diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
commit | 483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch) | |
tree | e5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/rocksdb/cache/clock_cache.cc | |
parent | Initial commit. (diff) | |
download | ceph-483eb2f56657e8e7f419ab1a4fab8dce9ade8609.tar.xz ceph-483eb2f56657e8e7f419ab1a4fab8dce9ade8609.zip |
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/rocksdb/cache/clock_cache.cc')
-rw-r--r-- | src/rocksdb/cache/clock_cache.cc | 728 |
1 files changed, 728 insertions, 0 deletions
diff --git a/src/rocksdb/cache/clock_cache.cc b/src/rocksdb/cache/clock_cache.cc new file mode 100644 index 00000000..89173834 --- /dev/null +++ b/src/rocksdb/cache/clock_cache.cc @@ -0,0 +1,728 @@ +// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. +// This source code is licensed under both the GPLv2 (found in the +// COPYING file in the root directory) and Apache 2.0 License +// (found in the LICENSE.Apache file in the root directory). +// +// Copyright (c) 2011 The LevelDB Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. See the AUTHORS file for names of contributors. + +#include "cache/clock_cache.h" + +#ifndef SUPPORT_CLOCK_CACHE + +namespace rocksdb { + +std::shared_ptr<Cache> NewClockCache(size_t /*capacity*/, int /*num_shard_bits*/, + bool /*strict_capacity_limit*/) { + // Clock cache not supported. + return nullptr; +} + +} // namespace rocksdb + +#else + +#include <assert.h> +#include <atomic> +#include <deque> + +// "tbb/concurrent_hash_map.h" requires RTTI if exception is enabled. +// Disable it so users can chooose to disable RTTI. +#ifndef ROCKSDB_USE_RTTI +#define TBB_USE_EXCEPTIONS 0 +#endif +#include "tbb/concurrent_hash_map.h" + +#include "cache/sharded_cache.h" +#include "port/port.h" +#include "util/autovector.h" +#include "util/mutexlock.h" + +namespace rocksdb { + +namespace { + +// An implementation of the Cache interface based on CLOCK algorithm, with +// better concurrent performance than LRUCache. The idea of CLOCK algorithm +// is to maintain all cache entries in a circular list, and an iterator +// (the "head") pointing to the last examined entry. Eviction starts from the +// current head. Each entry is given a second chance before eviction, if it +// has been access since last examine. In contrast to LRU, no modification +// to the internal data-structure (except for flipping the usage bit) needs +// to be done upon lookup. This gives us oppertunity to implement a cache +// with better concurrency. +// +// Each cache entry is represented by a cache handle, and all the handles +// are arranged in a circular list, as describe above. Upon erase of an entry, +// we never remove the handle. Instead, the handle is put into a recycle bin +// to be re-use. This is to avoid memory dealocation, which is hard to deal +// with in concurrent environment. +// +// The cache also maintains a concurrent hash map for lookup. Any concurrent +// hash map implementation should do the work. We currently use +// tbb::concurrent_hash_map because it supports concurrent erase. +// +// Each cache handle has the following flags and counters, which are squeeze +// in an atomic interger, to make sure the handle always be in a consistent +// state: +// +// * In-cache bit: whether the entry is reference by the cache itself. If +// an entry is in cache, its key would also be available in the hash map. +// * Usage bit: whether the entry has been access by user since last +// examine for eviction. Can be reset by eviction. +// * Reference count: reference count by user. +// +// An entry can be reference only when it's in cache. An entry can be evicted +// only when it is in cache, has no usage since last examine, and reference +// count is zero. +// +// The follow figure shows a possible layout of the cache. Boxes represents +// cache handles and numbers in each box being in-cache bit, usage bit and +// reference count respectively. +// +// hash map: +// +-------+--------+ +// | key | handle | +// +-------+--------+ +// | "foo" | 5 |-------------------------------------+ +// +-------+--------+ | +// | "bar" | 2 |--+ | +// +-------+--------+ | | +// | | +// head | | +// | | | +// circular list: | | | +// +-------+ +-------+ +-------+ +-------+ +-------+ +------- +// |(0,0,0)|---|(1,1,0)|---|(0,0,0)|---|(0,1,3)|---|(1,0,0)|---| ... +// +-------+ +-------+ +-------+ +-------+ +-------+ +------- +// | | +// +-------+ +-----------+ +// | | +// +---+---+ +// recycle bin: | 1 | 3 | +// +---+---+ +// +// Suppose we try to insert "baz" into the cache at this point and the cache is +// full. The cache will first look for entries to evict, starting from where +// head points to (the second entry). It resets usage bit of the second entry, +// skips the third and fourth entry since they are not in cache, and finally +// evict the fifth entry ("foo"). It looks at recycle bin for available handle, +// grabs handle 3, and insert the key into the handle. The following figure +// shows the resulting layout. +// +// hash map: +// +-------+--------+ +// | key | handle | +// +-------+--------+ +// | "baz" | 3 |-------------+ +// +-------+--------+ | +// | "bar" | 2 |--+ | +// +-------+--------+ | | +// | | +// | | head +// | | | +// circular list: | | | +// +-------+ +-------+ +-------+ +-------+ +-------+ +------- +// |(0,0,0)|---|(1,0,0)|---|(1,0,0)|---|(0,1,3)|---|(0,0,0)|---| ... +// +-------+ +-------+ +-------+ +-------+ +-------+ +------- +// | | +// +-------+ +-----------------------------------+ +// | | +// +---+---+ +// recycle bin: | 1 | 5 | +// +---+---+ +// +// A global mutex guards the circular list, the head, and the recycle bin. +// We additionally require that modifying the hash map needs to hold the mutex. +// As such, Modifying the cache (such as Insert() and Erase()) require to +// hold the mutex. Lookup() only access the hash map and the flags associated +// with each handle, and don't require explicit locking. Release() has to +// acquire the mutex only when it releases the last reference to the entry and +// the entry has been erased from cache explicitly. A future improvement could +// be to remove the mutex completely. +// +// Benchmark: +// We run readrandom db_bench on a test DB of size 13GB, with size of each +// level: +// +// Level Files Size(MB) +// ------------------------- +// L0 1 0.01 +// L1 18 17.32 +// L2 230 182.94 +// L3 1186 1833.63 +// L4 4602 8140.30 +// +// We test with both 32 and 16 read threads, with 2GB cache size (the whole DB +// doesn't fits in) and 64GB cache size (the whole DB can fit in cache), and +// whether to put index and filter blocks in block cache. The benchmark runs +// with +// with RocksDB 4.10. We got the following result: +// +// Threads Cache Cache ClockCache LRUCache +// Size Index/Filter Throughput(MB/s) Hit Throughput(MB/s) Hit +// 32 2GB yes 466.7 85.9% 433.7 86.5% +// 32 2GB no 529.9 72.7% 532.7 73.9% +// 32 64GB yes 649.9 99.9% 507.9 99.9% +// 32 64GB no 740.4 99.9% 662.8 99.9% +// 16 2GB yes 278.4 85.9% 283.4 86.5% +// 16 2GB no 318.6 72.7% 335.8 73.9% +// 16 64GB yes 391.9 99.9% 353.3 99.9% +// 16 64GB no 433.8 99.8% 419.4 99.8% + +// Cache entry meta data. +struct CacheHandle { + Slice key; + uint32_t hash; + void* value; + size_t charge; + void (*deleter)(const Slice&, void* value); + + // Flags and counters associated with the cache handle: + // lowest bit: n-cache bit + // second lowest bit: usage bit + // the rest bits: reference count + // The handle is unused when flags equals to 0. The thread decreases the count + // to 0 is responsible to put the handle back to recycle_ and cleanup memory. + std::atomic<uint32_t> flags; + + CacheHandle() = default; + + CacheHandle(const CacheHandle& a) { *this = a; } + + CacheHandle(const Slice& k, void* v, + void (*del)(const Slice& key, void* value)) + : key(k), value(v), deleter(del) {} + + CacheHandle& operator=(const CacheHandle& a) { + // Only copy members needed for deletion. + key = a.key; + value = a.value; + deleter = a.deleter; + return *this; + } +}; + +// Key of hash map. We store hash value with the key for convenience. +struct CacheKey { + Slice key; + uint32_t hash_value; + + CacheKey() = default; + + CacheKey(const Slice& k, uint32_t h) { + key = k; + hash_value = h; + } + + static bool equal(const CacheKey& a, const CacheKey& b) { + return a.hash_value == b.hash_value && a.key == b.key; + } + + static size_t hash(const CacheKey& a) { + return static_cast<size_t>(a.hash_value); + } +}; + +struct CleanupContext { + // List of values to be deleted, along with the key and deleter. + autovector<CacheHandle> to_delete_value; + + // List of keys to be deleted. + autovector<const char*> to_delete_key; +}; + +// A cache shard which maintains its own CLOCK cache. +class ClockCacheShard final : public CacheShard { + public: + // Hash map type. + typedef tbb::concurrent_hash_map<CacheKey, CacheHandle*, CacheKey> HashTable; + + ClockCacheShard(); + ~ClockCacheShard() override; + + // Interfaces + void SetCapacity(size_t capacity) override; + void SetStrictCapacityLimit(bool strict_capacity_limit) override; + Status Insert(const Slice& key, uint32_t hash, void* value, size_t charge, + void (*deleter)(const Slice& key, void* value), + Cache::Handle** handle, Cache::Priority priority) override; + Cache::Handle* Lookup(const Slice& key, uint32_t hash) override; + // If the entry in in cache, increase reference count and return true. + // Return false otherwise. + // + // Not necessary to hold mutex_ before being called. + bool Ref(Cache::Handle* handle) override; + bool Release(Cache::Handle* handle, bool force_erase = false) override; + void Erase(const Slice& key, uint32_t hash) override; + bool EraseAndConfirm(const Slice& key, uint32_t hash, + CleanupContext* context); + size_t GetUsage() const override; + size_t GetPinnedUsage() const override; + void EraseUnRefEntries() override; + void ApplyToAllCacheEntries(void (*callback)(void*, size_t), + bool thread_safe) override; + + private: + static const uint32_t kInCacheBit = 1; + static const uint32_t kUsageBit = 2; + static const uint32_t kRefsOffset = 2; + static const uint32_t kOneRef = 1 << kRefsOffset; + + // Helper functions to extract cache handle flags and counters. + static bool InCache(uint32_t flags) { return flags & kInCacheBit; } + static bool HasUsage(uint32_t flags) { return flags & kUsageBit; } + static uint32_t CountRefs(uint32_t flags) { return flags >> kRefsOffset; } + + // Decrease reference count of the entry. If this decreases the count to 0, + // recycle the entry. If set_usage is true, also set the usage bit. + // + // returns true if a value is erased. + // + // Not necessary to hold mutex_ before being called. + bool Unref(CacheHandle* handle, bool set_usage, CleanupContext* context); + + // Unset in-cache bit of the entry. Recycle the handle if necessary. + // + // returns true if a value is erased. + // + // Has to hold mutex_ before being called. + bool UnsetInCache(CacheHandle* handle, CleanupContext* context); + + // Put the handle back to recycle_ list, and put the value associated with + // it into to-be-deleted list. It doesn't cleanup the key as it might be + // reused by another handle. + // + // Has to hold mutex_ before being called. + void RecycleHandle(CacheHandle* handle, CleanupContext* context); + + // Delete keys and values in to-be-deleted list. Call the method without + // holding mutex, as destructors can be expensive. + void Cleanup(const CleanupContext& context); + + // Examine the handle for eviction. If the handle is in cache, usage bit is + // not set, and referece count is 0, evict it from cache. Otherwise unset + // the usage bit. + // + // Has to hold mutex_ before being called. + bool TryEvict(CacheHandle* value, CleanupContext* context); + + // Scan through the circular list, evict entries until we get enough capacity + // for new cache entry of specific size. Return true if success, false + // otherwise. + // + // Has to hold mutex_ before being called. + bool EvictFromCache(size_t charge, CleanupContext* context); + + CacheHandle* Insert(const Slice& key, uint32_t hash, void* value, + size_t change, + void (*deleter)(const Slice& key, void* value), + bool hold_reference, CleanupContext* context); + + // Guards list_, head_, and recycle_. In addition, updating table_ also has + // to hold the mutex, to avoid the cache being in inconsistent state. + mutable port::Mutex mutex_; + + // The circular list of cache handles. Initially the list is empty. Once a + // handle is needed by insertion, and no more handles are available in + // recycle bin, one more handle is appended to the end. + // + // We use std::deque for the circular list because we want to make sure + // pointers to handles are valid through out the life-cycle of the cache + // (in contrast to std::vector), and be able to grow the list (in contrast + // to statically allocated arrays). + std::deque<CacheHandle> list_; + + // Pointer to the next handle in the circular list to be examine for + // eviction. + size_t head_; + + // Recycle bin of cache handles. + autovector<CacheHandle*> recycle_; + + // Maximum cache size. + std::atomic<size_t> capacity_; + + // Current total size of the cache. + std::atomic<size_t> usage_; + + // Total un-released cache size. + std::atomic<size_t> pinned_usage_; + + // Whether allow insert into cache if cache is full. + std::atomic<bool> strict_capacity_limit_; + + // Hash table (tbb::concurrent_hash_map) for lookup. + HashTable table_; +}; + +ClockCacheShard::ClockCacheShard() + : head_(0), usage_(0), pinned_usage_(0), strict_capacity_limit_(false) {} + +ClockCacheShard::~ClockCacheShard() { + for (auto& handle : list_) { + uint32_t flags = handle.flags.load(std::memory_order_relaxed); + if (InCache(flags) || CountRefs(flags) > 0) { + if (handle.deleter != nullptr) { + (*handle.deleter)(handle.key, handle.value); + } + delete[] handle.key.data(); + } + } +} + +size_t ClockCacheShard::GetUsage() const { + return usage_.load(std::memory_order_relaxed); +} + +size_t ClockCacheShard::GetPinnedUsage() const { + return pinned_usage_.load(std::memory_order_relaxed); +} + +void ClockCacheShard::ApplyToAllCacheEntries(void (*callback)(void*, size_t), + bool thread_safe) { + if (thread_safe) { + mutex_.Lock(); + } + for (auto& handle : list_) { + // Use relaxed semantics instead of acquire semantics since we are either + // holding mutex, or don't have thread safe requirement. + uint32_t flags = handle.flags.load(std::memory_order_relaxed); + if (InCache(flags)) { + callback(handle.value, handle.charge); + } + } + if (thread_safe) { + mutex_.Unlock(); + } +} + +void ClockCacheShard::RecycleHandle(CacheHandle* handle, + CleanupContext* context) { + mutex_.AssertHeld(); + assert(!InCache(handle->flags) && CountRefs(handle->flags) == 0); + context->to_delete_key.push_back(handle->key.data()); + context->to_delete_value.emplace_back(*handle); + handle->key.clear(); + handle->value = nullptr; + handle->deleter = nullptr; + recycle_.push_back(handle); + usage_.fetch_sub(handle->charge, std::memory_order_relaxed); +} + +void ClockCacheShard::Cleanup(const CleanupContext& context) { + for (const CacheHandle& handle : context.to_delete_value) { + if (handle.deleter) { + (*handle.deleter)(handle.key, handle.value); + } + } + for (const char* key : context.to_delete_key) { + delete[] key; + } +} + +bool ClockCacheShard::Ref(Cache::Handle* h) { + auto handle = reinterpret_cast<CacheHandle*>(h); + // CAS loop to increase reference count. + uint32_t flags = handle->flags.load(std::memory_order_relaxed); + while (InCache(flags)) { + // Use acquire semantics on success, as further operations on the cache + // entry has to be order after reference count is increased. + if (handle->flags.compare_exchange_weak(flags, flags + kOneRef, + std::memory_order_acquire, + std::memory_order_relaxed)) { + if (CountRefs(flags) == 0) { + // No reference count before the operation. + pinned_usage_.fetch_add(handle->charge, std::memory_order_relaxed); + } + return true; + } + } + return false; +} + +bool ClockCacheShard::Unref(CacheHandle* handle, bool set_usage, + CleanupContext* context) { + if (set_usage) { + handle->flags.fetch_or(kUsageBit, std::memory_order_relaxed); + } + // Use acquire-release semantics as previous operations on the cache entry + // has to be order before reference count is decreased, and potential cleanup + // of the entry has to be order after. + uint32_t flags = handle->flags.fetch_sub(kOneRef, std::memory_order_acq_rel); + assert(CountRefs(flags) > 0); + if (CountRefs(flags) == 1) { + // this is the last reference. + pinned_usage_.fetch_sub(handle->charge, std::memory_order_relaxed); + // Cleanup if it is the last reference. + if (!InCache(flags)) { + MutexLock l(&mutex_); + RecycleHandle(handle, context); + } + } + return context->to_delete_value.size(); +} + +bool ClockCacheShard::UnsetInCache(CacheHandle* handle, + CleanupContext* context) { + mutex_.AssertHeld(); + // Use acquire-release semantics as previous operations on the cache entry + // has to be order before reference count is decreased, and potential cleanup + // of the entry has to be order after. + uint32_t flags = + handle->flags.fetch_and(~kInCacheBit, std::memory_order_acq_rel); + // Cleanup if it is the last reference. + if (InCache(flags) && CountRefs(flags) == 0) { + RecycleHandle(handle, context); + } + return context->to_delete_value.size(); +} + +bool ClockCacheShard::TryEvict(CacheHandle* handle, CleanupContext* context) { + mutex_.AssertHeld(); + uint32_t flags = kInCacheBit; + if (handle->flags.compare_exchange_strong(flags, 0, std::memory_order_acquire, + std::memory_order_relaxed)) { + bool erased __attribute__((__unused__)) = + table_.erase(CacheKey(handle->key, handle->hash)); + assert(erased); + RecycleHandle(handle, context); + return true; + } + handle->flags.fetch_and(~kUsageBit, std::memory_order_relaxed); + return false; +} + +bool ClockCacheShard::EvictFromCache(size_t charge, CleanupContext* context) { + size_t usage = usage_.load(std::memory_order_relaxed); + size_t capacity = capacity_.load(std::memory_order_relaxed); + if (usage == 0) { + return charge <= capacity; + } + size_t new_head = head_; + bool second_iteration = false; + while (usage + charge > capacity) { + assert(new_head < list_.size()); + if (TryEvict(&list_[new_head], context)) { + usage = usage_.load(std::memory_order_relaxed); + } + new_head = (new_head + 1 >= list_.size()) ? 0 : new_head + 1; + if (new_head == head_) { + if (second_iteration) { + return false; + } else { + second_iteration = true; + } + } + } + head_ = new_head; + return true; +} + +void ClockCacheShard::SetCapacity(size_t capacity) { + CleanupContext context; + { + MutexLock l(&mutex_); + capacity_.store(capacity, std::memory_order_relaxed); + EvictFromCache(0, &context); + } + Cleanup(context); +} + +void ClockCacheShard::SetStrictCapacityLimit(bool strict_capacity_limit) { + strict_capacity_limit_.store(strict_capacity_limit, + std::memory_order_relaxed); +} + +CacheHandle* ClockCacheShard::Insert( + const Slice& key, uint32_t hash, void* value, size_t charge, + void (*deleter)(const Slice& key, void* value), bool hold_reference, + CleanupContext* context) { + MutexLock l(&mutex_); + bool success = EvictFromCache(charge, context); + bool strict = strict_capacity_limit_.load(std::memory_order_relaxed); + if (!success && (strict || !hold_reference)) { + context->to_delete_key.push_back(key.data()); + if (!hold_reference) { + context->to_delete_value.emplace_back(key, value, deleter); + } + return nullptr; + } + // Grab available handle from recycle bin. If recycle bin is empty, create + // and append new handle to end of circular list. + CacheHandle* handle = nullptr; + if (!recycle_.empty()) { + handle = recycle_.back(); + recycle_.pop_back(); + } else { + list_.emplace_back(); + handle = &list_.back(); + } + // Fill handle. + handle->key = key; + handle->hash = hash; + handle->value = value; + handle->charge = charge; + handle->deleter = deleter; + uint32_t flags = hold_reference ? kInCacheBit + kOneRef : kInCacheBit; + handle->flags.store(flags, std::memory_order_relaxed); + HashTable::accessor accessor; + if (table_.find(accessor, CacheKey(key, hash))) { + CacheHandle* existing_handle = accessor->second; + table_.erase(accessor); + UnsetInCache(existing_handle, context); + } + table_.insert(HashTable::value_type(CacheKey(key, hash), handle)); + if (hold_reference) { + pinned_usage_.fetch_add(charge, std::memory_order_relaxed); + } + usage_.fetch_add(charge, std::memory_order_relaxed); + return handle; +} + +Status ClockCacheShard::Insert(const Slice& key, uint32_t hash, void* value, + size_t charge, + void (*deleter)(const Slice& key, void* value), + Cache::Handle** out_handle, + Cache::Priority /*priority*/) { + CleanupContext context; + HashTable::accessor accessor; + char* key_data = new char[key.size()]; + memcpy(key_data, key.data(), key.size()); + Slice key_copy(key_data, key.size()); + CacheHandle* handle = Insert(key_copy, hash, value, charge, deleter, + out_handle != nullptr, &context); + Status s; + if (out_handle != nullptr) { + if (handle == nullptr) { + s = Status::Incomplete("Insert failed due to LRU cache being full."); + } else { + *out_handle = reinterpret_cast<Cache::Handle*>(handle); + } + } + Cleanup(context); + return s; +} + +Cache::Handle* ClockCacheShard::Lookup(const Slice& key, uint32_t hash) { + HashTable::const_accessor accessor; + if (!table_.find(accessor, CacheKey(key, hash))) { + return nullptr; + } + CacheHandle* handle = accessor->second; + accessor.release(); + // Ref() could fail if another thread sneak in and evict/erase the cache + // entry before we are able to hold reference. + if (!Ref(reinterpret_cast<Cache::Handle*>(handle))) { + return nullptr; + } + // Double check the key since the handle may now representing another key + // if other threads sneak in, evict/erase the entry and re-used the handle + // for another cache entry. + if (hash != handle->hash || key != handle->key) { + CleanupContext context; + Unref(handle, false, &context); + // It is possible Unref() delete the entry, so we need to cleanup. + Cleanup(context); + return nullptr; + } + return reinterpret_cast<Cache::Handle*>(handle); +} + +bool ClockCacheShard::Release(Cache::Handle* h, bool force_erase) { + CleanupContext context; + CacheHandle* handle = reinterpret_cast<CacheHandle*>(h); + bool erased = Unref(handle, true, &context); + if (force_erase && !erased) { + erased = EraseAndConfirm(handle->key, handle->hash, &context); + } + Cleanup(context); + return erased; +} + +void ClockCacheShard::Erase(const Slice& key, uint32_t hash) { + CleanupContext context; + EraseAndConfirm(key, hash, &context); + Cleanup(context); +} + +bool ClockCacheShard::EraseAndConfirm(const Slice& key, uint32_t hash, + CleanupContext* context) { + MutexLock l(&mutex_); + HashTable::accessor accessor; + bool erased = false; + if (table_.find(accessor, CacheKey(key, hash))) { + CacheHandle* handle = accessor->second; + table_.erase(accessor); + erased = UnsetInCache(handle, context); + } + return erased; +} + +void ClockCacheShard::EraseUnRefEntries() { + CleanupContext context; + { + MutexLock l(&mutex_); + table_.clear(); + for (auto& handle : list_) { + UnsetInCache(&handle, &context); + } + } + Cleanup(context); +} + +class ClockCache final : public ShardedCache { + public: + ClockCache(size_t capacity, int num_shard_bits, bool strict_capacity_limit) + : ShardedCache(capacity, num_shard_bits, strict_capacity_limit) { + int num_shards = 1 << num_shard_bits; + shards_ = new ClockCacheShard[num_shards]; + SetCapacity(capacity); + SetStrictCapacityLimit(strict_capacity_limit); + } + + ~ClockCache() override { delete[] shards_; } + + const char* Name() const override { return "ClockCache"; } + + CacheShard* GetShard(int shard) override { + return reinterpret_cast<CacheShard*>(&shards_[shard]); + } + + const CacheShard* GetShard(int shard) const override { + return reinterpret_cast<CacheShard*>(&shards_[shard]); + } + + void* Value(Handle* handle) override { + return reinterpret_cast<const CacheHandle*>(handle)->value; + } + + size_t GetCharge(Handle* handle) const override { + return reinterpret_cast<const CacheHandle*>(handle)->charge; + } + + uint32_t GetHash(Handle* handle) const override { + return reinterpret_cast<const CacheHandle*>(handle)->hash; + } + + void DisownData() override { shards_ = nullptr; } + + private: + ClockCacheShard* shards_; +}; + +} // end anonymous namespace + +std::shared_ptr<Cache> NewClockCache(size_t capacity, int num_shard_bits, + bool strict_capacity_limit) { + if (num_shard_bits < 0) { + num_shard_bits = GetDefaultCacheShardBits(capacity); + } + return std::make_shared<ClockCache>(capacity, num_shard_bits, + strict_capacity_limit); +} + +} // namespace rocksdb + +#endif // SUPPORT_CLOCK_CACHE |