summaryrefslogtreecommitdiffstats
path: root/src/pybind/mgr/balancer
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
commit483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch)
treee5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/pybind/mgr/balancer
parentInitial commit. (diff)
downloadceph-483eb2f56657e8e7f419ab1a4fab8dce9ade8609.tar.xz
ceph-483eb2f56657e8e7f419ab1a4fab8dce9ade8609.zip
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/pybind/mgr/balancer')
-rw-r--r--src/pybind/mgr/balancer/__init__.py1
-rw-r--r--src/pybind/mgr/balancer/module.py1324
2 files changed, 1325 insertions, 0 deletions
diff --git a/src/pybind/mgr/balancer/__init__.py b/src/pybind/mgr/balancer/__init__.py
new file mode 100644
index 00000000..8f210ac9
--- /dev/null
+++ b/src/pybind/mgr/balancer/__init__.py
@@ -0,0 +1 @@
+from .module import Module
diff --git a/src/pybind/mgr/balancer/module.py b/src/pybind/mgr/balancer/module.py
new file mode 100644
index 00000000..acca915d
--- /dev/null
+++ b/src/pybind/mgr/balancer/module.py
@@ -0,0 +1,1324 @@
+"""
+Balance PG distribution across OSDs.
+"""
+
+import copy
+import errno
+import json
+import math
+import random
+import six
+import time
+from mgr_module import MgrModule, CommandResult
+from threading import Event
+from mgr_module import CRUSHMap
+import datetime
+
+TIME_FORMAT = '%Y-%m-%d_%H:%M:%S'
+
+class MappingState:
+ def __init__(self, osdmap, raw_pg_stats, raw_pool_stats, desc=''):
+ self.desc = desc
+ self.osdmap = osdmap
+ self.osdmap_dump = self.osdmap.dump()
+ self.crush = osdmap.get_crush()
+ self.crush_dump = self.crush.dump()
+ self.raw_pg_stats = raw_pg_stats
+ self.raw_pool_stats = raw_pool_stats
+ self.pg_stat = {
+ i['pgid']: i['stat_sum'] for i in raw_pg_stats.get('pg_stats', [])
+ }
+ osd_poolids = [p['pool'] for p in self.osdmap_dump.get('pools', [])]
+ pg_poolids = [p['poolid'] for p in raw_pool_stats.get('pool_stats', [])]
+ self.poolids = set(osd_poolids) & set(pg_poolids)
+ self.pg_up = {}
+ self.pg_up_by_poolid = {}
+ for poolid in self.poolids:
+ self.pg_up_by_poolid[poolid] = osdmap.map_pool_pgs_up(poolid)
+ for a,b in six.iteritems(self.pg_up_by_poolid[poolid]):
+ self.pg_up[a] = b
+
+ def calc_misplaced_from(self, other_ms):
+ num = len(other_ms.pg_up)
+ misplaced = 0
+ for pgid, before in six.iteritems(other_ms.pg_up):
+ if before != self.pg_up.get(pgid, []):
+ misplaced += 1
+ if num > 0:
+ return float(misplaced) / float(num)
+ return 0.0
+
+class Plan:
+ def __init__(self, name, ms, pools):
+ self.mode = 'unknown'
+ self.name = name
+ self.initial = ms
+ self.pools = pools
+
+ self.osd_weights = {}
+ self.compat_ws = {}
+ self.inc = ms.osdmap.new_incremental()
+
+ def final_state(self):
+ self.inc.set_osd_reweights(self.osd_weights)
+ self.inc.set_crush_compat_weight_set_weights(self.compat_ws)
+ return MappingState(self.initial.osdmap.apply_incremental(self.inc),
+ self.initial.raw_pg_stats,
+ self.initial.raw_pool_stats,
+ 'plan %s final' % self.name)
+
+ def dump(self):
+ return json.dumps(self.inc.dump(), indent=4)
+
+ def show(self):
+ ls = []
+ ls.append('# starting osdmap epoch %d' % self.initial.osdmap.get_epoch())
+ ls.append('# starting crush version %d' %
+ self.initial.osdmap.get_crush_version())
+ ls.append('# mode %s' % self.mode)
+ if len(self.compat_ws) and \
+ not CRUSHMap.have_default_choose_args(self.initial.crush_dump):
+ ls.append('ceph osd crush weight-set create-compat')
+ for osd, weight in six.iteritems(self.compat_ws):
+ ls.append('ceph osd crush weight-set reweight-compat %s %f' %
+ (osd, weight))
+ for osd, weight in six.iteritems(self.osd_weights):
+ ls.append('ceph osd reweight osd.%d %f' % (osd, weight))
+ incdump = self.inc.dump()
+ for pgid in incdump.get('old_pg_upmap_items', []):
+ ls.append('ceph osd rm-pg-upmap-items %s' % pgid)
+ for item in incdump.get('new_pg_upmap_items', []):
+ osdlist = []
+ for m in item['mappings']:
+ osdlist += [m['from'], m['to']]
+ ls.append('ceph osd pg-upmap-items %s %s' %
+ (item['pgid'], ' '.join([str(a) for a in osdlist])))
+ return '\n'.join(ls)
+
+
+class Eval:
+ def __init__(self, ms):
+ self.ms = ms
+ self.root_ids = {} # root name -> id
+ self.pool_name = {} # pool id -> pool name
+ self.pool_id = {} # pool name -> id
+ self.pool_roots = {} # pool name -> root name
+ self.root_pools = {} # root name -> pools
+ self.target_by_root = {} # root name -> target weight map
+ self.count_by_pool = {}
+ self.count_by_root = {}
+ self.actual_by_pool = {} # pool -> by_* -> actual weight map
+ self.actual_by_root = {} # pool -> by_* -> actual weight map
+ self.total_by_pool = {} # pool -> by_* -> total
+ self.total_by_root = {} # root -> by_* -> total
+ self.stats_by_pool = {} # pool -> by_* -> stddev or avg -> value
+ self.stats_by_root = {} # root -> by_* -> stddev or avg -> value
+
+ self.score_by_pool = {}
+ self.score_by_root = {}
+
+ self.score = 0.0
+
+ def show(self, verbose=False):
+ if verbose:
+ r = self.ms.desc + '\n'
+ r += 'target_by_root %s\n' % self.target_by_root
+ r += 'actual_by_pool %s\n' % self.actual_by_pool
+ r += 'actual_by_root %s\n' % self.actual_by_root
+ r += 'count_by_pool %s\n' % self.count_by_pool
+ r += 'count_by_root %s\n' % self.count_by_root
+ r += 'total_by_pool %s\n' % self.total_by_pool
+ r += 'total_by_root %s\n' % self.total_by_root
+ r += 'stats_by_root %s\n' % self.stats_by_root
+ r += 'score_by_pool %s\n' % self.score_by_pool
+ r += 'score_by_root %s\n' % self.score_by_root
+ else:
+ r = self.ms.desc + ' '
+ r += 'score %f (lower is better)\n' % self.score
+ return r
+
+ def calc_stats(self, count, target, total):
+ num = max(len(target), 1)
+ r = {}
+ for t in ('pgs', 'objects', 'bytes'):
+ if total[t] == 0:
+ r[t] = {
+ 'avg': 0,
+ 'stddev': 0,
+ 'sum_weight': 0,
+ 'score': 0,
+ }
+ continue
+
+ avg = float(total[t]) / float(num)
+ dev = 0.0
+
+ # score is a measure of how uneven the data distribution is.
+ # score lies between [0, 1), 0 means perfect distribution.
+ score = 0.0
+ sum_weight = 0.0
+
+ for k, v in six.iteritems(count[t]):
+ # adjust/normalize by weight
+ if target[k]:
+ adjusted = float(v) / target[k] / float(num)
+ else:
+ adjusted = 0.0
+
+ # Overweighted devices and their weights are factors to calculate reweight_urgency.
+ # One 10% underfilled device with 5 2% overfilled devices, is arguably a better
+ # situation than one 10% overfilled with 5 2% underfilled devices
+ if adjusted > avg:
+ '''
+ F(x) = 2*phi(x) - 1, where phi(x) = cdf of standard normal distribution
+ x = (adjusted - avg)/avg.
+ Since, we're considering only over-weighted devices, x >= 0, and so phi(x) lies in [0.5, 1).
+ To bring range of F(x) in range [0, 1), we need to make the above modification.
+
+ In general, we need to use a function F(x), where x = (adjusted - avg)/avg
+ 1. which is bounded between 0 and 1, so that ultimately reweight_urgency will also be bounded.
+ 2. A larger value of x, should imply more urgency to reweight.
+ 3. Also, the difference between F(x) when x is large, should be minimal.
+ 4. The value of F(x) should get close to 1 (highest urgency to reweight) with steeply.
+
+ Could have used F(x) = (1 - e^(-x)). But that had slower convergence to 1, compared to the one currently in use.
+
+ cdf of standard normal distribution: https://stackoverflow.com/a/29273201
+ '''
+ score += target[k] * (math.erf(((adjusted - avg)/avg) / math.sqrt(2.0)))
+ sum_weight += target[k]
+ dev += (avg - adjusted) * (avg - adjusted)
+ stddev = math.sqrt(dev / float(max(num - 1, 1)))
+ score = score / max(sum_weight, 1)
+ r[t] = {
+ 'avg': avg,
+ 'stddev': stddev,
+ 'sum_weight': sum_weight,
+ 'score': score,
+ }
+ return r
+
+class Module(MgrModule):
+ MODULE_OPTIONS = [
+ {
+ 'name': 'active',
+ 'type': 'bool',
+ 'default': False,
+ 'desc': 'automatically balance PGs across cluster',
+ 'runtime': True,
+ },
+ {
+ 'name': 'begin_time',
+ 'type': 'str',
+ 'default': '0000',
+ 'desc': 'beginning time of day to automatically balance',
+ 'long_desc': 'This is a time of day in the format HHMM.',
+ 'runtime': True,
+ },
+ {
+ 'name': 'end_time',
+ 'type': 'str',
+ 'default': '2400',
+ 'desc': 'ending time of day to automatically balance',
+ 'long_desc': 'This is a time of day in the format HHMM.',
+ 'runtime': True,
+ },
+ {
+ 'name': 'begin_weekday',
+ 'type': 'uint',
+ 'default': 0,
+ 'min': 0,
+ 'max': 7,
+ 'desc': 'Restrict automatic balancing to this day of the week or later',
+ 'long_desc': '0 or 7 = Sunday, 1 = Monday, etc.',
+ 'runtime': True,
+ },
+ {
+ 'name': 'end_weekday',
+ 'type': 'uint',
+ 'default': 7,
+ 'min': 0,
+ 'max': 7,
+ 'desc': 'Restrict automatic balancing to days of the week earlier than this',
+ 'long_desc': '0 or 7 = Sunday, 1 = Monday, etc.',
+ 'runtime': True,
+ },
+ {
+ 'name': 'crush_compat_max_iterations',
+ 'type': 'uint',
+ 'default': 25,
+ 'min': 1,
+ 'max': 250,
+ 'desc': 'maximum number of iterations to attempt optimization',
+ 'runtime': True,
+ },
+ {
+ 'name': 'crush_compat_metrics',
+ 'type': 'str',
+ 'default': 'pgs,objects,bytes',
+ 'desc': 'metrics with which to calculate OSD utilization',
+ 'long_desc': 'Value is a list of one or more of "pgs", "objects", or "bytes", and indicates which metrics to use to balance utilization.',
+ 'runtime': True,
+ },
+ {
+ 'name': 'crush_compat_step',
+ 'type': 'float',
+ 'default': .5,
+ 'min': .001,
+ 'max': .999,
+ 'desc': 'aggressiveness of optimization',
+ 'long_desc': '.99 is very aggressive, .01 is less aggressive',
+ 'runtime': True,
+ },
+ {
+ 'name': 'min_score',
+ 'type': 'float',
+ 'default': 0,
+ 'desc': 'minimum score, below which no optimization is attempted',
+ 'runtime': True,
+ },
+ {
+ 'name': 'mode',
+ 'desc': 'Balancer mode',
+ 'default': 'none',
+ 'enum_allowed': ['none', 'crush-compat', 'upmap'],
+ 'runtime': True,
+ },
+ {
+ 'name': 'sleep_interval',
+ 'type': 'secs',
+ 'default': 60,
+ 'desc': 'how frequently to wake up and attempt optimization',
+ 'runtime': True,
+ },
+ {
+ 'name': 'upmap_max_iterations',
+ 'type': 'uint',
+ 'default': 10,
+ 'desc': 'maximum upmap optimization iterations',
+ 'runtime': True,
+ },
+ {
+ 'name': 'upmap_max_deviation',
+ 'type': 'int',
+ 'default': 5,
+ 'min': 1,
+ 'desc': 'deviation below which no optimization is attempted',
+ 'long_desc': 'If the number of PGs are within this count then no optimization is attempted',
+ 'runtime': True,
+ },
+ {
+ 'name': 'pool_ids',
+ 'type': 'str',
+ 'default': '',
+ 'desc': 'pools which the automatic balancing will be limited to',
+ 'runtime': True,
+ },
+ ]
+
+ COMMANDS = [
+ {
+ "cmd": "balancer status",
+ "desc": "Show balancer status",
+ "perm": "r",
+ },
+ {
+ "cmd": "balancer mode name=mode,type=CephChoices,strings=none|crush-compat|upmap",
+ "desc": "Set balancer mode",
+ "perm": "rw",
+ },
+ {
+ "cmd": "balancer on",
+ "desc": "Enable automatic balancing",
+ "perm": "rw",
+ },
+ {
+ "cmd": "balancer off",
+ "desc": "Disable automatic balancing",
+ "perm": "rw",
+ },
+ {
+ "cmd": "balancer pool ls",
+ "desc": "List automatic balancing pools. "
+ "Note that empty list means all existing pools will be automatic balancing targets, "
+ "which is the default behaviour of balancer.",
+ "perm": "r",
+ },
+ {
+ "cmd": "balancer pool add name=pools,type=CephString,n=N",
+ "desc": "Enable automatic balancing for specific pools",
+ "perm": "rw",
+ },
+ {
+ "cmd": "balancer pool rm name=pools,type=CephString,n=N",
+ "desc": "Disable automatic balancing for specific pools",
+ "perm": "rw",
+ },
+ {
+ "cmd": "balancer eval name=option,type=CephString,req=false",
+ "desc": "Evaluate data distribution for the current cluster or specific pool or specific plan",
+ "perm": "r",
+ },
+ {
+ "cmd": "balancer eval-verbose name=option,type=CephString,req=false",
+ "desc": "Evaluate data distribution for the current cluster or specific pool or specific plan (verbosely)",
+ "perm": "r",
+ },
+ {
+ "cmd": "balancer optimize name=plan,type=CephString name=pools,type=CephString,n=N,req=false",
+ "desc": "Run optimizer to create a new plan",
+ "perm": "rw",
+ },
+ {
+ "cmd": "balancer show name=plan,type=CephString",
+ "desc": "Show details of an optimization plan",
+ "perm": "r",
+ },
+ {
+ "cmd": "balancer rm name=plan,type=CephString",
+ "desc": "Discard an optimization plan",
+ "perm": "rw",
+ },
+ {
+ "cmd": "balancer reset",
+ "desc": "Discard all optimization plans",
+ "perm": "rw",
+ },
+ {
+ "cmd": "balancer dump name=plan,type=CephString",
+ "desc": "Show an optimization plan",
+ "perm": "r",
+ },
+ {
+ "cmd": "balancer ls",
+ "desc": "List all plans",
+ "perm": "r",
+ },
+ {
+ "cmd": "balancer execute name=plan,type=CephString",
+ "desc": "Execute an optimization plan",
+ "perm": "rw",
+ },
+ ]
+ active = False
+ run = True
+ plans = {}
+ mode = ''
+ optimizing = False
+ last_optimize_started = ''
+ last_optimize_duration = ''
+ optimize_result = ''
+ success_string = 'Optimization plan created successfully'
+ in_progress_string = 'in progress'
+
+ def __init__(self, *args, **kwargs):
+ super(Module, self).__init__(*args, **kwargs)
+ self.event = Event()
+
+ def handle_command(self, inbuf, command):
+ self.log.warn("Handling command: '%s'" % str(command))
+ if command['prefix'] == 'balancer status':
+ s = {
+ 'plans': list(self.plans.keys()),
+ 'active': self.active,
+ 'last_optimize_started': self.last_optimize_started,
+ 'last_optimize_duration': self.last_optimize_duration,
+ 'optimize_result': self.optimize_result,
+ 'mode': self.get_module_option('mode'),
+ }
+ return (0, json.dumps(s, indent=4), '')
+ elif command['prefix'] == 'balancer mode':
+ if command['mode'] == 'upmap':
+ min_compat_client = self.get_osdmap().dump().get('require_min_compat_client', '')
+ if min_compat_client < 'luminous': # works well because version is alphabetized..
+ warn = 'min_compat_client "%s" ' \
+ '< "luminous", which is required for pg-upmap. ' \
+ 'Try "ceph osd set-require-min-compat-client luminous" ' \
+ 'before enabling this mode' % min_compat_client
+ return (-errno.EPERM, '', warn)
+ elif command['mode'] == 'crush-compat':
+ ms = MappingState(self.get_osdmap(),
+ self.get("pg_stats"),
+ self.get("pool_stats"),
+ 'initialize compat weight-set')
+ self.get_compat_weight_set_weights(ms) # ignore error
+ self.set_module_option('mode', command['mode'])
+ return (0, '', '')
+ elif command['prefix'] == 'balancer on':
+ if not self.active:
+ self.set_module_option('active', 'true')
+ self.active = True
+ self.event.set()
+ return (0, '', '')
+ elif command['prefix'] == 'balancer off':
+ if self.active:
+ self.set_module_option('active', 'false')
+ self.active = False
+ self.event.set()
+ return (0, '', '')
+ elif command['prefix'] == 'balancer pool ls':
+ pool_ids = self.get_module_option('pool_ids')
+ if pool_ids == '':
+ return (0, '', '')
+ pool_ids = pool_ids.split(',')
+ pool_ids = [int(p) for p in pool_ids]
+ pool_name_by_id = dict((p['pool'], p['pool_name']) for p in self.get_osdmap().dump().get('pools', []))
+ should_prune = False
+ final_ids = []
+ final_names = []
+ for p in pool_ids:
+ if p in pool_name_by_id:
+ final_ids.append(p)
+ final_names.append(pool_name_by_id[p])
+ else:
+ should_prune = True
+ if should_prune: # some pools were gone, prune
+ self.set_module_option('pool_ids', ','.join(final_ids))
+ return (0, json.dumps(final_names, indent=4), '')
+ elif command['prefix'] == 'balancer pool add':
+ raw_names = command['pools']
+ pool_id_by_name = dict((p['pool_name'], p['pool']) for p in self.get_osdmap().dump().get('pools', []))
+ invalid_names = [p for p in raw_names if p not in pool_id_by_name]
+ if invalid_names:
+ return (-errno.EINVAL, '', 'pool(s) %s not found' % invalid_names)
+ to_add = [str(pool_id_by_name[p]) for p in raw_names if p in pool_id_by_name]
+ existing = self.get_module_option('pool_ids')
+ final = to_add
+ if existing != '':
+ existing = existing.split(',')
+ final = set(to_add) | set(existing)
+ self.set_module_option('pool_ids', ','.join(final))
+ return (0, '', '')
+ elif command['prefix'] == 'balancer pool rm':
+ raw_names = command['pools']
+ existing = self.get_module_option('pool_ids')
+ if existing == '': # for idempotence
+ return (0, '', '')
+ existing = existing.split(',')
+ osdmap = self.get_osdmap()
+ pool_ids = [str(p['pool']) for p in osdmap.dump().get('pools', [])]
+ pool_id_by_name = dict((p['pool_name'], p['pool']) for p in osdmap.dump().get('pools', []))
+ final = [p for p in existing if p in pool_ids]
+ to_delete = [str(pool_id_by_name[p]) for p in raw_names if p in pool_id_by_name]
+ final = set(final) - set(to_delete)
+ self.set_module_option('pool_ids', ','.join(final))
+ return (0, '', '')
+ elif command['prefix'] == 'balancer eval' or command['prefix'] == 'balancer eval-verbose':
+ verbose = command['prefix'] == 'balancer eval-verbose'
+ pools = []
+ if 'option' in command:
+ plan = self.plans.get(command['option'])
+ if not plan:
+ # not a plan, does it look like a pool?
+ osdmap = self.get_osdmap()
+ valid_pool_names = [p['pool_name'] for p in osdmap.dump().get('pools', [])]
+ option = command['option']
+ if option not in valid_pool_names:
+ return (-errno.EINVAL, '', 'option "%s" not a plan or a pool' % option)
+ pools.append(option)
+ ms = MappingState(osdmap, self.get("pg_stats"), self.get("pool_stats"), 'pool "%s"' % option)
+ else:
+ pools = plan.pools
+ ms = plan.final_state()
+ else:
+ ms = MappingState(self.get_osdmap(),
+ self.get("pg_stats"),
+ self.get("pool_stats"),
+ 'current cluster')
+ return (0, self.evaluate(ms, pools, verbose=verbose), '')
+ elif command['prefix'] == 'balancer optimize':
+ # The GIL can be release by the active balancer, so disallow when active
+ if self.active:
+ return (-errno.EINVAL, '', 'Balancer enabled, disable to optimize manually')
+ if self.optimizing:
+ return (-errno.EINVAL, '', 'Balancer finishing up....try again')
+ pools = []
+ if 'pools' in command:
+ pools = command['pools']
+ osdmap = self.get_osdmap()
+ valid_pool_names = [p['pool_name'] for p in osdmap.dump().get('pools', [])]
+ invalid_pool_names = []
+ for p in pools:
+ if p not in valid_pool_names:
+ invalid_pool_names.append(p)
+ if len(invalid_pool_names):
+ return (-errno.EINVAL, '', 'pools %s not found' % invalid_pool_names)
+ plan = self.plan_create(command['plan'], osdmap, pools)
+ self.last_optimize_started = time.asctime(time.localtime())
+ self.optimize_result = self.in_progress_string
+ start = time.time()
+ r, detail = self.optimize(plan)
+ end = time.time()
+ self.last_optimize_duration = str(datetime.timedelta(seconds=(end - start)))
+ if r == 0:
+ # Add plan if an optimization was created
+ self.optimize_result = self.success_string
+ self.plans[command['plan']] = plan
+ else:
+ self.optimize_result = detail
+ return (r, '', detail)
+ elif command['prefix'] == 'balancer rm':
+ self.plan_rm(command['plan'])
+ return (0, '', '')
+ elif command['prefix'] == 'balancer reset':
+ self.plans = {}
+ return (0, '', '')
+ elif command['prefix'] == 'balancer ls':
+ return (0, json.dumps([p for p in self.plans], indent=4), '')
+ elif command['prefix'] == 'balancer dump':
+ plan = self.plans.get(command['plan'])
+ if not plan:
+ return (-errno.ENOENT, '', 'plan %s not found' % command['plan'])
+ return (0, plan.dump(), '')
+ elif command['prefix'] == 'balancer show':
+ plan = self.plans.get(command['plan'])
+ if not plan:
+ return (-errno.ENOENT, '', 'plan %s not found' % command['plan'])
+ return (0, plan.show(), '')
+ elif command['prefix'] == 'balancer execute':
+ # The GIL can be release by the active balancer, so disallow when active
+ if self.active:
+ return (-errno.EINVAL, '', 'Balancer enabled, disable to execute a plan')
+ if self.optimizing:
+ return (-errno.EINVAL, '', 'Balancer finishing up....try again')
+ plan = self.plans.get(command['plan'])
+ if not plan:
+ return (-errno.ENOENT, '', 'plan %s not found' % command['plan'])
+ r, detail = self.execute(plan)
+ self.plan_rm(command['plan'])
+ return (r, '', detail)
+ else:
+ return (-errno.EINVAL, '',
+ "Command not found '{0}'".format(command['prefix']))
+
+ def shutdown(self):
+ self.log.info('Stopping')
+ self.run = False
+ self.event.set()
+
+ def time_permit(self):
+ local_time = time.localtime()
+ time_of_day = time.strftime('%H%M', local_time)
+ weekday = (local_time.tm_wday + 1) % 7 # be compatible with C
+ permit = False
+
+ begin_time = self.get_module_option('begin_time')
+ end_time = self.get_module_option('end_time')
+ if begin_time <= end_time:
+ permit = begin_time <= time_of_day < end_time
+ else:
+ permit = time_of_day >= begin_time or time_of_day < end_time
+ if not permit:
+ self.log.debug("should run between %s - %s, now %s, skipping",
+ begin_time, end_time, time_of_day)
+ return False
+
+ begin_weekday = self.get_module_option('begin_weekday')
+ end_weekday = self.get_module_option('end_weekday')
+ if begin_weekday <= end_weekday:
+ permit = begin_weekday <= weekday < end_weekday
+ else:
+ permit = weekday >= begin_weekday or weekday < end_weekday
+ if not permit:
+ self.log.debug("should run between weekday %d - %d, now %d, skipping",
+ begin_weekday, end_weekday, weekday)
+ return False
+
+ return True
+
+ def serve(self):
+ self.log.info('Starting')
+ while self.run:
+ self.active = self.get_module_option('active')
+ sleep_interval = self.get_module_option('sleep_interval')
+ self.log.debug('Waking up [%s, now %s]',
+ "active" if self.active else "inactive",
+ time.strftime(TIME_FORMAT, time.localtime()))
+ if self.active and self.time_permit():
+ self.log.debug('Running')
+ name = 'auto_%s' % time.strftime(TIME_FORMAT, time.gmtime())
+ osdmap = self.get_osdmap()
+ allow = self.get_module_option('pool_ids')
+ final = []
+ if allow != '':
+ allow = allow.split(',')
+ valid = [str(p['pool']) for p in osdmap.dump().get('pools', [])]
+ final = set(allow) & set(valid)
+ if set(allow) - set(valid): # some pools were gone, prune
+ self.set_module_option('pool_ids', ','.join(final))
+ pool_name_by_id = dict((p['pool'], p['pool_name']) for p in osdmap.dump().get('pools', []))
+ final = [int(p) for p in final]
+ final = [pool_name_by_id[p] for p in final if p in pool_name_by_id]
+ plan = self.plan_create(name, osdmap, final)
+ self.optimizing = True
+ self.last_optimize_started = time.asctime(time.localtime())
+ self.optimize_result = self.in_progress_string
+ start = time.time()
+ r, detail = self.optimize(plan)
+ end = time.time()
+ self.last_optimize_duration = str(datetime.timedelta(seconds=(end - start)))
+ if r == 0:
+ self.optimize_result = self.success_string
+ self.execute(plan)
+ else:
+ self.optimize_result = detail
+ self.optimizing = False
+ self.log.debug('Sleeping for %d', sleep_interval)
+ self.event.wait(sleep_interval)
+ self.event.clear()
+
+ def plan_create(self, name, osdmap, pools):
+ plan = Plan(name,
+ MappingState(osdmap,
+ self.get("pg_stats"),
+ self.get("pool_stats"),
+ 'plan %s initial' % name),
+ pools)
+ return plan
+
+ def plan_rm(self, name):
+ if name in self.plans:
+ del self.plans[name]
+
+ def calc_eval(self, ms, pools):
+ pe = Eval(ms)
+ pool_rule = {}
+ pool_info = {}
+ for p in ms.osdmap_dump.get('pools',[]):
+ if len(pools) and p['pool_name'] not in pools:
+ continue
+ # skip dead or not-yet-ready pools too
+ if p['pool'] not in ms.poolids:
+ continue
+ pe.pool_name[p['pool']] = p['pool_name']
+ pe.pool_id[p['pool_name']] = p['pool']
+ pool_rule[p['pool_name']] = p['crush_rule']
+ pe.pool_roots[p['pool_name']] = []
+ pool_info[p['pool_name']] = p
+ if len(pool_info) == 0:
+ return pe
+ self.log.debug('pool_name %s' % pe.pool_name)
+ self.log.debug('pool_id %s' % pe.pool_id)
+ self.log.debug('pools %s' % pools)
+ self.log.debug('pool_rule %s' % pool_rule)
+
+ osd_weight = { a['osd']: a['weight']
+ for a in ms.osdmap_dump.get('osds',[]) if a['weight'] > 0 }
+
+ # get expected distributions by root
+ actual_by_root = {}
+ rootids = ms.crush.find_takes()
+ roots = []
+ for rootid in rootids:
+ ls = ms.osdmap.get_pools_by_take(rootid)
+ want = []
+ # find out roots associating with pools we are passed in
+ for candidate in ls:
+ if candidate in pe.pool_name:
+ want.append(candidate)
+ if len(want) == 0:
+ continue
+ root = ms.crush.get_item_name(rootid)
+ pe.root_pools[root] = []
+ for poolid in want:
+ pe.pool_roots[pe.pool_name[poolid]].append(root)
+ pe.root_pools[root].append(pe.pool_name[poolid])
+ pe.root_ids[root] = rootid
+ roots.append(root)
+ weight_map = ms.crush.get_take_weight_osd_map(rootid)
+ adjusted_map = {
+ osd: cw * osd_weight[osd]
+ for osd,cw in six.iteritems(weight_map) if osd in osd_weight and cw > 0
+ }
+ sum_w = sum(adjusted_map.values())
+ assert len(adjusted_map) == 0 or sum_w > 0
+ pe.target_by_root[root] = { osd: w / sum_w
+ for osd,w in six.iteritems(adjusted_map) }
+ actual_by_root[root] = {
+ 'pgs': {},
+ 'objects': {},
+ 'bytes': {},
+ }
+ for osd in pe.target_by_root[root]:
+ actual_by_root[root]['pgs'][osd] = 0
+ actual_by_root[root]['objects'][osd] = 0
+ actual_by_root[root]['bytes'][osd] = 0
+ pe.total_by_root[root] = {
+ 'pgs': 0,
+ 'objects': 0,
+ 'bytes': 0,
+ }
+ self.log.debug('pool_roots %s' % pe.pool_roots)
+ self.log.debug('root_pools %s' % pe.root_pools)
+ self.log.debug('target_by_root %s' % pe.target_by_root)
+
+ # pool and root actual
+ for pool, pi in six.iteritems(pool_info):
+ poolid = pi['pool']
+ pm = ms.pg_up_by_poolid[poolid]
+ pgs = 0
+ objects = 0
+ bytes = 0
+ pgs_by_osd = {}
+ objects_by_osd = {}
+ bytes_by_osd = {}
+ for pgid, up in six.iteritems(pm):
+ for osd in [int(osd) for osd in up]:
+ if osd == CRUSHMap.ITEM_NONE:
+ continue
+ if osd not in pgs_by_osd:
+ pgs_by_osd[osd] = 0
+ objects_by_osd[osd] = 0
+ bytes_by_osd[osd] = 0
+ pgs_by_osd[osd] += 1
+ objects_by_osd[osd] += ms.pg_stat[pgid]['num_objects']
+ bytes_by_osd[osd] += ms.pg_stat[pgid]['num_bytes']
+ # pick a root to associate this pg instance with.
+ # note that this is imprecise if the roots have
+ # overlapping children.
+ # FIXME: divide bytes by k for EC pools.
+ for root in pe.pool_roots[pool]:
+ if osd in pe.target_by_root[root]:
+ actual_by_root[root]['pgs'][osd] += 1
+ actual_by_root[root]['objects'][osd] += ms.pg_stat[pgid]['num_objects']
+ actual_by_root[root]['bytes'][osd] += ms.pg_stat[pgid]['num_bytes']
+ pgs += 1
+ objects += ms.pg_stat[pgid]['num_objects']
+ bytes += ms.pg_stat[pgid]['num_bytes']
+ pe.total_by_root[root]['pgs'] += 1
+ pe.total_by_root[root]['objects'] += ms.pg_stat[pgid]['num_objects']
+ pe.total_by_root[root]['bytes'] += ms.pg_stat[pgid]['num_bytes']
+ break
+ pe.count_by_pool[pool] = {
+ 'pgs': {
+ k: v
+ for k, v in six.iteritems(pgs_by_osd)
+ },
+ 'objects': {
+ k: v
+ for k, v in six.iteritems(objects_by_osd)
+ },
+ 'bytes': {
+ k: v
+ for k, v in six.iteritems(bytes_by_osd)
+ },
+ }
+ pe.actual_by_pool[pool] = {
+ 'pgs': {
+ k: float(v) / float(max(pgs, 1))
+ for k, v in six.iteritems(pgs_by_osd)
+ },
+ 'objects': {
+ k: float(v) / float(max(objects, 1))
+ for k, v in six.iteritems(objects_by_osd)
+ },
+ 'bytes': {
+ k: float(v) / float(max(bytes, 1))
+ for k, v in six.iteritems(bytes_by_osd)
+ },
+ }
+ pe.total_by_pool[pool] = {
+ 'pgs': pgs,
+ 'objects': objects,
+ 'bytes': bytes,
+ }
+ for root in pe.total_by_root:
+ pe.count_by_root[root] = {
+ 'pgs': {
+ k: float(v)
+ for k, v in six.iteritems(actual_by_root[root]['pgs'])
+ },
+ 'objects': {
+ k: float(v)
+ for k, v in six.iteritems(actual_by_root[root]['objects'])
+ },
+ 'bytes': {
+ k: float(v)
+ for k, v in six.iteritems(actual_by_root[root]['bytes'])
+ },
+ }
+ pe.actual_by_root[root] = {
+ 'pgs': {
+ k: float(v) / float(max(pe.total_by_root[root]['pgs'], 1))
+ for k, v in six.iteritems(actual_by_root[root]['pgs'])
+ },
+ 'objects': {
+ k: float(v) / float(max(pe.total_by_root[root]['objects'], 1))
+ for k, v in six.iteritems(actual_by_root[root]['objects'])
+ },
+ 'bytes': {
+ k: float(v) / float(max(pe.total_by_root[root]['bytes'], 1))
+ for k, v in six.iteritems(actual_by_root[root]['bytes'])
+ },
+ }
+ self.log.debug('actual_by_pool %s' % pe.actual_by_pool)
+ self.log.debug('actual_by_root %s' % pe.actual_by_root)
+
+ # average and stddev and score
+ pe.stats_by_root = {
+ a: pe.calc_stats(
+ b,
+ pe.target_by_root[a],
+ pe.total_by_root[a]
+ ) for a, b in six.iteritems(pe.count_by_root)
+ }
+ self.log.debug('stats_by_root %s' % pe.stats_by_root)
+
+ # the scores are already normalized
+ pe.score_by_root = {
+ r: {
+ 'pgs': pe.stats_by_root[r]['pgs']['score'],
+ 'objects': pe.stats_by_root[r]['objects']['score'],
+ 'bytes': pe.stats_by_root[r]['bytes']['score'],
+ } for r in pe.total_by_root.keys()
+ }
+ self.log.debug('score_by_root %s' % pe.score_by_root)
+
+ # get the list of score metrics, comma separated
+ metrics = self.get_module_option('crush_compat_metrics').split(',')
+
+ # total score is just average of normalized stddevs
+ pe.score = 0.0
+ for r, vs in six.iteritems(pe.score_by_root):
+ for k, v in six.iteritems(vs):
+ if k in metrics:
+ pe.score += v
+ pe.score /= len(metrics) * len(roots)
+ return pe
+
+ def evaluate(self, ms, pools, verbose=False):
+ pe = self.calc_eval(ms, pools)
+ return pe.show(verbose=verbose)
+
+ def optimize(self, plan):
+ self.log.info('Optimize plan %s' % plan.name)
+ plan.mode = self.get_module_option('mode')
+ max_misplaced = float(self.get_ceph_option('target_max_misplaced_ratio'))
+ self.log.info('Mode %s, max misplaced %f' %
+ (plan.mode, max_misplaced))
+
+ info = self.get('pg_status')
+ unknown = info.get('unknown_pgs_ratio', 0.0)
+ degraded = info.get('degraded_ratio', 0.0)
+ inactive = info.get('inactive_pgs_ratio', 0.0)
+ misplaced = info.get('misplaced_ratio', 0.0)
+ self.log.debug('unknown %f degraded %f inactive %f misplaced %g',
+ unknown, degraded, inactive, misplaced)
+ if unknown > 0.0:
+ detail = 'Some PGs (%f) are unknown; try again later' % unknown
+ self.log.info(detail)
+ return -errno.EAGAIN, detail
+ elif degraded > 0.0:
+ detail = 'Some objects (%f) are degraded; try again later' % degraded
+ self.log.info(detail)
+ return -errno.EAGAIN, detail
+ elif inactive > 0.0:
+ detail = 'Some PGs (%f) are inactive; try again later' % inactive
+ self.log.info(detail)
+ return -errno.EAGAIN, detail
+ elif misplaced >= max_misplaced:
+ detail = 'Too many objects (%f > %f) are misplaced; ' \
+ 'try again later' % (misplaced, max_misplaced)
+ self.log.info(detail)
+ return -errno.EAGAIN, detail
+ else:
+ if plan.mode == 'upmap':
+ return self.do_upmap(plan)
+ elif plan.mode == 'crush-compat':
+ return self.do_crush_compat(plan)
+ elif plan.mode == 'none':
+ detail = 'Please do "ceph balancer mode" to choose a valid mode first'
+ self.log.info('Idle')
+ return -errno.ENOEXEC, detail
+ else:
+ detail = 'Unrecognized mode %s' % plan.mode
+ self.log.info(detail)
+ return -errno.EINVAL, detail
+ ##
+
+ def do_upmap(self, plan):
+ self.log.info('do_upmap')
+ max_iterations = self.get_module_option('upmap_max_iterations')
+ max_deviation = self.get_module_option('upmap_max_deviation')
+
+ ms = plan.initial
+ if len(plan.pools):
+ pools = plan.pools
+ else: # all
+ pools = [str(i['pool_name']) for i in ms.osdmap_dump.get('pools',[])]
+ if len(pools) == 0:
+ detail = 'No pools available'
+ self.log.info(detail)
+ return -errno.ENOENT, detail
+ # shuffle pool list so they all get equal (in)attention
+ random.shuffle(pools)
+ self.log.info('pools %s' % pools)
+
+ adjusted_pools = []
+ inc = plan.inc
+ total_did = 0
+ left = max_iterations
+ osdmap_dump = self.get_osdmap().dump()
+ pools_with_pg_merge = [p['pool_name'] for p in osdmap_dump.get('pools', [])
+ if p['pg_num'] > p['pg_num_target']]
+ crush_rule_by_pool_name = dict((p['pool_name'], p['crush_rule']) for p in osdmap_dump.get('pools', []))
+ for pool in pools:
+ if pool not in crush_rule_by_pool_name:
+ self.log.info('pool %s does not exist' % pool)
+ continue
+ if pool in pools_with_pg_merge:
+ self.log.info('pool %s has pending PG(s) for merging, skipping for now' % pool)
+ continue
+ adjusted_pools.append(pool)
+ # shuffle so all pools get equal (in)attention
+ random.shuffle(adjusted_pools)
+ for pool in adjusted_pools:
+ did = ms.osdmap.calc_pg_upmaps(inc, max_deviation, left, [pool])
+ total_did += did
+ left -= did
+ if left <= 0:
+ break
+ self.log.info('prepared %d/%d changes' % (total_did, max_iterations))
+ if total_did == 0:
+ return -errno.EALREADY, 'Unable to find further optimization, ' \
+ 'or pool(s) pg_num is decreasing, ' \
+ 'or distribution is already perfect'
+ return 0, ''
+
+ def do_crush_compat(self, plan):
+ self.log.info('do_crush_compat')
+ max_iterations = self.get_module_option('crush_compat_max_iterations')
+ if max_iterations < 1:
+ return -errno.EINVAL, '"crush_compat_max_iterations" must be >= 1'
+ step = self.get_module_option('crush_compat_step')
+ if step <= 0 or step >= 1.0:
+ return -errno.EINVAL, '"crush_compat_step" must be in (0, 1)'
+ max_misplaced = float(self.get_ceph_option('target_max_misplaced_ratio'))
+ min_pg_per_osd = 2
+
+ ms = plan.initial
+ osdmap = ms.osdmap
+ crush = osdmap.get_crush()
+ pe = self.calc_eval(ms, plan.pools)
+ min_score_to_optimize = self.get_module_option('min_score')
+ if pe.score <= min_score_to_optimize:
+ if pe.score == 0:
+ detail = 'Distribution is already perfect'
+ else:
+ detail = 'score %f <= min_score %f, will not optimize' \
+ % (pe.score, min_score_to_optimize)
+ self.log.info(detail)
+ return -errno.EALREADY, detail
+
+ # get current osd reweights
+ orig_osd_weight = { a['osd']: a['weight']
+ for a in ms.osdmap_dump.get('osds',[]) }
+ reweighted_osds = [ a for a,b in six.iteritems(orig_osd_weight)
+ if b < 1.0 and b > 0.0 ]
+
+ # get current compat weight-set weights
+ orig_ws = self.get_compat_weight_set_weights(ms)
+ if not orig_ws:
+ return -errno.EAGAIN, 'compat weight-set not available'
+ orig_ws = { a: b for a, b in six.iteritems(orig_ws) if a >= 0 }
+
+ # Make sure roots don't overlap their devices. If so, we
+ # can't proceed.
+ roots = list(pe.target_by_root.keys())
+ self.log.debug('roots %s', roots)
+ visited = {}
+ overlap = {}
+ root_ids = {}
+ for root, wm in six.iteritems(pe.target_by_root):
+ for osd in wm:
+ if osd in visited:
+ if osd not in overlap:
+ overlap[osd] = [ visited[osd] ]
+ overlap[osd].append(root)
+ visited[osd] = root
+ if len(overlap) > 0:
+ detail = 'Some osds belong to multiple subtrees: %s' % \
+ overlap
+ self.log.error(detail)
+ return -errno.EOPNOTSUPP, detail
+
+ # rebalance by pgs, objects, or bytes
+ metrics = self.get_module_option('crush_compat_metrics').split(',')
+ key = metrics[0] # balancing using the first score metric
+ if key not in ['pgs', 'bytes', 'objects']:
+ self.log.warn("Invalid crush_compat balancing key %s. Using 'pgs'." % key)
+ key = 'pgs'
+
+ # go
+ best_ws = copy.deepcopy(orig_ws)
+ best_ow = copy.deepcopy(orig_osd_weight)
+ best_pe = pe
+ left = max_iterations
+ bad_steps = 0
+ next_ws = copy.deepcopy(best_ws)
+ next_ow = copy.deepcopy(best_ow)
+ while left > 0:
+ # adjust
+ self.log.debug('best_ws %s' % best_ws)
+ random.shuffle(roots)
+ for root in roots:
+ pools = best_pe.root_pools[root]
+ osds = len(best_pe.target_by_root[root])
+ min_pgs = osds * min_pg_per_osd
+ if best_pe.total_by_root[root][key] < min_pgs:
+ self.log.info('Skipping root %s (pools %s), total pgs %d '
+ '< minimum %d (%d per osd)',
+ root, pools,
+ best_pe.total_by_root[root][key],
+ min_pgs, min_pg_per_osd)
+ continue
+ self.log.info('Balancing root %s (pools %s) by %s' %
+ (root, pools, key))
+ target = best_pe.target_by_root[root]
+ actual = best_pe.actual_by_root[root][key]
+ queue = sorted(actual.keys(),
+ key=lambda osd: -abs(target[osd] - actual[osd]))
+ for osd in queue:
+ if orig_osd_weight[osd] == 0:
+ self.log.debug('skipping out osd.%d', osd)
+ else:
+ deviation = target[osd] - actual[osd]
+ if deviation == 0:
+ break
+ self.log.debug('osd.%d deviation %f', osd, deviation)
+ weight = best_ws[osd]
+ ow = orig_osd_weight[osd]
+ if actual[osd] > 0:
+ calc_weight = target[osd] / actual[osd] * weight * ow
+ else:
+ # for newly created osds, reset calc_weight at target value
+ # this way weight-set will end up absorbing *step* of its
+ # target (final) value at the very beginning and slowly catch up later.
+ # note that if this turns out causing too many misplaced
+ # pgs, then we'll reduce step and retry
+ calc_weight = target[osd]
+ new_weight = weight * (1.0 - step) + calc_weight * step
+ self.log.debug('Reweight osd.%d %f -> %f', osd, weight,
+ new_weight)
+ next_ws[osd] = new_weight
+ if ow < 1.0:
+ new_ow = min(1.0, max(step + (1.0 - step) * ow,
+ ow + .005))
+ self.log.debug('Reweight osd.%d reweight %f -> %f',
+ osd, ow, new_ow)
+ next_ow[osd] = new_ow
+
+ # normalize weights under this root
+ root_weight = crush.get_item_weight(pe.root_ids[root])
+ root_sum = sum(b for a,b in six.iteritems(next_ws)
+ if a in target.keys())
+ if root_sum > 0 and root_weight > 0:
+ factor = root_sum / root_weight
+ self.log.debug('normalizing root %s %d, weight %f, '
+ 'ws sum %f, factor %f',
+ root, pe.root_ids[root], root_weight,
+ root_sum, factor)
+ for osd in actual.keys():
+ next_ws[osd] = next_ws[osd] / factor
+
+ # recalc
+ plan.compat_ws = copy.deepcopy(next_ws)
+ next_ms = plan.final_state()
+ next_pe = self.calc_eval(next_ms, plan.pools)
+ next_misplaced = next_ms.calc_misplaced_from(ms)
+ self.log.debug('Step result score %f -> %f, misplacing %f',
+ best_pe.score, next_pe.score, next_misplaced)
+
+ if next_misplaced > max_misplaced:
+ if best_pe.score < pe.score:
+ self.log.debug('Step misplaced %f > max %f, stopping',
+ next_misplaced, max_misplaced)
+ break
+ step /= 2.0
+ next_ws = copy.deepcopy(best_ws)
+ next_ow = copy.deepcopy(best_ow)
+ self.log.debug('Step misplaced %f > max %f, reducing step to %f',
+ next_misplaced, max_misplaced, step)
+ else:
+ if next_pe.score > best_pe.score * 1.0001:
+ bad_steps += 1
+ if bad_steps < 5 and random.randint(0, 100) < 70:
+ self.log.debug('Score got worse, taking another step')
+ else:
+ step /= 2.0
+ next_ws = copy.deepcopy(best_ws)
+ next_ow = copy.deepcopy(best_ow)
+ self.log.debug('Score got worse, trying smaller step %f',
+ step)
+ else:
+ bad_steps = 0
+ best_pe = next_pe
+ best_ws = copy.deepcopy(next_ws)
+ best_ow = copy.deepcopy(next_ow)
+ if best_pe.score == 0:
+ break
+ left -= 1
+
+ # allow a small regression if we are phasing out osd weights
+ fudge = 0
+ if best_ow != orig_osd_weight:
+ fudge = .001
+
+ if best_pe.score < pe.score + fudge:
+ self.log.info('Success, score %f -> %f', pe.score, best_pe.score)
+ plan.compat_ws = best_ws
+ for osd, w in six.iteritems(best_ow):
+ if w != orig_osd_weight[osd]:
+ self.log.debug('osd.%d reweight %f', osd, w)
+ plan.osd_weights[osd] = w
+ return 0, ''
+ else:
+ self.log.info('Failed to find further optimization, score %f',
+ pe.score)
+ plan.compat_ws = {}
+ return -errno.EDOM, 'Unable to find further optimization, ' \
+ 'change balancer mode and retry might help'
+
+ def get_compat_weight_set_weights(self, ms):
+ if not CRUSHMap.have_default_choose_args(ms.crush_dump):
+ # enable compat weight-set first
+ self.log.debug('ceph osd crush weight-set create-compat')
+ result = CommandResult('')
+ self.send_command(result, 'mon', '', json.dumps({
+ 'prefix': 'osd crush weight-set create-compat',
+ 'format': 'json',
+ }), '')
+ r, outb, outs = result.wait()
+ if r != 0:
+ self.log.error('Error creating compat weight-set')
+ return
+
+ result = CommandResult('')
+ self.send_command(result, 'mon', '', json.dumps({
+ 'prefix': 'osd crush dump',
+ 'format': 'json',
+ }), '')
+ r, outb, outs = result.wait()
+ if r != 0:
+ self.log.error('Error dumping crush map')
+ return
+ try:
+ crushmap = json.loads(outb)
+ except:
+ raise RuntimeError('unable to parse crush map')
+ else:
+ crushmap = ms.crush_dump
+
+ raw = CRUSHMap.get_default_choose_args(crushmap)
+ weight_set = {}
+ for b in raw:
+ bucket = None
+ for t in crushmap['buckets']:
+ if t['id'] == b['bucket_id']:
+ bucket = t
+ break
+ if not bucket:
+ raise RuntimeError('could not find bucket %s' % b['bucket_id'])
+ self.log.debug('bucket items %s' % bucket['items'])
+ self.log.debug('weight set %s' % b['weight_set'][0])
+ if len(bucket['items']) != len(b['weight_set'][0]):
+ raise RuntimeError('weight-set size does not match bucket items')
+ for pos in range(len(bucket['items'])):
+ weight_set[bucket['items'][pos]['id']] = b['weight_set'][0][pos]
+
+ self.log.debug('weight_set weights %s' % weight_set)
+ return weight_set
+
+ def do_crush(self):
+ self.log.info('do_crush (not yet implemented)')
+
+ def do_osd_weight(self):
+ self.log.info('do_osd_weight (not yet implemented)')
+
+ def execute(self, plan):
+ self.log.info('Executing plan %s' % plan.name)
+
+ commands = []
+
+ # compat weight-set
+ if len(plan.compat_ws) and \
+ not CRUSHMap.have_default_choose_args(plan.initial.crush_dump):
+ self.log.debug('ceph osd crush weight-set create-compat')
+ result = CommandResult('')
+ self.send_command(result, 'mon', '', json.dumps({
+ 'prefix': 'osd crush weight-set create-compat',
+ 'format': 'json',
+ }), '')
+ r, outb, outs = result.wait()
+ if r != 0:
+ self.log.error('Error creating compat weight-set')
+ return r, outs
+
+ for osd, weight in six.iteritems(plan.compat_ws):
+ self.log.info('ceph osd crush weight-set reweight-compat osd.%d %f',
+ osd, weight)
+ result = CommandResult('')
+ self.send_command(result, 'mon', '', json.dumps({
+ 'prefix': 'osd crush weight-set reweight-compat',
+ 'format': 'json',
+ 'item': 'osd.%d' % osd,
+ 'weight': [weight],
+ }), '')
+ commands.append(result)
+
+ # new_weight
+ reweightn = {}
+ for osd, weight in six.iteritems(plan.osd_weights):
+ reweightn[str(osd)] = str(int(weight * float(0x10000)))
+ if len(reweightn):
+ self.log.info('ceph osd reweightn %s', reweightn)
+ result = CommandResult('')
+ self.send_command(result, 'mon', '', json.dumps({
+ 'prefix': 'osd reweightn',
+ 'format': 'json',
+ 'weights': json.dumps(reweightn),
+ }), '')
+ commands.append(result)
+
+ # upmap
+ incdump = plan.inc.dump()
+ for pgid in incdump.get('old_pg_upmap_items', []):
+ self.log.info('ceph osd rm-pg-upmap-items %s', pgid)
+ result = CommandResult('foo')
+ self.send_command(result, 'mon', '', json.dumps({
+ 'prefix': 'osd rm-pg-upmap-items',
+ 'format': 'json',
+ 'pgid': pgid,
+ }), 'foo')
+ commands.append(result)
+
+ for item in incdump.get('new_pg_upmap_items', []):
+ self.log.info('ceph osd pg-upmap-items %s mappings %s', item['pgid'],
+ item['mappings'])
+ osdlist = []
+ for m in item['mappings']:
+ osdlist += [m['from'], m['to']]
+ result = CommandResult('foo')
+ self.send_command(result, 'mon', '', json.dumps({
+ 'prefix': 'osd pg-upmap-items',
+ 'format': 'json',
+ 'pgid': item['pgid'],
+ 'id': osdlist,
+ }), 'foo')
+ commands.append(result)
+
+ # wait for commands
+ self.log.debug('commands %s' % commands)
+ for result in commands:
+ r, outb, outs = result.wait()
+ if r != 0:
+ self.log.error('execute error: r = %d, detail = %s' % (r, outs))
+ return r, outs
+ self.log.debug('done')
+ return 0, ''
+
+ def gather_telemetry(self):
+ return {
+ 'active': self.active,
+ 'mode': self.mode,
+ }