diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 18:24:20 +0000 |
commit | 483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch) | |
tree | e5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/rocksdb/cache/lru_cache.cc | |
parent | Initial commit. (diff) | |
download | ceph-upstream.tar.xz ceph-upstream.zip |
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | src/rocksdb/cache/lru_cache.cc | 572 |
1 files changed, 572 insertions, 0 deletions
diff --git a/src/rocksdb/cache/lru_cache.cc b/src/rocksdb/cache/lru_cache.cc new file mode 100644 index 00000000..fdcbb4e8 --- /dev/null +++ b/src/rocksdb/cache/lru_cache.cc @@ -0,0 +1,572 @@ +// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. +// This source code is licensed under both the GPLv2 (found in the +// COPYING file in the root directory) and Apache 2.0 License +// (found in the LICENSE.Apache file in the root directory). +// +// Copyright (c) 2011 The LevelDB Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. See the AUTHORS file for names of contributors. + +#ifndef __STDC_FORMAT_MACROS +#define __STDC_FORMAT_MACROS +#endif + +#include "cache/lru_cache.h" + +#include <assert.h> +#include <stdio.h> +#include <stdlib.h> +#include <string> + +#include "util/mutexlock.h" + +namespace rocksdb { + +LRUHandleTable::LRUHandleTable() : list_(nullptr), length_(0), elems_(0) { + Resize(); +} + +LRUHandleTable::~LRUHandleTable() { + ApplyToAllCacheEntries([](LRUHandle* h) { + if (h->refs == 1) { + h->Free(); + } + }); + delete[] list_; +} + +LRUHandle* LRUHandleTable::Lookup(const Slice& key, uint32_t hash) { + return *FindPointer(key, hash); +} + +LRUHandle* LRUHandleTable::Insert(LRUHandle* h) { + LRUHandle** ptr = FindPointer(h->key(), h->hash); + LRUHandle* old = *ptr; + h->next_hash = (old == nullptr ? nullptr : old->next_hash); + *ptr = h; + if (old == nullptr) { + ++elems_; + if (elems_ > length_) { + // Since each cache entry is fairly large, we aim for a small + // average linked list length (<= 1). + Resize(); + } + } + return old; +} + +LRUHandle* LRUHandleTable::Remove(const Slice& key, uint32_t hash) { + LRUHandle** ptr = FindPointer(key, hash); + LRUHandle* result = *ptr; + if (result != nullptr) { + *ptr = result->next_hash; + --elems_; + } + return result; +} + +LRUHandle** LRUHandleTable::FindPointer(const Slice& key, uint32_t hash) { + LRUHandle** ptr = &list_[hash & (length_ - 1)]; + while (*ptr != nullptr && ((*ptr)->hash != hash || key != (*ptr)->key())) { + ptr = &(*ptr)->next_hash; + } + return ptr; +} + +void LRUHandleTable::Resize() { + uint32_t new_length = 16; + while (new_length < elems_ * 1.5) { + new_length *= 2; + } + LRUHandle** new_list = new LRUHandle*[new_length]; + memset(new_list, 0, sizeof(new_list[0]) * new_length); + uint32_t count = 0; + for (uint32_t i = 0; i < length_; i++) { + LRUHandle* h = list_[i]; + while (h != nullptr) { + LRUHandle* next = h->next_hash; + uint32_t hash = h->hash; + LRUHandle** ptr = &new_list[hash & (new_length - 1)]; + h->next_hash = *ptr; + *ptr = h; + h = next; + count++; + } + } + assert(elems_ == count); + delete[] list_; + list_ = new_list; + length_ = new_length; +} + +LRUCacheShard::LRUCacheShard(size_t capacity, bool strict_capacity_limit, + double high_pri_pool_ratio, + bool use_adaptive_mutex) + : capacity_(0), + high_pri_pool_usage_(0), + strict_capacity_limit_(strict_capacity_limit), + high_pri_pool_ratio_(high_pri_pool_ratio), + high_pri_pool_capacity_(0), + usage_(0), + lru_usage_(0), + mutex_(use_adaptive_mutex) { + // Make empty circular linked list + lru_.next = &lru_; + lru_.prev = &lru_; + lru_low_pri_ = &lru_; + SetCapacity(capacity); +} + +LRUCacheShard::~LRUCacheShard() {} + +bool LRUCacheShard::Unref(LRUHandle* e) { + assert(e->refs > 0); + e->refs--; + return e->refs == 0; +} + +// Call deleter and free + +void LRUCacheShard::EraseUnRefEntries() { + autovector<LRUHandle*> last_reference_list; + { + MutexLock l(&mutex_); + while (lru_.next != &lru_) { + LRUHandle* old = lru_.next; + assert(old->InCache()); + assert(old->refs == + 1); // LRU list contains elements which may be evicted + LRU_Remove(old); + table_.Remove(old->key(), old->hash); + old->SetInCache(false); + Unref(old); + usage_ -= old->charge; + last_reference_list.push_back(old); + } + } + + for (auto entry : last_reference_list) { + entry->Free(); + } +} + +void LRUCacheShard::ApplyToAllCacheEntries(void (*callback)(void*, size_t), + bool thread_safe) { + if (thread_safe) { + mutex_.Lock(); + } + table_.ApplyToAllCacheEntries( + [callback](LRUHandle* h) { callback(h->value, h->charge); }); + if (thread_safe) { + mutex_.Unlock(); + } +} + +void LRUCacheShard::TEST_GetLRUList(LRUHandle** lru, LRUHandle** lru_low_pri) { + *lru = &lru_; + *lru_low_pri = lru_low_pri_; +} + +size_t LRUCacheShard::TEST_GetLRUSize() { + LRUHandle* lru_handle = lru_.next; + size_t lru_size = 0; + while (lru_handle != &lru_) { + lru_size++; + lru_handle = lru_handle->next; + } + return lru_size; +} + +double LRUCacheShard::GetHighPriPoolRatio() { + MutexLock l(&mutex_); + return high_pri_pool_ratio_; +} + +void LRUCacheShard::LRU_Remove(LRUHandle* e) { + assert(e->next != nullptr); + assert(e->prev != nullptr); + if (lru_low_pri_ == e) { + lru_low_pri_ = e->prev; + } + e->next->prev = e->prev; + e->prev->next = e->next; + e->prev = e->next = nullptr; + lru_usage_ -= e->charge; + if (e->InHighPriPool()) { + assert(high_pri_pool_usage_ >= e->charge); + high_pri_pool_usage_ -= e->charge; + } +} + +void LRUCacheShard::LRU_Insert(LRUHandle* e) { + assert(e->next == nullptr); + assert(e->prev == nullptr); + if (high_pri_pool_ratio_ > 0 && (e->IsHighPri() || e->HasHit())) { + // Inset "e" to head of LRU list. + e->next = &lru_; + e->prev = lru_.prev; + e->prev->next = e; + e->next->prev = e; + e->SetInHighPriPool(true); + high_pri_pool_usage_ += e->charge; + MaintainPoolSize(); + } else { + // Insert "e" to the head of low-pri pool. Note that when + // high_pri_pool_ratio is 0, head of low-pri pool is also head of LRU list. + e->next = lru_low_pri_->next; + e->prev = lru_low_pri_; + e->prev->next = e; + e->next->prev = e; + e->SetInHighPriPool(false); + lru_low_pri_ = e; + } + lru_usage_ += e->charge; +} + +void LRUCacheShard::MaintainPoolSize() { + while (high_pri_pool_usage_ > high_pri_pool_capacity_) { + // Overflow last entry in high-pri pool to low-pri pool. + lru_low_pri_ = lru_low_pri_->next; + assert(lru_low_pri_ != &lru_); + lru_low_pri_->SetInHighPriPool(false); + high_pri_pool_usage_ -= lru_low_pri_->charge; + } +} + +void LRUCacheShard::EvictFromLRU(size_t charge, + autovector<LRUHandle*>* deleted) { + while (usage_ + charge > capacity_ && lru_.next != &lru_) { + LRUHandle* old = lru_.next; + assert(old->InCache()); + assert(old->refs == 1); // LRU list contains elements which may be evicted + LRU_Remove(old); + table_.Remove(old->key(), old->hash); + old->SetInCache(false); + Unref(old); + usage_ -= old->charge; + deleted->push_back(old); + } +} + +void LRUCacheShard::SetCapacity(size_t capacity) { + autovector<LRUHandle*> last_reference_list; + { + MutexLock l(&mutex_); + capacity_ = capacity; + high_pri_pool_capacity_ = capacity_ * high_pri_pool_ratio_; + EvictFromLRU(0, &last_reference_list); + } + // we free the entries here outside of mutex for + // performance reasons + for (auto entry : last_reference_list) { + entry->Free(); + } +} + +void LRUCacheShard::SetStrictCapacityLimit(bool strict_capacity_limit) { + MutexLock l(&mutex_); + strict_capacity_limit_ = strict_capacity_limit; +} + +Cache::Handle* LRUCacheShard::Lookup(const Slice& key, uint32_t hash) { + MutexLock l(&mutex_); + LRUHandle* e = table_.Lookup(key, hash); + if (e != nullptr) { + assert(e->InCache()); + if (e->refs == 1) { + LRU_Remove(e); + } + e->refs++; + e->SetHit(); + } + return reinterpret_cast<Cache::Handle*>(e); +} + +bool LRUCacheShard::Ref(Cache::Handle* h) { + LRUHandle* handle = reinterpret_cast<LRUHandle*>(h); + MutexLock l(&mutex_); + if (handle->InCache() && handle->refs == 1) { + LRU_Remove(handle); + } + handle->refs++; + return true; +} + +void LRUCacheShard::SetHighPriorityPoolRatio(double high_pri_pool_ratio) { + MutexLock l(&mutex_); + high_pri_pool_ratio_ = high_pri_pool_ratio; + high_pri_pool_capacity_ = capacity_ * high_pri_pool_ratio_; + MaintainPoolSize(); +} + +bool LRUCacheShard::Release(Cache::Handle* handle, bool force_erase) { + if (handle == nullptr) { + return false; + } + LRUHandle* e = reinterpret_cast<LRUHandle*>(handle); + bool last_reference = false; + { + MutexLock l(&mutex_); + last_reference = Unref(e); + if (last_reference) { + usage_ -= e->charge; + } + if (e->refs == 1 && e->InCache()) { + // The item is still in cache, and nobody else holds a reference to it + if (usage_ > capacity_ || force_erase) { + // the cache is full + // The LRU list must be empty since the cache is full + assert(!(usage_ > capacity_) || lru_.next == &lru_); + // take this opportunity and remove the item + table_.Remove(e->key(), e->hash); + e->SetInCache(false); + Unref(e); + usage_ -= e->charge; + last_reference = true; + } else { + // put the item on the list to be potentially freed + LRU_Insert(e); + } + } + } + + // free outside of mutex + if (last_reference) { + e->Free(); + } + return last_reference; +} + +Status LRUCacheShard::Insert(const Slice& key, uint32_t hash, void* value, + size_t charge, + void (*deleter)(const Slice& key, void* value), + Cache::Handle** handle, Cache::Priority priority) { + // Allocate the memory here outside of the mutex + // If the cache is full, we'll have to release it + // It shouldn't happen very often though. + LRUHandle* e = reinterpret_cast<LRUHandle*>( + new char[sizeof(LRUHandle) - 1 + key.size()]); + Status s; + autovector<LRUHandle*> last_reference_list; + + e->value = value; + e->deleter = deleter; + e->charge = charge; + e->key_length = key.size(); + e->flags = 0; + e->hash = hash; + e->refs = (handle == nullptr + ? 1 + : 2); // One from LRUCache, one for the returned handle + e->next = e->prev = nullptr; + e->SetInCache(true); + e->SetPriority(priority); + memcpy(e->key_data, key.data(), key.size()); + + { + MutexLock l(&mutex_); + + // Free the space following strict LRU policy until enough space + // is freed or the lru list is empty + EvictFromLRU(charge, &last_reference_list); + + if (usage_ - lru_usage_ + charge > capacity_ && + (strict_capacity_limit_ || handle == nullptr)) { + if (handle == nullptr) { + // Don't insert the entry but still return ok, as if the entry inserted + // into cache and get evicted immediately. + last_reference_list.push_back(e); + } else { + delete[] reinterpret_cast<char*>(e); + *handle = nullptr; + s = Status::Incomplete("Insert failed due to LRU cache being full."); + } + } else { + // insert into the cache + // note that the cache might get larger than its capacity if not enough + // space was freed + LRUHandle* old = table_.Insert(e); + usage_ += e->charge; + if (old != nullptr) { + old->SetInCache(false); + if (Unref(old)) { + usage_ -= old->charge; + // old is on LRU because it's in cache and its reference count + // was just 1 (Unref returned 0) + LRU_Remove(old); + last_reference_list.push_back(old); + } + } + if (handle == nullptr) { + LRU_Insert(e); + } else { + *handle = reinterpret_cast<Cache::Handle*>(e); + } + s = Status::OK(); + } + } + + // we free the entries here outside of mutex for + // performance reasons + for (auto entry : last_reference_list) { + entry->Free(); + } + + return s; +} + +void LRUCacheShard::Erase(const Slice& key, uint32_t hash) { + LRUHandle* e; + bool last_reference = false; + { + MutexLock l(&mutex_); + e = table_.Remove(key, hash); + if (e != nullptr) { + last_reference = Unref(e); + if (last_reference) { + usage_ -= e->charge; + } + if (last_reference && e->InCache()) { + LRU_Remove(e); + } + e->SetInCache(false); + } + } + + // mutex not held here + // last_reference will only be true if e != nullptr + if (last_reference) { + e->Free(); + } +} + +size_t LRUCacheShard::GetUsage() const { + MutexLock l(&mutex_); + return usage_; +} + +size_t LRUCacheShard::GetPinnedUsage() const { + MutexLock l(&mutex_); + assert(usage_ >= lru_usage_); + return usage_ - lru_usage_; +} + +std::string LRUCacheShard::GetPrintableOptions() const { + const int kBufferSize = 200; + char buffer[kBufferSize]; + { + MutexLock l(&mutex_); + snprintf(buffer, kBufferSize, " high_pri_pool_ratio: %.3lf\n", + high_pri_pool_ratio_); + } + return std::string(buffer); +} + +LRUCache::LRUCache(size_t capacity, int num_shard_bits, + bool strict_capacity_limit, double high_pri_pool_ratio, + std::shared_ptr<MemoryAllocator> allocator, + bool use_adaptive_mutex) + : ShardedCache(capacity, num_shard_bits, strict_capacity_limit, + std::move(allocator)) { + num_shards_ = 1 << num_shard_bits; + shards_ = reinterpret_cast<LRUCacheShard*>( + port::cacheline_aligned_alloc(sizeof(LRUCacheShard) * num_shards_)); + size_t per_shard = (capacity + (num_shards_ - 1)) / num_shards_; + for (int i = 0; i < num_shards_; i++) { + new (&shards_[i]) + LRUCacheShard(per_shard, strict_capacity_limit, high_pri_pool_ratio, + use_adaptive_mutex); + } +} + +LRUCache::~LRUCache() { + if (shards_ != nullptr) { + assert(num_shards_ > 0); + for (int i = 0; i < num_shards_; i++) { + shards_[i].~LRUCacheShard(); + } + port::cacheline_aligned_free(shards_); + } +} + +CacheShard* LRUCache::GetShard(int shard) { + return reinterpret_cast<CacheShard*>(&shards_[shard]); +} + +const CacheShard* LRUCache::GetShard(int shard) const { + return reinterpret_cast<CacheShard*>(&shards_[shard]); +} + +void* LRUCache::Value(Handle* handle) { + return reinterpret_cast<const LRUHandle*>(handle)->value; +} + +size_t LRUCache::GetCharge(Handle* handle) const { + return reinterpret_cast<const LRUHandle*>(handle)->charge; +} + +uint32_t LRUCache::GetHash(Handle* handle) const { + return reinterpret_cast<const LRUHandle*>(handle)->hash; +} + +void LRUCache::DisownData() { +// Do not drop data if compile with ASAN to suppress leak warning. +#if defined(__clang__) +#if !defined(__has_feature) || !__has_feature(address_sanitizer) + shards_ = nullptr; + num_shards_ = 0; +#endif +#else // __clang__ +#ifndef __SANITIZE_ADDRESS__ + shards_ = nullptr; + num_shards_ = 0; +#endif // !__SANITIZE_ADDRESS__ +#endif // __clang__ +} + +size_t LRUCache::TEST_GetLRUSize() { + size_t lru_size_of_all_shards = 0; + for (int i = 0; i < num_shards_; i++) { + lru_size_of_all_shards += shards_[i].TEST_GetLRUSize(); + } + return lru_size_of_all_shards; +} + +double LRUCache::GetHighPriPoolRatio() { + double result = 0.0; + if (num_shards_ > 0) { + result = shards_[0].GetHighPriPoolRatio(); + } + return result; +} + +std::shared_ptr<Cache> NewLRUCache(const LRUCacheOptions& cache_opts) { + return NewLRUCache(cache_opts.capacity, cache_opts.num_shard_bits, + cache_opts.strict_capacity_limit, + cache_opts.high_pri_pool_ratio, + cache_opts.memory_allocator, + cache_opts.use_adaptive_mutex); +} + +std::shared_ptr<Cache> NewLRUCache( + size_t capacity, int num_shard_bits, bool strict_capacity_limit, + double high_pri_pool_ratio, + std::shared_ptr<MemoryAllocator> memory_allocator, + bool use_adaptive_mutex) { + if (num_shard_bits >= 20) { + return nullptr; // the cache cannot be sharded into too many fine pieces + } + if (high_pri_pool_ratio < 0.0 || high_pri_pool_ratio > 1.0) { + // invalid high_pri_pool_ratio + return nullptr; + } + if (num_shard_bits < 0) { + num_shard_bits = GetDefaultCacheShardBits(capacity); + } + return std::make_shared<LRUCache>(capacity, num_shard_bits, + strict_capacity_limit, high_pri_pool_ratio, + std::move(memory_allocator), + use_adaptive_mutex); +} + +} // namespace rocksdb |