summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/minimax/main.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
commit483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch)
treee5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/boost/libs/math/minimax/main.cpp
parentInitial commit. (diff)
downloadceph-483eb2f56657e8e7f419ab1a4fab8dce9ade8609.tar.xz
ceph-483eb2f56657e8e7f419ab1a4fab8dce9ade8609.zip
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/boost/libs/math/minimax/main.cpp')
-rw-r--r--src/boost/libs/math/minimax/main.cpp650
1 files changed, 650 insertions, 0 deletions
diff --git a/src/boost/libs/math/minimax/main.cpp b/src/boost/libs/math/minimax/main.cpp
new file mode 100644
index 00000000..6ff01876
--- /dev/null
+++ b/src/boost/libs/math/minimax/main.cpp
@@ -0,0 +1,650 @@
+// (C) Copyright John Maddock 2006.
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#define BOOST_TEST_MODULE foobar
+#define BOOST_UBLAS_TYPE_CHECK_EPSILON (type_traits<real_type>::type_sqrt (boost::math::tools::epsilon <real_type>()))
+#define BOOST_UBLAS_TYPE_CHECK_MIN (type_traits<real_type>::type_sqrt ( boost::math::tools::min_value<real_type>()))
+#define BOOST_UBLAS_NDEBUG
+
+#include "multiprecision.hpp"
+
+#include <boost/math/tools/remez.hpp>
+#include <boost/math/tools/test.hpp>
+#include <boost/math/special_functions/binomial.hpp>
+#include <boost/spirit/include/classic_core.hpp>
+#include <boost/spirit/include/classic_actor.hpp>
+#include <boost/lexical_cast.hpp>
+#include <iostream>
+#include <iomanip>
+#include <string>
+#include <boost/test/included/unit_test.hpp> // for test_main
+#include <boost/multiprecision/cpp_bin_float.hpp>
+
+
+extern mp_type f(const mp_type& x, int variant);
+extern void show_extra(
+ const boost::math::tools::polynomial<mp_type>& n,
+ const boost::math::tools::polynomial<mp_type>& d,
+ const mp_type& x_offset,
+ const mp_type& y_offset,
+ int variant);
+
+using namespace boost::spirit::classic;
+
+mp_type a(0), b(1); // range to optimise over
+bool rel_error(true);
+bool pin(false);
+int orderN(3);
+int orderD(1);
+int target_precision = boost::math::tools::digits<long double>();
+int working_precision = target_precision * 2;
+bool started(false);
+int variant(0);
+int skew(0);
+int brake(50);
+mp_type x_offset(0), y_offset(0), x_scale(1);
+bool auto_offset_y;
+
+boost::shared_ptr<boost::math::tools::remez_minimax<mp_type> > p_remez;
+
+mp_type the_function(const mp_type& val)
+{
+ return f(x_scale * (val + x_offset), variant) + y_offset;
+}
+
+void step_some(unsigned count)
+{
+ try{
+ set_working_precision(working_precision);
+ if(!started)
+ {
+ //
+ // If we have an automatic y-offset calculate it now:
+ //
+ if(auto_offset_y)
+ {
+ mp_type fa, fb, fm;
+ fa = f(x_scale * (a + x_offset), variant);
+ fb = f(x_scale * (b + x_offset), variant);
+ fm = f(x_scale * ((a+b)/2 + x_offset), variant);
+ y_offset = -(fa + fb + fm) / 3;
+ set_output_precision(5);
+ std::cout << "Setting auto-y-offset to " << y_offset << std::endl;
+ }
+ //
+ // Truncate offsets to float precision:
+ //
+ x_offset = round_to_precision(x_offset, 20);
+ y_offset = round_to_precision(y_offset, 20);
+ //
+ // Construct new Remez state machine:
+ //
+ p_remez.reset(new boost::math::tools::remez_minimax<mp_type>(
+ &the_function,
+ orderN, orderD,
+ a, b,
+ pin,
+ rel_error,
+ skew,
+ working_precision));
+ std::cout << "Max error in interpolated form: " << std::setprecision(3) << std::scientific << boost::math::tools::real_cast<double>(p_remez->max_error()) << std::endl;
+ //
+ // Signal that we've started:
+ //
+ started = true;
+ }
+ unsigned i;
+ for(i = 0; i < count; ++i)
+ {
+ std::cout << "Stepping..." << std::endl;
+ p_remez->set_brake(brake);
+ mp_type r = p_remez->iterate();
+ set_output_precision(3);
+ std::cout
+ << "Maximum Deviation Found: " << std::setprecision(3) << std::scientific << boost::math::tools::real_cast<double>(p_remez->max_error()) << std::endl
+ << "Expected Error Term: " << std::setprecision(3) << std::scientific << boost::math::tools::real_cast<double>(p_remez->error_term()) << std::endl
+ << "Maximum Relative Change in Control Points: " << std::setprecision(3) << std::scientific << boost::math::tools::real_cast<double>(r) << std::endl;
+ }
+ }
+ catch(const std::exception& e)
+ {
+ std::cout << "Step failed with exception: " << e.what() << std::endl;
+ }
+}
+
+void step(const char*, const char*)
+{
+ step_some(1);
+}
+
+void show(const char*, const char*)
+{
+ set_working_precision(working_precision);
+ if(started)
+ {
+ boost::math::tools::polynomial<mp_type> n = p_remez->numerator();
+ boost::math::tools::polynomial<mp_type> d = p_remez->denominator();
+ std::vector<mp_type> cn = n.chebyshev();
+ std::vector<mp_type> cd = d.chebyshev();
+ int prec = 2 + (target_precision * 3010LL)/10000;
+ std::cout << std::scientific << std::setprecision(prec);
+ set_output_precision(prec);
+ boost::numeric::ublas::vector<mp_type> v = p_remez->zero_points();
+
+ std::cout << " Zeros = {\n";
+ unsigned i;
+ for(i = 0; i < v.size(); ++i)
+ {
+ std::cout << " " << v[i] << std::endl;
+ }
+ std::cout << " }\n";
+
+ v = p_remez->chebyshev_points();
+ std::cout << " Chebeshev Control Points = {\n";
+ for(i = 0; i < v.size(); ++i)
+ {
+ std::cout << " " << v[i] << std::endl;
+ }
+ std::cout << " }\n";
+
+ std::cout << "X offset: " << x_offset << std::endl;
+ std::cout << "X scale: " << x_scale << std::endl;
+ std::cout << "Y offset: " << y_offset << std::endl;
+
+ std::cout << "P = {";
+ for(i = 0; i < n.size(); ++i)
+ {
+ std::cout << " " << n[i] << "L," << std::endl;
+ }
+ std::cout << " }\n";
+
+ std::cout << "Q = {";
+ for(i = 0; i < d.size(); ++i)
+ {
+ std::cout << " " << d[i] << "L," << std::endl;
+ }
+ std::cout << " }\n";
+
+ std::cout << "CP = {";
+ for(i = 0; i < cn.size(); ++i)
+ {
+ std::cout << " " << cn[i] << "L," << std::endl;
+ }
+ std::cout << " }\n";
+
+ std::cout << "CQ = {";
+ for(i = 0; i < cd.size(); ++i)
+ {
+ std::cout << " " << cd[i] << "L," << std::endl;
+ }
+ std::cout << " }\n";
+
+ show_extra(n, d, x_offset, y_offset, variant);
+ }
+ else
+ {
+ std::cerr << "Nothing to display" << std::endl;
+ }
+}
+
+void do_graph(unsigned points)
+{
+ set_working_precision(working_precision);
+ mp_type step = (b - a) / (points - 1);
+ mp_type x = a;
+ while(points > 1)
+ {
+ set_output_precision(10);
+ std::cout << std::setprecision(10) << std::setw(30) << std::left
+ << boost::lexical_cast<std::string>(x) << the_function(x) << std::endl;
+ --points;
+ x += step;
+ }
+ std::cout << std::setprecision(10) << std::setw(30) << std::left
+ << boost::lexical_cast<std::string>(b) << the_function(b) << std::endl;
+}
+
+void graph(const char*, const char*)
+{
+ do_graph(3);
+}
+
+template <class T>
+mp_type convert_to_rr(const T& val)
+{
+ return val;
+}
+template <class Backend, boost::multiprecision::expression_template_option ET>
+mp_type convert_to_rr(const boost::multiprecision::number<Backend, ET>& val)
+{
+ return boost::lexical_cast<mp_type>(val.str());
+}
+
+template <class T>
+void do_test(T, const char* name)
+{
+ set_working_precision(working_precision);
+ if(started)
+ {
+ //
+ // We want to test the approximation at fixed precision:
+ // either float, double or long double. Begin by getting the
+ // polynomials:
+ //
+ boost::math::tools::polynomial<T> n, d;
+ boost::math::tools::polynomial<mp_type> nr, dr;
+ nr = p_remez->numerator();
+ dr = p_remez->denominator();
+ n = nr;
+ d = dr;
+
+ std::vector<mp_type> cn1, cd1;
+ cn1 = nr.chebyshev();
+ cd1 = dr.chebyshev();
+ std::vector<T> cn, cd;
+ for(unsigned i = 0; i < cn1.size(); ++i)
+ {
+ cn.push_back(boost::math::tools::real_cast<T>(cn1[i]));
+ }
+ for(unsigned i = 0; i < cd1.size(); ++i)
+ {
+ cd.push_back(boost::math::tools::real_cast<T>(cd1[i]));
+ }
+ //
+ // We'll test at the Chebeshev control points which is where
+ // (in theory) the largest deviation should occur. For good
+ // measure we'll test at the zeros as well:
+ //
+ boost::numeric::ublas::vector<mp_type>
+ zeros(p_remez->zero_points()),
+ cheb(p_remez->chebyshev_points());
+
+ mp_type max_error(0), cheb_max_error(0);
+
+ //
+ // Do the tests at the zeros:
+ //
+ std::cout << "Starting tests at " << name << " precision...\n";
+ std::cout << "Absissa Error (Poly) Error (Cheb)\n";
+ for(unsigned i = 0; i < zeros.size(); ++i)
+ {
+ mp_type true_result = the_function(zeros[i]);
+ T absissa = boost::math::tools::real_cast<T>(zeros[i]);
+ mp_type test_result = convert_to_rr(n.evaluate(absissa) / d.evaluate(absissa));
+ mp_type cheb_result = convert_to_rr(boost::math::tools::evaluate_chebyshev(cn, absissa) / boost::math::tools::evaluate_chebyshev(cd, absissa));
+ mp_type err, cheb_err;
+ if(rel_error)
+ {
+ err = boost::math::tools::relative_error(test_result, true_result);
+ cheb_err = boost::math::tools::relative_error(cheb_result, true_result);
+ }
+ else
+ {
+ err = fabs(test_result - true_result);
+ cheb_err = fabs(cheb_result - true_result);
+ }
+ if(err > max_error)
+ max_error = err;
+ if(cheb_err > cheb_max_error)
+ cheb_max_error = cheb_err;
+ std::cout << std::setprecision(6) << std::setw(15) << std::left << absissa
+ << std::setw(15) << std::left << boost::math::tools::real_cast<T>(err) << boost::math::tools::real_cast<T>(cheb_err) << std::endl;
+ }
+ //
+ // Do the tests at the Chebeshev control points:
+ //
+ for(unsigned i = 0; i < cheb.size(); ++i)
+ {
+ mp_type true_result = the_function(cheb[i]);
+ T absissa = boost::math::tools::real_cast<T>(cheb[i]);
+ mp_type test_result = convert_to_rr(n.evaluate(absissa) / d.evaluate(absissa));
+ mp_type cheb_result = convert_to_rr(boost::math::tools::evaluate_chebyshev(cn, absissa) / boost::math::tools::evaluate_chebyshev(cd, absissa));
+ mp_type err, cheb_err;
+ if(rel_error)
+ {
+ err = boost::math::tools::relative_error(test_result, true_result);
+ cheb_err = boost::math::tools::relative_error(cheb_result, true_result);
+ }
+ else
+ {
+ err = fabs(test_result - true_result);
+ cheb_err = fabs(cheb_result - true_result);
+ }
+ if(err > max_error)
+ max_error = err;
+ std::cout << std::setprecision(6) << std::setw(15) << std::left << absissa
+ << std::setw(15) << std::left << boost::math::tools::real_cast<T>(err) <<
+ boost::math::tools::real_cast<T>(cheb_err) << std::endl;
+ }
+ std::string msg = "Max Error found at ";
+ msg += name;
+ msg += " precision = ";
+ msg.append(62 - 17 - msg.size(), ' ');
+ std::cout << msg << std::setprecision(6) << "Poly: " << std::setw(20) << std::left
+ << boost::math::tools::real_cast<T>(max_error) << "Cheb: " << boost::math::tools::real_cast<T>(cheb_max_error) << std::endl;
+ }
+ else
+ {
+ std::cout << "Nothing to test: try converging an approximation first!!!" << std::endl;
+ }
+}
+
+void test_float(const char*, const char*)
+{
+ do_test(float(0), "float");
+}
+
+void test_double(const char*, const char*)
+{
+ do_test(double(0), "double");
+}
+
+void test_long(const char*, const char*)
+{
+ do_test((long double)(0), "long double");
+}
+
+void test_float80(const char*, const char*)
+{
+ do_test((boost::multiprecision::cpp_bin_float_double_extended)(0), "float80");
+}
+
+void test_float128(const char*, const char*)
+{
+ do_test((boost::multiprecision::cpp_bin_float_quad)(0), "float128");
+}
+
+void test_all(const char*, const char*)
+{
+ do_test(float(0), "float");
+ do_test(double(0), "double");
+ do_test((long double)(0), "long double");
+}
+
+template <class T>
+void do_test_n(T, const char* name, unsigned count)
+{
+ set_working_precision(working_precision);
+ if(started)
+ {
+ //
+ // We want to test the approximation at fixed precision:
+ // either float, double or long double. Begin by getting the
+ // polynomials:
+ //
+ boost::math::tools::polynomial<T> n, d;
+ boost::math::tools::polynomial<mp_type> nr, dr;
+ nr = p_remez->numerator();
+ dr = p_remez->denominator();
+ n = nr;
+ d = dr;
+
+ std::vector<mp_type> cn1, cd1;
+ cn1 = nr.chebyshev();
+ cd1 = dr.chebyshev();
+ std::vector<T> cn, cd;
+ for(unsigned i = 0; i < cn1.size(); ++i)
+ {
+ cn.push_back(boost::math::tools::real_cast<T>(cn1[i]));
+ }
+ for(unsigned i = 0; i < cd1.size(); ++i)
+ {
+ cd.push_back(boost::math::tools::real_cast<T>(cd1[i]));
+ }
+
+ mp_type max_error(0), max_cheb_error(0);
+ mp_type step = (b - a) / count;
+
+ //
+ // Do the tests at the zeros:
+ //
+ std::cout << "Starting tests at " << name << " precision...\n";
+ std::cout << "Absissa Error (poly) Error (Cheb)\n";
+ for(mp_type x = a; x <= b; x += step)
+ {
+ mp_type true_result = the_function(x);
+ //std::cout << true_result << std::endl;
+ T absissa = boost::math::tools::real_cast<T>(x);
+ mp_type test_result = convert_to_rr(n.evaluate(absissa) / d.evaluate(absissa));
+ //std::cout << test_result << std::endl;
+ mp_type cheb_result = convert_to_rr(boost::math::tools::evaluate_chebyshev(cn, absissa) / boost::math::tools::evaluate_chebyshev(cd, absissa));
+ //std::cout << cheb_result << std::endl;
+ mp_type err, cheb_err;
+ if(rel_error)
+ {
+ err = boost::math::tools::relative_error(test_result, true_result);
+ cheb_err = boost::math::tools::relative_error(cheb_result, true_result);
+ }
+ else
+ {
+ err = fabs(test_result - true_result);
+ cheb_err = fabs(cheb_result - true_result);
+ }
+ if(err > max_error)
+ max_error = err;
+ if(cheb_err > max_cheb_error)
+ max_cheb_error = cheb_err;
+ std::cout << std::setprecision(6) << std::setw(15) << std::left << boost::math::tools::real_cast<double>(absissa)
+ << (test_result < true_result ? "-" : "") << std::setw(20) << std::left
+ << boost::math::tools::real_cast<double>(err)
+ << boost::math::tools::real_cast<double>(cheb_err) << std::endl;
+ }
+ std::string msg = "Max Error found at ";
+ msg += name;
+ msg += " precision = ";
+ //msg.append(62 - 17 - msg.size(), ' ');
+ std::cout << msg << "Poly: " << std::setprecision(6)
+ //<< std::setw(15) << std::left
+ << boost::math::tools::real_cast<T>(max_error)
+ << " Cheb: " << boost::math::tools::real_cast<T>(max_cheb_error) << std::endl;
+ }
+ else
+ {
+ std::cout << "Nothing to test: try converging an approximation first!!!" << std::endl;
+ }
+}
+
+void test_n(unsigned n)
+{
+ do_test_n(mp_type(), "mp_type", n);
+}
+
+void test_float_n(unsigned n)
+{
+ do_test_n(float(0), "float", n);
+}
+
+void test_double_n(unsigned n)
+{
+ do_test_n(double(0), "double", n);
+}
+
+void test_long_n(unsigned n)
+{
+ do_test_n((long double)(0), "long double", n);
+}
+
+void test_float80_n(unsigned n)
+{
+ do_test_n((boost::multiprecision::cpp_bin_float_double_extended)(0), "float80", n);
+}
+
+void test_float128_n(unsigned n)
+{
+ do_test_n((boost::multiprecision::cpp_bin_float_quad)(0), "float128", n);
+}
+
+void rotate(const char*, const char*)
+{
+ if(p_remez)
+ {
+ p_remez->rotate();
+ }
+ else
+ {
+ std::cerr << "Nothing to rotate" << std::endl;
+ }
+}
+
+void rescale(const char*, const char*)
+{
+ if(p_remez)
+ {
+ p_remez->rescale(a, b);
+ }
+ else
+ {
+ std::cerr << "Nothing to rescale" << std::endl;
+ }
+}
+
+void graph_poly(const char*, const char*)
+{
+ int i = 50;
+ set_working_precision(working_precision);
+ if(started)
+ {
+ //
+ // We want to test the approximation at fixed precision:
+ // either float, double or long double. Begin by getting the
+ // polynomials:
+ //
+ boost::math::tools::polynomial<mp_type> n, d;
+ n = p_remez->numerator();
+ d = p_remez->denominator();
+
+ mp_type max_error(0);
+ mp_type step = (b - a) / i;
+
+ std::cout << "Evaluating Numerator...\n";
+ mp_type val;
+ for(val = a; val <= b; val += step)
+ std::cout << n.evaluate(val) << std::endl;
+ std::cout << "Evaluating Denominator...\n";
+ for(val = a; val <= b; val += step)
+ std::cout << d.evaluate(val) << std::endl;
+ }
+ else
+ {
+ std::cout << "Nothing to test: try converging an approximation first!!!" << std::endl;
+ }
+}
+
+BOOST_AUTO_TEST_CASE( test_main )
+{
+ std::string line;
+ real_parser<long double/*mp_type*/ > const rr_p;
+ while(std::getline(std::cin, line))
+ {
+ if(parse(line.c_str(), str_p("quit"), space_p).full)
+ return;
+ if(false == parse(line.c_str(),
+ (
+
+ str_p("range")[assign_a(started, false)] && real_p[assign_a(a)] && real_p[assign_a(b)]
+ ||
+ str_p("relative")[assign_a(started, false)][assign_a(rel_error, true)]
+ ||
+ str_p("absolute")[assign_a(started, false)][assign_a(rel_error, false)]
+ ||
+ str_p("pin")[assign_a(started, false)] && str_p("true")[assign_a(pin, true)]
+ ||
+ str_p("pin")[assign_a(started, false)] && str_p("false")[assign_a(pin, false)]
+ ||
+ str_p("pin")[assign_a(started, false)] && str_p("1")[assign_a(pin, true)]
+ ||
+ str_p("pin")[assign_a(started, false)] && str_p("0")[assign_a(pin, false)]
+ ||
+ str_p("pin")[assign_a(started, false)][assign_a(pin, true)]
+ ||
+ str_p("order")[assign_a(started, false)] && uint_p[assign_a(orderN)] && uint_p[assign_a(orderD)]
+ ||
+ str_p("order")[assign_a(started, false)] && uint_p[assign_a(orderN)]
+ ||
+ str_p("target-precision") && uint_p[assign_a(target_precision)]
+ ||
+ str_p("working-precision")[assign_a(started, false)] && uint_p[assign_a(working_precision)]
+ ||
+ str_p("variant")[assign_a(started, false)] && int_p[assign_a(variant)]
+ ||
+ str_p("skew")[assign_a(started, false)] && int_p[assign_a(skew)]
+ ||
+ str_p("brake") && int_p[assign_a(brake)]
+ ||
+ str_p("step") && int_p[&step_some]
+ ||
+ str_p("step")[&step]
+ ||
+ str_p("poly")[&graph_poly]
+ ||
+ str_p("info")[&show]
+ ||
+ str_p("graph") && uint_p[&do_graph]
+ ||
+ str_p("graph")[&graph]
+ ||
+ str_p("x-offset") && real_p[assign_a(x_offset)]
+ ||
+ str_p("x-scale") && real_p[assign_a(x_scale)]
+ ||
+ str_p("y-offset") && str_p("auto")[assign_a(auto_offset_y, true)]
+ ||
+ str_p("y-offset") && real_p[assign_a(y_offset)][assign_a(auto_offset_y, false)]
+ ||
+ str_p("test") && str_p("float80") && uint_p[&test_float80_n]
+ ||
+ str_p("test") && str_p("float80")[&test_float80]
+ ||
+ str_p("test") && str_p("float128") && uint_p[&test_float128_n]
+ ||
+ str_p("test") && str_p("float128")[&test_float128]
+ ||
+ str_p("test") && str_p("float") && uint_p[&test_float_n]
+ ||
+ str_p("test") && str_p("float")[&test_float]
+ ||
+ str_p("test") && str_p("double") && uint_p[&test_double_n]
+ ||
+ str_p("test") && str_p("double")[&test_double]
+ ||
+ str_p("test") && str_p("long") && uint_p[&test_long_n]
+ ||
+ str_p("test") && str_p("long")[&test_long]
+ ||
+ str_p("test") && str_p("all")[&test_all]
+ ||
+ str_p("test") && uint_p[&test_n]
+ ||
+ str_p("rotate")[&rotate]
+ ||
+ str_p("rescale") && real_p[assign_a(a)] && real_p[assign_a(b)] && epsilon_p[&rescale]
+
+ ), space_p).full)
+ {
+ std::cout << "Unable to parse directive: \"" << line << "\"" << std::endl;
+ }
+ else
+ {
+ std::cout << "Variant = " << variant << std::endl;
+ std::cout << "range = [" << a << "," << b << "]" << std::endl;
+ std::cout << "Relative Error = " << rel_error << std::endl;
+ std::cout << "Pin to Origin = " << pin << std::endl;
+ std::cout << "Order (Num/Denom) = " << orderN << "/" << orderD << std::endl;
+ std::cout << "Target Precision = " << target_precision << std::endl;
+ std::cout << "Working Precision = " << working_precision << std::endl;
+ std::cout << "Skew = " << skew << std::endl;
+ std::cout << "Brake = " << brake << std::endl;
+ std::cout << "X Offset = " << x_offset << std::endl;
+ std::cout << "X scale = " << x_scale << std::endl;
+ std::cout << "Y Offset = ";
+ if(auto_offset_y)
+ std::cout << "Auto (";
+ std::cout << y_offset;
+ if(auto_offset_y)
+ std::cout << ")";
+ std::cout << std::endl;
+ }
+ }
+}