL; + _cleanup_free_ char *node = NULL; + _cleanup_close_ int backing_fd = -1; + bool from_scratch; + int r; + + log_show_color(true); + log_parse_environment(); + log_open(); + + if (in_initrd()) { + /* Default to operation on /sysroot when invoked in the initrd! */ + arg_root = strdup("/sysroot"); + if (!arg_root) + return log_oom(); + } + + r = parse_argv(argc, argv); + if (r <= 0) + return r; + + r = parse_proc_cmdline_factory_reset(); + if (r < 0) + return r; + + r = parse_efi_variable_factory_reset(); + if (r < 0) + return r; + + context = context_new(arg_seed); + if (!context) + return log_oom(); + + r = context_read_definitions(context, arg_definitions, arg_root); + if (r < 0) + return r; + + if (context->n_partitions <= 0 && arg_empty == EMPTY_REFUSE) { + log_info("Didn't find any partition definition files, nothing to do."); + return 0; + } + + r = find_root(&node, &backing_fd); + if (r < 0) + return r; + + if (arg_size != UINT64_MAX) { + r = resize_backing_fd(node, &backing_fd); + if (r < 0) + return r; + } + + r = context_load_partition_table(context, node, &backing_fd); + if (r == -EHWPOISON) + return 77; /* Special return value which means "Not GPT, so not doing anything". This isn't + * really an error when called at boot. */ + if (r < 0) + return r; + from_scratch = r > 0; /* Starting from scratch */ + + if (arg_can_factory_reset) { + r = context_can_factory_reset(context); + if (r < 0) + return r; + if (r == 0) + return EXIT_FAILURE; + + return 0; + } + + r = context_factory_reset(context, from_scratch); + if (r < 0) + return r; + if (r > 0) { + /* We actually did a factory reset! */ + r = remove_efi_variable_factory_reset(); + if (r < 0) + return r; + + /* Reload the reduced partition table */ + context_unload_partition_table(context); + r = context_load_partition_table(context, node, &backing_fd); + if (r < 0) + return r; + } + +#if 0 + (void) context_dump_partitions(context, node); + putchar('\n'); +#endif + + r = context_read_seed(context, arg_root); + if (r < 0) + return r; + + /* Open all files to copy blocks from now, since we want to take their size into consideration */ + r = context_open_copy_block_paths(context); + if (r < 0) + return r; + + if (arg_size_auto) { + r = determine_auto_size(context); + if (r < 0) + return r; + + /* Flush out everything again, and let's grow the file first, then start fresh */ + context_unload_partition_table(context); + + assert_se(arg_size != UINT64_MAX); + r = resize_backing_fd(node, &backing_fd); + if (r < 0) + return r; + + r = context_load_partition_table(context, node, &backing_fd); + if (r < 0) + return r; + } + + /* First try to fit new partitions in, dropping by priority until it fits */ + for (;;) { + if (context_allocate_partitions(context)) + break; /* Success! */ + + if (!context_drop_one_priority(context)) + return log_error_errno(SYNTHETIC_ERRNO(ENOSPC), + "Can't fit requested partitions into free space, refusing."); + } + + /* Now assign free space according to the weight logic */ + r = context_grow_partitions(context); + if (r < 0) + return r; + + /* Now calculate where each partition gets placed */ + context_place_partitions(context); + + /* Make sure each partition has a unique UUID and unique label */ + r = context_acquire_partition_uuids_and_labels(context); + if (r < 0) + return r; + + r = context_write_partition_table(context, node, from_scratch); + if (r < 0) + return r; + + return 0; +} + +DEFINE_MAIN_FUNCTION_WITH_POSITIVE_FAILURE(run); |